
University of South Wales

2064821

Bound by
I Abbey Bookbinding Co., I

Cardiff
Tel:(0222) 395882
Fax:(0222)223345

A LOW COST DIGITAL VOCODER USING

LINEAR PREDICTIVE TECHNIQUES

Robert E. Stone

A dissertation submitted to the Council

for National Academic Awards for the

Degree of Master of Philosophy

Department of Electronics

& Information Technology

The Polytechnic of Wales

September 1990

DECLARATION

I declare that this thesis has not been, nor is

currently being, submitted for the award of any

other degree or similar qualification.

Signed

R E Stone

ABSTRACT

Title: A Low Cost Digital Vocoder Using Linear Predictive Techniques.

Author: R E Stone.

The research work undertaken and presented in this thesis develops a
low cost digital vocoder based on the principle of linear predictive
coding (LPC). This system eliminates many of the complexities which
have evolved in LPC vocoders over recent years while preserving good
quality speech at low bit rates.

In conventional LPC systems voiced speech is analysed in fixed frames
of approximately twenty milliseconds duration. These frames, which
can cover several pitches, must be windowed to ensure stable LPC
coefficients. The system developed takes as its source data for
voiced speech a single pitch period, which for analysis is assumed
periodic. This not only eliminates spectral distortion caused by
windowing but also any spectral blurring due to pitch variations over
the frame.

Both voiced and unvoiced speech is analysed and synthesised in a
lattice structure on the TMS32010. Spectral complexity usually
necessitates a 10th order filter for voiced speech and a 6th order
filter for unvoiced speech. It has been found that under certain
circumstances these requirements can be relaxed and the filter length
reduced. This results in a variable length filter system which can be
implemented with confidence in fixed point arithmetic by monitoring
the residual error at the analysis stage.

A pre-requisite for the periodic pitch autocorrelation technique used
in voiced speech analysis is a fast, reliable and accurate pitch
detection algorithm. Several pitch detectors were investigated and
developed to a stage where their performance could be assessed. The
most favourable of these was based on feature extraction using the
glottal impulse as its primary source of detection. This basic
technique was developed using additional features found in voiced
speech to give a quick and reliable pitch detector capable of locating
the start and end of each pitch in real time.

The software for the vocoder has been written in assembler to operate
in real time on the TMS32010 and tested in detail on the IBM using the
high level language of fortran. Objective and subjective results are
presented to indicate the quality, naturalness and intelligibility of
the synthetic speech. Further developments necessary to implement the
system are considered together with various refinements for its
enhancement.

(i)

ACKNOWLEDGEMENTS

As always in these ventures the work carried out could only have been

done with the help and cooperation of a number of colleagues and

friends of which only a few can be mentioned here.

I would like to express my gratitude to Dr R Murray-Shelley the

present Assistant Director (Dean of Technology Studies) at the

Polytechnic of Wales for his supportive supervision and encouragement,

particularly during the latter stages of this study.

I am indebted to my head of department Professor P A Witting for his

understanding and practical support by encouraging my attendance at

several conferences and colloquia which has enabled me to gain a

deeper understanding in this area of telecommunications.

I would also like to take this opportunity to register my appreciation

to Dr L S Dooley for his expert guidance on theoretical topics at a

number of crucial stages in the study and finally Mr R Curtis for his

technical support.

(ii)

CONTENTS

	Page

CHAPTER 1: INTRODUCTION 1 -5

1 .1 BACKGROUND 1

1.2 THE RESEARCH PROPOSAL 3

1.3 OUTLINE OF THESIS 3

CHAPTER 2: SPEECH MODELLING 6-23

2.1 THE NATURE OF SPEECH 6

2.2 THE ELECTRICAL MODEL 8

2.3 LINEAR PREDICTION 10

2.3.1 LPC Analysis 1,1
2.3.2 LPC Synthesis 12
2.3.3 Filter Classification 13
2.3.4 A-Parameter Evaluation 13
2.3.5 Gain Factor from A-Parameters 15
2.3.6 Specifying the Analysis Frame 16

2.3.6.1 Window Autocorrelation Method 17
2.3.6.2 Covariance Method 17

CHAPTER 3: SPEECH PROCESSING ON THE PDP11 24-42

3.1 INTRODUCTION 24

3.2 ANALYSIS OF VOICED SPEECH 26

3.2.1 Autocorrelation by Isolated Pitch Windowing 27
3.2.2 Autocorrelation Assuming Pitch Periodicity 27
3.2.3 Filter Order 28

3.3 DERIVATION OF THE A-PARAMETERS 29

3.3.1 Testing a-parameters by Normalised Error 29
3.3.2 Testing a-parameters by Resynthesis 30
3.3.3 Conclusions from a-parameter Tests 31

3.4 PITCH COMPARISONS IN TIME AND FREQUENCY DOMAINS 32

3.5 FILTER STABILITY 33

3.6 REPEATED USE OF LPC COEFFICIENTS 35

3.7 CONCLUSIONS FROM PDP11 37

(iii)

CONTENTS - continued Page

CHAPTER 4: VOICED SPEECH ANALYSIS ON THE TMS32010 43-82

4.1 REAL TIME AUTOCORRELATION 44

4.1.1 Results of Running 'AUTO.DAT' 46

4.2 OBTAINING A-PARAMETERS IN REAL TIME 47

4.2.1 The Levinson-Durbin Algorithm 47
4.2.2 Accuracy of the Levinson-Durbin Method 50

4.3 SYNTHESIS ON THE TMS32010 USING A-PARAMETERS 51

4.4 THE LATTICE FILTER APPROACH 52

4.4.1 Calculating the Reflection Coefficients 54
4.4.2 Pitch Synthesis Using the Lattice Filter 58
4.4.3 Gain Factor from the k-parameters 58

4.5 REFLECTION COEFFICIENTS FROM THE TMS32010 62

4.5.1 Pitch Synthesis Using a Truncated Filter 67

4.6 CALCULATING GAIN ON THE TMS32010 68

4.7 SUMMARY 70

CHAPTER 5: PITCH DETECTION 83-115

5.1 OVERVIEW 83

5.2 PITCH DETECTION BY AUTOCORRELATION 85

5.3 PITCH DETECTION BY INVERSE FILTERING 87

5.3.1 Initial Results for Inverse Filtering 88
5.3.2 A Modified SIFT Algorithm 89

5.4 PITCH EXTRACTION BASED ON GLOTTAL EXCITATION 91

5.4.1 The Basic Glottal Pitch Detector 93
5.4.1.1 Some Improvements to the Original Program 96

5.4.2 The Checkback Procedure 97
5.4.3 Checkback with Short Term Memory & Majority Voting 99

5.5 SUMMARY 102

CHAPTER 6: UNVOICED SPEECH ANALYSIS 116-125

6.1 SPECIFYING THE NOISE SOURCE 116

6.2 SYNTHETIC UNVOICED SPEECH ON THE TMS32010 118

(iv)

CONTENTS - continued Page

CHAPTER 7: SYSTEM EVALUATION 126-140

7.1 OPERATIONAL REQUIREMENTS 126

7.1.1 Transmitter Program Timing 128
7.1.2 Receiver Program Timing 129
7.1.3 Conclusions 129

7.2 SPEECH QUALITY 131

7.2.1 Objective Tests 131
7.2.2 Subjective Tests 133
7.2.3 Conclusions 135

7.3 CONCLUSIONS & FURTHER WORK 136

REFERENCES 141-143

APPENDIX 1: Program 'IMPRES.FOR' and Operating Instructions A1-A5

APPENDIX 2: Specifications and Frequency Response of LPF's A6-A9

(v)

GLOSSARY

ADC Analogue to Digital Converter
amp amplifier

CEPT Conference of Post & Telecommunication Administrations

DAC Digital to Analogue Converter
DAM Diagnostic Acceptability Measure
dB decibel
DMA Data Memory Address
DRT Diagnostic Rhyme Test

EVM Evaluation Module

FEC Forward Error Correction
FFT Fast Fourier Transform

ILS Interactive Laboratory Software
I/O Input/Output

LAR Log Area Ratio
LPF Low Pass Filter

mic microphone
MOS Mean Opinion Score
MRT Modified Rhyme Test

pdf probability density function
PMA Program Memory Address

RAM Random Access Memory
ROM Read Only Memory

S/DEV Standard Deviation
SNR Signal to Noise Ratio

jiP Microprocessor

ns nanosecond
lis microsecond
ms millisecond
s second

Hz Hertz
kHz kilohertz
MHz Megahertz

(vi)

INTRODUCTION

1.1 Background

During the years 1981-82 a feasibility study was made by the European

Conference of Post and Telecommunication Administrations (CEPT) to

produce a Pan European Mobile Telecommunication System which offered a

public mobile service throughout Europe. In the intervening years a

number of papers by Natvig and de Brito [1,2,3] have reported on

developments and in 1987 the working party decided that the system

would be digital.

A joint expert group was set up to define the requirements of the new

system and in particular the codec to be used which would satisfy the

dual performance requirements of radio and speech. Their findings

favoured a voice codec based on the principle of Linear Predictive

Coding (LPC) which should operate at 16 kbit/sec and include some

Forward Error Correction (FEC).

This example of speech companding is no isolated case and the rapid

advances in signal processing hardware over the last two decades has

seen a major research effort in the field of digital speech coding for

spectral efficiency. This has produced a standardised system for the

American defence industry as reported by Tremain [4] which again is

based on linear predictive coding.

The day is soon approaching where a scheme similar to that outlined

for the European mobile service may be specified for commercially

based landline systems. Such a system which would offer the

advantages of secure speech, reduced memory for storage, and increased

channel capacity must ensure reliable toll quality speech from low-

cost equipment operating at the lowest possible bit rates.

A number of microprocessor based LPC speech coders have been developed

over the last decade [4,5,6,7]. These systems vary in complexity,

cost and quality, with significantly only the most complex systems

submitting measurements for quality, intelligibility and naturalness.

Historically some of the unnaturalness of speech synthesised by the

LPC method has been attributed to the excitation in voiced frames

which as reported by Atal [8] and Parsons [9] does not model that

produced by the glottis (see Ch.2). For this reason voiced excitation

in highly developed LPC vocoders such as [4] are artificially

manufactured to follow the shape of a typical glottal pulse. Indeed

it is this parameter in synthetic speech which initiated refinements

such as the multipulse technique pioneered by Atal [11] in the early

eighties. Multipulse compensates for errors in the synthesised speech

by dramatically increasing the number of excitations per frame. The

penalties paid for the increase in quality are higher bit rates and

more complex systems - this then is the engineering compromise.

Apart from specific short transitional sections of speech a premise

was made that if the short term analysis of voiced and unvoiced

sections of speech is done correctly then spectral matching must occur

which will result in good reproduction from the standard excitation of

a pulse for voiced speech and random noise for unvoiced speech. In

this way it was hoped to produce a coder based on the simplified LPC

model which preserves speech quality at significantly low bit rates.

1.2 The Research Proposal

The research proposal had the following initial objectives:-

(i) To re-appraise the LPC process in order to design and develop a

coder which combines good quality speech at low bit rates based

on a simplified LPC model.

(ii) To specify all the parameters necessary to implement the coder

on the TMS32010 uP giving a real-time cost effective system.

This study necessarily involved investigating every stage of the LPC

process in order to optimise the dual criteria of high quality and low

bit rate. In the early stages the effectiveness of the model was

assessed by comparing original and synthesised speech in the time and

frequency domain.

Analysis of voiced speech was started on the PDP11 minicomputer under

the RT11 operating system. As the study progressed this work was

transferred to an IBM using a Data Translation 2801A communications

board to store and replay speech under control of ILS software.

Transfer and further development of software from the IBM to run on

the TMS32010 was made in assembler using the TMS32010 evaluation

module (EVM) version 1 linked to the VAX 8650 mainframe host computer

running the TEXAS assembler development software. A schematic diagram

of the facility is given in fig 1.1.

1.3 Outline of Thesis

As synthetic speech can only be as good as the filter coefficients

used to obtain it much of the initial work was aimed specifically at

the analysis section. As will be seen LPC analysis splits

conveniently into two parts, pitch detection and parameter evaluation.

Research into both these areas were followed separately offering the

option of a single or dual processor analysis section.

An initial study was made into the general nature of speech production

and how it is modelled electroacoustically. These findings together

with how the model is implemented by linear prediction appears in

chapter 2. This chapter also contains an explanation of the general

principles and mathematical basis of LPC analysis, the understanding

of which was paramount to successful program development.

Various analysis/synthesis techniques were performed on the PDP11

minicomputer and these together with their findings are described in

chapter 3. The results of this work modelled by a recursive structure

laid the foundation for further development on voiced speech carried

out jointly on the IBM and TMS32010 which is described in chapter 4.

This resulted in the final vocoder software being written for a

lattice filter structure with individual synthesised pitches being

compared to the original speech in time and frequency domains.

Reliable pitch detection, a key element in producing good quality

speech, constituted a major part of the work and is contained in

chapter 5. In this section three methods of pitch detection are

investigated before the most favourable, based on feature extraction,

is taken to completion.

Unvoiced speech is covered in chapter 6 and with comparisons given

between original and synthesied speech completes both sections of

speech analysis. In the final chapter each part in the speech coding

system is assembled to synthesise and assess the quality of complete

words and phrases.

DEVELOPMENT FACILITY

SW2 UP :- Pitch Detection
SW2 DOWN :- Parameter Evaluation

mic.

VAX 8650
host |>

computer

P2
out

SW2

P3
in

TMS32010
development

board

analogue
interface

board

EVALUATION MODULE

Schematic diagram of the system used to develop and test the vocoder.

Fig 1.1

2 SPEECH MODELLING

A successful model for speech can be made by direct comparison with

the natural speech production system. This chapter develops such a

model of which the linear predictive vocal tract filter is a critical

part. The theory of linear predictive coding (LPC) is discussed in

some detail as all subsequent filter implementations are based on it.

Later chapters will build on this initial model developing it to

produce a real-time speech vocoder. Speech is not discussed in a

linguistic or phonetic context but rather as a waveform possessing

some very special easily recognisable short term characteristics which

can be exploited to produce an effective model.

2.1 THE NATURE OF SPEECH

Speech is a physiological-acoustic process which takes place in the

upper half of the torso as shown diagrammatically in fig 2.1(a). The

source of power for the speech sound comes from the lungs which pushes

an airstream into the vocal tract where it is manipulated in various

ways by the main articulators to produce the range of sounds which

make up a language.

As the airstream passes through the trachea it encounters the slit

like opening of the glottis located in the larynx. The muscular

membrane surrounding the glottis, commonly known as the vocal chords,

are responsible for producing the range of excitations to the vocal

tract. Next the pharynx is entered which contains the epiglottis,

another main articulator which expands and contracts to change the

natural resonances in the vocal tract. The airstream, which has

already undergone some dramatic shaping, now enters the head section

where it encounters the two major resonant cavities of mouth and nose.

The amount of air .which enters these cavities is controlled by a

moveable flap of muscle called the velum. The air which enters the

nasal cavity sees an area which for the most part cannot be altered

and so the resonant frequencies in this chamber are fixed. The air

entering the mouth cavity sees an area which can be altered freely in

shape and size by articulating the lower jaw, tongue, lips and cheeks

to produce a large variety of natural resonances.

In summary the vocal tract, which for an average male is approximately

17cm long, affects the frequency content of the acoustic wave as it

passes through it, the resonances produced depending on the position

of the main articulators. The nasal cavity can, if required, be

completely decoupled from the system by raising the velum. The sounds

produced from this acoustic system are rich and varied classified

under headings such as stops, fricatives, approximants, trills, taps

and laterals which are further complicated by their co-articulation

when the resonant cavities are altered sharply.

The physical system described is simplified in fig 2.1(b) and can be

further broken down into two main parts which form the basis of our

model:-

(i) The acoustic excitation from the glottis,

(ii) The three main cavity sections of the pharynx, mouth and nose.

The excitation from the glottis is responsible for splitting the

speech into the two broad areas of sounds known as 'voiced' and

"unvoiced 1 .

When the vocal chords vibrate causing the glottis to open and close in

an oscillatory manner regular pulses of air excite the resonant

cavities which if released through an open mouth and/or nasal cavity

give rise to the range of voiced sounds. Examples of sounds produced

in this way include all the vowels an example of which is the 'oo' in

'spoon'.

When the vocal chords are relaxed they spread apart and the airstream

passes directly through the glottis. Restricting this airflow at the

mouth opening creates turbulence which together with the resonant

cavities produce a range of sounds which are unvoiced. Such a sound

would be the 's' in 'spoon'.

Fig 2.2(a) shows the first half of the word 'spoon 1 recorded on the

IBM using the ILS software package. At the start of the word is the

unvoiced 's' sound which can be seen to contain high frequencies and

resembles random noise. After this there is a silence when the mouth

is closed and pressure built up to release the plosive 'p'. Finally

the almost periodic voiced 'oo' sound is seen gradually decreasing in

amplitude. A more detailed section of voiced speech is shown in fig

2.2(b) which illustrates its psuedo-periodic nature, its period is

known as the pitch or fundamental frequency, Fg.

This analysis of speech is of course an oversimplification but it does

allow a basic model to be proposed which can be refined at a later

stage if necessary.

2.2 THE ELECTRICAL MODEL

The simplified analysis of the natural acoustic speech production

system into two distinct areas makes an electrical model much simpler

to define. Provided the natural resonances can be accurately modelled

by an electrical filter and excited with the correct source then

natural sounding synthetic speech will result.

Further information on the speech waveform was obtained by observing

sections of speech recorded onto the IBM and analysed under the ILS

software package. Fig 2.3(a) shows a section of voiced speech and its

smoothed time spectrograph. The spectrum of this section of speech

has 4 major resonances known as formants which alter their positions

in frequency and amplitude slowly as time progresses and the sound

changes. More extensive analysis shows that voiced speech has at most

5 major resonances or formant frequencies F1 to F5. Fig 2.3(b) shows

an unvoiced section of speech which has on average only two major

resonances and it can be seen that the distribution of energy is quite

different from the voiced spectrograph above it.

Speech research [15,18] has shown that the perception of sounds

depends on the correct positioning of the formant frequencies plus in

the case of voiced speech the accurate evaluation of the pitch period.

It is because, due to the physiological constraints, these formants

change relatively slowly that an accurate and realisable real-time

electrical model can be produced. If the length of speech viewed is

gradually shortened there comes a time when the waveform seen in this

analysis frame can be accurately modelled with a single filter. The

objective is to change the response of this filter often enough to

give a time spectrograph as close to the original as to produce

natural sounding speech while significantly reducing bit rate.

For voiced speech an obvious analysis frame is a single pitch.

Exciting a filter which has the same spectrum as the original pitch

with an impulse of the correct magnitude will give a response which

closely resembles it in the time domain. Because of the similarity of

adjacent pitches in any one section of voiced speech the same filter

could be used to cover a number of consecutive pitches with repeated

application of the impulse.

For unvoiced speech a simpler filter can be used as there are fewer

resonances. The source of excitation is a random number generator

which has a flat spectrum and will give the desired output waveform.

The abscence of an identifiable pitch period means a comparable

analysis frame, eg 10ms to 20ms, must be chosen.

The heart of the speech synthesiser, shown schematically in fig 2.4,

is the vocal tract filter. In natural speech this filter cannot be

separated from its excitation whereas in the simplified model the

excitation is assumed to have a flat frequency response leaving only

the filter to be modelled digitally.

To reduce bit rate of course the number of coefficients transmitted

which define the filter and source of excitation to produce the

synthetic speech must be significantly less than those transmitted by

conventional sampling.

2.3 LINEAR PREDICTION

Of the many digital filters used to model the vocal tract the method

of linear predictive coding (LPC) has proved one of the most

successful and versatile [12,16,17]. The concept of linear prediction

is that for a sampled waveform the present sample value, S(n j, may be

accurately predicted from a linear combination, or weighted sum, of

its previous values, i.e.

s '(n) = a 1- s (n-1) + a2- s (n-2) + a 3- s (n-3) + - ap- s (n-p)

which is more concisely expressed :-

P
S'(n) = E ai-S(n-i) (2 - 1)

i = 1

Thus a pth order predictor will require p a-parameters and the latest

p sample values from the original waveform to give a prediction of the

next sample value. The schematic diagram for such a system is given

in fig 2.5(a) and it can be seen that if the predicted value S'(n) is

compared with the actual value S(n) by subtracting them an error 6(n)

will result, thus

10

s (n) = E a i .S (n_ i) + e (n) (2.2)
i = 1

In a perfect predictor e(n) will always be zero.

The quality of the predictor will depend upon the accuracy of the

predictor coefficients ai , &2, 33, ... ap , and on how many of them

there are - theoretically the greater the number the better the

predictor.

2.3.1 LPC Analysis

The best set of the a-parameters are found by matching them to the

section of speech under analysis to give the minimum mean squared

error over the complete analysis frame. As the sample values from the

original waveform are fed into the analyser the a-parameters are

continually adjusted and fine tuned until the average mean squared

error over the complete frame is reduced to a minimum.

When this process is complete the filter has been matched to the

waveform and an inverse filter has been constructed. This inverse

filter, or whitening filter, has a frequency response which is the

exact inverse to that of the waveform such that if this original

waveform were passed through it the output spectrum would be a flat.

This flat spectrum has two interpretations for each of the excitations

considered. In the case of voiced speech if the original pitch were

passed through the inverse filter then, ideally, an impulse reflecting

the energy in the pitch would be obtained at the start, ie e(Q),

followed by zero error for all other samples - this impulse has a flat

spectrum. In the case of unvoiced speech a random waveform would be

obtained whose total energy reflected the energy in the analysis frame

- this random waveform also has a flat spectrum.

11

The analysis for each speech frame will obviously be carried out at

the transmitter and will result in a continuous stream of variables

being sent to the receiver where the speech is resynthesised.

2.3.2 LPC Synthesis

In order to reconstruct the speech frame which was analysed at the

transmitter the inverse process must be carried out. Thus at the

receiver a filter which has the same frequency response as the

original section of speech must be set up. This filter, which is the

vocal tract filter of fig 2.4, can be realised by using the analyser

in reverse. This structure, shown in fig 2.5(b), is a recursive

digital filter with the a-parameters as its coefficients.

At the transmitter speech has been categorised as voiced or unvoiced

and the synthesiser must recognise this in order to apply the correct

excitation. This filter must be updated at regular intervals with the

following information :-

(i) An indication if the frame is voiced or unvoiced. If the frame

is voiced a stream of impulses will be applied to the filter, if

unvoiced random noise is used.

(ii) The duration of the frame. This could be a fixed time interval

for voiced and unvoiced speech, but if the speech is voiced its

pitch period must also be sent.

(iii) A figure G which indicates the amount of energy in the analysis

frame to control the magnitude of the excitation applied to the

filter and hence the amplitude of the synthetic speech,

(iv) A number of coefficients which define the filter. These

coefficients which contain all the spectral information in the

speech frame are the a-parameters.

12

the analysis frame, thus,

N 2
En = E e (n)

n=0

Substituting e(n) from equation 2.2 gives

N p 2
En = = IS (n) - = a i .S (n_ i)] (2.4)

n=0 i=1

This function is minimised by setting all the partial derivatives of

En with respect to a^ simultaneously equal to zero, ie,

= 0 i = 1,2,p

This gives p simultaneous linear equations with p unknowns which after

expansion becomes

N p
E 2[S (n) - E ai.Sjn.ijl.I-Sjn.j)] =0 j = 1,2,....p

n=0 i=1

rearranging the order of summation gives

p N N
E ai E S (n_ i).S (n_j) = E S(n) .S(n_j)
=1 n=0 n=0

For a p/2 pole filter this means solving a pth order linear matrix

equation to give the predictor coefficients a-| to ap .

Closer examination of the sample multiplications reveal they are in

fact short term autocorrelation values covering the analysis frame and

so

N
E S(n)- s (n-j) = R (j)

n=0

14

and

N

n=0

Therefore the equation to be solved can be expressed more concisely as

ai.R(i_j) = R(j) j = 1,2,p

which in matrix form finally becomes

Since R(i_j) = R(j-i) the matrix [R(^_j)] takes a special symmetric

form known as Toeplitz. Solving this pth order matrix equation thus

requires the first p+1 autocorrelations to be found.

