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Abstract

The problem of the existence of perfect and nearly perfect
codes over finite alphabets is generalised in two directions. This
thesis is concerned with the existence and combinatorial properties
of completely regular codes in distance-regular graphs. One of the

main tools is the generalisation of Lloyd's Theorem.

There are connections with designs, orthogonal latin squares and
finite projective planes and various existence and non-existence
results are derived for completely regular codes in three infinite

families of distance-regular graphs.



Acknowledgements

I should like to express my sincere thanks to Derek Smith for
his advice and guidance during the period this research was
undertaken. I appreciate the generous amount of time he has given
to discussion of the work, and subsequently his help in the

preparation of the thesis.

I am also indebted to Norman Biggs for his encouragement and
interest throughout and for stimulating discussion of coding and

graph theory.

Finally I should also like to thank Barbara Miles for her

efficient and accurate typing of the manuscript.



1.

2.

3.

4,

CONTENTS

INTRODUCTION
1.1 Perfect code problem
1.2 Codes in other settings
1.3  Summary

PERFECT AND NEARLY PERFECT CODES

2.1

2.2

2.3

2.4

2.5

Distance-regular graphs

e-codes in distance-regular graphs

Nearly perfect and perfect codes

The weight vector of a nearly perfect code
Constructing perfect codes from nearly

perfect codes

COMPLETELY REGULAR CODES

3.1

3.2

3.3
3.4
3.5

3.6

CODES 1IN

4.1

4.2

4.3

4.4

Definitions

An analogue of Lloyd's theorem for

completely regular codes

Antipodal distance-regular graphs

Locally regular e-codes of external distance e
Locally regular e-codes of external distance e+l

Generalised uniformly packed codes

THE GRAPHS ['(m,q)

Introduction
The eigenvector sequence for I'(m,q)
Nearly perfect codes in ['(m,q)

Completely regular codes in I'(m,q)

12

5

22

25

29

30

34

38

39
41

42

42

44

50



5.

6.

CODES 1IN

5.1

5.2

5.3

5.4

5.5

CODES 1IN

6.1

6.2

6.3

6.4

6.5

6.6

THE GRAPHS Ok

Definitions of the graphs and eigenvalues
Construction of codes in Ok

The eigenvector sequence for Ok

Perfect codes in O

k

Nearly perfect codes in 0k

THE GRAPHS J(a,b)

Introduction

Eigenvalues of J(a,b)

Nearly perfect l-codes in J(a,b)
Completely regular codes and designs

J(2b,b)

Equidistant codes and finite projective planes

56
57

59

63

74

77
77

20
8!

84

8¢



1. Introduction

1.1 Perfect code problem

Coding theory began as a study of the possibilities of
correcting errors in certain communications systems (Shannon [53]).
Much of the research in this field is still concerned with the

theoretical study and construction of such codes (Sloane[34j).

The algebraic and combinatorial properties of codes have
undergone closer scrutiny more recently and an area of coding theory
which has provoked particular interest has been the investigation

of the existence of perfect codes. From a combinatorial point of

view perfect codes are interesting because of the connection with the

existence of certain designs ([rﬂ).

The perfect code problem for finite field alphabets was
finally resolved in 1973 when Tietdvainen [38] proved that the only
non-trivial perfect codes are those already known. There are many
known examples of perfect l-codes (including the Hamming perfect
l-codes); there is the ternary Golay perfect 2-code of length 11 and

the binary Golay perfect 3-cdde of length 23 (van Lint [27]).

A result which has proved useful in many of the non-existence
results for perfect codes is Lloyd's theorem {22]. The theorem states
that if a perfect e-code of length m over a gq-ary alphabet exists then

the polynomial (usually referred to as the Lloyd polynomial)

DEHED @pe (1.1.1)

b, (x) = I

1

N ™o

has e distinct zeros in the set {1,2,...,m}.



1.2 Codes in other settings

Biggs in [5] and Delsarte in [9]generalised the idea of a

perfect code to distance-transitive graphs and to metric association

schemes respectively, and both authors have proved an analogous result to
Lloyd's theorem. Delsarte paid particular attention to the Hamming
schemes which correspond to the original setting and also to the

Johnson schemes. Both Biggs [6]and Delsarte have also established

connections between codes in the Johnson schemes (or correspondingly

the graphs J(a,b)) and the existence of certain Steiner systems.

In [14] Goethals and Snover defined the class of nearly perfect

codes over a binary field and showed that they have similar properties to
perfect codes which include an analogue of Lloyd's theorem and the

construction of designs.

The aim of this thesis is to generalise the problem in two

directions. TFirstly we wish to change the setting to distance-regular

graphs (a class of graphs which contains the class of distance-transitive
graphs). Secondly we define a general class of codes (which contains

perfect and nearly perfect codes) called completely-regular codes.

1.3 Summary

In Chapter 2 we begin with a description of the main properties.

of a distance-regular graph ' with diameter d and valency k. We

define the adjacency algebra QUT) of dimension d+l1 in terms of the

adjacency matrix A of T. The adjacency matrices A = I,A =A,...,A

0 1 d
form a basis for QUI'). If we represent QUTI) as an algebra of (d+1)

x (d+1) matrices representing left multiplication we generate an
A N
algebra QUTI) which is isomorphic to QUr)y. QU has as a basis the

.3B.; the intersection matrix B=B

intersection matrices B_. = I,B a 1

0 1’




is tri-diagonal and its main diagonals form the intersection array

of T.

We define the eigenvector sequence of polynomials VO(A), vl(A),

cony vd(k) in terms of the intersection array and the partial sum
VO(A) + vl(k) + ... 0+ vi(k) is denoted by xi(k). The polynomial
xd(A) is a rational multiple of the characteristic polynomial of B and

has zeros Al,...,kd where k,kl,...,k are the distinct eigenvalues

d

of B (or of T as we shall sometimes write).

In §2.2 we define an e-code C as a subset of the vertex set VI

of T with mutual minimum distance 2e+l. We also define the weight

t .
vector [poi(C,u),pli(C,u),...,pdi(C,u)] of C with respect to the
vertex u at minimum distance i from the elements of C. These
definitions are followed by a generalisation of an upper bound for |C|
obtained by Goethals and Snover [14] who used their bound to define

nearly perfect binary codes. In §2.3 we define a nearly perfect

code in T as a code satisfying our generalised bound with equality.

A perfect e—-code is also defined in §2.3 and we note that the

class of perfect codes is a subclass of the class of nearly perfect
codes. The remainder of §2.3 is devoted to a comparison of the
properties of perfect codes and nearly perfect codes which are not
perfect. We follow the method of Biggs [5)to obtain a result analegous
to Lloyd's theorem for nearly perfect codes and obtain the generalisation

of Goethals and Snover as a corollary.

In 82.4 we confine our attention to a more detailed study of the
weight vector of a nearly perfect code C and we obtain explicit

expressions connecting the related weight vectors of C. We prove

that the weight vectors of a nearly perfect code are independent of

the vertex with respect to which they are calculated. We also state



corresponding results for perfect codes.

We end Chapter 2 by considering the possibility of constructing
perfect codes from nearly perfect codes. We find that it is possible,
under certain circumstances, to construct perfect l-codes from nearly
perfect 2-codes. This particular construction is shown not to hold

for other wvalues of e.

An important consequence of Chapter 2 is that vertices of the
graph are at distance at most e (respectively e+l) from code vertices
of a perfect (respectively nearly perfect) e-code. In Chapter 3 we
examine e-codes which have the property that vertices of the graph
are at distance at most e+m from vertices of the code, that is, codes

which have external distance e+m. We pose two important questionms

which are the essential problems of this thesis:

(i) If C is an e-code with external distance e+m, what
conditions must C satisfy in order that we can prove

a result which is analeggous to Lloyd's theorem?

(ii) What properties would a code satisfying such conditions

have in common with nearly perfect codes?

In §83.1 we begin to answer the first of these conditions by

defining locally regular and completely regular codes in terms of

components of the related weight vectors. We also indicate the

difference between Delsarte’'s and our definition of extermal distance.

We show in §3.2 that very little extra work is needed in order
to establish an analogue of Lloyd's theorem for completely regular
codes. This generalised condition (usually referred to as the

polynomial condition) establishes that the zeros of a certain polynomial

are eigenvalues of the graph. These results also enable us to prove



the equivalence of completely regular and locally regular codes. The

last theorem of 83.2 is a generalisation of a result due to O. Heden[21].

We introduce, in §3.3, the idea and some of the properties of antipodal
distance-regular graphs and we illustrate how we can derive another
distance-regular graph from such a graph. The aim of this section is

to show that under certain circumstances the derived graph also contains

graph,
a completely regular code which is constructed from the code in the antipodal

In fact when this is the case we apply our polynomial condition to the

derived graph and obtain an improved polynomial condition.

In §3.4 and §3.5 we discuss briefly locally regular e-codes of
external distance e and e+l respectively. In particular in 83.5 we
determine the extra parameter which arises in the improved polynomial
condition for antipodal graphs. We find an explicit form for this

parameter for the classes of nearly perfect and uniformly packed codes

Finally in §3.6 we define mth order generalised uniformly packed

codes [s2] . Although these codes are not necessarily completely regular

we are still able to prove an analogue of Lloyd's theorem.

The remaining three chapters are devoted to examples and non-
existence results of locally regular e-codes. The setting for each

chapter is one of three infinite families of distance-regular graphs.

In Chapter 4 we restrict our attention to the graph I'(m,q) which
corresponds to the Hamming schemes of Delsarte. §4.1 contains a short
account of recent work on the existence of perfect codes in I'(m,q) for

q a non-prime power.

We begin §4.2 with a statement of the intersection array of I'(m,q).
The graph I'(m,2) is antipodal and with a view to applying our improved

polynomial condition we state the eigenvalues of the derived graph I'(m,2)/2.



The existence of nearly perfect codes is investigated in 84.3.
We consider first the binary case and obtain a non-existence result
for odd e with 5 ¢ e ¢ 17 (the case e=3 has been dealtwith by van
Lint [26] ). Although this result should easily extend to further
odd values of e it is obviously overshadowed by the complete non-existence
result recently proved by K. Lindstrom [23]. However, Lindstrom's proof
is very complicated [44, page 14] and involves a computer search for
the values e ¢ 100 and m ¢ 10,000 so it might be useful to illustrate

another approach.

Also in §4.3 we prove that the only nearly perfect l-codes and 2-codes
in T'(m,q) are the binary codes already obtained by Goethals and Snover
[t¢] . Binary nearly perfect l-codes (other than perfect l-codes)
are obtained by dropping the same component from each of the code
vertices of a perfect l-code [I4, page 83] . Preparata 2-codes [30]are

examples of nearly perfect 2-codes which are not perfect.

Finally in §4.4 we give two examples of parameter sets for
completely regular l-codes in T'(m,q). The first and most interesting

is comected closely with mutually orthogonal latin squares. The

second is still an open case but we discuss a possible method of

construction using a result of Goethals and van Tilborg [+5],

The existence of interesting codes in the infinite family of 0k
graphs 1is demonstrated in Chapter 5. §5.2 includes a description of

a method of constructing codes in O, from antipodal codes in T(2k-1, 2).

k
We illustrate how the perfect l-code in 04 can be obtained from the

perfect Hamming l-code in T(7,2).

In §5.3 we use the eigenvector sequence for 0k to obtaln results
connecting the roots of xe(x). Expressions of the sum and products

of the roots of these and related polynomials have been used



successfully in non-existence proofs for both perfect and nearly

perfect codes in T'(m,q) ( [38]and [25]).

In §5.4 we obtain a lower bound on k as a necessary condition

for the existence of a perfect e-code in 0 The most interesting

K
result of §5.4 is the characterisation of perfect l-codes in 0k as
the Steiner systems S(2k-1,k-1,k-2). The first two codes in this

series are in 04 and 06 and correspond to thewell known Steiner
systems S(7,3,2) and S(11,5,4) respectively. It does not seem

likely that other perfect 1-codes exist in O, because we would require

k
the existence of t-designs with t greater than 5. However we do
prove that the components of the weight enumerator for these codes
are integers so we have yet to rule out the possibility of perfect

l1-codes in Ok' For the rest of §5.4 we use the weight enumerator and

sphere packing condition to obtain lower bounds on k as necessary

conditions for the existence of perfect e-codes in Ok with e=2,3 and 4.

We follow the method of proof of Theorem 4.3.4 to prove in §5.5
that there are no nearly perfect e-codes in 0k with e odd and
3 exg 14, Once again this result should easily be extended to
further odd values of e. For the particular case e=2 we are able

to apply Theorem 2.5.1 and from the existence of a nearly perfect

2-code in O6 we obtain the perfect l-code in 06'

The final chapter deals with the family of distance-regular
graphs J(a,b) which correspond to the Johnson schemes of Delsarte [9].
In §6.2 we state the intersection array and calculate the eigenvalues

of J(a,b). We show also how the eigenvector sequence of J(a,b) is

related to the Eberlein polynomials [37].



The only complete non-existence result we have obtained is for

nearly perfect l-codes in J(a,b) and this is contained in §6.3.

In 86.4 we derive a number of interesting results comnecting
the existence of completely regular codes in J(a,b) and certain

Steiner systems.

The graph J(2b,b) is the setting for §6.5. Since the graph
is antipodal we have the possibility of applying the results of §3.3.
The interpretation of the results of §6.4 in the case of J(2b,b) is
particularly interesting. A great deal of research has already been
carried out on the related Steiner systems; in particular by Ailtop[l],

Hermeso and Assmus [3].

The final section of Chapter 6 illustrates the relationship

between equidistant codes in J(a,b) and finite projective planes.




2, Perfect and Nearly Perfect Codes

We begin with a brief description of the main properties of
distance-regular graphs, The reader should refer to Biggsf1]

for further details and proofs.

2.1 Distance-regular graphs

A distance-regular graph, with distance function 3, diameter

d and vertex set V' is a simple regular connected graph I' of valency
k with the following property. If z € VI and Ti(z) = {uEVT|8(u,z) = i}

then there are natural numbers b0 = k,b b

s5Dyseees 1 -

a-1°%1"

such that for each pair (u,v) of vertices satisfying 9(u,v) = j we

a>€o> d

have

(1) The number of vertices of Fj_l(v) adjacent to u is

cj(O <j < d).

(ii) The number of vertices of Fj(v) adjacent to u is

aj(O < j< d).

(iii) The number of vertices of Fj+l(v) adjacent to u is

b, (0 < <d).

We infer from (i), (ii), (iii) that k = a; + bi + s 0<i<ad

and ¢, + a

d d k with ay = 0 and ¢y = 1.

Let n = |V[|. We define d+1 matrices AO’Al""’Ad each

having n rows and columns indexed by the vertices of T as follows:

(2.1.1)

1 if 9(u,v) = h;
Bl =

0 otherwise.

Then A0 =1 and A A is the usual adjacency matrix of T,

1



The commutative adjacency algebra, UU(T), is the algebra of

polynomials in A (over ); 1in [7, Theorem 20.7] it is shown that
QUT) has dimension d+1 and possesses a basis‘ﬁAo,Al,...,Ad}. The

multiplication of basis elements is given by

d
AA, = -E shiJ.A.j (h,ief0,1,...,a}) (2.1.2)
J—
where the numbers s, .. are called the intersection numbers of I';

hij

these numbers have the following combinatorial interpretation: for

o(u,v) = j

Shi =|{wevl|3(u,w) = h and 3(w,v) = il}] (2.1.3)
Since OUI) has dimension d+1 it can be represented as an
algebra of (d+l) x (d+1) matrices. This representation assigns to
A
each X in QW) the (d+1) x (d+1) matrix X, which represents left
multiplication by X in ((I") with respect to the basis {AO,Al,...,A

A Fal
The matrix Bh = Ah has entries (Bh)ij = g and the matrices X, for

hij
A A
each X in OWT'), form an algebraQU(I). QUT) is isomorphic to GUT)

and has a basis {B Bd}[7, Proposition 21.1].

