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Abstract

Recognition and Orientation of Specular Objects from the 
Analysis of Plane Polarised Light.

P.T.Fairney.

We have used the intersection of polarised reflectance contours to determine 

surface orientation. This information is used to both to recognise and to determine the 

orientation of dark, specular, dielectric objects. The system uses three images of an 

object viewed through a plane polarising filter at different rotations.

The objects are described by their Extended Gaussian Images (EGIs). The process 

always provides a description of only that part of the object which is visible to the 

camera, i.e. a viewer-centred description. This description of the object takes the form 

of a histogram. The cells of the histogram represent surface orientations, and the 

frequency in each cell is the visible area of the object at that orientation.

This sensed histogram is compared with a database of pre-computed, 

viewer-centred, model orientation histograms. The best match determines the type of 

object and its orientation in space. Matching with a pre-computed database is fast, 

efficient and determines orientation to within an average uncertainty of less than 7 

degrees of arc from fewer than 30 comparisons.
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Chapter 1

CHAPTER 1. 

Introduction

Computer Vision is widely accepted as a set of serial processes that include four 

main stages of image analysis: image restoration, segmentation, description and model 

matching. We wish to recognise and estimate the orientation of a randomly oriented 

object from multiple images. As such the task falls largely within this classical concept.

Human beings capture 2-D images of reflected radiance. By using the available 

cues we perceive the 3-D shape of objects within the image. One such cue is shading; 

artists mimic the effects of shading in paintings to communicate depth and shape.

The human visual system assumes a single light source, normally above the 

scene, i.e. the sun. The effects of shading in such circumstances help humans to gather 

information about the shape of objects and hence to recognise them. These ideas form 

the basis of several computer vision methods in which, using carefully controlled 

lighting, the orientation of an object is determined from its reflected radiance. In 

computer vision the relationship between reflected radiance and surface orientation is 

called the reflectance map.

An image captured by a TV. camera is a 2-D array of reflected radiance values. 

Four factors influence these recorded values: surface orientation, illumination, surface 

material and imaging geometry. Given the same illumination, fixed imaging geometry 

and surface microstructure, reflected radiance is determined wholly by surface 

orientation. The reflectance map is of practical use because it can be constructed 

empirically in the form of a look-up table. This relates scene radiance to surface 

orientation and is used to build descriptions of objects.
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As far back as 1966 Rindfleisch used known lunar photometric properties, along 

with radiance measurements taken from images captured by a Ranger spacecraft to 

find surface elevation of hills in the maria of the moon; the maria refers to the dark areas 

or 'seas' on the lunar surface.

A Lambertian surface reflects light such that the radiance is the same for all 

viewing angles. When it is illuminated by a distant collimated source the reflected 

radiance depends only upon the angle of incidence. A single image is insufficient to 

determine a unique surface orientation; three images are required each viewed from 

the same position but with different light source directions. Photometric Stereo uses 

this principle to empirically determine surface orientation from multiple views of the 

same object by creating differently shaded images of a viewed object. In contrast highly 

specular surfaces have little shading information since the dominant rays reflected from 

the surface are specular.

Reflected radiance depends upon the light source distribution, surface material 

and surface orientation. Horn uses the reflectance map to give image radiance as a 

function of surface orientation for a fixed imaging geometry. The reflectance map shows 

scene radiance as a function of surface orientation in a viewer-centred co-ordinate 

system,3 and is usually depicted as a series of contours of constant radiance.

Woodham6 uses several images of the same object but with varying incident 

illumination to determine surface orientation from radiance values. He calls the method 

Photometric Stereo. A Lambertian surface is assumed where reflected radiance 

depends solely upon the angle of incidence.

j 
The assumption of uniform surface reflectance is relaxed by Horn et al using a

Q

reflectance factor which varies across the surface being analysed. Silver finds the
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surface albedo, which is the reflecting power of a matt surface, to develop a more 

complex model of surfaces with non-uniform reflectance properties.

Many everyday objects have surfaces that combine both a specular and a 

Lambertian component. Coleman & Jain9 use four light sources to obtain 3-D shape 

information about visually textured and specular surfaces. They find that the radiance 

values created by specular reflection are too high and give incorrect look-up table 

references. They use the fourth light source to detect and to remove specular reflection.

Dceuchi uses a distributed light source obtained from an uneven illumination 

of a diffusely reflecting plane to adapt photometric stereo for a bin of highly specular 

components. The light source distribution affects the accuracy of the resulting surface 

orientations.

Ray et al look at the problems of implementing Photometric Stereo on objects 

with non-Lambertian surfaces. They conclude that normal light sources can be used 

only in the absence of strong specular reflection and shadows.

Horn et al12 use fluorescent tubes to illuminate specular objects in a bin of similar 

objects to determine estimates of object orientation.

Brou13 uses laser range data to produce a description of the viewed object. The 

method works well for white objects possessing a slighfly rough surface but is less 

suited to dark highly specular objects which are difficult to scan. The recognition of 

glossy objects is difficult because they are characterised by their conspicuous reflective 

properties; namely they reflect a virtual image of the surrounding scene. The nature of 

rays reflected from such a surface presents problems when illuminating glossy surfaces.
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The shape of an object determines what the camera sees at each orientation, and 

its size determines visible area. A suitable representation of object shape is required to 

enable matching of image descriptions to model descriptions. A convex object can be 

uniquely defined by the area and orientation of its faces. 14'17 A Gauss sphere is a unit 

sphere used to represent surface orientation, and objects are characterised by their 

Gaussian Images. The Gauss image is formed by placing the object at the centre of a 

notional Gaussian sphere which completely encloses it. Projecting the orientation of 

each surface of the object onto the sphere in the same orientations gives us the Gauss 

mapping. The Extended Gaussian Image (EGI), (Bacsjy15 & Horn16), is an extension to 

this and relates surface orientation to surface area. The area of a surface can be 

represented on the Gauss sphere by a mass equal to the surface area at that orientation.

The EGI itself is a continuous representation of orientation and surface area and 

any practical representation of an object's shape must be quantised. The orientation 

histogram is a discrete approximation of the EGI and is created by tessellating the 

Gaussian sphere into a fixed number of cells; each cell is represented by a unique 

orientation. Each cell of the orientation histogram corresponds to a cell on the 

tessellated sphere. Surface area at each discrete orientation is represented by the 

frequency in the corresponding cell of the histogram. EGIs and their discrete 

representation, the orientation histogram, are described by Horn. The orientation 

histogram is used to describe both prototypical object models and the visible or sensed 

object. Rotating the prototypical description until it aligns with the viewed description 

gives the estimated orientation of the sensed object. Each rotation of the model requires 

the reprojection of its surfaces onto the Gaussian sphere to produce an orientation 

histogram for subsequent comparison with sensed data. Recognition is regarded as a 

separate process in systems where more than one type of object is present.
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EGIs are translation and rotation invariant; the object's description will not vary 

regardless of where the object lies on the 2-D the image plane. Similarly object rotation 

will result in an equal rotation of its EGI.

18
Ikeuchi uses the EGI to help recognise 3-D objects. He notes that incomplete 

observations of objects create matching problems. To help solve this problem he 

computes several orientation histograms of the object from the same viewing direction. 

One histogram contains the full visible hemisphere of surfaces, and the remaining 

histograms contain partial views of the object. The amount of the visible object 

contained within each partial view is determined by a visible disk, i.e. equivalent to 

viewing the EGI through a variable diameter iris. Each visible disk is defined by a circle 

whose centre is the y-axis, see figure 2; each has a different radius and therefore contains 

only the proportion of the visible hemisphere within the corresponding disk. These are 

pre-computed for each viewing direction to form a 3-D look-up table; the axis of least 

inertia and the projected area of each disk are computed and added to each histogram 

to constrain possible viewing directions. A matching function determines object 

orientation after comparing the observed distribution of mass with the prototypes of 

possible orientations. It is noticeable that the question of object orientation and 

recognition has been separated. Ikeuchi proposes a method of rotating the 

object-centred EGI; he uses a geometric modeller to rotate the model and produce 

viewer-centred descriptions (EGIs) of the rotated object for matching purposes.

Brou13 uses combinations of spherical tessellations of 4-D polytopes to provide an 

even sampling of the sphere; he uses up to 5880 points or orientations. Tessellations 

based upon a regular polyhedron, such as an icosahedron, are used. An icosahedron 

has twenty identical triangular faces and sixty vertices; one model description is 

required for each viewing direction determined by a vertex orientation. Both model and 

object (sensed) descriptions are built using identically tessellated spheres. The
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icosahedron allows one sphere to be rotated into alignment with the second sphere in 

sixty different orientations. For each orientation tested, the model is rotated into 

position and its surfaces projected onto the Gaussian sphere before matching can occur.

Horn has adopted Brou's 4-D tessellations for matching EGIs. The space of 

possible rotations is reduced by using features of the visible object, i.e. the axis of least 

inertia and the centre of visible mass.

A reflectance map technique requires the reflected radiance to vary as the 

orientation of the viewed surfaces changes. Rays reflected from specular surfaces are 

coplanar with the surface normal and the incident ray and the angles of incidence and 

reflection are equal. The camera captures only rays reflected along the viewing axis. 

Hence we require an extended light source if we are to capture specular reflections from 

every point on the object.

Unpolarised light incident upon an object becomes polarised when reflected or 

scattered. Only when light is reflected at normal or grazing angles is there no 

polarisation. Unpolarised light from an extended source when incident upon a 

specular dielectric surface is reflected as plane polarised light. The degree of 

polarisation depends only upon the angle of incidence and the complex refractive index 

of the reflecting material. The use of polarised light in computer vision has, with few

r\'\ 'V'l

exceptions, been largely overlooked.

Polarisation by dark specular dielectric surfaces can be very strong. Darker 

surfaces absorb more of the incident light so that the rays that are reflected are very 

highly plane polarised. Polarised light is used by Koshikawa24 to determine surface

orientation of specular objects; polarimetry is used to measure the degree of

*?*? y-$ 
polarisation, and images are not used. Koshikawa etal and Terashi et al adapted the

method for image processing. Eight images of a specular object illuminated by
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circularly polarised incident light are required. The camera views the object through a 

quarter wave plate to enable the analysis of the state of polarisation of reflected rays, 

and the surface normals are computed from this information.

Specular dielectric surfaces when illuminated by an extended source and viewed 

through a polarising filter portray a reflectance map of radiance contours. We will 

investigate the use of polarised reflectance maps to derive surface orientation and hence 

descriptions of viewed objects.

Object models are generally described using a feature of the object such as the 

centre of mass; these are termed object-centred descriptions. Rotating this description

10

into alignment with the sensed description is computationally expensive. Brou finds 

that, with 1920 rotations and comparisons, his average error is 10.7 degrees of arc. Even 

with 5880 rotations and comparisons, errors of up to 17 degrees of arc are possible.

If both model and sensed descriptions are described in terms of what is visible to 

the camera, then the need for spherical tessellations is removed. A fixed grid of points 

on the surface of the visible hemisphere is sufficient to provide a discrete sampling of

yc

the surface of possible orientations. Brooks uses a fixed grid of points to discretely 

sample the continuum of normals over the surface of a sphere. Model descriptions can 

be pre-computed using a fixed grid of points and stored in a database of similar 

descriptions in a once only operation. We call these descriptions viewer-centred and 

will use them to recognise the object and to determine its orientation.

To summarise, reflectance map techniques are difficult to implement on highly 

specular surfaces using fluorescent rubes or collimated sources. Our experiments 

indicate that specular highlights, such as the virtual image of the lamp, cause errors in 

reflected radiance measurements and therefore do not lend themselves to reflectance 

map techniques, and in particular Photometric Stereo.
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Matching object-centred descriptions involves a model rotation, reprojection and 

comparison for each orientation attempted. This can be computationally expensive. 

When this type of matching is used, object recognition becomes a separate problem, and 

the task is reduced to object orientation.

By contrast we will describe a method which builds descriptions of highly 

specular objects by using the reflected, polarised radiance-contours. This description is 

sufficient to both identify the object and estimate its orientation.

Figure 1 summarises the previous work in this area and provides a comparison 

with our own results.

Researcher

Ikeucto 18

Ikeuchi37

Hometal 12
Brou 13

Terashi et al23
Horn20

Faimey(ffcis work)

No. of 

Images

3

3

3
*

g

3

3

Look-up 

Table

yes

yes

yes

no

no

yes

yes

Matching 

rot rep comp

yes yes yes

yes yes yes

yes yes yes

yes yes yes

yes yes yes

yes yes yes

no no yes

Object 

recog orient

yes yes

no yes

no yes

no yes

yes yes

no yes

yes yes

No. of 

Comp.

7

7

720

5880

7

=100

=28

Average uncertainty 

in degrees of arc

7

7

5-10

7.3

7

5-10

<7

Figure 1. Summary of approaches.
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Legend..

rot: rotation. recog : recognition 

rep : reprojectton orient: orientation 

comp : comparison ? : don't know 

= : approximately.

* : Brou uses lasers to produce a depth map of the viewed object. 

Differentiation is used to convert the depth informattion to a map of 

normal vectors.
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CHAPTER 2.

Calculating the Reflectance Map of Specular Dielectric Objects 
Viewed Through a Polarising Filter.

This chapter is devoted to a theoretical explanation of our proposed method of 

computer vision. Firstly, section 2.1 describes our co-ordinate system. We relate surface 

orientation to the degree of polarisation of the reflected light in section 2.2. Finally, the 

reflectance map of a dielectric sphere is calculated in section 2.3.

2.1 The Co-ordinate System.

We have chosen to represent surface orientation in terms of latitude and longitude 

(oc,p). This is closely related to spherical polar coordinates.

It is convenient to fix our co-ordinate system with the y-axis parallel to the viewer 

direction or optical axis, see figure 2.

Figure 2. The coordinate system.

10
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In figure 2,

x ~ ^cos asm P

y = (, cos a cos p

z = ^ s in a, 

the vector Or is given by

Or - ^ cos a sin P i + £ cos a cos P 3 + ^ sin a k. (1) 

Unit vectors are denoted by a circumflex.

2.2 The Relationship Between Surface Orientation and the Degree of 
Polarisation of Reflected Light.

Radiance is a precisely defined radiometric quantity; when radiance is weighted 

with the spectral response of the eye or camera, we obtain the photometric quantity 

luminance. Luminance is often confused with brightness which is a subjective, visual 

sensation. It is therefore difficult to obtain a precise measure of the brightness of an 

object since it changes as, for example, the luminance of the background changes.

The radiance of a scene is the most important radiometric quantity used in 

computer vision or, for that matter, human vision. The reasons for this are twofold; 

firstly imaging devices such as eyes and cameras generate a signal which is

9Aproportional to radiance. Secondly the radiance of an object is undiminished by
fjf

distance, assuming no absorption or scattering in the intervening space. If we are to 

model a method of computer vision, we must be able to calculate the radiance of a 

scene. Radiance, L, is defined as follows. Consider a surface patch of area, 5/1, which is 

illuminated by a distant light source. The incident rays make an angle i with the normal

11
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to the surface, see figure 3. The angle between the surface normal, n, and the viewer is e. 

The foreshortened area is 8A cos e.

Figure 3. The illumination of a surface patch.

3 .
The solid angle 8co subtended by 8A at the viewer is given by

5(0 =
cos e

7 '

where n. is the distance from the viewer to the surface patch. In the limit, the

equation becomes

dA cos e (2)

3 .The radiance is the reflected radiant flux, <I>, where <J> = 3>(A,<o,if) per unit area 

and contained within the solid angle dtfl. The radiance reflected by the surface in the

. 3
direction of the viewer is

8<o 8/i cos e
(2a)

12
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In the case when co, A, 4> are constant, equations (2) & (2a) combine to give

L(e)
cos e

(3)

A foreshortening factor of cos e must be included both for the area and the solid 

angle.

Equations (2) and (3) constitute the simplest form of reflectance map which is a 

mapping from reflected radiance to orientation. There are two further factors which 

must be taken into account if the reflectance map is to be used successfully to determine 

surface orientation; they are the lighting and the nature of the surface.

The two extremes of surface type are the perfectly diffuse (Lambertian) surface 

and the perfectly specular (mirror) surface. When a collimated beam is incident upon 

both surfaces the resulting reflections are very different.

A diffusing surface, see figure 4, has the same reflected radiance irrespective of 

viewing direction.

n

Figure 4. Diffuse reflection.

13
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The radiance of the Lambertian surface depends only upon the angle of incidence 

i. If the direction of the light beam is known, then the orientation of the surface may be 

determined from radiance; this is the basis of the method referred to as Photometric 

Stereo.

At the other extreme, a perfectly specular or mirror surface, see figure 5, reflects 

light such that the angles of incidence , i, and reflection, e, are equal. The reflected ray 

is coplanar with the normal to the surface and the incident ray, and the angles i and e 

are equal.

Figure 5, Specular reflection, 

The phase angle, g, is defined to be

- i+ e - 2i= 2e. (4)

A distant eye or camera picks up rays of light travelling in a single direction. If 

every point on the object is to be visible, reflected rays must emerge parallel to this 

direction; to achieve this we must illuminate from all directions using an extended light

source.

