

NUMERICAL ANALYSIS OF TEST PILE DATA FROM INSTRUMENTED LARGE DIAMETER BORED PILES FORMED IN KEUPER MARL (MERCIA MUDSTONE)

by

J.R.OMER[•], B.Sc. (Hons.), M.Sc.

A thesis presented in fulfilment of the requirement for the degree of Doctor of Philosophy of the University of Glamorgan

June 1998

Collaborating establishments

Grant support

- South Glamorgan County Council
- Building Research Establishment
- Overseas Development Administration
- University of Glamorgan
- Institution of Civil Engineers (Research Enablement fund)

* The candidate was the winner of the inaugural David Douglas prize awarded by the South Wales Institute of Engineers, U.K., May 1994

CERTIFICATE OF RESEARCH

This is to certify that, apart from where specific reference to other publications is made the work in this thesis is the result of the investigation by the candidate.

J.R Omer (Candidate)

3/99 26

(Date)

R.B. Lobasa

Dr R.B. Robinson (Director of studies)

26" March 1999. (Date)

Dr R. Delpak (Supervisor)

26th March 1999 (Date)

DECLARATION

This is to certify that neither this thesis, nor any part of it has been presented, in candidature form for any degree at any other academic institution.

(Candidate)

ACKNOWLEDGEMENTS

The author is indebted to Drs. R. Delpak and R.B. Robinson (Supervisor and Director of Studies, respectively) for their advice and support. Special thanks are due to Cardiff County Council for permitting full access to their pile load test and site investigation reports and for providing the main research funding. The enthusiasm of Mr John Church (formerly of the Department of Highways and Transportation, South Glamorgan County Council) in encouraging the research is greatly appreciated. Messrs Davies Middleton & Davies (DMD), Cardiff, are thanked for carrying out the pile load tests and for being generous with their expertise and facilities.

Other thanks go to the Building Research Establishment (Geotechnics Division), Garston, Hertfordshire, for their collaborative input and for installing and monitoring the instrumentation used in the test piles. The author is indebted to Messrs England and Fleming at Kvaerner Cementation Piling & Foundations for their helpful advice and for providing pile analysis software gratis.

Finally the author wishes to express gratitude to his wife Hilda and children Winnie and Tonnie for their understanding and patience throughout the duration of this study.

The author was supported by research grants awarded by the Institution of Civil Engineers (Research and Development Enabling Fund), Overseas Development Administration (O.D.A.) and the University of Glamorgan.

SUMMARY

A study of the behaviour of large diameter, bored, cast in-situ piles founded in Keuper marl (Mercia mudstone) is presented. The work is based on instrumented full-scale pile load tests carried out as part of the design of a major Highway communication project in Cardiff, U.K. This research also forms part of an on-going research programme within the Soil/Structure research unit at the University of Glamorgan. The test piles were 0.9m in diameter by 28-32m long and were constructed following the procedure to be used in the actual contract piles. Vibrating wire strain gauges, extensometers and load cells were installed in the test piles at selected locations.

The load test generated extensive data in terms of the strain levels along each pile shaft. All instrument readings were monitored and automatically stored on computer. In addition, a 2m long reinforced concrete column with the same cross-section properties and instrumentation as the test piles was load tested under controlled conditions. The measured stress-strain characteristics of the short column were used to model the deformation parameters of the test piles. Utilising the load test data and the results of a comprehensive site investigation, the initial design of the contract piles has been evaluated. It is established that the design method suggested in the interpretative report of the site investigation, which is partially based on C.I.R.I.A. report No.47, leads to conservative predictions of ultimate shaft resistance. The predicted values are 40-57% of the measured values. A semi-empirical method is developed which can predict the characteristics of large diameter, bored, cast in-situ piles in Keuper marl, at every stage of loading up to the ultimate state of the pile-soil system. The formulation is supported by load test-data from fully instrumented test piles in Cardiff (South Wales, U.K.) as well as other published pile test data. The analysis is based on separation of shaft resistance and end bearing by formulating the variation in load sharing between the pile shaft and base. The method takes into consideration the influence of non-linear stress-strain behaviour of concrete on pile deformation and the influence on pile settlement of additional compressibility due to any loose soil possibly present at the pile base level.

The proposed method is validated against a large database of full-scale pile loading tests, with a wide range of diameters and lengths, installed in a variety of clays. There are provisions in the model, to accommodate pile conditions with negligible components of either shaft resistance or end bearing. In every case, the predictive capability is judged to be accurate and satisfactory. The improved predictive capability of this method, in pile analysis, is expected to result in a more cost-effective construction. A computer program is written for the complete analysis of a pile using the proposed numerical model. The program can accommodate pile conditions in which the contribution to load resistance of either shaft or end bearing is negligible. The parameters required for input into the numerical model are those that would be available from a standard site investigation, but may also be back-figured from pile test data. These data may then be used to predict the complete load-settlement curve for a pile of different dimensions and material properties under different ground conditions.

NOTATIONS

- A₀, A₁, A₂, A₃ Constants in the hyperbolic function for base performance
 - Ab Area of a pile base
 - Cross-sectional area of reinforced concrete
 - A_c Area of concrete at the pile cross-section
 - As Area of steel at the pile cross-section
- C₀, C₁, C₂, C₃ Constants in the cubic function for shaft load versus base movement
 - Db Diameter of pile base
 - D_s Diameter of pile shaft
 - Eb Deformation modulus for soil beneath the pile base Young's modulus of reinforced concrete
 - $E_c(z)$ Young's modulus of pile concrete at a given depth z
 - E_s Young's modulus of steel reinforcement in a pile
 - G Gradient of a plot of base load versus base movement using a the linear function for settlement calculation given by Randolph and Wroth(1978)
 - K(z) Earth pressure coefficient at depth z (Burland, 1973)
 - K₀ Coefficient of earth pressure at rest
 - Kob Value of Ko at the level of the pile base
 - Kot Value of Ko at the bottom of the upper portion of the pile not involved in load transfer
 - L Length of pile
 - L₀ Upper length of a pile carrying little or no load in shaft resistance
 - Lm Distance from the bottom of the upper portion of the pile not involved in load transfer to the point of maximum or minimum shaft resistance
 - L_s Length of a pile transferring load to soil by shaft resistance
 - N Blow count in a Standard Penetration Test (S.P.T.)
 - - Pb Load applied at pile base
 - Ph Load applied at pile head
 - P_s Load carried by pile in shaft resistance
 - Pub Ultimate pile base resistance
 - Pus Ultimate pile shaft resistance
 - P(z) Axial force in pile at depth z
 - R_s Residual shaft resistance divided by ultimate shaft resistance for a pile
 - Imaginary shift, to the left, of the origin of the base load versus base S movement curve due to the effects of a pile base resting on debris
 - a, b, c, d General constants, to be determined from the boundary conditions of a function
 - a_0, a_1 Numerical constants in the expression for the variation of Young's modulus of concrete versus strain
 - c's Effective cohesion of a softened soil
 - cu Undrained cohesion of soil
 - c' Drained cohesion of soil
 - e_o Elastic shortening of the upper length of a pile not involved in load transfer
 - Total elastic shortening of a pile e_p
 - Elastic shortening of the length of a pile transferring load to soil by shaft e_{S} resistance