O,Bl,...,

In particular we see from the triangle inequality that the
intersection numbers Slij are non-zero only when |i-j|€1 and hence
B = B1 is tri-diagonal; the diagonals of B are the rows of the

intersection array of T

" %
1 c2 o ee cd_1 cd
{ 0 a1 a2 e s ad_1 ad
*
’k b1 b2 oo bd_1

and B is called the intersection matrix of I.

d}'

io



From (2.1.2) we infer that for 1 < 1 € d-1

AA, =c; A, taAl+ b AL (2.1.4)
- . A
and by the “isomorphism between QR(I') and QUT)
BB (2.1.5)

+ .B. . .
alBl * b1-1B1—1

i~ %i1Pin
Let Q[A] denote the ring of polynomials in X with rational
coefficients, and let vo(X), vl(l),..., vd(X) be elements of Cﬂk]

defined as follows:
vo()\) =1, vl()\) =A and for 1 € 1 < d

XviO\) =c ) + aivi()\) + bi— v. 1(>\) (2.1.6)

i+1Vi+1 171

For ief{0,1,...,d} vi(A) is a polynomial of degree i in A and from

(2.1.4), (2.1.5) and (2.1.6) we have

vi(B) = Bi’ vi(A) = Ai’ vi(k) = ki (2.1.7)

where ki = |Pi(u)|. We note also that (2.1.6) arises when we

t
consider the eigenvector equation for V(i) =['\6(X), Vi()\),...,Vd()\)]

Bv(A) = Av(}) (2.1.8)

For this reason {vi(k)} is called the eigenvector sequence of I{5].
Using the eigenvector sequence we are able to find each vi(A) from
B and then define for 0 € i £ d

i
xi(k) = jfo vj(A) (2.1.9)

Imls, pageﬂ“ﬂit is shown that (k—k)xd(k) is a rational
multiple of the characteristic polynomial of B and that B has
distinct eigenvalues. Hence xd(A) has zeros Al,kz,...,kd where

KyAesenesd

sAyse are the distinct eigenvalues of B.

d

1



2.2 e-codes in distance-regular graphs

Definitions Let T be a distance-regular graph with distance function

3. For each non-negative integer e an e-code in I' is a subset C of

each
VI such that 93(u,v) > 2e + 1 forypair u,v of distinct elements of C,

If veVl' then we define

L (") = {weVTl|3(v,w)<e} (2.2.1)

and if 9(v,C) = min {3(v,c)} = i then for 0 < h € d
ceC

Py (C>v) = |enT, (v ] (2.2.2)

We call the vector [poi(C,v),pli(C,v),...,pdi(C,v)]t the weight vector

of C with respect to v.

In what follows we prove a generalisation (Theorem 2.2.5) of
an upper bound obtained by Goethals and Snover (14] who used their
bound to define binary nearly perfect codes. In fact their bound

is a special case of a result of Johnson [22],

Lemma 2.2.1 If I' contains an e—code C then

e
I p.(C,bv) <1 for each veVvl with 9(v,C) =1 (2.2.3)
h=0 hi

Proof This is immediate from the definition of minimum distance R

Lemma 2.2.2 If CnFi(v) fﬂf for some i with 0 € i € e then

e
 p,.(Cyv) =1 and ¢
h=0 hi

e+1Pes11 (C¥) < b_p . (C,v) (2.2.4)

for each wveVl.

‘2



Proof The first part is obvious from Lemma 2.2.1. The second part
is obvious if pei(C,v) = 0, SO we suppose pei(C’V) = 1 in which case

i=e. Fl(v) contains vertices at distance e or less from C so

k = II‘l(V)Izpee(C,V)((Be_l)1e * (B)1e) * Py CVIB) g

(B)e‘le * (B)ee * pe+1e(c’v)(B)ee+1([§,4-4-4])

]

Cq + a, + pe+1e(C,V)Ce+1

Using k = Cq +a + be the result follows B

Consider the set Fe+1(v) of vertices of T at distance e+l
from a particular code vertex v, we partition its elements into two

classes:

Ta(v) '{xefe+1(v)|3c€C such that xEZe(c)}

To(v) 3 {xare+1 (v) |8(x,c)>e ¥ cec}
Lemma 2.2.3 For each veC,
lTa(v)| < [be/ce+1 ke (2.2.5)

Proof Since v e C 98(v,C) = 0 and pOO(C,v) =1, plO(C’V) = ,.. =

p2eO(C’V) = 0. By the definition of Ta(v) we have

Now take any zsre(vk then pee(C,z) = 1 and by Lemma 2.2.2

<€ .
ce+1pe+1e(C,z) be Hence

T, @nc| < [be/ce+1] (2.2.7)

13



14

Clearly the sets Te+1(zX1C, for ZETe(v), are not necessarily
disjoint. In fact if we sum the Fe+1(zN]C we repeat each code

i T . )
vertex in 2e+1(v) at least (Be) times Hence

e+l 2e+l

(B)

e’e+l 2e+1 P2e+l O(C’V) < z |Fe+1(z)nC|

z€Fe(V)

< ke[be/ce+1] .

Corollary 2.2.4 For each veC,

ITB(V)I > k- ke[be/ce+ﬂ (2.2.8)
Proof Using (2.2.5) and k_,, = lTa(v)l + ITB(V)| s

Theorem 2.2.5 TFor any e-code C in a distance-regular graph I with

valency k,

k

lc].(L+ x+ ...+ k_ o+ - e (b /c 1 = [be/ce+1])) < |vr|(2.2.9)
ce+1]
Proof A given vertex of I' can belong to at most [k/ce+g of the
distinct sets TB(V). Combining this with Corollary 2.2.4 we obtain
[k/c_ ]| U r,v| > =T |
e+l veC "B veC B
> |C|(ke+1-ke[be/ce+ﬂ ) (2.2.10)
since 11l > Y2, @1+ |t
> ol ekr. .4k ) + - c (ke+1-ke[be/ce+ﬂ )
Cetl

and ke+ = kebe/ce+1 the result follows B

1



5

2.3 Nearly perfect and perfect codes

Codes satisfying (2.2.9) with equality are called nearly perfect.

(We shall often refer to this equality as the sphere packing condition
for nearly perfect codes). In the case of binary nearly perfect
codes we have I'=T (m,2) the m-dimensional binary cube. This graph
has be = m-e and Corl = etl and we see that our definition coincides

with that of Goethals and Snover ['4]. For any nearly perfect e-code

vertices of the graph are at distance at most e+l from the code.

Corollary 2.3.1 TFor any nearly perfect e-code in a distance-

regular graph we have

(1) any vertex at distance greater than e from every code
vertex 1s at distance e+l from exactly [k/ce+1] code

vertices;

(ii) any vertex at distance e from a given code vertex is
at distance e+l from exactly [be/ce+ﬂ other code
vertices.

Proof (i) Let M(x) = {VSCIXETB(V)} for xe{J) Tg(v).

veC

We have already shown in the proof of Theorem 2.2.5
MG | < [k/ce+1] (2.3.1)

We have equality throughout Theorem 2.2.5 and in particular in

(2.2.10)

/e ) | Y@ = Z ]t | and (MG = [k/e ] (2.3.2)



ié

(ii) (2.3.2) and equality in (2.2.10) imply

)
veClTB(V)| - |C|(ke+1_ke[belce+£l)
Hence |TB(V)| = ke+1 - ke[be/ce+J and
T, | =k b e, (2.3.3)

From the proof of Lemma 2.3.3

T (v)| < T |r . (z)nc|
o zePe(v) e+l

< Kk [bo/eg,
and hence [T_ (Nnc| = [b/c_ ] (2l () ®

We define a perfect e—code as a subset C of T such that the sets

L (c), for ceC, form a partition of VI. A consequence of this
e
partition is that IZe(c)|.|C| = |VI'|. We call this equality the sphere

packing condition for perfect codes and write it as
[clx, (k) = [C|(+k+.. 4k ) = |vr| = x4 (k) (2.3.4)

If we repeat the counting argument used in the proof of Lemma
2.2.2 for a perfect e-code C, we obtain pe+1e(C,u) = be/ce+1 for

ueVl and 3(u,C) = e.

Hence a necessary condition for the existence of a perfect e-code in

b = 0 (mod ot (2.3.5)

V)

In classical coding theory (2.3.5) is already well known. From
(2.3.4), (2.3.5) and the definition of nearly perfect codes we see

that perfect codes are nearly perfect.



For the rest of this section we compare the properties of
codes .
perfect) and nearly perfect codes which are not perfect. The proofs
for both classes of codes are similar so we shall prove only the

results for nearly perfect codes. Before we do this, however, we

shall need some more definitions:

For each j = 0,1,...,etl we choose a vertex zj in ' such that

B(Zj,C) = j and recalling (2.2.2)
pij(C,zj) = erClB(x,Zj) = i}]| (2.3.6)

Obviously we can choose z only if be # O(mod ce+1) i.e. if

e+l

C is not perfect.

We define the (d+1) x n matrix Tj’ for j=0,1,...,e+l, as

follows:
1 if 3(u,z.) = 1
(T), = J (2.3.7)
J 0 otherwise .
A simple calculation shows that TjA = BTj and then by (2.1.7),
for 0 g1 d
T.A. = BT, (2.3.8)
i TiT
Using Lemma 2.2.1, (2.3.6) and Corollary 2.3.1 we have
pij(c’zj) = 6ij (i,je{0,1,...,e}) (2.3.9)
pe+1e(c’ze) = [be/ce+1] (2.3.10)

(C,ze+1)=[k/c ; (C,z_,,)=0(0gi<e) (2.3.11)

Potle+l e+1] P Piet+l e

If X is any subset of VI we define its n x 1 characteristic vector ¢
{1 if veX ;

0 otherwise.

by (¢) =

v By a simple calculation we find

17



Let c denote the characteristic vector of C. Then

(Tjg)i = l{xECla(x,zj)=i}|=pij(C,zj) (2.3.12)

and from (2.3.9), (2.3.10) and (2.3.11) the vectors T.c, T.c, ... ,

0 1

Te+lg are linearly independent.

For the rest of this section I' denotes a distance-regular graph
with distance function 3, diameter d and valency k. u denotes the

nxl column vector [1,1,...,1]t.

Lemma 2.3.2 If T contains a nearly perfect e-code C with

characteristic vector ¢ and

A
S = A +.,..¥A + e ([k/ce+1] —[be/ce_l_ij )+ k7+1 , then
ce+]:J ( Ce+1]

(2.3.13)

w0
Xe}
n
e

Proof Let weVl'. If 9(w,C) < e-1 then obviously (Sg)w = 1.

a) If 3(w,C) = e then

1 - @e/ce+1] + IFe+1(W)nCI
LY kle ]

(se),

=1 (by (2.3.10))
b) If 9(w,C) = e+l then

(Se), = Y (by (2.3.11)) B
e

Lemma 2.3.2 holds for perfect codes since part b) of the proof is

vacuously true. We state a related result first proved by Biggs[5]
for perfect codes in distance-transitive graphs. Distance-transitive
graphs are a subclass of the class of distance-regular graphs and the
result generalises easily. The author would like to point out that

many of the ideas used in this chapter are taken from [s].

8
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Lemma 2.3.3 (Biggs [§]) If T contains a perfect e-code C with

characteristic vector ¢ and Se = A0+A +...+Ae, then

1

S ¢ = u (2.3.14) m

A B B
8§ -p+...4B .+ Do (Il J-Tb /e )+ Beri  (2.3.15)
0 el ——— etl e’ e+l
[k/ce+ﬂ lk/ce+ﬂ
then by (2.3.8)
T.S = 8T, (0 < § < etl) (2.3.16)

Lemma 2.3.4 If T contains a nearly perfect e-code and be$0(mod ce+1)
then dim ker S » e+l.
Proof By applying Tj to (2.3.13) we obtain

ST.c = T,u = k (0 < j < e+l) (2.3.17)

where k = [l,k,...,ka]t. {TOE, T.Cy evey T } is a set of

1 e+1S

linearly independent vectors and hence the vectors

TOE - Tlg, cees Tog - Te+lg are linearly independent. From (2.3.17)

A A
we have S(Tjg - Tog) = §Tjg - STOE = 0 for 0 € j € e+l and hence the

A a
kernel of S has dimension at least e+l B

Lemma 2.3.5 (Biggs) If T contains a perfect e-code and

A
= i 2
Se BO+B1+ ...+Be then dim ker Se/e.

proving
Of course in)Lemma 2.3.5 we shall obtain

%eTjg =k (0gji<e (2.3.18)
A
B ig tri-diagonal so Se is 2e+1-diagonal and the entries on the uppermost

diagonal (§) . (0¢i¢d-e), are all non-zero, We know,by (2.3.9), that (T.c)
4 e’i,e+i J=1
(0¢i¢e) are independent of the choice of z; 80 we can use (243418) to find (ch)i

(e+1€14d). Thus Tjg is independent of the choice of z for O<j<e,
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i e~
A similar proof holds when a nearly perfecﬁkcode exists, In this case § is

A
2e+3-4di i
3~diagonal and the entries, (S)i,e+1+i (

by (2.3.9), (2.3,10) and (2.3.11) that (Tjg)i (O¢i¢e+1) are independent of the
choice of 24 80 we can find (Tjg)i (e+2¢icd) from (2.3.17). Thus ch is
independent of the choice of Zj for each j with O<j<e+1,

0¢i¢d-e-1) are all non-zero., We know,

We now prove a result which is analogous to Lloyd's theorem
and generalises a result of Goethals and Snover [14, Theorem 4.3].
Biggs [§ ] proved a generalisation of Lloyd's theorem for perfect
codes in distance-transitive graphs; we state the result (Theorem

2.3.8) for distance-regular graphs.

)

Theorem 2.3.6 If T contains a nearly perfect e-code and be F 3 O(modce+1

then in the ring Q[A] we have the condition,

x() = x__ () + Ve (M) (/e , ) ~Tb fe D)+ Ver1 M (2.3.19)
@jce+1 [k/ce+ﬂ

divides xd(k), or alternatively the zeros of x()\) are eigenvalues of T.
Proof From (2.3.15) and (2.1.7) we have
S = x(B) (2.3.20)

Hence the eigenvalues of § are x{(k), x(kl), .oy X(Xd) where

k, A +es.y A, are the eigenvalues of B. By Lemma 2.3.4 at least

1’ d

A
e+l eigenvalues of S are zero so that the polynomial x(\) has at

least e+l zeros in the set {k,kl,...,Xd}. x(1) is of degree e+l
and from the sphere packing condition |C|.x(k) = |vT|.  Hence x()\)
is a rational multiple of (A-ul)(h-uz)...(k-ue+l) where

{pl,uz,...,ue+1} is a subset of {Al,kz,...,k 1.

d

Finally as mentioned earlier xd(k) is a rational multiple of

(A-Al)(l—kz)...(k-kd) and the result follows. @



We recall the definition of the binary Lloyd polynomial of

degree i

i j m=x, x-1
Q@ = = DETHEH

(0 i< m
. J ]
3=0

We now prove a result of Goethals and Snover[14,Theorem 4.3]

Corollary 2.3.7 If there exists a nearly perfect binary e-code

of length m, with m+t1 # O(mod(e+1)), then the polynomial

Quyy () = Q_; )

[@+1) 7 (e+1)]

Q(x) = Qe—l(x) +

has e+l distinct zeros inb{1,2,...,m}.

(2.3.21)

Proof We apply Theorem 2.3.6 to the distance-regular graph I'(m,2),

the generalised binary cube. The necessary polynomial condition is

that in@Q[X]

x(A) = Xe_l(k) + Ve(k) (Em/(e+1ﬂ - [(me)/ (e+1)]) + Verl

m/ (e+1)] [m/ (e+1)]

21

(2.3.22)

divides xm(A), provided m~e % O(mod(e+l)) or equivalently m+tl # O

(mod (et+1)). Reducing the coefficient of ve(k) in (2.3.22) and using

Dm/(e+1ﬂ = Km+1)/(e+1)] for m+tl % O(mod(e+l))

x(A) = x _l(k) + (Ve(x) + Ve+1(k))
¢ (@ 1)/ (e+1)]
= x _1(1) + xe+1(K) - Xe—l(A)
€ (1) 7 (e+1)]
From [S ,page 296)] we have xi(k) = Qi(x) V<€ 1g€m
where

x = m - @)
2

(2.3.23)

and also xm(X) = Qm(x)is a rational multiple of (x-1)(x~2)...(x-m).

