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Abstract

The problem of th.e existence of perfect and nearly perfect 

codes over finite alphabets is generalised in two directions. This 

thesis is concerned with the existence and combinatorial properties 

of completely regular codes in distance-regular graphs. One of the 

main tools is the generalisation of Lloyd's Theorem.

There are connections with designs, orthogonal latin squares and 

finite projective planes and various existence and non-existence 

results are derived for completely regular codes in three infinite 

families of distance-regular graphs.
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1. Introduction

1. 1 Perfect code problem

Coding theory began as a study of the possibilities of 

correcting errors in certain communications systems (Shannon [53 ] ) . 

Much of the research in this field is still concerned with the 

theoretical study and construction of such codes (Sloane[34] ) .

The algebraic and combinatorial properties of codes have 

undergone closer scrutiny more recently and an area of coding theory 

which has provoked particular interest has been the investigation 

of the existence of perfect codes. From a combinatorial point of 

view perfect codes are interesting because of the connection with the 

existence of certain designs ( [>-7]).

The perfect code problem for finite field alphabets was 

finally resolved in 1973 when Tietavainen [*t] proved that the only 

non-trivial perfect codes are those already known. There are many 

known examples of perfect 1-codes (including the Hamming perfect 

1-codes); there is the ternary Golay perfect 2-code of length 11 and 

the binary Golay perfect 3-cdde of length 23 (van Lint

A result which has proved useful in many of the non-existence 

results for perfect codes is Lloyd's theorem [2*]. The theorem states 

that if a perfect e-code of length m over a q-ary alphabet exists then 

the polynomial (usually referred to as the Lloyd polynomial)

G

iMx) = I (-DVl^M^Mq-i) 6'1 (i.i.i)i=0 e i i 

has e distinct zeros in the set {l, 2, . . . ,m) .



1.2 Codes in other settings

Biggs in [5] and Delsarte in [•?] generalised the idea of a 

perfect code to distance-transitive graphs and to metric association 

schemes respectively, and both authors have proved an analogous result to 

Lloyd's theorem. Delsarte paid particular attention to the Hamming 

schemes which correspond to the original setting and also to the 

Johnson schemes . Both Biggs [*]and Delsarte have also established 

connections between codes in the Johnson schemes (or correspondingly 

the graphs J(a,b)) and the existence of certain Steiner systems.

In [I*] Goethals and Snover defined the class of nearly perfect 

codes over a binary field and showed that they have similar properties to 

perfect codes which include an analogue of Lloyd's theorem and the 

construction of designs.

The aim of this thesis is to generalise the problem in two 

directions. Firstly we wish to change the setting to distance-regular 

graphs (a class of graphs which contains the class of distance-transitive 

graphs). Secondly we define a general class of codes (which contains 

perfect and nearly perfect codes) called completely-regular codes.

1.3 Summary

In Chapter 2 we begin with a description of the main properties 

of a distance-regular graph F with diameter d and valency k. We 

define the adjacency algebra Ol(F) of dimension d+1 in terms of the

adjacency matrix A of F. The adjacency matrices A.. = I, A =A, ...,A, — * ——————————— ——————————————— (J 1 d

form a basis f or Ol(F) . If we represent Ol(F) as an algebra of (d+1) 

x (d+1) matrices representing left multiplication we generate an
A A

algebra Ol(O which is isomorphic to OUT). 01 (F) has as a basis the 

intersection matrices B = 1,6..,..., B,; the intersection matrix B=B



is tri-diagonal and its main diagonals form the intersection array 

of F.

We define the eigenvector sequence of polynomials v (A), v.. (A), 

• ••> vj(^) i-n terms of the intersection array and the partial sum 

vQ (A) + v.. (A) + ... + v. (A) is denoted by x.(A). The polynomial 

x, (A) is a rational multiple of the characteristic polynomial of B and

has zeros A,,...,A, where k,A,,...,A, are the distinct eigenvalues la Id

of B (or of F as we shall sometimes write).

In §2.2 we define an e-code C as a subset of the vertex set VF 

of F with mutual minimum distance 2e+l. We also define the weight 

vector [p ^(C,u),p . (C,u), .. .,p . (C.u)] 1" of C with respect to the 

vertex u at minimum distance i from the elements of C. These 

definitions are followed by a generalisation of an upper bound for |C| 

obtained by Goethals and Snover P*] who used their bound to define 

nearly perfect binary codes. In §2.3 we define a nearly perfect 

code in T as a code satisfying our generalised bound with equality.

A perfect e-code is also defined in §2.3 and we note that the 

class of perfect codes is a subclass of the class of nearly perfect 

codes. The remainder of §2.3 is devoted to a comparison of the 

properties of perfect codes and nearly perfect codes which are not 

perfect. We follow the method of Biggs [5"]to obtain a result analogous 

to Lloyd's theorem for nearly perfect codes and obtain the generalisation 

of Goethals and Snover as a corollary.

In §2.4 we confine our attention to a more detailed study of the 

weight vector of a nearly perfect code C and we obtain explicit 

expressions connecting the related weight vectors of C. We prove 

that the weight vectors of a nearly perfect code are independent of 

the vertex with respect to which they are calculated. We also state



corresponding results for perfect codes.

We end Chapter 2 by considering the possibility of constructing 

perfect codes from nearly perfect codes. We find that it is possible, 

under certain circumstances, to construct perfect 1-codes from nearly 

perfect 2-codes. This particular construction is shown not to hold 

for other values of e.

An important consequence of Chapter 2 is that vertices of the 

graph are at distance at most e (respectively e+1) from code vertices 

of a perfect (respectively nearly perfect) e-code. In Chapter 3 we 

examine e-codes which have the property that vertices of the graph 

are at distance at most e+m from vertices of the code, that is, codes 

which have external distance e+m. We pose two important questions 

which are the essential problems of this thesis:

(i) If C is an e-code with external distance e+m, what

conditions must C satisfy in order that we can prove 

a result which is analogous to Lloyd's theorem?

(ii) What properties would a code satisfying such conditions 

have in common with nearly perfect codes?

In §3.1 we begin to answer the first of these conditions by 

defining locally regular and completely regular codes in terms of 

components of the related weight vectors. We also indicate the 

difference between Delsarte's and our definition of external distance.

We show in §3.2 that very little extra work is needed in order 

to establish an analogue of Lloyd's theorem for completely regular 

codes. This generalised condition (usually referred to as the 

polynomial condition) establishes that the zeros of a certain polynomial 

are eigenvalues of the graph. These results also enable us to prove



the equivalence of completely regular and locally regular codes. The 

last theorem of §3.2 is a generalisation of a result due to 0. HedenL*'J.

We introduce, in §3.3, the idea and some of the properties of antipodal 

distance-regular graphs and we illustrate how we can derive another 

distance-regular graph from such a graph. The aim of this section is

to show that under certain circumstances the derived graph also contains—————————— graph.

a completely regular code which is constructed from the code in the antipodal 

In fact when this is the case we apply our polynomial condition to the 

derived graph and obtain an improved polynomial condition.

In §3.4 and §3.5 we discuss briefly locally regular e-codes of 

external distance e and e+1 respectively. In particular in §3.5 we 

determine the extra parameter which arises in the improved polynomial 

condition for antipodal graphs. We find an explicit form for this 

parameter for the classes of nearly perfect and uniformly packed codes 

Finally in §3.6 we define m order generalised uniformly packed 

codes [Si] . Although these codes are not necessarily completely regular 

we are still able to prove an analogue of Lloyd's theorem.

The remaining three chapters are devoted to examples and non- 

existence results of locally regular e-codes. The setting for each 

chapter is one of three infinite families of distance-regular graphs.

In Chapter 4 we restrict our attention to the graph T(m,q) which 

corresponds to the Hamming schemes of Delsarte. §4.1 contains a short 

account of recent work on the existence of perfect codes in F(m,q) for 

q a non-prime power.

We begin §4.2 with a statement of the intersection array of r(m,q). 

The graph T(m,2) is antipodal and with a view to applying our improved 

polynomial condition we state the eigenvalues of the derived graph F(m,2)/2.



The existence of nearly perfect codes is investigated in §4.3. 

We consider first the binary case and obtain a non-existence result 

for odd e with 5 < e < 17 (the case e=3 has been dealtwith by van 

Lint [i6] ) . Although this result should easily extend to further 

odd values of e it is obviously overshadowed by the complete non-existence 

result recently proved by K. Lindstrom b-3J . However, Lindstrom 1 s proof 

is very complicated [•*•!, page 14] and involves a computer search for 

the values e < 100 and m ̂  10,000 so it might be useful to illustrate 

another approach.

Also in §4.3 we prove that the only nearly perfect 1-codes and 2-codes 

in r(m,q) are the binary codes already obtained by Goethals and Snover

[14-] . Binary nearly perfect 1-codes (other than perfect 1-codes) 

are obtained by dropping the same component from each of the code 

vertices of a perfect 1-code [)*, page 83] . Preparata 2-codes [so] are 

examples of nearly perfect 2-codes which are not perfect.

Finally in §4.4 we give two examples of parameter sets for 

completely regular 1-codes in F(m,q). The first and most interesting 

is connected closely with mutually orthogonal latin squares. The 

second is still an open case but we discuss a possible method of 

construction using a result of Goethals and van Tilborg L' 5J.

The existence of interesting codes in the infinite family of 0,
K.

graphs is demonstrated in Chapter 5. §5.2 includes a description of 

a method of constructing codes in 0, from antipodal codes in T(2k-l, 2).
K.

We illustrate how the perfect 1-code in 0, can be obtained from the 

perfect Hamming 1-code in r(7,2).

In §5.3 we use the eigenvector sequence for 0, to obtain results 

connecting the roots of x (X). Expressions of the sum and products 

of the roots of these and related polynomials have been used



successfully in non-existence proofs for both perfect and nearly 

perfect codes in T(m,q) ( [-3*] and

In §5.4 we obtain a lower bound on k as a necessary condition 

for the existence of a perfect e-code in 0, . The most interesting 

result of §5.4 is the characterisation of perfect 1-codes in (X as 

the Steiner systems S(2k-l,k-l,k-2) . The first two codes in this 

series are in 0, and 0- and correspond to the well known Steiner 

systems 8(7,3,2) and 8(11,5,4) respectively. It does not seem 

likely that other perfect 1-codes exist in 0 because we would require
Jv

the existence of t-designs with t greater than 5. However we do 

prove that the components of the weight enumerator for these codes 

are integers so we have yet to rule out the possibility of perfect 

1-codes in 0, . For the rest of §5.4 we use the weight enumerator and 

sphere packing condition to obtain lower bounds on k as necessary 

conditions for the existence of perfect e-codes in 0 with e=2,3 and 4.

We follow the method of proof of Theorem 4.3.4 to prove in §5.5 

that there are no nearly perfect e-codes in 0, with e odd and 

3 < e < 14. Once again this result should easily be extended to 

further odd values of e. For the particular case e=2 we are able 

to apply Theorem 2.5.1 and from the existence of a nearly perfect

2-code in 0, we obtain the perfect 1-code in 0,. D b

The final chapter deals with the family of distance-regular 

graphs J(a,b) which correspond to the Johnson schemes of Delsarte [9] . 

In §6.2 we state the intersection array and calculate the eigenvalues 

of J(a,b) . We show also how the eigenvector sequence of J(a,b) is 

related to the Eberlein polynomials



The only complete non-existence result we have obtained is for 

nearly perfect 1-codes in J(a,b) and this is contained in §6.3.

In §6.4 we derive a number of interesting results connecting 

the existence of completely regular codes in J(a,b) and certain 

Steiner systems.

The graph J(2b,b) is the setting for §6.5. Since the graph 

is antipodal we have the possibility of applying the results of §3.3. 

The interpretation of the results of §6.4 in the case of J(2b,b) is 

particularly interesting. A great deal of research has already been 

carried out on the related Steiner systems; in particular by Alltop[l ], 

Hermeso and Assmus [3 ].

The final section of Chapter 6 illustrates the relationship 

between equidistant codes in J(a,b) and finite projective planes.



2. Perfect and Nearly Perfect Codes

We begin with a brief description of the main properties of 

distance-regular graphs. The reader should refer to Biggs["J ] 

for further details and proofs.

2.1 Distance-regular graphs

A distance-regular graph, with distance function 9, diameter 

d and vertex set VF is a simple regular connected graph T of valency 

k with the following property. If z e VF and F. (z) = {ueVF|8(u,z) = i} 

then there are natural numbers b_ = k,b1 ,..,,b,_1 ,a1 ,...,a,,c_,...,c, 

such that for each pair (u,v) of vertices satisfying 8(u,v) = j we 

have

(i) The number of vertices of F. (v) adjacent to u is

c.(Q < j « d).

(ii) The number of vertices of F.(v) adjacent to u is 

a.(0 < j < d).

(iii) The number of vertices of F. (v) adjacent to u is 

b.(0 < j < d).

We infer from (i), (ii), (iii) that k = a.^ + b^^ + c^ (0 < i < d)

and c, + a, = k with a_ = 0 and cn = 1. 
d d 0 1

Let n = |VF|. We define d+1 matrices A ,A ,...,A each 

having n rows and columns indexed by the vertices of F as follows:

f 1 if 3(u,v) = h;

(Vuv = 1 n ^ .I 0 otherwise.

Then An = I and A.. = A is the usual adjacency matrix of F.
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The commutative adjacency algebra, Ot(F), is the algebra of 

polynomials in A (over (£); in [?, Theorem 20.7 J it is shown that 

G£(F) has dimension d+1 and possesses a basis {A ,A1 , .. . ,A }. The 

multiplication of basis elements is given by

A. A. = Z s A. (h,ie{o,l, ...,d}) (2.1.2) 
n L j=o J J

where the numbers SL . . are called the intersection numbers of F;hij ______________

these numbers have the following combinatorial interpretation: for 

8(u,v) = j

shi' =Hwevr l 8 ( u > w ) = h and 3(w,v) = i}| (2.1.3)

Since Ol(F) has dimension d+1 it can be represented as an 

algebra of (d+1) x (d+1) matrices. This representation assigns to
A

each X in 01(0 the (d+1) x (d+1) matrix X, which represents left 

multiplication by X in 0((r) with respect to the basis {A ,A , ...,A }
A A

The matrix B, = A, has entries (B,) . . = s . . and the matrices X, for
A A

each X in 01(1*), form an algebra Gl(F) . Gl(F) is isomorphic to <X(T) 

and has a basis {B , B , . . .,Bj}L7 , Proposition 21. l] .

In particular we see from the triangle inequality that the 

intersection numbers s.. . . are non-zero only when |i-j|<l and hence 

B = B I is tri-diagonal; the diagonals of B are the rows of the 

intersection array of F

C 2 "' C d-l Cd

0

and B is called the intersection matrix of F.