- f_b Maximum base pressure for a pile
- f_S Maximum unit shaft resistance at a pile shaft
- k Ratio of $K_0 \tan \delta$ at the top of the lower pile portion involved in load transfer to that at the pile base level
- *m* Base movement at ultimate base load expressed as a proportion of the pile base diameter
- *n* Value of $\frac{P_b}{P_{ub}}$ at which the parabolic function and the linear function of P_b
- versus $\Delta_{\rm b}$ merge

q

- Mean effective overburden pressure along a pile shaft
- qb Ultimate base pressure
- qub Ultimate bearing pressure at a pile base
 - *r* Base movement at ultimate shaft load divided by pile shaft diameter Radius, Radial co-ordinate
 - s_{τ} Equivalent spring stiffness for a given soil stratum, in the notation of Cole and Stroud(1976)
 - u Radial displacement
 - z Depth, below a given level (also depth in general) Co-ordinate along the main axis of a cylinder
- $\tau(z)$ Shaft resistance at depth z
- τ_{max} Maximum shaft resistance that can occur anywhere on a pile shaft (Reese et al., 1969)
- $\tau_{us}(z)$ Ultimate shaft resistance at depth z
 - τ_t Shaft resistance at the top of the pile shaft length transferring load to soil by friction
 - τ_b Shaft resistance at the level of the pile toe
 - $\Delta_{\mathbf{b}}$ Movement of a pile base
 - Δ_{h} Pile head settlement under applied load
 - Δ_{ub} Base movement at ultimate base load
 - Δ_{us} Base movement at ultimate shaft load
 - $\Delta(z)$ Pile displacement at a given depth, z
 - Δ_k Value of Δ_b when $P_b = nP_{ub}$ using the linear foundation settlement formula
 - Δ_{ϕ} Value of Δ_{b} when $P_{b} = \phi P_{ub}$ using the linear foundation settlement formula
 - θ Circumferential angle
 - v Poisson's ratio of soil
 - vb Poisson's ratio of reinforced concrete
 - v_c Poisson's ratio of concrete
 - v_s Poisson's ratio of steel
 - η Settlement reduction factor (related to depth of foundation below ground) as used in the foundation settlement formula
 - ϕ Value of $\frac{P_b}{P_{ub}}$ at which the linear function and the hyperbolic cosine

function of P_b versus Δ_b merge

- ϕ' Drained angle of friction of soil
- ϕ_{s}' Effective angle of internal friction of a softened soil (Foley and Davis, 1971)
- $\phi_{r'}$ Residual effective angle of internal friction of soil
- $\phi_{\rm d}$ Remoulded drained angle of friction of soil
- ε_z Strain in the longitudinal direction of a cylinder

- ε_r Strain in the radial direction of a cylinder
- ϵ_{θ} Strain in the circumferential direction of a cylinder
- $\varepsilon(z)$ Strain in a pile at depth z
- σ_b Stress in the reinforced concrete zone of a composite column
- σ_c Stress in concrete
- σ_r Direct stress in the radial direction of a cylinder
- σ_s Stress in steel
- σ_{θ} Direct stress in the circumferential direction of a cylinder
- σ_z Direct stress in the longitudinal direction of a cylinder
- σ_{h} ' Horizontal effective stress in soil
- $\sigma_{V}'(z)$ Effective vertical stress at depth z
 - σ_{vt} ' Effective vertical stress in soil at the top of the pile lower pile portion transferring load to soil by skin resistance
 - σ_{vb} ' Effective vertical stress in soil at the level of the pile base
 - $\delta(z)$ Effective angle of friction of soil at depth z
 - δ_t Effective angle of friction of soil at the top of the pile shaft length transferring load to soil by shaft resistance
 - δ_b Effective angle of friction of soil at the level of the pile base
 - ω Factor which when multiplied by L_s gives the position of the point of maximum or minimum shaft resistance below the top of the lower pile portion transferring load to soil by shaft resistance
 - λ Compound parameter
 - Ω Compound parameter
 - α Adhesion factor (Tomlinson, 1971)
 - β Average ultimate shaft resistance divided by average effective overburden pressure along a pile shaft (Burland, 1973)
 - ψ Ratio of Shaft load to applied pile head load

ABBREVIATIONS

Ax	Axial
A.C.I.	American Concrete Institute
A.P.I.	American Petroleum Institute
A.S.C.E.	American Society of Civil Engineers
A.S.T.M.	American Society of Testing and Materials
BH	Bore hole
B.R.E.	Building Research Establishment
B.S.	British Standards
B.S.I.	British Standards Institution
C.G.J.	Canadian Geotechnical Journal
C.I.R.I.A.	Construction Industry Research Information Association
Conf.	Conference
C.P.T	Cone Penetration Test
C.R.P.	Continuous Rate of Penetration
Dia.	Diameter, Diametral
Geot.	Geotechnical
H.Y.S.	High Yield Steel
I.C.E.	Institution of Civil Engineers
I.nt.	International
Jnl.	Journal
L.C.	Load Cycle
LL	Liquid Limit
LI	Liquidity Index
L.V.D.T.	Linear Vertical Displacement Transducer
M.L.	Maintained Load
nc	normally consolidated
oc	over-consolidated
OCR	Over-consolidation Ratio
P.D.R.	Peripheral Distributor Road
PL	Plastic Limit
PI	Plasticity Index
Proc.	Proceedings
S.G.C.C.	South Glamorgan County Council
S.M. & F.D.	Soil Mechanics and Foundations Division
S.M. & F.E.	Soil Mechanics and Foundation Engineering
S.P.T.	Standard Penetration Test
Symp.	Symposium
T.C.R.	Total Core Recovery
U.C.S.	Unconfined Compression Strength
U.o.G.	University of Glamorgan