2.3.5 Gain Factor from a-parameters

At the receiver a gain factor G is required to restore the synthesised

speech to its correct amplitude. As shown if fig 2.4 this is done by

multiplying G by the appropriate unit excitation source before it is

applied to the vocal tract filter. The total energy in the speech

frame is the mean squared error, En , hence the required RMS error G

can be found from:-

En =

En could be calculated at the transmitter using equation 2.4 but this

would not only be computationally expensive but also mean one extra

parameter for transmission. En and hence gain can be calculated

directly from the a-parameters which will be proven mathematically

starting with equation 2.4,

15

N
En = E

n=0

Expanding the right hand side of this equation gives

P P
En = R0 - E ai.Ri - aj.Rj + E a-j .a^R] j^l j=1,2,....p

However, it was shown in the previous section that

P
E

which when substituted into the third term of the above equation

causes it to cancel with the last term, leaving

p
En = R0 - £ ai-Ri (2.5)

and G = -/En

2.3.6 Specifying the Analysis Frame

When the speech frame under analysis has been stored, a series of

autocorrelations are carried out on the samples to set up the matrix

equation which when solved gives the a-parameters. The two most

popular ways of performing these time delayed sample multiplications

over the analysis frame are now illustrated graphically by placing a

duplicate frame beneath the original. To find the jth autocorrelation

the top frame is right shifted j sampling intervals with respect to

the lower one, now multiplying each sample value in the lower frame by

each one in the duplicate frame aligned directly above it and adding

them all together gives R.

16

2.3.6.1 Window Autocorrelation Method

N-1

N-1

In this method the only samples considered are contained in the frame

under analysis. In the position shown j = 0 and RQ is found by

multiplying N sample values by themselves which when added give RQ .

When j = 1 each sample in the top frame moves one time delay to the

right resulting in only N-1 multiplications for R-) . In this way

sample values outside the lower analysis frame are lost ending with

only N-p samples being considered at the pth autocorrelation.

Because samples outside the analysis window are not counted RQ always

gives the highest value which leads to the production of a stable

filter. Stability is a major consideration and is the main reason for

the popularity of this method.

2.3.6.2 Covariance Method

N-1

0 N-1

In reality samples do exist outside the analysis window and can be

included when performing autocorrelations. Now as the top frame

slides along its replica it drags p samples from the previous frame

with it and so for every autocorrelation performed there are N

multiplications and additions.

17

While this method .retains more information in the autocorrelation

sequence it does not always give a maximum value for RQ . When this

does occur an unstable filter results rendering these calculations

invalid.

18

nostrils

lips

vocal chords

velum

epiglottis

glottis
oesophagus

(a) HUNAN SPEECH PRODUCTION

air from lungs

(b) ACOUSTIC SPEECH MODEL Fig 2.1

19

(a) Beginning of the word 'spoon

pitch .
period

(b) Psuedo-periodic nature of voiced speech

Fig 2.2

20

TIME FREQUENCY

IKE

(a) 56ms of voiced speech and its time spectrograph

ieee 2m 3W
FREQUENCY (HZ)

(b) 56ms of unvoiced speech and its time spectrograph

Fig 2.3
21

PERIODIC
EXCITATION

VOICED

UNVOICED 0

RANDOM
NOISE

VOCAL TRACT
FILTER

SYNTHETIC
—-——•
SPEECH S(n)

SPEECH SYNTHESISER BLOCK DIAGRAM

Fig 2.4

22

INPUT
SIGNAL

S(n)

DELAY
LINE

PREDICTED
SIGNAL f (n)

ERROR
SIGNAL

e(n)

(a) DIRECT FORM ANALYSER

ERROR
SIGNAL x-

e(n) V.
J

f) ————

PREDICTED

SIGNAL
§(n)

7Z_i
_

a 1

a 2

•

/Ok
^

aP

Lf
1

A

-

A

OUTPUT
SIGNAL

S(n)

?

T

DELAY
LINE

>
T

(b) DIRECT FORM SYNTHESISER

Fig 2.5

23

SPEECH PROCESSING ON THE PDP11

3.1 INTRODUCTION

The initial phase of this study was performed on a PDP11 minicomputer

under the RT-11 operating system using Fortran as the high level

programming language. This was done for the following reasons :-

(i) The acquisition of standardised speech source data. This

consisted of two 8" floppy diskettes containing speech

data sampled at 10kHz of simulated telephone conversations

prepared by the organisers of an international speech

communication seminar held in Stockholm in 1974 and

distributed to speech laboratories worldwide. This

digitised speech was stored using a 12 bit analogue to

digital converter under the RT-11 operating system in

direct access format.

(ii) The fortran programming language was ideally suited to the

many arithmetic operations required for speech processing.

This language plus the comprehensive library of scientific

subroutines which in the initial stages was necessary to

solve the arithmetic operations was installed on the PDP11.

(iii) At the time no other departmental facility existed whereby

synthesised speech, once produced, could be output in real

time to enable subjective tests to be made between original

and synthesised speech.

24

Whether speech is voiced or unvoiced LPC analysis usually begins by

taking a short section or 'frame' of speech and extracting all the

parameters required to synthesise that frame at the receiver. Each

frame («20ms) must be identified as voiced or unvoiced and analysed

accordingly resulting in a constant bit rate.

Working within these general guidelines software was produced which

offered flexibility in defining how the coefficients were extracted,

the number required and how often they needed to be calculated. Their

accuracy and effectiveness in producing accurate stable filters was

also determined. The PDP11 provided a test bed where the fundamental

principles of linear predictive coding could be applied, tested and

validated before moving on to develop those techniques on the IBM and

TMS32010 in real time.

The decision to choose voiced rather than unvoiced speech to start the

analysis was influenced primarily by the means with which it could be

assessed. Initially three methods of assessment were considered:-

(i) Analyse the frame, synthesise it, and make a direct comparision

in the time domain,

(ii) Perform a Fast Fourier Transform (FFT) on original and

synthesised frames for comparison in the frequency domain.

(iii) Measure the 'normalised error' which gives the mean squared

error between original and synthesised waveforms over the

complete frame.

In the case of voiced speech all three tests are applicable because

the waveform is the impulse response of the filter and as such retains

phase information. For unvoiced speech the excitation is a random

noise generator which leaves only (ii) as a meaningful test. In

addition to this if the requirements for voiced speech can be

satisfied then those for unvoiced speech will be also because of its

less exacting spectral requirements.

25

Ideally for voiced speech the analysis frame would contain a complete

number of pitch periods which start and end at zero amplitude, if this

condition exists no spectral distortion occurs during analysis. In

most cases this condition does not prevail and autocorrelation of the

frame can give increasing values, resulting in unstable filters. For

this reason voiced frames are 'windowed' to taper the frame at either

end to zero amplitude. The shape of the window is chosen to have good

spectral qualities, a popular choice being the Hamming window.

This distortion can be avoided by considering just a single pitch for

analysis provided its start and end points can be clearly identified

which also obviates the need for windowing. This approach was pursued

in the hope of producing good quality synthetic speech while retaining

the option of using windowed autocorrelation and fixed frame analysis.

Whichever method is used the pitch period must be found but finding

its start and end points is obviously a more exacting task which on

the PDP11 was done visually by inspecting the two speech data files

'S14JH3' and 'S20MH3'.

3.2 ANALYSIS OF VOICED SPEECH

Even after the decision that voiced speech should be analysed pitch

synchronously there were still a number of options available as to how

that analysis should be done. The most accessible parameters for

experimentation were the autocorrelation or covariance values fed into

the matrix which when solved gives the a-parameters for the direct

form digital filter. Two different methods of producing the

autocorrelation values were investigated, the covariance method was

not pursued at this stage because of the danger of producing unstable

filters.

26

3.2.1 Autocorrelation By Isolated Pitch Windowing

The window autocorrelation method which is more conventionally applied

to a fixed duration frame of speech could also be used on isolated

pitches. Once the start and end of a pitch has been identified then a

rectangular window is placed over it and the autocorrelation

performed. When this is done samples moved outside the pitch window

are lost and the following equation is evaluated :

n=0

3.2.2 Autocorrelation Assuming Pitch Periodicity

This second method treats the pitch under analysis as one cycle of a

periodic function. This is not a conventional technique but one

attempted because of the observed periodic nature of voiced speech.

<--- replica of - —— ><—— pitch under —-><—— replica of - —— >
pitch analysis pitch

The sequence of voiced speech above shows three identical pitches.

When autocorrelation is performed no sample values are lost outside

the 18 sample pitch window as they would be by windowing a single

pitch. For this case the following equation is evaluated :

27

N-1

n=0
sn- sn+|i|

3.2.3 Filter Order

The number of a-parameters, and hence order of the filter, is directly

related to the spectral complexity of the pitch being analysed. A

compromise must be reached between keeping the filter order low to

reduce bit rate but not so low as to preclude the synthesis of good

quality speech.

At the start of the project filter length was largely influenced by

the ubiquitous graph of RMS Prediction Error vs Number of Predictor

Coefficients produced by Atal & Hanauer [12] for speech sampled at

10kHz. This graph, which is reproduced below, indicates an optimum

choice of 12 coefficients for voiced speech and 6 coefficients for

unvoiced speech.

1 .0

0.8
RMS
PREDICTION
ERROR 0.6

0.4

0.2

--__ unvoiced speech

voiced speech

r
0 4 8 12 16

NUMBER OF PREDICTOR COEFFICIENTS

T
20

28

3.3 DERIVATION OF .a-PARAMETERS

Evaluating 12 a-parameters from 13 normalised autocorrelation values

necessitates solving the 12 by 12 Toeplitz matrix shown on page 48.

The scientific subroutine SIMQ held in the fortran library does this

by Gaussian elimination. If the matrix becomes ill-conditioned an

output digit indicates a singularity has occurred and the results are

void.

As expected the 13 autocorrelation values from the two methods were

different, the windowed method giving a steeper rate of descent

because of the samples lost. From this it was also seen that the a-

parameters produced by both methods were also quite different. In

both cases for all the pitches examined the matrix solution produced

no singularities indicating that all filters produced were stable.

Six separate and distinct pitches whose lengths varied from 74 to 107

samples were taken from different sections of voiced speech held on

the files 'S14JH3' and 'S20MH3'. These pitches were analysed by both

autocorrelation methods giving two sets of a-parameters for each

pitch.

3.3.1 Testing a-parameters by Normalised Error

One figure of merit used for testing the accuracy of the a-parameters

without reconstructing the pitch is the normalised error, Vp . Using

the previous 12 original speech samples the a-parameters are used, in

much the same way as in the resynthesis filter, to predict the next

sample value, S' n . The difference between this and the real value Sn

when squared will give a positive error. When this is done over the

whole pitch the sum total of these errors can be normalised to the

power in the pitch as given by the formula :-

29

N

where N=number of samples in the pitch.

Obviously the smaller the value of Vp the better the a-parameters are.

Of the six pitches tested Vp was found to be significantly lower for

the periodic autocorrelation method in every case. The average value

for normalised error was 0.01 for the window method and 0.0015 for the

periodic method, an improvement by a factor of ten in most cases.

3.3.2 Testing a-parameters by Resynthesis

Once the a-parameters are found the pitch can be resynthesised by

setting up, in software, the 12th order recursive digital filter and

exciting it with an impulse of amplitude G, the gain factor. This

gain factor is calculated from the a-parameters and autocorrelation

values in accordance with equation 2.5. Once the output has run for

the required pitch length a direct comparison can be made in the time

domain between this and the original pitch by overprinting.

A-parameters derived from the periodic autocorrelator gave synthesised

pitches which visually compared well with their originals. In each

case the major resonance at the first formant frequency F1 was

accurately reproduced with the higher spectral components adding in

correct phase to give, in most cases, a striking visual similarity.

Energy was well distributed giving close time alignment of major

amplitude peaks throughout the whole length of the pitch.

30

Results from the window autocorrelator varied depending on pitch

length and spectral complexity. In all cases there was an obvious

strong component at the first formant frequency F1. When long pitches

with few obvious high frequencies were synthesised they compared well

with the originals. When shorter pitches containing high frequencies

were tested it was found that few of the higher spectral components,

characterised by small rapid amplitude changes, were reproduced in the

synthesised wave. Another indicator of the poor modelling in these

shorter pitches was the speed with which the energy fell through the

pitch, often falling to zero before the pitch had finished. In every

case the visual comparison was to a greater or lesser degree poorer

than with the periodic autocorrelator.

3.3.3 Conclusions from a-parameter Tests

A third test involving an FFT on each original and synthesised pitch

for spectral matching was initially considered but thought unnecessary

in view of the results already obtained.

Although both methods gave stable filters for the six pitches

analysed, the periodic autocorrelator gave superior results in both

tests. The main reason for the poorer performance of the window

autocorrelator was attributed to the window length. A pitch

containing 80 samples loses 13 of these on the final autocorrelation,

a loss of 16% on the original pitch. This results in poorer modelling

of the higher formants and hence the inability to produce the sharp

changes which these higher frequencies provide.

The results of these tests meant that the periodic autocorrelator was

adopted as the standard method for extracting LPC coefficients in all

further work on voiced speech.

31

3.4 PITCH COMPARISONS IN TIME AND FREQUENCY DOMAINS

Frequency response on isolated pitches synthesised using the periodic

autocorrelator was achieved using a Fast Fourier Transform (FFT)

subroutine. Once the pitch under analysis had been synthesised the

FFT was applied to both it and the original pitch to obtain their

amplitude spectra for comparison.

The FFT applied to the speech data sampled at 10kHz gives a unique set

of spectral amplitude components from OHz to 5kHz which can be

plotted. The resolution on the frequency axis depends on the number

of samples considered which for the simple subroutine used must be 2n ,

where n is an integer. For the pitch lengths analysed an FFT input of

64 samples was most appropriate giving a resolution of 156Hz, more

than enough to distinguish accurately the formant peaks where the

comparisons are most critical.

As none of the pitches were exactly 64 samples in length each one was

truncated to 64 samples which was equivalent to multiplying by a

rectangular window. The discontinuities created caused distortion at

the high frequency end of the spectrum which was overcome by tapering

the last 9 sample values giving a zero start and zero end for the FFT

analysis frame.

Two of the pitches are given for comparison showing the original and

synthesised waveforms in both time and frequency. Figure 3.1 shows a

pitch which is 10.7 milliseconds long and has a strong component at

approximately SOOHz. Figure 3.2 shows a pitch which is 8 milliseconds

long with a strong component at approximately 450Hz. These strong

components are the first formant frequencies F1 which show prominently

in the spectral plots. In the time domain both waveforms contain high

frequency components causing sharp spikes to be impressed on this

dominant first formant, these show up as F2, F3 and F4 on the spectral

plots.

32

in the time domain the fall off in energy throughout the pitch is the

same for both original and synthesised pitches, even though some of

the limitations of the linear stationary model are exposed in the

latter part of the waveform. Each synthesised pitch is the result of

applying a single impulse to the filter and so a close similarity

cannot be expected right at the start of each pitch but there is very

close agreement afterwards.

In the frequency domain the position of all formant peaks in the

synthesised pitches are very close in both frequency and amplitude to

the originals, varying at most by 1dB for all six pitches. From the

results shown it can be seen that because the model is a 12th order

(ie 6 pole pairs) all-pole filter that the spectrum produced by the

synthesised pitch is much smoother than the original. The original

pitch contains zeros as well as poles which pull the spectrum down

giving it a definition that cannot be equalled by the synthesised

spectrum which is effectively six cascaded 2nd order band-pass

sections. Nevertheless the pitch produced has been shown to be

adequately modelled by this all-pole design. The major formants are

spaced approximately 1kHz apart in both pitches and as time progresses

these formants will move slowly in amplitude and frequency which if

tracked can be used for speech recognition.

3.5 FILTER STABILITY

A stable minimum phase filter will give an impulse response which

starts high and gradually decreases in amplitude as does each pitch of

voiced speech. The output from an unstable filter however can give

large erratic amplitude variations when excited by an impulse and so

filter stability must be ensured. Window autocorrelation will always

give a-parameters which produce stable digital filters as should the

periodic autocorrelator however arithmetic errors can alter the a-

parameters which because of their sensitivity can then produce

33

instability. This problem therefore cannot be attributed to a fault

in theory but in implementation, a problem which is particularly acute

in fixed point processors such as the TMS32010.

The causal all-pole filter being modelled will be stable if all its

poles lie inside the unit circle of the complex z-plane and so were

evaluated for the various pitches analysed. The poles of H(z) are

simply the roots of the polynomial A(z) where :-

P
A(z) = 1 - £ ak .z-k

k=1

The roots are evaluated by adapting the digital form of the transfer

function as shown below :-

1
H(z) = ——————

P
1 - E ak .z~k

k=1

H(z) =
1 -

multiplying the numerator and denominator by z gives

H(z) =

34

With the transfer function in this form the denominator is a twelfth

order polynomial which can be factorised into six pairs of complex

conjugate roots. All of these roots must lie inside the unit circle,

ie their modulus must be less than unity, for the filter to be stable.

This task is not trivial and was performed by the subroutine POLRT

held in the fortran library which uses a Newton-Raphson iterative

technique.

The results for H(z) showed all six pitches to be stable giving 6 pole

pairs - 6 poles being accompanied by their complex conjugates. The

results for two of the pitches are given in fig 3.3 and as can be seen

several poles are quite close to the unit circle indicating that any

error in calculation or representation could push them outside

producing an unstable filter.

3.6 REPEATED USE OF LPC COEFFICIENTS

Any fixed frame analysis of voiced speech will contain more than one

pitch and so a brief investigation as to how the filter performs using

the same a-parameters over a five pitch sequence was carried out. The

filter is loaded with the a-parameters and hit with five impulses.

The amplitude of each impulse is calculated from gain of the original

pitch and its period is also that of each original pitch. The single

set of a-parameters used for the five pitch sequence were obtained by

taking one typical pitch from the section. Five replicas of this

pitch are then produced varying in amplitude and length always giving

a stable filter.

Six separate 5-pitch sections of speech were tested and one set of

these results is shown in fig 3.4 from which some general observations

can be made. Fig 3.4 (a) shows the original section of speech in the

time domain and also the spectrum of each pitch as time passes, ie its

spectrograph over the 5-pitch interval.

35

Fig 3.4(b) shows the results of the pitch synchronous method already

developed and as can be seen the time domain waveform shows good

similarity to the original. Also in the frequency domain it can be

seen that the major formant peaks follow closely those of the original

pitches.

Fig 3.4(c) shows the results of repeated excitation of the same filter

and as can be seen although there is still good similarity in the time

domain the waveform is poorer than that of the pitch synchronous

method showing discontinuities at the end of some pitches. In the

frequency domain the similarity is poorer than the pitch synchronous

method, but not disasterously so. As might be expected the major

formants do not move in frequency and show little variation in

amplitude.

The a-parameters for the six sequences were printed out and are given

in fig 3.5. When these a-parameters are considered together with

their gain values an interesting anomaly is observed. For a closely

correlated five pitch sequence it was expected that the corresponding

a-parameters would be fairly close, any increase in gain value simply

reflecting the increase in energy of that particular pitch. This

expected pattern often occurred but occassionally when a block of

similar a-parameters show one set quite different there is always a

corresponding deviation in the gain value. There appears to be a

tradeoff between a-parameter values and the gain value for similar

pitches such that if the gain was increased then a-parameters can be

altered to still produce the same pitch.

36

3.7 CONCLUSIONS FROM THE PDF11

IMPRES.FOR is the fortran program which implements each of the speech

processing facilities described in the previous sections of this

chapter and is given, together with operating instructions, in

Appendix 1 . A flow diagram for this extensive program is not included

as many of the subprograms are covered in later chapters.

For pitch synchronous analysis/synthesis the periodic autocorrelator

always gave superior results than the window autocorrelator in each

assessment method employed. The a-parameters produced by this method

were accurate and gave stable filters in every case. Unfortunately,

because of hardware limitations, it was not possible to listen to

complete sections of synthesised voiced speech and further development

was transferred to the IBM where synthesised speech could be audibly

assessed using the ILS software package.

From the limited work described in section 3.6 for additional bit rate

reduction it would appear that repeated use of a-parameters gives

acceptable results given a short analysis frame. The 5-pitch sequence

shown in fig 3.4 covers 42 milliseconds which is significantly longer

than the 20 millisecond frame size normally used.

During synthesis of scores of pitches (of which the table in fig 3.5

is only a small sample) two observations were made. The first

concerns single pitches where a slight increase in energy midway

through the pitch occurs due to mid-pitch glottal leakage, illustrated

by the central pitches in fig 3.4(a). These pitches cannot be

modelled by the simple system adopted using only one excitation per

pitch as, for a stable filter, energy must fall gradually through the

pitch. The second concerns the discontinuities which occur when

individual pitches are joined to form complete sections of voiced

speech as illustrated in fig 3.4(c). This can be solved to some

extent by applying a window at the end of each pitch to ensure a

smooth transition.

37

TINE FREQUENCY

60.

Oms 10.7ms

m •e

> 20J

-2d

2 3 *
Frequency (kHz)

(a) Original pitch taken from file 'S14JH3'

Oms

60

10.7ms
5
c

20

-20

1 2 3 ^ 5

Frequency (kHz)

(b) Synthesised pitch using 12th order filter

Time and rre<iuency Comparisons of Original and Synthesised Pitches

38
Fig 3.1

3 rt to H
- in &

•O H
-

ft s- c v> H
-

O n H
-

«Q H
- O

0) •O rt

D)

?T

ID

H

H
- IQ H
- I V
I i n H
- n a •d H
- rt g-

IT) cn

ff

O h 8-
R

el
at

iv
e

E
ne

rg
y

(d
B

)

«• u: N

§ H
-

I—
i

(D W

(s
j

O

R
el

at
iv

e
E

ne
rg

y
(d

B
)

O a

O
J

(O

POLE-ZERO CONSTELLATION DIAGRAMS

0.9032
-0.1678
0.4978

-0.2470
0.7980

-0.6989

± jO.3813
± J0.9135
± J0.8340
± J0.5108
± J0.1566
± J0.4744

(a) Filter which produced pitch in fig 3.1(b)

0.8238 ± J0.1942
-0.7570 ± J0.5894

0.9577 ± jO.1886
-0.5985 ±
-0.0781
0.2805

J0.7206
± jO.9318
± jO.9435

(b) Filter which produced pitch in fig 3.2(b)

Pole Positions of Two Typical 12th Order Filters

Fig 3.3

40

M •a rt y ID to H
-

01 & to 1 o c (0

H
-

CO i 0) •o ?! g ID

rt

(D

h

CO i-h

O

h P> •a H

- rt n g" en

R
el

at
iv

e
E

ne
rg

y
(d

B
)

U
l

it
k

cn rr tr n to H
-

10 & (0 (D g- tn H- vQ 1 0) a (D rT

(D h (0 l-h

O 1 rf

&

R
el

at
iv

e
E

ne
rg

y
(d

B
)

cn

•O H
-

ft n to (D (D n o> o to (O o
Re

la
ti

ve

En
er
gy

(d

B)

X
\

CJ Ul

BL
OC
K

ST
AR

T
PI

TC
H

NO
.

NO
.

PE
RI

OD
A1

A2
A3

A5
A6

A?
A8

A9
A1
0

A1
1

A1
2

GA
IN

6
,

1
3
5

.
6

.
2

2
6

.
6

.
3
1

0
.

6
.

3
9
3
.

6
.

4
7
4

,
6

.
5

5
5

.
6

,
6

3
5

.
6

.
7
1

2
.

6
.

7
8

8
.

6
.

8
6

4
.

2
3
,

1
9
8

.
2

3
.

2
8

1
.

2
3
.

3
6

2
.

2
3
.

4
4
3
.

2
3
.

5
2

5
.

2
3
.

6
1

7
.

2
3
.

7
0
5
.

2
3
.

7
9

2
.

2
3
.

8
8

1
,

2
3
.

9
7
2

.
2

3
.

1
0
6

6
.

2
3
.

1
1

6
7
.

2
3
.

1
2

6
9
.

2
3
.

1
3
7
6

.
2

3
.

1
4
8

1
.

2
3
.

1
5

9
1

.
2

3
.

1
7
0

2
.

2
3
.

1
8

1
0
.

2
3
.

1
9

2
3
.

2
3
.

2
0
3
7
.

3
1

.
1

0
2

.
3
1

.
2

1
4
.

3
1

.
3
2

5
.

3
1

,
4

3
1

.
3
1

,
5
3
4
.

3
1

.
6

4
5
.

3
1

.
7
4
5
.

4
0

.
5
.

4
0

.
9

3
.

4
0

,
1

8
4
.

4
0
.

2
7
8

.
4

0
.

3
7
4
.