The result follows B



Theorem 2.3.8 If I contains a perfect e-code C then in the ring

@Q[)) we have the condition

xe(X) divides xd(k), or alternatively the zeros of xe(k) are

eigenvalues of T'p

2.4 The weight vector of a nearly perfect code

The related weight vectors of a code can be useful in proving
non—-existence results for codes in distance-regular graphs. In this
section we obtain expressions connecting the related weight vectors

of a nearly perfect e-code.

Lemma 2.4.1 If I contains a nearly perfect e-code and 0 € i < e+l,

then

e-1

I py © + Pei'®  (lv/e,, ]-[b /e, ) + Per1i'D= 1 (2.4.1)
h=1 ’e .3 (k/e_ 3

Proof The result follows by considering the first component of

(2.3.17) and using (Bh)os = Ghs 2

A
Lemma 2.4.2 If § =B+ ...+ B _ +B (Ik/c_, ) —[be/ce+1])

[k/Ce+1]

+ Be+1

ke,
then dim ker S €< e + 1.

A . . A,
Proof Let r(g) denote the rank of S. B is tri-diagonal so S is

2e+3- diagonal with non-zero elements on the uppermost diagonal.

A . A A
Then r(S) > d-e and dim ker S = d+l-r(S)Set+l B

A
Similarly we can prove that dim § < e.
e

22



We now define a more convenient notation for the related weight
vectors of a nearly perfect e-code C. For each j=0,1,...,e+l we

define the vector E(j) as follows:

o), = p;;(©) (0<i<d)
and hence p(j) = Tjg (0gjge+l)
and by (2.3.17) gg(j) =k (Ogjge+l)

N.B. We recall that p(e+l) is onlydefined when be-i 0 (mod ce+1).

If T contains a nearly perfect e-code and be Z 0O(mod ce+1) then

N
by Lemmas 2.3.4 and 2.4.2 dim ker S = e+l and hence { T,c-T.c,T,c-T .c,

1 0 0

R E'TQE }= {p(l)—E(O),E(Z)-E(O),...,E(e+1)-E(0) } is a basis

e+l
A v » . 3 3
for ker S. We are now in a position to obtain expressions for

p(1),...,p(e+l) in terms of p(0).

Theorem 2.4.3

(1) p@) = B,p(0)/k, (Ogige)
(ii) p(e+l) = Be+1—|:be/ce+1 Be
i, -p/c k. B©®
etl Lie "etld e
Proof We suppose i>0 because (i) is trivial otherwise. k is an
eigenvalue of B associated with the eigenvector k. Thus from (2.1.7)

B.k = k.k and
i= i-

A Fa)
SBiR(O)—kiSE(O)

S$(B,p(0)-k.p(0))

B.k-k.k
i- Ti-

=0

23



A
Hence BiE(O) - kiB(O) cker S and
e+l

B,p(0) = k.p(0) + L m < (BG)p0)) (2.4.2)

s=1

The jth component of BiB(O) is

d d
v (B.)..p.~(C)=@.)..+ I (B.).. p, -(C)
p=p L IEEO 1730 opesp  1IEEO

since C has minimum distance 2e+l.
Equating the first components of both sides of (2.4.2)
k., = hX ns (2.4.3)
. . . . .th
(i) Let lgige; if O<jge then the ] component of
(2.4.2) gives

(B.).. = k, if j=i;
1

0 otherwise,

and then (2.4.3) gives N1 = 0. Hence
BiE(O) = kig(i) (0gige) .
(ii) Let i=e+l; 1f O<j<e we have nj = 0. If j=e

we obtain n, = (Be+1)e 2e+1 P23+J O(C)

e+ﬂ by (2.3.3) and (2.2.6),

ke[be/c
(2.4.3) implies Mes1 = ko1~ ke[be/ce+£] which with

BeE(O) = keE(e) gives (ii) B

2¢
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Corollary 2.4.4 If T contains a nearly perfect e~code and be 20

(mod Ce+1) then
e

k
k= 1 k,p(i) + e (b _/c - [b /c Yplet+l) (2.4.4)
im0 i e g © Pelenl 2

Proof The result follows from Theorem 2.4.3 and §E(0) =k a

We can derive similar results for a perfect code. In fact

if T contains a perfect e-code then by the above methods we have

A
dim ker Se = e BiE(O) = kiE(i) (Ogige) (2.4.5)
and
e
k = .Z kiE(l) (2.4.6)
1=0

2.5 Constructing perfect codes from nearly perfect codes

Suppose that the distance-regular graph I contains a nearly
perfect e-code C (with e even) and let D denote the set of vertices of
' at distance greater than e from every member of C,. If be 2 0
(mod Ce+1) and we can establish that D has minimum distance at least
etl then CUD is an é}2—code in '+ An interesting problem is to find
values of the parameters e, [k/ce+ﬂ , [be/ce+1] for which CUD is a perfect

(é/2)-code in T,

We suppose that this is the case; since C is nearly perfect

we have

lc| x, (k) + Ip| = |vr| (2.5.1)

where
lc|x

€

Ip| = -
U{/ce+ﬂ (be/ce+1 [be/ce+ﬂ>

I

k-x



for be = R (mod ce+1), k = X (mod ce+1) and 0< ¥ < Cop1? 1< B < Corl®
From the fact that CUD is a perfect (e/2)-code
| cup| %y, () = |V | (2.5.2)

Combining (2.5.1) and (2.5.2) and using the disjointness of C and D

lc (e, (k) - X0 K)) = D] (x, /5 ()-1) (2.5.3)

and hence,

X =k~ Fepp® "D kg (2.5.4)
G () = %/, (k)

Substituting e=2 in (2.5.4) gives x=k-kB so k divides ¥ and
hence ¥= 0 and B =1, We have a possible set of parameters e=2,
kEO(modc3) and bislﬁmodCB). Before we investigate the case e=2

further we prove that there are no other possible parameter sets
for graphs with k >k, | (1¢ige) and 2<e 4[(d-1)/2]. Each of the
infinite families of distance-regular graphs we consider later
<ige),

has kpk, . (1gige)

If e»2 and kpk, (1¢ie), then

€/2 a/2
k Z k,>%k & k
e . i

i=1 i=1 /241
which we write as
ke(xe/z(k)-l) > k(xe(k) - Xe/Z(k)) (2.5.5)

But (2.5.5) and B> 1 imply that X< O which is impossible.

Theorem 2.5.1 Let I' be a distance-regular graph with valency k.

Suppose that [ contains a nearly perfect 2-code and letD denote the

set of vertices of I' at distance greater than 2 from every code vertex.

If k=0 (mod c3) and szl(mod c3), then CUD is a perfect l~code in T,

26



Proof If e=2 (2.5.1) becomes

|C| (1+k+k2) +| Dl = |VT| (2.5.6)
where [D| = |C|k2/k. Substituting for |C|k2 in (2.5.6) gives
lcup| (1+k) = |vr | (2.5.7)

It only remains to show that every vertex at distance 2
from some code vertex is at distance one from some vertex in D.

Take u€eC and z€T2(u). Let C*=C\{ul}, then for ceC*

cq if zexu(c);

IT; (2)n L) | = (2.5.8)

0 otherwise,

z is at distance three from exactly [bz/c3] = (b2-1)/c3 vertices

of C so
I, n(U | = I |[L@az, () =b, 1.
1 ceC* 2 ceC* 1 Z 2
Hence |F1(ZM1TB(U)| = 1 and z is at distance one from exactly

one element of TB (WWe D »

We shall give an application of this result in a later chapter.
With the same hypotheses as Theorem 2,5.1 we find the weight vector of D.
Corollary 2.5.2 If p(C) = p(0) for the nearly perfect Z-code C and

p(D) is the weight vector of D with respect to any element of C then
p(D) = k,p(3)/k = (c3B3-(b2-1)Bz)2(C)/k (2.5.9)

Proof C is a nearly perfect 2-code and CUD is a perfect l-code.

1£ 5 = 383 + %2 (k-b#1) + B+ 1 then

k k
8p(0)= k (2.5.10)
and (B+I)p(CuD) =k (2.5.11)

where p(CUD) is the weight vector of CUD with respect to a vertex of C,
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(2.1.5) gives
BB2 = 0333 + a232 + b1B

1
(B+I)(BZ+B)/k. C and D are disjoint

+

with which we find 8

and by multiplying (2.5.11) by (BZ+B)/k
A A
Sp(C) + Sp(D) = (B2+B)E/k = (k2+k)§/k
which combined with (2.5.10) gives
A
Sp(D) = k,k/k (2.5.12)

(2.5.10) and (2.5.12) imply that p(D) - k2 p(C) is an element of

A k
ker S whence

p®@ = %2 pc) +
k

™
=

ai(E(i)—E(C)) (2.5.13)

i
Equating the first three compomnents of (2,.5.13)

@, =0 (1<i<2) and

q 3 = kz/k.

Hence p@) = X2 p(3) = X2 B37[ba/e3lB) Loy by Theorem 2.4.3 (i),

K k kg -[b,/c ]k,

and the result follows®

23
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3. Completely Regular Codes

In Chapter 2 we have compared the properties of perfect codes and
nearly perfect codes which are not perfect. We have seen that for a
perfect e-code vertices of the graph are at distance at most e from
the code and for a nearly perfect e-code vertices are at distance at

most e+l from the code.

Suppose now that we have an e-code C with the property that any
vertex of the graph is at most at distance e+m from C,. We pose the

obvious questions:

(1) What conditions must C satisfy in order that we can prove

a result analogous to Lloyd's theorem?

(ii) What properties does C have in common with perfect and

nearly perfect codes when it satisfies these conditions?

In the present chapter we hope to answer these interesting

questions.
3.1 Definitions

We continue to denote a distance—-regular graph by T. If C

is an e-code in T we say that it has external distance e+m if the

maximum distance of any vertex of T from C is et+m, We point out
that this is what Delsarte [ 9] defines as "true external distance", his

external distance being an upper bound for this number.

We choose szVF such that B(Zj,C) = j (je{o,1,...,e+m}) and

call C completely regular if the numbers

plj (Cizj) = piJ (¢) (ie{o, 1,. O‘sd}’jﬁ{o’la e se+m})



depend only on i and j and not on the choice of zj. (Notice that
both nearly perfect and perfect codes are completely regular). We

say that C is locally regular if the numbers

Pij(C,Zj) = le (C) (i,jE{O,l,...,e'Pm})

depend only on i and j and not on the choice of Zj' We shall prove
that an analogue of Lloyd's theorem holds for locally regular codes

and that such codes are necessarily completely regular.

3.2 An analogue of Lloyd's theorem for completely regular codes

(except Section 3.,6)
In this chapteEXC denotes a locally regular e-code with external

distance e+m in the distance-regular graph I. By the definition of

minimum distance it is easy to see

pij(C) = aij (i,je{0,1,...,e}) (3.2.1)
pij(C) =0 for i<y and 1i,je{0,1,...,e+m} (3.2.2)
pii(C) #0 (iefo,1,...,e+m}) (3.2.3)
Lemma 3.2.1 There exist rational numbers o ,0.,.¢e,50 such that
—_— 0° 1 etm
e+m
'Eo oiP; 5 (€ =1 (e{0,1,...,etm}) (3.2.4)
Proof By (3.2.,2) and (3.2.3) the system of equations is triangular
and can be solved uniquely for the ai's s
e+m
Lemma 3.2.,2 If S = % aiAi and ¢ is the characteristic vector
i=0

of C then

Sc = § (3.2.5)

30
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Proof Suppose 3(w,C) = j. Then

e+m e+m
(Sc), = Ioga0) = TPy (C)=lm
1=0 1=0
We define the (d+1) x n matrices TO’Tl""’Te+m as follows:
for je{0,1,...,e+m}
1 if B(Zj,w) =1 ;
(Tj)iw N
0 otherwise s
and from (2.1.7) we find
Tin = BiTj (ief{0,1,...,d]) (3.2.6)
and
T.5 = 8T, where
J J
A e+m et+m
S = I o,B. = % o,v.(B) 3.2,7)
. i1 . i'i
1= 1=0

Lemma 3.2.3 If T contains a locally regular e-code C with external

. 3 A
distance e+m then dim ker S > e+m,

Proof We follow the proof of Lemma 2.3.4 to obtain
éTjg =k (jelo,1,...,e+m}) (3.2.8)

We also have an equality analogous to (2.3.12), namely
(Tjg)i =Py ©) (iefo,1,...,d},jel0,1,...,e+m})

By (3.2.1), (3.2.2) and (3.2.3) the vectors Tlg—Tog,ng—Tog,...,Te+mg

A
-T,C are linearly independent and S(TjE_ToE) =0 for je{1,2,...,e+m}.

The result follows @

Using the eigenvector sequence we define the polynomial

e+m
x(A) = ¢ aiViO‘) (3.2.9)

i=0



Theorem 3.2.4 If T contains a locally regular e-code with extermal

distance e+m then, in the ring @®[)), we have the condition,
x (N divides xd(k), or alternatively,
the zeros of x(})) are eigenvalues of T.

Proof The proof is essentially the same as for Theorem 2.3.6.
S = x(B) has eigenvalues x(k), x(xl),..., x(Ad). By Lemma (3.2.3)
x(A) has at least e+m zeros in the set {k,kl,...,%i}. If we
pre-multiply (3.2.5) by the row vector [1,1,...,1] we obtain

etm

155 uiki'ICl = lVI1 and since ki = Vi(k)

x(&).|c| = |vr| (3.2.10)

Hence x(k) # 0 and the zeros of x(}) are elements of{ll,kz,...,Ad}.
The result follows since xd(k) is a rational multiple of

(A—Al) (A—xz) ees (A= kd) [ ]

N.B. (3.2.10) will also be referred to as the 'sphere packing
condition'. There should be no confusion between the various forms

of the sphere packing condition once the code is specified.

Theorem 3.2.5 A locally regular e-code C with external distance

etm is completely regular.

Proof S is a polynomial of degree e+m in the tri-diagonal matrix B
and so § is 2(e+m) + 1 diagonal. If we know pij(C’zj) for i=0,1,...,e+m
then for any fixed j we can solve (3.2.8) uniquely to determine pij(C,zj)
for i=0,1,...,d. So if pij(c’zj) does not depend on the choice of Zj
for i=0,1,...,e+m it does not depend on the choice of zj for i=0,1,...,d.

Hence if the code is locally regular then it is completely regular W
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We end this section with a generalisation of a result first

proved for perfect codes by O, Heden[iq .

By counting the edges of T between Fi_l(z) and Fi(z)

(for gny z€ VI') we obtain

ke, = b ki g (1gigd) (3.2.11)

Using (3.2.11) and the definition of the right eigenvector
v(}) =[VO(X),V1(K),...,vd(k)]t of B it is not difficult to show that
u(A) = [VO(X)/kO,vl(A)/kl,...,vd(A)/kd] is a left eigenvector of B

corresponding to the eigenvalue A.