From (2.1.2) we infer that for 1 < i « d-1

AA. = c. ..A. . + a.A. + b. .A. , (2.1.4) 
i i+l i+l i i i-l i-l

A
and by the n isomorphism between Ol(F) and Gl(F)

BB. = c. ..B. . + a.B. + b. ,3. , (2.1.5) 
i i+l i+l i i i-l i-l

Let <C}[Al denote the ring of polynomials in A with rational

coefficients, and let v,_(A), v..(A),..., v,(A) be elements of Q[A]u 1 d

defined as follows:

vQ (A) = 1, vt (X) =X and for 1 « i < d

AVi (A) = c i+1vi+1 (X) + a.v.(A) + b^v^X) (2.1.6)

For ie{o,1,...,d) v.(A) is a polynomial of degree i in A and from 

(2.1.4), (2.1.5) and (2.1.6) we have

v.(B) = Bi , v£ (A) = A., v.(k) = k._ (2.1.7)

where k. = |F.(u)|. We note also that (2.1.6) arises when we

consider the eigenvector equation for v(X) = fv.(X), "V^(

Bv(X) = Av(A) (2.1.8)

For this reason (v.(A)} is called the eigenvector sequence of F[s]. 

Using the eigenvector sequence we are able to find each v.(A) from 

B and then define for 0 < i < d

i
x.(A) = Z v.(A) (2.1.9) 
1 j=0 J

In \_5 , pagel*4iit is shown that (A-k)x,(A) is a rational 

multiple of the characteristic polynomial of B and that B has

distinct eigenvalues. Hence x.(^) nas zeros A n ,A0 ,...,A, where
d 1 i d

k,X-,...,X, are the distinct eigenvalues of B.



2.2 e-codes in distance-regular graphs

Definitions Let F be a distance-regular graph with distance function

3. For each non-negative integer e an e-code in T is a subset C of
each 

vr such that 9(u,v) 5- 2e + 1 for^pair u,v of distinct elements of C.

If veVF then we define

Z (v) =' {wevrl3(v,w)<e} (2.2.1)

and if 3(v,C) = min O(v,c)} = i then for 0 < h < d 
ceC

Phi (C,v) = |cnrh (v)| (2.2.2)

We call the vector [p .(C,v),p 1 .(C,v),...,p,.(C,v)] the weight vector 

of C with respect to v.

In what follows we prove a generalisation (Theorem 2.2.5) of 

an upper bound obtained by Goethals and Snover [/4] who used their 

bound to define binary nearly perfect codes. In fact their bound 

is a special case of a result of Johnson I2 *-].

Lemma 2.2.1 If F contains an e-code C then

e
Z p .(C,v) « 1 for each veVF with 8(v,C) = i (2.2.3) h=0 hl

Proof This is immediate from the definition of minimum distance

Lemma 2.2.2 If CflF . (v) i for some i with 0 < i < e then

Z Phi (C)V) = l and Ce+l Pe+li (C ' v) * b ePei (C ' v) 
h=0

for each veVF.



Proof The first part is obvious from Lemma 2.2.1. The second part 

is obvious if p .(C,v) = 0, so we suppose p .(C,v) = 1 in which case 

i=e. F I (v) contains vertices at distance e or less from C so

k - r(v

(B) e-le + (B) ee + Pe+le (C » v) (B) ee+ l ( & > 4

= ce + ae + Pe+le (C ' v)ce+ l

Using k = c + a + b the result follows • 6 e e e

Consider the set T (v) of vertices of F at distance e+1e+1

from a particular code vertex v, we partition its elements into two 

classes:

T (v) = {xeF j^ 1 (v)|3ceC such that xeZ (c)} ex e+1 e

= {xere+1 (v)|3(x,c)>eVceC}

Lemma 2.2.3 For each veC,

|Ta (v)| « [b e/ce+1]ke (2.2.5)

Proof Since v e C 3(v,C) = 0 and p.._(C,v) = 1, p 1ri (C,v) = ...
' ' ' ' ' LMJ J.U

p. (C,v) =0. By the definition of T (v) we have

IVV) I = (Ve+l 2e+ lP 2e+ l 0 (C ' V) <

Now take any zcT (v)* then p (C,z) = 1 and by Lemma 2.2.2 
e ' ee

C e-HPe+ le (C ' z) 4 be' Hence

< D> e /c e+1] <



f4

Clearly the sets F (z)OC, for z£-T (v), are not necessarily 

disjoint. In fact if we sum the F (z)flC we repeat each code

vertex in r ^ at least ( B ) +1 o +1 t^11163 - Hence

( e+l 2e+l P2 e+l 0 (C ' V) <
(v) e

k [b /c _] e e e+1

Corollary 2.2.4 For each v£C,

(2.2.8)

Proof Using (2.2.5) and k = |l (v) | + |T ft (v) | •— • —— "" LX p

Theorem 2.2.5 For any e-code C in a distance-regular graph F with 

valency k,

tk/C e+L)

Proof A given vertex of F can belong to at most [k/c ] of the ———— e+1

distinct sets Tg(v). Combining this with Corollary 2.2.4 we obtain

Till , * I * 2j I , * I

(2.2.10) 

Since |VT| >

and k , = k b /c n the result follows 
e+1 e e e+1



2.3 Nearly perfect and perfect codes

Codes satisfying (2.2.9) with equality are called nearly perfect. 

(We shall often refer to this equality as the sphere packing condition 

for nearly perfect codes). In the case of binary nearly perfect 

codes we have F= T(m,2) the m-dimensional binary cube. This graph

has b = m-e and c , = e+1 and we see that our definition coincides e e+1

with that of Goethals and Snover ['*] . For any nearly perfect e-code 

vertices of the graph are at distance at most e+1 from the code.

Corollary 2.3.1 For any nearly perfect e-code in a distance- 

regular graph we have

(i) any vertex at distance greater than e from every code 

vertex is at distance e+1 from exactly [k/c 1 ] code 

vertices;

(ii) any vertex at distance e from a given code vertex is

at distance e+1 from exactly [b /c n l other codee e+lj

vertices.

Proof (i) Let M(x) = {veC |xeT fi (v)} for xe (J T R (v). 
——— p veC P

We have already shown in the proof of Theorem 2.2.5

|M(x)|<[k/ce+J (2>3>1)

We have equality throughout Theorem 2.2.5 and in particular in 

(2.2.10)

(2 ' 3 ' 2)



(ii) (2.3.2) and equality in (2.2.10) imply

Hence |T p (v) | = k£+1 - kb and

From the proof of Lemma 2.3.3

k e 1

and hence |re+1 <zVlC| = D>e /ce+1]ee+1

We define a perfect e-code as a subset C of T such that the sets 

I, (c), for ceC, form a partition of VF. A consequence of this 

partition is that |Z (c) | . |c | = |vr|. We call this equality the sphere 

packing condition for perfect codes and write it as

Iclx (k) = |c|(l+k+...+k ) = Ivrl = Xj (k) (2. 3. A) 
1 ' e e d

If we repeat the counting argument used in the proof of Lemma 

2.2.2 for a perfect e-code C, we obtain p , (C,u) = b /c + , for 

and 9(u,C) = e.

Hence a necessary condition for the existence of a perfect e-code in

r is
be = 0 (mod cg+1 ) (2.3.5)

In classical coding theory (2.3.5) is already well known. From 

(2.3.4), (2.3.5) and the definition of nearly perfect codes we see 

that perfect codes are nearly perfect.
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For the rest of this section we compare the properties of
codes 

perfectXand nearly perfect codes which are not perfect. The proofs

for both classes of codes are similar so we shall prove only the 

results for nearly perfect codes. Before we do this, however, we 

shall need some more definitions:

For each j = 0,1,...,e+1 we choose a vertex z. in F such that 

3(z.,C) = j and recalling (2.2.2)

p..(C,z.) = |{xec|3(x,z.) = i}| (2.3.6)

Obviously we can choose z . only if b £ 0(mod c ) i.e. if 

C is not perfect.

We define the (d+1) x n matrix T., for j=0,1,...,e+1, as
J

follows:

f l if 9(u,z.) = i ; 
J (2.3.7) 

0 otherwise .

A simple calculation shows that T.A = BT. and then by (2.1.7),
J J

for 0 4 i < d

T.A. = B.T. (2.3.8)
J J

Using Lemma 2.2.1, (2.3.6) and Corollary 2.3.1 we have

L, ...,e}> (2.3.9)

Pe+le< C ' z e> = [be /C (2 ' 3 ' 10)

<C,z_)-[k/c J; p. +1 (C,z_)=0(C*i<e) (2.3.11)

If X is any subset of VF we define its n x 1 characteristic vector c
Jl if veX ; 

by (c) = ] By a simple calculation we find
lo otherwise.



Let c denote the characteristic vector of C. Then

(T.c) i = |{xeC|3(x,z.)=i}|=Pi .(C,z.) (2.3.12)

and from (2.3.9), (2.3.10) and (2.3.11) the vectors T c, T c, ... , 

T c are linearly independent.

For the rest of this section F denotes a distance-regular graph 

with distance function 3, diameter d and valency k. u denotes the 

nxl column vector [l, 1, ...,l] •

Lemma 2.3.2 If F contains a nearly perfect e-code C with 

characteristic vector c and

S -

S c = u (2.3.13)

Proof Let wsVF. If 3(w, C) -£ e-1 then obviously (Sc) = 1,

a) If 3(w,C) = e then

(S^w =

= 1 (by (2.3.10)) 

b) If 3(w,C) = e+1 then

(Sc) = ' e+l v ""' ' = 1 (by (2.:— w —- - - —

Lemma 2.3.2 holds for perfect codes since part b) of the proof is 

vacuously true. We state a related result first proved by Biggs[5] 

for perfect codes in distance-transitive graphs. Distance-transitive 

graphs are a subclass of the class of distance-regular graphs and the 

result generalises easily. The author would like to point out that 

many of the ideas used in this chapter are taken from [S] .



Lemma 2.3.3 (Biggs [? ] ) If F contains a perfect e-code C with 

characteristic vector c and S = A +A +...+A , then

S c = u (2.3.14) e-

If we define

3 =
r n [k/ce+]]

then by (2.3.8)

T.S = ST. (0 < j < e+1) (2.3.16)

Lemma 2.3.4 If F contains a nearly perfect e-code and b £0(mod c .)
A

then dim ker S > e+1.

Proof By applying T. to (2.3.13) we obtain
J

ST.c = T.u = k (0 < j < e+1) (2.3.17)
•J J

where k = [l,k, . . ., k ] t . { T0£» T i£> •••» T +i£} is a set of

linearly independent vectors and hence the vectors

T c - T c, ..., T c - T c are linearly independent. From (2.3.17)
A. A A

we have S(T.c - T c) = ST.c - ST c = 0 for 0 < j < e+1 and hence the

A

kernel of S has dimension at least e+1 ft

Lemma 2.3.5 (Biggs) If F contains a perfect e-code and

A A
S =B +B. + ...+B then dim ker S > e • 
e 0 1 e e

proving 
Of course in\Lemma 2.3.5 we shall obtain

S T.c = k (0 < j <? e) (2.3.18) 

B is tri-diagonal so S is 2e+1-diagonal and the entries on the uppermost 

diagonal. (S ). . ((X<i<d-e), are all non-zero. We know,by (2.3.9), that (T.c).
6 1y6+1 J~ 1

are independent of the choice of z. so we can use (2,3.18) to find (T.c).J j**

Thus T.c is independent of the choice of z for j"* J



A similar proof holds when a nearly perfect* code exists. In this case S is
A

2e+3-diagonal and the entries, (S^ e+1+i (0*i<d-e-l) are all non-zero. We know, 

by (2.3.9) f (2.3.10) and (2.3.11), that (T.o) i (0«i«e+l) are independent of the

choice of z so we can find (T.c). (e+2*i*d) from (2.3.1?). Thus T.c is 
J j~ i j—

independent of the choice of z . for each j with CUj^e+1 .
J

We now prove a result which is analogous to Lloyd's theorem 

and generalises a result of Goethals and Snover \}t , Theorem 4.3J. 

Biggs [5] proved a generalisation of Lloyd's theorem for perfect 

codes in distance-transitive graphs; we state the result (Theorem 

2.3.8) for distance-regular graphs.

Theorem 2.3.6 If T contains a nearly perfect e-code and b £ 0(modc ) 

then in the ring Q[X] we have the condition,

x(X) = x (X) + Ve (X) (fr/c J -D>e / ce+lP + Ve+l U) (2.3.19)

divides x,(X), or alternatively the zeros of x(X) are eigenvalues of F. 
d

Proof From (2.3.15) and (2.1.7) we have

S = x(B) (2.3.20)

A

Hence the eigenvalues of S are x(k), x(X ), ..., x(X ) where
i d

k, X 1 , ..., X, are the eigenvalues of B. By Lemma 2.3.4 at least
/v

e+1 eigenvalues of S are zero so that the polynomial x(X) has at 

least e+1 zeros in the set {k,X 1 , . . .,X } . x(X) is of degree e+1 

and from the sphere packing condition |c|.x(k) = |vT|. Hence x(X) 

is a rational multiple of (X-y, ) (X-y-) • • • (X-y , ) where 

is a subset of {X-X . . ., A>.

Finally as mentioned earlier x , (X) is a rational multiple of

(X-X.,)(X-X 2)...(X-Xd ) and the result follows.



We recall the definition of the binary Lloyd polynomial of 

degree i

Q (x) = £ (-l) j (?IX)(XT l ) (0«i«m) 
j=0 J J

We now prove a result of Goethals and Snover [i4»Theorem 4-3] 

Corollary 2.3.7 If there exists a nearly perfect binary e-code 

of length m, with m+1 £ 0(mod(e+1)), then the polynomial

Q(x) = Q (x) + Qe+l (x) " Qe-l (x) (2.3.21) 
[(m+1)/(e+1):

has e+1 distinct zeros in (l,2,...,m}.

Proof We apply Theorem 2.3.6 to the distance-regular graph T(m,2), 

the generalised binary cube. The necessary polynomial condition is 

that inQ[A]

X < A ) = xe-l (A) + Ve (A) ([m/(e+l)] - [(m-e)/(e+l)] ) + Ve+l (^ (2.3.22)

divides x (A), provided m-e £ 0(mod(e+1)) or equivalently m+1 £ 0 

(mod(e+l)). Reducing the coefficient of v (A) in (2.3.22) and using 

[m/(e+l)] = [(m+l)/(e+l)] for m+1 £ 0(mod(e+l))

x(A) =xe~
[(m+1) /(e+1)]

= x . (A) + Xe+l (A) - Vl (X) 
6

From [5 ,page 296] we have x^A) = Q£ (x) (0 < i < m) 

where

x=m-(m+A) (2i3

and also x (A) =Q (x) is a rational multiple of (x-1) (x-2) . . . (x-m)
m m

The result follows •



Theorem 2.3.8 If F contains a perfect e-code C then in the ring 

Q[X] we have the condition

x (X) divides x (A), or alternatively the zeros of x (A) are 

eigenvalues of F |

2.4 The weight vector of a nearly perfect code

The related weight vectors of a code can be useful in proving 

non-existence results for codes in distance-regular graphs. In this 

section we obtain expressions connecting the related weight vectors 

of a nearly perfect e-code.

Lemma 2.4.1 If F contains a nearly perfect e-code and 0 ^ i < e+1, 

then

e-1 
£ p (C) + Pei (C) ([k/c ]-[b /c ] ) + Pe+li (C) = 1 (2.4.1)l +1

Proof The result follows by considering the first component of

(2.3.17) and using (B.) = 6. •h os hs

Lemma 2.4.2 If S = B + ... + B n + B ([k/c J -[b /c ] ) ————————— 0 e-1 ee+1 e e+1

+ e+1

then dim ker S < e + 1.

Proof Let r(S) denote the rank of S. B is tri-diagonal so S is 

2e+3- diagonal with non-zero elements on the uppermost diagonal. 