14
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The light reflected from specular dielectric and (to a lesser degree) metallic objects, 

is linearly polarised. The degree of polarisation depends upon the angle of incidence 

and on the refractive index and absorptivity of the material; it is measured by viewing 

the object through a plane polarising filter. In principle, the orientation of the surface 

normal with respect to the direction of viewing can be deduced from the degree of 

polarisation and the direction of the plane of polarisation. This forms the basis of our 

proposed method of computer vision.

2.3 Calculation of the Reflectance Map of a Dielectric, Specular Sphere 
Viewed Through a Polarising Filter.

To be able to model our computer vision system we must first calculate the 

polarised reflectance map of a sphere. A sphere is used because its surface has elements 

oriented in every possible direction; these are used to relate surface orientation to a 

triple of radiance values to calibrate our working system. We calculate the reflected 

radiance at every point on the visible hemisphere and determine the effect of viewing 

the sphere through a polarising filter oriented at any angle.

Figure 6. The orientation of a surface patch.

15



Chapter 2

An arbitrary point A on the sphere's surface is located in the direction defined by 

^ , from the origin, O, see figure 6, where

£, = cos a. sin p i + cos a cos p 3 +  */« a ic. (5)

Electro-magnetic waves comprise two fields, the electric field and the magnetic 

field, see figure 7.

Figure 7. The electric field, E, vibrates in plane A. Plane B 
contains the magnetic jteld, H. and is orthogonal to plane 
A. Both E &H are perpendicular to the wave motion.

To determine the orientation of these vibrations relative to our axes, we must 

choose one of these two vectors. The electric vector plays a dominant role in optical 

measurement and because of this the electric vector is generally favoured when 

describing the effects of polarisation.

A

The electric field has components in two directions represented by the vectors p 

and s. These vectors are defined in two directions: B is normal to both the plane of

16
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incidence and the direction of propagation, and p is in the plane of incidence and 

normal to the plane of propagation, see figure 8,

plane of incidence

Figure 8. The plane of incidence. 

The vectors 8 and p are defined so that an observer looking in the direction of

A A

propagation would make a clockwise rotation from positive p to positive a , i.e

A A A

p x s = j. (6) 

Where x denotes the vector or cross product.

In unpolarised light, the direction of the electric vector will vary from one wave 

packet to the next. Over a finite period of time, all directions perpendicular to the 

direction of propagation will be occupied.

When the electric vector is confined to a single direction, perpendicular to the 

direction of propagation, the light is said to be linearly polarised.

17
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Apolarising filter placed in the path of an electro-magnetic wave produces a beam 

of light whose electric vector vibrates in a single plane. To calculate the polarised 

reflectance map of our sphere, we must calculate the radiance that passes through the 

polarising filter from each point on the surface of the sphere. The radiance, L, passing 

through the polarising filter, see figure 9, will be shown to be (equation 28)

L(e)
Rn

2 cos e

polarising filter

Ftpure 9. The radiance passing through a polarising 
fitter.

18
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Where:-

A A

s & p are the electric field unit vectors.

As & Ap are the incident amplitudes of the electric field vectors s & p.

Rs & Rp' are the reflected amplitudes of the electric field vectors s & p from 

an absorbing surface.

A

f is the rotation vector of the polarising filter . 

This expression is derived as follows.

Fresnel's equations are expressions for the magnitudes of the s and p vectors 

reflected from every point on the surface of the sphere. Vector algebra is used to resolve 

the electric vectors at the plane of the polarising filter.

^ 
The modulus of the reflected electric field resolved along f are squared and

summed. The values are squared because imaging devices detect the square of the 

reflected amplitude. The foreshortening effect is achieved by dividing the sum by 

cos e.

The origin of the coordinate system appears at the centre of the circular projection 

of the sphere when viewed along -3, (see figure 6). The latitude and longitude (a,|5) 

are found for any point from its coordinates with respect to the projected origin:

I z I m 
sin a= T~TT- ('*

Because we are dealing with the unit sphere this becomes

sm a- I z I (8)

and

sin $cos oc = I x \. (9)

19
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The distant observer sees only those rays which are reflected along j.

For a specular sphere, the angles of incidence, i, and reflection, e, are equal, so

cos e = n j (W)

which gives

cos e = cos a cos p. (W

The angle of refraction, r, see figure W, in the dielectric sphere is given by Snell's

law26

sm r = sin i (W

where |1 is the refractive index.

Figure 10. The angles of incidence, i, rejlectton, e. and 
refractions.

20
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The plane of incidence contains the normal to the surface, n and the reflected ray. 

The orientation of this plane can be described by the direction of its normal

A A A A A A- nxn nxj nxj „„,8 = rr^n = r^r, 7*! ~ = —^ • (ivI n x ]| I n| |j| sin i sin i 

When i = 0, a is indeterminate.

The vector p in the plane of incidence is perpendicular to both a and j , and is 

defined in an analogous way to a giving

A A A

P= s x j

If the polarising filter is rotated by an angle 5 from the horizontal we can represent 

the rotation by a vector

A

f = cos 8 i + sin 8 k. (15)

The electric vectors of the reflected ray must be resolved along f to determine the 

proportions of s and p that pass through the polarising filter at any rotation, i.e.

A A cos a sin B cos 5+ sin a sin 8p f = —————c——;—;———————— (16)
r sin i

and

A A 5-y? a cos 5 - CQ51 a sin ft ^w_S s • f — . \i*)sin i

We have now calculated two components of the radiance equation. The 

amplitudes of the incident, A, and the reflected, R, electric vectors are given by Fresnel' s 

equations.

Ap tan (i + r)
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and

/^ =zJLinJ/-4 
/4j sm(* + r)

The minus sign in (19) indicates a change of phase on reflection. Equations (16) 

and (17) do not apply to the special case of normal incidence.

*)£*

Fresnel's equations for the transmitted vector amplitude are

Tp 2 sin r cos i
Ap sin (i + r) cos (i — r) 

and

Ts _ 2 sin r cos i 
As sin (i + r)

(2Q)

(21)

Many dielectric materials are absorbing, and the effect of the absorption is 

estimated roughly from the boundary conditions

Ap + Rp = Tp (22)

and

A 5 + Rs = Ts . (23)

The change in the transmitted vector amplitude, T, arising from absorption 

changes the reflected vector amplitude, R, as follows.If T is changed by 8l

(24)
A An **p P

and

^ . (25) 
As
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If the fraction, K, of the transmitted ray is lost by absorption, the modified 

reflected amplitudes R, are

(26)

and

67?, KT.
(27)

Using equations (16), (17), (26) & (27) we obtain a relationship for the flux, <I>, when 

viewed through the polarising filter. The calculated flux is the square of the modulus 

of the electric field vectors in the p and 8 directions when resolved along f. The flux, 

<J>, emerging from the polarising filter is therefore

z 

+
R'S

As

A
8 •

*

/ -

From equation (3), we must divide flux by the foreshortening factor to obtain the 

radiance

L(e)
Rn A A 
-£- p • f
Ap

i 

+ /?i A AT~ s f Aj

2 -

1

COS (
(28)

We assume that As = Ap and they are constant over the entire surface of the sphere. 

We now describe how this theoretical basis can be used to test the feasibility of 

Polarimetric Stereo.
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CHAPTER 3. 

Proposal for using Polarised Light to Recognise Objects.

For our proposed method of computer vision to succeed, it must be capable of 

associating unique triples of intensity with surface orientations on the sphere. Section 

3.1 explains why this is not possible without modifications to the extended source. In 

section 3.2 we test the method using spheres and objects computed from our model.

3.1 Obtaining a Unique Triple of Intensity.

The locus of equal angles of incidence for light waves reflected along the y-axis is 

a series of concentric circles whose centre is latitude/longitude (0,0). These loci also 

apply to constant degrees of polarisation, since this depends only on the angle of 

incidence for a sphere with a uniform refractive index and absorption coefficient. The 

degree of polarisation , P, of the reflected wave is:-

(29)
Rp + Ry

The intervention of a polarising filter between the viewer and the sphere lifts the 

circular symmetry. We obtain a pattern which has fourfold symmetry arising from two 

perpendicular axes with mirror symmetry. Near the centre of the projected sphere, the 

pattern is a figure of eight, see figure 11 , which relaxes to an ellipse further away from 

the centre. Near the edge, the pattern breaks up into a complicated series of concentric 

circles.
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Figure 11. The polarised contours of light reflected 
from a sphere.

The contours of a polarised reflectance map represent areas of the image with the 

same degree of polarisation. A contour of constant radiance on the sphere represents 

infinitely many orientations, see figure 12a . A second image captured using a different 

rotation of the polarising filter will result in the two radiance contours intersecting at 

four points, see figure 12b. The four points, or orientations, will be represented by the 

same pair of radiance values. A third rotation of the filter will reduce the points where 

three contours intersect to just two, see figure 12c , each will correspond to the same 

triple of radiance values.

As the polarising filter rotates, so the pattern also rotates about 

latitude/longirude(0,0) since this point is the centre of the circularly symmetric degree 

of polarisation. A unique triple of radiance is not possible because of the mirror 

symmetry of the polarised reflectance map.
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(a)

Figure 12. The intersection of contours of constant 
radiance using an extended source. The pixel grey-level 
of each contour is as follows (1) 72 (2) 98 and (3) 68. 
These grey-level values also apply to figure 13.

To Eft this ambiguity and obtain unique triples of radiance we must lift the 

symmetry of the pattern by using an extended light source which produces different 

radiances over areas of the sphere. We built into the model this facility for the four 

quadrants of the image and we will describe this in greater detail in chapter 4.

\

(a) (b)

Figure 13. The intersection of contours of constant 
radiance using uneven illumination. We model this by 
giving positive x values a different absorptionfactor than 
the negative x values.

(c)
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Modifying the extended source to vary the incident illumination results in 

asymmetric contours. These contours produce a single intersection, see figure 13c, 

enabling a unique triple of radiance to be associated with surface orientation.

In order to simplify the task we make certain assumptions. Firstly orthographic 

projection is assumed; for distant objects the irradiance of the image is proportional to 

the radiance of the object. Secondly illumination will remain constant and all viewed 

objects will have similar reflective properties. Finally the use of a fixed imaging 

geometry will ensure image consistency. These assumptions allow us to concentrate 

upon relating surface orientation to polarised radiance values.

Three images of the object are captured using a fixed camera position; for each 

image a different rotation of the polarising filter is used. This method produces a triple 

of radiance values for the corresponding pixel in each of the three images. Our modified 

extended source creates a variation in illumination; when combined with filter 

rotations, points are created where three contours of constant radiance intersect. These 

intersections will typically yield a unique surface orientation.

By using a sphere as a calibration object we can determine the orientation at each 

point on the sphere where three contours of constant radiance intersect. We will use this 

information to empirically create a look-up table of surface orientations, in which each 

cell is indexed by a triple of radiance. The look-up table is produced in a calibration 

stage before the system is used. Once the look-up table is created, surface orientations 

of viewed objects are determined simply by table look-up. The key to the successful 

method of Polarimetric Stereo is a reliable look-up table.

Polarimetric Stereo produces an orientation histogram of the viewed object whose 

cells represent surface orientation. The frequency in each cell represents the visible 

surface area at that orientation; this is the discrete approximation to the EGI. This
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description is compared to pre-computed descriptions of the object(s) to achieve both 

recognition and orientation. To simplify the matching process and efficiently compute 

a satisfactory result, we use viewer-centred descriptions of both model and image data.

3.2 Testing the Feasibility of a Computer Vision System using a Computed 
Model of a Cylinder.

To test the feasibility of using polarised reflectance maps to generate object 

descriptions, a look-up table is built from three calculated images of the sphere, each 

computed with a different rotation of the polarising filter. To test the resulting look-up 

table, three images of a cylinder are generated. We consider the cylinder to be a solid 

bounded by a cylindrical surface and two parallel planes (bases) which cut the surface. 

The axis of a cylinder is its line of symmetry passing through the mid points of its two 

bases. The computed cylinder has a height of 100 pixels and a base of radius 60 pixels.

We describe the cylinder in a fixed position, where the axis of symmetry is aligned 

with the z-axis and the origin of the coordinate system coincident with the centre of 

mass of the cylinder. The x,y,z coordinates of each point on the circumference of both 

bases of the cylinder is found. Using a rotation matrix we rotated each coordinate about 

the origin relative to the selected orientation.

Lines connecting the two bases and representing the cylindrical surface of the 

cylinder are computed. These lines are in effect a series of planar surfaces whose grey 

levels must correspond to their orientation. Each visible connecting tine has an 

orientation which relates to a point on the sphere. The radiance at this point on the 

computed sphere is found and used to draw the connecting line. Three computed 

images of the cylinder are produced in this way.
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This method ensures that each group of three images of the cylinder use the same 

refractive index and absorption factor as the computed spheres. It also guarantees that 

corresponding images of the sphere and the cylinder have the same filter rotation.

Using this method we can produce test images of the cylinder at any orientation. 

The resulting orientation histograms are matched against the database of pre-computed 

cylinder histograms, as will be described in detail in chapter 7.

We determine the attitude of the computed model by calculating images of the 

cylinder at many different orientations. The average uncertainty in orientation for all 

tests involving the computed images of cylinders and the database of pre-computed 

histograms of cylinder orientations, is 5.2 degrees of arc.
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CHAPTER 4. 

Equipment Used

All images used to test our Polarimetric Stereo method are captured using a Sony 

Camcorder CCD (charge coupled device) camera. CCD cameras have two distinct 

advantages over inexpensive Vidicon cameras; firstly they have a linear response to 

radiance, and secondly the resulting images suffer less geometric distortion. 12

Once captured, images are processed using a GEMS image processing machine. 

This has a DEC LSI 11 /73 processor running an RT/11 operating system. The usable 

internal memory of the machine is 50k bytes, which includes space required for file 

handling input/output buffers. The GEMS software, necessary to access images, 

reduces the total available memory by a further 7k bytes; the limited amount of memory 

remaining for user programs presents many problems.

The GEMS image processing equipment consists of four 1024 * 1024 8 bit image 

planes; two image planes can be combined to enable storage for 1024 * 1024 16-bit 

integers. A displayed image consists of 512 * 512 8-bit pixels giving 256 grey levels. The 

problems created by the small internal memory of the processor are partially overcome 

by using spare image planes as additional memory. In effect these image planes enabled 

a substantial increase in the available RAM.

The GEMS software allows the capture of frames directly from a video camera or 

from a video recorder, and provides a library of Fortran subroutines to access and 

manipulate image data. All programs are written in Fortran 77; they are however 

machine dependent due to the dependence of the equipment on the GEMS software to 

access image data.
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To produce an approximation to an extended light source, a wooden box was 

constructed (see figitrel4 ); the box is a cube of side approximately 600mm. A 75mm. 

diameter viewing hole was cut in the centre of one face; objects are mounted on the 

internal face directly opposite this aperture.

photometric box

aluminium bar

camera

baffle

viewing hole

Figure 14. The experimental set-up.

Two 100 watt light bulbs are mounted inside the box, one per side, as far from the 

object as possible. Each light source is obscured from the object by a baffle, which is 

mounted directly in front of each bulb.

The interior of the box and the baffles are painted with a proprietary matt white 

emulsion paint to approximate a uniform extended source. Later, see chapter 9, we use 

four different shades of emulsion in each of four quadrants of the box, (see figure 15). 

Finally we reduce the number of different shades to just two, see chapter 9.
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Figure 15. The four quadrants of the photometric box

A Hoya 58mm. plane polarising filter is placed between the object and the camera, 

(figure 14). This filter was originally mounted on the camera lens, but manual rotation 

of the filter is difficult to achieve without defocussing the camera. We place the filter in 

a homemade wooden holder; this is mounted at the end of a 1m. long aluminium bar, 

which is in turn attached to the front of the photometric box.

The filter is marked at selected angles to ensure consistent rotations for image 

capture. A piece of steel wire is attached to the filter holder and fixed in position as a 

calibration mark for the filter rotation.

The rotation marks on the filter are approximately 1mm. wide and the steel wire 

is 0.8mm. in diameter; these enable us to ensure that with moderate care we are always 

within 0.5 degrees of arc of a consistent rotation.

The objects are mounted on the rear vertical interior face of the box using a small 

hole drilled at the centre of this face. The horizontal x-axis passing through this fixing 

hole is marked, see figure 14. Using this axis as a datum, calibration marks at 15 degree
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intervals through the full 360 degree rotation are drawn using a large accurate 

engineer's protractor.

The objects are mounted upon a jig in such a way that they can be rotated 

independently about three axes. The jig is a hinged platform which is fixed to the 

interior face of the photometric box. The hinged platform is aligned with the calibrated 

marks on the interior surface. We also use two right angled wedges. The first provides 

orientations at 30 degrees and 60 degrees and the other at 45 degrees. The wedges and 

the hinged jig are also covered with matt white emulsion.

33



Chapter 5

CHAPTER 5. 