Theorem 3.2,7 If the distance-regular graph ' contains a locally

regular e-code with external distance e+m then, in the ringQ}[A],

we have the condition:

for each j=0,1,...,e+m,

d *)
xd(x) divides =xQ), Z i i.(C)
i=0 k. J
i
Proof For the left eigenvector g(k)
u()B =X ull) (3.2.12)
and hence,
u(NS = x(Nu(N (3.2.13

We post-multiply (3.2.13) by Tjg and use (3.2.8) to obtain
u@k = x0)ub)T;c
which can be written as

d d
I u, Mk, =x(A) £ u,(Wp,. ()
i=o * ' i * Y



that is
d d
v, =x() 1 1% 5.
i=0 i=0 k. J
i
d
A 1s an eigenvalue of B so Y vi(k) = xd(k) = 0 and the result
i=0

follows B

3.3 Antipodal distance-regular graphs

In this section we shall show Theorem 3.2.4 can be strengthened
for the case of antipodal distance-regular graphs. The idea of
applying the analogous Lloyd's theorem to the derived graph of an
antipodal graph is due to D.H. Smith [3¢]. In fact by using this
method he has obtained an improved version of Lloyd's theorem which

pexrfect

shortens the proof of the non-existence of binarxXe—codes for e 3 4.

A distance-regular graph T is antipodal if for all u,ij‘O(z)UFd(z)

either u,v) = d or u=v, The basic results on antipodal

distance-transitive graphs are contained in [7]. The results which

do not involve transitivity generalise directly to distance~regular

graphs [13].

For an antipodal distance-regular graph!' we can define a

derived graph 1'. The vertices of T' are the sets Fo(z)UIh(z)

(zeVT), and the vertices Fo(z)urd(z) and ro(z')ulh(z') are adjacent
inT " if and only if there are verticeS'VgIb(z)UPd(z) and'v'er(z’)uFd(z')
such that 3(v,v') =1 inT . If d>2, T' is distance-

regular with valency k and diameter as2].

Lemma 3.3.1 If T is an antipodal distance-regular graph with

intersection array
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*
1 Cy eee Cy 4
0 ay a, ... 85,4 a,
*

k b1 b2 vee bd-l

*
C, «ov Cpy O
Y
*
k Bl * & 9 BD_l

then D = [d/2] and c, = Ci’ai = Ai’bi = Bi for ki< [a/2].

Proof This is contained in [!3, Proposition 4.2) m

Lemma 3.3.2 Iflis an antipodal distance-regular graph with
]

derived graph I' then the polynomial x(\ ) defined by (3.2.9) is the

same in both cases provided eﬂn<@/g.

Proof This follows immediately from Lemma 3.3.1®

We shall generalise Corollary 2.4.5 and use the generalisation

to show that under certain conditions the derived graph contains a
locally regular e-code which itself is 'derived' from the locally

regular e-code in the antipodal graph.

Lemma 3.3.3 There exist rational numbers /e+1, /e+2’ ""/eﬂn

such that for m<e and 1l<t<m

m

e
51/e+spe+t ets (©) = ke+t - =Z k

(C) (3.3.1)

Proof By (3.2.2) and (3.2.3) the system of equations (3.3.1) is

triangular and we can solve uniquely for;’e+1’/%+2""2/e+n1.
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Lemma 3.3.4 Suppose mge. Write [E(j)]i = pij(C) then

e m
k = _§ ij(j) + E ots p(ets). (3.3.2)
1=0 s=
Proof k is an eigenvector of B corresponding to the eigenvalue k so
A A
Sk = x(B)k = x(k)k = x(k)Sp(0)

A proving
and k - x(k)E(OX:ker S. We have already mentioned inAIheorem 3.2.5

A
that S is 2(e+m)+l diagonal so by using the method of proof of
A
Lemma 2.4.2 we have dim ker S<e+m. We combine this with Lemma (3.2.3)

and so a basis for ker § is the set {p(1) - p(0), ..., p(e+tm) - p(O)}.

Hence
e+m
k = x()p(0) + 2 B_(p(s)-p(0)).
s=1
e+m
The first e+m+l components give x(k) ~ I BS =1, ki = Bi(1<i<e) and
s=1
m e
ke+t = L8 e+sPett e+s(c) * .Z kipe+ti(c) (<t<m) .
s=1 1=0
Hence

Be+s /e+s (se{1,2,...,m}) =

Gardiner US, Corollary 4.4] has shown that for an antipodal

distance-regular graph kd<k.

Lemma 3.3 If me, kok for je[a/2] and/e+s>kd (1¢s¢m) then
Fd(c)GEC for each ceC.
Proof From Lemma 3.3.4

e m

k,= I k,p,.(C)+ & P ©).
d 5=0 3 dj S=1/e+s de+s
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pdj(C) is a non-negative integer for each j¢{0,1,...,etm} and since

kj>k for je{2,...,e+m} so de(C) = k; and the result follows B

Lemma 3.3.6 If e+m<{d/2] and Pd(c)E(Jfor all ceC then the derived
1
graph I' contains a locally regular e-code C' with external distance

e+m.

Proof We define the subset C' of VI' as follows. FO(C)UFd(c)sC'

if and only if c€EC. We show
a) C' has external distance e+m;
b) pij(C',T (zj)UTd(zj)) = pij(C’zj) (i,jel0,1,...,e+m}).

Let C' have external distance e+m'. Clearly the maximum

distance of a vertex from the code camnot be greater in the derived

graph so m'<m. Let
Ze+m_1(x) = {weVl'|3(w,x)e+m-1}
and
L' ipe1 X = WeVI" [3(W,X)<e+m-1 in T'}

Suppose 3(x,C) = etm. Every pair of vertices in Ze+m_1(x) are at

distance strictly less than d and so no two vertices ofl

(%)

etm-1

- 1
belong to the same set Ib(v)UTd(v) (vevD). | x) | =|z e+m—1(X)|

e+m—1

- t +
for X = FO(XX)Fd(x) so Ze+m_1(X) consists of the setsI'o(Y)UIh(y)

(y82e+m_1(x)) none of which are code vertices of I'. Hence m'>m.

Before we can prove part b) we need a result of D.H. Smith [35,
Lemma 8]. Although the result is proved for distance-transitive
graphs the generalisation to distance~regular graphs is direct:

. (z.) = T (vUT .3.
I Ty o) Vert‘l(z‘) (Ty(MUT, () (3.3.3)
1]
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If i<[d/2] then by (3.3.3) the vertices of I in

Fi(Ib(zj)UIh(zj)) are the sets TO(V)UT&(V) (VEFi(zj)). Hence

lc'n ri(ro(zj w I‘d(zj)) | | N {T, (VW T () lveri(zj) }

l{FO(V)UFd(v)lvefi(zj)ﬂC}[

ICnPi(zj)l.

(', T . . = Dp.. .) = Pp..
Hence piJ(C . (zJN)Fd(zJ)) le(C,zJ) pIJ(C) for

i,jelo,1,...,etml ®

Theorem 3.3.7 Suppose [ is antipodal and C is a locally regular

e-code with external distance e+m and e+m<[d/2]. If Fd(c)QC for
each c€C then the roots of the polynomial x(}) are eigenvalues of the

intersection matrix of the derived graph I'.

Proof This follows from Lemma 3.3.2, Lemma 3.3.6 and an application

of Theorem 3.2.4 to the derived graph I'm®s

Since T has d+1 eigenvalues and I' has [d/2] + 1 eigenvalues

Theorem 3.3.7 is stronger then Theorem 3.2.4.

3.4 Locally regular e-codes with external distance e

If m=0 we obviously have the class of perfect e-codes in TI. If
I' is antipodal we can apply the argument of Lemma 3.3.5 to (3.3.2) with dy2e+1
(or in fact to (2.4.4)) and obtain Fd(c)EC for each ¢ in the perfect
e-code C (a result proved by O.Heden [2!] using different methods).
Then by Theorem 3.3.7 the roots of xe(x) are eigenvalues of the derived

graph I", (see also [t8, Theorem 2]y .



3.5 Llocally regular e-codes with external distance e+l

If m=1 we can solve the equations of Lemma 3.2.1 to obtain:

Gi =1 (ig{),l,...,e—l });

a = 1- (peﬂe(C)/pe+1 e+1(C)); (3.5.1)
(%+1 = 1/pe+l e+1(C)

Equations (3.3.1) imply

Jer1 ™ Feu1 T EPei1 (O /Py o4 (O (3.5.2)

A locally regular e-code with external distance e+l, then, has

parameters e, p ©, p ).

e+le e+l e+l

We wish to point out that the result of Delsarte P, Theorem
5.13] that codes with 'external distance' e+l are completely regular
does not apply to our more natural definition of external distance.

- {(0,0,0,0), (1,1,1,0) } has external

For example the binary l-code C
distance 2 but p41(C,(0,O,0,1)) = 1 and P41(C’(1’0’0’0)) = 0 and so

C is not completely regular.

We have already remarked that a nearly perfect e-code is locally
regular. The associated parameters are pe+1e(C) = [be/Ce+1] and
Pesl e+1(C) = [k/ce+1] . Next we state the improved polynomial

condition necessary for the existence of a nearly perfect e-code in

an antipodal distance-regular graph.

Theorem 3.5.1 Let[ be an antipodal distance-regular graph with

diameter d and valency k. If there exists a nearly perfect e-code

in T with d32e+l, k <ke/k and be$0(mod ce+1) then there exists a nearly

d

perfect e-code in the derived graphT ' and the zeros of



x()) = Xe_l(K) + Ve(K)(l - [be/ce+ﬂ ) + Ve+1(X)

[k/Ce+1:| Ek/ce+1-J

are eigenvalues of T'.

Proof The proof follows from Lemma 3.3.5, Theorem 3.3.7 and the

_ k _ k
fact that = e (be/ce+1 [belce+ﬂ ) »

- e n
e+l [k/ce+1] T

Another family of locally regular codes with external distance
e+l is the family of binary uniformly packed codes ([15]and[32]) first
defined by Semakov, Zinov'ev and Zaitsev. In fact the definition

generalises directly to distance-regular graphs:

Definition A uniformly packed e-code C with external distance e+l in

a distance-regular graph I' is a code such that

a) if B(C,ze) = e thenl + p (C,ze) = r(ze);

et+le

b) if 8(C,ze+1) = e+l then Posl e+1(C’Ze+1) = r(ze+l),

where r(ze) = r(ze+ ) = r is independent of the vertex z, or z

1 e+l

chosen.

Then p_,1,(C:2,) = Pgup(C) and Py er1C0%as1) T Pesy o410

are both independent of the vertex chosen and so the code is locally

regular and hence completely regular.

From (3.5.1) we have

k) = % _ )+ TePen @ (3.5.3)
€ r
and Theorems 3.2.4 and 3.3.7 apply. With particular reference to

Lemma 3.3.5 and (3.5.2)

Jre+1 = (ke+1 - (r—l)ke)/r (3.5.4)



van Lint [zs, page 175] has already noted that a binary

uniformly packed code with r = Bnﬁl)/(e+1ﬂ_ is nearly perfect. TFor

an arbitrary distance-regular graph this is not necessarily true

because we would require [k/ce+ﬂ to be equal to 1 + [be/ce+ﬂ .

3.6 Generalised uniformly packed codes

The definition of generalised uniformly packed codes [32]

extends directly to distance-regular graphs:

e .. h . .
Definition An mt order generalised uniformly packed e-code C
of external distance e+m (mge) in a distance-regular graph I' is an

e-code such that if 3 (C,z ) = e-m+j and

e—m+]j

e+m
T P, _..Cyz ) =1r(z___ .,C) (3.6.1)
jme-ms] €] e-t]j e-m+]j
then r(ze_m+j,C) = r is independent of j and of the choice of

ze—m+j for 1¢jg2m.

Although this definition does not immediately imply that the
code is locally regular, we can still prove Theorem 3.2.4 for these
codes.

If we have

S = A0 + A+ ...+ A + (A oo v A )/rx

+ .
1 e—m e-m+1 e+m

it is easily seen that Sc=u as in Lemma 3.2.2. We can prove Lemma

3.3.6 and Theorem 3.2.4 in exactly the same way with

x(A) = xe_m(k) + (xe+m(k) - xe_m(x))/r (3.6.2)

4|



4, Codes in the graphs T'(m,q)

4.1 Introduction

We have already given a brief description of the classical
perfect code problem in the case when the alphabet is a finite field.
Recently progress has been made for non-field alphabets. The
non-existence of perfect 2-codes over alphabets with 6 or 10 elements

has been proved by van Lint ( [2¢] and [26] ). Reuvers [#1] has

]

extended these results to gq 2p and p < 20 for e = 2, The results
of Zinov'ev et al [4d] cover q = Za.3b for e > 2 and the most general

result so far, for q = p? pg and e 2 2, is due to Tietﬁvﬁinen[sﬂ .

The binary nearly perfect code problem, very recently settled
by Lindster[ﬁs], relies on a computer search for e < 100 and n <€ 10, 000.
In 84.3 we shall prove algebraically the non-existence of binary nearly
perfect codes for odd e with 5 £ e £ 17. Although it is likely that
this method will easily extend to other odd values of e it does not
help at all when e is even. We also consider nearly perfect l-codes

and 2~codes over an arbitrary alphabet.

Finally in 84.4 we briefly discuss completely regular codes and

obtain an interesting connection with orthogonal latin squares.

4.2 The eigenvector sequence for [ (m,q)

The graph I' (m,q), for m and q not less than two, represents the
m-dimensional vector space over q elements where q is arbitrary. Two
vertices of I' (m,q) are joined by an edge if and only if they differ in

one component. These graphs correspond to the Hamming schemes of

Delsarte [9].

42
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I (m,q) has diameter m, valency m(q-1) and intersection array:

* 1 . i .o s 1 m
0 q-2 een i(q-2) eee (1) (q-2) m(q-2)
m(q-1) (m-1)(q-1) ... (w-i)(g-1) ... qg-1 *

The eigenvector sequence is defined as follows:
vO(A)=1, vl(A)=X, and for lgigm1
(i+1)vi+1(x) + i(q-Z)vi(A) + (m—i+1)(q—1)vi_1(x) = Avi(A)(4.2.1)

In [8] it is shown that I'(m,q) has eigenvalues m(q-1)~-qg
where £e{0,1,...,m}. Hence if v 1is a root of xd(A) for T'(m,q) then

E€=m-(m+v)/q for some £¢{1,2,...,m} and
m + Vv = 0(modq) (4.2.2)

We recall the connection between the eigenvector sequence and the
Lloyd polynomial
> s ,m—x, ,x-1 s
x.(0) =Q.(x)= I -1)"C_DC_(g1) (4.2.3)
i i s=0 i-s’ " s

where
x =m - (m})/q (4.2.4)

It is not difficult to see thatT (m,2) is an antipodal
distance-regular graph and Smith [36] has calculated the eigenvalues

of the derived graphT (m,2)/2 which are:

m, -m, m-4, —(m-4), ..., 4, -4, 0 (m=0(mod 4));)

m, -(m2), m4, —(m-6), ..., =3, 1 (m=1(mod 4)); L
(4.2.5)
m, -m, m~4, -(m-4), ..., =6, 2, =2 (m=2(mod 4));

m, -(m-2), m-4, -(m6), ..., 3, -1 (m=3(mod 4)).)



The following lemma is proved for I (m,2) only.
Lemma 4.2.1 Let 0 € 1i< [(m—l)/2:|. Then

.fm=2
(1) Xzi(O) = x21+1(0) = (-1)1<Tgi>

(—1)i(m-4i—1)(_?r-> ,
@1

(m—3>

— - i 2 »
2
1

m-1
(i) x,,(3) = (—1)1(m2—4m(4i+1)+32i2+16i+3)( ; j ,
(m-1) (m-3)

-
x.. .(3) = (<Dt 4(m—41— )
2i+1 (m—3))<

Proof From (4.2.3), (4.2.4) and q=2 we have x = m— ) and
2

(ii) Xp0 (L)

* j mx, x~1
B DIEHED

xr(k)

coefficient of u° in (1—u)x-_1(1+u)m_X

m—2x+1

coefficient of u’ in (1—u2)x_1(1+u)

[r / 2] m-2x+1, ,x-1

- C I T
m A

= [r/Z] j A+1 2 1
%o(-1)7¢( _2.) .
520 r-2j i

The results follow by substitution W

4.3 Nearly perfect codes inT (m,q)

We consider the binary case initially. If there exists a nearly
perfect binary e-code with m+l # O(mod e+l) then by Corollary 2.3.7 the

polynomial

44
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Q) = Q_ (0 + Q. ® = o _; G @)/ (e+)]  (43.1)

. . integer
has dlstlnchroots between 1 and m.