CERTIFICATE OF RESEARCH	I
DECLARATION	II
ACKNOWLEDGEMENTS	III
SUMMARY	IV
NOTATIONS	VI
ABBREVIATIONS	IX
LIST OF TABLES	XVI
LIST OF FIGURES	XXI
LIST OF PLATES	XXIX
CHAPTER 1: INTRODUCTION AND OBJECTIVES	1
1.1 PREVIOUS RESEARCH WORK AT THE UNIVERSITY OF GLAMORGAN	1
1.2 CURRENT RESEARCH WORK	4
1.2.1 Introduction	
1.2.2 Peripheral Distributor Road, Cardiff	5
1.2.3 Objectives of the current research	7
CHAPTER 2:LITERATURE REVIEW	
2.1 INTRODUCTION	8
2.2 ENGINEERING PROPERTIES OF KEUPER MARL	8
2.2.1 Nature of Keuper marl	
2.2.2 Typical index and strength properties of Keuper marl	
2.3 PILE LOAD TEST METHODS	17
2.3.1 Introduction	
2.3.2 Methods of conducting pile load tests	
2.3.2.1 Introduction	
2.3.2.2. Maintained load test	
2.3.2.3. Constant rate of penetration test	
2.3.2.4 Method of equilibrium	16
2.4 EVALUATION OF PILE LOAD CAPACITY IN COHESIVE SOILS	
2.4.1 General	
2.4.2 Total stress method - Design for end resistance	
2.4.2.1 Piles formed in soft to hard clays	
2.4.2.2 Piles formed in weathered rock	
2.4.3.1 Introduction	
2.4.3.2 The α method	

2.4.3.3 The λ method	
2.4.4 Limitations of the total stress method	
2.4.5 Effective Stress approach	
2.4.6 Critical depth considerations	
2.4.7 Empirical correlation methods	
2.4.8 Summary	
2.5 CASE STUDIES OF PILE TESTING IN KEUPER MARL	37
2.5 CASE STODIES OF FILE TESTING IN REOPER MARL	
2.5.1 Introduction	
2.5.2.1 Previous piling experience in Cardiff.	
2.5.2.2 Test piles at Clarence Road bridge, Cardiff P.D.R.	
2.5.2.3 Test piles at Grangetown Link and Cogan Spur, Cardiff P.D.R.	
2.5.2.4 Test piles at East moors Link, Cardiff P.D.R.	
2.5.3 Piles formed in Keuper marl at Leicester	
2.5.4 Piles formed in Keuper marl for the Birmingham International Arena	
2.5.5 Piles formed in weathered mudstone at County Antrim, Northern Ireland	
2.5.6 Piles formed in Keuper marl at Redcar, Teesside	
2.5.7 Continuous flight augur pile in Bristol	
2.5.8 Piles formed in pre-consolidated Keuper marls of Southwest Germany	
2.6 CASE STUDIES OF PILES FORMED IN WEAK MUDSTONE ROCK	
2.6.1 Introduction	
2.6.2 Rock socket piles formed in mudstone and siltstone at Coventry	
2.6.3 Piles formed in cretaceous mudstone in Port Elizabeth, South Africa	
2.6.4 Rock-socket piles formed in mudstone at Melbourne, Australia	
2.6.5 Large diameter rock socket at Rosignamo, Tuscany (Italy)	
2.7 EFFECTS OF TIME AND MAINTAINED LOAD ON PILE SETTLEMENT	
2.7.1 Consolidation and creep settlements	
2.7.2 Assessment of time-dependent settlement of piles	
2.7.3 Effect of time on the ultimate capacity of piles	70
2.7.4 Creep settlement of piles formed in Keuper marl from pile load tests	73
2.8 SUMMARY	74
2.8 SUMMARY	····· / ٦
CHAPTER 3: GROUND INVESTIGATION AND TEST PILE INSTALL	A HON75
3.1 INTRODUCTION	
3.2 GROUND INVESTIGATION	0 2
3.2 GROUND INVESTIGATION	80
3.2.1 Geological description of the project area	R1
3.2.2 The ground investigation process	
3.2.2.1 Introduction	
3.2.2.2 Test borenoies and drilling through superficial deposits	
3.2.2.3 Drilling through the Keuper marl	03 03
3.2.2.4 The "marker band" at the river Taff estuary section	04 وح
3.2.2.5 Groundwater observations	
3.2.2.6 Logging of Keuper marl cores	

3.3 ANALYSIS OF BOREHOLE DATA	
3.3.1 Introduction	
3.3.2 Database of borehole records	
3.3.3 Standard Penetration Test (S.P.T.) data	
3.3.4 Point load test results	
3.3.5 Soil description using digital codes	
3.3.6 Statistical analysis of test data using digital codes	

3.4 FULL SCALE FIELD TEST PILES	
3.4.1 Introduction	
3.4.2 General construction of the test piles	96
3.4.3 Forming the borehole for a typical test pile	
3.4.4 "Cleanliness" at the pile base level	
3.4.5 Pile reinforcement and concrete placement	100
3.4.6 Problems encountered during construction of test piles	
3.5 MONITORING OF PILE RESPONSE UNDER LOAD	
3.5.1 Instrumentation and test schedule	102
3.5.2 Vibrating wire strain gauges	
3.5.3 Extensometers	
3.5.4 Pile head movement monitoring	105
3.5.5 Pile base load cells	
3.6 PILE LOAD TESTS	
3.6.1 Load test arrangement	
3.6.2 Load test procedure	107
3.6.3 Pile calibration using a short reinforced concrete column	109
CHAPTER 4: ANALYSIS OF PILE LOAD TEST DATA	128
4.1 INTRODUCTION	
4.2 TEST PILE RESULTS	
4.2.1 Introduction	
4.2.2 Pile head load-Displacement-Time graphs	
4.2.3 Load-Settlement curves	
4.2.4 Observed ultimate load capacities	
4.3 LOAD-STRAIN CALIBRATION OF THE TEST PILES	
4.3.1 Introduction	
4.3.2 Performance of strain gauges	
4.3.3 Stress-strain calibration methods	
4.3.4 The linear (Gauge Stiffness) calibration method	
4.3.5 Non-linear load-strain relationship by power regression	
4.4 ELASTIC CONSTANTS FROM A SHORT CONCRETE COLUMN	
4.4.1 Introduction	
4.4.2 Simulation of pile material properties	
4.4.3 Numerical modelling of the short column	
4.4.3.1 Theoretical representation of pile cross-section	
4.4.3.2 Analysis of stresses and strains	
4.4.3.3 Boundary conditions	
4.4.3.4 Determination of stresses and displacements	
4.4.3.5 Application of the analysis to predict the behaviour of the short column	149
4.5 EVALUATION OF LOAD TRANSFER FROM PILE TO SOIL	
4.5.1 Introduction	
4.5.2 Use of extensioneter readings in estimating axial forces	
4.5.3 Behaviour of pile TP6 in a pull-out test	
4.5.4 Graphs of axial force versus depth for test piles loaded in compression	
4.5.5 Comparison between linear and non-linear calibration methods for axial	force
prediction	
4.5.6 Comparison between the linear and non-linear calibration methods for pile shortening prediction	
4.6 MOBILISATION OF SHAFT AND BASE RESISTANCES	
4.6.1 Introduction	