Test Object Description, Representation and Orientation

A sphere is used to calibrate the system. Two objects are used to test the system 

namely a plastic cylinder and a plastic toy. We used several spheres of different 

diameters ranging from 115mm. down to 40mm. The cylinder has a diameter of 30mm. 

and is 50mm. in length. The toy is a compound object which consists consists of two 

tapered hollow cylinders a and b, see figure 16; the larger cylinder, b, has a planar face, 

c, at the narrow end to which is joined the large end of the smaller cylinder. The larger 

cylinder has a diameter of 25mm. and a length of 26mm., whilst the smaller, a, is 10mm 

in diameter, with a length of 40mm. The angle of taper of both cylinders is 

approximately 3.5 degrees in opposite directions.

Figure 16. The toy.

Two sets of test objects are used; one set is sprayed black and the other blue. A 

proprietary brand of acrylic paint is used to achieve a dark uniform highly specular 

surface on both. SUicone polish is applied to all of the objects and when buffed their 

specularity is further increased.
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moreThe cylinder and toy both have planar and curved surfaces; the toy is a far: 

complex shape possessing both convex and concave surfaces. The EGI of both the toy 

and the cylinder will be fairly similar for many orientations of both objects, see figure 1 7; 

the taper of the compound object is the only truly distinguishing feature that 

differentiates between the objects. The choice of two similarly described objects will 

provide a severe test for any system using EGIs.

Figure 17. The EGIs of the toy and cylinder 

5.1 Object Description.

Each object is described in terms of planar surfaces so that curved surfaces are 

divided into a finite number of planar facets. A description is created that relates the 

object's surfaces to one key face. This representation gives the angular distance between 

this key surface and all other surfaces of the object. We position this primary face at (0,0).

A discrete representation of an object's shape such as an EGI implies that the fine 

detail of curved surfaces will be lost. It is therefore a coarse description, so that object 

descriptions are kept to essential details. Table 1 gives a description of a cube.
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Face

tat/long.

area(mm2)

1

(0,0)

2500

2

(0,90)

2500

3

(0,180)

2500

4

(0,270)

2500

5

(90,?)

2500

6

(-90,?)

2500

Table 1. Specification of a cube of side 50mm. ( ? Indicates 
that the longitude is undefined at the N & S poles)

From this data a more comprehensive table is produced giving the angular 

distance between any pair of surfaces.

Face

1

2

3

4

5

6

1

0

90

90

90

90

90

2

90

0

180

180

90

90

3

180

90

90

90

90

90

4

90

180

90

0

90

90

5

90

90

180

90

0

180

6

90

90

0

90

180

0

area(mm )

2500

2500

2500

2500

2500

2500

Table 2. Angles between surface normals of a cube.

Using the viewer-centred approach, the shape of a cube is such that a maximum 

of three faces are visible. This description gives three adjacent surfaces compared to the 

six faces required by an object-centred description. An advantage of this method is a 

reduction in the necessary computation.

Using Table 2 and knowing the sampling point orientations, we can compute 

descriptions of the visible object at any orientation. Surface area details are included to 

allow calculation of apparent and true surface areas at each surface orientation.
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5.2 Object Orientation.

Both test objects are solids of revolution. The orientation of a solid of revolution is 

fully specified by the direction of its axis of symmetry. The orientation of both the toy 

and the cylinder are determined by the latitude and longitude of their axes of symmetry. 

An object such as a cube has three identical axes of symmetry; in such cases another 

measure of orientation is required, i.e. we may arbitrarily choose the orientation of the 

largest visible surface as the cube's orientation.

To determine the uncertainty in the object's orientation we need to ensure that the 

known orientation of the test object in each image is accurate to within a known 

tolerance. To achieve this, we place a mirror on the rear surface of our photometric box. 

When the camera was clearly visible in the resulting image we considered the camera 

and photometric box to be aligned. Vertical alignment is achieved with a spirit level.

Using GEMS software routines we devised a program to display a series of radial 

lines on the overlay plane of the screen. These are displayed at 45 degree orientations 

in the x-z plane with each line passing through the centre of the image plane, see figure 

18. This enabled us to align accurately the calibration marks on the rear inner surface 

of the box with those on the image overlay plane. This served two purposes, firstly it 

ensured the camera's field of view is parallel to the y-axis of the photometric box and 

secondly it allowed the calibration marks in the box to be aligned accurately.
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X
Figure 18. The radial lines on the image overlay plane

are used to align accurately the calibration marks
inside the photmetric box.

The object is lined up with marks on the mounting bracket to ensure good 

mounting accuracy. Having taken much care to ensure as accurate a set-up as possible, 

we believe that the principal axes of our objects are oriented within an uncertainty of 

less than one degree of arc.
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CHAPTER 6. 

System Calibration

This chapter explains the various processes we require to empirically determine 

the surface orientations of viewed objects. A convenient method is to use a look-up table 

indexed by measured radiance values. The look-up table must be constructed in an 

operation that occurs before the recognition /orientation process; we term this process 

calibration. A sphere which has all possible surface orientations, is used to calibrate the 

system by relating surface orientation to reflected radiance.

Calibration is achieved by capturing three images of the sphere, each with a 

different rotation of the plane polarising filter. From these three images we relate triples 

of radiance values to surface orientation. The look-up table is therefore 3- Dimensional.

Orientation is specified as the latitude/longitude (a,P> pair of the point on the 

Gauss sphere where a vector emerged. We associate the radiance values of a particular 

pixel in each of the three images with its orientation. The orientation corresponding to 

these radiance values (LiJL2,L3) is entered in the table. When the system is on-line the 

look-up table is used to find the orientation of a pixel given its three radiances.

The images of the sphere tell us the radiance value recorded at each pixel (x,z) on 

the sphere for each filter rotation. By finding the orientation at each pixel, the mapping 

becomes

Inverting this mapping enables us to determine surface orientation from a triple 

of observed radiance
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Using the calibration images of the sphere we implement this mapping by 

constructing a 3-D look-up table indexed by image radiance values. The table contains 

surface orientations which correspond to the radiance values of its indices.

The look-up table is constructed as follows.

The sphere projects a circular disc in the x-z plane, knowing the centre of this disc 

and its radius enables us to relate each pixel on the visible disc to an orientation on the 

visible hemisphere. Section 6.1 describes this operation.

Using the raw intensity values as indices to the look-up table is impractical, since 

the table size is the cube of the range of radiances recorded over each sphere. A further 

complication arises because measuring image radiance values is unreliable due to 

noise. A practical solution to these problems is to limit the number of values radiance 

can take, by quantising recorded radiances into bands; we explain this in section 6.3.

In principle the number of possible orientations over a visible hemisphere is 

infinite. The number of orientations we can calculate over the hemisphere is finite and 

is determined by the number of pixels occupying the visible disc. By restricting the 

number of recorded radiance values over the sphere, we have restricted the number of 

orientations that can be represented by a triple of radiance. Our viewer-centred 

approach also influences how we represent surface orientations on the sphere. Our 

solution is to use sampling points, these are described in section 6.2,

Having decided how we will measure radiance, represent surface orientation, and 

having determined the position of the calibration sphere and its radius, we can calibrate 

the system by building the look-up table. Our method is illustrated in section 6.4.
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Finally it is useful to determine segmentation thresholds for later processing at this 

stage. Section 6.5 describes how these are determined.

6.1 Locating the Sphere and Estimating its Radius.

We used several spheres of different dimensions in the course of our experiments. 

Because the sphere is not precisely positioned at the centre of the image, we need to 

locate the sphere and to determine the centre of its visible disk and its radius.

A single image of the sphere viewed through the plane polarising filter is
OR

captured. A Prewitt edge detector is used to locate the edges of the sphere. 

Occasionally noise, caused by damage to the white painted background, would be 

detected as edges. To help ensure consistently accurate location of the spherical disc we

29smoothed the image with a Gaussian filter before using the edge detector. The 

Gaussian filter operates over a 3*3 window of the image effectively removing such 

blemishes.

The image produced by the edge detector is thresholded to produce a binary 

image in which the outline of the sphere is well defined. The Prewitt operator tends to 

reduce areas of the image where shallow or no gradients are present to zero grey level; 

typically this will be the background. Areas of the image with steep gradients, e.g. the 

edge of the sphere, will produce the highest grey levels in the resulting image. An image 

is produced which is relatively straightforward to threshold into sphere and 

background. We compute the mean, x, and the standard deviation, ov, of the resulting 

image; the threshold value, ti, is found from

ti = Xi + 2cfi.

This gives consistently good results. In practice the threshold value can take any 

one of a range of values and still produce a satisfactory segmentation.
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The outline of the sphere is found at the poles and the north/south distance and 

east/west distance bisected to give an estimate of the centre and radius, T., of the visible 

disc. Starting at the west pole the outline of the disc is followed; using Pythagoras' 

theorem the distance, T', from the estimated centre to the edge is found.

The distance t' is calculated for each pixel at the edge of the sphere. We test this 

distance i' against our estimated radius, t; a difference of ± 1 pixel is regarded as 

satisfactory, and t is assumed to be the radius of the visible disc. If the average distance 

of x' is outside these limits then the process is abandoned and a new set of images must 

be captured.

At the edge of the sphere a discrepancy in the estimated centre of more than two 

pixels will push the final grid circle off the sphere in at least one position. At the 

extremity of the sphere a single pixel can affect accuracy of sampling point orientations 

by about 12 degrees.

This extremely simple method gives consistently accurate results; we test the 

method using both real and model images of circular discs. To test the accuracy of the 

estimated centre, the image of the sphere is thresholded. The centroid of the resulting 

image is then found and compared to the estimated centre; the (x,z) coordinates of the 

estimated centre and the calculated centroid are always within the allowable tolerance.

6.2 Selecting the Sampling Points.

If we quantise the radiances to a limit of 16 values, we restrict the size of look-up
rj

table to 163. In consequence we can only represent 16 orientations on the visible 

hemisphere with different quantised triples of radiance.
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To be able to represent orientation by a quantised triple of radiance we need to 

divide the visible hemisphere into a discrete number of cells. The surface of the visible 

hemisphere is divided into patches or cells, each represented by an orientation (a,f3), 

which will usually be the orientation at the centre of the cell. We term these orientations 

sampling points.

We need to calculate the angular distance between any pixel and sampling point 

on the visible hemisphere. Point P represents the sample point and Q the pixel, see figure 

19.

Q

Figure 19. Two points on the visible surface of a unit 
sphere are separated by an angle \f».

The angle V between unit vectors OP & OQ is given by the dot product

(?Q
\P\ \Q\

(30)

where

ol> = cos ap sin p> i + cos ap cos (3P 3 + sm ap k (31)
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and

OQ = cos u<i sin$q i + cos Oq cos $q j + sin o^ k. (32) 

The dot product of these is given by

OP OQ = cos Up sin $p cos a.q sin $q +

COS Op COS Pp COS OLq COS Pg +

sinopsinfiq. (33) 

Equation (33) simplifies to

cosy = cos Op cos Oq cos (pp - Pq) + sin Op sin Oq (34)

where y is in the range

-% < v < %.

The surface of the sphere is divided into 115 cells, each of which is represented by 

a single orientation. Each orientation (sampling point) represents the pixels 

surrounding the sampling point that are closer to it than to any other sampling point. 

The criterion for closeness is the angular distance between the sampling point P and the 

pixel Q. The angle y between these two points is found from equation (34), and is used 

to find the sample point orientation for which \|/ is a minimum.

The effect of quantising both radiance values and surface orientation means we 

will only be able to estimate surface orientation and consequently object orientation, to 

within an uncertainty determined by the degree of quantisation and sampling point cell

size.

Our decision to use viewer-centred descriptions simplifies the matching process 

and removes the need to use tessellations. Rotations of one description onto the other
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are unnecessary because we store viewer-centred descriptions which contain only 

details of the visible surfaces of the object at a variety of orientations. A fixed grid of 

points will suffice for both sensed and stored descriptions.

We require a set, or grid of points on the surface of the sphere that will enable us 

to sample the hemisphere of possible orientations. To achieve a reasonably well 

distributed set of points we divide the visible hemisphere into equi-spaced grid circles, 

see figure 20.

where e = it /14 radians

Figure 20. The grid circles.
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These are spaced Vu radians apart. Each grid circle is divided to find points on 

the circle that are approximately Vi4 radians apart. The grid circle at n/i radians is not 

visible to the camera, see figure 20.

The projected radius T/' of each grid circle is

= r sin if r*>

where i is the grid circle 1,2,3,..,6 and T is the estimated radius of the visible disc. 

Finding the circumference, c, of this circle gives us the length of arc on which to place 

sample points. The distance d between two points separated by the grid angle E is

d= 2 T sin y

The number of points on a grid circle is c/d which gives a non-integer value. We 

will define the value E' to be an integer value.

(37) 

We stagger the start point on each grid circle from the x-axis to ensure variation.

This method produces 115 visible sampling points on the hemisphere, starting at 

the point (0,0); this is the point on the visible hemisphere where the y-axis intersects the 

surface of the sphere.

The sampling points are used to determine the surface orientations of viewed 

objects; they are also used to describe object orientation. There are however too few 

sampling points to describe a hemisphere of possible object attitudes, e.g. a cylinder 

lying horizontally on the x-z plane has an axis of symmetry oriented at Vz radians to 

the y-axis. A further grid circle at ¥1 radians is computed and stored. This additional
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circle of points increases the total number of sampling points by 29 taking the total to 

144. Points 116-144 are not visible to the viewer.

The complete set of 144 sampling points are used to estimate object attitude. Only 

the subset of 115 points on the visible hemisphere, (see figure 21), form the cells of the 

orientation histogram.

Figure 21. The grid of fixed sample points.

We use this fixed grid of sampling points to represent both the sensed image data 

and the stored pre-computed histograms. Both are representations of the visible object, 

one from the image and the other of the model.

6.3 Quantisation of Radiance Values.

In practice, the spread of recorded radiance values over an image may typically
o

be in the grey-level range 50-250, requiring a 200 look-up table to hold all possible 

combinations. The effects of noise and fluctuations in the power supply to the source 

illumination, when added to the resulting images, tend to ensure that radiance 

measurements are unreliable sources of information. The large amount of memory
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required to hold a potentially unreliable look-up table is not practical. To overcome 

these problems and to ensure more reliable data, we place recorded radiance values in 

bands. Typically we may reduce the number of grey levels to 8,12,16 or 24 by 

combining them into bands in each image. This reduces the size of look-up table 

necessary, to the cube of the number of bands in each of the three images.

We choose to quantise radiance values into 16 bands; therefore we use a 16 

look-up table. Ideally all cells of the look-up table will contain an orientation (a,P> 

which will relate to a triple of radiance on the calibration sphere. Ideally an even 

distribution over all sixteen cells will give the best results. An uneven distribution of 

radiance values over the evenly spaced cell widths will greatly reduce this possibility.

For example, if radiance values are distributed over ten bands in each image then the
2 maximum number of entries we can achieve will be 10 . Using this method we find the

distribution is extremely uneven, see figure 22. 

Frequency

10000 —

8000 —

6000

4000 —

2000

0 15 31 47 63 79 95 ............ 255

Figure 22. Distribution of radiances over the sphere.
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We require the number of pixels in each class interval to be evenly distributed. The 

precise position of the dass boundaries is determined by interpolation. Three images of 

the sphere are captured each with a different rotation of the polarising filter. We divide 

the range of possible radiance values into 32 equally spaced bands.

0-7^-15,........248-255

Scanning the three images we construct histograms of the frequency and 

distribution of radiance values in each of the three images.

Frequency

O 15 31 47 63 79 95 
7 23 39 55 71 87

evenly spaced quantised bands

..... 255

Figure 23. The cumulative sum of frequencies.

We use this information to interpolate band widths for each of the images. For each 

image we form the cumulative sum of grey-level frequencies, see figure 23, and perform
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an inverse linear interpolation to estimate radiance band widths for each of the three 

images.

Ideally Vi6 of total frequency in each quantised band will produce the maximum 

number of entries in the look-up table. By varying the quantised band widths in this 

manner, a more even distribution of entries in each band is achieved; see figure 24.

frequency

1600 -

1400 .

1200

1000 .

800

600 -

400 -

200 -

96 16.5 214 26.2 30.9 37.1 49.7 714
0 13.3 18.9 238 28.6 33.9 40.8 60.2 88

interpolated — quantised radiance bands

Figure 24. The radiance distribution in the interpolated 
band widths.

The resulting band widths are non-integer values. Later, when scanning objects, 

we modify the measured radiance values using a non-linear scaling function; we 

describe this in chapter 7. The resulting modified boundaries are also non-integer and 

it is these we wish to place into our interpolated quantised band widths.
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This increases the number of entries in the look-up table, and in the process, 

improves its accuracy and reliability. When interpolated band sizes are used the 

number of entries in the look-up table is doubled. When combined with the non-linear 

scaling method the number of entries rises from approximately 600 to 2500.