I'(m,2) is antipodal and by Theorem 3.5.1 the derived graph
['(m,2)/2 contains a nearly perfect e-code provided ke=(Z)>m. Hence

for e>1 the zeros of
x(N) = x,_ Q) + (x_ QA = x__ QY [(mr1)/ (e+1)]

are eigenvalues of the derived graph I'(m,2)/2, We combine this with
(4.2.4) and the form of the eigenvalues in (4.2.5) to infer that the

zeros of Q(x) are even.

Notice from (4.2.3) that if ¢=2 and o is a root of Q(x) then

mtl-c 1s also a root. Both of these roots must be even so m must
be odd. Further suppose a is the smallest non-negative integer
such that e+l divides mtl-a. If e 1s odd then a is even.

We make the substitution z = (m+1—2x)2 introduced by van Lindéb]
and write Q(x) as Q*(z). The relationship between x(A) and Q*(z) is

given by z = (X+l)2.

Lemma 4.3.1 If e 15 0odd and e > 3

e+l

(1) Q* (1) = x(0) = (-1) % (@2)@m-4)...(me+l) (a-1) .
(mt1-a) (e=1)(e=3)...2 >




etl

—_ m-3
(i) Qx(4) = x(1) = (-1) 2 ((a-8)m-2e(a-2)+a) [ 2 | .
(m+1-a) e=3 |’
)
gil_((a—%6)m2+m(48e+16—8ae+4a) m-1
.. _ o 2 \+8e4(a-4)-8e(at+2)+3a q 2
(111) Q*(16) - X(3) = ( 1) (m+1_a) (m_l) (m_3) E—_B
)

Proof Each of the above results follows from Lemma 4.2.1 and the
definition of Q*(z) m.
We suppose in Lemmas 4.3.2 and 4.3%.3
nearly perfect e-code.
Lemma 4.3.2

that[ (m,2) contains a non-trivial

Q* (1) and Q*(16) are non-zero and of opposite sign for

odd e with 5 e € 17.

Proof e >1 so I'(m,2)/2 contains a nearly perfect e-code. We can

exclude the case where there is a single code vertex and since the

diameter of TI'(m,2)/2 is (m-1)/2 we have m  4e+3. Combining this with

a = 2,4,,..,e-1 we easily obtain the result ®
It now follows that if a binary nearly perfect e-code exists

with e odd and 5 < e €17 then we must have Q*(4) = 0,

Lemma 4.3.3 Q*(4) # 0 for odd e with 5€e < 17.

the proof of

Proof Suppose Q*(4) = 0. From%}emma 4.3.2 m » be + 3.

Hence
for a # 2

(4e+3)(a—4) + a — 2ae + ke £ O

which implies a < 6(e+l) and so a = 2 or 4. If a = 4, Qx(4) = 0
(e+2)

implies e = 1, If a =2, Q%¥(4) = 0 implies m= 1

Combining these results we have

Theorem 4.3.4

There are no non-trivial nearly perfect binary e—codes

for odd e with 5 € e € 171
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We now consider the existence of nearly perfect l-codes and

2-codes over arbitrary alphabets.

Lemma 4.3.5 The only nearly perfect l-codes in [(m,q) which are not

perfect are binary.

Proof For nearly perfect l-codes which are not perfect we must have

(m-1) (qg-1) # O(mod 2) i.e. both m and q are even. Then the required

polynomial x(A) = J1(A+2) has distinct integer roots. By (4.2.2) q
m(g-1)

divides both m and m-2, hence q=2 &

Goethals and Snover [i4] have shown that any binary nearly perfect

l-code is either perfect or a shortened perfect l-code.

If I'(m,q) contains a nearly perfect 2-code then the required
polynomial x(A) has three distinct integer roots which we denote by

AI’AZ’A3' From (4.2.2) we infer

3m + in =0 (mod q) (4.3.2)
2 = 2
3m~ + ZmZXi + Zkikj =0 (mod q°) (4.3.3)
w4+ meIA, + mIA A + A AA 0 (mod q°) (4.3.4)
i i 123 U
(4.3.2) and (4.3.3) imply
mZA, +ZA,A. 20 (mod q) (4.3.5)
i i3

Lemma 4.3.6 The only nearly perfect 2-codes inl (m,q) which are not

perfect are binary.

Proof We must have b2 = (m-2) (q-1) o (mod 3) and som i 2 (mod 3)

n

and q # 1(mod 3). Let k = m(q-1) a{mod 3) and b2 = (m—2) (q-1)

ZB(mod 3) where 0 € o < 3 and 0 < B < 3. Then by calculation we find
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Zki = a-Brg-4 (4.3.6)
Zkilj = q(0=B~m)+m+2B-40+2 (4.3.7)
K1A2A3 = 20-m(q-1) (a=B) . (4.3.8)

If we substitute for in and inkj in (4.3.2) and (4.3.5) and

eliminate m then
(B2 + 50+ B+ 6 20 (mod q) (4.3.9)
We consider the four possibilities:

(i) If m =0 (mod 3) and q =2 (mod 3) then® =0 and F=1. (4.3.9)
implies that q divides 8. Hence q = 2 or 8. (4.3.2) implies that
q divides 3m~5 and by inspection x(-1) = 0 and so q divides m-1.

Hence q divides m+1 and so q = 2,

(ii) If m =1 (mod 3) and g = 2(mod 3) thend= 1 and B= 2, (4.3.9)
implies that q divides 14. Hence q = 2 or 14. As in (1) x(-1) =0
and the only possibility is q = 2. The sphere packing condition implies

that (m+1) (m+2) divides Zm+1 which is impossible.

(iii) If m= O (mod 3) and ¢ = O (mod 3) then @= 0 and B = 2.
(4.3.9) implies that q divides 12. The sphere packing condition

implies that

x(k) = (@ (g-1)2 = m(q-1) (g-5) - 2(q-2))/2

2 (mod 3) g cannot be 3 and hence x(k) = 22r—1

divides qm. Since x(k)

for some integer r. Then

m(q-1) (m(q-1) - q + 5) = 2% 4 2(q-2) (4.3.10)

and if q=6 the right hand side of (4.3.10) must be divisible by 5 which

is impossible since 22r + 8 always ends in 2 or 4.



If q = 12 then 4% + 20 must be divisible by 11 which is impossible.

(iv) Ifm =1 (mod 3) and q= O (mod 3) then o=2 and R=1. (4.3.9)
implies that q divides 18. (4.3.5) and (4.3.2) imply that q divides
m-7 and (4.3.4) implies that q divides (m—l)(mz—m—4). Hence q divides

6.38 and so q = 3 or 6,
If g=3 then x(k) = 2m2+m+l is not divisible by 3. If q=6 then
3 2
x(N) = (X = 3X° = 5(m-2)\ + 5m - 4)/(5m~2)

and the eigenvalues of I'(m,6) are 5m, 5m-6, ..., 5, -1, ..., -m.
By inspection we see that x(}) has exactly one negative root. Let
r, s, —t denote the roots of x(A) where r,s,t are positive integers.

Hence r 25, s 25, t > 1 and

rs - rt - st - 5m + 2

rst Sm - 4

which imply

(st-2)/(st+s-t) = rx5
and so

s < (5t-2)/(4t+5)

=1+ (£-7)/(4t+5)
This is impossible since s > 5 ®

Also in [4] Goethals and Snover have shown that any binary
nearly perfect 2-codes have m = 4Y-1 and in fact one such family is

the Preparata codes [30] .
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4.4  Completely regular codes in T'(m,q)

Independently of [19] Goethals and van Tilborg [/§] have defined
completely regular codes in the case corresponding to the graph
I'(m,q). They have also given definitions of t~regular and
generalised ith uniformly packed codes. Their paper contains many

examples of completely regular l-codes with external distance 2.

It is worth remarking that every example of a binary completely
regular e-code in[/5]with external distance e+l satisfies the
condition/e+1 > 1 so the derived graph I'(m,2)/2 contains a completely

regular e-code with the same parameters.

In this section we do not wish to repeat the work of Goethals and
van Tilborg in DS] but we shall give two examples of parameter sets
not contained therein. The first of these examples is connected

with orthogonal latin squares and the second is still an open case.

Example 1

A latin square is a square matrix with q2 entries of q different

symbols (usually the integers O, 1, ..., gq-1) none of which occur twice
within any row or column of the matrix. The integer q is called the

order of the latin square.

Two latin squares L, = [aij] and L, = [bij] on q symbols
0, 1, ..., q-1 are said to be orthogonal if every ordered pair of
symbols occurs exactly once among the q2 pairs (aij’ bij) for

i, jefo,1,...,q-1}.

Using t latin squares we can construct a q-ary code in

r(t+2,q)( [ll , page 355]). Let LS = [aij(s)] (s=1,2,...,t)be



s¢

t latin squares of order q. Then the q2 t+2-tuples
(i,j,aij(l),...,aij(t)) may be regarded as a set of code vertices

in(t+2,q).

In [16] Golomb and Posner obtained the following connection

between mutually orthogonal latin squares and error-correcting codes:

Theorem 4.4.1 (Golomb and Posmner). The following concepts are

equivalent :

(1) a set of t mutually orthogonal latin squares of

order q;

(ii) a code of length t+2 and minimum distance t+1 having

q2 elements constructed from a gq—ary alphabet.

We illustrate Theorem 4.4.1 with an example. We use two

orthogonal latin squares of order 3

L1 = 0 1 2 and L2 = 0 2 1
1 2 0 1 0 2
2 0 1 2 1 0

and construct the l-code C in T (4,3) with elements

(0,0,0,0) (1,1,2,0) (2,2,1,0)
0,1,1,2) (1,2,0,2) (1,0,1,1)
0,2,2,1) (2,0,2,2) (2,1,0,1)

In fact C is a perfect l-code in [ (4,3) and this is the only
occasion when a perfect l-code arises from this comnstruction.
However, in our next result we prove that for q> 3 we obtain a

completely regular l-code with external distance 2.



Theorem 4.4.2 The following are equivalent for q > 3:

(1) a pair of orthogonal latin squares of order q;

(ii) a completely regular l-code in T (4,q) with external

distance 2 and parameters p21(C) = 3, p22(C) = 6.

Proof To prove (ii) D (i) we need only use the fact that the code

has q2 elements and apply Theorem 4.4.1.

In order to prove the converse we first show that the l-code C

constructed from L, = [a..] and L_ = [b..] has external distance 2.
1 1] ij

2
If u = Gl,Bzr,g) is any vertex of I' (4,q) then the code vertex
x = (o B’aOLB’bOLB) satisfies 9(u,x) g 2. If the code is perfect then
by the sphere packing condition q2 = 1+4(q-1) and so g=1 or 3.

Hence C has external distance 2.

It only remains to show that p21(C,u) and p22(C,y) are independent
of the choice of u and y and take the values 3 and 6 respectively.
Let 9(u,v) = 1 for veC and 3(x,u) > 2 for all xeC\v}. Suppose
v = (a,B,J,S) and u = (a,B,J',§) wherej’#/'. If weC and 3(u,w)=2
then w = (S,B,J',n) where exactly one of the equations €=u,5=8ﬂ1=g
holds. Having decided which of these does hold, the remaining components
of w are uniquely determined by the definition of orthogonal latin

squares. Hence p21(C,u) = 3, A similar argument holds when

ue{(a', 8,3/,5), (o, B' ’J’g)’ Can B,J,g') }-

Let 3(y,v) = 2 for veC and 3(y,x) » 2 for all x¢C. Suppose
If w = (€,8,n,8)eC and dw,y=2
v = (a,BQr,g) and v = (q',B'Qf,g)Xthen either ¢ =q' or5==g' (but not
both) and exactly omne of nif, 6=§ holds 2£_€=a',5 =B',-n#[ and

G#S. In each of these five cases the remaining unknown components

of w are uniquely determined by the definition of orthogonal latin
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squares. Hence p22(C,y) = 6. A similar argument holds if

y€{(0t',8,3",8), (a"B,ng')a (uae"f"g)s (Q,B',J/,J'), (Q,B,J',g')}'

We apply the polynomial condition with x(X) = (A-q+4) (A+4)/12,
The roots of x(\) are always eigenvalues of I'(4,q). This is to be
expected since it is known ([#]) that a pair of orthogonal latin
squares exists for every order q except q=6 in which case such a pair

does not exist ([4%]).

Example 2 We end this section with an example of a set of parameters

which is still an open case.

Let a2=4s where s is a positive integer and let m = 2a2+a.
Suppose that C denotes a completely regular l-code in I'(m,2) with

external distance 2 and parameters

PZZ(C) = PZI(C) = (OL2+OL)/2.

Then by simple calculation we find

x () = (A=0) (\+a) / (o2+0)

and

]
B~
e

if
~

x(k)

These parameters satisfy both the polynomial and sphere packing conditions.
Since 2&= (20#1)(0~1) > 1 o and -0 must be eigenvalues of ['(m,2)/2.

This is also true provided s 2 2.

One possible construction of a code with these parameters arises
from a result of Goethals and van Tilborg [15]. Before we discuss this,

however, we must define some concepts of classical coding theory.



We say that a code C in T(m,q) is linear if C is a subspace of
the vector space represented by I'(m,q). The dual (orthogonal) code ct

of a linear code C is defined by:
ct = {uel'(m,q) l (u,v) = 0 for each veC}

where (u,v) denotes the usual inner product of vectors over a q-ary

field.

The weight vector p(0) of C in I'(m,q) is sometimes expressed as
a polynomial A(z) in an indeterminate z
m

A(z) = X piO(C)Zi = z.p(0)
i=0

2,...,zm]. If A(z) and B(z) respectively represent

where z = [l,z,z
the weight vectors of a linear code C and its dual code ch then the

following equality holds ( [14, page 121])

lc|.B(z) = (1+(q=1)z)™ A(—=Z

e (4.4.1)

((4.4.1) is usually called the MacWilliams identity.)

Theorem 4.4.3 (Goethals and van Tilborg). A linear l-code C is

completely regular with external distance 2 if and only if its dual
code CT contains only vertices at two distinct distances from the code

vertex (0,0,...,0) B

In the proof of the above theorem ( [IS, page 21] ) Goethals
and van Tilborg establish that if C* has weight enumerator B(z) = 1 + lewl

+ NZZWZ then the parameters of C are given by

2p,,(C) = (m-1) (q-1)+(m(q-1)~qw; +1) (m(q-1) ~qw,+1) (4.4.2)

2p22(C) m(q—1)+(m(q-1)-qw1)(m(q—l)—qwz) (4.4.3)
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We return now to the case in hand. If a linear binary code D

exists with weight vector represented by

2 2
D(z) =1 + (ZCE—a—l)za‘ + (20L2 + a)za.+q

then the dual code Dt has, by (4.4.1), weight enumerator

2 2
AGz) = 1 (M2)™ ™+ @or1) (1) { @) (1) + a(1-2)")
2
lited
ptis obviously a l-code and if we let C = p% and apply Theorem

4.4.3 we see that C is completely regular with parameters given by
(4.4.2) and (4.4.3). By substitution we find p21(C) = p22(C) =
(a2+u)/2. So one method of construction of a completely regular
l-code with these parameters would be to construct first a linear code

with weight vector represented by D(z).



5. Codes in the graphs O,

5.1 The graphs Ok (sometimes referred to as the odd graphs) have been
studied by various authors( [7], [rs], [19]). The vertex set of 0, is
the set of(k-l}subsets of {1,2,...,2k-1} and two vertices are joined if

and only if their labels are disjoint. For example O, is the complete

2

graph on three vertices and 0, is Petersen's graph.

3

For k 2 2 the graphs Ok are distance-regular with diameter k-1.

