
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

32 | P a g e
www.ijacsa.thesai.org

A Generic Framework for Automated Quality

Assurance of Software Models –Implementation of an

Abstract Syntax Tree

Darryl Owens and Dr Mark Anderson

Department of Computing

Edge Hill University

Ormskirk, Lancashire

Abstract—Abstract Syntax Tree’s (AST) are used in language

tools, such as compilers, language translators and transformers

as well as analysers; to remove syntax and are therefore an ideal

construct for a language independent tool. AST’s are also

commonly used in static analysis. This increases the value of

ASTs for use within a universal Quality Assurance (QA) tool. The

Object Management Group (OMG) have outlined a Generic AST

Meta-model (GASTM) which may be used to implement the

internal representation (IR) for this tool. This paper discusses the

implementation and modifications made to the previously

published proposal, to use the Object Management Group

developed Generic Abstract Syntax Tree Meta-model core-

components as an internal representation for an automated
quality assurance framework.

Keywords—software quality assurance; software testing;

automated software engineering; programming language

paradigms; language independence; abstract syntax tree; static

analysis; dynamic analysis

I. INTRODUCTION

To ensure the reliability of output, it is imperative that
Software Quality Assurance (QA) is adopted in the
development and maintenance of scientific software systems
[1]. The integration of such techniques can either be
performed manually, which is labour intensive, or utilise
automated toolkits [2] [3] which alleviate these problems. The
automated toolkits are limited in the respect that they are
language-, paradigm- or problem-specific. This paper
proposes a framework that would address these limitations by
introducing a taxonomy of generic techniques combined with
a generic internal representation (IR) of languages. The
framework also covers a range of different language
paradigms. This paper also proposes a form of IR
representation that could be used as an intermediary between
QA techniques and source code.

When considering the broad range of programming
paradigms the differences between the languages, such as the
constructs and data types, need to be addressed. This paper
focuses on addressing issues in procedural and object-oriented
languages as these are the most widely adopted paradigms in
the development of scientific software [4].

II. ABSTRACT SYNTAX TREES

In order to address syntactical differences, Abstract Syntax
Trees (AST) are adopted as ‘a formal representation of the
software syntactical structure’ [5]. At a surface level, the
underpinning constructs of many procedural languages appear
similar, and removing syntax from these would make all ASTs
analogous. However, the resulting ASTs produced following
analysis of source code are based on a broad range of factors,
such as the context-free grammar used to define the language
syntax [6]. It is therefore highly likely that the generated
ASTs for simple algorithms implemented in different
programming languages can prove to be fundamentally
different. These differences can become even more significant
when addressing additional language features, such as data
types.

III. CURRENT APPLICATIONS OF ASTS

The primary usage of ASTs is to facilitate the
implementation of compiler tools. For this purpose, ASTs are
built from token streams after lexical analysis of source code
[7]. However, the usage of ASTs now encompasses the
implementation of many language related tools, such as
interpreters, document generators and syntax-directed editors,
etc. [8].

One such use that an AST can support is in duplicate code
detection, whereby an AST designed to support data matching
efficiency [8] requires only a pattern to be found. The
significance of this is that only an initial node needs to be
identified which is subsequently followed by a predetermined
pattern of nodes. This technique is similar to that found in the
plagiarism detection techniques, which makes use of code
comparison, described by Cui et al [9]. Equally, code analysis
techniques can be implemented using node counting.
Removing code comments and disregarding layout metrics
produces better comparison metrics from this technique
compared to those collected from source code [10].

A major development of ASTs lies in language translation,
which occurs by producing an AST for a specific language.
The AST can then be parsed whilst introducing the syntax of
the output language.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

33 | P a g e
www.ijacsa.thesai.org

After the tree has been parsed, the resultant code should be
complete and functional in the output language syntax [11]
[12]. A working example of this technique is adopted by
Mono as a working and functional example of the approach in
action [13]. Mono is a framework that allows the use of the
.NET platform upon other devices than just windows via the
use of language translation.