4
0

.
4
7
3
.

9
0

.
8

3
.

8
2

.
8

0
.

8
0
.

7
9
.

7
6

.
7
5
.

7
5
.

7
4

.
8

2
.

8
0

.
8

0
.

8
1

.
9
1

.
8

7
.

8
6

.
8

8
.

9
0
.

9
3
.

1
0

0
.

1
0
1

.
1

0
6

.
1

0
4

.
1

0
9

.
1

1
0
.

1
0

7
.

1
1

2
.

1
1

3
.

1
1

2
.

1
1

1
.

1
1

0
.

1
0

5
.

1
0
2

.
1

1
0
.

9
9
.

1
0

4
.

8
7
.

9
0
.

9
3
.

9
5
.

9
8

.
9
5
.

2
.3

1
1

5
2

.3
8

8
2

2
.3

0
9

9
2

.2
3
8

3
2

.1
1

9
1

2
.1

7
0
5

2
.4

7
0
7

2
.7

1
4

7
2

.6
2

7
9

2
.8

3
0

7
1

,6
1

5
6

1
.8

5
7
7

2
.0

6
3
6

2
.2

6
0
6

2
.3

0
1

6
2

.5
3
2

0
2

.4
5
8

4
2

.5
6

5
9

2
.4

3
8

2
2

.3
5

6
7

2
.4

7
7
9

2
.7

1
2

2
1

.9
3
3
0

2
.1

6
5
8

1
.7

0
5
2

2
.0

1
8

8
2

.0
0

1
3

1
.6

3
6

8
1

.5
4
1

5
1

.5
2

9
3

1
.3

7
3
0

1
.3

7
4
4

1
.3

8
6

9
1

.2
0

2
5

1
.1

0
1

1
1

.1
0
9
0

1
.1

2
1

1
1

.2
1

8
6

1
.3

7
2

7
1

.3
9

9
6

1
.2

5
7
1

1
.4

8
7
4

1
.7

6
0

7

-2
.3

5
1

9
-2

.8
0
1

2
-2

.5
8

2
0

-2
.5

0
7
8

-2
.1

5
0

8
-2

.2
6

3
5

-3
.0

0
2

6
-3

.3
6

5
7

-3
.3

7
2

8
-3

.7
9
4
0

-1
.1

2
0
4

-1
.6

2
2

8
-2

.1
4
1

9
-2

.5
9
8

6
-2

.6
9
9
7

-3
.1

8
3
1

-3
.0

5
5

5
-3

.3
4

8
6

-2
.9

5
2

2
-2

.6
4
7
0

-3
.1

2
4
9

-3
.5

3
6

7
-1

.8
0

1
0

-1
.9

0
9

6
-1

.3
7
8

3
-2

.0
9
8

8
-2

.1
2

7
1

-1
.3

1
2

0
-1

.2
2

9
8

-1
.2

5
0
3

-0
.9

6
2

5
-0

.8
3
7
6

-0
.6

9
5
4

-0
.5

1
7
5

-0
.4

0
9
5

-0
.4

9
3
6

-O
.4

1
7
4

-0
.7

1
3
6

-0
.7

9
8

8
-1

.0
4
8

5
-0

.8
7
6

7
-1

.2
3
3
8

-1
.6

5
3
9

1
.8

5
9
3

2
.7

2
0

8
2

.3
0

5
4

2
.3

1
0

1
1

.7
5

2
8

1
.9

0
5
5

2
.7

6
6

5
2

.6
9

8
3

3
.1

6
3
0

3
.4

0
5

7
1

.3
8

2
8

1
.8

2
1

2
2

.3
7
8

1
2

.8
8

3
8

2
.9

4
0

6
3
.1

6
6

8
3
.1

2
9

2
3
.5

4
2

4
2

.9
2

1
3

2
.3

5
8

7
3
.2

0
8

8
3
.2

9
9

2
1

.7
6

6
9

1
.0

0
3
3

1
. 3

8
5
3

2
.0

7
4

4
2

.2
8

9
0

1
.3

0
2

8
1

.4
7
3
5

1
.6

2
4
2

1
.3

7
0
0

1
.1

3
5

8
0

.8
2

1
9

0
.9

3
1

8
0

.9
0

9
3

1
.2

4
3
0

0
.9

1
8

2
1

.5
3
1

3
1

.3
0
0
1

1
.8

6
8

6
1

.6
3
4

0
1

.7
6

6
1

1
.8

0
8

8

-1
.7

4
7
2

-2
.6

9
1

3
-2

.1
2

2
2

-2
.1

7
9

6
-1

.4
7
9

3
-1

.6
0
2

0
-2

.3
5
9
0

-1
.7

1
5
5

-2
.5

4
2

5
-2

.4
4

3
7

-1
.8

6
0
5

-2
.2

8
5
9

-2
.8

1
9

6
-3

.2
9
6

2
-3

.2
5
2

0
-3

.0
0
0
6

-3
.1

0
0
5

-3
.6

3
8

1
-2

.9
3
0
8

-2
.1

8
2

0
-3

.1
5

8
6

-2
.6

1
3
8

-1
.9

2
4

5
-0

.3
0

1
4

-1
.4

1
0
0

-1
.8

6
1

8
-2

,1
7
2

0
-1

.0
2

4
9

-1
.2

8
0

9
-1

.4
1

4
2

-1
.1

0
3
5

-0
.8

1
9

1
-0

.5
3
3
0

-0
.6

4
2

3
-0

.5
2

3
4

-0
.8

4
5
5

-0
.4

5
0

2
-1

.2
9

8
4

-1
.0

9
9
6

-1
.7

2
4
2

-1
.3

8
1

1
-1

.5
8

2
0

-1
.6

8
1

1

1
.7

4
7
6

2
.6

2
0
4

2
.0

2
9

3
2

.0
7
1

9
1

.2
0

4
0

1
.2

1
8

8
1

.8
7
8

0
0
.9

7
1

7
1

.6
8

1
9

1
.3

6
3
5

1
.8

2
3
5

2
.3

2
9
3

2
.9

4
2

8
3
.3

7
2

9
3
.2

8
0
4

2
.7

3
6

6
2

.9
9

6
2

3
.6

7
6

3
2

.9
7
6

3
2

.1
5

9
1

3
.1

0
4

8
2

.1
1

3
5

2
.0

7
3
2

0
.1

8
8

2
1

.5
3
2

8
1

.8
4

1
6

2
.1

7
2

7
1

.0
8

9
7

1
.3

8
3
5

1
.4

7
9

0
1

.2
0

7
7

0
.8

3
8

5
0

.5
2

3
9

0
.6

2
8

1
0

.5
8

5
5

0
.9

0
1

1
0

.5
7
4

7
1

.4
0
6

8
1

.2
1

7
9

1
.8

1
5
0

1
.6

6
6

6
2

.0
3
8

7
2

.4
0
3
1

-1
.7

8
6

5
-2

.6
0
1

4
-2

.0
2

6
3

-1
.9

3
4

4
-0

.9
6

0
7

-0
.9

2
9

6
-1

.4
9

7
1

-0
.4

9
7
8

-0
.9

1
4

2
-0

,3
8

6
1

-1
.7

0
9
7

-2
.2

4
2

8
-2

.8
6

5
4

-3
.2

5
3
1

-3
.1

4
5

3
-2

.4
2

8
5

-2
.8

5
8

9
-3

.6
0
0
6

-2
.9

2
4
2

-2
.1

6
7
2

-3
.0

4
8

8
-2

,1
1

2
5

-2
.1

9
1

1
-0

.5
2

5
7

-1
.7

3
2

4
-1

.9
7
6

5
-2

.3
3
6

2
-1

.3
5
6

7
-1

.6
7
3
7

-1
.7

8
5
2

-1
.5

2
7
0

-1
.2

0
9
2

-0
.9

1
7
8

-
.0

2
9

4
-

.0
1

5
3

-
.5

3
0
4

-
.1

9
6

7
-

.9
4
4
7

-
.7

4
8

0
-2

.3
9
4
0

-2
.2

3
6

3
-2

.6
1

6
8

-2
.9

4
9
3

1
.9

7
2

1
2

.6
5

3
9

2
.0

2
6

0
1

.7
3
1

6
0

.8
2

8
5

0
.8

8
5

8
1

.4
4

7
0

0
,3

2
8

6
0
.6

3
6

2
-0

.0
6

3
7

1
.6

8
0

5
2

.1
4

7
0

2
.6

8
2

5
3
.0

3
4

6
2

.9
0
7
7

2
.0

4
3
0

2
.4

7
5
6

3
.2

3
2

0
2

.5
8

0
3

1
.9

7
5
9

2
.8

0
4
3

2
.2

9
2

6
1

.9
8

9
1

0
.6

5
0

5
1

.4
8

8
8

1
.7

1
3
5

2
.0

2
2

8
1

.0
0

5
6

1
.2

5
4
2

1
,2

9
1

4
0
.9

5
3
8

0
.6

4
7
3

0
.3

4
8

3
0
.3

9
1

9
0

.2
9

7
2

0
.6

5
9

9
0

.3
9

5
0

1
.0

3
4

2
0
.8

7
3
0

1
.4

8
4
8

1
.2

8
2

8
1

.6
3
9

2
2

.0
2

6
2

-1
.9

9
6

0
-2

.6
4
2

0
-1

.9
4
6

7
-1

.5
9

0
0

-0
.8

8
4
2

-1
,1

1
2

9
-1

.8
0

2
7

-0
.6

8
0
9

-0
.8

8
3
7

-0
.2

0
9
0

-1
.5

0
4
1

-1
.8

9
4
2

-2
.3

5
1

8
-2

,6
1

8
1

-2
.4

9
8

6
-1

.6
3
2

9
-1

.9
5
6

8
-2

.6
9

5
5

-2
.1

1
3
6

-1
.6

6
3
6

-2
.4

6
0

7
-2

.4
3
8

2
-1

.7
6

7
2

-0
.6

6
1

1
-1

.3
9
0
8

-1
.5

5
3
2

-1
.8

7
3
9

-0
.9

7
5

0
-1

.3
1

0
0

-1
.3

9
1

8
-1

,1
2

9
4

-0
.7

6
9

6
-0

.3
8

2
0

-0
.5

5
5

3
-0

.5
5
0
9

-0
.9

3
4
6

-0
.5

7
1

2
-1

.2
3
7
2

-0
.8

6
4

1
-1

.5
0
8

2
-1

.3
5

7
9

-1
.4

8
0
6

-1
.6

1
4

8

1
.1

6
4

6

-0
.2

2
1

2

0
.0

1
4

8

-0
.0

2
5
9

1
.8

6
5
7

-0
.8

0
6

0

0
.3

2
3
1

-0

.1
0
5
8

1
.1

6
9

4

-0
.1

7
8

6

-0
.1

1
5

6

0
.0

5
3
2

0
.9

4
9
3

-0
.1

4
7
3

-0
.0

8
9
5

0
.0

5
5

2
0

,4
2

2
2

0

.1
3
4

2

-0
.1

0
0
3

-0
.0

0
1

3
0

.7
8

4
4

-0

.2
3
1

2

0
.1

7
4

1

-0
.1

1
8

8
1

.6
2

9
5

-0

.8
7
3
9

0

.3
8

3
9

-0

.1
2

5
6

0
.8

5
5

4

-0
.4

7
1

7

0
.1

8
4

4

-0
.0

7
1

7
0

.8
1

8
2

-0

.3
1

9
5

0
.0

9
5
9

-0
.0

4
5
5

0
.4

3
7
8

-0

.1
9

9
1

0

.0
0

0
7

0
.0

1
6

4
0
.6

3
6

7

-0

.4
5
9
4

0
.7

5
8

7

-0
.3

1
7
1

0
.9

6
4

8

-0
.5

6
7
2

0

.7
5

8
2

-0

.3
5

5
7

1
,3

9
7
4

-0
.8

1
7
5

0
.7

8
2

4

-0
.3

4
0

4
1

.5
6

1
4

-0
,8

1
1

4

0
.7

0
6

1

-0
.3

2
3
1

1
.4

5
8

1

-0
.6

4
2

0

0
.5

2
8

0

-0
.2

4
9
5

0
.7

4
5
4

0
.1

1
1

9

-0
.1

9
1

5

0
.0

3
5
8

1
.0

3
3
0

-0
.1

8
6

3

0
.0

3
1

7

-0
.0

4
1

0
1

,7
1

0
9

-0

.7
1

5
5

0
.3

1
1

4

-0
.1

1
3
7

1
.2

4
9
6

-0

.4
1

7
1

0
.1

8
5
8

-0

.0
8

7
5

0
.8

6
1

5

-0
.0

9
4
4

0
.0

3
5

7

-0
.0

6
4

6
1

.5
9

1
2

-0

.6
3
6

8

0
.2

9
8

2

-0
.1

1
5
2

1
.8

7
8

2

-0
.8

0
1

8

0
.2

3
4
1

-0

.0
6

6
2

1
.0

4
1

4

-0
,4

8
9
3

0
.5

9
8

7

-0
,3

1
8

6
0
,1

3
1

6

0
.4

6
0
2

-0

.2
3
0
8

-0

.0
1

7
1

0
.7

8
0

7

-0
.2

8
3
0

0
.5

1
5
2

-0

.2
9

2
7

0
.8

7
6

2

-0
.1

1
3
0

0
.0

8
3
5

-0
.0

6
0

6
1

.2
3
0

7

-0
.4

5
6

7

0
.3

7
0
0

-0
.1

8
5

5
0
.4

4
6

6

0
.1

0
7
8

0
.1

3
1

8

-0
.1

1
6

7
0

.8
2

0
7

-0
.2

2
9

6

0
.4

2
4

0

-0
.2

3
7
3

0
.9

7
5
4

-0
,3

2
6

7

0
.4

6
8

6

-0
.2

5
9

2
0

.7
5

5
0

-0

.1
6

1
4

0
.3

7
7
6

-0

.2
0

9
1

0
.4

5
7
3

0
.1

5
2

1

0
.1

0
6

9

-0
.1

2
8

2
0

.2
3
1

8

0
.3

3
1

5

-0
.1

1
8

3

-0
.0

5
7
5

0
.4

2
8

1

0
.1

6
9
5

0
.0

6
1

4

-0
,1

3
8

0
0

.4
0

1
2

0

.1
9

3
1

0
.0

5
1

9

-0
.1

0
0
6

0
.8

4
0

6

-0
.0

7
9

0

0
.3

9
0
0

-0
.3

1
2

6
0
.4

5
9
9

0
.1

4
0

5

0
.1

0
4

8

-0
.1

2
0

2
1

.0
7
0
9

-0
.3

2
9
4

0
.6

0
6

3

-0
.3

9
7
1

0
.7

7
3
2

-0

.1
6

9
5

0
.4

0
3
2

-0

.3
0
8

3
1

,3
2

7
4

-0

.5
0

3
3

0
.6

8
0

0

-0
.4

5
5
5

1
.1

4
9
4

-0
.5

4
3
1

0

.7
9

4
6

-0

.4
6

7
0

1
.2

6
5

2

-0
.8

2
4
5

0
.9

4
3
1

-0

.4
7
3
0

1
.3

4
8

0

-1
.2

5
7
0

1
.2

2
8

1

-0
.4

8
5
2

7
1

2
.9

7
8

3
.7

8
5
7
.0

9
8

0
.3

1
1

2
3
.6

1
0

5
9

.9
81

^.
3

51
6.

9
60

3.
2

47
8.

5
82

7.
9

87
6.

6
94

2.
3

82
8.

5
81

8.
7

70
5.

5
79

7.
3

8o
4.

0
86

9.
4

8
4

4
.2

77
1.

5
49

5.
6

98
4.

3
58

4.
 4

97
0.

5
76

0.
5

69
7.

1
79

8.
9

77
7.

5
69

3.
 <*

70
0.

1
61

7.
2

57
0.

2
6i

t8
.lt

62
5-

0
50

2.
0

$7
5.

 3
40

8.
 3

33
3.

9
37

1.
0

4?
4.

9
39

3.
4

30
4.

9

VOICED SPEECH ANALYSIS ON THE TMS32010

The work successfully completed on the PDP11 was transferred to the

more flexible IBM facility. The software, although proven, was not in

a form suitable for real time operation and producing accurate

efficient software for the TMS32010 involved two further stages of

development.

In this phase of the project speech data stored on the IBM under ILS

was processed in fortran giving due consideration to the limitations

of the TMS32010 where they would ultimately be used. The results

obtained from running these programs were then tested in this non real

time environment. Software successfully written to operate in real

time under these conditions was then converted to TMS32010 assembler

code for final testing.

The vocal tract filter underwent a number of stages of development

before appearing finally as a lattice which uses k-parameters instead

of the a-parameters used in its recursive form. During this

development the a-parameters are found using the Levinson-Durbin

algorithm which replaces the Gaussian elimination subroutine used on

the PDP11 . The k-parameters are produced as a by-product in this

algorithm and so when found more efficiently by another method a ready

made check was available.

Brief descriptions of algorithms for which software was written

showing their interrelationship is given, also an explanation of how

results are validated from them at each stage of development.

43

4.1 REAL TIME AUTOCORRELATION

Irrespective of subsequent processing the first stage in obtaining n

coefficients for use in the digital synthesiser is to obtain n+1

autocorrelations of the pitch under analysis. For the periodic

autocorrelator this means repeating 12 samples and evaluating

N-1
E Sn .Sn+i (4.1)

n=0

where i = degree of autocorrelation

N = number of samples in the pitch

On the PDP1 1 equation 4.1 was evaluated by first storing N+1 2 sample

values, ie SQ to SN+ -|2 °f which 12 are repeated, and once RQ to Ri2

were found dividing each by RQ to normalise. This method had three

major drawbacks for real time calculations,

(i) The time taken to store sample values before even

starting calculations.

(ii) The memory required to store N+1 2 sample values.

(iii) A number of divisions which on the TMS32010 is

expensive in terms of program code and execution

time which should if at all possible be avoided.

The limited data memory of the TMS32010 necessitated a program which

not only held the minimum number of sample values but produced the

normalised autocorrelations as soon as possible after the last sample

in the pitch had been received giving time for the the a-parameters to

be extracted from them.

The TMS32010 assembler program AUTO. DAT whose flow diagram is given in

fig 4.1 requires 39 data memory address (DMA) locations to obtain the

13 autocorrelations.

44

The algorithm works by performing 13 intermediate autocorrelations

which are updated every time a new sample value is received. Thirteen

DMA locations are needed to store the latest 13 sample values plus a

further 26 to store the intermediate autocorrelations of which there

are 13, each one stored as a 32 bit number.

Whenever a start of pitch pulse is received from the pitch detector

the previously stored normalised autocorrelation values from the last

pitch are cleared in readiness for the new values. The 13 sample

values still held in memory are the first 13 samples of the new pitch

and on these the following operations are carried out :

12-p
£ (Rp + Si.Si+p) -» Rp ; 0<p<12

i = 0

s i

Once these initial calculations have been made at the start of each

pitch the following sub-program runs every time a new sample value,

So , is received :

(Rp + S0 .Sp) -» Rp

Sp -» Sp+1 ; p=12,11, ...,0

In this way each autocorrelation value RQ to Ri2 is gradually built up

until a pulse from the pitch detector signals the end of this pitch

and the start of the next. At this point data memory holds the final

values for Rg to Ri2 which now have to be normalised.

The reason why Rg to R-|2 are stored as 32 bit numbers requiring two

DMA locations each is to prevent overflows. Using a 12 bit ADC the

magnitude of each sample value must be less than 2048, ie 2 1 '. When

45

sampling at 8 kHz a maximum pitch length of 16ms gives 128 samples

which, even if every sample value was 2048, gives a result for Rg of

less than 2*' - thus an overflow cannot occur.

During normalisation drawback (iii) is avoided by performing only one

division. The first step in normalisation is to repeatedly left shift

(ie double) Rg until it reaches its largest possible positive value.

Thus looking at the highest 16 bits of the accummulator Rg must lie

between 16384 and 32767. Next every other autocorrelation value R-| to

Rl2 is also left shifted the same number of times to keep their

proportion with RQ. Dividing 16384 by Rg gives a fraction F less than

unity. Multiplying R-| to R^2 by 2F returns the final set of

normalised autocorrelation values based on unity or 32767 in integer

form on the TMS32010.

4.1.1 Results of Running 'AUTO.DAT 1

To ensure correct operation of the program a fortran version of the

real time periodic autocorrelator just described was written and the

results obtained from it proved identical to those obtained from the

original non real-time periodic autocorrelator used on the PDP11. In

addition to this the results obtained from the program run on the

TMS32010 in integer arithmetic were compared with those obtained from

the non real-time fortran program run on the IBM which used floating

point arithmetic. This was done on the TMS32010 evaluation board by

single stepping through the program checking every intermediate result

and inputting the next sample value when required.

Several pitches were tested using data from the standard speech files

used on the PDP11 and in every case comparison between the two sets of

results were excellent. Two typical sets of results are given in the

table of fig 4.2 where the integer values from the TMS32010 have been

converted to decimal numbers to aid comparison. As can be seen all

46

values RQ to Ri2 are very close giving a maximum error of 0.00003 in

0.15320 or 0.0196%. As will be shown this error makes no significant

difference to the filter parameters derived from them.

4.2 OBTAINING a-PARAMETERS IN REAL TIME

The a-parameters used to resynthesise a pitch using the direct form

digital filter are found by solving the 12th order Toeplitz matrix,

which was done by Gaussian elimination on the PDP11 . Although this

method is accurate it involves many computations which cannot be

completed in the time available. Even if the time were available the

multiple computations in the fixed point arithmetic of the TMS32010

will also accumulate truncation errors which at best will give

inaccurate a-parameters and at worst unstable filters.

4.2.1 The Levinson-Durbin Algorithm

An efficient recursive method of solving a general Toeplitz matrix was

developed by Levinson in 1947, this was extended to matrices where the

right hand column vector comprised coefficients in the square matrix

by Durbin in 1959.

To write an efficient TMS32010 assembler program which calculates the

a-parameters in real time required a complete understanding of this

algorithm. The program was written as the iteration develops from one

stage to the next and is explained in basic mathematical terminology.

47

The matrix to be solved is

RQ RI R2 - . . RIO R 1 1

Rl RQ R-| Rg R.JQ

R2 R 1 R0 • • • R8 R9

R 10 R9 R8 • • • R 0 R 1

R-11 R-IO R9 . . . R 1 RO

*

a 1

a2

a 3

a 11

_a 12

_

R 1

R2

R 3

R 11

R 12

The Levinson-Durbin algorithm is recursive and starts by truncating

the matrix to only one value providing a first order predictor which

gives a trivial solution for a-| .

At the start of each new iteration the matrix is extended by one and a

whole new set of a-parameters must be found. Because of its symmetry

the highest order new a-parameter can be calculated using the old set

of a-parameters from the previous iteration, the others are then found

by a series of back substitutions. In this way a completely new set

of a-parameters emerge after each iteration.

Consider the situation at the start of the 4th iteration. In the

previous iteration, ie the 3rd, all the a-parameters have been found

and for clarity have been labelled as upper case A-parameters.

From the 3rd
iteration, R0 R-i R2

RI Ro R 1
R2 RI R0

* A2
A3

All these
A-parameters
are known.

Moving to
the 4th
iteration,

Rg RI R2 R3
RI RQ RI R2R2 RT R0 R!
R3 R2 R 1 R0

*
0) 0) 0) 0) fiOJtO-'

= 2
Ro
4

From these it can be seen,

All these
a-parameters
are unknown.

48

R 1 = R0- A 1 + R 1-A2 + R2 .A 3

and R 1 = R0- a 1 + R l-a2 + R2 .a 3 + R 3 .a 4

which when equated give

R 3 = RoKA 1 -a 1)/a 4] + RI [(A 2 -a2)/a4] + R2 [(A 3 -a 3) /a 4] ... (4.2)

I————.———I I____ i i________|
i i I

=A3 = A2 -AT

Equating these known A-parameters from the last iteration to the

functions in square brackets is the clever part of the algorithm and

can be seen to be true by comparing equation 4.2 with that from the

bottom row of the known 3rd order matrix. These three right-hand side

identities are used to find the new a-j, a2 and a3 by back substitution

once 34 is found.