Then r(S) ^ d-e and dim ker S = d+l-r(S)<e+l B

Similarly we can prove that dim S < e,
e



We now define a more convenient notation for the related weight 

vectors of a nearly perfect e-code C. For each j=0,1,...,e+l we 

define the vector E (j) as follows:

and hence p(j) = T.c

and by (2,3.17) Sp_(j) = k

(0«j«e+l) 

(0«j«e+l)

N.B. We recall that p(e+l) is onlydefined when b ? 0(mod c .. ) .
— e e+1

If F contains a nearly perfect e-code and b ^ 0(mod c .. ) thene e+1
A

by Lemmas 2.3.4 and 2.4.2 dim ker S = e+1 and hence t T c-T c,T c-T c, 

...,Te+1c-T0c } = {p_(l)-E (0), E (2)-E (0), ..., E (e+l)-E (0) } is a basis

A
for ker S. We are now in a position to obtain expressions for 

E (l) , . . . ,2(e+l) in terms of E (0).

Theorem 2.4.3

(i)

(ii)
k /c .Ik e+1-1Xl . e+1 L e e+1-1 e

Proof We suppose i>0 because (i) is trivial otherwise. k is an 

eigenvalue of B associated with the eigenvector k. Thus from (2.1.7)

B.k = k.k and i- i-

S(B.p(0)-k. E (0)) = SBiE (0)-ki SE (0)

= B.k-k.k i- i-

= 0
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Hence B.£(0) - k.^CO) eker S and

e+1 
BiE (0) = k. E (0) + Z n g (E<s)-E(0)) (2.4.2)

1 s=l

The j th component of B.p(O) is

(Bl)jtPt0 (C) - »i)jo

since C has minimum distance 2e+l

Equating the first components of both sides of (2.4.2)

e+1
k. = Z ng (2.4.3) 

s=l

(i) Let l<:i<e; if 0<j^:e then the j component of 

(2.4.2) gives

(B.). 0 = k. if j-i;

0 otherwise,

and then (2.4.3) gives n , =0. Hence

(ii) Let i=e+l; if 0<j<e we have n- = 0. If j=e 

we obtain n e = (*e+ J e 2e+1 p2&+1 0 (C)

= k [b /c .] by (2.3.3) and (2.2.6). 
e u e e+1

(2.4.3) implies r\ e+l = k - kc which wi

B p(0) = k p(e) gives (ii) e1- e4-
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Corollary 2.4.4- If F contains a nearly perfect e-code and b ^
"^~^~ ' " G

(mod c , ) then e+1

k = I k. E (i) + ke (ye.,! - [be /c J)E (e+l) (2.4.4)

Proof The result follows from Theorem 2.4.3 and S]D(O) = k •

We can derive similar results for a perfect code. In fact 

if F contains a perfect e-code then by the above methods we have

and

A 
dim ker S = e; B.p(O) = k.p(i) (0^i<;e) (2.4.5)

k = Z k.£(i) (2.4.6) 
i=0 1

2.5 Constructing perfect codes from nearly perfect codes

Suppose that the distance-regular graph F contains a nearly 

perfect e-code C (with e even) and let D denote the set of vertices of 

F at distance greater than e from every member of C. If b ^ 0

(mod c ,) and we can establish that D has minimum distance at least e+1

e+1 then CUD is an e/2-code in F. An interesting problem is to find 

values of the parameters e, [k/ce+1] , Lb e/c e+1] for which CUD is a perfect 

(e/2)-code in F.

We suppose that this is the case; since C is nearly perfect 

we have

|c| x (*) + |D | = |vr| (2.5.1)

where

=

-V



2.6

for b E 6 (mod c , ) . k = X (mod c n ) and 0<x < c .. , 1 < 8 < c , . e e+1 e+1 e+1 e+1

From the fact that COD is a perfect (e/2)-code

|CUD| xe/ (k) = |VT | (2.5.2) 

Combining (2.5.1) and (2.5.2) and using the disjointness of C and D

jC|(xe (k) - xe/2 (k)) = |D|(xe/2 (k)-l) (2.5.3) 

and hence,

i (x /~(k) - 1) , _ X = k - e/2 v ' .kg , .
(xe (k) - xe/2 (k)) e (2 - 5 - 4)

Substituting e=2 in (2.5.4) gives x =k-k8 so k divides 

hence x = 0 and 6 =1. We have a possible set of parameters e=2, 

k=0(modc.,) and b ?=l (modcO . Before we investigate the case e=2

further we prove that there are no other possible parameter sets 

for graphs with k.^ 1 (l«i£e) and 2<e*[(d-1 )/2J . Each of the 

infinite families of distance-regular graphs we consider later 

has
If e>2 and k.>k. . (Ki^e, then 

e/i e/£"
k Z k. > k T. k. 
6 L f

which we write as

ke (xe/2 (k)-l) > k(xe (k) - xe/2 (k)) (2.5.5) 

But (2.5.5) and 3>1 imply that X< 0 which is impossible.

Theorem 2.5.1 Let F be a distance-regular graph with valency k. 

Suppose that F contains a nearly perfect 2-code and letD denote the 

set of vertices of F at distance greater than 2 from every code vertex, 

If k»0(mod c») and b2=l(mod c«), then CUD is a perfect 1-code in F.
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Proof If e=2 (2.5.1) becomes

|C | (l+k+k2 ) +|D| = |Vr| (2.5.6) 

where |D | = |C |k2 /k. Substituting for |c |k in (2 .5.6) .'gives

|COD| (l+k) = |vr | (2.5.7)

It only remains to show that every vertex at distance 2

from some code vertex is at distance one from some vertex in D.

Take ueC and zeFu). Let C*=C\(u ), then for ceC*

c3 if zeTa (c);

(2.5.8) 
0 otherwise.

z is at distance three from exactly [b ? /c,.] = (b 2~l)/c vertices 

of C so

U E9 (c)) I = z |r (z)r\ £ 9 (c)| = b-i.
ceC* ceC*

Hence I F.. (z)flT D(u) I = 1 and z is at distance one from exactly 
1 P

one element of TR (u) ^ D k

We shall give an application of this result in a later chapter. 

With the same hypotheses as Theorem 2.5.1 we find the weight vector of D. 

Corollary 2.5.2 If p(C) = p(0) for the nearly perfect i-code C and

p_(D) is the weight vector of D with respect to any element of C then 

E (D) = kz2 (3)/k = (c 3B 3-(b 2-l)B2 ) £ (C)/k (2.5.9)

Proof C is a nearly perfect 2-code and CUD is a perfect 1-code. 

If S = °3 B3 + 2 (k-b +1) + B + I then

§E (C)= k (2.5.10)

and (B+I)2 (CUD) = k (2.5.11)

where p(CUB) is the weight vector of CUD with respect to a vertex of C.



(2.1.5) gives

BB2 = c^ + a2B2 + b.jB 

BB1 = C2B2 + a1 B 1 + kl ,

with which we find S = (B+I) (B +B)/k. C and D are disjoint 

and by multiplying (2.5.11) by (B +B)/k

SE (C) + So(D) = (B2+B)k/k = (k2+k)k/k 

which combined with (2.5.10) gives

SE (D) = kk/k (2.5.12)

(2.5.10) and (2.5.12) imply that gCD) - k_ p_(C) is an element of
* ~k~ 

ker S whence

, 3
E (D) - ^2 E (C) + S a.(E(i)-£(C)) (2.5,13)

k i=l 1

Equating the first three components of (2.5.13)

0^=0 (Ki<2) and a = k2/k.

Hence E (D) = ^2 E (3) - ^2 (B3"^b2 /c3J V . p(C) , by Theorem 2.4.3 (ii) , 
k k k- b/

and the result follows



3. Completely Regular Codes

In Chapter 2 we have compared the properties of perfect codes and 

nearly perfect codes which are not perfect. We have seen that for a 

perfect e-code vertices of the graph are at distance at most e from 

the code and for a nearly perfect e-code vertices are at distance at 

most e+1 from the code.

Suppose now that we have an e-code C with the property that any 

vertex of the graph is at most at distance e+m from C. We pose the 

obvious questions:

(i) What conditions must C satisfy in order that we can prove 

a result analogous to Lloyd's theorem?

(ii) What properties does C have in common with perfect and

nearly perfect codes when it satisfies these conditions?

In the present chapter we hope to answer these interesting 

questions.

3.1 Definitions

We continue to denote a distance-regular graph by F. If C 

is an e-code in F we say that it has external distance e+m if the 

maximum distance of any vertex of F from C is e+m. We point out 

that this is what Delsarte [ 9] defines as "true external distance", his 

external distance being an upper bound for this number.

We choose z.eVF such that 9(z.,C) = j (je{0,l,...,e+m}) and 

call C completely regular if the numbers

^CC.Zj) =P i .j (C)



depend only on i and j and not on the choice of z.. (Notice that 

both nearly perfect and perfect codes are completely regular) . We 

say that C is locally regular if the numbers

depend only on i and j and not on the choice of z.. We shall prove 

that an analogue of Lloyd's theorem holds for locally regular codes 

and that such codes are necessarily completely regular.

3.2 An analogue of Lloyd's theorem for completely regular codes

(except Section 3»6) 
In this chapter\C denotes a locally regular e-code with external

distance e+m in the distance-regular graph F. By the definition of 

minimum distance it is easy to see

P (C) = 6 (i,je{0,l,...,e)) (3.2.1)
-J J

p..(C) = 0 for i<j and i, j e{0,l, . . . ,e+m} (3.2.2)

(3.2.3)

Lemma 3.2.1 There exist rational numbers cu,a,,...,a such that ———————— u 1 e+m

e+m 
Z o,p..(C) = 1 (j e{0,l,... t e+m}) (3.2.A)

• .-» -^- -^-_1

Proof By (3.2.2) and (3.2.3) the system of equations is triangular 

and can be solved uniquely for the a- *s •

e+m
Lemma 3.2.2 If S = T. a. A. and c is the characteristic vectori i

of C then

Sc = (3.2.5)
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Proof Suppose 9(w,C) = j. Then

e+m e+m
(Sc) = Zc^CAc) - Z oCiP (0=1. 

W i=0 1 1 W i=0 1J

We define the (d+1) x n matrices T,T ,...,! + as follows: 

for je{0,l,... ,e+m}

1 if 3(z.,w) = i ;
(T.). = ' 

j iw
0 otherwise , 

and from (2.1.7) we find

and

T.Ai = B.T. (ie{0,l,...,d}) (3.2.6)
J J

T.S = §1. where 
3 J

e+m e+m
S = Z a.B. = £ a.v.(B) (3.2.7)

i=0 L X i=0 X L

Lemma 3.2.3 If F contains a locally regular e-code C with external

A
distance e+m then dim ker S > e+m.

Proof We follow the proof of Lemma 2.3.4 to obtain

§T.c = k (je(0,l,...,e+m}) (3.2.8) 

We also have an equality analogous to (2.3.12), namely

(T.c). = p^tC) (ie{0,l,...,d},je{0,l, . ...,e+m}) 

By (3.2.1), (3.2.2) and (3.2.3) the vectors T^-TQC.T-C-TQC, . . . ,T c

A .

-T c are linearly independent and S(T.c-TQc) = 0 for jeil,2,...,e+m>. 

The result follows*

Using the eigenvector sequence we define the polynomial

e+m
x(A) = Z a,v.(X) (3.2.9) 

i=0



3Z

Theorem 3.2.4 If F contains a locally regular e-code with external 

distance e+m then, in the ring (E?[x], we have the condition,

x(X) divides x, (X), or alternatively, 

the zeros of x(X) are eigenvalues of F. 

Proof The proof is essentially the same as for Theorem 2.3.6.
A
S = x(B) has eigenvalues x(k), x^),..., x(XJ. By Lemma (3.2.3) 

x(X) has at least e+m zeros in the set {k, X,, . . ., X, }. If we 

pre-multiply (3.2.5) by the row vector [l,l,...,l] we obtain

e+m
T. a.k.. |C | = |VF| and since k. = v.(k) 

i=0 x L L x

x(k). |C| = |vr| (3.2.10)

Hence x(k) ^ 0 and the zeros of x(X) are elements of {X, , A~, . . . . X, }.I / d

The result follows since x,(X) is a rational multiple of

N.B. (3.2.10) will also be referred to as the 'sphere packing 

condition'. There should be no confusion between the various forms 

of the sphere packing condition once the code is specified.

Theorem 3.2.5 A locally regular e-code C with external distance 

e+m is completely regular.

Proof S is a polynomial of degree e+m in the tri-diagonal matrix B 

and so S is 2 (e+m) + 1 diagonal. If we know p..(C,z.) for i=0,l, . . . ,e+m 

then for any fixed j we can solve (3.2.8) uniquely to determine p..(C,z.) 

for i=0,l,...,d. So if p..(C,z.) does not depend on the choice of z. 

for i=0, 1, . .. ,e+m it does not depend on the choice of z. for i=0,l,...,d. 

Hence if the code is locally regular then it is completely regular •



We end this section with a generalisation of a result first 

proved for perfect codes by 0. Heden [li] .

By counting the edges of r between F._,(z) and F-(z) 

(for any z e VF) we obtain

k.c. = b. k. , (Ki<d) (3.2.11) 11 i~i i~i

Using (3.2.11) and the definition of the right eigenvector 

v(A) = [v (A),v (A),...,vd (X)] t of B it is not difficult to show that

u(^) = [vn (X)/k,.,vn (A)/k1} . ..,v,(X)/k,"] is a left eigenvector of B — u u i i d d

corresponding to the eigenvalue X.

Theorem 3.2.7 If the distance-regular graph F contains a locally 

regular e-code with external distance e+m then, in the ring(Q[x] , 

we have the condition:

for each j=0,l, . . . ,e+m,

Xj (X) divides x(X). I vi (A) p..(C)d i=0 T~ 1J
i

Proof For the left eigenvector u(X)

u(X)B =\ u(A) (3.2.12) 

and hence,

u(X)S = x(X)u(X) (3.2.13)

We post-multiply (3.2.13) by T.c and use (3.2.8) to obtain

which can be written as

d d 
E u.(X)k. = x(A) Z u.(X)p.-(C) 
i=0 * * i=0 J



that is

I v.(X> = x(A) I ' i p..(C).
.i

. .. 
i=0 i=0 k. J

A is an eigenvalue of B so £ v.(A) = x,(X) = 0 and the result
i=0 

follows •

3.3 Antipodal distance-regular graphs

In this section we shall show Theorem 3.2.4 can be strengthened 

for the case of antipodal distance-regular graphs. The idea of 

applying the analogous Lloyd's theorem to the derived graph of an 

antipodal graph is due to D.H. Smith [3fc] . In fact by using this

method he has obtained an improved version of Lloyd's theorem which
perfect 

shortens the proof of the non-existence of binary\ e-codes for e > 4.

A distance-regular graph F is antipodal if for all u,v ep (z)UF ,(z)

either 8(u,v) = d or u=v. The basic results on antipodal 

distance-transitive graphs are contained in [T], The results which 

do not involve transitivity generalise directly to distance-regular 

graphs

For an antipodal distance-regular graph F we can define a 

derived graph p ' . The vertices of r' are the sets rn ( z )UF,(z) 

(zeVF), and the vertices F0 (z)UFd (z) and FQ(Z ')U Fd ( z ') are adjacent 

inF ' if and only if there are vertices v £F0 ( z )UF , (z) and v'ero (z')ur (z 1 )

such that S(v,v') = 1 in F . If d>2, F1 is distance- 

regular with valency k and diameter [d/2].