IV. GENERATING ASTS

In order to generate ASTs, ANother Tool for Language
Recognition (ANTLR) is a tool which uses a grammar input
and can produce recognisers, compilers and translators [14].
Of significance to the project presented within this paper is
that the ANTLR compilers can build ASTs from source code
[14]. Utilising ANTLR, an example of the fundamental
differences that can be generated in ASTs from simple
algorithms is presented. In this example, a simple “Hello
World” program written in Java and C#.

Fig. 1. Java Hello World AST

Fig. 2. C# Hello World AST

It can be seen from the ASTs depicted in Figure 1 and
Figure 2 that there are fundamental differences between the

representations of a simple program in two similar object-
oriented programming languages that are included in the
ANTLR repository [15].

Clearly there are some similarities between the ASTs; for
example the class node has the name, modifiers and body.
However, the significant differences between the AST’s is
directly related to the grammar files.

V. LANGUAGE INDEPENDENCE

A key requirement for the successful implementation of
the proposed analysis framework requires language
independence to be implemented in order to separate any
reliance on the QA procedures from the syntax and semantics
of the source code programming language. The Object
Management Group (OMG) has initiated a number of projects
to investigate the development of generic ASTs. Broadly
there have been two tiers adopted for the approach, the
Abstract Syntax Tree Metamodel (ASTM) and the Knowledge
Discovery Metamodel (KDM). The KDM is a standard to
facilitate interoperability for exchange of data between tools
that may be provided by different vendors [16]. The KDM
complements the ASTM and both are designed to work
together. The extent to which they do is questionable as the
link between the ASTM and KDM can best be described as
fuzzy [17]. However the KDM is less relevant in the
development of the proposed framework, as the KDM focus
on migration of software artifacts and not representation of
language, so the focus is on ASTM and the Generic ASTM
(GASTM) which is defined in the ASTM specification [18].

VI. TESTING / QUALITY ASSURANCE AND AUTOMATED

APPROACHES

There is a wide range of toolkits developed for testing
software [19] [20] [21] [22] [23] [24] and, broadly, these are
targeted at the automation of testing to reduce workload
required to test software applications. An initial survey of the
available toolkits has revealed that most tools that apply QA
techniques to multiple languages only do so on a small-scale.
Generally this is in the range of 2 – 5 languages [2], and also
focused on languages which share a programming paradigm. It
is also noted that the more generic toolkits with a broader
coverage of programming paradigm instead have a restriction
in terms of the areas of testing which are covered [2].

There are two types of analysis within QA; dynamic and
static [25] [26]. Whilst both offer advantages, combining
these techniques results in a broader impact as a result of QA
[18] [19]. Static analysis facilitates an abstract view of a
program and examination of source code without code
execution [27], and also supports the identification of such
potential issues as memory corruption errors, buffer overruns,
out-of-bound array accesses, or null pointer de-references
[28].

Dynamic analysis is the analysis of code as it is executing,
and therefore extracting accurate values of variables under set
circumstances is a key target [25]. This technique can be used
to run functional, logical, interface and bottom-up tests
amongst a range of supported testing [25]. The combination of
static and dynamic analysis allows for a larger coverage of QA

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

34 | P a g e
www.ijacsa.thesai.org

techniques and a tool which implements both of these analysis
types would be more comprehensive [29][30].

VII. PROPOSAL FOR ABSTRACT SYNTAX TREE

A proposal for the use of the GASTM as a form of Internal
Representation (IR) for automated quality assurance was
theorized under the ideas that both static and dynamic analysis
could be implemented upon this IR via the processes described
by the flow diagrams in figure 3, 4 and 5 [31].

Fig. 3. System Data Flow

It was identified that by using the GASTM, static analysis
could be possible via implementing tree walkers. In essence
this would entail replacing source code analysers, and could
implement automated quality assurance techniques such as
metric and pattern matchers as well as allowing the GASTM
to be converted to a control flow graph for data flow analysis.