34 is found first, by noting that the bottom row of the 4th order

unknown matrix gives

R3- a 1 + R2- a2 + R 1- a3 + R0- a4 = R4

which after substituting for a<| , a 2 and a 3 from the right hand side

identities in equation 4.2 gives

a
i

r \

34 = (R3.A1 + R2.A2 + R1.A3) - R4

(R 3 .A 3 + R2 .A2 + RT.A-]) - R 0

I__________________I
I

P

49

a, P and the subset of equations for updating the new a-parameters

produce highly structured patterns which can easily be incorporated

into an expanding subroutine thus forming a computationally efficient

recursive algorithm.

The program can now be summarised as consisting of four basic steps ;

[1] Increase order of matrix by 1 to n
I

[2] Find an from previous AI to An_i and RQ to Rn

[3] Using an back substitute to find a\ to an_i

[4] Rename ai to an as
iteration

to An ready for next

4.2.2 Accuracy of the Levinson-Durbin Method

The fortran program DURBIN.FOR was written to implement the Levinson-

Durbin algorithm just described on the IBM and its flow diagram is

given in fig 4.3. Again a number of pitches taken from the standard

speech data file 'S14JH3' were used to compare results obtained from

both methods. A typical set of results for a tenth order predictor

is given below ;

NORMALISED
AUTOCORRELATION

VALUES FROM
PDP11

RO
R 1
R2
R3
R4
R5
R6
R7
Re
R9
R10

1 .00000000
0.92845780
0.76641858
0.58106315
0.39069805
0.18033281

-0.06411542
-0.31075102
-0.50533676
-0.60271454
-0.59805089

a-PARAMETERS
FROM PDP11

USING GAUSSIAN
ELIMINATION

a-PARAMETERS
FROM IBM USING
LEVINSON-DURBIN

ALGORITHM

a 1
a2
a3
a 4
a 5
a6
a 7
a8
ag
a10

1 .51308715
-1 .05533564
0.86255562

-0.48699725
0.57969546
-0.75914788
0.44395357

-0.49358481
0.02544993
0.30618247

1 .513092
-1 .055348
0.862572

-0.487019
0.579720
-0.759170
0.443972
-0.493595
0.025455
0.306180

50

The normalised autocorrelation values were obtained from the PDP11 and

used as inputs to DURBIN.FOR on the IBM. In all cases the a-

parameters produced on the IBM using the Levinson-Durbin algorithm

were the same as those obtained from the PDP11 using Gaussian

elimination.

Results obtained show no difference in a-parameters until the fifth

decimal place, a typical error of 0.005%. These small differences can

be attributed to lack of accuracy when supplying the normalised R

values which were limited to eight decimal places for the IBM. Of

course the program still operates in floating point arithmetic but its

correct operation was proved.

The effect of these a-parameters on gain factor G was also calculated

in accordance with equation 2.5. The worst error recorded for gain

between the two methods was 0.00043% which if converted to a 16 bit

integer would leave the number unchanged.

4.3 SYNTHESIS ON THE TMS32010 USING A-PARAMETERS

The program DURBIN.FOR which produced a-parameters via the Levinson-

Durbin algorithm was never converted to TMS32010 assembler code for

the reasons discussed in the next section. It was thought however

that realisation of the direct form filter to synthesise the pitches

analysed by this method would be useful as an information base from

which variables such as pitch length, order of filter, effect of gain,

filtering, etc could be observed dynamically in time and frequency

using the TMS32010.

The program DIRSYN.DAT was written directly in TMS32010 assembler

code, the flowchart for which is given in figure 4.4. The special

instruction set of the TMS32010 was particularly suitable for this

51

type of multiply, add and shift filter which for speed was written in

direct line code and made periodic so that the waveshape and spectrum

could be easily observed.

Inputs required for the filter are the pitch period, gain of impulse

and the 12 a-parameters. The a-parameters must be converted to

integers for the TMS32010 which introduced the first objection to

synthesising in this way. Theoretically the a-parameters can take on

any value, though from experience are usually contained within the

range ±10. All integer values must be scaled to the largest magnitude

if quantisation errors are to be minimised, once this is done impulse

weight must also be altered accordingly. Although this can be

accommodated under the controlled conditions of single pitch

synthesis, for real time operation rapidly varying a-parameters would

present problems in both analysis and synthesis.

A number of pitches were resynthesised using the 12th order filter and

three are given in fig 4.5. In all cases the waveshape, taken from a

storage scope, were very similar to the original. Frequency plots

from a spectrum analyser show a smoothed spectrum with the formant

peaks clearly identifiable.

4.4 THE LATTICE FILTER APPROACH

Although it has been shown that a-parameters can be produced

accurately in real time using the Levinson-Durbin algorithm there is

another method far more suitable for use on the TMS32010. Exactly the

same filter can be implemented in a lattice structure which alleviates

many of the problems posed by its direct form counterpart. For the

lattice filter 12 k-parameters are needed which are closely related to

the a-parameters. The Levinson-Durbin algorithm begins each new

iteration by evaluating the next highest order a-parameter, this is in

fact the k-parameter for that iteration. Unlike the a-parameters this

k-parameter once found does not alter as the iteration progresses and

52

so can be stored. Thus the Levinson-Durbin algorithm can be used to

find the k-parameters by simply storing the newly found highest a-

parameter after each iteration even though to find the next one all

these a-parameters must be changed.

The lattice filter for speech synthesis, first proposed by Itakura and

Suto [40], is shown in fig 4.6(b) and being an exact equivalent of the

direct form synthesiser of fig 2.5(b) has the same frequency response.

Thus hitting this filter with an impulse should reproduce exactly the

same pitch as that obtained from the direct form synthesiser. Just as

the recursive synthesiser has an inverse from which the a-parameters

are found so the lattice synthesiser has its inverse shown in fig

4.6(a) from which its k-parameters can be found. Thus in the final

event the k-parameters can be found more efficiently than using the

Levinson-Durbin algorithm. This algorithm however did provide an

important aid in development which initially confirmed the correct

operation of the lattice synthesiser and later was used for checking

k-parameters found from the inverse filter technique.

The four major advantages of using a lattice filter on the TMS32010

are summarised as :-

(1) Provided the autocorrelation matrix is +ve definite then a stable

all-pole filter is produced making each of the k-parameters less than

unity. This very important minimum-phase property means that each k-

parameter can be permanently scaled to ±32768 allowing the stability

of the filter to be checked immediately at the transmitter.

(2) The k-parameters can be found from the inverse lattice filter very

quickly using a Leroux-Gueuegen algorithm without having to evaluate

any a-parameters. This structure uses multiply/add routines and

requires very little memory which is ideally suited to the TMS32010.

Also the results of all intermediate arithmetic calculations, as well

as the final k-parameters, are less than unity for a stable filter.

53

(3) The lattice is a modular structure, each k-parameter being

independent of all others. Thus if the order of the filter needs to

be changed then sections can easily be added or removed with no effect

to previous sections.

(4) The lattice structure is less sensitive to round-off errors and

hence parameter variations than its direct form counterpart - the

lattice tends to be self correcting as values ripple through reacting

to both upper and lower rails. In the tapped delay line structure of

the direct form realisation any error introduced continues unchecked

to the output.

The lattice structure gives a good correspondence to the mechanical

model of the vocal tract. A 12th order lattice splits the vocal tract

up into 12 unmatched sections similar to a transmission line. At each

section some energy is transmitted and some reflected, this amount

being related to the k-parameter value at that junction. For this

reason the k-parameters are known as reflection coefficients.

4.4.1 Calculating the Reflection Coefficients

The lattice analyser shown in fig 4.6(b) has an upper and lower rail

which for an nth order filter finally gives two outputs known as the

error signals En and en . Analysis is still based on obtaining a least

mean squared error which for this lattice structure is achieved by

setting the error signal of the top rail to zero. The lattice is

built up one stage at a time requiring n+1 normalised R values for an

nth order filter.

The program written to obtain these k-parameters is based on the

Leroux-Gueuegen algorithm of 1977 [41]. At the nth stage kn is

calculated from previously found k-parameters and R values and once a

k-parameter is found its value never changes. On the lower rail the

input to each time delay is stored for use in the next stage. As will

54

be shown each new k-parameter is found by dividing the input to the

last adder on the top rail by the input to the last adder on the lower

rail.

The process starts with a single section from which k^ is found using

RQ and RI.

1st section

(save)
(save)

To evaluate ki the first two autocorrelation values RQ and RI are

required.

At the output of the lattice

and

e 1 = R0 - k 1 .R 1

E-| = R-) - k-| .RQ = 0

Thus it can be seen that k<| = a^ from the Levinson-Durbin algorithm

and must be less than unity provided RI<RQ. Also it can be seen that

ki is found by dividing the present input to the last adder on the top

rail by the previously stored input to the last adder on the lower

rail - effectively a cross multiplication when E-| is equated to zero.

55

The values appearing at the input to each time delay on the lower rail

(including ei) are now stored to be used for the next section.

2nd section

R2 -k 1 .R 1
E2 =R2 -k 1 .R 1

.k2 .

(save)

The next stage is added and the previously stored values of R-| and e-|

(ie R0-k-| .R-|) move to the other side of the time delays before the

next input R2 is applied. The output of each adder stage is evaluated

and those on the lower rail must be stored. Again k2 is found by

dividing the last top rail adder input by the last lower rail adder

input giving,

k2 = (k-i ,R 1 -R2)/(k 1 .

Remembering that k-) is the same as AI it can be seen that k2 is in

fact a2 • In the Levinson-Durbin algorithm a series of back

substitutions now has to be made to update the old A-parameters before

the next 33 (ie k3) can be calculated - with this method no such

operation is necessary. In this way the order of the filter increases

one stage at a time forming a very efficient recursive algorithm.

56

For the Leroux-Gueuegen algorithm all that is required for a 12th

order filter are the 13 normalised autocorrelation values and 36

memory locations - 12 for the k-parameters, 12 for the values before

the time delays and 12 for those stored previously which go after the

time delays. The program is summarised as,

[1] Add the nth section and input the next
autocorrelation value, Rn .

[2] Evaluate output from top and lower rail
summing junctions using stored values.

[3] Store lower rail values for next stage.

[4] Calculate kn by dividing input to last
adder on top rail by input to last adder
on bottom rail.

The flow chart for program LEROUX.FOR which executes the Leroux-

Gueuegen algorithm just described is given in fig 4.7. This program

was run on numerous pitches and results for k-parameters were compared

with those obtained from the Levinson-Durbin program DURBIN.FOR. In

general results from both programs compared well with no difference

ever being observed in the values for k-| to k3. For k4 to ki2 the

difference was typically 0.000001 to 0.00004 giving a maximum error of

less than 0.1%. The results from two typical pitches are given in the

table of fig 4.8.

By gradual development a viable, robust, real-time program was

produced which gave consistently good results. This program was

checked at each stage of development to confirm its correct operation

before conversion to TMS32010 code.

57

4.4.2 Pitch Synthesis Using the Lattice Filter

The fortran program LATSYN was written for the IBM to realise the

lattice synthesiser shown in fig 4.6(b), its flow diagram is given in

fig 4.10. The program was written at this time to confirm the correct

operation of the lattice filter by comparing its impulse response with

that produced by its direct form equivalent.

The results for four different pitches taken from the two PDP11 files

were analysed and synthesised by both methods independently. Their a-

parameters were found from DURBIN while their k-parameters found using

LEROUX. When both direct (DIRSYN) and lattice (LATSYN) filters were

set up and hit with the same amplitude impulse exactly the same

waveforms were obtained, each data point being exact to the 3rd

decimal place. This not only proved the correct operation of the

lattice synthesiser but also the accuracy of the k-parameters found

from LEROUX.

The program was taken one stage further and converted to TMS32010

assembler code. As with the direct form filter LATSYN.DAT was made

periodic so that waveshape and spectrum could be observed and future

results recorded. The k-parameters were converted to 16 bit integers

and again the waveforms obtained from this real time lattice

synthesiser proved identical to those obtained from its direct form

counterpart. Now validated this lattice structure was used in all

future work.

4.4.3 Gain Factor from the k-parameters

In terms of the a-parameters the total error for a pth order filter is

found from the expression :-

P
G2 = RQ - £ ai-Ri (4.3)

58

When the direct form filter which uses these a-parameters is excited

by an impulse of magnitude G the original pitch is reproduced. The

lattice filter, which uses the k-parameters, being an exact equivalent

of this requires the same impulse. The a-parameters are not

calculated in the Leroux-Gueuegen algorithm and so G must be found

from the reflection coefficients.

Equation 4.3 expressed as a fraction of R0 becomes:-

G2 = 1 - E ai .P.i (4.4)

In the lattice structure the error signal en which propagates along

the lower rail is in fact G2 . This can be illustrated by considering

the final nth section of the lattice:

En=Y-X.kn=0

en =X-Y.kn

From the top rail for best fit

Y = X.kr

Which makes the lower rail error signal

en = X(1-kn)

59

The term X is the last lower rail error signal saved from the previous

stage, ie en_i. Using this identity it can be seen how the gain term

is developed and compared with its equivalent a-parameter form.

1st stage, n=1

X = 1

2
e! = (1-k!)

Comparing this with the equivalent gain value in a-parameter form:

G2 = 1 - a-| .R!

which of course is exactly the same, because, a-| = RI = k-| .

2nd stage, n=2
2

X = (1-k!)

2 2
e2 = (1-k-,) . (1-k2)

To compare this with the equivalent gain in a-parameter form for a

second order predictor e2 is expressed in terms of its R values as

shown previously in the lattice diagram, ie

e2 = (1-k! .R-|)

which when compared with

G2 = 1 - a-) .R-| - a2 .R2

shows that a2 = k2
and a-| = ki - k-j .k2

This analysis not only shows how G2 is evaluated automatically by the

lattice structure but also gives the relationship between the

reflection coefficients which do not change as the order of the filter

increases and the a-parameters which do.

As more and more stages are added the expression grows which for an

nth order filter becomes:

60

,2 2 2 2
G2 = (1+k 1).(Uk2).(1+k3)....(Ukn)

which is more conveniently expressed as:

- P 2
G2 = IT (1-ki) (4.5)

From this it can be seen that for a stable filter where every k-

parameter is less than unity the gain or impulse amplitude must fall

in value as the filter order increases.

The value for gain found from the k-parameters using equation 4.5

should equal that found from the a-parameters using equation 4.4 and

to test the accuracy of this method a number of pitches were analysed.

The table below gives the a-parameters from a single pitch using the

Levinson-Durbin algorithm from which the gain is found using equation

4.4. Next to this are the k-parameters for the same pitch found using

the Leroux-Gueuegen algorithm and gain calculated using equation 4.5.

i

1
2
3
4
5
6
7
8
9

10
11
12

Ri

0.968596
0.907145
0.830527
0.728498
0.603936
0.446426
0.278901
0.122368

-0.029852
-0.173706
-0.315135
-0.441239

»i

1 .414769
-1 .079455

1 .900494
-1 .769736

1 .862704
-2.435023

1 .532488
-1 .546165

1 .357345
-0.527305
0.685483

-0.454137

ai- Ri

1 .3703396
-0.9792222

1 .5784166
-1 .2892491

1 .1249540
-1 .0870576
0.4274124

-0.1892011
-0.0405194
0.0915960

-0.2160196
0.2003829

ki

0.968596
-0.501977
-0.064499
-0.437584
-0.180572
-0.714401
0.264649

-0.038838
0.607405
0.028646
0.054154
-0.454137

2
1-k±

0.0618217
0.7480190
0.9958398
0.8085202
0.9673937
0.4896312
0.9299609
0.9984916
0.6310591
0.9991794
0.9970673
0.7937595

-> G2 = 1 -
12 , 12

G2 = IT
2

1-ki)

G2 = 0.0081726 (268) G2 = 0.0081723 (268)

G = 0.0904023 (2962) G = 0.0904005 (2962)

61

For all pitches tested the results from both methods were in very

close agreement. The results from the IBM shown in fractions are the

same to the fifth decimal place which when converted to a 16 bit

integer (the number in brackets) gives exactly the same result.

Both error signals which propagate along the upper and lower rail of

the lattice analyser can be monitored to estimate how well the filter

is matching the pitch under analysis. It would seem logical that a

pitch which is spectrally uncomplicated would be matched more quickly

than one with a large number of major resonances. The program

LATAN.FOR prints out both errors and the results for four typical

pitches are given in figure 4.9. As can be seen the errors from the

first two pitches which contain five major resonances converge much

more slowly than the second two pitches which contain only two major

resonances. All pitches are stable as indicated by the monotonically

decreasing value for the lower rail error e^, ie G^.

4.5 REFLECTION COEFFICIENTS FROM THE TMS32010

The Leroux-Gueuegen program written for the IBM in fortran was shown

to give consistently accurate results and this program was rewritten

in assembler code to run on the TMS32010.

For each pitch analysed 13 normalised autocorrelation values are

required and are stored as 16 bit words in data memory. These values

would in practice be supplied from the original data via the real time

autocorrelator AUTO.DAT but for program development were directly

input to data memory. Other working variables stored as 16 bit words

in data memory are the 12 k-parameters, 12 lower rail inputs to each

summer, 12 lower rail outputs of each summer and the upper rail error

referred to as Y which is continually updated as it propagates along

the top rail, terminating in the value En .

62

The first pitches tested were from the standard speech source on the

PDP11. The k-parameters found from the TMS32010 have been converted

to decimal form to allow comparison with those from the IBM.

IBM TMS32010 IBM TMS32010

k4

kg
k10

0.93163
0.75072
0.35272
0.53063
0.23421
0.44710
0.19242
0.02125
0.71102
0.08345
0.01565
0.20499

0.93164
-0.75125
0.35507
-0.53644
-0.22867
-0.45044
0.19568

-0.02469
0.72202

-0.12561
0.05512

-0.24432

0.91669
0.88108
0.28607
0.49069
0.02308
0.35418
0.03329
0.13238
0.46990
0.06874
0.11545
0.00986

0.91669
-0.88129
0.28680

-0.49393
0.03088

-0.36881
0.05298
0.11206
0.49927

-0.13590
0.04355

-0.06744

These results shown above, although not perfect, did give stable

parameters which appeared within the limits of the inevitable

truncation errors incurred using 16 bit integer arithmetic.

When testing was extended to include speech data recorded on the IBM

using the ILS software some pitches also gave acceptable k-parameters.

However for a few pitches disasterous results were obtained of which

two examples are shown below.

IBM TMS32010 IBM TMS32010

k4

kg
k 10

0.99336
0.97518
0.22695
0.05866
0.46429
0.26084
0.12849
0.24008
0.03454
0.07054
0.00470
0.07626

0.99332
-0.97705
0.26315

-0.05881
0.50000
0.25000

-0.54544
1 .00000
1 .00000

-1 .00000
0.75000
1 .00000

0.99168
•0.98530
0.36399
0.08685
0.41760
0.01819
•0.02378
0.20449
•0.06904
0.04213
0.04323
0.02032

0.99167
-0.98526
0.40000

-0.08331
0.72726

-1 .00000
-1 .00000

1 .00000
-0.66667
-1 .00000
-1 .00000
-1 .00000

63

Of these results only the first four or five k-pararaeters could be

judged as useful for speech synthesis. The higher order reflection

coefficients produce overflows which on the TMS32010 are hard limited

to ±1 .

This problem which had not been experienced on the IBM was attributed

to truncation errors. In an attempt to increase precision and prevent

overflows a number of alterations were made to the original program

which included,

(i) Storing each working variable as a 32 bit number,

(ii) Using a 32 bit multiplication routine,

(iii) Extending the division routine to accomodate 32 bit numbers.

When the four pitches previously analysed were run on this new program

the results showed a marked improvement with the k-parameters from

PDP11 pitches giving much closer agreement to those obtained from the

IBM.

This increased accuracy was repeated for the lower order coefficients

on the ILS recorded speech and although higher order values were not

the same they did remain stable. When these k-parameters were used

for resynthesis the pitch, somewhat surprisingly, showed good

similarity to the original.

Even though the results for these pitches had improved it was obvious

that accuracy was always going to be a problem and there was no

guarantee that even with this improved program an overflow would not

occur. In addition to this the extra code required to increase

accuracy had doubled the operation time of the program, an important

consideration when the time came to assemble these subprograms

together.

By single stepping through the TMS32010 evaluation module each working

variable was monitored at each stage in the program until it was

discovered that in certain pitches the error signals, particularly the

64

top rail error, Y, became very small indeed. To investigate this

further the fortran program was altered to print out these error

signals and the results for the four pitches under analysis are given

in fig 4.9.

For all pitches the underlying trend of the top rail error En , ie the

final value of Y at each stage, is to decrease as the order of the

filter increases even though the values do fluctuate about this mean.

After each stage the k-parameters are found from the formula,

kn+1 = En/en

From fig 4.9 it can be seen that for the two ILS recorded pitches the

magnitude of En falls much more rapidly than those from the PDP11 .

Significantly for both ILS pitches £3 has fallen to a magnitude of

unity when expressed as a 16 bit number (the numbers in brackets).

Higher order upper rail errors fall to even smaller values which in

many cases equate to zero when expressed as 16 bit numbers.

The lower rail errors en show a monotonic decay for all pitches which

is consistent with stable k-parameters. Again the ILS speech produces

much smaller en values than the PDP11 pitches.

It should be appreciated that there is no flaw in these results. The

the ratio between the magnitudes of En and en is preserved in all

pitches giving comparable size k-parameters which are accurate and

stable.

The significance of these results is in the increased accuracy

required when dealing with those pitches stored on the IBM. When

using floating point arithmetic these magnitudes present no problem,

however when transferred to 16 bit integer arithmetic the required

accuracy cannot be provided and failure is inevitable.

This problem appeared insoluble, without resorting to a floating point

routine, until the pitches being analysed were viewed in more detail

as shown in figs 4.11 and 4.12.

65

In fig 4.11 (a) the original pitch from the PDP11 shows 4 major

resonances plus 2 or 3 of less significance. The highest formant is

at almost 4kHz and these high frequency components give a rapid rate

of change in the autocorrelation values, as observed in fig 4.9.

These large differences between adjacent autocorrelation coefficients

hold the error signals in the lattice analyser to reasonably large

magnitudes which although giving some inaccuracies does not produce

overflows in the TMS32010.

The pitch of fig 4.12(a) from the IBM is very simple in structure

containing only one major formant at approximately 230 Hz. As seen in

fig 4.9 this abscence of high frequencies gives autocorrelation values

which change slowly remaining positive even after 13 autocorrelations.

Because successive autocorrelation coefficients are so close in value

the error signals in the lattice analyser which involve their

subtraction become very small, in many cases too small to even be

represented as a 16 bit number on the TMS32010.

Having established the cause of the problem its solution was now self

evident. In theory two coefficients are required for each formant and

so the IBM pitch could be adequately modelled by a 2nd order filter,

ie only 2 k-parameters need be found. The rapid decline in magnitude

of the error signal Y indicates the lack of high frequency components.

This signifies the filter is long enough and nothing is gained by

slavishly continuing the filter to its twelfth stage looking for major

resonances which do not exist only to give problems with accuracy.

The prospect of using a shorter filter for pitch synthesis was

attractive for a number of reasons:

(i) By continually checking Y the lattice analyser could, if

necessary, be terminated before the 12th stage hence eliminating

overflows caused by 16 bit number representations,

(ii) Reduced processing time.
(iii) The possibility of a further reduction in bit-rate even though

the continuous transmission of variable length filters would

have to be overcome.

66

4.5.1 Pitch Synthesis Using a Truncated Filter

Up to this point 12th order filters were used exclusively for pitch

synthesis which using floating point arithmetic had proved successful

in every case. It-parameters found using the truncated fixed point

analyser could only be used if the truncated lattice synthesiser gave

a good likeness to the original.

The program LATSYN which synthesised a 12th order lattice filter was

altered to give one of any length. This was a simple operation which

exploited a major advantage of the lattice structure, ie if only a 4th

order filter is required then ignore the last 8 stages. This can be

done because the value of each k-parameter is independent of all

others.

From fig 4.11 it can be seen that the PDP11 pitch is modelled well by

a 12th, 11th and 10th order filter giving excellent time and frequency

comparisons. For filters lower than 10th order the frequency plots

show how the higher formants cannot be represented and merge to give a

poor impulse response. The synthesised pitch is further degraded as

the order of the filter decreases.

The IBM pitch shown in fig 4.12 in contrast to the pitch from the

PDP11 shows that decreasing filter order has very little effect with

lower order filters giving, if anything, a closer fit to the original.

This explains why the stable higher order k-parameters from the more

accurate TMS32010 program gave good results, even though they were

completely different than those obtained from the fortran program. As

they were not modelling any high order formants they were contributing

very little spectral information and could even have been ignored.