Experiments with grids containing larger numbers of sampling points indicate 

that as the number of points placed on the surface of the sphere increases, so allocation 

of unique triples of quantised radiance to these points becomes more difficult. As the 

number of points on the visible hemisphere increases, the distance between each point 

and the area of each cell reduces. This has several side effects. Firstly some triples of 

quantised radiance will be pushed into adjacent cells. Secondly the reduced area of a 

sample point patch may reduce the frequency of particular triples. Allocation of 

radiance triples to a sample point orientation is by frequency so that both of these can 

affect the allocation of triples. The result may be that some sampling points will not be 

represented in the look-up table. It is important that all sampling points have at least 

one unique triple of radiance values representing them in the look-up table, i.e. we must 

have a complete table.

With the fixed grid of sampling points described, a complete look-up table is 

produced. The need to fill in any entries by any other method such as interpolation is 

unnecessary.

The sixteen interpolated bands in each of the three images are used both for table 

building and subsequent processing.

6.4 Building the Look-up Table.

The three images of the sphere are always scanned in the same order and this order 

also applies to images of objects during subsequent processing.
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Each pixel on the visible disc is scanned and its orientation (o^) on the sphere 

is found using

sift oc= —— (38) 
1

and

sin $q = — -— (39)
T COS (t

where T, is the estimated radius of the visible disc, and (x,z) are the coordinates 

of the pixel on the 2-D image plane. Knowing the orientation of each pixel (x,z) in terms 

of latitude /longitude (o^,^) and the orientation of each sample point (ap,f3p) we can 

compute the sample point closest to each pixel using equation (34). The closest sampling 

point being the one for which the distance y is a minimum.

The process of building the look-up table begins at sampling point (0,0). The 

quantised radiance in each of the three images are stored in a list of possible triples for 

(0,0). All the surrounding pixels, which are closer to (0,0) than any other sample point 

are examined and their triples added to the list of possible values. If a triple is already 

present then its count is incremented. In this way a histogram of frequency of 

occurrence of each triple of radiance is formed.

The process is repeated for each visible sampling point in turn so that we produce 

a total of 115 histograms of radiance triples, one for each of the visible sampling points.

We also need to calculate the visible and true area. Each pixel represents a 

foreshortened area, see figure 25, which is related to the true area as follows, i.e.
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true area apparent area

Figure 25. Diagram illustrating the foreshortening 
factor

apparent area true area — ~f-s:————=—
COS OLq COS $q

(40)

where (OX^f^) are the latitude and longitude of pixel q.

The result is a series of histograms whose cells represent a quantised triple of 

radiance and whose frequency corresponds to the true surface area represented by that 

triple on the sampling point.

We are now in a position to use these data to build the look-up table. The 

histograms are repeatedly scanned until all recorded triples of radiance are allocated to 

sampling points. Allocation is by largest area first; this is represented by the frequency 

in the cells of the histograms. The largest frequency of a particular triple is chosen to 

represent the sampling point belonging to that histogram in the 3-D table. All other 

occurrences of this triple in the remaining 114 histograms are deleted. When a triple is
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deleted its frequency is lost. In practice this does not create any problems, but could be 

improved in the future. This method ensures that the mapping of each triple is unique.

6.5 Segmentation Thresholds.

Objects are segmented from background by thresholds. We use information from 

the three images of the sphere to determine both an upper and lower limit to threshold 

radiance values.

Our coloured specular spheres are viewed against a white background, and the 

background produces the highest radiance values in each of the images. The largest 

reflected radiance values on the sphere occur at grazing angles where the reflected light 

is unpolarised and the foreshortened area tends to zero.

The surfaces of objects whose normals are nearly parallel to the x-z plane have the 

highest radiance values. On the sphere this occurs with pixels at the boundary of the 

visible disc. Many orientations of objects will result in the highest radiance values of the 

object occurring where the object and the white background merge making 

segmentation less obvious.

We find that the last but one pixel on the sphere subtends an angle of 

approximately 78-82 degrees. The largest radiance value at this angle in the three 

images of the sphere are found. These three values become the upper threshold for each 

image in all future images of objects.

The lowest radiance values will occur when surfaces are not directly illuminated 

by the extended source, see figure 26.
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Figure 26. An intersected surface.

Typically this may occur with concave surfaces, see figure 27. In such cases the 

extended light source will ensure the same occurrence in all three images regardless of 

the rotation of the polarising filter. The images of the sphere are scanned for the lowest 

radiance value in each of the three images; this gives us the lower bounds of our 

thresholds, one for each image.

Figure 27. Rays reflected from a concave surface.
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Both low and high radiance thresholds are determined during calibration, from 

examination of the three images of the sphere. The effects of noise can distort these 

values; we use the average of adjacent pixels to determine the thresholds. This increases 

the lower values and tends to reduce the higher values. The result is a robust and 

consistent segmentation.
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CHAPTER 7. 

The Database of Viewer-Centred Descriptions

Polarimetric Stereo produces a description of the sensed object in the form of an 

orientation histogram. To determine the viewed object's identity and orientation we 

need to match the sensed orientation histogram with model data. Matching like 

descriptions will simplify the process; we therefore compute model descriptions in the 

form of orientation histograms. The database consists of a series of pre-computed 

orientation histograms; each histogram is a model description of the object visible to the 

viewer (camera) at a specific orientation. We refer to these as viewer-centred 

descriptions.

These model descriptions are pre-computed and stored as 16-bit integers by 

combining two 8-bit image planes. The algorithm we use to build each description is 

described in section 7.1.

We use features of the object's 2-D projection to help reduce later comparisons. We 

compute the principal axis, the average foreshortening factor and the area of 

self-shadowed surface for each stored histogram. These are placed in a header record 

and stored as part of the computed orientation histogram in the database. Section 7.2 

describes these features and our methods of computation. The layout and contents of 

each stored histogram are defined in section 7.3.

The frequency in each cell of the sensed orientation histogram corresponds to the 

number of pixels of the visible object at that orientation, while the model histogram is 

produced from a table that specifies surface area in terms of square millimetres. In 

section 7.4 we bring both sensed and model descriptions into correspondence.
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To retrieve stored orientation histograms efficiently we need to store model 

histograms in a way that allows selection of relevant records for possible comparison. 

We explain how we achieve this in section 7.5. The algorithm we use to retrieve records 

determines how they are inserted into the image plane. How we place records and 

pointers in the database for selective retrieval is stated in section 7.6. To illustrate the 

algorithm, in section 7.7 we insert an example histogram into the database.

The range of integers available for addressing records is in the range -215...+215-1. 

In section 7.8, our method for coping with negative addresses is described.

Marks on the surface of viewed objects may produce unrecognised pixels. 

Non-linear scaling of measured radiance values, described in section 7.9, partially 

overcomes this problem.

7.1 Computing the Viewer-Centred Model Descriptions.

We have divided our visible hemisphere into a discrete number of patches; the 

orientation of each patch is represented by a normal to the surface at the corresponding 

sampling point.

The orientation of an object such as a cylinder can be described by determining the 

orientation of one of its bases. We can compute the database of orientation histograms 

for the cylinder by orienting this base over the hemisphere of sampling points; the 

sampling points perpendicular to the viewer axis are included to ensure a complete 

description.

The toy has two different bases each producing very different descriptions of the 

visible object. We must orient both bases over the visible hemisphere to compute a
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database for this object; we must also be able to determine which end of the toy we are 

viewing.

Each surface patch of the hemisphere contains an infinite number of surface 

orientations, see figure 28 . These are represented by a single orientation, the normal to 

the surface at the sampling point. The orientation of randomly oriented objects or their 

surfaces will rarely coincide with the surface orientations at sampling points. As an 

object's orientation is varied over a sampling point patch, so visible surfaces may be 

translated from one surface patch to another, see figure 29, forming different orientation 

histograms in the process.

I

Figure 28. Each sampling point patch on the surface of 
the sphere contains Infinitely many different surface 
orientations.

59



Chapter 7

Figures 29. Slight variations in the orientation of an object 
can push some surfaces Into adjacent sampling point 
cells. In the process different orientation histograms are 
formed: the orientation of the object is still represented by 
the same surface normal
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Image noise and look-up table errors also contribute to variations in the sensed 

orientation histogram. These tend to push frequencies into adjacent cells of the 

orientation histogram.

We wish to sample the set of possible orientation histograms for each sampling 

point to produce a database of model descriptions. This will enable the matching of 

sensed and model data to provide both recognition and orientation capabilities. We 

have devised a method which attempts to deal with all of these problems. To reproduce 

model orientation histograms which cope with the problems stated we use a threshold 

value, ta, in conjunction with equation (34) to determine which of the object's surfaces 

will be visible at each orientation and the sampling points on which they are oriented.

Typically 10 - 20 orientation histograms of the object are built at each sampling 

point. The number will depend upon the shape and complexity of the object. A further 

factor is the size of threshold ta; the larger the value of ta, the greater the possible 

variation in computed surface orientations and consequendy the larger the number of 

computed histograms. We experimented and found that a value of ta = 15% of the 

angular distance from table 2 gave good results.

Each object in the database is computed in the same way. A description, table 1, is 

produced and table 2 is computed from it to provide the surface data necessary to build 

a database of orientation histograms.

Our method of computing each database description is presented as a pseudo 

code algorithm; comments are labeled as follows /* .
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I *** main *** /

for all major_object_surfaces mf do /* see below 
for all sample_points sp do /* Sp = 1,144 

align normals of mf and sp

for all object_surfaces k do l*i.e. k=l,58(toy) 
if (k * mf) do

9 = angle between normals of object surfaces mf and k /* table2 
for all visible sample points sv do /* si; = 1,115

calculate y Wangle between normals ofsp and sv 
if(e-ta < y< e + ta)then 

push sv onto basestack 
endif
previous_stack = basestack 
last_surface = k 

endfor 
endif
min = 1, max = No.of object surfaces 

find_all_vis_surfaces(min,max,stackptr)

/ * We have now computed a series of stacks many of which are empty, these represent 

surfaces which are invisible at this orientation (the axis of symmetry is the normal to 

sampling point sp). We ignore these empty stacks. The number of non-empty stacks will not 

be greater than the number of visible surfaces at this orientation. (The effects illustrated by 

figure 29 will determine the number of cells of the orientation histogram that contain 

non-zero frequencies) * I

I* The computed orientation histogram for this object orientation will have frequencies in 

the cell numbers corresponding to the values at the top of each non-empty stack. Stackptr tells 

us which surface of the object each stack corresponds to. The frequency in each cell is the 

foreshortened area found from the area in mm in table 2 and the orientation (Of, ppj of the 

normal to sampling point sp. */
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while basestack not empty 
check_histo_for_duplication 
if duplicate then

delete current histogram 
else

compute_fbreshortened_frequency 
compute_object_features /* see section 7.2 
normalise_histogram /*see section7.4 
wnte_histogram_to_image_plane /* see section 7.5 

endif
empty = false 
ptr = stackptr 
while stack(ptr) not empty 

pop_stack(ptr) 
if stack(ptr) empty then

ptr = ptr - 1 
else

min = top_of_stack(ptr) 
call find_all_vis_faces(min,max,ptr) 
empty = true 

endif 
endwhile 

endwhile 
endfor 

endfor 

endfor

I* find all sampling points on which visible surfaces of the object can reside *l

procfind_all_vis_surfaces(min,max,ptr) 
for all object_surfaces j do l*j = min.max 

while (j # mf) or (j # k) do 
stackptr = j
Va = angle between normals of object surfaces mf and j l*table 2 
yb = angle between normals of object surfaces last_surface and j /* table 2 

for each visible_sample_point sk do /*sA> =1,115 
calculate 0a l*angle between normals ofmfand sk
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calculate 9b Wangle between normals ofsk and top of previous jstack 
if (6a - ta < \|/a < 6a + ta ) and (9b - ta < \j/b < 9b + ta ) then

push sk onto staek(stackptr) 
endif
previous_stack = stack(stackptr) 
last_surface = stackptr 

endfor 
endwhile 

endfor

/*** End of Algorithm ***/

Many objects display a degree of symmetry. This symmetry can be utilised to 

reduce the amount of computation necessary to build a database. As an example the 

cyUnder database can be computed by specifying one of its bases as the major face, mf, 

in the above algorithm. The toy has two such major surfaces,i.e. its bases.

Our test objects are solids of revolution. For certain orientations of the toy, some 

of its visible surfaces may be partially occluded and will therefore provide a reduced 

contribution to the frequency of the corresponding cell of the orientation histogram. 

The contribution will however be constant for each sampling point on a particular grid 

circle. We include this information when computing the model orientation histograms. 

We pre-calculated the proportion of each surface visible on each of the six grid circles. 

This information is included in our program to calculate the orientation histograms of 

our toy.

Occasionally due to object symmetry duplicates will be produced. Our method of 

histogram storage, see section 7.5, indicates possible duplicates and enables selective 

retrieval of histograms to find and subsequently delete duplicate records.
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The method will produce many histograms which vary little from previously 

computed histograms. We examined successive histograms computed in this manner 

and found that the two histograms may be identical in all but one cell. Two implications 

follow. Firstly, it would be generally impractical to store all possible combinations of 

orientation histograms. Secondly, as sensing errors ensure that matching can only be 

achieved with an element of uncertainty, storing the complete set would not guarantee 

greater accuracy. We used similarity as a basis for rejecting some histograms and as a 

result reduce the number of histograms stored to a manageable level.

We keep a copy of the last orientation histogram to be stored in the database. As 

each successive histogram is computed it is compared to the stored copy. If more than 

half of the current histogram cells are present in the copy, we reject the current version 

and compute the next; only cells containing a frequency are checked. This method 

produces orientation histograms at each sampling point and provides a varied subset 

of stored orientation histograms.

The major disadvantage to this method will occur with objects possessing a great 

many visible surfaces. These will present problems for such a method because the 

orientation histogram can only represent 115 visible surfaces. The number of different 

orientation histograms it is possible to compute will also increase significantly with 

such objects. These criticisms will apply to both object-centred and viewer-centred 

methods.

7.2 Features of the Model Object.

So far we have computed prototypical data about the orientation of visible 

surfaces and their apparent areas. We also compute information about both the model 

descriptions and the visible object which, when matching, are used to reduce the
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number of comparisons required to achieve a match. When comparing stored 

descriptions with sensed descriptions it is more efficient to pre-compute information 

about each model histogram and store it in a header record as part of the stored 

histogram.

We use features of the visible object to reduce the number of comparisons needed 

with stored descriptions to achieve a match. Computing the same features for the 

sensed object will allow an initial comparison of the two sets; we can reject many stored 

descriptions on the basis of this initial comparison.

The average foreshortening factor, h, of the visible object (this is derived from 

equation 40) is defined as

_ apparent surface area _ A a 
true surface area At

(41)

The average foreshortening factor, see figure 30, is sometimes refered to as the 

centre of visible mass.

A cos X

Figure 30. Diagram of the average foreshortening 
factor, h.
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The frequency in each cell of the orientation histogram is summed to give the 

apparent surface area, Ai- The true surface area of the object, At is found from

I15 r ,
. v"1 frequency iA, = > ——~———•—- (42)

*-* cos otj cos pi r=l L J

where (a,,p,) is the orientation of cell i.

This value will vary with the orientation of the object; it is therefore of use in 

determining object attitude. If our sensed object is in a similar attitude to that of the 

computed model description then both centres of mass will be comparable. The 

resulting value is not unique but it is of use in helping reject descriptions that represent 

very different attitudes to that of the sensed object.

A further useful feature is the orientation of the principal axis, p, of the 2-D 

projection of the visible object. Our test objects are solids of revolution whose attitude 

is determined by the orientation of their axes of symmetry. When computing each 

model orientation histogram, the object's axis of symmetry is aligned with the normal 

to each sampling point in turn. The orientation (ocp,|ip) of this normal will determine the 

orientation of the object's axis of symmetry and hence its orientation for each model 

description. By projecting this axis of symmetry onto the 2-D image plane, we can find 

the orientation of the principal axis, p, from

tan p = cos Op sin pp

A last feature is computed which depends upon the surface type, shape and 

orientation. Specular surfaces reflect light in a plane that contains both normal to the 

surface and the incident ray. When visible surfaces are occluded from the incident ray, 

any incident light is a result of reflection from other surfaces, see figure 3 1 . Dark specular
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surfaces absorb large amounts of incident light; with each reflection the resulting 

radiance becomes less intense.

Fig we 31. Self-shadowed surfaces.

Unpolarised light incident upon a dielectric surface becomes plane polarised. 

Further reflection of the reflected plane polarised light changes the degree of 

polarisation.

Both of these factors contribute to radiance values which produce spurious 

estimates of orientation. We take this potentially unreliable information and convert it 

into a useful form as follows. Certain objects such as our toy have non-convex surfaces; 

when visible these will produce incorrect estimates of orientation. The lower threshold 

values computed during the calibration stage are used to determine self-shadowed 

surfaces; we increment a count of pixels each time these lower thresholds are invoked. 

The resulting total represents a visible surface area; this area will vary with orientation 

for objects such as our toy. In the case of convex objects it will always be zero.

We can predict where and when this will occur and its apparent area. From this 

information we can pre-compute the apparent area of occurrence in each of the stored
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descriptions and store the value in each header record. This information is used as part 

of the matching process.