Dynamic analysis however is a more complicated matter.
By using a generic monitor class, nodes could be inserted into
a program before conversion into a runnable language. These
inserted nodes would call method in the generic monitor class
allowing for information about data, properties or runtime
information to be pulled out and recorded or analyses whilst
the program is running.

VIII. IMPLEMENTATION

LIQA (Language Independent Quality Assurance), is the
implementation of the research discussed in this paper.
Utilizing tools that have been previous developed by third
parties, LIQA implements a middle layer to facilitate
interaction using bespoke code and breaks down a subset of
the Java language forming the GASTM representation of the
source code.

Fig. 4. Static Analysis Data Flow

Fig. 5. Dynamic Analysis Data Flow

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

35 | P a g e
www.ijacsa.thesai.org

A. LIQA Functionality

LIQA was designed for practical use within a lab setting.
A GUI (Graphic User Interface) was developed to control the
overall work flow as well as visual representation of the
GASTM IR (Internal Representation) structure to allow quick
assessment of correctness. This has been accompanied by a
feature to create and load projects into the software.

B. GASTM Representation

The diagram shown below (figure 7) is the graphical
output from LIQA and is a sample of the function definition
‘HelloWorld’ as shown in figure 6.

public class HelloWorld {

 public static void print() {

 printout("Hello, World");

 }

}

Fig. 6. HelloWorld Java

As was identified earlier, the IR can become very
complicated from even a simple program. After the Java code
has been parsed into the classes that represent the GASTM
nodes, the object is then walked using a separate class to
‘pretty print’ the IR into XML which is then taken and placed
in a SVG (Scalable Vector Graphics) format culminating in
figure 7.

Several modifications have had to be made to the GASTM
representation developed by Modisco [32], these
modifications have been made for one of two reasons. The
small change of implementing java.io.Serializable on the
classes GASTMFactoryImpl, GASTMObjectImpl,

GASTMPackageImpl, GASTMSemanticObjectImpl,
GASTMSourceObjectImpl and GASTMSyntaxObjectImpl,
was to enable the IR to be saved as a binary file thus making it
simple to implement a project based file system and allow
users to save their work.

The other modifications listed below were implemented to
better mirror the properties of some of the selected procedural
languages. The ClassType and ClassTypeImpl were modified
to include a link to the AccessKind class via the methods
getAccessKind and setAccessKind. This was because in Java,
C#, C++ and recent high-level languages allow programmers
to assign classes with the access modifier i.e. public, private or
protected. The FunctionMemberAttribute and
FunctionMemberAttributeImpl have had the property IsStatic
added, which is a boolean variable. The methods to modify
the property setIsStatic and getISStatic have also been added.
This was as Java, C#, and C++ allow programmers to assign
functions with the static modifier.

C. Tools used in development

LIQA utilizes several tools to achieve various tasks, these
tasks (and therefore tools) are not all necessary however they
make LIQA easier to use and simple to test for issues. The
tools used as listed below:

• Modisco - GASTM Core Model [32]

• JavaCC - Produced tokinizer for Java (Grammar

from library) [33]

• XsdVi - Used to generate a .svg file from .xsd [34]

• Batik - Toolkit to visualize .svg file in JFrame [35]

The Modisco library has a Java representation of the

GASTM core objects and therefore can be used instead of
having to write the object in Java or another language. This
links with the JavaCC tool which generated a Java tokenizer
using a grammar located in the JavaCC library which is used
by LIQA to convert the source code and generate the GASTM
IR via the Modisco library. These two tools were required to
make the production of LIQA a quicker and simple process.
However the other tools are used to simplify the use of LIQA
and simplify fault finding within the parsing and IR generating
process. After the IR is generated it is then walked by LIQA
and written to and .xsd file.