Lemma 3.3.1 If F is an antipodal distance-regular graph with 

intersection array



l C 2 ••' V

0

and the derived graph Y nas intersection array

C l "• CD-1 CD

0 A
k B ...

then D = [d/2] and c. =C.,a. =A.,b.=B. for 1< k [d/2] 

Proof This is contained in [/3, Proposition 4.2J •

Lemma 3.3.2 If Tis an antipodal distance-regular graph with
t 

derived graph T then the polynomial x(\) defined by (3.2.9) is the

same in both cases provided e+m<[d/2J.

Proof This follows immediately from Lemma 3.3.1B

We shall generalise Corollary 2.4.5 and use the generalisation 

to show that under certain conditions the derived graph contains a 

locally regular e-code which itself is "derived" from the locally 

regular e-code in the antipodal graph.

Lemma 3.3.3 There exist rational numbers

such that for m<e and

..., /'/ e+ra

m
Z
_

p (C) = k - Z k.p .(C) e+s*e+t e+s e+t * (3.3.1)

Proof By (3.2.2) and (3.2.3) the system of equations (3.3.1) is 

triangular and we can solve uniquely for > +1> / +o''*''/ + *



Lemma 3.3.4 Suppose m<e. Write [p(j)j • = P--(C) then

e m
k= Z k.p(j) + zy p_(e+s). (3.3.2)
~ j=0 J s=l/ e S

Proof k is an eigenvector of B corresponding to the eigenvalue k so

Sk = x(B)k = x(k)k = x(k)Sp_(0)

proving 
and k - x(k)g(0)Eker S. We have already mentioned in^Theorem 3.2.5

A
that S is 2(e+m)+l diagonal so by using the method of proof of

A
Lemma 2.4.2 we have dim ker S<e+m. We combine this with Lemma (3.2.3) 

and so a basis for ker S is the set {p_(l) - p_(°)> •••> P.(e+m) - p_(0)}.

Hence
e+m

k = x(k) E (o) + z B (E(S)-E(O)).
8-1

e+m
The first e+m+1 components give x(k) - Z 3 = 1» k. = g.(l<i<e) and

s=l S X L

e
ke+t ' \ B e+ s p e+ t e+ s (C) + . Zn 

s=l i=0

Hence

Gardiner p3 , Corollary 4.4J has shown that for an antipodal 

distance-regular graph k,<k.

Lemma 3.3.5 If m<e, k^>k for j«[d/2] and /e+d>kd (l$s$m) then 
rd (c)SG for each ceG.

Proof From Lemma 3.3.4

e m
k, - Z k.p,.(C) + I / p, (C).F ^
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p, .(C) is a non-negative integer for each j e{0,1,...,e+m} and -since 

k.>k for je{2,...,e+m} so p (C) = k and the result follows •

Lemma 3.3.6 If e+m<[d/2] and r,(c)£C for all ceC then the derived ————————— d
t 

graph r contains a locally regular e-code C 1 with external distance

e+m.

Proof We define the subset C T of VI" as follows. ro (c)Urd (c)eC' 

if and only if c^C. We show

a) C' has external distance e+m;

b) p..(C',r ( 2

Let C' have external distance e+m' . Clearly the maximum 

distance of a vertex from the code cannot be greater in the derived 

graph so m'<m. Let

I, .. (x) = {weVr|3(w,xXe+m-l} e+m-1

and

I ' , (X) = {WeVI" |3(W,X)<e+m-l in I"} e+m-1 '

Suppose 3(x,C) = e+m. Every pair of vertices in I. _.. (x) are at 

distance strictly less than d and so no two vertices of! (x)

belong to the same set r_(v)ur,(v) (veVF) , \l (x) | = 11 ' (x)u d e+m—1 e+m—1

for X = rrt (x)Urj(x) so I ' (X) consists of the sets T 0 (y)UT, (y) 0 d e+m—1 0 d

(ye£ -, (x)) none of which are code vertices of I" . Hence m'>m. e+m-1

Before we can prove part b) we need a result of D.H. Smith \3S, 

Lemma 8]. Although the result is proved for distance-transitive 

graphs the generalisation to distancerregular graphs is direct:

r.CzOUlV, ,(z,) = U (L(v)Ur(v)) (3.3.3)



If i<[d/2~] then by (3.3.3) the vertices of F1 in

r.(F (z.)UF ( z .)) are the sets r(v)Ur,(v) (ver.( z .)). Hence 
lOjdj 0 a i j

|c'Ari (r0 ( Zj )urd (Zj )) | = |cv\{r0 (v)urd (v) jverxz..)

= |{rQ (v)urd (v) |ver.(z..)nc}

Hence p... (C 1 , ^(zJU F^z..) ) = p£ .(C,z.) = pr (C) for

Theorem 3.3.7 Suppose F is antipodal and C is a locally regular 

e-code with external distance e+m and e+m<[d/2]. If F , (c)cC for 

each c£C then the roots of the polynomial x(X) are eigenvalues of the 

intersection matrix of the derived graph F' .

Proof This follows from Lemma 3.3.2, Lemma 3.3.6 and an application 

of Theorem 3.2.4 to the derived graph Ff •

Since F has d+1 eigenvalues and F* has [d/2] + 1 eigenvalues 

Theorem 3.3.7 is stronger than Theorem 3.2.4.

3.4 Locally regular e -codes with external distance e

If m=0 we obviously have the class of perfect e-codes in F. if 

F is antipodal we can apply the argument of Lemma 3.3.5 to (3. 3. 2) with d>2e+1 

(or in fact to (2.4.4)) and obtain F (c)£C for each c in the perfect 

e-code C (a result proved by O.Heden [2.1] using different methods). 

Then by Theorem 3.3.7 the roots of x (^) are eigenvalues of the derived 

graph F', (see also p8, Theorem 2]).



3.5 Locally regular e-codes with external distance e+l

If m=l we can solve the equations of Lemma 3.2.1 to obtain:

Equations (3.3.1) imply

/e+l = (ke+l - Ve+le (C))/Pe+l e+l (C) (3 ' 5 ' 2 >

A locally regular e-code with external distance e+l, then, has 

parameters e, P e+le (C), Pg+1 e+1 (C).

We wish to point out that the result of Delsarte p , Theorem 

5.13J that codes with 'external distance' e+l are completely regular 

does not apply to our more natural definition of external distance. 

For example the binary 1-code C = {(0,0,0,0), (1,1,1,0) } has external 

distance 2 but p (C, (0 ,0 ,0 ,1)) = 1 and p (C, (1,0,0,0)) = 0 and so 

C is not completely regular.

We have already remarked that a nearly perfect e-code is locally 

regular. The associated parameters are p (C) = [b /c ] and 

p (C) = [k/c , ] . Next we state the improved polynomial 

condition necessary for the existence of a nearly perfect e-code in 

an antipodal distance-regular graph.

Theorem 3.5.1 Let r be an antipodal distance-regular graph with 

diameter d and valency k. If there exists a nearly perfect e-code 

in T with d>2e+l, k <k /k and b ^0(mod c ) then there exists a nearly 

perfect e-code in the derived graph T ' and the zeros of



x(X) = x (X) + v (X)(l - ee+l ) + Ve+l (X)"

are eigenvalues of r'«

Proof The proof follows from Lemma 3.3,5, Theorem 3.3.7 and the

fact that ̂  = J<e (be /ce+1 - [b^J ) > \ . 
[k/ c e+1] *

Another family of locally regular codes with external distance 

e+1 is the family of binary uniformly packed codes ( [*k]and[*i^]) first 

defined by Semakov, Zinov'ev and Zaitsev. In fact the definition 

generalises directly to distance-regular graphs:

Definition A uniformly packed e-code C with external distance e+1 in 

a distance-regular graph T is a code such that

a) if 3(C,z ) = e then 1 + p (C,z ) = r(z );

b) if 3(C,ze+1 ) - e+1 then p^ e+1 <C,ze+1 ) =

where r(z ) = r(z ) = r is independent of the vertex z or z
Q. GT j_ G G""" J-

cho sen .

Then Pe+le (C,ze ) - p(C) and

are both independent of the vertex chosen and so the code is locally 

regular and hence completely regular.

From (3.5.1) we have

x(A) - x .(A) + VA)+Ve+l (X) (3.5.3) 
e-1 ————-————

and Theorems 3.2.4 and 3.3.7 apply. With particular reference to 

Lemma 3.3.5 and (3.5.2)

- (r-l)k )/r (3.5.4) 
e



van Lint [2b , page 173] has already noted that a binary 

uniformly packed code with r = [(m+1) / (e+1)} is nearly perfect. For 

an arbitrary distance-regular graph this is not necessarily true

because we would require [k/c J to be equal to 1 + [b /c n~l .u e+r L e e+V

3.6 Generalised uniformly packed codes

The definition of generalised uniformly packed codes \_3l] 

extends directly to distance-regular graphs:

Definition An m order generalised uniformly packed e-code C 

of external distance e+m (m^e) in a distance-regular graph T is an 

e-code such that if S (C,z _ . ) = e-m+j and

e+m
I p. .(C,z ) = r(z .,C) (3.6.1) i=e-m+l ie~m+J e-^J e-m+j '

then r(z _ . ,C) = r is independent of j and of the choice of 

Vm+j f°r 1<j<2m '

Although this definition does not immediately imply that the 

code is locally regular, we can still prove Theorem 3.2.4 for these 

codes .

If we have

S=A+A+...+A +(A .+...+A j )/r 0 1 e-m e-m+1 e+m

it is easily seen that Sc=u as in Lemma 3.2.2. We can prove Lemma 

3.3.6 and Theorem 3.2.4 in exactly the same way with

x(X) = x (X) + (x ^ (A) - x (X))/r (3.6.2) e— m e+m e— m
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A. Codes in the graphs r(m,q)

4.1 Introduction

We have already given a brief description of the classical 

perfect code problem in the case when the alphabet is a finite field. 

Recently progress has been made for non-field alphabets. The 

non-existence of perfect 2-codes over alphabets with 6 or 10 elements 

has been proved by van Lint ( [l*] and [ifcj ) . Reuvers [3»] has 

extended these results to q = 2p and p < 20 for e = 2. The results 

of Zinov'ev et al [43] cover q = 2a .3 for e > 2 and the most general 

result so far, for q = p* p 2 and e > 2, is due to TietaVainen[3«j] .

The binary nearly perfect code problem, very recently settled 

by Lindstrbm [«], relies on a computer search for e < 100 and n < 10,000, 

In §4.3 we shall prove algebraically the non-existence of binary nearly 

perfect codes for odd e with 5 ^ e ^ 17. Although it is likely that 

this method will easily extend to other odd values of e it does not 

help at all when e is even. We also consider nearly perfect 1-codes 

and 2-codes over an arbitrary alphabet.

Finally in §4.4 we briefly discuss completely regular codes and 

obtain an interesting connection with orthogonal latin squares.

4.2 The eigenvector sequence for T (m,q)

The graph T (m,q), for m and q not less than two, represents the 

tn-dimensional vector space over q elements where q is arbitrary. Two 

vertices of F (m,q) are joined by an edge if and only if they differ in 

one component. These graphs correspond to the Hamming schemes of 

Delsarte [?] .
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(m,q) has diameter m, valency m(q-l) and intersection array:

1 ... i ... m-1 m ""

0 q-2 ... i(q-2) ... (m-1)(q-2) m(q-2)

.m(q-l) (m-l)(q-l) ... (m-i)(q-1) ... q-1 * .

The eigenvector sequence is defined as follows:

vQ (A)=l, =X» and for l<ji<m-l

i(q-2)vi (A) (4.2.1)

In [5] it is shown that r(m,q) has eigenvalues 

£e{0,1, .. .,m} . Hence if v is a 

£=m-(m+v)/q for some £e{l,2,. ..,m} and

where £e{0,1, .. .,m} . Hence if v is a root of x,(A) for r(m,q) then

m + V = 0(modq) (4.2.2)

We recall the connection between the eigenvector sequence and the 

Lloyd polynomial

x..(X) =Q.(x) = E (-l) S (m~5(X"1 )(q-l) ! 
1 x s=0 1-S S

(4.2.3)

where

x = m - (m+X)/q (4.2.4)

It is not difficult to see that F (m,2) is an antipodal 

distance-regular graph and Smith [sfe] has calculated the eigenvalues 

of the derived graph T (m,2)/2 which are:

m, -m, m-4, -(m-4), ..., 4, -4, 0 

m, -(m-2), m-4, -(m-6), ..., -3, 1 

m, -m, m-4, -(m-4), ..., -6, 2, -2 

m, -(m-2), m-4, -(m-6), ..., 3, -1

(m=0(mod 4));

(m=l(mod 4));

(m=2(mod 4));

(m=3(mod 4)).J

^•(4.2.5)



The following lemma is proved for r(m,2) only.

Lemma 4.2.1 Let 0 «? i < [(m-l)/2]. Then

./m-2
(i) x2i (0) = x2i+1 (0) = (-l)*i 2

/m-1

(ii) x (1) = (-l) 1 (E-4i-l) Z. ,'

/m-1

(iii) x .(3) = (-I) 1 (m2-4m(4i+l)+32i 2+16i+3)l 2-
(m-1) (m-3) X

(m-3) i

Proof From (4.2.3), (4,2.4) and q=2 we have x = m- X and
2

= Z (-D J 
j=0

,-,-•. , ,- r . .,, ^x-1,, .m-x coefficient of u in (1-u) (1+u)

coefficient of u r in (l-u2 ) X~ 1 (l+u)m~ 2x+1

j=0 L ^ J 

[r/2] . x+l /2=-X - l\ 

1 ̂ 0

The results follow by substitution • 

4.3 Nearly perfect codes inF (m,q)

We consider the binary case initially. If there exists a nearly 

perfect binary e-code with m+1 ^ 0(mod e+1) then by Corollary 2.3.7 the 

polynomial



Q(x) = Qe_1 Cx) + (Qe+1 00 ~ Qe-1 Cx))/[Cnn-l)/(e+l)] (4.3.1)

integer 
has distinctA roots between 1 and m.

r(m,2) is antipodal and by Theorem 3.5.1 the derived graph 

F(m,2)/2 contains a nearly perfect e-code provided k =( )>m. Hence 

for e>l the zeros of

= Xe-l (A) + (xe+l (A) ~ xe_

are eigenvalues of the derived graph r(m, 2)/2. We combine this with 

(4.2.4) and the form of the eigenvalues in (4.2.5) to infer that the 

zeros of Q(x) are even.

Notice from (4.2.3) that if q=2 and d is a root of Q(x) then 

m+l-ot is also a root. Both of these roots must be even so m must 

be odd. Further suppose a is the smallest non-negative integer 

such that e+1 divides m+l-a. If e is odd then a is even.

We make the substitution z = (m+l-2x) introduced by van Li

and write Q(x) as Q*(z) . The relationship between x(X) and Q*(z) is
r\

given by z = (X+l) .