7.3 The Stored Orientation Histogram.

The database consists of a series of orientation histograms. These are stored in the 

database as a series of 1-D arrays. Each array consists of a header record followed by 

the orientation histogram.

Every header record has six fields

6

No. of
visible
surfaces

area of
self shadowed

surface
P o,P h name

Figure 32. The header record portion of the orientation 
histogram.

The stored histograms are variable length records, whose length depends upon 

the number of object surfaces visible at that orientation. The number of visible surfaces 

is placed in position one of this record. The length of each stored histogram, / , is found 

by

where I is an array of 16-bit pixels.

Positions 2,. ..,5 contain information about the object that are determined by its 

orientation. Positions 2,3 & 5 relate to the 2-D projection; these are collectively termed 

features of the visible object and are particularly useful because their values are 

determined by the object's orientation.
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The contents of fields 2,3 & 5 are as follows. The second field contains the visible 

area of the object in pixels, which is not directly illuminated or self-shadowed. We use 

this feature to improve the match.

Position three holds the orientation of the principal axis, p, of the 2-D projection of 

the object. The orientation of the principal axis is expressed in degrees of rotation about 

the centroid from the x-axis on the positive z-axis, see figure 33 below. This helps to 

select model records for matching.

Figure 33. The orientation of the principal axis of the 
2-D projection.

Position five holds the ratio of visible area to true area of the object at that 

orientation; this is the average foreshortening factor, ft.

Position four contains the orientation of the object. This is determined by the 

sampling point whose normal is parallel to the axis of symmetry of the object and is 

determined when calculating the model orientation histogram.

The name of the object is held in field six; this is an integer code with which we 

identify the model. The toy has two identifying codes, which also specify which end of 

the object is visible.

70



Chapter 7

The remainder of each record is the calculated orientation histogram. Each visible 

surface of the object is represented by two pieces of information; the sample point 

number corresponding to the normal to the surface (ctp,pp) and the frequency 

representing the apparent surface area at that orientation.

1 fi 1+ 1 f + 1 V
N\-

in fn

Figure 34. The cells of the orientation histogram: i is the 
sample point number andfi is the frequency of cell I

7.4 Normalising of the Database of Descriptions.

Both model and sensed descriptions are derived using different measurements of 

area. The visible area in mm2 of each model surface is found from table 2. The sensed 

orientation histogram describes visible surface area in pixels, i.e. the frequency in each 

cell.

To match sensed descriptions with model descriptions we must use the same type 

of information. The cells of both histograms are identical, only the description of surface 

area (frequency in each cell) varies. The area of each visible surface can be represented 

by the proportion of the total visible area of the object it occupies. We achieve this by 

normalisation; each histogram is normalised by dividing the frequency in each cell by 

the sum of these frequencies.

Normalisation improves matching because we compare two sets of data in the 

identical format. It is however scale invariant because two objects identical in all but

71



Chapter 7

scale become indistinguishable from each other; their proportions at each surface 

orientation will be identical.

7.5 Storing the Database of Descriptions.

Object-centred methods require four actions. First, the model description is 

rotated into the required position. Second, the normal of each surface is projected onto 

the Gaussian sphere. Third, the model orientation histogram is calculated from the 

resulting Gaussian Image. Finally the sensed orientation histogram is compared to the 

model histogram.

This procedure is performed for each different rotation (orientation) of the model.
-i o

The overheads of such a method are expensive, and furthermore over a period of time 

the same data are re-computed many times. A viewer-centred approach using a 

database of orientation histograms which has been pre-computed and stored in a once 

only operation is a more efficient method.

When this viewer-centred method is combined with a novel method of storage 

and retrieval, based on embedding pointers to records in the database, the process 

becomes a computationally efficient method.

The viewer-centred descriptions are stored on a 16-bit image plane, see chapter^. 

This provides RAM storage for 1024 * 1024 16-bit integers. Our ability to address this 

amount of data is Limited by the range of 16-bit integers, -215...+2^-l. We overcome this 

limitation by using blocks of the image rather than individual cells or pixels. Using a 

block size of 16 cells increases our addressing range to -2l9...+2l -1; this allows us to 

address 1024 * 1024 16 bit integers in blocks of 16. We are now able to use the entire 

image plane to store our database; the number of possible separate addresses being 

limited to a maximum of 2 .
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As each new description is computed it is inserted into the database at the next 

convenient contiguous empty location; i.e. the descriptions are stored by order of 

computation only. An efficient search of the database will require a selective retrieval of 

the stored descriptions.

There are two main reasons for requiring a selective retrieval of records. Firstly, it 

may be possible to compute the same histogram more than once from different 

sampling points; storing duplicate records is inefficient. This is particularly true for 

objects with a high degree of symmetry. To locate duplicate records efficiently, we must 

avoid a computationally expensive global search and comparison of the existing 

database. Secondly and most importantly, when seeking stored histograms for 

matching during subsequent processing, we wish to search only a relevant subset of the 

available records in the database.

We limit search space by embedding pointers to stored histograms in the image 

plane containing the database. A decision on which pointers to read and follow is 

obtained from the cell frequencies of the sensed orientation histogram. The same 

information in the pre-computed histograms is used to determine where pointers are 

placed in the image plane; these help direct later searches. Section 7.7 illustrates a 

histogram and its insertion into the database.

One cell of each pre-computed orientation histogram will have the largest 

frequency. Where the largest frequency is shared by more than one cell, the first 

occurrence is selected. To select the row, i, of the image in which the first pointer is 

placed, we use the sample point number i, where i = 1,2,..,115, corresponding to the 

orientation of this cell.

To find the location in the row, we examine each cell of the computed histogram 

and determine those containing a non-zero frequency. The sampling point number
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corresponding to each of these is squared and summed; the result is hashed to provide 

the location, a in figure 35, as follows

Location = (£ cell numben ) MOD 1024 (44) 

where MOD means modulo division.

This method of determining where the initial pointer to each stored histogram is 

placed, helps direct later searches. Each histogram whose initial pointer is stored in row 

i, has its largest frequency in cell i of the orientation histogram. We use this information 

to help limit search space when retrieving records for matching, see section 8.2.

Two identical records will hash to the same address; we term this a clash. 

Occasionally two dissimilar records when hashed also produce a clash. When a clash 

occurs the pointer at this location addresses an array of pointers. In figure 35, b indicates 

this array and each pointer in the array addresses a stored histogram. Figure 35, shows 

the stored histogram at position c. The current histogram is compared to each of the 

histograms addressed by the pointers in the array. If the current histogram already 

exists, i.e. a duplicate, it is discarded. In this way we avoid duplication of stored data. 

If the resulting address is empty then no search and comparison is required, and we 

simply insert the record knowing that there is no possibilty of a duplicate existing.

This hashing method provides a high number of unique addresses. This limits the 

number of records we have to read and compare to detect duplicates during database 

computation. The method does not guarantee a unique address since several different 

histograms may hash to the same location. The pointer at each location addresses an 

array; the array contains further pointers to the addresses of each stored histogram 

whose cells produced the same row and hash value; invariably these are very few.
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The 16-bit image plane is divided into 3 portions; the first two, A & B in figure 35, 

contain pointers which allow examination of small groups of records. These two areas 

combined occupy less than 25% of the image; the remaining 784 rows of the 16 bit 

image plane, area C in figure 35, are available for storing pre-computed histograms.

The first 115 rows, portion A of the image, contain the hash values discussed 

above. These point to array addresses in rows 116-239, i.e. portion B of the image; each 

array contains pointers to stored orientation histograms whose hash values are 

identical. Over 90% of these arrays contain a single pointer; of the remainder, only about 

1 % contain more than two. As a result, when searching for duplicates, we only need to 

compare a single histogram on average.

7.6 Inserting a Histogram into the Database.

Our algorithm for placing computed model histograms into the image plane is 

presented below. It is in pseudo code with comments; these are labeled by /*

/ *** main *** /

count = 0 
block_size =16
no_of_blocks = 1024/block_size = 64 I* row holds 64 blocks 
start_of_addresses = 116 /* start row of arrays of address pointers 

start_of_data = 240 /* start row of stored histograms 

Until no more histograms do 
length_of_histogram = header_record[l] * 2 + 6 
row = largest_frequency_of_histogram l*in range 1.. 115 
column = (Ecell_number2 ) MOD 1024 l*in range 1.. 1023 
if image_locationtrow,column] = empty then 

image_location[row,column] = count 

count = count + 1 
endif
find_address 

end until 
I*** end main ***/
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I *** find_address ***/

value = image_location[row,column]

row = (value MOD no_ofjblocks)+start_of_addresses l*row no.of pointer array 

column = (value MOD no_of_blocks)*block_size / * start position in row 
i = l

read array at image_location[row,column] 

Until arrayti] = 0 do
pointer = array[ij
i = i + l

row = (pointer MOD no_of_blocks)+start_of_data /* row holding histogram

column = (pointer MOD no_of_blocks)*block_size /* start posn in row

read histogram in image_location[row,column]

compare to current histogram

if histograms same then 

discard current histogram 
return to main

endif 
end until
compare current histogram to copy 

if similar then
discard current histogram 

else
Insert_current_record 

endif

/*** end findjaddress ***/

/*** lnsert_currentj~ecord ***/

I* DIV means integer division */
copy = current histogram

arrayfj] = location
location = location + (length_of_histogram DIV block.size) + 1

row = (arrayfi] MOD no_of_blocks)+start_of_data l*row to insert histo

column = (array(ij MOD no_of_blocks)*block_size /* posn in row for start ofhisto

write histogram to image plane at image_Iocation[row,column]

/*** end insert ***/
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7.7 An Example of Inserting a Histogram into the Database.

To illustrate our histogram insertion algorithm we will assume the following 

model histogram has been computed and is to be added to the database of model 

orientation histograms. (Figure 35 should be read in conjunction with this example.)

9 0 15 84 600 2 10 300

\ \

23 100

f \
25 WO

•

27J/M| 41 80 43 80 46\80 48 SO 50 80

header record orientation histogram

sample point number frequency

Variables are those used in the pseudo code algorithm of section 7.6 and are 

highlighted by the use of a different font. The variables are:-

count, location, largest_Jrequency_of_hlstogram, length_of_histogram, 
row. column, value

1ength_of_histogram = 2*9 + 6 = 24

Count is a pointer to the next array of addresses in area B (figure 35), and the value 

of count is written to the position in area A found from our hashing routine. Location 

points to the next empty block of pixels in area C in which the next computed 

histogram will be stored. The value of location is placed into the raw and column position 

of area B addressed by count.

We will assume that the current values of count = 96 and location = 85.

row = largestjrequency_of_histogram = 10 (i.e. sampling point 10 frequency = 300).
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From our algorithm the initial pointer is in row 10, (determined by the sample 

point number containing the largest frequency), the position in the row is given by 

equation (45).

column = (102+232+252+272+41 2+432+462+482+502) MOD 1024 = 145 

This is position a in figure 35 below.

If row 10 column 145 is empty, we write the integer in count, currently 96, to the 

image plane at row 10, column 145 and increment count. (For this example we will 

assume the position is empty — if this had not been the case the value at this position 

would be used to locate the array of histogram addresses).

To find the start position for the array of histogram addresses value = count - 96,

row = (value MOD 64) + 116 = 148

and the position within the row is given by

column = (value MOD 64) * 16 = 512

this is position b in figure 35 below. This posi tion is the start of a 1 -D array of length 

16, in which each non-zero value is a pointer to stored histogram locations. Each of the 

histograms addressed in this array will have the same hash value and their largest 

frequency occurs at the same sampling point, i.e. sampling point 10 in this example. 

When searching for duplicates we will compare these orientation histograms to the 

current histogram. However in this example, as the initial pointer position at row 10 

column 145 is empty, then the array at row 148, column 512 is also empty. The current 

orientation histogram is written to the image plane at the address pointed to by location 

( currently = 85).
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row = (location MOD 64) + 240 = 261 

column = (location MOD 64) * 16 = 336. 

This is position c in figure 35 below.

The value of location is written to the first empty position in the array, (position b 

in figure 35). Location is updated as follows

location = location + (24 DFV 16 + 1) = 85 + 2 = 87.

This locates the position in area C where the next computed orientation histogram 

will be stored.

By addressing the image plane in blocks of 16 pixels, some available space is 

wasted because histograms rarely have a length that is a multiple of 16. However the 

ability to use the entire image plane for database storage far outweighs this limitation.
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1
10

115
116
148

239
240

261

1 143 336 512 1024

1024

'96

position a

position b

histogram stored at position c

Figure 35. The image plane is divided into three areas, 
A.B & C. The largest area C contains the computed 
histograms.

7.8 Dealing with Negative Addresses.

,16 • ,15 -15The range of 2 integers is -2 ...+2 -1 . When the variable, location, is 

incremented to a value greater than +21 -1 the value becomes negative e.g.

32767 + 1 =-32768.

To find the address of a histogram on the image plane whose location is negative 

then we use the following algorithm (using pseudo code)
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if (arrayfi] < zero) then
pointer = anray[il + 216

row = (pointer MOD no_of_blocks)+start_of_data

column = (pointer MOD no_of_blocks)*block_size 
endif

7.9 Non-Linear Scaling of Radiance Values.

Blemishes, scratches or slight variations in reflectance on the surface of an object 

can lead to unrecognised portions of the visible object.

Dceuchi et al normalised radiance values defined by>

' '= l > 2 '3 '

Many different triples of quantised radiance when normalised produce the same 

normalised triple. This decreases the range of different triples and consequently the 

number of entries in the look-up table. Using equation (45) we only achieve about 600 

entries in the look-up table.

Two widely separated sampling points with areas of radiance which, when 

normalised produce the same triple, create problems. One of the two sampling points 

will not be represented in the look-up table cell corresponding to that triple of indices. 

It may result in the sampling point not being represented in the table at all. This creates 

further problems because the look-up table will be unreliable at these orientations, 

resulting in incorrect estimates of surface orientation.

Normalisation tends to smooth the orientation histogram by spreading entries 

more widely. This reduces the value of the average foreshortening factor, h, of the 

sensed orientation histogram. Consequently it is often different from those of the
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pre-computed orientation histograms with a similar orientation. We could not use this 

feature to help reduce the number of subsequent comparisons.

We scaled the radiance triples using

st= z^rferirr1' ' =1 '2 '3 - (46)
L •* J

This has several benefits. Firstly different quantised values when normalised 

using equation (45 ), can result in duplication with a different set of radiance values, e.g

Ll = WO, 12 = 150, L3 = 200 

when normalised give

Nl = .222 ; A/2 = .333 ; N3 = -444.

Similarly the radiance values 50, 75, 100 will normalise using Aft to identical 

values.

Using equation (46) we obtain two different sets of values

a) 22.22, 50.0,88.89

b) 11.11, 25.0,44.44.

This helps reduce the problem of unrepresented sampling points in the table and 

increases the accuracy of the look-up table.

Secondly using this method we find the problems caused by inconsistent surfaces 

are largely removed; very few pixels over a viewed object are unrecognised. This is so 

because un-normalised triples of radiance, when distorted by noise, will result in false 

estimates of surface orientation from the look-up table; alternatively if the look-up table 

cell corresponding to this triple is empty the pixel is unrecognised. All unsmoothed 

images contain large amounts of noise leading to many unrecognised pixels; this will
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adversely affect the sensed orientation histogram. The contributions made by each 

surface orientation will be distorted.

By dividing each of the three radiance values by their sum we are reducing the 

effects of noise because the divisor also contains the noisy values. However because we 

multiply the quotient by the noisy value, the error is re-emphasised; however its overall 

effect is far less than it would be with no such scaling. As the quantised bands have an 

upper and lower limit, the scaled values will often fall within the band. It also has 

another benefit by reducing the effects of silicon defects in the CCD camera.

Thirdly the number of entries in the look-up table increases to approximately 2500. 

A more complete and accurate look-up table is compiled; this produces improved 

estimates of surface orientation, and consequently more accurate matching and 

subsequent results. The improved accuracy of the sensed orientation histogram 

produces a more accurate estimate of the average foreshortening factor. We use this 

value to help reduce the number comparisons between the sensed and stored 

histograms.
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CHAPTER 8. 

Object Recognition and Orientation

The calibration sequence creates sufficient information to generate viewer-centred 

descriptions of viewed objects, i.e. the sensed orientation histogram. We describe how 

this is achieved in section 8.1. We also compute features of the visible object, see section 

8.2; these are used to help keep the number of comparisons to a minimum. Our method 

of retrieving histograms from the database is illustrated in section 8.3. The database of 

viewer-centred model orientation histograms provides information necessary to be 

able to recognise the object and to determine its orientation from this description. This 

is achieved by matching the sensed description with model descriptions stored in the 

database; we describe this matching process in section 8.4.