Fig. 7. HelloWorld GASMT

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

36 | P a g e
www.ijacsa.thesai.org

XsdVi is then used to generate a .svg file from the .xsd,
this is so a graphical representation of the IR is viewable.
Following this, the Batik toolkit has been implemented into
LIQA to allow the .svg file to be viewed in a java JForm
utilizing the JSVGScrollpane and JSVGCanvas.

D. Limitations

The limitations of LIQA are underpinned by a variety of
contributing factors and are segmented to specific sections of
the program. LIQA itself has the limitation of only being able
to handle single file programs rather than full
programs/projects built up over multiple files. This is due to
time constraint. Although extending LIQA to handle full
programs/projects would be a simple process, at this stage of
the research it is not required as LIQA is only a ‘proof of
concept’ for the larger framework.

The following limitations are to the Java language parser
and are either due to time constraints for this research however
will be part of future development and not being required to
test the basic function of the IR, or are due to the GASTM not
supporting the specific syntax. The following limitations are
due to the GASTM core limitations, the program that is being
analyzed cannot contain:

<= , >= , += , -= , /= , *=

The GASTM cannot handle these operators however

considering the operators can be broken down i.e. ‘x += 1’ =
‘x = x + 1’ and ‘x <= 2’ = ‘x < 3’ it would be possible to
integrate these into the IR. Due to time constraints, the lack of
importance with these operators, as they can be replaced and
effort it would take to code the conversion, they have not been
included within the parser that generates the IR from the
tokens.

The following limitations are due to be implemented in
further developments of LIQA. However they are not
necessary for testing the framework at this stage.

• Operators that are not implemented are ‘?’ and ‘!’

• List types are not implemented i.e. ‘List<String>’

• Re-type casting has not been implemented i.e. ‘String
str = (String) x;’

• The assignment of arrays via block statement has not

been implemented i.e. ‘int[] x = {3,2,1};’

• Inline if statements have not been implemented, if

statements must have a block containment i.e. ‘if

(condition) statement;’ is not supported and ‘if

(condition) {statement}’ is supported.

E. Analysis Test

After the initial implementation of the GASTM IR was
finished, a proof of concept addition was made to LIQA, this
was to implement a single form of static and dynamic analysis
to test the proposal before a deeper analysis of quality
assurance techniques takes place.

For dynamic analysis a simple profiler was developed, this
required a tree walker which analyses the IR to find all the
function definitions and the variable definitions in them
allowing the user control over which methods and variables
were monitored, after the user made their choice LIQA then
inserts nodes to monitor the variable values wherever modified
and counts method calls through the monitor class interface.
The monitor class must be written in the original language as
it may require language specific method calls itself in later
development.

For static analysis a simple metric was written using a
similar tree walker as the one for the profiler however this
returned Logical Lines of Code value and is currently setup for
further metrics to be included.

F. Proposal Modifications

During the implementation small changes had to be made
to the proposal as technological limitations arose, the only
change that was significant is the formulation of a plausible
and feasible way of running a GASTM IR that has been
modified to perform dynamic analysis. This was achieved by
running a conversion back into source code from the GASTM
IR via a tree walker, this would have to be implemented with
every language due to library and specific method calls that
are unique to that language. A further implementation of
LIQA could include a method and parameter mapping system
which would also allow for language conversion.

The tree walker however provides a further form of quality
assurance as some coding standards require code to be
formatted is a specific way, as the tree walker generates the
code a formatting system can be applied for easier
maintenance.

A smaller modification is to the flow of data with regards
to how static analysis is run, the DFD (figure 8) shows the
initial stage of the IR being converted to a CFG, though not all
static analysis techniques utilize a CFG the conversion must
take place for those that do before the application of a static
quality assurance techniques can be applied. The tree walker is
utilized by all techniques not just the conversion to a CFG and
would also be required before a technique can be applied.

IX. CONCLUSION

This paper presented the implementation of an internal
representation fit to allow both quality assurance via static and
dynamic analysis and also to allow the representation of
multiple languages. The major issues of this implementation
are differences in languages and how to apply the analysis
upon the final structure.