4.6.2 Shaft resistance at strain gauge mid levels versus settlement 4.6.2.1 Pile TP2	
4.6.2.1 Phe TP2	
4.6.2.3 Pile TP4	
4.6.2.4 Pile TP5	
4.6.2.5 Pile TP6	
4.6.3 Comparison of shaft resistance with data from C.I.R.I.A. Report No. 47	168
4.6.4 Shaft resistance variation with depth along the test piles	
4.6.5 Mobilisation of end bearing resistance	
CHAPTER 5: EVALUATION OF PILE DESIGN FOR THE BUTETOWN	
5.1 INTRODUCTION	
5.2 SITE INVESTIGATION RECOMMENDATIONS	
5.2.1 Factors of safety	
5.2.2 Negative shaft resistance	
5.2.3 Shaft resistance of the gravel layer above Keuper marl	
5.2.4 Shaft resistance and base resistance of the Keuper marl	
5.2.5 Pile settlement	
5.3 DESIGN BASED ON THE SITE INVESTIGATION RECOMMENDATIONS	206
5.3.1. Shaft resistance	
5.3.2 End bearing resistance	
5.3.3 Comparison between predicted and observed load capacities	
5.3.4 Comments	
5.4 EFFECTIVE STRESS DESIGN METHOD	
5.4.1 Burland's(1973) formula	
5.4.2 Values of earth pressure coefficient, K	
5.4.5 Comparison between predicted and observed shart resistance values	
5.5 TOTAL STRESS DESIGN BASED ON S.P.T. "N" VALUES	
5.5.1 Field S.P.T. results	
5.5.2 Kilbourne et.al.(1988) design formula	
5.5.3 Comparison between predicted and observed shaft resistance	
5.5.4 Comments	
5.6 TOTAL STRESS DESIGN BASED ON POINT LOAD TEST RESULTS	
5.6.1 Analysis of Point Load test data	
5.6.2 Estimation of maximum shaft resistance	
5.6.3 Comments	
	020
CHAPTER 6: MODELLING PILE BEHAVIOUR	
6.1 OVERVIEW OF EXISTING METHODS OF PILE ANALYSIS	
6.1.1 Introduction	
6.1.2 Load transfer analysis by linear spring representation	
6.1.3 Boundary Element Method (or Integral Equation Analysis) 6.1.4 Approximate analysis based on elasticity	
6.1.4 Approximate analysis based on elasticity	
6.1.6 Finite element analysis -FEA	
0.1.0 Finite clement analysis - PEA	
6.2 PERFORMANCE OF LARGE DIAMETER, BORED PILES	
6.2.1 The need for a simple numerical model	
6.2.2 Pile load-settlement prediction	
6.2.3 Load resistance mobilisation	234