The intersection array is

* 1 1 . r-2 r-2 r-1 r-1

0 0 0 e 0 0 0 r for k=2r-1,
2r-1 2r-2 2r-2 .o r+l  r+l r * and

® 1 1 r-1 r-1 T

0 0 0 .. 0 0 r for k=2r

2r 2r-1 2r-1 ves r+l r+l *

The eigenvalues of 0, are Ai = (-l)l(k-i) (0 1< k-1). The

k
labels of a vertex u and any vertex vefi(u) have (i-1)/2 elements in

common if i is odd and k-1-(i/2) if i is even. Then for vertices x

and y of 0k

3 (x,y) » 2e+l if and only if e < |xpny |€ k-e-2 (5.1.1)

Using the graph 0k we can construct another distance-regular
2k-1 . .
graph 2.0k. The k-valent graph 2.0k has 2.( k—l) vertices indexed
by the sets (x,1) where x is a k-1 subset of {1,2,...,2k-1} and

iefo,1}. Two vertices (x,i) and (y,]) are adjacent if and omnly if

x and y are disjoint and 1 # j. 2.0k has intersection array
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* 1 1 . k-1 k-1 k
o 0 0 oo 0 0 0
k k-1 k-1 .. 1 1 *

and eigenvalues Ai = *(k-1) (0 €£1< k-1).

We note that 2.0, is an antipodal distance-regular graph with

k
derived graph Ok'

5.2 Construction of codes in O,
0"

The main result of this section is that given an e-code in
I'(2k-1,2) we can, under certain circumstances, construct an e-code
in Ok' We illustrate this result by investigating the possibility
of constructing a perfect l-code in Ok using the binary Hamming

codes mentioned earlier.

The graph I'(m,2) is antipodal and each vertex x of I'(m,2)
has a unique antipodal vertex x' = (1,1,...,1) + x.(the component
addition being modulo 2). We shall call an e-code C in ['(m,2)
antipodal if the antipodal vertex of each element of C is also

contained in C.

Lemma 5.2.1 If C is an antipodal e-code in T'(2k-1,2) then the

vertices of weight k-1 form an e-code in Ok.

Proof Suppose x,y are elements of C of weight k-1. From the

definition of the distance function 9' in I'(2k-1,2)

3'(x,y) = number of places in which x and y differ

2k-2-2 |xny | (5.2.1)
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C is antipodal so y' = (1,1,...,1) + yeC and 9'(x,y')>2e+l.
Then 2e+l1 < 3'(x,y') = 2k-1-9'(x,y) and using (5.2.1) | xnyla'e.
Similarly ¥ (x,y)»2etl implies that | xpAy|<k-e-2 and the result

follows from (5.1.1) @

The perfect binary Hamming 1-codes inI (m,2) have vertices of

r-1
a

weight (m+1)/2 where m=2"~1 ([14,page 25] ). If k = 2 nd

m = 2k-1 then by applying Lemma 5.2.1 we obtain a l-code in Ok'

The perfect Hamming l-code in I'(7,2) is the first non-trivial

case to consider. This code has seven vertices of weight 3 which
form the perfect l-code {123, 145, 167, 246, 257, 347, 356 Yin 04.
We prove now that this is the only occasion when the
construction gives a perfect l-code in Ok'
Lemma 5.2.2 If k»4 the vertices of weight k-1 in the Hamming code
in I'(2k-1,2) form a l-code in Ok which is not perfect.
Proof Let k = 271 and suppose r>»4. If p(0) is the weight vector
of the binary Hamming code in T'(2k-1,2) and z = [1,2,22,...,22k—ﬂ
then from [21, page Zi]
1 () F D k-1 e ¥ ek
2p(0) = 3 T
1 @) k1 -2 e (5.2.2)
2k 2k
2k-1 2k-1 k-1
From (5.2.2) Pr_1 O(C) = %E ( k-l) * (k/z—l)' If these

vertices of weight k-1 form a perfect l-code in 0k then by the sphere

packing condition

1 2k- k-1 k-1 . _ 1 2k-1
% (1) * o G- T TR (e’ (5.2.3)

= =
—



Letcxr = (25:1) then (5.2.1) can be rewritten as

(k+1)(2k—1xlk/2 = (k-lXxk (5.2.4)
Now & = %291 /k) (2-1/ (k-1)) ... (2-1/(k/2+1))1 . ;, and hence
k/
oy > 2 Zuklz (5.2.5)

k/
(5.2.4) and (5.2.5) imply that 2 2 £ 2k+4 which is impossible

for k=2r_1 unless k=8. The result follows because k=8 does not

satisfy (5.2.3)m

5.3 The eigenvector sequence for O,

1%

We use the eigenvector sequence for 0k to obtain results about
the roots of xe(k) for e> 1. We hope that these results may prove

to be useful in future work on non—existence results for Ok'

Some of the results require only a simple inductive proof which

we shall sometimes omit or indicate briefly.
The eigenvector sequence for Ok is defined as follows:
vo(l) =1, vl(k) = A,

(s+1)v, ,  (N+(k=8)v, _ (N D, (X) (1<s <l(k-2)/2)) (5.3.1)

2s+1

(s+1)vzs+2(>\)+(k—s)vzs(>\)='>\vzs+l()\) (oss <[(x=3)/2]) (5.3.2)

A much more useful form of these equations can be obtained from
a simple inductive argument applied to (5.3.1) and (5.3.2) :
i
for xi(k) = ILv.(A)
j=0 7

(s+1)x2$+1(?\)+(k—s)x25_1(}\)=(>\+1)xzs(>\) (1ss (k-2)/2]) (5.3.3)

(s+1)x (>\)+(k-s-1)x23(>\)=)\x25+1(>\) (0<s <Kk—3)/2]) (5.3.4)

2s+2



Lemma 5.3.1  For s=0,1,... [(k-2)/2]

Xpgep (1) = 0 (5.3.5)

Proof This follows from an inductive argument applied

to (5.3.3) 8

Corollary 5.3.2 If Ok contains a perfect e-code with e odd, then k

is even.

Proof Suppose 0k contains a perfect e-code with e odd. By

Theorem 2.3.8 the roots of xe(l) are eigenvalues of O Then -1 is

K
an eigenvalue and since the eigenvalue of smallest absolute value is

(--1)k+1 k is even B

Lemma 5.3.3 For 0< s < [(k—2)/2]

s k~1

i) x, (0) = © = DY

2s x23+1

(i) x, (1)

(—1)S<k22s—§)<k§'>, %y (D=CD%2F)
k-1

(2)

]

(iii) x (-1)% (k2-3k-6ks+6s 2+65+2) (<51)

2s (k-1) (k-2)

(2) = (-1)%3@-25-2) (53%)

X
2s+1 "-2)

Proof These results follow from inductive arguments applied to

(5.3.3) and (5.3.4) m
Lemma 5.3.4 For 0< s < [(k~2)/2]
(1) x25(>\)=xzsl->\—1) ;
(1) Az, ) = -OeDxy ) A1),

Proof By simple calculation we can show that (i) and (ii) hold

for s=0 and 1. We suppose inductively that (i) and (ii) hold



6¢

for sgm. 1If we replace A by -A-1 in (5.3.4) and use the inductive
hypothesis
(m+1)x2m+2(—K-1) + (k—mrl)XZm(A) = Ax2m+1(k) (5.3.6)
Comparing (5.3.6) and (5.3.3) X2m+2(k) = x2m+2(—k-1).

Similarly from (5.3.3) for s=mtl

- (1) (@), 5 (-A=1)+ (k-m=1)x M=% () (5.3.7)

2m+1 2m+2

Comparing (5.3.7) and (5.3.3) for m+l we have

—(K+1)x2m+3(—X—1) = A )

X2m+3

and this completes the proof®m

From Lemma 5.3.4 we can already see that if o 1s a root of

xe(X) and O # -1 then -0~1 is also a root.

Theorem 5.3.5° If x (M) has roots A ,A_,...,A then
e 1’ 2 e

A A A= =
PHotee [(e+1)/2] (5.3.8)
A A )\ = _ e+[e/2] ' k-1
Do Aem D) [er1) /9 {e/2) 1 ( /2 (5.3.9)
Proof (5.3.8) follows from Lemma 5.3.1 and the observation made

after Lemma 5.3.4.

By differentiating (5.3.3) and (5.3.4) to the order of the highest

power of A and using the notation f(t)(k) = (Eﬁ)t(f(k))

[(x+2)/2) xg’l'l)(O) = (r+1)xff) (0) (0<T<k-2) (5.3.10)

and so,

x(’:{l)(o) = (r+1)" (0 K k-2) (5.3.11)
t Te+2)/D 1 [(r+1)/3 !




Hence the coefficient of}\e in xe(}\) is 1/[(e+l)/2] '[e/2]! and

A = (D er/A 1/ tx (0)
- -netle/d
= (-1 [(e+1)/2) (/2 ! ([ /2]

by Lemma 5.3.3 ®m

It will be useful to separate the odd and even cases of e.

We suppose that x2rCK) has zoots c&;&,...,ar,-(u +1),...,—(qr+1).

1
In order that we can find 2 o (a +1) we shall need Zli% which
i=1
involves our finding the coefficient of AT in xr(k).
. (2r) _ ., 2r (2r+1) 2r+l .
Lemma 5.3.6 (1) X, 1 0 = (), Xy 49 0) = ( r )

(i1) 2(f§ D oy = —(ek-4r-5) 35=h
—%
(1) 6y = ((r+2) (4r+3)-6k(r+1)) 2
Xor+2 r r (r r) .

6(r+1) r

Proof . (i) From (5.3.3) and (5.3.4)

(28) (o)

xz(ii) (0) = 2s xgzs Doy + *2s
s s+1 s+1

= 25 %, 25V 0) + (1%2s)!

s+ 28 MY (5.3.12)
and
(2s+1) - (2s)
Xoo40 (0) 2s+1 Xoosl (0) (5.3.13)
S+l
The proof follows from an inductive argument on (5.3.12) and
(5.3.13).

(ii) Also from (5.3.3) and (5.3.4) we have

(2s) _ (2s-1) e (2s)
X942 (0)-—é§%.xzs+l (0 (%sf1§).xzs (0)
<26 1, BV () - G .(DE (53,10
s+1 TS+l



é3

and
2s-1)
(2s-1) _ (2s-2) ( (2s-1)
Xporl ©) = (2511).x28 0) + X, ) - (E:g).xzs_l (0)
s pore s+1
(2s-2) 2s-1
= (25—1).x2 (0) - (k=s-1).\ s-1 (5.3.15)
o t————— S e ————
s+1 s+l
The proof is completed by an inductive argument on (5.3.14) and
(5.3.15)8
If e=2r+1 then
x (2r-1)
EAiA' = T2r+l (0). 2r+1)! = =r(r+l) (6k-4r-5)
— [)
(2r-1)! i} (2r+1)(o) 6
2r+1
. r
and since Zﬁ.ﬁ = r(r+l) - ;} a.(ai+l)
2 i=1
r
z ai(ai+1) = r(r+l) (3k-2r-1) (5.3.16)
i=1 3
Similarly if e = 2r
Z%_L = -r (6kr-(r+l) (41~-1))
] 6
and
r 2
r o.(a.+1) = r (Bkr-2r"-1) (5.3.17)
. i1 =
1=1 3

5.4 Perfect codes in O,
n

We shall divide §5.4 into five parts: in part (a) we obtain
a lower bound on k; in parts (b), (c), (d) and (e) we investigate
the existence of perfect l-codes, 2-codes, 3-codes and 4-codes

respectively.

A result which seems worth mentioning is that 0k contains

a perfect e-code if and only if 2.0, contains a perfect e-code.
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This follows easily from the results of §3.3 and the definitionms

of Ok and 2.0k.

a) A lower bound

The method we use here has already been employed by D.H. Smith

to obtain an analogous bound in I'(m,2) Elb , page 162] .

Theorem 5.4.1 If O, contains a non~trivial e-code then

k
k 2 e2+4e+2 (e even) and k e2+4e+3 (e odd).
2 2
Proof Case 1 e=2r. We assume that p2e+1’O(C) is non-zero.

Notice that ¥(x,y) = e-2,e-1,e respectively as the labels of x and y
have k-r,r-1,k-r-1 elements in common. Also the labels of Fo(x)
and Te+1(x), Fe+2(x), Fe+3(x) have respectively r,k-2-r,r+l elements

in common.

Similarly, the labels of To(x) and T x), T2e+2(x)’ T (x)

2etl 2e+3

have respectively 2r, k-2-2r, 2r+l elements in common.

First we count in two ways the vertices of Fe+ (x). Each vertex

1

of Fe+1(x) is at distance e from exactly one code vertex ofIée+1(x).

Let the vertex of Te+1(x) have q elements of the labelling set in

common with To(x) and the code vertex of T2e+1(x):

r
k-1, ko 2r, k-1-2r, k-1-2r . ,2r+1
ko1 ™ Ce )(r+1)"P2e+1,o(C)'qio( q)( r-q )(k-l—r—q)( q )
2r, ,2r+1
= p2e+1,o(C)(r)( )

Similarly, counting in two ways the vertices of Fe+2(x):

k=2-21 492y 2r+l 21+l k=2r-1

k-1,, k
ke+2=(r+1)(r+1)=p2e+2,0(‘c)' qio ( q )(k-Z-r-q)<k—1-r—q)(q—k+2r+2)



k-1-2r 2r+1

r-1-q ) ('k—Z—r-q) (q+2 )

r-1
2r, k-1-2r
* P2e+1,o(c)'q=zo(q)(

2r+l, 2r+l

= Poer2,0@ )Gl

2r
r-1

) + © T ETh

Poe+1,0

We combine these equations to obtain

k-r+1 _ r 2r+1
T - el T el {P2ei2,0(0/Pyeiy o))

Now countingl‘e+3(x) in two ways:

m+1 .
(kL k| _ 2r+l, k-2r-2, k-2r-2, 2r+2
e+3_(r+1)(r+2) p2e+3,0(c)' q:%( q )(r+1-q )ﬁ—l—r-q)( q*l)

ol o-or. 2r+l 21+l . k-2r-1

©. { )(r+1—q)(r—1—q)(k—2r—1—q

( )
q=0 1

*Pre+2,0

Tl k=1-2r. k-1-2r. ,2r+l

+P2e+1,0(c)' [q;%( q)(r+1—q )(k—r—q )(q—Z )

r+l
-1~ -1-2 2
. 3 2Ty kole2ry k-1-2r r+1)]

DD X G B G

q=0 q’ ‘r+l—q k-1-r-q q-1
_ 2r+1, 2r+2 2r+1, 2r+1
_p2e+3,0(c)'( T ) ( r )+p2e+2,0(c)(r+1 )( r—l)

2r 2r+1 2r, ,2r+l
)+ I

2r 2r+l
+Pyer1,0(0) [ e ) (k=2r-1)+(C, ) ¢ ))

T

Eliminating Poes? O(C) from these two equations gives
’

(C)=k2—2k(r2+3r+1)+(4r3+10r2+6r+1)
(2r+2) (2r+l)

Pye+3,0 ) Poer1 0

Because p2e+3,0(c)/p2e+1,0(c)> 0, k <412-+2 or

k >4r2+8r+2 . Hence k < e+l, which corresponds to a trivial code,
22
or k> e +4e+2
2

é5
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C _ . . .
ase 2 e=2r+l. Again we assume p2e+1’0(C) is not zero. In this
case 3(x,y) = e-2,e-1,e respectively as the labels of x and y have
r-1, k-r-1, r elements in common. Also the labels ofIb(x) and

Fe+1(x), T (x), re+3(x) have respectively k-2-r, r+l, k-3-r

e+2

lements i . Simi
elements in common imilarly the labels of FO(X) and er+1(x),rze+2(x),

F2e+3(x) have respectively 2r+l, k—-3-2r, 2r+2 elements in common.