The final lattice analysis program monitors the top rail error signal

Y, terminating when it falls below the predefined magnitude of

0.000122, ie 4 when expressed as a 16 bit number. This magnitude,

which tells the program to stop looking for formants which do not

67

exist, was a compromise between an error low enough to ensure all

major resonances were found and high enough to avoid accuracy errors

in the TMS32010.

This variable length analysis/synthesis system was applied to many

more pitches from both PDP11 and IBM speech and in every case gave

filters of sufficient length to represent it accurately. These

further tests reaffirmed the findings of Atal [11,23] and Tremain [4]

that a 10th order filter was, in the majority of cases, sufficient to

accurately model any pitch even using the periodic autocorrelation

approach.

4.6 CALCULATING GAIN ON THE TMS32010

Even though the mean squared error is evaluated in the transmitter by

the Leroux-Gueuegen algorithm it is proposed that its transmission is

superfluous only serving to increase bit rate. Equation 4.5 is

evaluated in the receiver where each k-parameter is squared and

subtracted from unity before being multiplied together.

Multiplication is no problem for the TMS32010 taking only 200ns,

however the order in which they take place does affect accuracy. As a

general rule the higher order k-parameters are smaller in magnitude,

with ki always largest. Thus to keep G2 as accurate as possible under

the constraints of 16 bit integer arithmetic the order of

multiplication should be kp to k^.

Calculating gain required a fast accurate square root routine which

operated in integer arithmetic. It was found that Newton's method

gives an accuracy of better than 0.1% after only two passes provided

the initial 'guess' from a small look-up table is judicious. The

square root of a number which lies between 0 and 1 will always

increase and so the integer table shown below was used:

68

G2 in this Initial Guess
Range for G

0 0
1 to 4 256 (
5 to 16 512 (=78)

17 to 64 1024 (=732)
65 to 256 2048 (=7128)

257 to 1024 4096 (=7512)
1025 to 4096 8192 (=72048)
4096 to 16384 16384 (=78192)

The effectiveness of this solution is easily illustrated,

Take a mean squared error, G2 = 0.00042725

expressed as a 16 bit integer G2 = 14

From the look-up table the initial guess for G =512 is taken.

This guess is passed through Newton's equation twice which has been

modified to handle 16 bit integer arithmetic as shown below:

G' = 0.5[(14*32768/512) + 512] = 704

G" = 0.5[(14*32768/704) + 704] = 678

expressing 678 as a fraction G = 0.02069

correct answer G = 0.02067

This gives an error of less than 0.1% which would improve marginally

if the iteration was continued but this would not affect the impulse

gain factor when expressed as an integer.

The sub-program which performs this gain calculation in the TMS32010

receiver takes up 61 program memory address locations, 4 data memory

address locations and on average takes 8 pis to perform.

69

4.7 SUMMARY

The work on individual pitch analysis/synthesis successfully performed

on the PDP11 has been transferred and proven on the TMS32010 as a

series of subprograms. The difficulty of truncation errors causing

overflows in the lattice analyser was overcome by terminating the

filter rather than writing an ad-hoc floating point routine which

would retain its full length at the expense of increased memory and

processing time.

70

-NO

P = P-l

PROGRAM 'AUTO'

Real time autocorrelation.

• NO

-NO

i = i+1

YES

YES

YES

YES

END

INPUT
NEXT SAMPLE ?J>——NO-

NEW SAMPLE
So

NO-

Fig 4.1
71

RO
RI
R2
R3
R4
RS
Re
R7
Re
R9
R 10
R 11
R12

TMS32010
(integer)
32767
32548
31900
30852
29432
27678
25650
23398
20974
18434
15832
13212
10612

TMS32010
(decimal

1 .00000
0.99329
0.97351
0.94153
0.89812
0.84467
0.78278
0.71405
0.64008
0.56256
0.48315
0.40320
0.32385

IBM

1.00000
0.99328
0.97355
0.94156
0.89819
0.84473
0.78282
0.71408
0.64010
0.56258
0.48315
0.40318
0.32390

(a) 9.6ms pitch from file 'S14JH3 1

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

TMS32010
(integer)
32767
32496
31690
30378
28598
26404
23858
21028
17982
14792
11526
8248
5020

TMS32010
(decimal)

1 .00000
0.99170
0.96710
0.92706
0.87274
0.80579
0.72809
0.64172
0.54877
0.45142
0.35175
0.25171
0.15320

IBM

1.00000
0.99169
0.96710
0.92705
0.87274
0.80579
0.72810
0.64172
0.54878
,45141
.35172

0.25171
0.15323

0.
0.

(b) 8.5ms pitch from file 'S20MH3'

Results of real-time periodic autocorrelator on TMS32010
versus original periodic autocorrelation program on IBM.

Fig 4.2

72

c START

/ INPUT
/R(0) -» R(13)>

B = 6 + Ap.Rp

•NO

YES

-NO

YES

-NO

YES

NO-

YES

C

PROGRAM ' DURBIN'

A-parameters found from R-values
using the Levinson-Durbin algorithm.

73 Fig 4.3

C START J
PROGRAM 'DIRSYN'

Voiced speech synthesis using the
a-parameters in a recursive filter.

INPUT
Impulse weight, G
order of filter, ML
pitch length, PL
a-parameters, An

74 Fig 4.4

0 10 ms 0 10 ms

(a) Original Pitch Synthesised Pitch

8 ms

(b) Original Pitch

0 8 ms

Synthesised Pitch

b ms 0 8 ms

Synthesised Pitch

,20dBm

-30dBm

D 5kHz

Spectrum of synthesised
pitch

,20dBm

-30dBm

5kHz

Spectrum of synthesised
pitch

_20dBm

-30dBm

(c) Original Pitch

Vocoder results for 3 individual pitches of voiced speech.

75

5kHz

Spectrum of synthesised
pitch

Fig 4.5

e . (n-1) e (n)e (n) '——' e_(n-l) e, (n

(a) Inverse lattice filter used to extract the k-parameters from a
section of speech.

(b) Lattice filter used to resynthesise the section of speech using
the k-parameters found in (a).

Fig 4.6

76

PROGRAM 'LEROUX'

The k-parameters are found from
the R-values using the Leroux-
Gueguen algorithm.

77

Fig 4.7

	It-parameters
LEVINSON-DURBIN

k1 0.931630
k2 -0.750722
k3 0.352722
k4 -0.530627
k5 -0.234215
k6 -0.447100
k7 0.192413
k8 -0.021244
k9 0.711008
k10 -0.083417
k11 0.015616
k12 -0.204948

k-parameters
LEROUX-GUEGUEN

0.931630
-0.750722
0.352722

-0.530626
-0.234214
-0.447103
0.192417

-0.021248
0.711015

-0.083453
0.015654
-0.204990

(a) Pitch 23-1702-107

k-parameters
LEVINSON-DURBIN

k!
k2
k3
k4
k5
k6
k7
k8
k9
k10
k1 1

0.968596
-0.501977
-0.064499
-0.437584
-0.180572
-0.714401
0.264649

-0.038838
0.607405
0.028646
0.054154

k12 -0.454137

(b) Pitch 40-182-93

k-parameters
LEROUX-GUEGUEN

0.968596
-0.501977
-0.064499
-0.437585
-0.180574
-0.714397
0.264640

-0.038825
0.607384
0.028689
0.054117

-0.454079

Comparison of k-parameters for two pitches obtained from the IBM

using 'DURBIN' and 'LEROUX'.

Fig 4.8

78

2 Pitches from PDP11 2 Pitches from IBM

RO
RI
R2
R3
R4
RS
R6
R7
Re
Rg
RIO
R11
R12

E 1
E2
E3
E4
E5
E6
E7
E8
Eg
E 10
E 11

ei
e2
e3
64
e5
e6
e7
e8
eg
eio
611

k 1
k2
k3
k4

k6
k7
kg
kg
k 10

kip

1 .00000
0.93163
0.76879
0.57485
0.37221
0.15028

-0.10127
-0.35454
-0.55596
-0.65860
-0.65600
-0.59203
-0.50111

-0.0991445
0.0203293
-0.0267780
-0.0084916
-0.0153209
0.0052755

-0.0005610
0.0187637
-0.0010890
0.0002029

-0.0026556

0.1320655
0.0576356
0.0504650
0.0362559
0.0342670
0.0274170
0.0264019
0.0263900
0.0130487
0.0129579
0.0129547

0.931630
-0.750722
0.352722
-0.530626
-0.234214
-0.447103
0.192417
-0.021248
0.711015

-0.083453
0.015654
-0.204990

1 .00000
0.91669
0.69963
0.40896
0.09287
-0.21186
-0.47602
-0.67442
-0.77874
-0.75807
-0.60509
-0.35636
-0.06940

-0.1406905
0.0102184

-0.0160929
0.0005746

-0.0088144
0.0007245
0.0028780
0.0100369

-0.0011441
-0.0019125
0.0001612

0.1596795
0.0357197
0.0327965
0.0249000
0.0248867
0.0217648
0.0217407
0.0213597
0.0166434
0.0165647
0.0163439

0.916690
-0.881081
0.286073
-0.490688
0.023077

-0.354180
0.033286
0.132379
0.469899

-0.068742
-0.115454
0.009860

1 .00000
0.99168
0.96711
0.92710
0.87281
0.80583
0.72804
0.64150
0.54834
0.45074
0.35082
0.25062
0.15203

-0.0163252
0.0001761
0.0000365(1)
0.0001739
0.0000063(0)

-0.0000082(0)
-0.0000703(2)
-0.0000227(1)
-0.0000138(0)
0.0000141 (0)
0.0000066(0)

0.0165688
0.0004837
0.0004196
0.0004165
0.0003438
0.0003437
0.0003435
0.0003292
0.0003276
0.0003270
0.0003264

0.991681
-0.985295
0.363944
0.086853
0.417598
0.018194

-0.023783
-0.204491
-0.069037
-0.042132
0.043228
0.020320

1 .00000
0.99332
0.97368
0.94182
0.89861
0.84530
0.78350
0.71482
0.64085
0.56326
0.48367
0.40350
0.32399

-0.0129946
0.0001483
-0.0000363(1)
0.0002867
0.0001263
-0.0000580(2)
-0.0001066
-0.0000145(0)
-0.0000295(1)
0.0000020(0)

-0.0000317(1)

0.0133254
0.0006532
0.0006196
0.0006175
0.0004844
0.0004514
0.0004439
0.0004184
0.0004179
0.0004158
0.0004158

0.993315
-0.975182
0.226945
-0.058659
0.464287
0.260841
-0.128490
-0.240084
-0.034536
-0.070544
0.004700

-0.076256

Table comparing the k-parameters and error signals for four different
pitches produced from the Leroux-Gueuegen algorithm run on the IBM.

fig 4.9

79

PROGRAM 'IATSYN'

Voiced speech is synthesised from
the k-parameters using a lattice
filter.

impulse, G
pitch period, PL

80 Fig 4.10

TIME FREQUENCY

Oms

15dBm

19.5ms

-5v

(a) Original Speech
OUz

n=12

(b) Synthetic Speech 12th Order Filter

(c) Synthetic Speech 8th Order Filter

(d) Synthetic Speech 4th Order Filter

n=8

n=4

Comparison of original speech and synthesised speech using variable
length filters.

81 Fig 4.11

TIME FREQUENCY

Ons

+5v

18BS

-5v

20dBa

(a) Original Speech
OHz

ORIGINAL

-30dBB
3kHz

n=12

(b) Synthetic Speech 12th Order Filter

(c) Synthetic Speech 8th Order Filter

n=8

n=4

(d) Synthetic Speech 4th Order Filter

Comparison of original speech and synthesised speech using variable
length filters.

82 Fig 4.12

PITCH DETECTION

5.1 OVERVIEW

Natural sounding synthetic speech can only be produced by accurate

extinction of the pitch period [17,27,32]. For this reason pitch

detection of voiced speech is one of the most critical areas in speech

processing. Observation (fig 5.10) has shown that pitch period can

vary quite dramatically in any single segment of voiced speech and so

ideally would be evaluated for every pitch.

The periodic autocorrelation approach to speech analysis places even

more demands on the pitch detector. Not only must the period of each

pitch be accurately determined in real time but also its start and end

points located.

Pitch period will vary depending on age, sex, emotional state, etc. A

range of 3.5 ms (young female) to 12 ms (mature male) is sufficient to

cover most speakers. These pitch periods span a frequency range of

83Hz to 286Hz although the software written will easily allow these

limits to be extended if necessary.

Many classic pitch detectors [32,39] use a low-pass filter in the

first stage of pitch detection to prevent strong higher order

harmonics and other high frequencies obscuring the spectral range of

interest. An analogue fourth order BOOHz Chebychev low-pass filter

proved this to be the case on all voiced speech segments observed and

so forms the first stage of all pitch detectors described in this

chapter.

83

Another obvious advantage of using this filter is to allow sampling at

2kHz which gives extra time for computation between samples. Normally

the accuracy of the pitch detected would suffer from this lower

sampling rate which in other systems is overcome by interpolation.

Interpolation could easily be incorporated into this system, however

as will be shown the actual count is made between successive zero

crossings in the autocorrelator which samples the original speech at

8kHz.

Initial work in the search for a reliable real-time pitch detector

revealed the two strong contenders of inverse filtering and feature

extraction, both of which were investigated and are described in this

chapter.

One method initially considered but rejected fairly early on was that

of homomorphic processing [39]. It has been shown by Burrus and Parks

[34] that although giving accurate results in noise free conditions

homomorphic processing is expensive in terms of memory and processing

time. A 512 point analysis window on the TMS32010 requires 16 ms for

the FFT processing alone.

The first two attempts at pitch detection which involve the exacting

digital signal processing techniques of autocorrelation and inverse

filtering are described in sections 5.2 and 5.3. Both of these

methods use autocorrelation and so although real-time processing is

possible a further strategy is required to locate the start and end of

each pitch. For these two methods pitch period is found by counting

the number of samples between adjacent peaks of an output sequence, or

waveform. Two simple detection methods (or a combination of both) can

be used on these waveforms to give the pitch :-

(i) Threshold detection. A fractional threshold value on an initial

maximum is set and the first time a waveform peak exceeds this

threshold (eg 0.5 of max) a pitch is declared.

(ii) Peak picking. The time from the start to the largest peak in the

designated analysis range is declared the pitch period.

84

The third method of pitch extraction described in section 5.4 uses the

filtered waveform samples to develop a detector based on observed

characteristics particular to the voiced speech waveform. Pitch

detection using this method is dynamic and does not require either of

the detection methods (i) or (ii) described above.

The results offered constitute only a small sample of the many taken

covering the best, worst and intermediate cases.

5.2 PITCH DETECTION BY AUTOCORRELATION

Autocorrelation, because of its time averaging property will suppress

any random nature in a waveform, eg noise, and enhance any periodic

properties the waveform may possess. In this way it was hoped that

autocorrelation alone would amplify the psuedo-periodic nature of the

glottal excitations while smoothing out intermediate peaks caused by

minor resonances and determine pitch length by threshold detection.

As a real-time autocorrelation algorithm had already been successfully

developed it was a simple matter to modify it for use as a pitch

detector. The program PAUT was written in fortran to implement this

on the IBM.

In this program 100 samples are used for a 50 sample short-term

autocorrelation. A rectangular window is placed over the first 50

samples which are steadily rolled over the second 50 samples

performing a 50 point autocorrelation after each time delay. From

this it can be seen that the process is perhaps more accurately

described as a 50 sample cross-correlation. This method was chosen in

preference to a window autocorrelator to keep the energy content in

the correlated waveform strong, so aiding pitch detection.

85

This fifty sample span could cover as many as 7 pitches for a female

voice right down to only 2 for a male which immediately raised the

question of an adaptive window length. To this end the program

written accepts a window size of between 5 and 50 samples.

The first result of PAUT given in fig 5.1(b) is an extract of a

woman's voice using a 40 sample window. When compared with the

original speech shown in fig 5.1 (a) it can be seen that the

intermediate peaks have been suppressed enabling pitch detection to be

made with either a simple threshold detector of 0.5 of the mean

squared value, ie Rg, or a peak picker. In this case reducing the

window length to 20 samples made very little difference to the

correlated waveform.

The weakness of this basic correlation detector is exposed when a

strong 2nd harmonic is present or a single fundamental frequency

exists. Fig 5.2(b) shows PAUT applied to such a waveform which when

compared to the original speech emphasises the strong 2nd harmonic.

There is no possibility of a simple threshold detector finding the

pitch and because of an amplitude increase in the original speech a

simple peak picker would also fail.

This investigation of autocorrelation on voiced speech showed that in

pitches which contained a number of intermediate peaks detection was

simple and reliable. For pitches with no harmonic content or a strong

2nd harmonic only then no advantage was gained by correlation.

It was considered that the strength of the autocorrelation technique

was its simplicity but in this underdeveloped state could only be used

as a backup to a more reliable pitch detector.

86

5.3 PITCH DETECTION BY INVERSE FILTERING

In linear prediction the vocal tract filter ideally has the same

frequency spectrum as the pitch itself, indeed hitting this filter

with an impulse is how the original pitch is reproduced. Reversing

this process Markel [32] showed that if the original speech is passed

through the inverse of this filter that the impulse or error S(n j

should appear at its output. Thus at the start of each pitch a large

error corresponding to the impulse amplitude should be seen with very

little disturbance thereafter. Measuring the number of samples

between each impulse will give the pitch length. This process of

inverse filtering forms the basis of the SIFT algorithm.

To enable real time start and end of pitch detection a rollover

algorithm was devised. An inverse filter was set up from the most

recent N samples and the next N samples passed through it to obtain

error pulses which would detect the start of each new pitch. While

this was happening the N samples which were now being put through the

inverse filter to produce the pitch impulses were also being used to

calculate the next inverse filter and so the process continues.

The big advantage of this method is that the impulses at the output of

the inverse filter gave the start and end of each pitch in real time

which was a requirement of the pitch synchronous analyser. This

approach was slightly different to the conventional method where the

original N samples used to construct the inverse filter were passed

through it instead of the next N samples. For this reason it was

presumed that the error spikes would not be as distinctive but because

of the slow varying nature of the pitches would be good enough to

indicate pitch length and, more importantly, in real time.

87

5.3.1 Initial Results from Inverse Filtering

As a starting point a 12th order inverse lattice filter of the type

shown in fig 4.6 (a) was set up using the 12 It-parameters extracted

from a single pitch. The single pitch used was identified visually

and so this method represented the ideal case.

The upper trace of figs 5.5(a) and 5.5(b) shows the 20 pitches of

8kHz sampled speech used for analysis and the centre pitch from this

section was chosen to extract the 12 k-parameter coefficients for the

inverse filter.

Using this filter the complete waveform of 20 pitches were passed

through it giving the response shown in the lower traces of figs

5.5(a) and 5.5(b). The lower trace is magnified 6 times with respect

to the original speech illustrating the accuracy of the matched

filter.

To confirm the correct operation of the inverse filter it was also

constructed in direct form using the a-parameters which gave results

identical to those obtained by the lattice method.

Initial results from the inverse filter rollover technique certainly

gives sharp peaks at the start of each pitch even when the filter

coefficients are unaltered over 20 pitches. The problem with the

process, as it stands, is that amplitude fluctuations between adjacent

pitches gives peaks which vary considerably in size making detection

non-trivial.

What is revealed in these inverse filter outputs is the whitening

nature of the filter as it is matched to the input pitches. From this

it can be seen why Markel concluded that an autocorrelation on this

output was necessary to detect the pitch period.

88

In practice it would not be possible to pick out a single pitch to
extract the filter coefficients and so this experiment was repeated on
voiced speech filtered to 800Hz. This time the filter coefficients
were extracted from 200 samples by placing a Hamming window over them
which ensured decreasing autocorrelation values and stable filters.

Results for the filtered speech were very similar to those obtained in
figs 5.5 for the unfiltered speech and so are not included. Reducing
the number of coefficients from 12 to 4 made very little difference to
the results which, from previous results (see 4.5.1), was expected as
typically only one major formant would remain.

5.3.2 A Modified SIFT Algorithm

Although the rollover technique was still an interesting possibility
it seemed that more consistent and confirmable results should first be
obtained based on the proven method of Markel. A program was written
which incorporated many features of the original SIFT algorithm, these
were :-

(a) Voiced speech low-pass filtered to 800Hz and sampled at 2kHz.
(b) A fixed frame length of 64 samples plus 4 from the previous

frame making 68 in all.

(c) A Hamming window to ensure stable filters.

(d) 4 k-parameters from 5 autocorrelations of the sample sequence

to set up the inverse filter.

(e) Run the original 64 samples through the inverse filter and

observe its output.

(f) Autocorrelate the output of the inverse filter and observe this

waveform.

Markel used a-parameters in the recursive structure but lattice filter

implementation using k-parameters was always seen as a necessity with

the fixed point arithmetic of the TMS32010.

89

Feature (f) is the main addition to the program described in the

previous section and was achieved by rolling the first 32 samples over

the latter giving a 32 sample output. This cross-correlation covers

16 ms of speech accommodating the longest of pitches. It is important

to realise that this last correlation destroys any hope of

instantaneous pitch detection in the speech waveform. Feeding the

original samples back through the inverse filter may expose the pitch

excitations but their position in the time waveform is lost.

The final SIFT program developed was tested using two frame lengths,

SIFT (long) works on a 64 sample frame while SIFT (short) takes only

32 samples. The results are given in waveforms (c) and (d) of figs

5.1 to 5.4. In each of these results the waveform shown in the left

of the picture is the output of the inverse filter. The right half of

the picture shows how the pitch period is extracted after correlation.

It can be seen that the first few samples out of the inverse filter

are always erroneous until the predictor has several values to work

on, for this reason they are ignored before correlation.

Fig 5.1 shows that SIFT (short), SIFT (long) and the aurocorrelator

all work very well on the short female pitch of 4.5 ms and the pitch

can be located with either a threshold detector or a peak picker.

Fig 5.2 causes the simple autocorrelator to fail but SIFT (short)

still works very well. It may appear that SIFT (long) also works well

but attempting to locate the peak is not easy, a peak picker would

indicate twice the pitch and a simple threshold detector of 0.5 is

again dangerously close to missing the first peak.

Figs 5.3 and 5.4 show that for the longer 9 ms pitch of the male

speaker SIFT (long) is working but as expected the analysis frame of

SIFT (short) is too short and these results are only included for

completeness.

90

On all speech samples tested with pitches less than 8 ms SIFT (short)

was successful whilst SIFT (long) proved inconclusive using the simple

detection methods proposed. On pitches longer than 8 ms SIFT (long)

was successful while SIFT (short) often produced multiple peaks from

which no definite decision could be made.

From these results it can be seen that provided the correct SIFT

program was used detection was reliable. To use this method therefore

it was seen necessary to employ a two-tier algorithm whereby SIFT

(short) is first used to test for a short pitch and if no no result is

obtained then SIFT (long) is employed.

The SIFT algorithm envisaged although computationally quite cumbersome

was reliable. Because of its inability to easily detect the start and

end of a pitch the development of this algorithm for use on the

TMS32010 was shelved to pursue another more direct method.

5.4 PITCH EXTRACTION BASED ON GLOTTAL EXCITATION

In voiced speech any short term sequence is termed psuedo-periodic

because adjacent pitches are very similar when viewed in the time

domain. The main reason for this is that the main articulators in the

vocal tract which produce the resonances are relatively slow moving

as, in most cases, is the pitch period produced by the vocal chords.

Pitch extraction can be achieved by exploiting some of the many

similar features observed in adjacent pitches of the speech waveform.

These "feature extractors" of which the Gold-Rabiner pitch tracker

[37] is one of the most famous do their processing in the time domain.

The way in which these features are processed obviously influences the

effectiveness of the pitch detector. In addition to simply taking

measurements of peaks and troughs for pitch comparison the expected

behaviour of these parameters based on their short term history should

91

also be considered.. Thus over a limited section of voiced speech it

should be possible to predict how parameters will change by studying

how they altered in previous pitches.

It soon became obvious that to observe every characteristic in voiced

speech and then incorporate them in a program would be impractical. A

search was made to find the most critical parameters which exhibit

strong interrelationships over several pitches on which a program

could be based.

Of the many filtered waveforms viewed on the IBM using the ILS

software the following parameters were considered most useful :-

(1) A large steep peak-to-peak amplitude deviation at the

start of each pitch caused by glottal pulses.