6.3 MODELLING OF SHAFT RESISTANCE MOBILISATION	
6.3.1 Extension of Reese et.al(1969) method	
6.3.2 Boundary conditions	238
6.3.3 Variation in mobilised shaft resistance	239
6.4 MODELLING OF BASE RESISTANCE MOBILISATION	
6.4.1 A normally constructed pile base	
6.4.2 A pile base resting on debris	247
6.4.3 Non-linear base load versus base movement variation	242 244
6.4.4 Minimum value of the coefficient <i>m</i>	245
6.5 LOAD TRANSFER/PILE DEFORMATION RELATIONSHIP	
6.5.1 Modelling the non-linear stress-strain behaviour of concrete	
6.5.2 Variation of shaft resistance with depth	
6.5.3 Functional modelling of shaft resistance profiles	
6.5.4 Boundary conditions and solution of equations	
6.5.5 Load sharing between the shaft and base	
6.5.6 Axial force profile and pile shortening	
6.5.7 Pile head load versus pile head settlement relationship	
6.5.8 Summary of the analysis procedure	
otoro summury of the unarysis procedure manners and the second second second second second second second second	
6.6 DESIGN CHARTS UTILISING THE NUMERICAL MODEL	
6.6.1 Introduction	
6.6.2 Design for shaft resistance	
6.6.3 Design for base resistance	
6.6.4 Summary	
CHAPTER 7: APPLICATION OF THE NUMERICAL MODEL TO PIL	F
CHAFTER / AFFLICATION OF THE NUMERICAL MODEL TO FIL	
ANALYSIS AND DESIGN	
ANALYSIS AND DESIGN	267
	267
ANALYSIS AND DESIGN	267 267
ANALYSIS AND DESIGN 7.1 INTRODUCTION 7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.RCARDIFF	267 267 267
ANALYSIS AND DESIGN 7.1 INTRODUCTION 7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.RCARDIFF 7.2.1 Introduction	
ANALYSIS AND DESIGN	267 267 267 267 268
ANALYSIS AND DESIGN. 7.1 INTRODUCTION. 7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.RCARDIFF. 7.2.1 Introduction 7.2.2 Test pile TP1 (Voided toe pile) 7.2.3 Test pile TP2	267 267 267 267 268 268 268
ANALYSIS AND DESIGN	267 267 267 267 267 268 268 268 269
ANALYSIS AND DESIGN	267 267 267 267 267 268 268 268 269 270
ANALYSIS AND DESIGN	267 267 267 267 267 268 268 269 270 270
ANALYSIS AND DESIGN	267 267 267 267 267 268 268 269 270 270
ANALYSIS AND DESIGN. 7.1 INTRODUCTION. 7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.RCARDIFF. 7.2.1 Introduction 7.2.2 Test pile TP1 (Voided toe pile) 7.2.3 Test pile TP2 7.2.4 Test pile TP3 7.2.5 Test pile TP4 7.2.6 Test pile TP5 7.2.7 Test pile TP6	267 267 267 267 267 268 268 268 269 270 270 271
ANALYSIS AND DESIGN. 7.1 INTRODUCTION. 7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.RCARDIFF. 7.2.1 Introduction 7.2.2 Test pile TP1 (Voided toe pile) 7.2.3 Test pile TP2 7.2.4 Test pile TP3 7.2.5 Test pile TP4 7.2.6 Test pile TP5 7.2.7 Test pile TP5 7.2.7 Test pile TP6 7.3 PREVIOUS PILE TESTING IN KEUPER MARL (CARDIFF P.D.R.)	267 267 267 267 268 268 268 269 270 270 271 271
ANALYSIS AND DESIGN	267 267 267 267 268 268 268 269 270 270 271 271 271
 ANALYSIS AND DESIGN. 7.1 INTRODUCTION. 7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.RCARDIFF. 7.2.1 Introduction 7.2.2 Test pile TP1 (Voided toe pile) 7.2.3 Test pile TP2 7.2.4 Test pile TP3 7.2.5 Test pile TP4 7.2.6 Test pile TP4 7.2.6 Test pile TP5 7.2.7 Test pile TP6 7.3 PREVIOUS PILE TESTING IN KEUPER MARL (CARDIFF P.D.R.) 7.3.1 Test piles at Eastmoors Link 7.3.2 Eastmoors link-pile No.2 	267 267 267 267 267 268 268 268 269 270 270 271 271 271 272
ANALYSIS AND DESIGN. 7.1 INTRODUCTION. 7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.RCARDIFF. 7.2.1 Introduction. 7.2.2 Test pile TP1 (Voided toe pile). 7.2.3 Test pile TP2 7.2.4 Test pile TP3 7.2.5 Test pile TP4 7.2.6 Test pile TP5 7.2.7 Test pile TP6 7.3 PREVIOUS PILE TESTING IN KEUPER MARL (CARDIFF P.D.R.). 7.3.1 Test piles at Eastmoors Link. 7.3.2 Eastmoors link-pile No.2. 7.3.3 Eastmoors link-pile No.3.	267 267 267 267 267 268 268 269 270 270 271 271 271 271 272 272
 ANALYSIS AND DESIGN	267 267 267 267 267 268 268 269 270 270 271 271 271 271 271 272 273
 ANALYSIS AND DESIGN	267 267 267 267 267 267 268 269 270 270 271 271 271 271 271 271 272 273 273 273
ANALYSIS AND DESIGN. 7.1 INTRODUCTION. 7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.RCARDIFF. 7.2.1 Introduction 7.2.2 Test pile TP1 (Voided toe pile) 7.2.3 Test pile TP1 7.2.4 Test pile TP3 7.2.5 Test pile TP4 7.2.6 Test pile TP5 7.2.7 Test pile TP6 7.3 PREVIOUS PILE TESTING IN KEUPER MARL (CARDIFF P.D.R.) 7.3.1 Test piles at Eastmoors Link 7.3.2 Eastmoors link-pile No.2 7.3.3 Eastmoors link-pile No.4 7.3.5 Test piles at Grangetown Link 7.3.6 Test piles at Ely Bridge	267 267 267 267 267 267 268 268 269 270 270 270 271 271 271 271 271 271 271 271 272 272 273 273 274
ANALYSIS AND DESIGN. 7.1 INTRODUCTION. 7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.RCARDIFF. 7.2.1 Introduction 7.2.2 Test pile TP1 (Voided toe pile) 7.2.3 Test pile TP2 7.2.4 Test pile TP3 7.2.5 Test pile TP4 7.2.6 Test pile TP5 7.2.7 Test pile TP6 7.3 PREVIOUS PILE TESTING IN KEUPER MARL (CARDIFF P.D.R.) 7.3.1 Test piles at Eastmoors Link 7.3.2 Eastmoors link-pile No.2 7.3.3 Eastmoors link-pile No.4 7.3.5 Test piles at Grangetown Link 7.3.6 Test piles at Ely Bridge 7.3.7 Test pile at Clarence Road Bridge	267 267 267 267 267 267 268 268 268 269 270 270 271 271 271 271 271 271 271 272 272 273 273 274 275
ANALYSIS AND DESIGN. 7.1 INTRODUCTION. 7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.RCARDIFF. 7.2.1 Introduction 7.2.2 Test pile TP1 (Voided toe pile) 7.2.3 Test pile TP1 7.2.4 Test pile TP3 7.2.5 Test pile TP4 7.2.6 Test pile TP5 7.2.7 Test pile TP6 7.3 PREVIOUS PILE TESTING IN KEUPER MARL (CARDIFF P.D.R.) 7.3.1 Test piles at Eastmoors Link 7.3.2 Eastmoors link-pile No.2 7.3.3 Eastmoors link-pile No.4 7.3.5 Test piles at Grangetown Link 7.3.6 Test piles at Ely Bridge	267 267 267 267 267 267 268 268 268 269 270 270 271 271 271 271 271 271 271 272 272 273 273 274 275
ANALYSIS AND DESIGN	267 267 267 267 267 268 268 269 270 270 271 271 271 271 271 271 271 272 272 273 273 274 275 275
ANALYSIS AND DESIGN. 7.1 INTRODUCTION. 7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.RCARDIFF. 7.2.1 Introduction 7.2.2 Test pile TP1 (Voided toe pile) 7.2.3 Test pile TP2 7.2.4 Test pile TP3 7.2.5 Test pile TP4 7.2.6 Test pile TP5 7.2.7 Test pile TP6 7.3 PREVIOUS PILE TESTING IN KEUPER MARL (CARDIFF P.D.R.) 7.3.1 Test piles at Eastmoors Link 7.3.2 Eastmoors link-pile No.2 7.3.3 Eastmoors link-pile No.3 7.3.4 Eastmoors link-pile No.4 7.3.5 Test piles at Grangetown Link 7.3.6 Test piles at Clarence Road Bridge 7.3.7 Test piles at Cogan spur	267 267 267 267 267 267 268 268 269 270 270 271 271 271 271 271 271 271 271 271 272 272 273 273 274 275 276
ANALYSIS AND DESIGN. 7.1 INTRODUCTION. 7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.RCARDIFF. 7.2.1 Introduction 7.2.2 Test pile TP1 (Voided toe pile) 7.2.3 Test pile TP2 7.2.4 Test pile TP3 7.2.5 Test pile TP4 7.2.6 Test pile TP5 7.2.7 Test pile TP6 7.3 PREVIOUS PILE TESTING IN KEUPER MARL (CARDIFF P.D.R.) 7.3.1 Test piles at Eastmoors Link 7.3.2 Eastmoors link-pile No.2 7.3.3 Eastmoors link-pile No.3 7.3.4 Eastmoors link-pile No.4 7.3.5 Test piles at Grangetown Link 7.3.6 Test piles at Ely Bridge 7.3.7 Test pile at Clarence Road Bridge 7.3.8 Test piles at Cogan spur	267 267 267 267 267 267 268 268 269 270 270 270 271
ANALYSIS AND DESIGN. 7.1 INTRODUCTION. 7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.RCARDIFF. 7.2.1 Introduction 7.2.2 Test pile TP1 (Voided toe pile) 7.2.3 Test pile TP2 7.2.4 Test pile TP3 7.2.5 Test pile TP4 7.2.6 Test pile TP5 7.2.7 Test pile TP6 7.3.7 Test pile TP6 7.3.1 Test piles at Eastmoors Link 7.3.2 Eastmoors link-pile No.2 7.3.3 Eastmoors link-pile No.3 7.3.4 Eastmoors link-pile No.4 7.3.5 Test piles at Grangetown Link 7.3.6 Test piles at Ely Bridge 7.3.7 Test pile at Clarence Road Bridge 7.3.8 Test piles at Cogan spur	267 267 267 267 267 267 268 268 269 270 270 270 271
ANALYSIS AND DESIGN. 7.1 INTRODUCTION. 7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.RCARDIFF. 7.2.1 Introduction 7.2.2 Test pile TP1 (Voided toe pile) 7.2.3 Test pile TP2 7.2.4 Test pile TP3 7.2.5 Test pile TP4 7.2.6 Test pile TP5 7.2.7 Test pile TP6 7.3 PREVIOUS PILE TESTING IN KEUPER MARL (CARDIFF P.D.R.) 7.3.1 Test piles at Eastmoors Link 7.3.2 Eastmoors link-pile No.2 7.3.3 Eastmoors link-pile No.3 7.3.4 Eastmoors link-pile No.4 7.3.5 Test piles at Grangetown Link 7.3.6 Test piles at Ely Bridge 7.3.7 Test pile at Clarence Road Bridge 7.3.8 Test piles at Cogan spur	267 267 267 267 267 268 268 269 270 270 271 271 271 271 271 271 272 273 273 273 274 275 275 276 276 276 276
ANALYSIS AND DESIGN. 7.1 INTRODUCTION. 7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.RCARDIFF. 7.2.1 Introduction 7.2.2 Test pile TP1 (Voided toe pile) 7.2.3 Test pile TP2 7.2.4 Test pile TP3 7.2.5 Test pile TP4 7.2.6 Test pile TP5 7.2.7 Test pile TP6 7.3 PREVIOUS PILE TESTING IN KEUPER MARL (CARDIFF P.D.R.) 7.3.1 Test piles at Eastmoors Link 7.3.2 Eastmoors link-pile No.2 7.3.3 Eastmoors link-pile No.3 7.3.4 Eastmoors link-pile No.4 7.3.5 Test piles at Grangetown Link 7.3.6 Test piles at Ely Bridge 7.3.7 Test pile at Clarence Road Bridge 7.3.8 Test piles at Cogan spur 7.4 PILES FORMED IN KEUPER MARL AT OTHER LOCATIONS 7.4.1 Test pile at Kilroot, County Antrim, Northern Ireland 7.4.3 Test piles for the Birmingham International Arena 7.4.3 Test piles at Kings Norton, Birmingham 7.4.4 Test piles at Kings Norton, Birmingham	267 267 267 267 267 268 268 268 269 270 270 271 271 271 271 271 271 271 271 272 272 273 273 274 275 275 276 276 276 276 277
ANALYSIS AND DESIGN. 7.1 INTRODUCTION. 7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.RCARDIFF. 7.2.1 Introduction 7.2.2 Test pile TP1 (Voided toe pile) 7.2.3 Test pile TP2 7.2.4 Test pile TP3 7.2.5 Test pile TP4 7.2.6 Test pile TP5 7.2.7 Test pile TP6 7.3 PREVIOUS PILE TESTING IN KEUPER MARL (CARDIFF P.D.R.) 7.3.1 Test piles at Eastmoors Link 7.3.2 Eastmoors link-pile No.2 7.3.3 Eastmoors link-pile No.3 7.3.4 Eastmoors link-pile No.4 7.3.5 Test piles at Grangetown Link 7.3.6 Test piles at Ely Bridge 7.3.7 Test pile at Clarence Road Bridge 7.3.8 Test piles at Cogan spur	267 267 267 267 267 268 268 269 270 270 271 271 271 271 271 271 271 271 272 272 273 273 274 275 276 276 276 276 276 277