Lemma L 4.3 .1 If e is odd and e ^ 3

e+1

(i) Q*(l) = x(0) = (-1) 2 (m-2) (m-4) . . . (nr-e+1) (a-1)
--
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(ii) Q*(4) = x(l) = (-1) ((a-4)m-2e(a-2)+a) 2
(m+l-a) V e-3

(iii) Q*(16) = x(3) = (-1)

6+1 f(a-16)m +m(48e+16-8ae+4a?/m-l' 
2 U8e2(a-4)-86(a+2)+3a "

(m+l-a)(m-1)(m-3)
2 

e-3 \"T

Proof Each of the above results follows from Lemma 4.2.1 and the

definition of Q*(z) H. _
We suppose in Lemmas 4.3.2 and 4.3.3 that L (m,2) contains a non-trivial 
nearly perfect e-code.
Lemma 4.3.2 Q*(l) and Q*(16) are non-zero and of opposite sign for

odd e with 5 < e < 17.

Proof e > 1 so r(m,2)/2 contains a nearly perfect e-code. We can 

exclude the case where there is a single code vertex and since the 

diameter of r(m,2)/2 is (m-l)/2 we have m > 4e+3. Combining this with 

a = 2,4, ..., e-1 we easily obtain the result •

It now follows that if a binary nearly perfect e-code exists 

with e odd and 5 < e < 17 then we must have Q*(4) = 0.

Lemma 4.3.3 Q*(4) ^ 0 for odd e with 5< e < 17.

the proof of 
Proof Suppose Q*(4) = 0. From\Lemma 4.3.2 m > 4e + 3. Hence

for a ^ 2

(4e+3)(a-4) + a - 2ae + 4e < 0

which implies a < 6(e+l) and so a = 2 or 4. If a = 4, Q*(4) = 0
(e+2) 

implies e = 1. If a = 2, Q*(4) = 0 implies m = 1 •

Combining these results we have

Theorem 4.3.4 There are no non-trivial nearly perfect binary e-codes 

for odd e with 5 < e < 17 •
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We now consider the existence of nearly perfect 1-codes and 

2-codes over arbitrary alphabets.

Lemma 4.3.5 The only nearly perfect 1-codes in r(m 5 q) which are not 

perfect are binary.

Proof For nearly perfect 1-codes which are not perfect we must have 

(m-1) (q-1) ? 0(mod 2) i.e. both m and q are even. Then the required

polynomial x(X) = A(X+2) has distinct integer roots. By (4.2.2) q
m(q-l) 

divides both m and m-2, hence q=2 •

Goethals and Snover [/4j have shown that any binary nearly perfect 

1-code is either perfect or a shortened perfect 1-code.

If T(m, q) contains a nearly perfect 2-code then the required 

polynomial x(X) has three distinct integer roots which we denote by 

X , X A . From (4.2.2) we infer

3m + ZX.i

2 3m + 2mZX. + EX. X.
i i J.

3 2
m + in 2jA. + mLA. A. + A A A

= 0

= 0

= 0

(mod

(mod

(mod

q)

q2

3q

)

)

(4

(4

(4

.3

.3

.3

.2)

.3)

.4)

(4.3.2) and (4.3.3) imply

m£X. +ZX. X. =0 (mod q) (4.3.5)

Lemma 4.3.6 The only nearly perfect 2-codes inT (m,q) which are not 

perfect are binary.

Proof We must have b = (m-2) (q-1) i 0 (mod 3) and so m f 2 (mod 3)

and q ^ l(mod 3). Let k = m(q-l) E a(mod 3) and b 2 = (m-2) (q-1) 

= /3(mod 3) where 0 < a < 3 and 0 < B < 3. Then by calculation we find
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ZA. = a-B+q-4 (4.3.6)
i

IX. X. = q(a-B-m)+m+2B-4a+2 (4.3.7) 

XXX = 2a-m(q-l)(a-B) . (4.3.8)

If we substitute for ZX. and ZX.X. in (4.3.2) and (4.3.5) and

eliminate m then

(o-g) 2 + 5a + 6+6 =0 (mod q) (4.3.9)

We consider the four possibilities:

(i) If m = 0 (mod 3) and q =2 (mod 3) then«=0 and 3=1. (4.3.9) 

implies that q divides 8. Hence q = 2 or 8. (4.3.2) implies that 

q divides 3m-5 and by inspection x(-l) = 0 and so q divides m-1. 

Hence q divides m+1 and so q = 2.

(ii) If m El (mod 3) and q= 2(mod 3) then a = 1 and 3= 2. (4.3.9) 

implies that q divides 14. Hence q = 2 or 14. As in (i) x(-l) = 0 

and the only possibility is q = 2. The sphere packing condition implies 

that (m+1)(m+2) divides 2 which is impossible.

(iii) If m = 0 (mod 3) and q = 0 (mod 3) then ot= 0 and B = 2. 

(4.3.9) implies that q divides 12. The sphere packing condition 

implies that

x(k) = (m2 (q-l) 2 - m(q-l)(q-5) - 2(q-2))/2

divides q . Since x(k) = 2 (mod 3) q cannot be 3 and hence x(k) = 2 

for some integer r. Then

m(q-l)(m(q-l) - q + 5) = 22r + 2(q-2) (4.3.10)

and if q=6 the right hand side of (4.3.10) must be divisible by 5 which 

is impossible since 2 +8 always ends in 2 or 4.



If q = 12 then 4+20 must be divisible by 11 which is impossible.

(iv) If m El (mod 3) and q= 0 (mod 3) then o=2 and 3=1. (4.3.9)

implies that q divides 18. (4.3.5) and (4.3.2) imply that q divides

2 m-7 and (4.3.4) implies that q divides (m-1) (m -m-4) . Hence q divides

6.38 and so q = 3 or 6.

2 If q=3 then x(k) = 2m +m+l is not divisible by 3 . If q=6 then

x(X) = (X3 - 3X2 - 5(m-23\. + 5m - 4)/(5m-2)

and the eigenvalues of T(m,6) are 5m, 5m-6, ..., 5, -1, ..., -m. 

By inspection we see that x(X) has exactly one negative root. Let 

r, s, -t denote the roots of x(X) where r,s,t are positive integers. 

Hence r>5, s>5, t>l and

rs - rt - st = - 5m + 2 

rst = 5m - 4

which imply

(st-2)/(st+s-t) = r>5 

and so

s < (5t-2)/(4t+5)

= 1 + (t-7)/(4t+5) .

This is impossible since s > 5 •

Also in [wQ Goethals and Snover have shown that any binary 

nearly perfect 2-codes have m = 4 -1 and in fact one such family is 

the Preparata codes [*°] .



So

4.4 Completely regular codes in T(m,q)

Independently of [n] Goethals and van Tilborg ['£] have defined 

completely regular codes in the case corresponding to the graph 

r(m,q). They have also given definitions of t-regular and 

generalised i uniformly packed codes. Their paper contains many 

examples of completely regular 1-codes with external distance 2.

It is worth remarking that every example of a binary completely 

regular e-code in [/5] with external distance e+1 satisfies the 

condition / > 1 so the derived graph F(m,2)/2 contains a completely 

regular e-code with the same parameters.

In this section we do not wish to repeat the work of Goethals and 

van Tilborg in [/5] but we shall give two examples of parameter sets 

not contained therein. The first of these examples is connected 

with orthogonal latin squares and the second is still an open case.

Example 1

2 A latin square is a square matrix with q entries of q different

symbols (usually the integers 0, 1, ..., q-1) none of which occur twice 

within any row or column of the matrix. The integer q is called the 

order of the latin square.

Two latin squares L.. = [a. .] and L_ = [b. .] on q symbols

0, 1, ..., q-1 are said to be orthogonal if every ordered pair of

2 symbols occurs exactly once among the q pairs (a.., b..) for

Using t latin squares we can construct a q-ary code in 

r (t+2,q)( [i/ , page 355]). Let Lg = [aCs)] (s-1,2,. . ., t)be



t latin squares of order q. Then the q t+2-tuples

(i, j ,a. . (1), . . .,a. . (t)) may be regarded as a set of code vertices

inlXt+2,q).

In ['fcj Golomh and Posner obtained the following connection 

between mutually orthogonal latin squares and error-correcting codes:

Theorem 4.4.1 (Golomb and Posner) . The following concepts are 

equivalent '

(i) a set of t mutually orthogonal latin squares of 

order q;

(ii) a code of length t+2 and minimum distance t+1 having

2 q elements constructed from a q-ary alphabet.

We illustrate Theorem 4.4.1 with an example. We use two 

orthogonal latin squares of order 3

012'

120 

2 0 1.

and L~ = '0 2 l" 

102 

.2 1 0.

and construct the 1-code C in F (4,3) with elements

(0,0,0,0) 

(0,1,1,2) 

(0,2,2,1)

(1,1,2,0) 

(1,2,0,2) 

(2,0,2,2)

(2,2,1,0) 

(1,0,1,1) 

(2,1,0,1)

In fact C is a perfect 1-code inT(4,3) and this is the only 

occasion when a perfect 1-code arises from this construction. 

However, in our next result we prove that for q > 3 we obtain a 

completely regular 1-code with external distance 2.



Theorem 4.4.2 The following are equivalent for q > 3: 

(i) a pair of orthogonal latin squares of order q; 

(ii) a completely regular 1-code in F(4,q) with external

distance 2 and parameters p (C) = 3, p^-(C) = 6.

Proof To prove (ii) ^ (i) we need only use the fact that the code

2 
has q elements and apply Theorem 4.4,1.

In order to prove the converse we first show that the 1-code C

constructed from L = [a..] and L 0 = [b . .1 has external distance 2.
1 u ij j 2 L ijj

If u = (a ,3.y,d) is any vertex of r (4,q) then the code vertex

x = (a, & a ag»k ag) satisfies 9(u,x) <$ 2. If the code is perfect then

2 by the sphere packing condition q = 1+4 (q-1) and so q=l or 3.

Hence C has external distance 2.

It only remains to show that p (C,u) and p 9 «(C,y) are independent 

of the choice of u and y and take the values 3 and 6 respectively. 

Let 9(u,v) = 1 for v£C and 3(x,u) > 2 for all xeC\{v}. Suppose 

v = (a,B,y,o) and u = (a,B,y',tf) where /f^'- If weC and 3(u,w)=2 

then w = (£,£,^',11) where exactly one of the equations e=a,^=6,ri =S 

holds. Having decided which of these does hold, the remaining components 

of w are uniquely determined by the definition of orthogonal latin 

squares. Hence p (C,u) =3. A similar argument holds when

ue{(af ,B,y,£), (a,Bf ,r,<f), ( a. &s

Let 9(y,v) = 2 for vg£ and 3(y,x) > 2 for all xgC. Suppose
If w = (e,5,n,6)eC anO<w,yi = 2 

v = d.B.J'.fl) and y = (q* , B' .,<3).then either e = a ' or=0' (but not

both) and exactly one of rf=>» 9 = ^ nolds o£e=a' ,5 =$', r\t Y and 

Q±$ . In each of these five cases the remaining unknown components 

of w are uniquely determined by the definition of orthogonal latin



squares. Hence p 99 (C,y) =6. A similar argument holds if

ye{(a* 3,y'J), (a',(3,y,o'), (a,B'.y'.o), (a. B'.Ko 1 ), (a,B./C'.o^1 ' 
<J ' ^ V 0 0

We apply the polynomial condition with x(A) = (A-q+4) (X+4)/12 . 

The roots of x(A) are always eigenvalues of T(4 } q). This is to be 

expected since it is known ([f]) that a pair of orthogonal latin 

squares exists for every order q except q=6 in which case such a pair 

does not exist ( [**) ) .

Example 2 We end this section with an example of a set of parameters 

which is still an open case.

2s 2 Let a =4 where s is a positive integer and let m = 2ct +a.

Suppose that C denotes a completely regular 1-code in T(m, 2) with 

external distance 2 and parameters

P 22 (C) = P21 (C) = (a2+a)/2. 

Then by simple calculation we find

and

x(X) = (A-a)(A+a)/(a2+a)

x(k) = 4a2 = 4S+1 .

These parameters satisfy both the polynomial and sphere packing conditions, 

Since >= (20H-1) (a-1) > I a and -a must be eigenvalues of r(m, 2)/2. 

This is also true provided s ^ 2.

One possible construction of a code with these parameters arises 

from a result of Goethals and van Tilborg ['5] . Before we discuss this, 

however, we must define some concepts of classical coding theory.



We say that a code C in r(m,q) is 1 inear if C is a subspace of 

the vector space represented by r(m,q). The dual (orthogonal) code C" 

of a linear code C is defined by:

C "*• = {uer(m,q) | (u,v) = 0 for each veC>

where (u,v) denotes the usual inner product of vectors over a q-ary 

field.

The weight vector g(0) of C in r(m,q) is sometimes expressed as 

a polynomial A(z) in an indeterminate z

m
A(z) = I Pio (C)zl = £-E<°> 

i=0

where z = [l,z,z , ...,z }. If A(z) and B(z) respectively represent 

the weight vectors of a linear code C and its dual code C then the 

following equality holds ( [M-, page 12 1] )

|C .B(z) = (l+(q-l)z)m A( 1+^f1)z ) (4.4.1) 

((4.4.1) is usually called the MacWilliams identity.)

Theorem 4.4.3 (Goethals and van Tilborg) . A linear 1-code C is 

completely regular with external distance 2 if and only if its dual 

code C contains only vertices at two distinct distances from the code 

vertex (0,0, . ..,0)»

In the proof of the above theorem ( [/5, page 2l] ) Goethals 

and van Tilborg establish that if C'1' has weight enumerator B(z) = 1 + N-.z™! 

+ N«zW2 then the parameters of C are given by

w.

l)-qw2+l) (4.4.2) 

m(q-l)+(m(q-l)-qw1 )(m(q-l)-qw2 ) (4.4.3)



We return now to the case in hand. If a linear binary code D 

exists with weight vector represented by

9 rv 2 9 rv 2+ rv
D(z) = 1 + (2cT-a-l)za + (2a + a)za

then the dual code D has, by (4.4.1), weight enumerator

2 2 
A(z) = 1 ((l+z) 2a +a + (2a+l)(l-z 2 ) a { (a+l)(l+z)a + a(l-z)a})

4a2

D is obviously a 1-code and if we let C = D and apply Theorem 

4.4.3 we see that C is completely regular with parameters given by

(4.4.2) and (4.4.3). By substitution we find p (C) = p« 2 (C) =

2 (a +a)/2. So one method of construction of a completely regular

1-code with these parameters would be to construct first a linear code 

with weight vector represented by D(z).



5. Codes in the graphs <X

5.1 The graphs 0 (sometimes referred to as the odd graphs) have been
K.

studied by various authors([7j, I'*], I1*]). The vertex set of 0 is
1C

the set of (k-l)-subsets of {1,2,...,2k-l} and two vertices are joined if 

and only if their labels are disjoint. For example 0 is the complete 

graph on three vertices and 0_ is Petersen's graph.

For k 5. 2 the graphs 0 are distance-regular with diameter k-1. 