(2) A number of smaller peak-to-peak amplitude deviations

within each pitch. These amplitude variations, caused

by resonances formed in the vocal tract, mouth and nasal

cavities are often duplicated over a number of pitches.

In adjacent pitches it is very often the case that the

number, size, spacing and lateral position of these

amplitude deviations are very similar.

(3) A strong pattern running either along the top half or

bottom half of the waveform - and sometimes both.

(4) Even when pitch waveform shape alters quickly between

pitches the glottal pulse spacings and hence the pitch

period usually remains constant.

This section describes the development of a pitch extractor which

works on the filtered speech waveform using the sharp amplitude

deviations caused by the glottal excitations in voiced speech as the

primary means of detection.

92

As stated above the detector relies upon the expected size, number,

position, etc of these pulses as well as other parameters which have

been based on observations. In this way these parameters are

customised to speech as opposed to any other waveform.

Program development can be split into three major stages. The first

consisted of getting the basic program of detecting peaks based on the

glottal pulse up and running. The second stage was a backchecking

procedure on previously stored peaks to confirm the pitch just

detected. The third and final stage was a complete re-evaluation to

incorporate a short-term memory and a decision algorithm based on

majority voting.

5.4.1 The Basic Glottal Pitch Detector

This basic version of the pitch detector was attempted directly on the

TMS32010. This was a deviation from the normal practice of developing

and proving programs on the IBM in Fortran and subsequent transfer to

the TMS32010 in assembler.

Once the program was completed voiced sounds spoken into a mic/amp

were fed into port 3 of the TMS32010 via the SOOHz low-pass filter

(fig 1.1, SW1 down, SW2 up). A storage oscilloscope was used to view

the speech at the input to the TMS32010 and the pitch pulses as they

were detected at its output on port 2. This then was the layout from

which the results were obtained.

The first step in the program was to ensure reliable detection of

consecutive -ve and +ve peaks from which the glottal pulse and hence

start/end of pitch is located. A very simple peak detector algorithm

was produced which required storage of the 4 most recent samples.

Using 4 samples a single safeguard can be incorporated if by chance

two consecutive sample values are equal.

93

Under normal conditions the peak detector operates as illustrated

below :

3 1 13
• • •• X = 2 - 1

/ 2 \ \ /
•2 • m2 m Y = 2 - 3

/ \ \ 2

If X and Y are +ve then a +ve peak has been detected

If X and Y are -ve then a -ve peak has been detected

If X is a different sign to Y then no peak exists

A single safeguard exists if X or Y equal zero, ie

4
•

2 /
• --•

/ 3
•
1

1
• 2314
\ 3 •--• • • X = 2 - 1
«-• / \ \ /
2 \ • • •--• Y = 2 - 4

• 1 4 23
4

The initial program run on the TMS32010 was very simple and consisted

of three basic steps :

(1) Calculate a ' +VE PEAKDIFFERENCE', ie the positive slope amplitude

difference between a -ve peak and the next +ve peak, this can be

designated a start of pitch, 'PSTART'.

(2) Look for the next +VE PEAKDIFFERENCE which is greater than 0.8 of

PSTART, this is the start of the next pitch and becomes the new

PSTART.

(3) If more than 6 intermediate peaks occur between PSTARTs then an

error is flagged and a new search initiated taking the next +VE

PEAKDIFFERENCE as PSTART.

94

The threshold value, of 0.8 for the next PSTART and 6 for the maximum

number of intermediate peaks in a pitch was assessed by scanning many

sections of filtered voiced speech from male and female speakers.

Once a PSTART has been detected a pulse is output which initiates the

autocorrelation process to find the k-parameters from the unfiltered

pitch.

Results for such a simple detector were very encouraging. The

detector as viewed on the storage oscilloscope gave consistently good

results for a wide variety of male and female speakers of which those

shown in figs 5.6 and 5.7 are only a small sample. The top trace in

each figure is the low-pass filtered speech spoken into the TMS32010

and below are the pulse outputs whenever a start of pitch is detected.

Figs 5.7(a) and 5.7(b) show that at the start of a voiced section of

speech the pitch is picked up quickly and accurately. This is because

no upper bound is placed on the next PSTART, ie anything above 0.8

will pass. In this way the maximum glottal pulse is soon found.

Two problems did occur at the end of voiced speech segments. Fig

5.7(d) shows that pitches are missed when a sharp fall in amplitude

results in the next glottal pulse being less than 0.8 of the present

one. In fig 5.7(c) the fall in amplitude is accompanied by a fairly

dramatic change in waveform shape to which this simple program could

not cope.

Although not a defect of the program another problem was observed when

the sampling frequency was increased from 2kHz to 10kHz in an attempt

to improve the timing accuracy of the detector. As the sampling

frequency was increased small amplitude high frequency noise peaks

were being detected along with the desired peaks in the speech

waveform giving spurious output pulses. Reducing the sampling rate

eliminates the problem by performing a filtering function whereby the

95

low frequency, large amplitude changes in the filtered speech become

dominant and small amplitude, high frequency noise spikes are

overlooked.

5.4.1.1 Some Improvements to the Original Program

The basic glottal pitch detector was modified to combat the problem of

pitches being missed by amplitude fluctuations. The new program was

again written in assembler and stored on the VAX under the name

PITCH5.DAT.

Mid-pitch peaks, caused by resonances in the filter model, are

generally slow moving over several pitches and this characteristic was

used as a short term memory feature for pitch length. If the number

of mid-pitch peaks in the pitch under detection exceeds the count in

the previous pitch then an overrun is flagged and the amplitude

threshold level is reduced from 0.8 of PSTART to 0.5 of it. This can

be done because these intermediate peaks invariably fall in amplitude

through the pitch. If no pitch is detected by the time twice as many

peaks as in the previous pitch have been counted then a complete

failure is assumed and a restart initiated.

As a result of the above alteration two smaller changes were made to

prevent false detection at the start of a section of voiced speech:

(a) At least 1 in a sequence of 3 +VE PEAKDIFFERENCES above a

nominal noise threshold level must be received before

pitch detection starts. This not only acts as a crude

voiced/unvoiced decision maker but prevents spurious

outputs of the kind observed in fig 5.7 (a) when voiced

speech is not present.

(b) The peak count mechanism described above is suppressed

for the first 3 pitches until the transient first stage

of the speech envelope has disappeared. In these initial

3 pitches the maximum overrun value of 6 peaks per pitch

is invoked.

96

The improvement in correctly detected pitches was, as might be

expected, particularly significant for pitches which contained a high

number of intermediate peaks. This program showed that even this

simple short term memory was effective because it employs some of the

properties particular to the filtered voiced speech waveform.

5.4.2 The Checkback Procedure

Although the program running on the TMS32010 appeared very successful

a more detailed and scientific assessment was required. To this end

PITCH5.DAT was converted to Fortran code and run on the IBM. Now

speech could be recorded using the ILS software package and the

program used to explore exactly how it was performing. When this was

done a basic flaw in the program was exposed by waveforms of the type

shown in fig 5.8(a).

When a single large intermediate peak (ie 2nd harmonic) is present

whose +VE PEAKDIFFERENCE exceeds 0.8 of PSTART then it is incorrectly

identified as the new PSTART. As illustrated in fig 5.8(b) once this

error is made the threshold level effectively becomes 0.5, getting

locked at this value until the 2nd harmonic falls below 0.5 of the

correct PSTART value.

Increasing the threshold value to 0.9 does give some improvement but

errors still occur as shown in fig 5.8(c).

Making the large 2nd harmonic peak a special case would solve the

problem in this instance but to continue in this way could result in

as many special cases as speech utterances. This also raised the

question of how big and regular does the second harmonic have to be

before the speech can be considered to contain only a fundamental.

Another general characteristic of filtered voiced speech provided a

solution to this problem, ie the almost unfailing occurrence of a low-

high-low (L-H-L) sequence for amplitudes between -ve to +ve peaks at

97

the start of a pitch. The only exception to this is when no peaks

occur between pitches and only the fundamental exists which has always

been seen as a special case.

This extra test was implemented by checking for a low-high-low

sequence on previously stored -t-VE PEAKDIFFERENCES. Once a pitch was

initially detected it had to be confirmed by this checkback procedure

before a "pitch detected" pulse was output.

To convert PITCH5 to PITCH6, which includes the checkback, the

following changes were made:

(i) If the present +VE PEAKDIFFERENCE is greater than 0.95

of the last recorded PSTART then this must be assumed

the next start of pitch thus no checkback is invoked

and a pulse is output.

(ii) If the +VE PEAKDIFFERENCE before the last recorded

PSTART is greater than 0.95 of it then it can be

assumed no large 2nd harmonic exists and a pulse is

output.

(iii) If both (i) and (ii) fail then it can be assumed that

at least a 2nd harmonic is present and the checkback to

find the number of intermediate peaks begins. Starting

at the last recorded PSTART work backwards to find the

L-H-L sequence of +VE PEAKDIFFERENCES. Once found the

H is tested to ensure is exceeds 0.7 of PSTART (this

eliminates small intermediate peak sequences) and if it

does then it is designated the previous PSTART. The

number of intermediate peaks between these PSTARTS are

counted and provided the present number is greater than

or equal to it a pulse is output.

It is important to realise that checkback finds the previous pitch and

the number of peaks by a completely independent method and so

constitutes an extra test which will correct any mistakes accumulated

by the basic glottal pitch detector.

98

As can be seen from fig 5.8(d) there was a dramatic improvement in the

pitch detector when applied to the waveform of fig 5.8(a). This

improvement applied to all the waveforms tested.

This pitch detector while remaining fairly simple was very reliable

making no gross errors. The small number of errors which did still

occur were quickly corrected by the back checking procedure.

5.4.3. Checkback with Short Term Memory and Majority Voting

Further development began with program PITCH24 which printed out

intermediate results before the pitch period estimate was made and a

pulse output. From this it became evident that a completely new

decision algorithm could result in even more accurate and reliable

pitch estimates.

Up to this point the glottal pulse amplitude detector has been

operating only on the +ve slope called the +VE PEAKDIFFERENCE. It can

be seen from the waveform of fig 5.8(a) that in many cases a more

accurate detector would be obtained by using the -ve slopes or -VE

PEAKDIFFERENCES. Not only this but it can also be seen that these -VE

PEAKDIFFERENCES are larger than the +VE PEAKDIFFERENCES. This

important characteristic is consistent in voiced speech and is

incorporated in the program PITCH28. The main program elements for

collecting data upon which the pitch decision is made will be

described for +VE PEAKDIFFERENCES but it must be remembered that

alongside this the same is being repeated for the -VE PEAKDIFFERENCES.

Another major difference from previous programs is that pitch length

is measured in time, ie number of samples, rather than intermediate

peaks. This policy was adopted from the observation that the number

of peaks between pitches can vary by 200% or 300% whereas the pitch

length remains fairly constant usually not exceeding a 15% change in

adjacent pitches. The peak count was not completely discarded, being

a useful overrun counter.

99

The first test applied is the amplitude criteria of the basic glottal
pitch detector, ie the next PSTART must be greater than 0.8 of the
last PSTART if it is within the last pitch length or greater than 0.5
if it is outside it. Included within this section of the program are 3
overrun conditions, if any one of these is exceeded then the pitch is
outside normal limits and a restart is initiated. These 3 limits are:

(i) If the present pitch length is greater than twice the last,

(ii) If the number of intermediate peaks exceeds six.

(iii) If the pitch length exceeds 36 samples, ie 18 ms.

The next stage is to re-estimate the pitch length just measured by the
independent backchecking procedure described in the previous section.

Thus for each PSTART detected two results are computed, a forward
estimation based on amplitude criteria called NSAMP1 and a backward
estimation based on finding a low-high-low sequence called NSAMP2.
Ideally of course for two successive pitches these two values should
be very similar, building up a more confident estimate of the pitch
length.

The final stage of the program chooses the most likely pitch period
using a clustering technique. The last three values of NSAMP1 and
NSAMP2 are saved and the present pitch length found by a clustered
majority vote. The technique for six typical values is illustrated

below:

NSAMP1 NSAMP2

10 20
9 9

10 11

These six values are assembled in pitch length sequence as shown in
the table below. A 3 sample window is now moved down one step at a

time from the minimum of 7 (ie 3.5 ms) to the maximum of 24 (ie 12

100

ms) . AS the window descends it can be seen from the diagram below

that the highest number of occurrences captured is 5, when the window

is at the position indicated.

3 sample window
moves down one
step at a time

PITCH LENGTH

7
___ 8

9
10

_ 11
12
13
14
15
16
17
18
19
20
21
22
23
24

OCCURRENCES

0
0
2
2
1
0
0
0
0
0
0
0
0
1
0
0
0
0

Once the correct window position is located the pitch period is the

average number in the cluster which in this case will be 9.8 samples

or 4.9 ms.

As mentioned previously exactly the same procedure is repeated on the

-VE PEAKDIFFERENCES and the same clustering technique applied to these

results.

Once this is done all that remains is to decide which of the two pitch

estimates is correct. This is done by comparing the average of the

last 3 PSTART amplitudes, three will have +ve slopes and three -ve,

whichever is the greatest is deemed most likely and this one is

chosen. This 3 pitch memory span provides a filtering effect which

smoothes out any short term pitch to pitch irregularities.

The window length of 3 samples was chosen using results obtained from

PITCH24, this being the best compromise for the range of male and

female speakers used.

101

In this system pitch detection data is gathered from more than one
source and so errors introduced from one source can be eliminated by
correct data from another. The algorithm used to estimate the pitch
from the data collected is of course only one of a number conceivable

options but results have justified the method chosen having had no

errors on speech used to date.

Figures 5.11 to 5-14 show the flow diagrams of PITCH28 which apply

all of the techniques described with pitch length given as the number

of samples N in the pitch being analysed. When implemented on the

TMS32010 an output pulse is given on the zero crossing of the present

PSTART and another when the next zero crossing in the same direction N

samples later is reached, which ideally will be the start of the next

pitch.

Results for two particularly difficult sections of voiced speech where

not only pitch waveform shape but pitch length changes dramatically

mid-section are given in figs 5.9 and 5.10. Notice from the tabular

output of PITCH28 that the pitch length is tested at least once every

pitch in either direction and at no time are pitches missed during
testing.

5.5 Summary

Of the three pitch detectors studied it was the modified SIFT

algorithm and the glottal excitation methods which were given most

developmental consideration.

In many cases no advantage was gained by short term autocorrelation in

terms of direct pitch estimation, the problem of pitch detection being

just as challenging after autocorrelation as before it.

102

The proposed two-tier SIFT algorithm gave very reliable results using

a simple threshold detector. The disadvantages of this method are its

computational expense and inability to directly find start and end of

pitch.

The glottal excitation method although highly developed is reliable,

fast and is capable of locating the start and end of each pitch in

real time.

103

5.1(a) Original Speech 5.2(a) Original Speech

5.1(b) Autocorrelation 5.2(b) Autocorrelation

5.1(c) SIFT (short) 5.2(c) SIFT (short)

5.1(d) SIFT (long) 5.2(d) SIFT (long)

Attempts at pitch extraction by three methods on two separate voiced
sections of speech from a female speaker.

104 Figs 5.1/5.2

5.3(a) Original Speech 5.4(a) Original Speech

5.3(b) Autocorrelation 5.4(b) Autocorrelation

ir-.,

5.3(c) SIFT (short) 5.4(c) SIFT (short)

5 .3(d) SIFT (long) 5.4(d) SIFT (long)

Attempts at pitch extraction by three methods on two separate voiced
sections of speech from a male speaker.

105 Figs 5.3/5.4

(a) Upper trace: Original speech.
Lower trace: Inverse filter output.

(b) Upper Trace: Original Speech.
Lower Trace: Inverse filter output.

Input and output of inverse filter using speech sampled at 8kHz.

106 Fig 5.5

Top trace: Filtered speech input to port 3 of TMS32010.
Bottom trace: Pulses output from port 2 when a pitch is detected.

Basic glottal pitch detector using the TMS32010.

107 Fig 5 6

(b)

Pitch period is quickly found at the start of a voiced section of
speech.

(d)

Pitches are sometimes missed at the end of a voiced section of speech
due to falling energy.

an(j end of voiced speech using the basic glottal pitch detector
on the TMS32010.

108 Fig 5.7

(a) Filtered voiced speech.

(b) PITCH5 using 0.8 threshold.

(c) PITCH5 using 0.9 threshold.

(d) PITCH6 using 0.8 or 0.9 threshold.

Results from PITCH5 and PITCH6 pitch detectors.

109 Fig 5 .

SECTOR 1, STRKTING FPRHE 17BB, 30C FURHES, CONTIXT 1
C:\11S\KSS3.

HID = .92HE SEC END = ,9595 SEC

.UP.
PREVIOUS
Insuf f 1C
DOUN
Insuf flc
.UP.
DOWN
.UP.
DOWN
.UP.
DOUN
.UP.
DOUN
.UP.
DOUN
.UP.
DOUN
.UP.
DOUN
.UP.
DOUN
.UP.
DOUN
.UP.
DOUN
.UP.
DOUN
.UP.
DOUN
DOUN
.UP.
DOUN
.UP.
DOUN
.UP.
DOUN
.UP.
DOUN
.UP.
DOUN
.UP.

702
M X PK NOT
le t Data

704
le t Data

706
713
716
726
729
743
750
757
759
773
775
768
1791
1804
1B06
1819
1822
1836
1838
1852
1854
1868
1871
1885
1902
1910
1020
1926
1036
1044
1054
1061
1069
1079
1086
1907

0
FOUND • ••ERROR'"

0

0
0
0
0
0
0
0

13
13
15
15
15
15
15
15
15
15
16
16
16
16
16
16
16
16
16
16
17
17
17
17
17
17
17
17
15

Tabulated results from PITCH28 for the word 'a' in 'an apple a day'.
Despite variation in shape and energy the pitch period which remains
constant is accurately evaluated.

110 Fig 5.9

:\ns> Stum 1, STRFTINS FSRME 2166, ISO FKBMES, CONTEXT 1
VRLUES

BEG = 1.B1S SEC

C:\IlS\KSe3.

HID : 1,161 SIC END = 1.27H SIC

DOWN
PREVIOUS
In.ufr icl
.UP.
DOUN
Iniuf f Id
.UP.
DOUN
.UP.
DOWN
.UP.
DOWN
DOWN
.UP.
DOWN
.UP.
DOWN
.UP.
DOUN
.UP.
DOWN
. UP .
DOWN
.UP.
DOWN
.UP.
DOUN
.UP.
DOUN
.UP.
DOWN
.UP.
DOUN
.UP.
DOWN
.UP.
DOWN
.UP.
DOUN
.UP.
DOUN
.UP.
DOWN
.UP.
DOUN
.UP.
DOWN
.UP.
DOUN
.UP.
DOUN
.UP.
DOUN
.UP.
DOWN
-UP.
DOUN

2102
MAX PK NOT
•nt Dfttt
2106
2124

•nt Dfttt
2131
2137
2141
2151
2157
2160
2171
2174
2188
21S1
2206
2209
2224
2227
2242
2245
2261
2264
2280
2283
2299
2302
2319
2322
2339
2343
2360
2363
2381
2385
2402
2407
2421
2424
2443
2448
2455
2459
2466
2470
2476
2481
2468
2493
2499
2S04
2S11
2517
2524
2532
2538

0
FOUND •••ERROR"*

0
0

0
0
0
0
0
0
0
16
IE
16
IE
17
17
17
17
18
18
16
18
18
18
18
18
19
19
19
19
20
20
20
20
21
21
21
21
17
17
17
17
1 1
11
1 1
10
10
10
11
11
11
11
11
11

Tabulated results from PITCH28 for the word 'day' in 'an apple a day'.
Notice how despite the variation in shape, energy and duration the
pitch period is still accurately tracked.

111 Fig 5.10

PROGRAM 'PITCH28'

Evaluates the pitch period from
features in the waveform.
A +ve slope size is the difference
between the last -ve peak and the
present +ve peak just detected.

wait for
interrupt

read in
next

sample

check for +ve
peak PN or
-ve peak NP

determine +ve
slope size
+SLP=PN-NP

store sample
count (PS) to
previous peak

add 1 to +ve
peak count in

this pitch, PPK

1st pitch
estimate SAHP1

call 'CKBACK'
2nd pitch

estimate SAMP2

determine -ve
slope size
-SLP=NP-PN

store sample
count (NS) to
previous peak

add 1 to -ve
peak count in
this pitch, NPK

call 'CLUSTER'
pitch length

decision

112 Fig 5.11

SUBROUTINE 'AMPTEST'

This subroutine looks for a
start of pitch by comparing
the present slope amplitude,
SLP to that found at the start
of the previous pitch, TST.
There are three overrun
conditions which flag a
complete failure.

note: NSL = number of samples in last pitch
NST = number of samples in this pitch

YES

YES

YES

= 1
1=20
N1 = 1

OVRUN1=0

i

SAMP1
OVRUN

RETURN

113 Fig 5.12

SUBROUTINE 'CKBACK'

The first test in this subroutine
is a confirmation of the amplitude
test. If this fails and the previous
pitch contains only the fundamental
its pitch is found. If both these
fail the search for a low-high-low
(L-H-L) sequence begins from which
a pitch can be found.

note: NSP = number of samples found
in the previous pitch.

ENTER

RZVIOUS
TST i0.9(TSTK2

YES

NSAMP2=20
OVRUN2=1

i

c RETURN

114 Fig 5.13

SUBROUTINE 'CLUSTER'

This subroutine finds the largest
cluster of values from the latest
six pitch estimates, SAMP(I) to
SAMP(6). The average of these is
the pitch period.

115
Fig 5.14

6 UNVOICED SPEECH ANALYSIS

The vocal tract filter used for unvoiced speech has the same all-pole

structure as that used for voiced speech and the It-parameters which

define it are obtained in a similar way. The main difference at the

analysis stage occurs because unvoiced speech has a random appearance

requiring the autocorrelation values to be extracted via a fixed

frame. As with voiced speech the duration of this frame must be short

enough to ensure the signal's stationarity. Once these R-values are

found then the k-parameters are obtained in exactly the same way as

they are for voiced speech.

To synthesise voiced speech a single impulse is applied which enables

the vocal tract filter to free-run reproducing the pitch. For

unvoiced speech the excitation is very different being a continuous

stream of random numbers, a new input being required to calculate

every new output.

6.1 SPECIFYING THE NOISE SOURCE

The random number generator should theoretically have a flat frequency

spectrum up to 4kHz. This spectrum is then shaped by the transfer

function of the vocal tract filter containing the k-parameters which

describe the spectrum of that frame of speech. Because the excitation

is of random phase its statistical properties should also be matched,

as closely as possible, to the natural unvoiced speech. In voiced

speech of course this was achieved by the close time domain similarity

to original and synthesised pitches.

116

Analysis of unvoiced speech [12] has shown it to have a fairly uniform

distribution which will not be changed by passing it through a linear

device such as the vocal tract filter. There are a number of ways to

produce such a distribution of random numbers [15] and considering the

limited memory of the TMS32010 it seemed that the congruential method

would be most appropriate. In this method the present random number

x(n) is generated from the preceding one x(n-1) by the rule

x(n) = [A.x(n-1)] modulo P

where P is a large prime and A is a suitably chosen constant

This method was however rejected because of its extreme sensitivity to

the values of A and P which would be exacerbated by fixed point

calculations.

The method used relies upon a new random number being generated from

an initial set of p random numbers in the range ±0.5 by the rule

x(n) = [x(n-D + x(n-p)] modulo 0.5(6.1)

Thus x(n) has the provisor that it must lie in the range ±0.5, if it

does not then 1 is added or subtracted to make it so. This overflow

wraps around to ensure that if the original set of p random numbers

has a uniform distribution then so will the new set.

The fortran program RNG2.FOR implements equation 6.1 producing 1,000

new random numbers from 50 original uniformly distributed random

numbers taken from the MINITAB facility on the VAX 8650. This program

was run a number of times using a different set of original numbers

each time. A typical result for the numbers generated is given in fig

6.1(b) and the original 50 numbers which produced this distribution is

used in the TMS32010 program. Even from this small sample it can be

seen that the mean is very close to zero with 498 negative numbers and

502 positive. The standard deviation of 0.2873 is also very close to

the theoretical ideal for a uniform distibution of 0.2887.

117

Another advantage of using this method on the TMS32010 is its ease of

implementation using 2's complement arithmetic. By considering 32768

to be equivalent to 0.5 each computation of equation 6.1 requires only

one addition, if an overflow occurs it can be ignored and the result

stored without further modification.