8.1 Building the Sensed Description.

We capture three images of the unknown object, each viewed through the plane 

polarising filter. The order and rotation of the filter is the same as the sequence used to 

capture images of the sphere. We apply the non-linear scaling, equation (46), to all 

images including the calibration sequence. Using the upper and lower threshold values 

determined for each image during the calibration stage, the images are segmented into 

object and background. When all three pixel values, i.e. one pixel from each image at 

point (x,z), exceed the upper threshold of the corresponding image, the pixel is 

considered to be background. Similarly when all three pixel values are below the lower 

threshold value for each corresponding image it is considered to be a self-shadowed 

surface and the pixel value set to indicate this; a count of all occurrences of 

self-shadowing is incremented. Self-shadowed surfaces are described in section 7.2; an 

example of these surfaces on the toy is given in figure 36.
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Figure 36. The self-shadowed surfaces of the toy, these 
are represented by the shaded areas.

Any other combination of radiance values is considered to be on the surface of the 

object. The radiance values are scaled, using equation (46), to give three new values and 

each is compared to the quantised radiance bands derived during the calibration stage. 

This determines in which quantised band each value belongs; the band number (1..16) 

in each image becomes an index to the look-up table, see figure 37.

The look-up table position indexed by these three values contains the sampling 

point number that corresponds to the orientation associated with these three values. 

The appropriate cell of the sensed orientation histogram is incremented.

This is repeated for each point in the three images. In this way a description of the 

visible object is produced; the description relates visible area to surface orientation. An 

empty look-up table location implies an unrecognised orientation. We take the average 

radiance value of a 3*3 window around this unrecognised pixel and re-subject the three 

new values to the above procedures. This we found to be most satisfactory.
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Figure 37. The look-up table is accessed using a triple of 
values derived from radiance measurements from three 
images obtained with a polarising filter at three 
orientations.

We use moments to help reduce the number of comparisons necessary to achieve 

a match; these are described in section 6.2. The values, Mob, (equation (48)), are 

accumulated for each pixel of the object during this segmentation stage.

8.2 Features of the Visible Object.

We use features of the visible object first to select model data for possible 

comparison, and second to make initial comparisons between the sensed orientation 

histogram and the model data. These features are the larger visible surfaces 

(frequencies), the orientation of the principal axis, p, and the average foreshortening 

factor, h. We use the larger frequencies of the sensed orientation histogram to guide our 

search through the database. These help reduce the number of comparisons with stored 

descriptions needed to achieve a match. We have already pre-computed and stored 

some features of the model descriptions; these are held in the header record of each
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stored histogram. Computing the same features for the sensed object enables an initial 

comparison of both sets; the pre-determined thresholds p+tp, p-tp and h+th, h-th 

determine whether a full comparison is required.

Records are stored in the database using the visible surface with the largest 

frequency. The initial search for suitable stored orientation histograms is based upon 

the larger cell frequencies of the sensed orientation histogram. Initially we used a fixed 

threshold, tf, to determine these. This is arbitrarily set at 5% of the normalised sum of 

frequencies; it is therefore a constant value.A variable threshold, tv, replaces this and is 

automatically generated. We use

fv= 3s (47)

where s is the standard deviation of the sensed orientation histogram. This value 

will vary from object to object depending upon orientation and the level of noise; chapter 

9 describes the effect of this value in more detail.

30The second feature is found with the aid of moments. Using these we can 

calculate both the position of the centroid and the orientation of the principal axis ,p, of 

the 2-D projection of the object.

The moments, Mab, of a digital image are defined by

a z b . a,b = 0,1,2,..- (48)
x z

The coordinates (C(x),C(z)) of the centroid are given by

C0r)= <49) 
1 ; Moo

/rn ,C(z)= 77—, (50) 
v ' A/00
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where MOO is the area.

We redefine the origin to be the centroid of the viewed object. The resulting 

translation invariant moments are given by:-

[z-C(z)]. a ,b = 0,1,2,... (51)
X Z

These in turn can be expressed in terms of the original Mab, where

Af2o' = A/20 - C(x) * A/io (52) 

MQ2 = Mo2 - C(z) * Afoi (53)

Mu' = Mil - C(*)* Mi o. (54) 

The orientation of the principal axis, p, is

1 _if 2 Afn' 1

We set the threshold value, tp, to be ± 20 degrees of the principal axis orientation.

To provide the final feature, the sensed orientation histogram is examined and the 

average foreshortening factor, h, is computed from the cell frequencies using equations 

(41) and (42). The threshold, ft, is set at +15%, -10% of h.

A single pass of the three images results in the segmentation of object and 

background, and produces the sensed orientation histogram. The values, Mab, are 

accumulated simultaneously with these operations and the moments (equations 

(49). ..(55)) computed prior to retrieving records from the database for subsequent 

matching.
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The sensed orientation histogram is normalised by dividing the frequency in each 

cell by the sum of these frequencies. Both stored and sensed descriptions are now 

compatible. The count of self-shadowed surfaces accumulated during image 

segmentation is considered to be a visible surface and is included in the histogram 

normalisation process.

Having computed the sensed orientation histogram and the features of the objects 

2-D projection, we can retrieve records from the database for possible comparison.

8.3 Retrieving a Histogram from the Database.

We present our histogram retrieval method as a pseudo code algorithm. 

Comments are included and are pre-fixed by — /* .. — in a similar fashion to those of 

Chapter 7.

I*** retrieve_a_record ***/
block_size = 16
no_of_blocks = 1024/block_size = 64
start_of_addresses = 116 /* start row of arrays of address pointers
start_of_data = 240 /* start row of stored histograms
min_value = standard_deviation*3 /* freq. threshold tu

for i := 1 to 115 do
if sensed_histogram_ceri[i] freq greater than min_value then 

find_records

endif 
end for 
/*** end retrieve_a_record *** /

/*** find_records ***/ 

for position = 0,1023 do
if imagejocation[i,positionj greater than zero then

value = image_location[i, position]
row = (value MOD no_of_blocks)+start_of_addresses /^pointer array row no.

column = (value MOD no_of_blocks)*block_size /* position in row

read array at image_location[row,columnj
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Until arrayti] = 0 do 
pointer = arraytil
row = (pointer MOD no_of_blocks)+start_of_data /*row containing histogram 
column = (pointer MOD no_of_blocks)*block_size /*position in row 
read histogram in image_location[row,column] 
compare features 
if(p-tp < p< p+tp) and(t-th< h< t+th)then

compare to sensed orientation histogram 
endif 

end until 
endif 

end for 
/*** end find_records ***/

/*** end of algorithm ***/

The process of locating addresses of histograms whose location corresponds to a 

value in excess of +2 -1, i.e. a negative value, is described in section 7.8.

The database of model object descriptions are stored using pointers to addresses. 

These pointers are stored in row numbers which correspond to the orientation of the 

largest visible face (frequency) of the object. The sensed orientation histogram is 

examined and all cell numbers whose frequency is greater than our threshold tv, 

(minjaalue in the above algorithm), are stored. Using these as row numbers, pointers to 

database records in the corresponding rows are accessed; as a result we examine only 

histograms whose largest frequency corresponds to one of the larger visible surfaces 

(frequencies) of the sensed histogram.

Each accessed database histogram is examined and an initial comparison takes 

place between the sensed principal axis and the value stored in field four of the header 

record. This determines whether a further comparison is required. Only if the stored 

value is within the allowed tolerances, p ± tp, does the initial comparison continue. If
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the stored value exceeds these tolerances no further comparison is made with this 

stored histogram.

Model histograms which pass this initial test have their average foreshortening 

factors compared to the sensed value. The pre- computed value in position five of the 

header record must be within h ± th for a full comparison to take place.

8.4 Matching Image and Model Orientation Histograms.

Objects are identified by matching the sensed orientation histogram with a model 

orientation histogram from the database, using a least squares technique. The sensed 

orientation histogram is compared with each selected model histogram in turn; the sum 

of the squares of the differences in the two frequencies for each cell is formed. Let/mi 

represent the frequency in cell i of the model histogram and fst be the frequency in the 

corresponding cell of the sensed orientation histogram. We minimise the residual sum 

of squared differences S defined as follows:-

115
. (56)

We set an initial threshold, tm, to avoid completing unnecessarily bad matches. 

The initial value of tm is arbitrarily determined and is used to increase computational 

efficiency. With each new set of images, the value of tm is re-initialised to this 

commencing value. If during a comparison a residual sum exceeds this threshold the 

match is abandoned. Once a complete sum of squared differences has been achieved, 

(we term these full comparisons), the resulting lower residual sum becomes the new 

threshold value, tm . Using this heuristic reduces the number of full comparisons to a 

mirumum. Partial comparisons are those which have been terminated by exceeding the 

threshold value, tm.
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The stored viewer-centred histogram which produces the smallest sum of squared 

differences is regarded as the best match. In this way we recognise an object and 

determine its orientation at the same time.

Several matching solutions are possible. We experimented with a correlation 

method. This produces results similar to those of the least squares method. However 

the correlation between each selected model histogram and the sensed description must 

be fully computed. As a result it is not possible to terminate bad matches.

Whilst other forms of matching are feasible, least squares gives satisfactory results 

and is fast. The method does imply that provided at least one comparison leads to a 

value of S < tm we will achieve a result. The selected model histogram will determine 

both the object's identity and orientation. To illustrate an example of incorrect 

matching, a cylinder when matched with a database of toy histograms will provide the 

orientation and identity of the selected toy histogram. This assumes that the resulting 

value of S is lower than the initial value of tm . However attempting to fool the system 

in such a way achieves nothing and is meant only as an implied criticism of our 

matching method.
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CHAPTER 9. 

Results

We demonstrated our method using the test objects described in section 5.1, a toy 

and a cylinder. Two sets of test objects are used, these are a blue set and a black set. Both 

sets include a calibration sphere sprayed with the same acrylic paint used to cover the 

corresponding test objects.

We present results for both test objects. These have been collated into four groups: 

the first group detects the orientation of each individual object; these are given in section 

9.1. The second group, section 9.2, illustrates both recognition and orientation of the 

viewed objects, hi sectioti 9.3 Gaussian noise is added to images in varying degrees to 

determine the method's ability to withstand noise.

;msInitially we used a fixed threshold, tf, to help select stored orientation histogra 

for possible comparison. The value of tfis fixed at 5% of the normalised sum of sensed 

frequencies, i.e. we only search those rows of the database which correspond to cell 

numbers whose frequencies exceed this value.

We re-tested the method using a variable threshold, tv, section 9.4 presents these 

results. Finally in section 9.5 a statement on repeatability of results is made.

The results obtained for orientation only, involve using a database for a single 

object i.e the toy database for toy results and the cylinder database for cylinder results. 

Recognition and orientation results used a combined toy and cylinder database.

The uncertainty in degrees of arc is computed from the sensed orientation (as,ps ) 

and the true orientations (a*,pf) of the viewed object using equation (34). The distinction 

between full and partial comparisons is made in section 8.4.
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9.1 Results: Orientation Only.

We now present results for the orientation of the toy. The results are typical in that 

some were better whilst others were worse.

Orientation
true

(o*P/)
61,0
13,60
0,61

-13,300
49,318
-26,58
61,354
-29,0

20,339
14,25
-49,42

-85,289
-20,270
43,14
38,26

sensed

(Os.P*)

64,7
13,51
-9,63

-15,296
45,308
-22,62
62,341
-26,357
12,336
6,25

-46,27
-90,0

-22,270
45,28
36,40

Uncertainty 

in degrees 
of arc

4.3
8.8
9.2
4.0
8.0
5.6
6.5
3.9
8.3
7.9
10.6
5.2
2.0
9.8
10.8

Number of 

Comparisons
Full

6
8
9
9
4
3
1
3
1
2
4
1
4
2
1

Partial
54
10
44
46
40
22
52
3
16
34
17
3
84
7
2

Correct 
end?
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

Table 3. The estimated orientation of the toy, using a 
fixed threshold, tf, and the toy database.

This gives the following:-

average uncertainty in degrees of arc = 7.0

standard deviation, in degrees of arc. of uncertainty In sample = 2.6 

average number of full comparisons =3.9 

average number of partial comparisons = 28.9

The sampling points used to represent object orientation cover the visible 

hemisphere only. These are adequate to fully describe the cylinder; however the
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principal axis of the toy passes through two quite different surfaces. In order to 

distinguish between them, we simply describe orientation in the visible hemisphere 

and differentiate between each end of the toy. Our results simply state whether the 

correct end is determined by the system for each set of test images of the toy.

We now present results for the orientation of the cylinder. Once again the results 

are typical.

Orientation

true

(o^fr)
0,61

-13,60

15,90
-26,58

-26,302

30,325

21,319

28,337

-30,35

-15,270

10,44

25,345

29,4

7,28

-13,60

sensed

(a*&)
-9,63

-9,63
22,90

-34,58

-28,299

26,330

25,314

35,341

-37,40

-9,270

9,38

21,345

24,10

6,25

-9,63

Uncertainty 

in degrees 

of arc

9.2
4.8

7.0

8.0

3.6

6.1

6.4

6.7

8.0

6.0

6.1

3.7

10.1

3.2

4.8

Number of 

Comparisons
Full

3

2

4

4

3

3

5

6

5

3

4

3

3

1

12

Partial

3
4
54

0

65

9

9

17

21

6

36

4

17

12

60

Table 4. The estimated orientation of the cylinder using 
a fixed threshold, if, and the cylinder database.

This gives the following:-

uncertainty in degrees of arc = 6.2

standard deviation, in degrees of arc, of uncertainty in sample = 2.0

average number of full comparisons = 4.1

average number of partial comparisons = 21.1
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9.2 Results: Recognition and Orientation.

We combined the toy and cylinder databases to test the recognition capabilities of 

the method. A typical selection of the results is presented in table 5.

Object

toy
toy
toy

toy

toy
toy
cyl
cyl

cyl
cyl
cyl
cyl

Orientation
true

(o*,p*)
13,60

-49,42
49,318
-29,0

20,339
14,25

30,325
38,337
-30,35
0,90

25,345
11,44

sensed
(cxs,ps)
13,51

-46,27
45,308
-26,357

12,336
6,25

26,330
35,341
-37,40
77,90

21,345
9,38

Uncertainty 
in degrees 

of arc
8.8
10.6
7.9
3.9
8.3
7.9
6.1
6.7
8.0
13.0
3.7
6.1

Number of 
Comparisons

Full
8
4
9
3
1
5
3
6
5
9
3
4

Partial
14

17

47

3
16
21
9
17
21
61
20
37

Correct 
end?
yes
yes
yes
yes
yes
yes
na
na
na
na
na
aa

recog­ 

nised?
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

Table 5. The recognition and estimated orientation of both 
test objects, using a fixed threshold, tf. and the combined 
toy and cylinder database. (na = not applicable)

Determining which end of the object we are viewing is only applicable to the toy. 

The cylinder results, therefore, contain the abbreviation, na, i.e not applicable.

This gives the following:-

average uncertainty in degrees of arc = 7.6

standard deviation, in degrees of arc, of uncertainty in sample = 2.6

average number of full comparisons = 5.0

average number of partial comparisons = 23.6
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9.3 The Effects of Noise.

To discover the method's response to noise, several sets of images of objects were 

corrupted with added Gaussian noise in varying degrees. We generated random 

numbers with a Gaussian distribution of mean ug and variance og2. Using the resulting 

values we modified pixel values in the corresponding images to simulate the effects 

noise.

The signal to noise ratio (snr) at level, X, will be defined by

X = — (57) 
Gg

where x is the average integer pixel value over the object.

An approximation to a Gaussian distribution with mean, Ug = 0 and standard 

deviation, o"g, can be obtained by producing a random variable, randnumber, where

randnumber = randg * Og. (58)

The value cg is an input parameter, and randg is a normally distributed, N(0,l), 

random number. The variable randg is determined from a specific form of the Central 

Limit Theorem of statistics which may be written as:-

12
randg = £ \fr -6] (59) 

r=\

and fr is a uniformly distributed random number on the range [-1,1]. 

Each corrupted pixel is modified as follows:-

newpix(i) = oldpix(i) + randnumber. (60) 

Gaussian noise is added to each of the images using this method.
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We corrupted 50% of the pixels in each set of three images, the choice of which 

pixel to corrupt is also made randomly.

Because the sensed orientation histogram is normalised, and the number of 

histogram cells is constant, the mean cell frequency value / is also a constant for all 

sensed histograms.

Noise in images tends to smooth the frequency distribution of the sensed 

orientation histogram. This reduces the frequency variance, and hence the standard 

deviation of the sensed histogram, see figure 38 . This is a feature of the fixed number of 

cells of the orientation histogram, and the constant total frequency, resulting from 

normalisation.

12345 12345

(a) (b)

Figure 38 . The effects of noise on the cell frequencies of 
the sensed orientation histogram, J= 2O for both 
histograms; the standard deviation for (a) Is 17.O3 and for 
the 'noisy' histogram (b) 12.18.

We use the standard deviation to automatically threshold areas of the database 

for possible comparison, equation (47).

The smoothing effect of noise on the sensed orientation histogram frequencies is 

further indicated by the value of the average foreshortening factor, h. This value also 

reduces as noise levels increase and as a result some previously examined histograms 

are excluded from comparison. In this way the choice of stored histograms for 

comparison is limited and the probability of finding a good match is reduced. A
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variable threshold, tv, largely overcomes this problem by making available sufficient 

stored histograms to ensure the best match possible from the available data. It achieves 

this by examining more histograms made available by the reduced value of tv .