The intersection array is

* 1 1 

000 

2r-l 2r-2 2r-2

r-2 r-2 r-1 r-1

0 0 0 r

r+1 r+1 r *

for k=2r-l, 

and

•* 1 1 

000 

2r 2r-l 2r-l

r-1

0

r+1

r-1

0

r+1

r ""

r

*

for k=2r

The eigenvalues of 0 are X. = (-l) 1 (k-i) (0 < i •$ k-1). The
K. 1

labels of a vertex u and any vertex veF. (u) have (i-l)/2 elements in 

common if i is odd and k-l-(i/2) if i is even. Then for vertices x 

and y of 0

3(x,y) > 2e+l if and only if e < ]xfly |< k-e-2 (5.1.1)

Using the graph 0, we can construct another distance-regular 
£

2k-l graph 2.0 . The k-valent graph 2.0 has 2.( ) vertices indexed

by the sets (x,i) where x is a k-1 subset of {1,2,.. . ,2k-l) and 

ie{0,l). Two vertices (x,i) and (y,j) are adjacent if and only if 

x and y are disjoint and i ^ j. 2.0 has intersection array



sr

* i i

000 

k k-1 k-1

k-1 

0 

1

and eigenvalues A. = ±(k-i) (0

k-1 k 

0 0

1 A 

k-1).

We note that 2.0 is an antipodal distance-regular graph with

derived graph 0, .

5.2 Construction of codes in 0,

The main result of this section is that given an e-code in 

T(2k-l,2) we can, under certain circumstances, construct an e-code 

in 0, . We illustrate this result by investigating the possibility 

of constructing a perfect 1-code in 0 using the binary Hamming 

codes mentioned earlier.

The graph F(m,2) is antipodal and each vertex x of F(m,2) 

has a unique antipodal vertex x 1 = (1,1,...,!) + x.(the component 

addition being modulo 2). We shall call an e-code C in F(m,2) 

antipodal if the antipodal vertex of each element of C is also 

contained in C.

Lemma 5.2.1 If C is an antipodal e-code in r(2k-l,2) then the 

vertices of weight k-1 form an e-code in 0 .

Proof Suppose x,y are elements of C of weight k-1. From the 

definition of the distance function 3' in F(2k-l,2)

8 1 (x,y) = number of places in which x and y differ

= 2k-2-2|xfly| (5.2.1)



C is antipodal so y' = (1,1,...,!) + yeC and 9' (x,y')5>2e+l . 

Then 2e+l < 8'(x,y') = 2k-l-3'(x,y) and using (5.2.1) xfly |^e. 

Similarly 2P(x,y)>2e+l implies that |xfly|<k-e-2 and the result 

follows from (5.1.1) •

The perfect binary Hamming 1-codes in T (m,2) have vertices of 

weight (m+l)/2 where tn=2r-l ([i4,page 25] ) . If k = 2r~ 1 and 

m = 2k-l then by applying Lemma 5.2.1 we obtain a 1-code in 0 .
K -

The perfect Hamming 1-code in T (7,2) is the first non-trivial 

case to consider. This code has seven vertices of weight 3 which 

form the perfect 1-code (123, 145, 167, 246, 257, 347, 356 > in 0 .

We prove now that this is the only occasion when the

construction gives a perfect 1-code in 0, .
tc

Lemma 5 . 2 . 2 If k>4 the vertices of weight k-1 in the Hamming code 

in T(2k-l,2) form a 1-code in 0, which is not perfect.

r— 1 Proof Let k = 2 and suppose r>4. If p(0) is the weight vector

of the binary Hamming code in F(2k-l,2) and z = [l,z,z ,...,z J 

then from [if- , page 25]

2E(0) , .

' 2k-l (l-z2 ) k~ 1 (l+z) (5.2.2)
2k + 2k

From (5.2.2) p n (C) = _1_ ( "-.) + -sr- C / _-,)• If these k-1 u 2k K-i ZK kc/ 2 i

vertices of weight k-1 form a perfect 1-code in 0 then by the sphere 

packing condition

( 2!"~h (5.2.3)



2r— 1 Let a = ( ) then (5.2.1) can be rewritten as

(k+l)(2k-l)a k/2 = (k-l)«k (5.2.4)

Now c^ = 2k/2 (2-l/k)(2-l/(k-l)) ... (2-l/(k/2+l))a k/2 and hence

k/2 
a> 2 a (5.2.5)

k/ 2 
(5.2.4) and (5.2.5) imply that 2 « 2k+4 which is impossible

r-1 
for k=2 unless k=8. The result follows because k=8 does not

satisfy (5.2.3)1

5.3 The eigenvector sequence for 0
* -M. . • I' I" -

We use the eigenvector sequence for 0, to obtain results about 

the roots of x (X) for e> 1. We hope that these results may prove

to be useful in future work on non-existence results for 0, .k

Some of the results require only a simple inductive proof which 

we shall sometimes omit or indicate briefly.

The eigenvector sequence for 0 is defined as follows:
K.

vQ (X) = i, VI (A) = x,

(5.3.1)

(5.3.2)

A much more useful form of these equations can be obtained from

a simple inductive argument applied to (5.3.1) and (5.3.2) :
i

for x.(X) = Z v.(X) 
1 j=0 J

(5.3.3) 

(CKs 4k-3)/2]) (5.3.4)



Lemma 5.3.1 Fors=0,l,... [(k-2)/2j

x2g+1 (-l) = 0 (5.3.5)

Proof This follows from an inductive argument applied 

to (5.3.3) •

Corollary 5.3.2 If 0 contains a perfect e-code with e odd, then k 

is even.

Proof Suppose 0 contains a perfect e-code with e odd. By 

Theorem 2.3.8 the roots of x (X) are eigenvalues of 0, . Then -1 is
G K.

an eigenvalue and since the eigenvalue of smallest absolute value is 

(-1) k is even •

Lemma 5.3.3 For 0 « s « [(k-2)/2J

(i) X2S (0) = X2s+ i (0) - <-i> 8 <> ;

(ii) x (1) = (-l) s (k-2s-l)(ks'), x (l) = (-l) s 2(ki2 ) ; 25

(iii) x (2) = (-l) s (k2-3k-6ks+6s 2+6s+2) (ki1 ) ,
(k-l)(k-2)

x .(2) = (-l) S 3(k-2s-2)(k; 2 ) . -

Proof These results follow from inductive arguments applied to 

(5.3.3) and (5.3.4) •

Lemma 5.3.4 For 0 < s « [(k-2)/2]

(i) 

(ii)

Proof By simple calculation we can show that (i) and (ii) hold 

for s=0 and 1. We suppose inductively that (i) and (ii) hold



61

for s<m. If we replace A by -A-l in (5.3.4) and use the inductive 

hypothesis

(m+l)x2m+2 (-A-l) + (k-m-l)x2m (A) = Ax(A) (5.3.6)

Comparing (5.3.6) and (5.3.3) *2m+2 (A) = x2m+2 (~A~1) ' 

Similarly from (5.3.3) for s=m+l

-(A+l)(m+2)x2m+3 (-A-l) + (k-m-l)x2m+1 (A)=(A 2+A)x2m+2 (A) (5.3.7) 

Comparing (5.3.7) and (5.3.3) for m+1 we have

and this completes the proof •

From Lemma 5.3.4 we can already see that if a is a root of

x (A) and & ^ -1 then -ot—1 is also a root, 
e

Theorem 5.3.5 If x (A) has roots A A ...,A then

(5.3.8)

Proof (5.3.8) follows from Lemma 5.3.1 and the observation made 

after Lemma 5.3.4.

By differentiating (5.3.3) and (5.3.4) to the order of the highest 

power of \ and using the notation f (A) = Orr) (f(A))

(C<r«k-2) (5.3.10) r-i-i r

and so,

2) (5.3.11)
[(r+2)/23 1



Hence the coefficient of A 6 in xg (» is l/[(e+l)/2] 1 [e/2].' and

\ \.... x = (-l) e [(e+l)/2l ! [e/2] '.x (0) 1 2. e e

by Lemma 5.3.3

It will be useful to separate the odd and even cases of e.

We suppose that x? (A ) has roots a,CL,...,a ,-(a +1), . . .,-(a +1)
r

In order that we can find E a.(a.+l) we shall need YX. A. which.,11 i J1=1 r-2 
involves our finding the coefficient of A in x (X) .

cot f\ (2r) ,_ ,2r, (2r+l) .... /2r+l, Lemma 5.3.6 (i) x2r+1 y (0) = ( r ) , x^+2 (0) = ( r ) ;

(ii) x'^CO) = -(6k-4r-5)( 2r-J) ,

x0_o (0) = ((r+2)(4r+3)-6k(r+l)) ,2r,

Proof (i) From (5.3.3) and (5.3.4)

(0) - 2S . 2s

= 2s x2s (s+D.'sl 

and
/ r* . i \ /O_\

(0) (5.3.13)

The proof follows from an inductive argument on (5.3.12) and 

(5.3.13).

(ii) Also from (5.3.3) and (5.3.4) we have

2s .x 0 (2r1} (0) - (k-s-l).(-l) S ( 2sS ) (5.3.14)s— i 2s+1 ^rr



and

+ .x (0) - (k-s).x
s+1 s+1

/ 2s-1 \ 
-s-1) .( s-1I+T~

(2s-2)
(2s-l).x (0) - (k-s-1) . s-1 (5.3.15)~~

The proof is completed by an inductive argument on (5.3.14) and 

(5.3.15)1

If e=2r+l then

ZA -;A ; = *2lc+l (°>- (2r+l) T. = -r(r+l)(6k-4r-5) J C9T--1"*' ——————————— ~~fc———

and since EX A, = r(r+l) - E a-(a-+l) 
1 J ~~ = x 1

r
Z a.(q.+l) = r(r+l)(3k-2r-l) (5.3.16) 
L=l 3

Similarly if e = 2r

EX A- = -r_ (6kr-(r+l)(4r-l)) 
J 6

and
r

E a.(a.+l) = r (3kr-2r2-l) (5.3.17)

5.4 Perfect codes in 0
~~ •——mj^J "^ "—"" "" K.

We shall divide §5.4 into five parts: in part (a) we obtain 

a lower bound on k; in parts (b), (c), (d) and (e) we investigate 

the existence of perfect 1-codes, 2-codes, 3-codes and 4-codes 

respectively.

A result which seems worth mentioning is that 0, contains 

a perfect e-code if and only if 2.0, contains a perfect e-code.



This follows easily from the results of §3.3 and the definitions 

of Ofc and 2.0k .

a) A lower bound

The method we use here has already been employed by D.H. Smith 

to obtain an analogous bound in F(m, 2) [±6 , page 162] .

Theorem 5.4.1 If 0, contains a non-trivial e-code then

2 7 k > e +4e+2 (e even) and k > e +4e+3 (e odd).
2 2 

Proof Case 1 e=2r. We assume that p (C) is non-zero.
~ " " "—•-- £_ G+ J, ^ U

Notice that 7)(x,y) = e-2,e-l,e respectively as the labels of x and y 

have k-r,r-l,k-r-l elements in common. Also the labels of rn (x) 

and F (x), F (x), F ,o(x) have respectively r,k-2-r,r+l elements 

in common.

Similarly, the labels of rQ (x) and r 2e+1 (x), T 2e+2 (x), r 2e+;j (x) 

have respectively 2r, k-2-2r, 2r+l elements in common.

First we count in two ways the vertices of F ,(x). Each vertexe+1

of F (x) is at distance e from exactly one code vertex of F_ .. (x) . 

Let the vertex of F (x) have q elements of the labelling set in 

common with ^n (x) an<i tne code vertex of F + -i( x) :

,k-lw k . (r \ T\ ,2r, k-l-2r.,k-l-2r 
ke+ l ' ( r ) W)=P2e+ l,0 (C) - ( q )( r-q } (k-l

, 2rw2r+l. 
= P 2e+ l,0 (C)( r )( r > '

Similarly, counting in two ways the vertices of F e+2 (x):

k , s " /k-2-2r. ,2r+l w 2r+l . . k-2r-l 
fQ ( q ) (k-2-r-q) <k-l-r-q> (



,k-l-2r

— ~ fr>\ f'-'- s~\ f L -^ _i_ _ /•/->>~ P 2e+2,0 (C)( r )( r+ l } + P 2e+l,0 (C) 

We combine these equations to obtain

k-r+1 _ r 2r+l t
• tp 2e+2,0 (C)/P2e+l,0 (C)) '

Now counting T + o(x ) in two ways:

,k-l w k v ,, m+\2r+lwk-2r-2wk-2r-2w 2r+2. 
ke+3" ( r+l )(r+2 ) ^P 2e+3,0 (C) - =Z( q )

v-2-2r 2r+ l 2r+ l k-2r-l 
- E=Q ( q } ( r+l-q ) (r-l-q } (k-2r-l-q}

[ T— 1-1 
_ ,2r. ,k-l-2r. /k-l-2r. , 

q=Z0 ( q )(r+ l-q } (k-r-q } (q-2

k-l-r-q

Eliminating p_ +2 Q (C) from these two equations gives

P2e+3 2e+3, , (2r+2)(2r+l)

Because ? Q (C)/P2e+1 Q (C) > 0, k < 4r+2 or

O

k >4r +8r+2 . Hence k < e+1, which corresponds to a trivial code,
T2

or k> e +4e+2 .



Case 2_ e=2r+l. Again we assume p 2 _- (C) is not zero. In this

case 8(x,y) = e-2,e-l,e respectively as the labels of x and y have

r-1, k-r-1, r elements in common. Also the labels of Fn (x) and

r e+1 (x), r g+2 (x), T e+3 (x) have respectively k-2-r, r+1, k-3-r

elements in common. Similarly the labels of r (x) and T_ (x),r (x),

r 2e+3 (x) have respectively 2r+l, k-3-2r, 2r+2 elements in common.

The proof goes through in the same way, the relevant equations 

being

k k~ 1 - T, (r-\ /2r+l2r+2, 
~ P2e-H,0 (C) ' ( r )

, (r . . . w , 
r )p2e+2,0 (C) + ( r+ l } ( r )p2e+l,0

k ^(^-l ^ - ( \ r^ (r^ + , w ,
' ( r )( r+2 )p2e+3,0 (C) + ( r )( r+2)p2e+2,0 (C)

,-, fr~\ I ( t~'~ ' "-\ /"•*• ' *"\ -L. fi o o \ /•^^"'"1\ <-2r+2 v 
P 2e+l,0^ ; * I ^ — T* ^ —i-o^ (.K.-/-zrM

Again eliminating p „ n^) we
£- C "T" ^. j U

(2r+2)(2r+3)Po ^_ ,,(C)/P 0 Al n (C)=k2-k(2r+6) (2r+2) + l (2r+2) 2 (2r+4) 
r 2e+3,0 2e+l,0 ^ -^

so (k-(e+l) . (e+3))(k-e-l)>0 and the result follows | 
2

b) Perfect 1-codes in 0,

Perfect 1-codes are known to exist in 0 and O c (and hence in 2.0.
HO H

and 2.0,) and these codes form Steiner systems 8(2,3,7) and 5(4,5,11) 
6

respectively. We shall show, in Theorem 5.4.3, that any perfect 1-code 

in 0 is a Steiner system S(k-2,k-l,2k-l) (first proved by P.J. Cameron)
K

and a Steiner system S(k-2,k-l,2k-l) is a perfect 1-code in O-



Remark We point out that the line graph of 0 is an example of a 

non-trivial graph which contains a perfect 1-code but which is not 

distance-regular.

Lemma 5.4.2 If a Steiner system S(k-2,k-l,2k-l) exists then k+1 

is prime.

Proof A well known necessary condition for the existence of an 

S^(t,d,v) design is that (^) divides M^) for h=0,1, .. ., t-1. 