7.5 PILES FORMED IN OTHER SOIL TYPES	
7.5.1 Pile in clay overlying sand	
7.5.2 Piles in layered soils	
7.6 SUMMARY OF THE INVESTIGATION OF PILE BEHAVIOUR	
7.7 CONCLUSION	
CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS	
8.1.2 Performance of pile instruments	
8.1.3 Force-strain calibration of the test piles	
8.1.4 Elastic constants from a model short pile	
8.1.5 Load transfer of large bored piles in Keuper marl	
8.1.6 Verification of the design of the contract piles for Butetown road link	
8.1.7 Prediction model for large diameter piles	
8.1.8 Validation of the proposed mathematical model	
8.2 RECOMMENDATIONS AND PROPOSALS FOR FURTHER WORK	
REFERENCES	

LIST OF TABLES

TABLE	DESCRIPTION	PAGE
2.1	Weathering zones of Keuper marl, after Davis and Chandler(1973)	10
2.2	Engineering properties of Keuper marl- A comparison between Davis and Chandler's (1973) data and the results obtained from	11
2.3(a)	the present work (P.D.R. project area in Cardiff) Empirical formulae for undrained strength, c _u for the design of bored, cast in-place piles formed in cohesive soils based on in- situ tests	34
2.3(b)	Empirical formulae for shaft resistance of bored and cast in place piles formed in cohesive soils based on in-situ tests	35
2.3(c)	Empirical formulae for end resistance of bored and cast in place piles formed in cohesive soils based on in-situ tests	36
2.3(d)	Pile load test results-East moors Link (PD.R.), Kilbourn et.al(1988)	41
2.4	In-situ and laboratory soil test results for test piles at Leicester, Foley and Davis(1971)	43
2.5	Comparison of the results of three approaches to the calculation of shaft resistance for test piles at Leicester, Foley and Davis(1971)	44
2.6	Comparison of ultimate shaft resistance values for two piles A and B at County Antrim, Leach et al(1976)	48
2.7	Different design methods for pile C (Leach et al, 1976)	49
2.8	Rock socket analysis using stiffness, Cole and Stroud(1976)	59
2.9	Values of c_u from different tests compared with the pile load test result correlation, Wilson(1977)	61
2.10	Variables considered in the analytical model for rock-socket piles (Johnston and Haberfield, 1993)	62
2.11	Socket properties in Melbourne mudstone (Johnston and Haberfield, 1993)	63
2.12	Rock socket properties at Rosignamo, Tuscany, Italy (Carrubba,1997)	64
2.13	Measured and back-analysed shaft resistance values for test piles at Rosignamo, Tuscany, Italy (Carrubba, 1997)	66
2.14	Observed increases in shaft resistance with time (Wardle et.al.1992)	72
3.1	Strata description codes for colour and fracture state	92
3.2	Strata description codes for Weathering state, Grain size, Rock name and weathering Zone	93
3.3	Strata description codes for strength	93
3.4	Instrumentation required for each test pile	103
3.5	Types of instruments installed in the test piles	103
	·	xvi