Alternatively matching could be achieved by computing the correlation between 

sensed and stored histograms. This method would require the correlation coefficient, 

p to be computed for all selected stored histograms. Our least squares method is 

computationally more efficient and provides adequate results. We prefer it to a 

correlation method for this reason.

The correlation coefficient, p , reduces with increased amounts of added noise, 

indicating a poorer match. We include this value in the table as an additional measure 

of similarity between the two matched histograms. We have computed the value, p, for 

the remaining results to indicate the confidence of our least squares matching method. 

We could however set a value, fp as a lower limit in the matching process. A match 

whose correlation coefficient, p , is below this value, is not acceptable.

We added Gaussian noise to 50% of pixels in each of the three images of the toy 

The toy was recognised and its correct end determined in all but the final result. The 

results presented in table 6 are from the same set of three images but with different noise 

levels. We use a variable threshold, tv, and the combined toy and cylinder database.
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*x
0
5
8
12
15
20
25

corn 

P
0.77
0.73
0.71

0.70
0.67
0.65
0.24

Orientation
true

(o*,p»>
38,308
38,308
38,308

38,308
38,308
38,308
38,308

sensed
(o^)
45,308
45,308
45,308

45,308
45,308
45,308
43,71

uncertainty in 
degrees of arc

6.7
6.7
6.7

6.7
6.7
6.7
83.7

Number of 
Comparisons
Full

4
4
4

3
3
5
2

Partial
52
54
52
54

60
56

1

average 
Foreshort. f 

h
0.553
0.548
0.542
0.529
0.514
0.497
0.419

principal

axis 

P
-40
-40

-40
-40
-40
-40

19

std. dev'n 

of histo. 
S

19.01
16.00
14.80
12.20
11.18
10.02
8.99

-Table 6. Results ofGaussian noise added to 50% of 
pixels in each of the three images of the toy.

Legend:

og: Standard deviation of added Gausstan noise.

Q 1

p : correlation coefficient, where

—

h : average foreshortening factor, equation (41).

p: orientation of the principal axis of objects 2D projection, equation (55).

s : standard deviation of sensed orientation histogram, where

s =

and

n = 115 cells of sensed histogram. 

J= mean frequency value of histogram. 

Jj = frequency of cell L
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The variable threshold, tv, reduces as the standard deviation, s, of the sensed 

orientation histogram reduces. As previously stated this allows more stored histograms 

to be made available for possible comparison so increasing the possibility of a good 

match.

The incorrect final result is largely due to increased noise affecting the 

segmentation of object from background. The result is an incorrect estimate of the 

principal axis of the 2-D projection, leading to an incorrect search area in the database, 

and a subsequent incorrect estimate of orientation. As the value h decreases, increasing 

numbers of histograms are rejected because thek pre-computed value of h, stored in the 

header record is outside the values h ± th.

The results above were achieved using the photometric box with each of the four 

quadrants of the box painted a different matt shade, including white, see chapter 4. We 

re-painted the photometric box in two matt shades, white and blue and the results are 

presented in the next section.

9.4 Results: Recognition and Orientation using a Variable Threshold.

The photometric box to the left of a vertical line passing through the viewing hole 

was painted white, the remainder of the box was painted blue. We re-calibrated the 

system and using the least squares matching method combined with a variable 

threshold, tv, we achieved the following results.
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Object

Toy

Toy

Toy

Toy
Toy
Toy
Toy
Toy
Cyl
Cyl
Cyl
Cyl
Cyl

Cyl

Cyl

Cyl

corr.

P
0.78
0.85
0.6

0.95
0.75
0.75
0.93
0.92
0.69
0.73
0.77
0.78
0.77
0.74
0.76
057.

Orien 
true

(a/,p<)
38,308
-57,35
61,5
45,0

-45,0

0,45

45,0

-11,44

-13,60

-13,300

7,28

21,319

38,333

-30,35

-38,308

36,307

tation 

sensed

(o,,ps)

45,308

-62,19

64,7

38,12

-39,4

-1,51

39,356

-15,36

-13,50

-15,296

6,25

25,314

35,341

-37,40

-40,304

34,302

Jncertainty in 
degrees of arc

6.7

5.2

3.0

11.3

6.7

6.1

9.5

6.7

10.1

4.1

3.2

6.4

6.7

8.1

3.5

4.2

Number of 

Comparisons
Full

4

5

4

2

4

4

7

2

3

5

2

1

3
4

4

3

Partial

36

41

42

7

68

19

9

3

7

38

2

2

22

15

29

23

average 

foreshort. f
h

0.553

0.545

0.559

0.643

0.566

0.584

0.467

0.502

0.571

0.551

0.466

0.494

0.523
0.514

0.546

0.551

Recog­ 

nised?

yes

yes

yes

yes

yes

yes

yes

yes

yes
yes

yes

yes

yes

yes

yes

yes

Threshold

tv

56
49

43

57

47

51

24

33

51

56

69
72

56

66

56

53

Table 7. Results for both toy and cylinder, the toy was 
recognised and its correct end determined in all the above 
images. We used a variable threshold, tv, and the 
combined toy and cylinder database.

This gives the following:-

average uncertainty in degrees of arc = 6.4

standard deviation, in degrees of arc, of uncertainty in sample = 2.4

average number of full comparisons = 3.2

average number of partial comparisons = 20.2
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We carried out tests on 80 sets of images. Over all tests our average results were as 

follows.

average uncertainty in degrees of arc = 6.8

standard deviation, in degrees of arc, of uncertainty in sample = 2.51

average number of full comparisons = 4.2

average number of partial comparisons = 24.7

The look-up table for the blue objects contained approximately 2600 entries and 

for the black toys approximately 2500 entries. The reason may be explained as follows. 

Firstly, the two colours have a different absorptivity. The darker the object the greater 

the amount of incident light absorbed by the object, this is due to the 'umov7 effect.21 

Secondly the two colours possess slightly different refractive indices;21 consequently 

the polarised reflectance maps of both blue and black spheres are different. The result 

of such variation is a difference in the number of entries in the resulting look-up table.

As an additional test, images of the blue objects are presented to the system using 

the look-up table produced from a black sphere. Similarly images of the black objects 

are processed using the look-up table constructed from a blue sphere; as expected the 

resulting estimates of surface orientation are inaccurate. As a result the system fails 

when presented with objects whose surface material differs from the calibration sphere.

9.5 Repeatability

We repeated these tests at a later date, some of the tests were repeated on four or 

more occasions. Clearly slight differences in the actual results will be evident because 

identical images, due largely to noise in the imaging device, are not possible. Individual 

cell frequencies will vary from image to image. This leads to differences in computed 

values such as the residual sum of squared differences, S, and the correlation coefficient,
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p. The average foreshortening factor, h, will also differ as will the number of 

comparisons.

Despite these changes we achieved the same results in terms of recognition, 

orientation and uncertainty.
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CHAPTER 10. 

Discussion

Dark specular materials are highly suited to the use of polarised reflectance 

contours. This is because dark materials absorb more of the incident illuminauon than 

light materials, whilst the incident light that is reflected is highly plane polarised. This 

is known as the 'umov' effect.21

The method detailed is not suitable for all specular surfaces. It is difficult to be 

precise as to the extent of the possible application because both the absorptivity and the 

refractive index of the reflecting material contribute to the contours of the resulting 

reflectance maps, see figures 39 and 40.

Figure 39. Each of the nine images is computed uJith a 
constant absorption factor 0.75,(in our model we assume 
that absorption is in the range [0..1]), and a different 
refractive index. The refractive index ranges from left to 
right top to bottom, from 1.0 to 3.0 in increments of 0.25.
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Figure 4O. Each of the nine images is computed with a 
constant refractive index of 1.5, and a different absorption 
factor. The absorption factor ranges from left to right, top 
to bottom from 0.1 to 0.9 in increments of 0.1.

Other researchers ' ' have difficulty in illuminating highly specular surfaces 

uniformly. Coleman et al find that specular highlights on the viewed objects cause 

measured radiance values to be higher by the magnitude of the specular component. 

These produce incorrect estimates of orientation. A fourth light source is required to 

detect and hence remove specular highlights. Specularity is detected by a high mean 

deviation in the four estimated normals, where one normal is obtained from each triple 

of radiance. Alow mean deviation occurs when specularity is not present. The specular 

highlight is removed by using the three normals with the smallest reflectance factor.

Ikeuchi10 uses three linear lamps mounted below the level of the objects, thus 

avoiding direct illumination. The incident light is reflected onto the objects from an 

overhead Lambertian surface. Some parts of the calibration sphere are only illuminated
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by two light sources and as a result surface orientations in these regions cannot be 

uniquely determined. He also finds that the choice of light source distribution affects 

the accuracy and extent of these regions.

Ray et al experience drastic changes in radiance values due to the specular 

component. These occasionally exceed the dynamic range of the camera. Highly 

polished objects produce a virtual image of the light source. They found that these 

reflections can be avoided by using extra images or by changing the location of the light

sources.

We experimented with fluorescent tubes directly illuminating our specular 

spheres. The light sources themselves were reflected as virtual images whilst the 

remaining area on the calibration sphere showed little if any variation in reflected 

radiance. Even when the fluorescent tubes were covered by diffusers the resulting 

images were only slightly improved. We conclude that such a method would be better 

suited to objects possessing a high diffuse component.

Using a plane polarising filter to view specular objects illuminated by an extended 

light source is an effective solution to many of the problems caused by reflections from 

highly specular surfaces. The result is a polarised reflectance map which we can use to 

build descriptions of viewed objects.

The symmetry of the polarised reflectance map of the sphere ensures that a unique 

triple of radiance is not possible without variations in the extended light source 

radiance, see figures 12 & 13.

Painting the photometric box different matt shades is a simple but effective 

solution. This lifts the potential ambiguities by enabling unique triples of radiance 

values to be associated with surface orientation.
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The reflected radiance of a Lambertian surface patch depends only upon the angle 

of incidence. A specular surface illuminated by an extended light source and viewed 

through a plane polarising filter has several dependent factors; the angle of incidence, 

the refractive index and the absorptivity of the reflecting surface material, see equations 

(28) & (18)...(21). All of these components combine in varying degrees to produce the 

variation in the resulting reflectance map. It is the rotation of the polarising filter which 

determines the axes of symmetry of the polarised reflectance map. The angle of rotation 

of the polarising filter should not be multiples of 90 degrees, this will simply create 

duplicate triples of radiance. Although no optimum angles of rotation have been 

derived, we found that rotations approximately 60 degrees apart worked well.

A large proportion of the visible surface of the sphere has a small variation in 

polarised reflected radiance. Although highly polarised the reflected radiance is fairly 

low. Typically 40%-70% of the visible area may have radiance values in the grey-level 

range 60-90. This area of low radiance changes as the refractive index and absorptivity 

of the material changes. To achieve as uniform a distribution of pixel occurrences in 

each of the quantised cell bands as possible, we use a linear interpolation to determine 

each of the sixteen cell bandwidths in each of the three images of the sphere. When 

compared to fixed width cell sizes, this method increases the number of entries in the 

look-up table by a factor of two. An undesirable side effect is to produce cell widths that 

are fairly narrow in some regions.

Slight variations in reflected radiance can push a triple from one cell to another, 

see figure 29. The result is a large variation in the numbers of different triples of radiance 

that occur over many sample points by comparison to a Lambertian surface, see figure 

41.
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(b)

Figure 41. Reflectance contours of a) A Lambertlan sphere 
illuminated by a colltmated source, and b) specular 
sphere illuminated by an extended source and viewed 
through a polarising filter.

Allocation of triples to a particular sampling point becomes less certain as a 

consequence, and subsequent sensing is not as accurate as that for Lambertian surfaces. 

Nevertheless the look-up table generated by this method produces sensed orientation 

histograms which generate results comparable to those of other workers. 1 ' The

32 apparent discrepancy between results of Fairney et al and these is a direct result of

this increase in variation of quantised triples over many sample points. (They use 

identical objects with Lambertian surfaces so enabling a fair comparison between the 

two sets of results). In producing narrow cell widths, slight variations in reflected 

radiance can result in a different quantised triple being produced. The look-up table cell 

corresponding to these indices may produce an incorrect estimate of surface orientation 

at this point on the surface of the object. These sensing errors result in a less accurate 

sensed orientation histogram and subsequently a reduced accuracy in matching.
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Computing minimum and maximum threshold levels for each of the images from 

the corresponding sphere prior to run time provides a simple, effective and robust 

method of segmenting the object from background. It is simple because a 

straightforward comparison of only one radiance value from each of the three images 

with the pre-determined thresholds is sufficient to determine whether the pixel is 

background, object or a self-shadowed surface.

Only a single visible pixel lies outside the point on the sphere at which our upper 

threshold values are captured. As a result very little of our visible objects will lie in this 

region, and consequently very little data is lost. The method is effective because only 

background, or object orientations approaching 90 degrees to the y-axis can possess all 

three radiance values greater than these values. A similar explanation applies to the 

minimum threshold levels. These are determined by scanning the sphere to determine 

the lowest radiance values in each of the three calibration images of the sphere.

A surface whose incident ray is reflected from another surface of the object will 

have low radiance values. This occurs because much of the incident h'ght is absorbed 

prior to reflection. However each subsequent reflection reduces the amount of 

polarisation and its radiance value. Typically this occurs on concave surfaces, see figures 

26,27 &31, or on surfaces occluded from a direct light source.

By contrast, objects can sometimes be recognised by identifying features such as 

area and perimeter. A whole group of binary feature extraction systems have been 

developed, such as moments and fourier descriptors both of which are invariant to 

translation and rotation. Usually most object features vary with orientaHon and camera 

location, and as a result object orientation is often restricted.

Templates are commonly used, and are artificially generated after assuming the 

object's orientation. The generation of all possible templates and their comparison with
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real data is however impractical. As a result these algorithms are generally limited to 

2-D translation problems where the object is carefully presented to the imaging

system.13

Systems using 3-D data obtained from sets of images include Stereo Vision,

Photometric Stereo and Shape from Contour. Stereo Vision has received much attention

33 34 35 in recent years. ^' ~ This generates disparities in a pair of images which are

converted to a depth map. By contrast our method produces a map of normal vectors, 

the orientation histogram.

Recently, laser range finders have been used to create 3-D descriptions of scenes. 

Algorithms using these are simpler, cheaper and more accurate than image processing
T-%

algorithms. Such systems can generate depth maps which are then converted by 

software to maps of normal vectors.

The viewer-centred approach that we have developed greatly simplifies many of
10 17 1-1 Ifi 70

the processes necessary to produce a satisfactory result. Other workers ' ' ' use 

object- centred descriptions of objects to derive their results. In such systems the objects 

are described completely relative to a particular feature of the object; typically their 

centre of mass. These descriptions may be generated by a solid modeller, part of a 

CAD/CAM system. A geometric modeller greatly simplifies the process of model 

rotation and subsequent descriptions. However not all potential users of computer 

vision have access to such systems, which tend to be expensive. Pre-computation of 

viewer-centred orientation histograms is feasible, and their storage on available image 

planes practical since most computer vision systems possess more than one.

Object-centred descriptions achieve a match by rotating the prototypical 

description until it aligns with the sensed object; this is computationally expensive. 

It also requires a notional spherical tessellation both for the sensed and prototypical
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descriptions of the object. By using tessellations based upon regular polyhedra it is 

possible to rotate one sphere until it aligns with the other sphere; this aids the matching 

process.

Tessellations based upon the icosahedron are common; this allows rotation onto 

itself in sixty different orientations, one for each vertex of the twenty triangles that make 

up the shape. To rotate the prototypical description, Eider angles or rotation matrices 

are used. For each rotation, the normals and the areas each represents are projected onto 

the tessellated sphere. An orientation histogram is produced from this projection and 

compared to the sensed orientation histogram. Each tested position requires a rotation, 

a projection and a comparison.

Recently tessellations based upon combinations of 4-D polytopes and their duals 

producing up to 5880 points upon the sphere have been used to ensure an even 

sampling of the sphere. Some sixty pre-computed descriptions of the object are stored; 

each is a description of the object at a pre-determined orientation (one for each vertex

of the icosahedron). It is these descriptions that are rotated to determine its orientation.
13 

Even with such a fine sampling of the space of possible orientations Brou states that

it is possible to have errors of 17 degrees in estimated orientation. Only when in excess 

of 1900 comparisons are made does average error in the estimation of objects drop 

below 10 degrees. However, Horn20 uses moments to reduce the search space; he 

requires approximately 100 rotations and re-projections to determine orientation to 

within 5-10 degrees of arc on average.

These systems separate recognition from orientation; when more than one type of 

object is present in the system a recognition process must first determine its type prior 

to the activation of the process described above.
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Complications arise when the faces of an object lie near the junction of two 

tessellations, they rarely sit conveniently at the centre. Noise, errors in building the 

look-up table may result in an object's face being recorded on an adjacent tessellation. 