The ASTM is a standard prepared by OMG for language
based tools and implements a set of core components that can
represent a subset with many procedural and object oriented
languages. It is therefore an obvious choice for this internal
representation.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

37 | P a g e
www.ijacsa.thesai.org

Fig. 8. LIQA Data Flow

The implementation of the proposal within the tool LIQA

represents a proof of concept showing that the GASTM is a

suitable IR and that quality assurance techniques can be

applied to this. However exactly what techniques can be

applied is uncertain, it is certain that at least a simple level of

static and dynamic analysis can be performed. Further work

will demonstrate what techniques can be applied and these

techniques will be derived from many tools currently used as
industry standards.

REFERENCES

[1] Rosenberg, L. (2002) Software quality assurance engineering at NASA.

Aerospace Conference Proceedings, 2002. IEEE. 5 pp. 5-2569 - 5-2575.

[2] Owens, D. and Anderson, M. “A Generic Framework for Automated

Quality Assurance of Software Models: Supporting Languages of
Multiple Paradigms”. In 5th International Conference on Computer

Engineering and Technology (ICCET), Vancouver, Canada, 13-14 April

[3] Collins, J., Farrimond, B., Anderson, M., Owens, D., Bayliss, D. and
Gill, D. “Automated Quality Assurance Analysis: WRF – a case study”.

Accepted for 5th International Conference on Computer Engineering and
Technology (ICCET), Vancouver, Canada, 13-14 April

[4] Pickering, R. (2010). Beginning F#. Apress.

[5] Newcomb, P. (2005, October). Abstract Syntax Tree Metamodel
Standard ASTM Tutorial 1.0. Retrieved 2 5, 2013, from Object

Managment Group:
http://www.omg.org/news/meetings/workshops/ADM_2005_Proceeding

s_FINAL/T-3_Newcomb.pdf

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 1, 2014

38 | P a g e
www.ijacsa.thesai.org

[6] Tripp, A. (2006, February 22). Manual Tree Walking Is Better Than

Tree Grammars. Retrieved 2 5, 2013, from ANTLR v2:
http://www.antlr2.org/article/1170602723163/treewalkers.html

[7] Fischer, G., Lusiardi, J., & Gudenberg, J. (2007, August 25-31).
Abstract Syntax Trees – and their Role in Model Driven Software

Development. Software Engineering Advances, 2007. ICSEA 2007.
International Conference on , 38.

[8] Van Den Brand, M., Moreau , P., & Vinju, J. (2005). A generator of

efficient strongly typed abstract syntax trees in Java. EE Proceedings -
Software Engineering 152, 2 (2005) 70--87 , 70-87.

[9] Cui, B., Li, J., Guo, T., Wang, J.-X., & Ma, D. (2010). Code

Comparison System based on Abstract Syntax Tree. Broadband Network
and Multimedia Technology (IC-BNMT), 2010 3rd IEEE International

Conference on, 668- 673 .

[10] Fischer, G., Lusiardi, J., & Gudenberg, J. (2007, August 25-31).
Abstract Syntax Trees – and their Role in Model Driven Software

Development. Software Engineering Advances, 2007. ICSEA 2007.
International Conference on , 38.

[11] Ichisugi, Y. (2003). Patent No. 6516461. United States.

[12] ASM. (2012). Model Driven Modernization . Retrieved 2 5, 2013, from

Automated Software Modernization:
http://www.automatedsoftwaremodernization.com/component/content/ar

ticle/3.html

[13] OMG. (2012, July 19). Catalog Of Omg Modernization Specifications.

Retrieved 2 5, 2013, from Object Management Group:
http://www.omg.org/technology/documents/modernization_spec_catalog

.htm

[14] Parr, T. (n.d.). ANTLR. Retrieved 2 4, 2013, from ANother Tool for
Language Recognition: http://www.antlr.org

[15] Grammar List. (n.d.). Retrieved 2 5, 2013, from ANTLR v3:

http://www.antlr3.org/grammar/list.html

[16] Deltombe, G., & Goaer, O. L. (2012). Bridging KDM and ASTM for
Model-Driven Software Modernization . SEKE , 517-524.