3.6 3.7 3.8 3.9	Maintained load test schedule for TP3 (load cycles 1 and 2) Maintained load test schedule for TP3 (load cycles 3 and 4) Instruments installed in the short column Loading schedule for short column	108 108 109 110
4.1 4.2	Gross and net settlement at working load for piles TP2-TP6 Pile head settlement values (mm) corresponding to selected applied loads (TP1-TP6)	130 132
4.3	Strain gauge readings at level No. 1 for all piles (load cycle 1)	136
4.4	Gauge stiffness calibration parameters for TP2-TP6	140
4.5	Typical Power regression functions for E_c against ε variation-TP5	141
4.6	Typical E_c values obtained by power regression for TP5	141
4.7	Measured and predicted normalised strains (x 10 ⁻⁹) per kN applied load	150
4.8	Predicted normalised strains for $E_c=36000N/mm^2$ per kN applied load	152
4.9	Predicted normalised strains for $E_c=38000N/mm^2$ Per kN applied axial load	153
4.10	Predicted strains for $E_c = 40000 \text{ N/mm}^2$ per kN applied axial load	154
4.11	Appropriate elastic constants for constituent materials of the short column	155
4.12	Selection of calibration curves for pile TP6	159
4.13	Calibration curves for load cycles 1,3 and 4: Pile TP6	159
4.14	Shaft resistance compared with C.I.R.I.A. Report No. 47 data	169
5.1	Maximum shaft resistance from site investigation recommendations	206
5.2	Calculation of maximum shaft resistance for TP1 from "N" values (Design method recommended in the site investigation)	207
5.3	Calculation of maximum shaft resistance for TP2 from "N" values (Design method recommended in the site investigation)	207
5.4	Calculation of maximum shaft resistance for TP3 from "N" values (Design method recommended in the site investigation)	208
5.5	Calculation of maximum shaft resistance for TP4 from "N" values (Design method recommended in the site investigation)	208
5.6	Calculation of maximum shaft resistance for TP5 from "N" values (Design method recommended in the site investigation)	209
5.7	Calculation of maximum shaft resistance for TP6 from "N" values (Design method recommended in the site investigation)	210
5.8	Effective stress parameters for different Keuper marl zones (Design method recommended in the site investigation)	210
5.9	Calculation of ultimate base resistances for TP1-TP6 based on the design method recommended in the site investigation	212
5.10	Comparison between the observed load capacities and the predictions from site investigation recommendations	213
5.11	Calculation of maximum shaft resistance for TP1 using effective stress method (with C.I.R.I.A ϕ_r' values)	216

5.12	Calculation of maximum shaft resistance for TP2 using effective	217
	stress method (with C.I.R.I.A ϕ_r^{\prime} values)	
5.13	Calculation of maximum shaft resistance for TP3 using effective	218
	stress method (with C.I.R.I.A ϕ_r values)	
5.14	Calculation of maximum shaft resistance for TP4 using effective	219
	stress method (with C.I.R.I.A ϕ_r values)	
5.15	Calculation of maximum shaft resistance for TP5 using effective	220
	stress method (with C.I.R.I.A ϕ_r values)	
5.16	Calculation of maximum shaft resistance for TP6 using effective	221
5.10	stress method (with C.I.R.I.A $\phi_{\rm f}$ values)	
5.17	Comparison between the predicted maximum shaft resistances	222
5.17	using effective stress method with the test pile results	
5.18	Observed S.P.T. "N" values (Borehole Nos 102-108)	223
5.19	Observed S.P.T. "N" values (Borehole Nos. 109-118) and overall	224
5.17	average values for various weathering zones	
5.20	Kilbourne et.al(1988) design method-TP1	225
5.20	Kilbourne et.al(1988) design method-TP2	225
5.22	Kilbourne et.al(1988) design method-TP3	225
5.22	Kilbourne et.al(1988) design method-TP4	226
5.23	Kilbourne et.al(1988) design method-TP5	226
5.24	Kilbourne et.al(1988) design method-TP6	226
5.25 5.26	Comparison between predicted and measured shaft resistance	227
5.20	values using Kilbourne et. al(1988) method	
5.27	Design based on point load test data-Comparison predicted and	229
5.27	observed shaft resistance	
	observed shart resistance	
6.1	Existing definitions for pile base settlements necessary to develop	235
0.1	the full shaft resistance and end bearing	
	the full share resistance and one optimities	
7.1	S.P.T. "N" values at Eastmoors link site (Pile-2)	272
7.2	S.P.T. "N" values at Eastmoors link site (Pile-3)	272
7.2	S.P.T. "N" values at Eastmoors link site (Pile-4)	273
1.5		
7.4	Estimation of shaft and base resistances from S.P.T results	285
	(Hirayama,1990)	
7.5	Evaluation of P_{us} and P_{ub} for pile T1 from data by	285
	Hirayama(1990)	
7.6	Evaluation of P_{us} and P_{ub} for pile T2 from data by	286
	Hirayama(1990)	
A.1	Strata logs and Keuper marl test data (bore holes 49-128A)	A-1
A.2	Pile head load and pile head displacement readings-TP1	A-55
A.3(i)	Strain gauge readings-TP2 (load cycle 1)	A-56
A.3(ii)	Strain gauge readings-TP2 (load cycle 2)	A-56
A.3(iii)	Strain gauge readings-TP2 (load cycle 3)	A-57
A.3(iv)	Strain gauge readings-TP2 (load cycle 4)	A-57
A.3(v)	Extensometer readings-TP2 (cycle 1)	A-58
• • • • • • • • •		