The proof goes through in the same way, the relevant equations

being
(i) (o) = Pyes1,0 ) HEND
(rEZ)(ili) B (ziii)(2§+2)P2e+2,o(c) ¥ (2;:})(2r;2)P2e+1,0(c)
) = A, © + Iy, 4©
rperno©- (DA +aer a0 DI

+ G220 CTH D)

Again eliminating Pret? 0(C) we have
b

(2642) (204302, _y 5 (O /Py O(C)=k2ﬁE(2r+6)(2r+2)+l(2r+2)2(2r+4)
b4 b 2 2

so  (k-(e+l).(e+3))(k-e-1)>0 and the result follows B
2

b) Perfect l-codes in O,

Perfect l-codes are known to exist in 04 and 06(and hence in 2.04
and 2.06) and these codes form Steiner systems $(2,3,7) and S(4,5,11)

respectively. We shall show, in Theorem 5.4.3, that any perfect l-code

in 0k is a Steiner system S(k-2,k-1,2k-1) (first proved by P.J. Cameron)

and a Steiner system S(k-2,k-1,2k-1) is a perfect l-code in Ok.



Remark We point out that the line graph of 0, is an example of a

4
non-trivial graph which contains a perfect l-code but which is not

distance-regular.

Lemma 5.4.2 If a Steiner system S(k-2,k-1,2k-1) exists then k+l

is prime.

Proof A well known necessary condition for the existence of an
Sx(t,d,v) design is that (i:g) divides A(Z:E) for h=0,1,...,t~1.

In this case we have k-1-h divides (2k-1-h) (2k-2-h)...(k+2)/(k-2-h)!
for h=0,1,...,k-3. Let p be any prime between 2 and k-1, then for
h=k-p-1, p divides (k+p) (k+p-1)...(k+2)/(p-1)! and so p does not
divide k+1. Since k>2, k does not divide k+1 and the result

followsnm

Theorem 5.4.3 Let C be a subset of the vertices of Ok. The labels

of the vertices of C form an S(k-2,k~-1,2k-1) Steiner system if and omnly

if C is a perfect l-code.

Proof Suppose that O, contains a perfect l-code C and that? 1is the

k
set of labels of the elements of C. Any pair of elements of C are

at least at distance three apart so their labelling sets cannot have
k-2 elements in common. Hence each (k-2)-subset of the ground set is
2k-1

contained in at most one element of 77 . Since lCI(k-l) = ( k—2) it

follows that each (k-2)-subset is in fact contained in exactly one

element of G.

Conversely, suppose that 75 is an S(k-2,k-1,2k-1) Steiner system}

we show that the set of vertices C labelled by blocks of 6 formsa perfect

l-code in Ok' There are (zt—i)/(k+1) such verticest we show that the

minimum distance between them is three. No two blocks of & have k-2

elements in common so no two vertices of C can be at distance two.
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We now show that no two blocks of & are disjoint in order to show

that no two vertices of C can be at distance one.

Without loss of generality we assume that {1,2,...,k-1} is a
block of {5 and show that every other block contains at least one of
the elements of {1,2,...,k-1} . We use the notation N(aubu o uf),
N(anbn...nf) to denote the number of blocks of 75 containing the elements

aorbor ...or f, aand b and ... and f respectively. By the principle

of inclusion and exclusion we have

N(1lU2u. . (Uk=1)=N(1)+N(2)+.. . +N(k-1)-N(In2)-.. .-N(k-2ak-1)+

et DN (AN, L k-1

Let rj denote the number of blocks of § containing j particular

elements of {1,2,...,k-11. Then

r. = (2k-3-1)! 1 2k-j-1
&3-D DT - 5T © Gejm2 ) [+, page 50]).

Hence
k-2
N(W2u...0k-1) = I DSEHES) 14
o=1 s s—1 ;
k=2
-1-s k-1, k+
=1-_1_ . I DFTEELES
(k+1) s=1

.. -1 . - -k-1
By equating the coefficient of xk 1 in (1+x)k 1(l+x) and
(1+x)_2 we have

k-1 _
T (_1)k—1—s(ksl)(k;s) -k o+ (-l)k
s=1

Thus

1) =1 - -1 1 2k-1
N(lu2vu...Uk-1) = 1 k11|k+1_(2t_1ﬂ - e & = el

and so no two blocks are disjoint®

(34
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Equation (2.3.18) for a perfect l-code gives (B+I)p(0)=k.

The component equations are

k2r=(k—r)p2r_1+p2r+(r+1)p2r+1 1< r < [(xk~2)/2])

Kore1 = (T00Py %Py * (4D ©< r< [=3)/2D)

where pi=pi0(C) and (k-r)k2r=(r+1)k2r+ These equations enable us

1

to prove inductively that

Py (©) = _15_;_17_ Pyr-1,0(® (1< r < [&-1)/2])  (5.4.1)

It then follows by countingI’zr that

© =k, _ Py o (O 1 < [(k-2)72] ) (5.4.2)

r+l

Por+1,0

If we manipulate these two expressions we obtain the following

explicit form for Py 0(C):

_ o r=1 k-1, r-1 .
2,00 TGP 7 2 enidlp Ger s end)

For k+1 prime each term in the summation will be divisible by k+1
and hence Poy o(C) (r=0,1,..., kk—l)/Z]) are integral and positive.
b
Since k2r+1 = &;; . k2r and k+1 is prime, r+l divides k2r and from

(5.4.2) Pyrsl O(C) (r=0,1,...,[(k-2)/2]) are positive integers.
5>

(We can prove a similar result if pi=pil(C)).

Hence we have shown, independently of the existence of a perfect
l1-code, that the weight vector always has positive integer components if
k+l is prime. This may be considered as supporting evidence for the
possible existence of other perfect l-codes in 0., although Theorem

5.4.3 and the conjecture that no t-designs exist with t>5 indicate that

no other perfect l-codes in 0k are likely to exist.



c) Perfect 2-codes

Theorem 5.4.4 There are no non—-trivial perfect 2-codes in 0k

for k < 3081.

Proof If Ok contains a perfect 2-code, then by the polynomial
.. 2 .
condition xz(x) = )\ +Mk+1 has eigenvalues of Ok as zeros. The
roots of xz(k) will be of the form o, -o-1 where o> O and k-1 = a(w+l).

Hence k is odd and so ¢ is odd, which gives k=1—2r+4r2 for a positive

integer r.

If r=1 we obtain the trivial perfect 2-code in 03, SO we assume

for the rest of this section that k > 13.

A .
Since 829(0) = (B2+B—(k—1)I)E@F k we can obtain explicit

expressions for the components of p(0). In particular,

2

(©) = k(k-1)2 (k-3) (k-5) (k>=15k>+87k-181) / (5!)2

P10,0

2+87k—181 is never divisible by 5, 52 divides

and since k3-15k
k(k-l)z(k-B)(k—S). But k=1—2r+4r2 and consequently k is not
divisible by 5 and hence 52 divides r2(2r—1)2(2r+1)(r—1). We have

four possibilities:

(1) r Z0(mod 5) , k = 10082+1903+91 (s=0,1,...) :
(1i) r = 3(mod 5) , k = 100s2+110s+31  (s=1,2,...) :
(iii) r = 1(mod 25) , k = 2500s°+150s+3 (s=1,2,...) ;

12(mod 25) , k = 2500s2+23503+553 (s=0,1,...)

(iv) r



We can eliminate some of the cases by using the sphere packing

2k-1
k-1

2
14k~ = 2(4r2+1)(r2+(r—1)2). Let p denote r2+(r—1)2. Since r > 3

condition: 1+k2 divides ( ). Substituting for k gives
we have 5p > 2k-1 > 4p, 3p > k and 2p < k-1. Consequently when p
is prime it is relatively prime to (zi:i) = (2k-1)...(k+1)/ (k-1)! and

the sphere packing condition 1is not satisfied.
Case (i) r = O(mod 5)

The first value of r for which p is non-prime is r=45 and so
for k of the form 10032+19Os+91 there are no perfect 2-codes

in 0k for k < 9901.

Case (ii) r = 3(mod 5)

The first value of r for which p 1s non-prime is r=28 and so
for k of the form 10032+1103+31 there are no perfect 2-codes in 0k

for k < 3081.
Case (ii1) r = 1(mod 25)

If s=1 then p=1301 which is prime and so for k of the form

250032+150s+3 there are no perfect 2~codes in 0k for k < 10303.

Case (iv) r = 12(mod 25)

If =0, r=12 and p=265=5.53 but 53 is relatively prime to (1;22)‘

Hence for k of the form (iv) and k < 5403 there are no perfect 2-codes

in Ok'

By combining the results from these four cases the theorem is

proved. R
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d) Perfect 3-codes

Theorem 5.4.5 If O, contains a non-trivial perfect 3-code then

k
. 2
(i) k= 32r" + 20r + 4 (r=1,2,...) 3 or
(ii) k = 12812 - 24r + 2 (r=1,2,...)

Proof  From (5.3.3) and (5.3.4) we find x,(3) = (1) Q2+A-2(k-1)).

2
Since -1 is a root of x3(k) and hence an eigenvalue of Ok’ k must be
even. The other roots of x3(K) are of the form -(2s-1),2s where s>0 and

25(2s-1)=2(k-1). But k is even and so s is odd and hence k=1+(4t-1) (2t-1)
for t=1,2,...
If t =1 then k = 4 and this corresponds to the trivial perfect
R A
3-code 1in 04. We assume that t > 1. From 832(0) = k we are able

to calculate

Py o(© = K (k-1) 2 (k-2) (k-4) (k>~22k2+197k~584) /3. (51)2

and since k is even 2% divides k(k-2) (k~4) (k>-22k2+197k~584) .
Let q = 4t2 - 3t + 1 so that k = 2q and 22 divides
q(q—l)(q—z)(4q3-44q2+197q—229). Either q is even or q = 1(mod 4)

i.e. t is odd or divisible by 4. The two possibilities followm

e) Perfect 4-codes

Theorem 5.4.6 If Ok contains a non—trivial perfect 4-code then

k 2 4061.

Proof By the results of §5.3 we can assume that x4(K) has roots
ﬁf,Qr—l,u,-Ohl with J’and @ positive integers. By (5.3.9) and
(5.3.17) OL(OH—1)19+1) = 2(k-1)(k-2) and }%+1) + o @+l) = 2(2k-3).

Ifn = o(o+l) then



n° - (4k=6)n + 2(k-1)(k-2) =0 and so
2 i
n = 2k-3 * (2k"—6k+5)%,

If 0, contains a perfect 4-code then N is integral and

2

2k “=6k+5 2

2 .

r for some integer r > 1. Hence (k-—l)2 + (k-2)2 =r
and the first integer solution r=5, k=5 corresponds to the trivial
perfect 4-code in OE' The next solution is k=22, r=29 so we shall

assume that k 222,

. 2
The equation (k-2)° + (k-—l)2 = r2 has general solution as

follows [29, page 190]:

. 2
(1) k even k-2=2xy, k—1=x2—y , r=x2+y2 so that x2—2xy-y2-1=0 which

. 1
gives x=y+(1+2y2)2. Let £ = x-y then the equation gz = 1+2y2

(¢ > 0, y >0) has general solution given by Es = (1+ /E)Zs - 32
(s=1,2,...) [26, page 210] and hence k = 2 + 2y (y (1-v2)+ (1+v2) %9)
for s=1,2,...

(ii) k odd k-l=2xy, k-2=x’-y’, r=x’+y’ which gives k=l+2y(y+£ )

where y,E% satisfy Ei = 2y2—1 and Es + yv2 = (1+/§)ZS+1

The first four possibilities for k are 22, 121, 698 and 4061.

A
From 842(0) = k we obtain

4k (k=1) 2 (k=2) 2 (k=5) (k=17) /65"

We can rule out the first three cases using the fact that

pll’o(C) must be integral B

Remark We have seen, in sections (b), (c) and (e), how it is possible

(s=1,2,...).
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to consider particular values of e and obtain reasonable non-existence results.

However it appears that without the use of the sphere-packing condition

it is not even possible to deal completely with any particular value of e.



4

For example, in the case e=2, if k=4r2—2r+1 the existence of the
factor k-1 = r(4r—-2) in each component piO(C) (i »5) means that

for any fixed value of 1 piO(C)’ P ), (C) will be

i-1p “e%2 P5 o
positive integers for some suitable value of r. Similarly if

e=3 we have a factor k-2 in each piO(C) 137,

5.5 Nearly perfect codes in O,

Having made the comment above about the perfect code case,
we shall show in this section that we can obtain more definite non-
existence results for nearly perfect e-codes which are not perfect and

with e odd.

Suppose e=2r+1 and r > 1. We omit the case e=1l since c2=1 and

all nearly perfect l-codes are perfect.

Let k¥ = a(mod (r+l1l)) with O < a € r then

Porge© = Lar-1)/(r+1)] = (k-r-1-2)/(r+1) and
Poriesry(C) = [ K/G+1)] = (k-a)/(r+1). On substitution into (2.3.19)
we find
(k=2)x(D) = (x+1x, (N + (a-r-Dx, (W)
and by (5.3.4)
(k-a)x(X) =Xx, (D = ax, (N (5.5.1)

Theorem 5.5.1 If 0k contains a nearly perfect e-code which is not

perfect and e is odd then e 2 15.

Proof Suppose that 0k contains a nearly perfect e-code which is not

perfect and let e=2r+l. Using (5.5.1) and Lemma 5.3.3 we derive the

following:



75

r+1(k—1>
(1)  (k-a)x(0) = (-1) a\ r ;

r+l [ k-1
-1)

(ii)  (k-a)x(1) r)(k(a—Z)-Zr(a—l)-—(a-D) ;

1
*-1 5
r+1 k—l) [k (a-6)-k(3a+6ar—-18r-18)
(-1 ( T +a(612+67+2)~12r2-247-12

(iii) (k-a)x(2)
(k-1) (k-2)

By Theorem 2.3.6 x()) must have roots in the set

{ ~(k=-1),k=2, ..., (-1)¥*1y,

If 1 ¢r 2 then 1 ¢ a ¢ 2 and obviously x(0) and x(1) are non—zero

and have opposite signs - a contradiction.

If 3 <r <6 thenl<x a<x6. For non—trivial codes we have
k >»2e + 2 = 4r + 4 which is sufficient to ensure that x(0) and x(2) are
non—zero and have opposite signs. Hence x(1) = 0 and k(a-2) =
2r(a-1) + (a-2). If a=1 or 2 then k=1 or r=0 respectively. For a > 2

k=2r+1+ 2r < 4r+]1 - a contradiction. The result then follows.®
a=-2

It seems very likely that by considering x(A) for other integral

values of A we shall be able to extend this non—existence result.

Suppose now that e=2r with r>l. If k = a(mod(r+1)) then

0 <a<<r-1 and

(k~a)x(}) = (X+1)X2r(A) - (at)x ) (5.5.2)

2r-1

We find, when we calculate x(0), x(1) and x(2), that the sign of
x(1) and x(2) is independent of the value of a. This means that we
cannot repeat the rather simple proof of Theorem 5.5.1 to obtain

similar non-existence results.

However, we illustrate the case e=2 since it is an example of an
application of Theorem 2.5.1. If e=2 we need b2=k—1 ;'O(mod 2) and hence

k must be even. But then we can apply Theorem 2.5.1 and obtain a



perfect l-code. We have already established that a perfect l-code 1is
a Steiner system S(k-2,k-1,2k-1) and so it seems unlikely that a

nearly perfect 2-code exists in O, for k > 6. In fact 0, does

6

contain a nearly perfect 2~code indexed by the following 2-(2,5,11)

k

design
1 2 3 4 5 2 4 7 8 9
4 5 6 9 10 2 3 9 1011
3 5 7 8 10 1 5 7 9 11
3 4 6 7 11 1 4 8 1011
2 5 6 8 11 1 2 6 7 10

If we had not already known the Steiner system S(4,5,11) we could

have obtained an explicit form from the nearly perfect 2-code above.

From the form of the roots of x(}) = (k+1)(k2+k—k)/2
k=2r(2r+1) and the next value of k to satisfy the sphere packing

condition is k=42.