As can be seen from fig 6.1(a) the program holds a loop of 50 random

numbers which are continually updated. This can be done in two ways:

(i) By keeping the pointer fixed in data memory and revolving the

carousel one place to the right after each computation,

(ii) Keep the numbers fixed in data memory and slide the pointer one

place to the left after each computation.

Operational speed is relatively unimportant at the synthesiser and so

method (ii) was chosen for its programming simplicity.

6.2 SYNTHETIC UNVOICED SPEECH ON THE TMS32010

Producing a suitable random number sequence was of course only part of

the unvoiced speech production program whose flow diagram is given in

fig 6.2. The random excitation is fed into the vocal tract filter

which, because of the fewer formants in voiced speech, need only be

6th order. As with voiced speech error analysis may indicate that a

lower order than this may be appropriate.

Every 125us a new random number is produced by the noise generator for

input to the lattice filter which uses this and previously stored

results to calculate its next output. The gain factor G which governs

the amplitude of the sound is found from the k-parameters as in voiced

speech. Theoretically gain can be applied before or after the filter

but in practice because each random number can lie between -32768 and

+32767 a fractional value for G applied before the filter is most

suitable.

118

To assess the TMS32010 random number generator the program was run

with all six k-parameters of the vocal tract filter set to zero giving

the spectrum shown in fig 6.3(a). This sin(x)/x plot is the transfer

function of the sample and hold of the DAC and from this it can be

deduced that the random number generator produces a flat frequency

spectrum. When this output is passed through a 4kHz low-pass filter

the spectrum is adjusted to give the reasonably flat response shown in

fig 6.3(b) which varies by only 1dB over the passband. It should be

appreciated that the low-pass filter compensates only for the sample

and hold of the DAC and the shaping of the flat noise spectrum is made

by the vocal tract filter prior to this.

Several different 20 ms frames of unvoiced speech were analysed using

the fortran program AUTO.FOR to give 13 normalised autocorrelation

coefficients. These R-values flucuated rapidly as might be expected

from a random noise-like waveform of this type. When these were input

to LEROUX.FOR 12 k-parameters were produced of which the first 6 were

used for synthesis on the TMS32010.

The results for two typical frames are given in fig 6.4 which shows

time and frequency plots of original (left hand side) and synthesised

frames. The original spectra were obtained by applying a 1024 point

FFT routine from the ILS software package. The synthesised speech

from the TMS32010 was plotted from a storage scope and spectrum

analyser. As can be seen both sections of original speech have simple

spectral plots with only one or two main formants containing most of

the power at high frequencies. These formants are well represented in

the synthesised speech but there is some deviation at low frequencies

which is attributed to vocal tract coupling. This can be reduced by

shaping the response of the low-pass filter.

Further tests made exclusively on the IBM are shown in fig 6.5 where

frequency plots from both sequences are compared by the same FFT

process. The results again show close agreement in both time and

frequency for the fricatives of 6.5(a) and 6.5(b). Fig 6.5(c) shows

119

that this random excitation also works well for other unvoiced sounds

such as plosives which have low zero crossing counts but no

periodicity.

For all unvoiced speech tested the synthesised waveforms compared well

in time and frequency domains. As with voiced speech the important

feature of stability was confirmed in every case for this quite

different excitation.

120

POINTER

CONTINUOUS LOOP OF
50 RANDOM NUMBERS

Xln) IS ALWAYS THE NUMBER LEFT OF THE POINTER

Xln) - lX(n)»X(n»1»/2

TO CALCULATE HEM Xln) MOVE POINTER ONCE TO THE
LEFT OR ROTATE THE LOOP ONE POSITION CLOCKWISE

(a) Graphic illustration of random number generator program

SAMPLE SIZE - 1000
MEAN - -0.000148
S/OEV . 0.2«7322

V
N1-498

V

NJ-S02

(b) Histogram showing spread of first 1000 random numbers

Development of random noise generator program

121 Fig 6.1

START

'ONVOIC.DAT'
synthesises unvoiced sounds

INPUT
Gain, G

LORD INITIAL SET OF
RANDOM NUMBERS AND
CONTROL PARAMETERS
FROM PROGRAM MEMORY
TO DATA MEMORY

EVALUATE NEW RANDOM
NUMBER, Y

ROTATE RANDOM NUMBERS
IN DATA MEMORY

EVALUATE OUTPUT OF
LATTICE FILTER USING
NEW RANDOM NUMBER

X=68

YES

-NO—<T INTERRUPT ?

Y=DMA(0)+DMA(49)
X=49

X=X-1
DMA(X+1)=DMA(X)

-NO

T,=Y

OUTPUT
Y

122

30dBm

-20dBm
OHz 40kHz

(a) Unfiltered output from the random number generator

30dBm

-20dBm
OHz 10kHz

(b) Random noise after passing through a 4kHz low-pass filter

Spectra of random noise produced by the TMS32010

123 Fig 6.3

ORIGINAL SYNTHESISED

TIME

Oms 50ms

TIME

50ms

20dBm
FREQUENCY

OdBm
OHz

(a) Unvoiced sound 'ssss

20dB
FREQUENCY

4kHz

Oms

TIME

50ms Oms

TIME

50ms

2 OdBm

OdBm
OHz

FREQUENCY 2 OdBm

OdBm
4kHz OHz

(b) Unvoiced sound 'shhh...' in "shoe"

FREQUENCY

4kHz

and frequency comparisons of original and synthesised sections of unvoiced speech
Time
from TMS 32010 124

Fig 6.4

ORIGINAL SYNTHESISED

1000 MOO
FHQUIMCV (HIi

3000

(a) Unvoiced sound 'ssss...' in "song".

iboo MOO
FUGUIHCY (HI)

3000

woe

(b) Unvoiced sound 'ffff...' in "feel".

. ~s\ r\ s-^-' v y - (DB!
90

80

60

50

W

30

20

10

WOO
FHQLENCV (H

(c) Unvoiced plosive 'd' in "sound".

Time and frequency comparisons of original and synthesised unvoiced
speech produced on the IBM.

125
fig 6.5

7 SYSTEM EVALUATION

The proposed speech vocoder must satisfy certain performance criteria.

The most obvious and simplest of these to assess is whether the system

is capable of real-time operation. Having satisfied these operational

requirements the quality of the synthetic speech produced must also be

measured.

7.1 OPERATIONAL REQUIREMENTS

The simplified LPC vocoder can be conveniently split into three

distinct sections of computational workload.

(i) Pitch detection. (transmitter)

(ii) Parameter evaluation. (transmitter)

(iii) Resynthesis. (receiver)

Implementation of the simplified LPC process was originally conceived

as taking two options. The first is to assign one TMS32010 piP to each

section making programming simpler while economising on peripheral

memory, or more conventionally, using only one uP for the transmitter

with the extra peripheral circuitry this requires. Because analysis

requires more memory and involves many more calculations than

synthesis it is the transmitter which is more prone to program

inefficiencies.

At each stage in the project program development was always made

assuming the following three major constraints of the TMS32010;

126

(i) 200 ns cycle time

(ii) 144 words of on-chip RAM

(iii) 1536 words of on-chip ROM (TMS320M10)

It is worth noting other compatable TMS320 first generation devices

which extend these capabilities. Of particular interest is the

TMS320C15 which operates a 200ns cycle time with 256 words of on-chip

RAM and 4000 words of on-chip ROM which offers considerable savings in

power consumption. The TMS320C17 has the additional advantage of a

serial I/O port.

The option of economising on peripheral hardware at the expense of an

additional ^P follows the philosophy of parallel processing in

transputer implementations. This additional cost cannot be justified

if all processing can be done on one device by program segmentation.

If two uP's are used in the transmitter then uP1 would evaluate the k-

parameters while ^P2 detects the pitches, communication between them

being a simple interrupt on the BIOZ line. Once the start of pitch

has been detected from piP2 then the BIOZ line of uP1 is lowered to

indicate the end of the present pitch and start of the next. The

maximum duration 20ms or 160 samples between interrupts indicates an

unvoiced frame.

Upon receiving an interrupt u?1 completes the autocorrelation of the

last frame and starts a new set of autocorrelations for the next. As

soon as the complete set of normalised autocorrelations are found then

the k-parameters for the most recent frame are evaluated ready for

subsequent coding prior to transmission.

127

7.1.1 Transmitter .Program Timing

(a) Parameter Evaluation

The input data for ptPl in the transmitter is speech low-pass filtered

to 3.4kHz using an 8th order Butterworth filter which is then sampled

at 8kHz.

The real-time autocorrelation sub-program which consists of updating

1 1 variables for every new sample received takes less than 20vis to

perform, leaving over 100y.s of available processing time between

samples. Evaluation of the k-parameters takes less than half a

millisecond and so this task can easily be accomplished in 6 samples

or 750^s which is far less than the minimum pitch period of 3.5

milliseconds.

When both sub-programs are combined some memory locations overlap

leaving a total requirement of 81 DMA locations. The program memory

requirement is 168 words before any coding of parameters prior to

transmission.

(b) Pitch Detection

The input data for u?2 is the same speech as v^Pl further filtered to

SOOHz using a 4th order Butterworth filter which is then sampled at

2kHz.

Because the pitch detector uses feature extraction there are only 66

working variables to store in data memory and the program is stored in

276 PMA locations. In addition to the basic glottal pitch detector

which takes on average 10us to detect, store and determine for start

of pitch a further 1 2us are required to perform the checkback and

short term majority vote making the maximum program run time 22us. As

sampling takes place at 2kHz even this maximum run time is well within

the SOOus between samples ensuring that the program does not have to

be split operation.

128

7.1.2 Receiver Program Timing

As soon as the frame length and k-parameters are received and loaded

into DMA the rms value for gain can be evaluated. The subprogram

which performs this task requires 47 PMA and 32 DMA locations and on

average will take 8y.s to perform. The lattice filter is set up and

the gain used to control the size of the standard excitation which is

the essential difference between synthesising voiced and unvoiced

speech.

For voiced speech the excitation is a single impulse applied at the

start of the frame. In this case only 2 extra DMA locations are

required plus 47 PMA locations to evaluate a new output in 30us. This

leaves 95us of dead time for an 8kHz output rate.

For unvoiced speech the random number generator takes 50 extra DMA

locations when loaded from the program memory. The sub-program which

performs the lattice synthesis is the same as that for voiced speech

leaving a total DMA requirement of 71 locations plus 120 for program

memory. Each unvoiced output takes 42]is to calculate and so is well

within the 125us time limit. At the start of each new series of

unvoiced frames 67 numbers are read in from program memory which takes

13,4]jLS. Thus even at the start of a series of unvoiced frames the

total time of 55.4us to produce the first output is well within the

125us allocation.

7.1.3 Conclusions

It has been shown that both anlalysis and synthesis programs can be

executed well within the time limits necessary for real time operation

on the TMS32010 using the 3 uP system. In addition to this because of

the emphasis placed on memory requirements no extra memory chips are

needed for this implementation. At the time of writing the cost of

the TMS320C10 was just above £7 and the TMS320C15 just above £8 making

this prototype very economical.

129

Because the timing .for each analysis section in the transmitter is

well within the required limits it is envisaged that this can be

implemented on a single TMS320C15 by splitting the operation of the

pitch detector and trading program memory for data memory.

At the transmitter section of the vocoder speech destined for the

lattice analyser is filtered to 3.4kHz and sampled at 8kHz whereas

speech used in the pitch detector must be filtered to SOOHz and

sampled at 2kHz. Thus if a single ADC is to be employed the 8kHz

sampled speech must be further digitally filtered to SOOHz before 1:4

decimation. This would obviously add extra programming time to the

pitch detector.

Following the guidelines set down in [4] the parameters to be

transmitted can be coded into the bit assignment shown below:-

Comments

LAR

LAR

Parameter

pitch

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

synchronisation

error protect

TOTAL

Voiced

6

5

5

5

5

4

4

4

4

3

2

1

_=.

48

Unvoiced

6

5

5

5

5

4

4
-

-

-

-

1

11
48

130

This gives a transmission rate of 2.4 kbit/sec for 20ms frames noting

the absence of FEC for voiced speech. This is well within the 16

kbit/sec rate required by the European system which gives scope for a

coding scheme more suitable to the specific requirements of mobile

radio communications which includes FEC.

Bits used for transmitting gain and voiced/unvoiced decisions are seen

as unneccessary as a special code can be used for the maximum frame

length associated with unvoiced speech. As has been shown gain can

easily be calculated at the receiver from the k-parameters.

Although the feasibility of using a twin or single processor at the

transmitter has been demonstrated no specific details or interfacing

hardware have been proposed, the main emphasis of this study being

placed on proving the effectiveness of the simplified LPC technique.

7.2 SPEECH QUALITY

As with any variable the ideal indicator for measuring speech quality

would be numerical. Unfortunately due partly to a lack of knowledge

of how speech is processed by the brain the assessment of speech must

ultimately be subjective as well as objective.

7.2.1 Objective Tests

Mathematical expressions used to define speech quality always compare

a duration of the original speech to its synthetic counterpart. These

comparisons made in either the time or frequency domain give a figure

of merit to indicate their "goodness of fit". Five of the more

popular tests as complied by Papamichalis [27] and Kitawaki [44] are

listed below:-

131

(i) Signal-to-Noise Ratio

(ii) Articulation Index

(iii) Log Spectral Distance

(iv) Itakura's Likelihood Ratio

(v) Euclidean Distance

Whether measured in time or frequency all these tests in some way

evaluate the mean squared error between original and synthetic speech

- the lower the value the better the fit. This mean squared error is

the very same one which is minimised in the process of linear

prediction. In the case of voiced speech the original and synthesised

pitches can be compared in time or frequency because phase as well as

formants are retained but for unvoiced speech phase is random which is

why spectral plots were of such importance for initial tests.

One of the most common tests is (i) ie SNR which is defined as:-

N 2
E Sn

n=1
SNR = ———————————— (7.1)

N 2
E tSn - S' n]

n=1

or SNR = 10 log (SNR) dB (7.2)

Thus the error introduced by the predictor is regarded as random noise

in the same way as quantisation error. Comparing equation 7.2 with

3.1 shows that it is the inverse of Vp expressed in dB and is the

normalised error 6(n) which is conveniently evaluated along the lower

rail of the lattice analyser as shown in fig 4.6(a).

This error signal has been tabulated for four pitches of voiced speech

as the third set of results in fig 4.9. In all four pitches the error

decreases monotonically with filter length, a characteristic of stable

filters. The SNR for each pitch reading from left to right is

18.88dB, 17.87dB, 34.86dB and 33.81dB. These results which have been

shown to give excellent pitch reproduction are normalised and so pitch

132

length must also be .taken into account. Thus although the two pitches

from the IBM give much better SNR's they are also shorter in length

which is in their favour as the total error will increase with frame

length.

Figures of between 15dB and 40dB were obtained for all the pitches

examined in voiced speech which were considered good considering their

excellent reproduction. Unvoiced speech frames also gave high SNR

values of between 23dB to 40dB which is as expected from the fewer

formants present in unvoiced speech despite the longer frame length.

If required e(n) which is evaluated at the transmitter can be used as

a dynamic test for speech quality on both voiced and unvoiced sections

of speech in the proposed system.

7.2.2 Subjective Tests

Although objective tests provide a good indication of speech quality

any commercial speech system is ultimately judged by its customers.

For this reason a number of subjective listening tests have been

devised to assess quality (this includes naturalness) and

intelligibility.

(i) Diagnostic Rhyme Test (DRT) - intelligibility

(ii) Modified Rhyme Test (MRT) - intelligibility

(iii) Diagnostic Acceptability Measure (DAM) - quality

(iv) Mean Opinion Score (MOS) - quality

The full DRT uses a corpus of 192 words arranged in 96 rhyming pairs,

each pair differing in only one attribute of the first consonant, ie

either voiced or unvoiced. Six elementary phonemic attributes are

tested which requires a trained team of listeners the services of

which are provided by independent companies.

133

These facilites were not available and so a modified form of the DRT

was performed. Ten rhyming pairs were chosen from the full DRT list

and are shown below:-

ZOO - SUE SHEET - CHEAT

CHAIR - CARE THICK - TICK

THEN - DEN MOAN - BONE

VAST - FAST JUICE - GOOSE

VOX - BOX GAFF - CALF

Two male and two female speakers recorded each of these words on the

IBM for analysis and synthesis. Each word was passed through the

pitch detector to give pitch length for pitch synchronous analysis

using a frame length of 20 ms. After synthesis each word pair was

presented to 10 listeners in no fixed order for identification and

then with their originals for comparison.

DRT results are given as a percentage figure of correct responses P as

follows:-

R - W P = ———— • 100

where R = number of right answers
W = number of wrong answers
T = total number of items involved

According to the work presented by Papamichalis [27] a DRT response of

90 represents a good system.

Of all the words tested for intelligibility none were interpreted

incorrectly by any of the listeners giving a DRT of 100. Synthesised

words compared well to their originals and in most cases were found to

contain all their attributes.

134

Fi9 7.1 shows the original and synthesised word 'CHAIR' and fig 7.2

the original and synthesised word 'CARE' spoken by a mature female

with an Irish accent. Visual reproduction of this rhyming pair was

particularly good in both time and frequency domains. Listening tests

showed clear discrimination between synthesised pairs and excellent

comparison to their original words retaining the natural strong local

accent.

Another example given in fig 7.3 shows the original and synthesised

word 'STUPENDOUS' spoken by a mature male with emphasised unvoiced

sections. Again there is close similarity between the waveforms with

listeners confirming close agreement in both words often with speaker

identification.

7.2.3 Conclusions

The results for the shortened DRT were very good with no errors in

pitch detection. Error monitoring enabled variable length filters to

be used for resynthesis. On the few occassions when visual assessment

of the synthesised pitch was compared to a full 10th order filter

little change was noted.

The only comparison with a real-time commercial product was the Texas

Instruments SDS50 which is an LPC-10 system based on the TM990.

Speech produced from this sytem was regarded by listeners to be

inferior in almost every case.

These results are obviously very encouraging but it must be emphasised

that they were simulated. The synthesised speech produced on the IBM

was modelled as closely as possible to that which would be produced

from the real time TMS32010 system.

135

7.3 CONCLUSIONS AND FURTHER WORK

In this study the whole process of linear predictive coding was re-

evaluated to enable a good quality speech coder to be developed based

initially on a revised analysis technique for voiced speech. This

revised technique took as its basis a single pitch containing all the

spectral information required for retaining perceptual quality. Once

the start and end of a pitch is identified then it is assumed periodic

and autocorrelation proceeds on this premise.

After autocorrelation analysis proceeds in conventional fashion with

the model first being implemented in direct or recursive form and once

proven transferred to the lattice stucture, ensuring continuity of

results from PDP11 to IBM to TMS32010. Program development on the

TMS32010 showed that in fixed point arithmetic a variable length

filter can be obtained by monitoring the error signal, depending on

the spectral complexity of the pitch under analysis.

The more conventional approach of windowing a fixed frame of speech

and then analysing it to assess voicing and subsequent pitch detection

is discarded thus imposing no spectral distortion on the original

data. This scheme relies on accurate and consistent pitch detection

which is done continously by a rollover algorithm developed on the

basis of feature extraction.

Voiced and unvoiced speech analysed by the model proposed has shown to

produce stable filters. Synthetic speech from these filters have

always produced main resonsances which are extremely close in

magnitude and frequency to the original which accounts for its good

quality and naturalness. The high frequency distortion noted by

Makhoul [17] has not been evident using this technique which obviates

the need for pre-emphasis.

136

Unvoiced speech which uses the same basic filter as for voiced speech

has also produced spectra very similar to the original speech using

the random number generator suggested. Particularly pleasing in this

area was the reconstruction of plosives which proved very similar in

both time and frequency domains.

The main objective of designing a robust vocoder which can easily be

implemented on the TMS32010 has been developed, however, there are

still a number of refinements which can be made now the basic system

exists.

On a minor scale it has been noted that in some synthesised voiced

speech the curvature at the tail of a pitch does not always give a

smooth transition for the impulse applied at the start of the next,

this is demonstrated in fig 3.4(c). In future implementations it is

envisaged that impulses can be negative or positive depending on which

has the major gradient in the original speech. If when the next

excitation is due the tail of the pitch is not angled correctly then a

simple algorithm could adjust the waveform to ensure a smooth

transition.

For simplicity the decision to use a fixed frame format was taken

midway through the study giving 2 to 5 pitches per frame. This

however was not the original intention as the k-parameters should only

be updated after a significant change in the short term spectral

properties of the speech waveform. The technique described in this

report is well suited to a variable frame length system which together

with the variable length filter could provide even greater savings in

bit rate. This would inevitably require some buffering strategy as

proposed by Chandra [35] and Viswanathen [36].

137

ORIGINAL SYNTHETIC

2MI
MLDES

1K4-

-1K4

-2M8
EC: .1811 SEC

C:\B154.

I I I I

2(48
WUID

1124 -

-1124

-2848 I I I I
Nit: .3874 SIC DO : .5534 SEC DEC: .1811 SEC Nit: ,3874 SEC

(a) Word 'CHAIR' spoken by mature female.

C:\JB1544.

J__I
DO : ,5»3G SEC

(b) Time spectrograph of unvoiced section of the word.

(c) Time spectrograph of voiced section of the word.

Visual time and frequency comparisons of original and synthetic speech

138
Fig 7.1

ORIGINAL SYNTHETIC

2MI
MUB

1K4-

•1124

-2Mt

C:\B155,

I I I

2M8

1824

WHOES

-1K4

-2MI I I I I
: .2373 SEC Nil: ,1311 SEC DO : .(249 SEC BK : .2373 SEC

(a) Word 'CARE' spoken by mature female.

Nit : .4311 SEC

C:\B1555.

J__1
DO : .(249 SEC

(b) Time spectrograph of unvoiced section of the word.

moutM(v IBi
(c) Time spectrograph of voiced section of the word.

V'sual time and frequency comparisons of original and synthetic speech

139
Fig 7.2

(a) Original word 'STUPENDOUS'

(b) Synthetic word 'STUPENDOUS'

Comparison of original and synthetic speech viewed on the IBM after

analysis and synthesis procedure.

140 Fig 7. 3

References

[I] Natvig, .J.E: G de Brito; "Selecting a Speech Coder for the Pan
European DMR System"; Int Conf Digital Land Mobile Radio Comms;
Vencie, Jun.1987.

[2] Natvig, J.E; "Evaluation of Six Medium Bit-Rate Coders for the
Pan-European Digital Mobile Radio System"; IEEE Journal on Selected
Areas in Communication; Stockholm, Oct.1988.

[3] de Brito G.S; "Low Bit Rate Speech for the GSM System"; EUROCON88,
8th Eur Conf on Elecroacoustics, IEEE, Jun.1988, pp19-23.

[4] Tremain, T.E; "The Government Standard Linear Predictive Coding
Algorithm: LPC-10"; Speech Technology, Apr.1982 pp 40-49.

[5] Casajus-Quiros, F.J et al; "Implementation of a Real Time LPC-10
Vocoder"; MELECON '85, Vol II DSP, pp 279-81.

[6] Feldman, J.A et al; "A Compact, Flexible LPC Vocoder Based on a
Commercial Signal Processing Microcomputer"; IEEE Trans ASSP,
Vol.ASSP-31, No1, Feb.1983.

[7] Bryden, B: Hassamein, H.R; "Implementation of a Hybrid Pitch-
Excited/Multipulse Vocoder for Cost-Effective Mobile Communications";
Speech Tech '85, pp242-245.

[8] Dankberg, M et al; "Implementation of the RELP Vocoder Using the
TMS32010"; ICASSP 84 Proc IEEE Int Conf on ASSP, Vol.2, Mar. 1984,
pp27.8/1-4.

[9] Fallside, F: Woods, W.A; "Computer Speech Processing"; Prentice-
Hall, 1985.

[10] Parsons, T; "Voice and Speech Processing"; McGraw-Hill, 1987.

[II] Atal, B.S: Remde, J.R; "A New Model of LPC Excitation for
Producing Natural-Sounding Speech at Low Bit Rates"; ICASSP-82, 1982,
pp614-617.

[12] Atal, B.S: Hanauer, S.L; "Speech Analysis and Synthesis by Linear
Prediction of the Speech Wave"; JASA Vol 50 No2, 2lApr.1971 pp 637-
655.

[13] Flanagan, J.L et al; "Speech Coding"; IEEE Transactions on
Communications, Vol.Corn-27, No4, Apr.1979.