In this case we have k-l-h divides (2k-l-h)(2k-2-h)...(k+2)/(k-2-h)! 

for h=0,1,...,k-3. Let p be any prime between 2 and k-1, then for 

h=k-p-l, p divides (k+p)(k+p-1)...(k+2)/(p-1)! and so p does not 

divide k+1. Since k>2, k does not divide k+1 and the result 

follows!

Theorem 5.4.3 Let C be a subset of the vertices of 0. . The labels—————————— k

of the vertices of C form an S(k-2,k-l,2k-l) Steiner system if and only 

if C is a perfect 1-code.

Proof Suppose that 0 contains a perfect 1-code C and that£$ is the
—'———•— K.

set of labels of the elements of C. Any pair of elements of C are 

at least at distance three apart so their labelling sets cannot have 

k-2 elements in common. Hence each (k-2)-subset of the ground set is
O1 1

contained in at most one element of £ . Since 1C | (k-1) = ( ~) it 

follows that each (k-2)-subset is in fact contained in exactly one 

element of D.

Conversely, suppose that & is an S(k-2,k-l,2k-l) Steiner system; 

we show that the set of vertices C labelled by blocks of 6 forms a perfect

1-code in 0 . There are C 2^".)/(k+l) such vertices' we show that the 
k k-1

minimum distance between them is three. No two blocks of & have k-2 

elements in common so no two vertices of C can be at distance two.



We now show that no two blocks of t5 are disjoint in order to show 

that no two vertices of C can be at distance one.

Without loss of generality we assume that {1, 2, . . . ,k-l} is a 

block of & and show that every other block contains at least one of 

the elements of (l,2, . . . ,k-l} . We use the notation N(aubu ...uf), 

N(af\br\- • • Af ) to denote the number of blocks of -& containing the elements 

a or b or ... or f, a and b and ... and f respectively. By the principle 

of inclusion and exclusion we have

Let r. denote the number of blocks of fj containing j particular 

elements of {l, 2, . . .,k-l }. Then

r. = (2k-j-l)'. 1 .Zk-j-lx ,..= page

Hence
k-2

N(lu2U...Uk-l) = 2 (-D S ( A )( f).lT s s-1 —s=l s

k-2 
= l - l . £ (_i) k- 1- s (k-1 )(k+s )

s=l s s

k— 1 k— 1 — k— 1 By equating the coefficient of x in (1+x) (1+x) and
_2 

(1+x) we have

s s s=l

Thus

N(lU2U...Uk-l) - 1 - ^^k-l] . 1 ^k-l, = , c|

and so no two blocks are disjoint I



Equation (2.3.18) for a perfect 1-code gives (B+I)p_(0)=k. 

The component equations are

k2r= <k-r >P2r-l+P2r+(r+1)p2r+l (K r « Rk-2)/2])

k2r+l = Ck~r)p2r+P 2r+l+(r+1)p2r+2

where p^p^CC) and (k-r ) k2r= (r+Dk2r+1 - These equations enable us 

to prove inductively that

P2rp (C) = k"r ' P2r-l 0 (C) (U< r « [(k-D/2]) (5.4.1) 
V r »

It then follows by counting T that

2r+l ,0 (C) = ^2r - P2r,0 (C) ((K< r «I>-2 )/ 2] ) (5.4.2)

If we manipulate these two expressions we obtain the following 

explicit form for p. n(c) :

P2r,0 (C) - -r" 1(kr 1) V1 (-1) £ () (2

For k+1 prime each term in the summation will be divisible by k+1 

and hence p_ (C) (r=0,l,..., f(k-l)/2]) are integral and positive.
Z. JL y U

Since k0 = k-r . k and k+1 is prime, r+1 divides k and from 
2r+l - 2r 2r

(5.4.2) p2r+1 Q (C) (r=0,l, ..., [(k-2)/2]) are positive integers. 

(We can prove a similar result if p.=p...(C)).

Hence we have shown, independently of the existence of a perfect 

1-code, that the weight vector always has positive integer components if 

k+1 is prime. This may be considered as supporting evidence for the 

possible existence of other perfect 1-codes in 0, , although Theorem 

5.4.3 and the conjecture that no t-designs exist with t>5 indicate that 

no other perfect 1-codes in 0, are likely to exist.



c) Perfect 2-codes

Theorem 5.4.4 There are no non-trivial perfect 2-codes in 0, —————————— k

for k < 3081.

Proof If Q contains a perfect 2-code, then by the polynomial

2 
condition x (A) = A +A-k+l has eigenvalues of 0 as zeros. The

£• it

roots of x_(A) will be of the form a, -orl where a> 0 and k-1 = a(cH-l)

2 Hence k is odd and so a is odd, which gives k=l-2r+4r for a positive

integer r .

If r=l we obtain the trivial perfect 2-code in 0,., so we assume 

for the rest of this section that k > 13.

Since S p_(0) = (B +B-(k-1 )!)]#)= k we can obtain explicit 

expressions for the components of p_(0). In particular,

P 10 Q (C) = k(k-l) 2 (k-3)(k-5)(k3-15k2+87k-181)/(5D 2

32 2 
and since k -15k +87k-181 is never divisible by 5, 5 divides

2 2 k(k-l) (k-3)(k-5). But k=l-2r+4r and consequently k is not

2 22 divisible by 5 and hence 5 divides r (2r-l) (2r+l)(r-1). We have

four possibilities:

(i) r E 0(mod 5) , k = 100s +190s+91 (s=0,l,...) ; 

(ii) r = 3(mod 5) , k = 100s 2+110s+31 (s=l,2, ...) ; 

(iii) r = Krnod 25) , k = 2500s 2+150s+3 (s=l,2,...) ; 

(iv) r =12(mod 25) , k = 2500s 2+2350s+553 (s=0,l,...) .
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We can eliminate some of the cases by using the sphere packing

2 . 2k-l condition: 1+k divides (.-,)• Substituting for k givesK*"* J-

l+k2 = 2(4r 2+l)(r2+(r-l) 2 ). Let p denote r2+(r-l) 2 . Since r > 3 

we have 5p > 2k-l > 4p, 3p > k and 2p < k-1. Consequently when p
Of 1

is prime it is relatively prime to ( ~ ) = (2k-l)...(k+1)/ (k-1) ! and
K.™" J.

the sphere packing condition is not satisfied. 

Case (i) r = 0(mod 5)

The first value of r for which p is non-prime is r=45 and so
o 

for k of the form 100s +190s+91 there are no perfect 2-codes

in Ofc for k < 9901. 

Case (ii) r = 3(mod 5)

The first value of r for which p is non-prime is r=28 and so

2 for k of the form 100s +110s+31 there are no perfect 2-codes in 0
rC

for k < 3081.

Case (iii) r = l(mod 25)

If s=l then p=1301 which is prime and so for k of the form

2 2500s +150s+3 there are no perfect 2-codes in 0 for k < 10303.

Case (iv) r E 12(mod 25)

If s=0, r=12 and p=265=5.53 but 53 is relatively prime to ( 2 ). 

Hence for k of the form (iv) and k < 5403 there are no perfect 2-codes 

inOk .

By combining the results from these four cases the theorem is 

proved. •
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d) Perfect 3-codes

Theorem 5.4.5 If 0, contains a non-trivial perfect 3-code then

(i) k = 32r2 + 20r + 4 (r=l,2,...) ; or

(ii) k = 128r2 - 24r + 2 (r=l,2,...) .

Proof From (5.3.3) and (5.3.4) we find x 3 (x) = (A+1) (A2+A-2(k-l)).

Since -1 is a root of x_(A) and hence an eigenvalue of 0 , k must be

even. The other roots of x (A) are of the form -(2s-l),2s where s>0 and

2s(2s-l)=2(k-l). But k. is even and so s is odd and hence k=l+(4t-l)(2t-l)

for t=l,2,... . 

If t = 1 then k = 4 and this corresponds to the trivial perfect
A

3-code in 0,. We assume that t > 1. From S.,2(0) = k we are able 

to calculate

Pll 0 (C) = k^-1 ) 2 ^-2)^4)^3-22^197^584 )/ 3 -^) 2

and since k is even 2 6 divides k(k-2)(k-4)(k3-22k2+197k-584).

? 2 Let q = 4t - 3t + 1 so that k = 2q and 2 divides

q(q-l)(q-2)(4q3-44q2+197q-229). Either q is even or q = l(mod 4) 

i.e. t is odd or divisible by 4. The two possibilities follow •

e) Perfect 4-codes

Theorem 5.4.6 If 0, contains a non-trivial perfect 4-code then
•—•————•—* •—•—•——— K.

k > 4061.

proof By the results of §5.3 we can assume that x^(A) has roots 

Jt > -V'-i ) (x,-c*-l with /and a positive integers. By (5.3.9) and 

(5.3.17) a (ctflUtf+l) = 2(k-l)(k-2) and K/+1) +a(a+l) = 2 (2k-3) . 

If i"| = a(OH-l) then



- (4k-6)n + 2(k-l)(k-2) = 0 and so

2k- 3 ± (2k2-6k+5)^.

If 0. contains a perfect 4-code then ri is integral and

22 99? 
2k -6k+5 = r for some integer r > 1. Hence (k-1) + (k-2) = r

and the first integer solution r=5, k=5 corresponds to the trivial 

perfect 4-code in Og . The next solution is k=22, r=29 so we shall 

assume that k > 22 .

2 22 The equation (k-2) + (k-1) = r has general solution as

follows [X«», page 190]:

9292 9 9 
(i) k even k-2=2xy, k-l=x -y , r=x +y so that x -2xy-y -1=0 which

9 J. 2 9 
gives x=y+(l+2y ) 2 . Let £ = x-y then the equation £ = l+2y

( £ > 0, y > 0) has general solution given by £ = (1+ /2) s - y/2
s

(s=l,2,...) [-to, page 210J and hence k = 2 + 2y(y (1- *5) + (l+*5) 2s ) 

for s=l, 2, ...

2222 
(ii) k odd k-l=2xy, k-2=x -y , r=x +y which gives k=l+2y(y+ £,„)

where y, £ satisfy £ 2 = 2y2-l and £ + yv£"= (l+/2) 2s+1 (s=l,2, ...).
S S S

The first four possibilities for k are 22, 121, 698 and 4061.

A
From S,2(0) = k we obtain

P ll 0 (C) =

We can rule out the first three cases using the fact that 

p - (C) must be integral!

Remark We have seen, in sections (b), (c) and (e), how it is possible

to consider particular values of e and obtain reasonable non-existence results,

However it appears that without the use of the sphere-packing condition

it is not even possible to deal completely with any particular value of e.



2 For example, in the case e=2, if k=4r -2r+l the existence of the

factor k-1 = r(4r-2) in each component p. (C) (i ^.5) means that 

for any fixed value of i piQ (C), P i _-, 0 (C), ..., P5 Q (C) will be 

positive integers for some suitable value of r. Similarly if 

e=3 we have a factor k-2 in each p (C) (i > 7).

5.5 Nearly perfect codes in 0," T — - - — - -- — - — _ _ _ _ m_____j£

Having made the comment above about the perfect code case, 

we shall show in this section that we can obtain more definite non- 

existence results for nearly perfect e-codes which are not perfect and 

with e odd.

Suppose e=2r+l and r >1. We omit the case e=l since c2=l and 

all nearly perfect 1-codes are perfect.

Let k = a(mod (r+1)) with 0 < a < r then 

Pe+le (C) = [(k-r-l)/(r-H)] = (k-r-l-a)/(r+l) and

p , , (C) = rk/(r+l)l = (k-a)/(r+l). On substitution into (2.3.19) 
e+le+1 u J

we find

(k-a)x(X) = (r+l)x(X) + (k-a-r-l)x2r (X)

and by (5.3.4)

(k-a)x(X) =Xx(X) - ax(X) (5.5.1)

Theorem 5 .5.1 If 0, contains a nearly perfect e-code which is not
—, — —~. — — P _ - —i J£

perfect and e is odd then e > 15.

Proof Suppose that 0, contains a nearly perfect e-code which is not 

perfect and let e=2r+l. Using (5.5.1) and Lemma 5.3.3 we derive the 

following:



r+l/k-lA
r / ;(i) (k-a)x(O) = (-1) a

r+1 / k-l\ 
(ii) (k-a)x(l) = (-1) - ( r J(k(a-2)-2r(a-l)-(a-2)) ;

r+1 /k-l\ [k2 (a-6)-k(3a+6ar-18r-18)l 
(-1) V r ) L+a(6r2+6r+2)-12r2-24r-12j

k-1 

(iii) (k-a)x(2) =
(k-1) (k-2) 

By Theorem 2.3.6 x(X) must have roots in the set

If 1 <: r 4 2 then 1 ^ a < 2 and obviously x(0) and x(l) are non-zero 

and have opposite signs - a contradiction.

If 3 < r < 6 then 1 < a < 6. For non-trivial codes we have 

k>2e+2 = 4r + 4 which is sufficient to ensure that x(0) and x(2) are 

non-zero and have opposite signs. Hence x(l) = 0 and k(a-2) = 

2r(a-l) + (a-2) . If a=l or 2 then k=l or r=0 respectively. For a > 2

k=2r+l+_2r < 4r+l - a contradiction. The result then follows. • 
a-2

It seems very likely that by considering x(X) for other integral 

values of X we shall be able to extend this non-existence result.

Suppose now that e=2r with r>l. If k = a(raod(r+l)) then 

0 < a < r-1 and

(k-a)x(X) = (X + l)x2r (X) - (a+l)x2r_ 1 (X) (5.5.2)

We find, when we calculate x(0), x(l) and x(2), that the sign of 

x(l) and x(2) is independent of the value of a. This means that we 

cannot repeat the rather simple proof of Theorem 5.5.1 to obtain 

similar non-existence results.

However, we illustrate the case e=2 since it is an example of an 

application of Theorem 2.5.1. If e=2 we need b 2=k-l ^0(mod 2) and hence 

k must be even. But then we can apply Theorem 2.5.1 and obtain a



perfect 1-code. We have already established that a perfect 1-code is 

a Steiner system S(k-2,k-l,2k-l) and so it seems unlikely that a 

nearly perfect 2-code exists in 0, for k > 6. In fact 0, doesK D

contain a nearly perfect 2-code indexed by the following 2-(2,5,11) 

design

12345 24789

4 5 6 9 10 2 3 9 10 11

3578 10 1579 11

3 4 6 7 11 1 4 8 10 11

2568 11 1267 10

13689

If we had not already known the Steiner system 8(4,5,11) we could 

have obtained an explicit form from the nearly perfect 2-code above.

2 From the form of the roots of x(A) = (A+l)(X +X~k)/2

k=2r(2r+l) and the next value of k to satisfy the sphere packing 

condition is k=42.



6. Codes in J(a,b) 

6.1 Introduction

We have already mentioned Delsarte's investigation t'o} of an 

analogue of a design in association schemes. For the case of the 

Johnson schemes, which correspond to the graphs J (a,b), Delsarte 

has shown that his definition coincides with the classical combinatorial 

idea of a design.

Biggs £6] has also extended the concept of a design to a 

connected finite graph and his definition is of a more combinatorial 

nature. As in Delsarte's case the definition coincides with the 

classical designs for the particular case of the graph J(a,b).