7
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6. Codes in J(a,hb)

6.1 Introduction

We have already mentioned Delsarte's investigation[li] of an
analogue of a design in association schemes. For the case of the
Johnson schemes, which correspond to the graphs J(a,b),Delsarte
has shown that his definition coincides with the classical combinatorial

idea of a design,

Biggs [6] has also extended the concept of a design to a
connected finite graph and his definition is of a more combinatorial
nature. As in Delsarte's case the definition coincides with the

classical designs for the particular case of the graph J(a,b).

In §6.5 and §6.6 we investigate some interesting connections

between combinatorial designs and completely regular codes in J(a,b).

As we shall see later in the chapter the nature of the intersection
array of J(a,b) increases the difficulty of considering the existence of
particular codes in the graph. For this reason we can only prove the

non-existence of nearly perfect l-codes in J(a,b) at present.

6.2 Eigenvalues of J{(a,b)

The graph J(a,b) has (B) vertices indexed by the b-subsets of the
set {1,2,...,a}. Two vertices are joined if and only if they have b-1
elements in common. J(a,b) has valency k=b(a-b) and when a > 2b the

graph is connected with distance function

3(u,v) =b - |unv| (6.2.1)

and diameter b.  The graph is distance-regularfor a > 2b and has

intersection array



2 .2 2

* 1 . e s 1 .. b
0 a=2 e i(a=21) e b(a-2b)
b (a-b) (b-1) (a-b-1) . « o (b-1)(a-b-1i) .. *

For any distance-regular graph xd(x) is a divisor,in Q[\], of
the characteristic polynomial of the intersection matrix. To find
the eigenvalues of J(a,b) we need to calculate the roots of xb(k).

The eigenvector sequence for J(a,b) is defined as follows:

V@) =1, v, 0) =X and for 0< i< b

(D%, ) + i@-20)v, (D) + (b-i+1) (a-b-iv1)v; ;) =Av; 0)

(6.2.2)
If we make the following substitutions in (6.2.2)
XA = u(u-a-1) + b(a=-b) (6.2.3)
Ei(u) = viO\) (0g 1 b) (6.2.4)
we obtain
(i+1)21~:i*$u) + (i(a-2i)~u(u-a-1)-b(a-b))E, (w)
+ (b-i+1)(a—b—i+1)Ei_1(u) =0 (0< 1< b) (6.2.5)

In fact (6.2.5) defines a family of orthogonal polynomials called
the Eberlein polynomials ([t0] , [87] ).  An explicit form of these

polynomials is given in [ 9, page 70] as follows:

a—bfu)

. (0 €1 £b) (6.2.6)
1]

i .
_ 13U b-u
Ei(u,a,b) = j__)E:O ( ]-) (j)(i"j)(
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Lemma 6.2.1 If Ei(u,a,b) is defined by (6.2.6) then

E,(u,a,b) = E_(u-1,a-2,b-1) (6.2.7)
o 1 T

I e

i

Proof The proof follows easily by induction.f
(6.2.4) and (6.2.7) imply

i .
_ _13J (u~ly /b-u, .a=b-u

and in particular,

a) = : -3 TH T EPTY (6.2.9)
* 5=0 ] b-j b-j

Suppose that oe{1,2,...,b} and,Aa =g @ ~a-1)+b(a~b)

then ao-1» 0, b- o >0 and consequently 6x31) =0 for j> -1 and

b

(b—j) =0 for j < o. Hence xb(la) = 0 and J(a,b) has eigenvalues

{0, ¢ -a-1) + b(a-b) :a = 0,1,...,b}.



6.3 Nearly perfect l-codes in J(a,b)
Suppose that v is an eigenvalue of J(a,b) then there exists
ae{ 0,1,...,b} such that Q?—a(a+l)+ab-52=v . Hence there is an

integer x, such that

(a+1)2 - 4b(a=b) + 4y = x\)z 6.3.1)

Similarly if y is another eigenvalue of J(a,b) then there

exists an integer X such that

2 2
(a+1)” - 4b(a-b) + 4y = 6.3.
(ab) + by = = (6.3.2)
We combine (6.3.1) and (6.3.2) to obtain

(xv—xu)(xv+x79 = 4(v-u) (6.3.3)

and from (6.3.1) it follows that

a = 2b-1 + (xvz - 4y - 4b)? (6.3.4)

We choose the positive square root in (6.3.4) because a 3 2b.

Theorem 6.3.1 There are no non-trivial nearly perfect l-codes in

J(a,b) with (b-1)(a-b-1) # O(mod 4).

Proof Since b1 = (b-1)(a-b-1) # O(mod 4) we have only a small number

of cases to consider. We illustrate just two since the method is

identical in every case:

(1)
(b(a-b)-a)/4 and p,,(C) = [k/c2] = b(a-b)/4. We substitute these

If b = 2(mod 4) and a = O(mod4) then p,, (C) = [b,/c,] =

values into (2.3.19) and find x(}}) = A(}*+2)/b(a-b). If y=0 and

u

a

-2 (6.3.3) has solutions X'v=.i3’ xh =3+1. (6.3.4) gives

1 . . .
2b = 1 + (9-4b)?2 and the only possible integer solution is a=4,b=2,



(1i) If p=2(mod 4) and a = 1(mod 4) then we find x(}) =

(*2)(-1)/(b(a-b)=2). Let v= -2 and 1 = 1 then (6.3.3) has
1

solutions x = 12, xu =+4, (6.3.4) implies a = 2b-1+(12-4b)?

and this has integer solution a=5, b=2m

6.4 Completely regular codes and designs

The first result in this section is due to Delsarte [9]) .

We include a short proof since Delsarte's proof is not explicit.

Lemma 6.4.1 (Delsarte). If J(a,b) contains a code C with minimum
distance § and ICI = (i)/(E), where t=b-&1, then the elements of C

form a Steiner system S(t,b,a).

Proof Let t = b-&1 and let x denote a t-subset of {1,2,...,a}.
If there exist u,vel such that unvex then o (u,v) = b—lunvlSG—l, a

contradiction.

If XI’XZ""’Xr denote the t-subsets of {1,2,...,a}, where
r = (:), and X, is contained in Xi elements of C then ki =0 or 1.
Let X denote the mean of kl’AZ""’Ar then
b a

r
151 A= lel ) =

which implies A =1 and hence each Xi=1.l

We shall use Lemma 6.4.1 in the following results which connect

completely regular codes and designs.

Theorem 6.4.2 1f J(a,b) contains a completely regular l-code C with

bl b
external distance 2 and parameters p21(C) = ("27) and p22(c) = (2)’

then C forms a Steiner system S(b-2,b,a).

¥i



Conversely a Steiner system S(b-2,b,a) is a completely regular

l-code in J(a,b) with the above parameters.

a
b-2

result follows from an application of Lemma 6.4.1.

Proof By calculating x(k) we find ICl = ( )/(bEz) and the

Conversely suppose C is a Steiner system S(b-2,b,a).

Any two blocks of C have at most b-3 elements in common and hence
C has minimum distance three. Obviously C has external distance not
greater than two. If C is perfect then -1 is an eigenvalue of J(a,b) and
there exists ge{1,2,...,b} such that g (y-a-1)+b(a-b)=-1. Ifg =b then
b=1. Let a=b-j then b=j2+j(a-2b+1)+1 and since j >1 we have a & 3b - 3.

By the sphere packing condition for a perfect l-code

1+b(a=b) = (2)/|c| = (a-b+2) (a-b+1)/2
and hence

1
a=(4b=3+(4b2-12b+17)2)/2 > 3b - 3

which is a contradiction. We have shown that C has external distance

exactly two.

Suppose v and c are vertices of J(a,b) with ceC and 9(e,v) = 1.
Then |cnv| = b-1. Let v\¢ = {m}. By definition
p21(C,V) = |{x€C|8(x,v)=2}|=|{x€C|Ixnv| =b—2}|. If lxnvl = b-2 and

x€C then x contains T and exactly b-3 elements of c. In fact x is

the unique block containing these b-2 elements. Hence pzl(C,V)
b-1, _ ,b-1

We can use a similar argument to show that for any vertex y with

-2, 2 b-2 b
B(7,0) = 2 ppy(Cy) = 1+ G * G = ()-8



The polynomial condition is satisfied because the roots of

x(3) = ()tb) \-a+3b-2)/2b(b-1) are eigenvalues of J(a,b).

Theorem 6.4.3 If J(a,b) contains a completely regular code C with

minimum distance 2 (we consider C to be a O-code with plO(C) = 0),
external distance 1 and parameter pll(c) = b, then C forms a

Steiner system S(b-1,b,a).

Conversely a Steiner system S(b-1,b,a) is a completely regular

code with the above parameters.

Proof We omit the proof since it is almost identical to the proof

of Theorem 6.4.2.9

Once again the polynomial condition is satisfied with

x()) = (+b)/b.

Notice also that when b=k-1 and a=2k-1 we have a perfect l-code

We now use a property of Steiner systems to obtain further

completely regular codes.

Theorem 6.4.4 (i) If J(a,b) contains a completely regular l-code C

b
9)

b-1
with external distance 2 and parameters pzl(C) = ( 9 ) and p22(C) = (
then J(a-i,b~1) contains a completely regular l-code Ci with external
b-i~-1 b-i
distance 2 and parameters p21(Ci) = ( 9 ) and p22(Ci) = ( 2 )} for each

i with 0 €1 £ b-3;

(ii) If J(a,b) contains a completely regular code C
with minimum distance 2 and parameter pll(C) = b then J(a~i,b-1)
contains a completely regular code C. with minimum distance 2 and

parameter pll(%) = b-i for each i with 0 <i <b-2.

23
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Proof The existence of the Steiner system S(t,h,a) implies the
existence of the Steiner system S(t-i,b-i,a-i) for 0 ¢ 1ig t-1
[ﬁ » page 103} - To obtain (i) and (ii) we simply apply Theorems

6.4.2 and 6.4.3 successively.@

We mention one other connection between completely regular
l1-codes in J(a~b) and Steiner systems. This result, however, is

weaker than Theorem 6.4.2 and Theorem 6.4.3.

Theorem 6.4.5 If b is even and greater than 2 and J(4b-8,b) contains

a completely regular l-code C with external distance 2 and parameters

p22(C) = b/2 and le(C) = 0, then C forms a Steiner system S(b-3,b,4b-8).

Proof Suppose that J(4b-8,b) contains such a code C. The relevant

polynomial x(A) = (A+b) (A=-3b+10)/2 has eigenvalues as its roots and from

4b-8

the sphere packing condition |C| = ( b=3

)/(2_3). The result follows

from an application of Theorem 6.4.1. B
6.5 J(2b,b)

The graph J(2b,b) is obviously antipodal and each vertex has a
unique antipodal vertex, namely its complement in the set {1,2,...,2b}.

The derived graph J(2b,b)/2 has diameter b/2].

With a view to applying the results of §3.3 we consider the

codes of Theorem 6.4.2 and Theorem 6.4.3.

The Steiner systems S(b-1,b,2b) associated with the codes of
Theorem 6.4.3 have been studied by several authors ( [¢], (3], 4] .
These designs exist and are unique for b=2,4 and 6. With the assumption
that the automorphism group of the design is flag-transitive Assmus and

Hermeso [3] have shown that the designs exist only in cases b=2,4 and 6.



Returning to the parameters of the code we find /, =b > 1 and
by Lemmas 3.3.5 and 3.3.6 J(2b,b)/2 contains a completely regular
code with the same parameters. It seems likely then that the only
completely regular codes of this type are in J(12,6), J(8,4), J(4,2)
(and their derived graphs) and by Theorem 6.4.4 in J(11,5), J(10,4),

J(9,3), J3(8,2), J(8,4), J(7,3) and J(6,2).

Next we consider the Steiner systems S(b-2,b,2b). Although
we omit the details it can he shown thatéfz < 0 and also that the
polynomial condition is not satisfied for J(2b,b)/2. This is not
surprising because if the code satisfied the premises of the following

result then 2/(b+2) would need to be integral.

Theorem 6.5.1 (Alltop [¢7] ). If an sx(t,b,Zb) design exists with t even

and such that the complement of each block is a block, then the design

is already an Sn(t+1,b,2b) design withn = A (b-t)/(2b-t).

Another result of Alltop [f] which has interesting applications here

is the following:

Theorem 6.5.2 If an Sx(t,b,Zb) design exists with t even then an

Sx(t+1,b+1,2b+1) design also exists.

If we apply Theorem 6.5.2 and Theorem 6.4.4 we obtain the

following:

Theorem 6.5.3 (1) J(2b,b) (with b even) contains a completely

regular l-code C with external distance 2 and parameters

b-1 b, . . .
p21(C) = ( 9 ), p22(C) = (2) if and only if J(2b+1,b+1l) contains a

1. 1, _ b 1, b+l
completely regular l-code C~ with parameters p21(C ) = (2),P22(C )=( 9 )
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(ii) J(2b,b) (with b even) contains a completely
regular code C with minimum distance 2 and parameter pll(c) =b if and
only if J(2b+1,b+1) contains a completely-regular code C1 with minimum

distance 2 and parameter P11(Cl) = b+1,

6.6 Equidistant codes and finite projective planes

A set of vertices C with mutual distance §in a distance-regular

graph T will be called a §-equidistant code. When I'=Na,2), §=2k and

|c| = m our definition coincides with Deza's[#] . Deza calls this

latter code an (m,2k,a)-code.

A finite projective plane is a finite set X together with a

family G of subsets of X satisfying
(1) Each distinct pair x,veX belong to exactly one c el ;
(1i) Each distinct pair c,c1 e & contains exactly one common xeX;

(iii) There are at least four elements of X having the property that

no three of them belong to a single c¢ el.

It can be shown [Il, page 161] that if some cg¢ &> contains

b+1 elements of X then all members of ¥ contain b+l elements and

|5| = | X| = b2+b+1. & is then called a finite projective plane of
order b. A finite projective plane of order b is equivalent to a
2

Steiner system S(2,b+1,b"+b+1) [4 , page 51].

Theorem 6.6.1 J(b2+b+1,b+1) contains a b-equidistant code with

b2+b+1 elements if and only if there exists a finite projective plane

of order b.
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Proof Suppose a projective planeﬁz of order b does exist. Then O
contains b2+b+1 elements. If x and v are distinct members of

then |xny |= 1 and 9 (x,¥) = b in J(b2+b+1,b+1).

. 2 . - . gs
Conversély, suppose J(b +b+1,b+1) contains such a b-equidistant
2
2 +b+
code C. Then IC| = b +b+1l = (b g 1)/(b;1) and by Theorem 6.4.1 C

is a Steiner system S(2,b+1,b2+b+1).l

Given a vertex x of J(a,b) we can identify x with a vertex x1 of
I'(a,2). We do this in an obvious way by choosing the components of
1 .
X~ to be 1 when indexed by elements of x and O elsewhere. In terms

of T (a,2) xl has weight b.

Let x,y be vertices of J(a,b) and xl,y1 respectively be the
identified vertices in T (a,2). If 9 and 81 denote the distance

functions in J(a,b) and [ﬂ(a,Z) respectively then
3 vt = 200-Ixay ) = 283G,y (6.6.1)

Using this identification and Theorem 6.5.1 we can prove a result

of Deza {ll] .

Corollary 6.6.2 (Deza Dzﬂ ). If a projective plane of order k exists

then provided a is sufficiently large a (k2+k+2,2k,a)—code exists.

Proof Suppose G is a projective plane of order k then ﬁy Theorem 6.6.1
G is a k-equidistant code in J(k2+k+1,k+l) with k2+k+1 elements. We

now allow 7 to represent its identification in T(k2+k+1,2). By (6.6.1)

6 is a 2k-equidistant set in F(k2+k+1,2). If we choose a large enough
we can increase the length of each element ong by k-1 1's to give a
2k-equidistant code in T'(a,2) where each element has weight 2k. By adding

. 2
the all-zero vector to this set we have the required (k™ +k+2,2k,a)-code. [
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