Matching prototypical data to this type of sensed data creates problems,20 because such 

an occurrence can dramatically alter the EGI. This is particularly true if the surface 

presents a large contribution to the EGI, i.e. the planar end surface of the cylinder.

Our work has concentrated on the recognition and orientation of highly specular 

dielectric surfaces. To achieve this we have used the effects of polarisation of light on 

such surfaces to build a description of the viewed object. This description is compared 

with a database of pre-computed viewer-centred descriptions of objects to achieve both 

recognition and orientation. Our use of viewer-centred descriptions has several major 

advantages. Firstly because our database consists of viewer-centred orientation 

histograms, no rotation of sensed and stored data is necessary. All necessary rotations 

and reprojections have effectively been performed once only in the process of 

computing the database of stored histograms. As a result the need to rotate tessellated 

spheres into alignment does not occur, therefore a fixed grid of sample points is 

sufficient to describe both our sensed descriptions and our database of pre-computed 

descriptions. The main disadvantage of our method is the storage space required to 

hold our database. We stored both the cylinder and the toy databases using 170kbytes 

or approximately a fifth of the available space on the image plane. This is however offset 

by the ease of computation.

Added Gaussian noise led to an apparent improvement in the number of 

comparisons required to achieve a best match. Noise has a smoothing effect on the 

sensed description by pushing triples of radiance into adjacent cells of the sensed 

orientation histogram. Because we used a fixed threshold, r/, to select areas of the 

database of histograms for possible comparison, fewer frequencies exceeded this value
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so reducing the number of available histograms for comparison. Also the sensed 

average foreshortening factor, h, is depressed; we use this value to compare with the 

pre-computed values of h, stored in the header record of each pre-computed orientation 

histogram, prior to any comparison. The effect is to reduce still further the number of 

stored histograms available for comparison. By using a variable threshold, t v, which 

will reduce with the effects of noise, the number of stored histograms available for 

comparison is increased. Similarly the value of tv will increase with more accurate 

sensing, in both cases the result is a more even distribution of stored data available for 

possible comparison. This increases the probability of the best match being chosen.

Object symmetry is used to reduce the number of possible orientation histograms 

stored in the database. As an example, the database for a cube is computed as follows. 

By orienting a single surface of the cube into alignment with the normal at sampling 

point (0,0), we compute the orientations of the other visible surfaces and their 

frequencies to produce each histogram. This process is repeated at each sampling point 

on the sphere up to an angular distance of 45 degrees from the y-axis (0,0). To compute 

histograms beyond this point will simply duplicate existing stored histograms. 

Similarly to use more than a single surface of the cube will also duplicate existing data. 

Most objects portray some symmetry, and with this in mind we can cut the amount of 

computation necessary to build the database.

Two adjacent computed histograms may be so similar that storing both is 

ineffective, i.e. in the case of the toy, the current histogram may have 22 visible surfaces. 

Of these, 21 out of the 22 visible surfaces may be included in the previously computed 

histogram. We could not distinguish between these positions because 1) our 

polarimetric system is subject to noise, sensing errors and errors in building the look-up 

table and 2) both radiance values and the hemisphere of orientations are quantised. 

Storing both would not necessarily produce a better result. Rejecting histograms on the
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basis of similarity with existing stored histograms does mean we throw away a great 

deal of data; perhaps as much as 60%. However the remaining subset is sufficiently 

diverse to produce results which are typically within seven degrees of arc.

The stored orientation histograms are addressed by pointers embedded in the 

image plane containing the database. The position of the initial pointer to a stored 

histogram is dictated by its largest frequency; each cell's frequency represents the 

apparent surface area of a visible surface at that orientation. This works because 

regardless of the shape or orientation of an object, a small group of visible surfaces will 

have the larger frequencies. One of these will correspond to the largest frequency of the 

model histogram. We only search those areas of the database which correspond to the 

larger frequencies of the sensed orientation histogram; as a result our search method 

will quickly find the appropriate area of the database, hi practice we find that this 

simple method reduces the possible search space to approximately 5-6% of the database 

on average. Our use of the principal axis, p, and average foreshortening factor, h, 

reduces this still further. The principal axis rejects about half of the remaining 

histograms whilst h, reduces the remaining records to less than thirty on average. These 

remaining histograms are compared to the sensed orientation histogram. The 

alternative to our use of features is a computationally expensive global search and 

comparison of the database for each viewed object.

Our use of the principal axis is effective because not all visible surfaces whose 

frequency exceeds the threshold, tv , have an orientation that lies within p±tp . The value 

of h computed for each model histogram is determined by its orientation. The value of 

p is determined by the object's 2-D projection on the x-z plane; clearly an object can take 

many different orientations and still project the same value of p.
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Using h to reject many of the remaining records works simply because its value 

depends upon the azimuth of the axis of symmetry of the object above the x-z plane. 

We found that in general the sensed value of h is lower than the pre-computed value 

because noise and sensing errors tend to push triples into adjacent cells of the sensed 

histogram. One effect of this is to reduce the computed average foreshortening factor.

The value of tp is set at 20 degrees. We could reduce this tolerance on principal axis 

to achieve the same results but with fewer comparisons. However in a bin of parts 

application, objects partially occluded might result in slight errors in the estimated 

principal axis of the viewed object's 2-D projection. With this in mind all our thresholds 

are deliberately increased to allow for such possibilities. It should be pointed out that 

Horn1 argues that a partially occluded object would not normally be the target object.

By embedding pointers to records in the image plane, we achieve a much more 

selective retrieval of stored orientation histograms. This method whilst not 

guaranteeing unique pointers to addresses, is simple and efficient. Over 93% of pointers 

are unique; less than 1.2% of all the resulting pointers produce clashes involving more 

than two stored records. Searching for duplicate records when compiling our database 

is therefore fast and efficient, keeping the number of comparisons to a minimum. An 

analogy would be a direct file with synonyms.

The method of addressing records by pointers worked so well that the space we 

allowed for clashes is excessive, and we could have reduced this considerably, allowing 

more space for further database objects. Each array has 16 elements but the method was 

so efficient that these could have been reduced to 6 element arrays. This would have 

released an additional 72 lines of the 16 bit image plane for stored orientation 

histograms.
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A least squares method is used to compare histograms; as the accumulated 

residual sum exceeds the previous best match the comparison is abandoned. In this way 

the majority of comparisons are only partial. When the residual sum is smaller than the 

previous best the current sum becomes the new best match. By comparison a correlation 

method would require us to fully compute the correlation coefficient, p, for each 

selected histogram and the sensed histogram, i.e all comparisons would need to be 

complete. We did not use correlation to select a match for this reason, however it is a 

very useful indicator of the confidence of each match.

10.1 Practical Considerations

An ideal photometric box has a uniform radiance. To achieve this, the box needs 

to be spherical with a suspended baffle in the centre of the sphere; the object is mounted 

on the baffle. Behind the baffle the light source is located hidden from both the object 

and the viewing hole. The interior should be painted with a photometric paint.

Our photometric box, described in chapter 4, creates some problems. Firstly the 

square shape does not create a truly extended source, because there are always 

variations in reflected light source radiance. These occur because the reflecting surfaces 

are not equi-distant from the object. The small size of the box, approximately 50 cms. 

square, means that the 10 cm. diameter viewing hole is large by comparison. For a fixed 

distance between the camera and object a large box will be nearer the camera. Therefore 

a smaller hole would suffice. A virtual image of the viewing hole is seen on all objects, 

see figure 42. The two baffles obscuring the light sources can also be seen. The resulting 

reflectance maps of our objects were consequently distorted in these regions, see figure 

43.
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Figure 42. An image of the black calibration sphere. A 
virtual image of the photometric box is reflected by the 
sphere. The viewing hole is reflected as a dark spot at the 
centre of the sphere. The two baffles can also be seen as 
dark circular patches, one either side of the viewing hole. 
The lighter square area is due to the light source positions 
and the square shape of the photometric box.

We use a CCD camera for our images; this gives good geometric accuracy and a 

linear response to scene radiance. Due to defects in the silicon of CCD chips some sensor 

cells differ in their response to light. The normalisation of radiance values, equation (45), 

removes this problem. However we use a non-linear scaling of radiance values, elation 

(46), and as a result the problem is only partially diminished.
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Figure 43. The reflectance contours of the black sphere 
viewed through a polarising filter. The two baffles and 
viewing hole distort the contours adjacent to the x-axis.

To ensure orthographic projection the camera should be 'far' from the object; the 

distance is ideally much greater than the dimensions of the object. In practice this may 

not be possible, in our case all images are captured from a fixed distance regardless of 

object size. The camera position is fixed some 1.8 metres from the object. The objects 

varied in size from the 4.8 cm. diameter calibration sphere, to the cylinder at 3.2 cm. 

diameter and 5 cm. in length.

10.2 Future Work.

The complex refractive index of many metal surfaces is typically 0.8-2.0i. They are 

also highly absorbant, which indicates that the complex part of the refractive index is 

large. These two factors indicate that it may be possible to extend this method to some 

metal objects. We experimented with a pair of metal objects both highly specular with 

a mirror finish. Because so much light is reflected we had difficulty in observing any
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polarisation effects. For this reason highly polished metal objects may well be 

impractical for Polarimetric Stereo.

Different types of surface absorb incident light in varying degrees. Surfaces will 

absorb more incident light if the light is in a particular area of the spectrum, i.e brass 

absorbs blue light more strongly than other colours.36 It may be possible to utilise 

coloured light sources to extend the scope of this method.

The possible application of this technique is limited to surfaces that will produce 

polarised reflectance contours with sufficient variation to enable an accurate look-up 

table to be produced. Work needs to be carried out using our model to generate objects 

with known refractive indices and absorption factors. These will help us to determine 

combinations of absorption factor and refractive index that will mark the upper and 

lower limits of this method. At present our model is not accurate enough and we need 

to implement the refractive index as a complex number.

Currently, the look-up table is produced using frequency of occurrence as the 

criterion for allocating a triple of radiance to a particular sampling point. A more 

accurate look-up table may be possible by using a more formal statistical approach to 

the problem.

We only deal with a single object in the field of view in this application. The 

method is particularly suited to the bin of parts problem in robotics and as such must 

be able to deal with multiple objects. A further segmentation is required that wiU select 

a candidate from the pile of objects prior to the process described within. We feel that 

mutual illumination of one object by another will cause problems for our system, 

however it is a universal problem suffered by other methods such as Photometric 

Stereo.12
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No range data is available from this method, and this is a pre-requisite for a bin of 

parts application.

121



Chapter 11

CHAPTER 11. 

Conclusions

We have shown that it is possible to recognise specular dielectric objects, and to 

determine their orientation, from the analysis of the degree of polarisation of the 

reflected light. Our method determines the object's orientation to an average 

uncertainty of less than seven degrees of arc.

Pre-computing a database of viewer-centred model orientation histograms is 

highly efficient because the process reduces to a simple search and comparison of 

viewed and model data. We have stored the database on spare image planes, and by 

embedding pointers to relevant model data in the database itself, the search for a 

suitable match is reduced to less than one percent of the total database.

722



References

References

1. Ramachandran.V.S. 'Perceiving Shape from Shading' Scientific American, August 
1988, pp58-65.

2. Horn,B.K.P. 'Understanding Image Intensities' Artificial Intelligence, Vol.8, No.2, 
1977, pp201-231.

3. Horn,B.K.P. and Sjoberg.R.W. 'Calculating the Reflectance Map' Applied Optics, 
Vol.18, No. 11, June 1979, pp!770-1779.

4. Wbodham,R.J. 'Photometric Method for Determining Surface Orientation from 
Multiple Images' Optical Engineering, Vol.19, No.l, Jan/Feb 1980, pp!39-144.

5. Rlndfleisch.T. 'Photometric Method for Lunar Topography' Photogrammetric 
Engineering, Vol.32, No.2, March 1966, pp262-276.

6. Wbodham.R.J. 'Photometric Stereo: A Reflectance Map Technique for Determining 
Surface Orientation from Image Intensity' Image Understanding Sytems and 
Industrial Applications, Proc. 22nd. SPIE, Vol.155, August 1978, pp!36-143.

7. Horn.B.K.P, Wbodham.R.J. & Silver,W. 'Determining Shape and Reflectance Using 
Multiple Images' AI memo 490, August 1978.

8. Silver,W.M. "Determining Shape and Reflectance Using Multiple Images' MS Thesis, 
MIT, June 1980.

9. Coleman.E.N. and Jain.R. 'Obtaining 3-Dimensional Shape of Textured and 
Specular Surfaces using Four-Source Photometry' Computer Graphics and Image 
Processing. Vol. 18, 1982, pp309-328.

10. Ikettchi.K. 'Determining Surface Orientations of Specular Surfaces by Using the 
Photometric Stereo Method lEEETrans PAMI- 3, No.6, November 1981, pp661-669.

11. Ray.R., Birk.J. and Kelley.R.B. 'Error Analysis of Surface Normals Determined 
by Radiometry' IEEE Trans PAMI-5, No. 6, November 1983, pp631-645.

12. Horn,B.K.P. and Ikcuchi.K. 'Picking Parts out of a Bin'Al 746. MIT, October 1983.

13. Brou,P. 'Using the Gaussian Image to Find the Orientation of Objects' The 
International Journal of Robotics Research, Vol.3, No.4, Winter 1984, pp89-125.

123



References

14. MInkowskI,H. 'Allgemetne Lehrsatze uber die Konvexen Polyeder' Nachrichten van 
der Koniglichen Gesellschaft der Wissenschaften, mathematisch-physikallsche 
Masse, Gottlngen, pp!98-219, 1897.

15. Bajcsy.R. •Three-Dimensional Scene Analysis' Proc. Pattern Recognition Conf., 
Miami, 1980, pp 1064-1074.

16. Horn,B.K.P. 'Sequins and Quills - Representations for Surface Topography' AI memo 
536. MIT. 1979.

17. Horn,B.K.P. 'Extended Gaussian Images' AI memo 740, MIT, July 1983.

18. Ikeuchi.K. 'Recognition of Objects Using the Extended Gaussian Image' Proc. 
IJCAI-81 (Vancouver). 1981. pp595-600.

19. Ikeuchi.K. & Shirai.Y. 'A Model Based Vision System for Recognition of Machine 
Parts' Proc. AAAI-82, Pittsburgh, 1982. pp!8-21.

20. Horn.B.K.P. Robot Vision, The MIT Press, 1986.

21. Konnen.G.P. Polarised Light in Nature. Cambridge University Press, 1985.

22. Koshikawa.K. & Shirai.Y. 'AModel Based Recognition of Glossy Objects using their 
Polarimetrical Properties JRSJ. Vol.3, No.l. 1985, pp4-9.

23. Terashi.Y., Shirai.Y. & Koshikawa.K. 'Recognition of Surface Geometry of Glossy 
Objects Using Polarised Light JRSJ, Vol.3, No.l, December 1985, pp86-95.(In 
Japanese)

24. Koshikawa.K. 'A Polarimetric Approach to Shape Understanding of Glossy Objects' 
Proc. IJCAI-79, 1979, pp493-495.

25. Brooks.M.J. 'Shape from Shading Discretely Ph.D Thesis, Essex University, 
September 1982.

26. Jenklns.F.A. and White.H.E. Fundamentals of Optics. McGraw- Hill, 1967.

27. Clarke.D. and Grainger.J.F. Polarised Light and Optical Measurement, 
Pergamon Press, 1971.

28. Levialdi.S. Fundamentals of Computer Vision, Edited by O.D. Faugeras, 
Cambridge University Press, 1983.

29. Marr.D. Vision, W.H. Freeman & Co., 1982.

124



References

30. Mlng-Kuei Hu. Visual Pattern Recognition by Moment Invariants' IRE trans. IF, 
IT-8, February 1962, pp!79-187.

31. McGhee, J.W. Introductory Statistics. West Publishing Co., 1985.

32. Fairney.P.T.. Jones.B.F. and Wiltshire.R.J. 'Use of Viewer- Centred Descriptions 
of Objects to Improve the Computational Efficiency and Accuracy of Photometric 
Stereo' Eng. Appll. of AI, vol.1. June 1988, pplll-118.

33. Poirm,J.,PoUard.S.B..Pridmore.T.P.,Bowen,J.B.,Mayhew,J.E.W. & Frisby.J.P. 

'TEVA- A 3D Vision System for Pick and Place' Proc. AVC87, pp65-72, 1987.

34. PonilltJ.,Pollard,S.B. & Mayhew.J.E.W. 'The Optimal Combination of Multiple 
Sensors Including Stereo Vision' Proc. AVC86, 1986.

35. Blake,A., Zisserman,A. & Mclauchlan.P. 'A Knowledge Source for Describing 
StereoscopicaUy Viewed Textured Surfaces' Proc. AVC86, 1986.

36. Kaye.G.W.C. & Laby.T.H. Tables of Physical and Chemical Constants and Some 
Mathematical Functions. Eleventh Edition, Longmans, Green & Co., London, 1956.

37. Ikeuchi.K. 'Determining Attitude of Object from Needle Map using Extended 
Gaussian Image' AI memo 714, MIT, April 1983.

125