In §6.5 and §6.6 we investigate some interesting connections 

between combinatorial designs and completely regular codes in J(a,b).

As we shall see later in the chapter the nature of the intersection 

array of J(a,b) increases the difficulty of considering the existence of 

particular codes in the graph. For this reason we can only prove the 

non-existence of nearly perfect 1-codes in J(a,b) at present.

6.2 Eigenvalues of J(a,b)

The graph J(a,b) has (f) vertices indexed by the b-subsets of the 

set {1,2,..., a}. Two vertices are joined if and only if they have b-1 

elements in common. J(a,b) has valency k=b(a-b) and when a > 2b the 

graph is connected with distance function

9(u,v) = b - |UAV| (6.2.1)

and diameter b. The graph is distance-regular for a > 2b and has 

intersection array



* I 2 i 2 K2
* 1 ... 1 . • « D

0 a-2 ... i(a-2i) . . . b(a-2b)

Ib(a-b) (b-1) (a-b-1) . . . (b-i)(a-b-i) ... * .

For any distance-regular graph x (\) is a divisor,in OCX], of 

the characteristic polynomial of the intersection matrix. To find

the eigenvalues of J(a,b) we need to calculate the roots of x,( A) .
b

The eigenvector sequence for J(a,b) is defined as follows:

vQ (X) = 1, v^A) ="X and for 0 < i < b

(6.2.2) 

If we make the following substitutions in (6.2.2)

A = u(u-a-l) + b(a-b) (6.2.3)

E.(u) = v.(X) (0<j i<c b) (6.2.4)

we obtain

E.(u) + (i(a-2i)-u(u-a-l)-b(a-b))E.(u)
1+1 1

+ (b-i+1) (a-b-i+DE^Cu) =0 (0 < i < b) (6.2.5)

In fact (6.2.5) defines a family of orthogonal polynomials called 

the Eberlein polynomials ( [/o] , [57] ) . An explicit form of these 

polynomials is given in [ 4 , page 7o] as follows:

E.(u,a,b) = ^ (-1) (.j-K-'M .[_; ' *• ^ "^ 
1 j=0 J



Lemma 6.2.1 If E.(.u>a,b) is defined by (6.2.6) then

r
1 E.(u,a,b) = Er (u-l,a-2,b-l) (6.2.7) 

i=0

Proof The proof follows easily by induetion.(

(6.2.4) and (6.2.7) imply

.
j=0

and in particular,

ji (-1) (j )(b-j)( b-j )

Suppose that ae{ 1,2, . . . ,b} and A = a <a -a-l)+b(a-b)
LX

then a-1 > 0, b- a >0 and consequently (P . ) = 0 for j > a - 1 and

5") = o for j < a. Hence x, (A ) = 0 and J(a,b) has eigenvalues 
b— j D ex

{a(x-a-l) + b(a-b) : a = 0,1,... ,b}.



6.3 Nearly perfect 1-codeS in JCa,b)

Suppose that v is an eigenvalue of J(a,b) then there exists
f\ f\

ae{ 0,l,...,b> such that a ~a(a+l)+ab-b = v • Hence there is an 

integer x such that

(a+1) 2 - 4b(a-b) + 4v = x 2 (6.3.1)

Similarly if y is another eigenvalue of J(a,b) then there 

exists an integer x such that

(a+1) 2 - 4b(a-b) + 4^ = x2 (6.3.2) 

We combine (6.3.1) and (6.3.2) to obtain

(6.3.3) 

and from (6.3.1) it follows that

a = 2b-l + (x 2 - 4v - 4b)* (6.3.4)

We choose the positive square root in (6.3.4) because a £.2b.

Theorem 6.3.1 There are no non-trivial nearly perfect 1-codes in 

J(a,b) with (b-D(a-b-l) £ 0(mod 4).

Proof Since b.. = (b-1) (a-b-1) $ 0(mod 4) we have only a small number 

of cases to consider. We illustrate just two since the method is 

identical in every case:

(i) If b = 2 (mod 4) and a = 0(mod4) then P 21 (C) = [bjA^] = 

(b(a-b)-a)/4 and P22 ( c ) = [k / c 2 J = b (a-b)/4. We substitute these 

values into (2.3.19) and find x(A) = X( A+2)/b(a-b) . If v = 0 and 

y= -2 (6.3.3) has solutions x = ± 3, x =±1. (6.3.4) gives 

a = 2b - 1 + (9-4b)^ and the only possible integer solution is a=4,b=2.



(ii) If bE2(mod 4) and a = 1 (mod 4) then we find x(A) = 

(A+2)(A-l)/(b(a-b)-2). Letv = -2 and u = 1 then (6.3.3) has 

solutions x = *2, x =±4. (6.3.4) implies a = 2b-l+(12-4b) 2 

and this has integer solution a=5, b=2B

6.4 Completely regular codes and designs

The first result in this section is due to Delsarte D*] 

We include a short proof since Delsarte 's proof is not explicit.

Lemma 6.4.1 (Delsarte). If J(a,b) contains a code C with minimum

i i f\ T\
distance & and |C| = ( )/O, where t=b-6>l, then the elements of C 

form a Steiner system S(t,b,a).

Proof Let t = b- 6V1 and let x denote a t-subset of (1,2,..., a). 

If there exist u,veC such that unvsx then 3(u,v) = b- |unv |$<5-1 , a 

contradiction.

If x 1 ,x , ...,x denote the t-subsets of {l,2,...,aJ, where 

r = ( ), and x. is contained in A. elements of C then X. = 0 or 1. 

Let X denote the mean of A A ..,A then

which implies A =1 and hence each A^=l.l

We shall use Lemma 6.4.1 in the following results which connect 

completely regular codes and designs.

Theorem 6.4.2 If J(a,b) contains a completely regular 1-code C with 

external distance 2 and parameters P 21 ( c ) = ( 2 ) and P 2 

then C forms a Steiner system S(b-2,b,a).



Conversely a Steiner system S(b-2,b,a) is a completely regular 

1-code in J(a,b) with the above parameters.

Proof By calculating x(k) we find |C| = (,%)/( Ub 0 ) and the ———— < * b— 2. a— 2

result follows from an application of Lemma 6.4.1.

Conversely suppose C is a Steiner system S(b-2,b,a).

Any two blocks of C have at most b-3 elements in common and hence 

C has minimum distance three. Obviously C has external distance not 

greater than two. If C is perfect then -1 is an eigenvalue of J(a,b) and

there exists ae{ 1,2, . . . ,b} such that a (a-a-l)+b(a-b')=-l. If a =b then

2 b=l. Let a=b-j then b=j +j(a-2b+l)+l and since j >1 we have a ^< 3b - 3.

By the sphere packing condition for a perfect 1-code

l+b(a-b) = (£)/|c| = (a-b+2)(a-b+l)/2 

and hence

a=(4b-3+(4b 2-12b+17) 1 )/2 > 3b - 3

which is a contradiction. We have shown that C has external distance 

exactly two.

Suppose v and c are vertices of J(a,b) with ceC and 3(c,v) = 1. 

Then \Cf\v\ = b-1. Let v\c = {TT}. By definition 

p (C,v) = |{x£C|9(x,v)=2}|=|{x£C| |x/w| =b-2>|. If |xftv| = b-2 and 

x£C then x contains TT and exactly b-3 elements of c. In fact x is 

the unique block containing these b-2 elements. Hence p2 ^(C,v)

We can use a similar argument to show that for any vertex y with 

(y,C) = 2 p22 (C,y) = I + (^) (') + (J^) = (J) .•



The polynomial condition is satisfied because the roots of 

= (A+b)a-a+3b-2)/2b(b-l) are eigenvalues of J(a,b).

Theorem 6.4.3 If J(a,b) contains a completely regular code C with 

minimum distance 2 (we consider C to be a 0-code with p (C) = 0), 

external distance 1 and parameter P-,-,(C) = b, then C forms a 

Steiner system S(b-l,b,a).

Conversely a Steiner system S(b-l,b,a) is a completely regular 

code with the above parameters.

Proof We omit the proof since it is almost identical to the proof 

of Theorem 6.4.2.1

Once again the polynomial condition is satisfied with 

x(A) = U+b)/b.

Notice also that when b=k-l and a=2k-l we have a perfect 1-code 

inOk .

We now use a property of Steiner systems to obtain further 

completely regular codes.

Theorem 6.4.4 (i) If J(a,b) contains a completely regular 1-code C

with external distance 2 and parameters P 21 (C) = ( 2 ) and P22 ( c) = ^

then J(a-i,b-i) contains a completely regular 1-code C. with external

distance 2 and parameters P 21 ( C i) = ( \ ) and P22^°i^ = ^ 2 ^ f °r ea°h 

i with 0 < i < b-3;

(ii) If J(a,b) contains a completely regular code C 

with minimum distance 2 and parameter P 11 (O = b then J(a-i.b-i) 

contains a completely regular code C^ with minimum distance 2 and 

parameter P 1;L (C.) = b-i for each i with 0 < i < b-2.



Proof The existence of the Steiner system S(t,b,a) implies the 

existence of the Steiner system S(t-i,h-i,a-i) for 0 <: i <: t-1

JjZ , page 103J . To obtain (i) and (ii) we simply apply Theorems 

6.4.2 and 6.4.3 successively.!

We mention one other connection between completely regular 

1-codes in J(a-b) and Steiner systems. This result, however, is 

weaker than Theorem 6.4,2 and Theorem 6.4.3.

Theorem 6.4.5 If b is even and greater than 2 and J(4b-8,b) contains 

a completely regular 1-code C with external distance 2 and parameters 

P22 (C) = b/2 and p 2l (C) = 0, then C forms a Steiner system S(b-3,b,4b-8).

Proof Suppose that J(4b-8,b) contains such a code C. The relevant 

polynomial x(A) = (A+b)(A-3b+10)/2 has eigenvalues as its roots and from 

the sphere packing condition |c| = ( ,.,)/(, _->) • The result follows 

from an application of Theorem 6.4.1. •

6.5 J(2b,b)

The graph J(2b,b) is obviously antipodal and each vertex has a 

unique antipodal vertex, namely its complement in the set {1,2,...,2b}. 

The derived graph J(2b,b)/2 has diameter [b/2].

With a view to applying the results of §3.3 we consider the 

codes of Theorem 6.4.2 and Theorem 6.4.3.

The Steiner systems S(b-l,b,2b) associated with the codes of 

Theorem 6.4.3 have been studied by several authors ( [/], [_3~], |44] ) . 

These designs exist and are unique for b=2,4 and 6. With the assumption 

that the automorphism group of the design is flag-transitive Assmus and 

Hermeso [3} have shown that the designs exist only in cases b=2,4 and 6.



Returning to the parameters of the code we find / = b > 1 and 

by Lemmas 3.3.5 and 3.3.6 J(2b,b)/2 contains a completely regular 

code with the same parameters. It seems likely then that the only 

completely regular codes of this type are in J(12,6), J(8,4), J(4,2) 

(and their derived graphs) and by Theorem 6.4.4 in J(ll,5), J(10,4), 

J(9,3), J(8,2), J(8,4), J(7,3) and J(6,2).

Next we consider the Steiner systems S(b-2,b,2b). Although 

we omit the details it can be shown that / < 0 and also that the 

polynomial condition is not satisfied for J(2b,b)/2. This is not 

surprising because if the code satisfied the premises of the following 

result then 2/(b+2) would need to be integral.

Theorem 6.5.1 (Alltop C'l )• If an Sv (t,b,2b) design exists with t even 

and such that the complement of each block is a block, then the design 

is already an S (t+l,b,2b) design with n = A(b-t)/(2b-t).

Another result of Alltop [/] which has interesting applications here 

is the following:

Theorem 6.5.2 If an S, (t,b,2b) design exists with t even then an 

S, (t+l,b+l,2b+l) design also exists.
A

If we apply Theorem 6.5.2 and Theorem 6.4.4 we obtain the 

following:

Theorem 6.5.3 (i) J(2b,b) (with b even) contains a completely 

regular 1-code C with external distance 2 and parameters 

p (c) = C^1 ), P22 (C) = C2 ) if and only if J(2b+l,b+l) contains a 

completely regular 1-code C with parameters P 21 (c ) = ^' P22^C ^ 2 ^'



Cii) J(2b,b) Cwith b even) contains a completely

regular code C with minimum distance 2 and parameter p ,(C) = b if and 

only if J(2b+l,b+l) contains a completely-regular code C with minimum 

distance 2 and parameter p11 (C ) = b+1.

6.6 Equidistant codes and finite protective planes

A set of vertices C with mutual distance 5 in a distance-regular 

graph F will be called a 5 -equidistant code. When F= F(a,2), 5 =2k and 

|c | = m our definition coincides with Deza'sGfl • Deza calls this 

latter code an (m,2k,a)-code.

A finite protective plane is a finite set X together with a 

family 'C of subsets of X satisfying

(i) Each distinct pair x,y£X belong to exactly one c e£ ;

(ii) Each distinct pair c,c e £> contains exactly one common xeX;

(iii) There are at least four elements of X having the property that 

no three of them belong to a single c e&.

It can be shown [/', page 16l] that if some c e & contains 

b+1 elements of X then all members of & contain b+1 elements and 

,£ I _ i x | _ t» 2+b+l. & is then called a finite protective plane of 

order b. A finite projective plane of order b is equivalent to a 

Steiner system S(2,b+l,b 2+b+l) [4 , page 5l].

Theorem 6.6.1 J(b 2+b+l,b+l) contains a b-equidistant code with 

b 2+b+l elements if and only if there exists a finite projective plane 

of order b.



*7

Proof Suppose a projactive planed of order b does exist. Then £

2 contains b +b+l elements. If x and y are distinct members of

2 
then | xfly | = 1 and 8 (x,y) = b in J(b +b+l,b+l).

2
Conversely, suppose J(b +b+l,b+l) contains such a b-equidistant

2
code C. Then | G| = b 2+b+l = (b """l^" 1 )/^* 1 ) and by Theorem 6.4.1 C

2 
is a Steiner system S(2,b+l,b +b+l).l

Given a vertex x of J(a,b) we can identify x with a vertex x of 

T(a,2). We do this in an obvious way by choosing the components of 

x to be 1 when indexed by elements of x and 0 elsewhere. In terms 

of T(a,2) x has weight b.

Let x,y be vertices of J(a,b) and x ,y respectively be the 

identified vertices inr(a,2). If S and 3 denote the distance 

functions in J(a,b) and 1 (a,2) respectively then

8 1 (x 1 ,y 1 ) = 2(b-|xfly|) = 23(x,y) (6.6.1)

Using this identification and Theorem 6.5.1 we can prove a result 

of Deza &] .

Corollary 6.6.2 (Deza 1?*] )• If a projective plane of order k exists

2 
then provided a is sufficiently large a (k +k+2,2k,a)-code exists.

Proof Supposed is a projective plane of order k then by Theorem 6.6.1

2 2 
£ is a k-equidistant code in J(k +k+l,k+l) with k +k+l elements. We

2 
now allow £> to represent its identification in T (k +k+l,2). By (6.6.1)

2 & is a 2k-equidistant set in T(k +k+l,2). If we choose a large enough

we can increase the length of each element of & by k-1 1's to give a

2k-equidistant code in T(a,2) where each element has weight 2k. By adding

2 
the all-zero vector to this set we have the required (k +k+2,2k,a)-code. •
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