[17] OMG. (2011, January). OMG Architecture-driven modernization:

Abstract Syntax Tree etamodel (ASTM). Retrieved 2 5, 2013, from
Object Managment Group: http://www.omg.org/spec/ASTM/1.0/PDF/

[18] Salah, M., Mancoridis, S., Antoniol, G. & Di Penta, M. (2006) Scenario-

driven dynamic analysis for comprehending large software systems.
Software Maintenance and Reengineering, 2006. CSMR 2006.

Proceedings of the 10th European Conference on pp. 80 - 90.

[19] Fairley, R. (1978) Tutorial: Static Analysis and Dynamic Testing of

Computer Software. Computer. 11(4) pp. 14-23.

[20] Anywhere, A. (n.d.) TestingAnywhere. HYPERLINK
"http://www.automationanywhere.com/Testing/"

http://www.automationanywhere.com/Testing/ [accessed 09 November

2012].

[21] Systems, Q. (n.d.) Cantata - The Unit Testing Tool for C/C++.

HYPERLINK "http://www.qa-systems.com/cantata.html%20"
http://www.qa-systems.com/cantata.html [accessed 09 November

2012].

[22] Artho, C. et al. (2004) JNuke: Efficient Dynamic Analysis for Java.
Proc. CAV ’04.

[23] MathWorks (1994) Static Analysis with Polyspace Products.

HYPERLINK "http://www.mathworks.co.uk/products/polyspace/"
http://www.mathworks.co.uk/products/polyspace/ [accessed 09

November 2012].

[24] SimCon (1995) SimCon - Fortran Analysis, Engineering & Migration.
HYPERLINK "http://www.simconglobal.com/"

http://www.simconglobal.com/ [accessed 09 November 2012].

[25] Fairley, R. (1978) Tutorial: Static Analysis and Dynamic Testing of
Computer Software. Computer. 11(4) pp. 14-23.

[26] Austin, A. & Williams, L. (2011) One Technique is Not Enough: A

Comparison of Vulnerability Discovery Techniques. Empirical Software
Engineering and Measurement (ESEM), 2011 International Symposium

on pp. 97-106.

[27] Austin, A. & Williams, L. (2011) One Technique is Not Enough: A

Comparison of Vulnerability Discovery Techniques. Empirical Software
Engineering and Measurement (ESEM), 2011 International Symposium

on pp. 97-106.

[28] Bell, D. & Brat, P.G. (2008) Automated Software Verification &
Validation: An Emerging Approach for Ground Operations. Aerospace

Conference, 2008 IEEE pp. 1 - 8.

[29] Harrison, K. (1999) Static Code Analysis on the C-130J Hercules
Safety-Critical Software. UK Iternational Systems Safety Conferance.

[30] Wong, W.E. (2000) An Integrated Solution for Creating Dependable

Software. Computer Software and Applications Conference pp. 269 -
270.

[31] Owens, D. and Anderson, M. “A Generic Framework for Automated

Quality Assurance of Software Models - Application of an Abstract
Syntax Tree”. Science and Information Conference 2013, Heathrow,

London, 7-9 October 2013

[32] Modisco. (n.d.). Modisco. Retrieved from Eclipse:
http://www.eclipse.org/MoDisco/

[33] JavaCC. (n.d.). Java Compiler Compiler tm (JavaCC tm) - The Java
Parser Generator. Retrieved from JavaCC: http://javacc.java.net/

[34] Slavětínský, V., & Kosek, J. (2013, March 22). XsdVi. Retrieved from

Source Forge: http://sourceforge.net/projects/xsdvi/

[35] Apache. (n.d.). The Apache™ Batik Project. Retrieved from The
Apache™ XML Graphics Project: http://xmlgraphics.apache.org/batik/