[14] Markel, J.D: Gray, A.H; "Linear Prediction of Speech"; Springer-
Verlag 1976.

141

M5] Rabiner, L.R; Schafer, R.W; "Digital Processing of Speech
Signals"; Prentice-Hall 1978.

[16] Makhoul, J; "Linear Prediction; A Tutorial Review"; Proceedings
of the IEEE, Invited Paper, Apr.1975.

[17] Makhoul, J.I: Wolf, J.J; "Linear Prediction and the Spectral
Analysis of Speech"; Bolt Beranek and Newman Inc. Cambridge Mass.,
BBN-2304, Aug.1972.

[18] Witten, I.H; "Principles of Computer Speech"; Academic Press,
1982.

[19] Bristow, G. (Ed); "Electronic Speech Synthesis"; Granada 1984.

[20] Rabiner, L.R: Gold, B; "Theory and Application of Digital Signal
Processing"; Prentice-Hall, 1975.

[21] Linggard, R; "Electronic Synthesis of Speech"; Cambridge, 1985.

[22] Lever, M: Delprat, M; "RPCELP: A High Quality and Low Complexity
Scheme for Narrow Band Coding of Speech"; EUROCON 88, 8th Eur Conf on
Electroacoustics, IEEE, Jun.1988, pp24-27.

[23] Atal, B.S: David, N; "On Synthesising Natural-Sounding Speech by
Linear Prediciton"; ICASSP 79, 4th Int Conf ASSP, IEEE,Apr. 1979, pp44-
47.

[24] Tedeschi, F.P; "The Active Filter Handbook", Tab, 1979.

[25] Makhoul, J; "Stable and Efficient Lattice Methods for Linear
Prediction"; IEEE Trans. ASSP, Vol. ASSP-25, No5, Oct.1977, pp423-428.

[26] Morf, M et al; "Efficient Solution of Covariance Equations for
Linear Prediction"; IEEE Trans. ASSP, Vol. ASSp-25, No5, Oct.1977,
pp429-433.

[27] Papamichalis, P.E; "Practical Approaches to Speech Coding";
Prentice-Hall 1987.

[28] Papamichalis, P.E; "Variable Rate Speech Compression by Encoding
Subsets of the PARCOR Coefficients"; IEEE Trans. ASSP, Vol.ASSP-31,
No3, Jun.1983, pp706-712.

[29] Rabiner, L.R et al; "LPC Prediction Error - Analysis of its
Variation with Position of the Analysis Frame"; IEE Trans ASSP,
Vol.ASSP-25, No5, Oct.1977, pp434-442.

[30] "TMS32010 Assembly Language Programmers Guide"; Texas Inst. 1983.

[31] "TMS32010 Users Guide"; Texas Instruments 1983.

[32] Markel, J.D; "The SIFT algorithm for fundamental frequency
estimation"; IEEE Trans, Audio Electroacoustics, Dec.1972, pp367-378.

142

[33] Holmes, J.N; "A Survey of Methods for Digitally Encoding Speech
Signals"; Radio and Electronic Engineer, Vol.52, No6, Jun.1982, pp267-
276.

[34] Burrus, C.S: Parks, T.W; "DFT/FFT and Convolution Algorithms";
John Wiley & Sons, 1984.

[35] Chandra, S: Lin, W.C; "Linear Prediction with a Variable Analysis
Frame Size"; IEEE Trans. ASSP Vol.ASSP-25, No4, Aug.1977, pp322-330.

[36] Viswanathan, V.R et al; "Variable Frame Rate Transmission: A
Review of Methodology and Apllication to narrow-Band LPC Speech
Coding"; IEEE Trans on Comms, Vol.COM-30, No4, Apr.1982, pp674-686.

[37] Gold, B: Rabiner, L; "Parallel Processing Techniques for
Estimating Pitch Periods of Speech in the Time Domain"; JASA, Vol.46,
Aug.1969, pp442-448.

[38] Holden, A.D.C: Gulut, Y.K; "A New Method For Accurate Analysis of
Voiced Speech"; IEEE Int Conf ASSP; Apr.1976; pp 458-461.

[39] Noll, A.M; "Cepstrum Pitch Determination"; JASA, Vol.41, No2,
1967, pp293-309.

[40] Itakura, F: Saito, S; "Digital Filtering Techniques for Speech
Analysis and Synthesis"; 7th Int Cong Acoustics, Budapest, 25 C 1 ,
1971 .

[41] Le Roux, J: Gueguen, C; "A Fixed Point Computation of Partial
Correlation Coefficients in Linear Prediction"; IEEE Int Conf ASSP,
1977, pp742-743.

[42] Rajasekaran, P.K: Hansen, J.C; "Finite Word Length Effects of the
Leroux-Gueguen Algorithm in Computing Reflection Coefficients"; Proc.
IEEE Int Conf ASSP 1982, pp1286-1290.

[43] Gass, W.K; "The TMS32010 Provides Speech I/O for the Personal
Computer"; Texas Instruments.

[44] Kitawaki, N et al; "Speech-Quality Assessment Methods for
Speech-Coding Systems"; IEEE Comms Mag, Vol.22, No10, Oct.1984, pp26-
33.

[45] Gouvianakis, N; "Advances in Analysis by Synthesis LPC Speech
Coders"; JIERE, Vol.57, No6, Nov.1987, ppS272-S286.

143

APPENDIX 1

IMPRES.FOR is the program which performs the analysis and synthesis on

voiced speech using the PDP11 minicomputer, the program is written in

the high level language of fortran. It is the result of a number of

smaller units previously developed and individually tested before

compiling them into this complete form.

Once the pitch to be synthesised has been chosen the program

calculates the gain, G, and 12 a-parameters using the periodic

autocorrelation method. Following this a number of options exist

which are summarised below :

(i) Set up a 12th order filter which when excited by an impulse of

amplitude G will synthesise the original pitch, this is then printed

out superimposed on the original for comparison in the time domain.

(ii) Calculate the normalised error vp and print it out.

(iii) Using the FFT calculate the spectrum of original and synthesised

pitches and plot them superimposed for comparison in the frequency

domain.

(iv) Evaluate and print out the pole positions for a stability check.

(v) Set up a file into which a number of synthesised pitches can be

concatinated using new a-parameters for each pitch or averaged LPC

parameters.

From line 16 it can be seen that the program is set up to operate on

file 'S14JH3 1 which can be altered for any file specified. The

options available require an input when prompted which must be in the

correct field format, these are :-

A1

INPUT START BLOCK FOR AUTOCORRELATION

INPUT SAMPLE START NUMBER

INPUT PITCH PERIOD

DO YOU WANT IMPULSE/ORIGINAL WAVEFORM PLOT

INPUT SIGN OF IMPULSE

INPUT IMPULSE LENGTH

INPUT PHASE ADVANCE

DO YOU WANT A FREQUENCY PLOT

DO YOU WANT ROOTS OF FILTER

SHALL I STORE WAVEFORMS FOR X-Y PLOT

SHALL I STORE WAVEFORMS FOR LONG X-Y PLOT

DO YOU WANT AVERAGED LPC RESPONSE

INPUT NEW VALUE FOR GAIN

INTEGER

INTEGER

INTEGER

Y/N

REAL

INTEGER

INTEGER

Y/N

Y/N

Y/N

Y/N

A/Y/N

REAL

A2

O001
0002
0003
OOO4
ooos

0004
O007
0008
O009
OO1O
0011
O012
0013
0014
001S
0014
0017
0018
0019
O020
0021
O022
O023
0024
0025

0024
OO27
O02B
O029
O030
0031
0032
0033
0034
0035
0034
0037
0038
0039
OO40
0041
0042
0044
0045
O044
0047
OO4B
0049
OOSO
OOS2
0053

0054
0055
0054
0057
0058
OOS9
OO40
0041
O043
OO44
004S
OO44
O047
OO4B
OO49
0070
0071
0072
0073

0074
CO 75
0074
0077
OO7B
0079
0080
0081
0082
0083
0085
OO64
OOB7
0088
0069
OO90
0091
0092

0093
0094
0095
O094
0097
0098

C
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
30

40

100

520
510
C
c
c
c
120

130

ISO

140

20

50

10
C
C
c

170

190

180

240

250
C
C
c

200

310
143

144

145

144
C
C
c

320

AFTER INPUTTING THE DESIRED PITCH IN TERMS OF BLOCK
NUMBER. SAMPLE START NUMBER. AND PITCH PERIOD (FOUND
FROM -PITCH. FOR' > THIS PROORAM WILL:
1. EVALUATE THE LINEAR PREDICTOR COEFFICIENTS
2. .EVALUATE THE IMPULSE RESPONSE OF THE FILTER DEFINED BY

THESE COEFFICIENTS
3. PLOT BOTH WAVEFORMS IF DESIRED
4. STORE BOTH WAVEFORMS IN EXTERNAL FILES
5. EVALUATE THE SPECTRUM FOR BOTH WAVEFORMS
4. PLOT BOTH SPECTRA IF REQUIRED
7. EVALUATE POLES OF FILTER IN Z-DOMAIN TO TEST . FOR STAB1LIT1
8. ALLOW AVERAGED LPC VALUES (FROM PROORAM 'AVERAG.FOR') TO

INPUT TO ALLOW STEPS 2-7 ABOVE TO BE PERFORMED

»*****«*»»***»*»»**»»»*»I*>**»*»*X«*»I»**»»I*»«»»M

LINE-'-'
DIFTOT-0
IBLANK-' '
I CROSS-'*'
IADD--+'

*** STORE 10 BLOCKS OF DATA IN ARRAY 11(2440) *«»

WRITE (7. 30)
FORMAT (IX. 'INPUT START BLOCK FOR AUTOCORRELATION')
READ (5. 40) NREC
FORMAT (13)
NREC -NREC + 1
DIMENSION I(2S4>.FAUT(20).A(12.12).B(12)
DIMENSION 11(2440). IORAPH(132>
DIMENSION GFFT(44).RFFT(44>,RAU(13).WIHP(200>
DIMENSION XCOF(13).COF(13)>ROOTR(12>.ROOTI(12)
COMPLEX F(44)
CALL ASSIGN (1. 'DY1IS14JH3.DAT')
DEFINE FILE 1 (0. 254. U. NREC)
LOAD-0
DO 510 JA-1.10
READ(l'NREC) I
DO 520 JB- 1.254
LOAD-LOAD* 1
IKLOAD)-I(JB)
CONTINUE
CONTINUE

*** EVALUATE FIRST 13 NORMALISED PERIODIC AUTOCORRELATION
*** FUNCTIONS AND STORE IN F AUK 20)

MRITE(7,120>
FORMAT (IX. 'INPUT SAMPLE START NO.')
READ(5.130) NS
FORMAT (IS)
WRITE(7,150)
FORMAT (IX. 'INPUT PITCH PERIOD' >
READ(S.140> IPP
FORMAT (13)
NBLOCK-NREC-11
NFIN-IPP+NS
KOUNT-0
DO 10 L-1.13
KOUNT-KOUNT-fl
f-0
DO 20 J-NS.NFIN
LS-J+KOUNT-1
IF(LS.GT.NFIN) LB-LS-IPP-1
C-FLOAT(II(J»
D-FLOAT(II(L8»
X*C*D
Y-X+Y
CONTINUE
RAU(L)-Y
IF(L.EG.l) ZHB-Y
FAUT(L)-Y/ZMS
CONTINUE

*** EVALUATE THE 12 LPC USING SUBROUTINE 8IHQ «««

DO 170 KB-1.12
B(KB>-FAUT(KB+1)
CONTINUE
K-O
DO 160 J-1.12
DO 190 N-1.12
L-K+N
IF(L.GT.12> GO TO 190
A(L.J>-FAUT(N)
A(J»L>-FAUT(N>
CONTINUE
K—K+1
CONTINUE
N-12
CALL SIMO(A.B.N.KS)
URITE(7.240)
FORMAT (IX,- —— PREDICTOR COEFFICIENTS —— ')
MRITE(7.2SO> B
FORHAT(1X.12F6.4>

«** EVALUATE GAIN ***

G2-0
DO 2OO J-1.12
02-O2+RAU(J+1)»B(J>
CONTINUE
G2-RAU(1>-02
GAIN-SORT (02)
TYPE* . 'GAIN- ' .GAIN
TYPE*. 'DO YOU UAKT IMPULSE/ORIGINAL MAVEFORM PLOT'
READ(S.40O> IPLOT
IF(IPLOT.NE.'Y') 80 TO 880

FM»MAT?lX?'pERIOD AUTOCORRELATION METHOD')

FORMATfixt*8PEECH SAMPLE -814JH3.DAT- ')

FORMAT* lit -START BLOCK ' . ' START SAMPLE ' . ' PITCH PERIOD ' 1
URITE(4.144) NBLOCK.NS.IPP
FORMATUX. 17. 113.114)

*** CALCULATE IMPULSE RESPONSE ***

TYPE».'INPtfT SION OP MPUtSE <-IT« OR 1.0)'
READ (5. 320) SIGN
FORMAT (FB. 3)
GAIN-GAIN*SIGN
TYPE*. 'INPUT IMPULSE LENGTH"
READ(3.130> L AB

BE

**>
**>

1

0101
0102
O103
O104
O10S
0106
O107
0108
O109
O110
0111
O112
O113
0114
O115
Oil*
O117
one
0120

0121
0122
0123
0124
O123
0126
0127
0126
0129
0130
0131
0132
0133
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
014B
0149
0150

0151
O1S2
01S3
0155
0156
0157
01S8
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
O176
0177
0178
0179
0180
O181
0182
0163
0184
0185
0186
0187
O188
0189
0190
O191
0192
0193
01*4
O19S

O196
O197
01*8
0199
O200
0201
0202
0203
0204
0205
O206
0207
0206
0209
0210
0211
0212
0213
0214
0215
0216
0217
0216
O219
0220
0221

330

350

340
C
c
C

4OO

360

380

370
390

420
C
C
C
430

720

723

730

740

743

750
C
C
c
c
810

820

780

8OO

TYPE*i'INPUT PHASE ADVANCE (IETUEEN 1 t 12>•
READ(3,160) IOELAY
DO 330 J-1.12
UIHP(J>-0.0
CONTINUE
DO 340 J-l.IPP
K-13
ADD-0.0
NX-J
NY»J+11
DO 350 N-NX.NY
K-K-1
PROD-B(K)*UIMPIN)
ADD-ADD+PROD
CONTINUE
UIHP(NY+1>-ADD+OAIN
L-L-1
JF(L.LT.l) OAIN-0.0
CONTINUE

««« PLOT VAVEFORMS t EVALUATE NORMALISED ERROR ***

SOADD-0.0
80SUn»0.0
DO 400 K-NB.NFIN
ORIO-FLOAT(II(K»
ORIOSO-ORIO««2
SQSUM-SQSUH+ORIOBO
CONTINUE
DO 370 J-NS.NFIN
DO 360 K-1.132
lORAPtKIO-IBLANK
CONTINUE
K-J-NS+IDELAY
IFCK.LT.12) 00 TO 380
OP-UIHP<K>/2e.l+O.S
NOP-IFIX<OP>+66
IORAPH<NOP)-IADD
CAL-UIMP<K>-FLOAT(II<J>>
CALSO-CAL**2
SOADD-SOADD+CALSQ
00-FLOAT<IKJ)>
00-00/26.1+0.5
NOO-IFIX<00>+66
IORAPH(NOO)-ICR06S
URITE(6>390> IORAPH
CONTINUE
FORMAT(1X.132A1)
RNORH-SOADD/SOSUM
URITE<6.420> RNOftH
FORMAT<IX.-NORMALISED ERROR IS'.F8.4>

»»» CALCULATE SPECTRUM «««

TYPE*."DO YOU WANT FREQUENCY RESPONSE PLOT'
READ(5.600) IFREER
IF(IFREEK.NE.-Y-) 00 TO 835
X-0.0
u—i.o
F(l»CHPLX(UtX)
DO 720 J-2.55
K-J+M
U-UIHP(K)
F(J)-CHPLX<y.X)
CONTINUE
UINDOU-0.9
DO 723 J-S6>64
K-J+11
U-UINP(K»UINDOU
F(J)-CMPLX<U.X)
UINDOW-UINDOW-0.1
CONTINUE
NB-64
N-6
CALL FFT(F,N.NB)
DO 730 J-1.64
OFF-CABS (F<J»
OFF-ALOOIO(OFT)
OFFT(J>»20*OFF
CONTINUE
DO 740 J-l>55
K'J+NS-1
W-FLOAT(II(K»
F(J)-CMPLX(U.X)
CONTINUE
UINDOU-0.9
DO 743 J-5A.64
K-J+NS-1
U-FLOAT(IKK))*UINDOU
F(J)-CMPLX(y.X)
UINDOU-UINDOU-0.1
CONTINUE
CALL FFT(F.N.NB)
DO 730 J-1.64
RFF-CABS(F(J))
RFF-ALOOIO(RFF)
RFFT(J)-20»RFF
CONTINUE

*** PLOT SPECTRUM OF IMPULSE RESPONSE OVERLAYED *»«

»* BY ORIGINAL SPEECH SPECTRUM «««

URITE<6>810) (IBLANK.M-0.56)rIBLANK
FORMAT(IX.56A1,'RELATIVE ENERGY (OB)')
DO 820 J-1.132
IORAPH(J>-IBLANK
CONTINUE
IORAPH(26)-'2'
IORAPH<27)-'0'
IORAPH(52)-'4'
IORAPH<53)-'O'
IORAPH<79)-'6'
IORA*>H(80)-'0-
URITE(6.390> IORAPH
DO 780 J-1.80
IORAPH<J>-LINE
CONTINUE
OP-OFFT<1)*1.32+0.5
NOP-IFIX<OP>
IORAPH (NOP)-I ADD
OO-UFFT < 1 n 1.32+0.3
NOO-IFIX(OO)
IORAPH < NOO >-1CROSS
URITE<6.390) IORAPH
DO 790 J-2.33
DO BOO L-1.132
IORAPH(L)-IBLANK
CONTINUE

A4

0223
0224
0223
022.
0227
022B
022*
0230
0231
0232
0233
0234
0235
0236
0237
0238
023V
0240

830

0241

0242
0243
0244
0245
0247
0248
024V
0250
0251
0252
02S3
0254
02S5
0256
0257
0258
025V
0260
0261
0262
0263
0264
0265
0267
O26B
0269
O270
0271
0272
0273
0274
0275
0276
0277
0278
027V
0281
0282
0283
0284
0285
0286
0287
0288
028V
O2VO
02V 1
02V2
02V3
O2V4
02VS
02V6
02V7
02V8
02VV
030O
0301
0302
0303
O304
0305
0307
030V
0310
0311
0312
O313
0314
0315
0316
0317
0318

O001
O002
0003
OOO4
O005
OOO6
0007
0008
OOOV
0011
0012
OO13
0014
0015
0017
ooie
OO1V
O020
0021
0022
O023
0024
0025
0026
0027
0028
002V
0030
0031
0032
0033
0034
0035

7VO
C
c
C
835

600

840

870

872

850
860
V35

940

V50

V60

V70

veo
»VO

1OOO

1010

1O2O

880

910
920

930

500
C
C
c

1

2
3

4

5
6

OPI-GPK1.32+O.S
NOPI-IFIX<OPI>
IOMAPH<NOPI>-IADD
OOI«<RFFT(J)+RFFT<J-l»/2
OOI'OOI*1.32+O.S
N001-IFIX<OOI)
IORAPH(NOOI >-ICRO8S
URITE(4.390> IORAPH
DO 830 L>lrl32
IORAPM(L>-IBLANK
CONTINUE
OP-OFFT(J>*1.32+0.5
NOP-IFIX(OP)
IORAPH(NGP)»IADD
OO-RFFT <J)«1.32+0.5
NOO-IFIX(OO)
IGRAPH(NOO)•ICROSS
URITE(6.3VO> IORAPH
CONTINUE

»«* EVALUATES I PRINTS POLES OF FILTER *»»

TYPE*.'DO YOU WANT ROOTS OF FILTER-
READ^.600) IFILT
FORMAT(Al>
IFdFILT.EO.'N-> 00 TO V35
L-13
DO 840 J-1.12
L-L-1
XCOF(J)—B(L)
CONTINUE
XCOF(13>-1.0
H-12
CALL POLRT < XCOF > COF .M.ROOTR i ROOTI • IER >
WRITE(6.870)
FORMATdX.' POLES OF FILTER')
URITE<6t872)
FORMAT(IX,- REAL IMAO')
DO 850 J-1.12
URITE(6>860) ROOTR(J).ROOTI(J)
CONTINUE
FORHAT(1X,2F8.4>
TYPE*,'SMALL I STORE UAVEFORHS FOR X-r PLOT'
READ(5.600) IXY
IFdXY.NE.'Y'> 00 TO 960
OPEN(UNIT-10.NAME-'DY1IORIO.DAT'>
DO V40 J-NS.NFIN
VRITC<10.130> II(J)
CONTINUE
CLOSE(UNIT-IO)
OPEN<UNIT-ll.NAHE-'DYl:SYN.DAT')
DO 950 J-12.12+IPP
URITEdl.VSO) UINP(J)
CONTINUE
CLOSE(UNIT'11)
TYPE*.-SHALL I STORE WAVEFORMS FOR LONG XY PL
READ(5.600) ILONG
IFdLONO.NE.'Y-> 00 TO 880
OPEN (UNIT-10.NAME-'DY1IOLONO.DAT', TYPE-'OLD')
OPEN(UNIT-11.NAME-'DY1IOLONG.DAT')
READ!10,130,END-980) IORIG
VRITEU1.130) IORIG
GO TO 970
DO 990 J-NS.NFIN
HRITEU1.130) II(J)
CONTINUE
CLO8E<UNIT-10>
CLOSE(UNIT-ll)
OPEN(UNIT-10.NAME-"DY1ILONSYN.DAT-, TYPE-'OLD'
OPEN(UNIT-11,NAME-'DY1ILONSYN.DAT •>
READdO.930.END-1010) 8YNTH
URITEdl.930) 8YNTH
GO TO 1OOO
DO 1020 J-12.12+IPP
URITEdl.930> UIHP(J)
CONTINUE
CLOSE(UNIT-IO)
CLO8ECUNIT-11)
TYPE*.'DO YOU UANT AVERAGED LPC RESPONSE'
TYPE».'TYPE 'A' TO KEEP OLD LPC VALUES'
TYPE*.'TYPE 'Y' TO INPUT NEW SET OF LPC VALUE
READ(5.400) IAV
IF(IAV.EO.'N') 60 TO SCO
IFdAV.EO.'A') 00 TO 920
DO 910 J-1.12
TYPE*.'INPUT LPC A'.J
READ(5.320) PRECOF
B(J)-PRECOF
CONTINUE
TYPE*.'INPUT MEW VALUE FOR GAIN (REAL NUMBER
READC.930) GAIN
FORnAT(F8.2)
GO TO 310
END

*** FTT SUBROUTINE »«*

SUBROUTINE FFT(A.N.NB)
COMPLEX A(HB).U.U,T
DO 1 J-l.MB
A(J)-A(J)/NB
NBD2-NB/2
NBH1-NB-1
J-l
DO 4 L-1.NBM1
IF (L.OE.J) GO TO 2
T-A(J)
A(J)-A(L)
A(L)-T
(C-NBD2
IF(K.GE.J) GO TO 4
J-J-K
K-K/2
GO TO 3
J-J4K
pI-3.141392433389793
DO 6 M-l.N
U-d.OfO.O)
HE-2S*M
K-ME/2
«-CMPLX<C08(PI/K).-8IN<PI/K>>
DO 4 J-l.K
DO S L-J.NB.ME
LPK-L+K
T-A(LPK)*U
A(LPK)-A(L)-T
A(L>-A<L)+T
U-U»U
RETURN
END A 5

APPENDIX 2

During the project three different types of filter were designed and

built to perform the analogue processing required. The circuit

diagrams and their frequency responses are given in this appendix.

A6

Appendix 2

4th Order Chebyshev Filter

5 dB/div

OHz 1.5kHz 3kHz

Circuit diagram and frequency response of SOOHz low-pass filter.

A7 Fig A2.1

Appendix 2

8th Order Butterworth Filter

5 dB/div

OHz 5kHz 10kHz

Circuit diagram and frequency response of 3.4kHz low-pass filter.

A8 Fig A2.2

Appendix 2

8th Order Butterworth Filter

5 dB/div

OHz 5kHz 10kHz

Circuit diagram and frequency response of 4kHz low-pass filter.

A9
Fig A2.3