A.3(vi) A.3(vii)	Extensometer readings-TP2 (cycle 2) Extensometer readings-TP2 (cycle 3)	A-58 A-58
A.3(viii)	Extensometer readings-TP2 (cycle 4)	A-58
A.3(ix)	Load-Displacement-Time record for TP2 (load cycle 1)	A-59
A.3(x)	Load-Displacement-Time record for TP2 (load cycle 2)	A-59
A.3(xi)	Load-Displacement-Time record for TP2 (load cycle 3)	A-60
A.3(xii)	Load-Displacement-Time record for TP2 (load cycle 4)	A-60
A.4(i)	Strain gauge readings-TP3 (load cycle 1)	A-61
A.4(ii)	Strain gauge readings-TP3 (load cycle 2)	A-61
A.4(iii)	Strain gauge readings-TP3 (load cycle 3)	A-62
A.4(iv)	Strain gauge readings-TP3 (load cycle 4)	A-63
A.4(v)	Strain gauge readings-TP3 (load cycle 5)	A-64
A.4(vi)	Extensometer readings-TP3 (cycle 1)	A-64
A.4(vii)	Extensometer readings-TP3 (cycle 2)	A-64
A.4(viii)	Extensometer readings-TP3 (cycle 3)	A-65
A.4(ix)	Extensometer readings-TP3 (cycle 4)	A-65
A.4(x)	Extensometer readings-TP3 (cycle 5)	A-66
A.4(xi)	Load-Displacement-Time record for TP3 (load cycle 1)	A-67
A.4(xii)	Load-Displacement-Time record for TP3 (load cycle 2)	A-67
A.4(xiii)	Load-Displacement-Time record for TP3 (load cycle 3)	A-68
A.4(xiv)	Load-Displacement-Time record for TP3 (load cycle 4)	A-69
A.4(xv)	Load-Displacement-Time record for TP3 (load cycle 5)	A-70
A.5(i)	Strain gauge, Extensometer and Base load-cell readings-TP4 (load cycle 1)	A-71
A.5(ii)	Strain gauge, Extensometer and Base load-cell readings-TP4 (load cycle 2)	A-71
A.5(iii)	Strain gauge, Extensometer and Base load-cell readings-TP4 (load cycle 3)	A-72
A.5(iv)	Strain gauge, Extensometer and Base load-cell readings-TP4 (load cycle 4)	A-73
A.5(v)	Strain gauge, Extensometer and Base load-cell readings-TP4 (load cycle 5)	A-73
A.5(vi)	Load-Displacement-Time record for TP4 (load cycle 1)	A-74
A.5(vii)	Load-Displacement-Time record for TP4 (load cycle 2)	A-74
A.5(viii)	Load-Displacement-Time record for TP4 (load cycle 3)	A-75
A.5(ix)	Load-Displacement-Time record for TP4 (load cycle 4)	A-76
$A.5(\mathbf{x})$	Load-Displacement-Time record for TP4 (load cycle 5)	A-77
A.6(i)	Strain gauge readings-TP5 (load cycle 1)	A-78
A.6(ii)	Strain gauge readings-TP5 (load cycle 2)	A-78
A.6(iii)	Strain gauge readings-TP5 (load cycle 3)	A-79
A.6(iv)	Strain gauge readings-TP5 (load cycle 4)	A-79
A.6(v)	Strain gauge readings-TP5 (load cycle 5)	A-80
11.0(*)		

A 6()		
A.6(vi)	Strain gauge readings-TP5 (load cycle 6)	A-80
A.6(vii)	Extensometer readings-TP5 (cycle 1)	A-81
A.6(viii)	Extensometer readings-TP5 (cycle 2)	A-81
A.6(ix)	Extensometer readings-TP5 (cycle 3)	A-82
A.6(x)	Extensometer readings-TP5 (cycle 4)	A-82
A.6(xi)	Extensometer readings-TP5 (cycle 5)	A-82
A.6(xii)	Extensometer readings-TP5 (cycle 6)	A-82
A.6(xiii)	Load-Displacement-Time record for TP5 (load cycle 1)	A-83
A.6(xiv)	Load-Displacement-Time record for TP5 (load cycle 2)	A-84
A.6(xv)	Load-Displacement-Time record for TP5 (load cycle 3)	A-85
A.6(xvi)	Load-Displacement-Time record for TP5 (load cycle 4)	A-85
A.6(xvii)	Load-Displacement-Time record for TP5 (load cycle 5)	A-86
A.6(xviii)	Load-Displacement-Time record for TP5 (load cycle 6)	A-86
A.7(i)	Strain gauge, Extensometer and Base load-cell readings-TP6	A-87
	(load cycle 1)	
A.7(ii)	Strain gauge, Extensometer and Base load-cell readings-TP6	A-87
A 7(:::)	(load cycle 2)	
A.7(iii)	Strain gauge, Extensometer and Base load-cell readings-TP6 (load cycle 3)	A-88
A.7(iv)	Strain gauge, Extensometer and Base load-cell readings-TP6	A-89
11.7(11)	(load cycle 4)	A-07
A.7(v)	Load-Displacement-Time record for TP6 (load cycle 1)	A-90
A.7(vi)	Load-Displacement-Time record for TP6 (load cycle 1)	A-90 A-90
A.7(vi) A.7(vii)		
• •	Load-Displacement-Time record for TP6 (load cycle 3)	A-91
A.7(viii)	Load-Displacement-Time record for TP6 (load cycle 4)	A-92
A.8(i)	Strain gauge, Extensometer and Base load-cell readings-TP6:	A-93
	Pull-out test (load cycle 1)	
A.8(ii)	Strain gauge, Extensometer and Base load-cell readings-TP6 :	A-93
	Pull-out test (load cycle 2)	
A.8(iii)	Strain gauge, Extensometer and Base load-cell readings-TP6 :	A-94
	Pull-out test (load cycle 3)	
A.8(iv)	Strain gauge, Extensometer and Base load-cell readings-TP6 :	A-94
	Pull-out test (load cycle 4)	
A.9	Calculated axial force at strain gauge levels (Gauge stiffness	A-95
	method)- TP2	
A.10	Calculated axial force at strain gauge levels (Gauge stiffness	A-96
A 11	method)- TP3 Coloulated evial force at strein gauge levels (Cauge stiffness	A 07
A.11	Calculated axial force at strain gauge levels (Gauge stiffness	A-97
4 10	method)- TP4	
A.12	Calculated axial force at strain gauge levels (Gauge stiffness	A-98
	method)- TP5	
A.13	Calculated axial force at strain gauge levels (Gauge stiffness	A-99
	method)- TP6	

LIST OF FIGURES

FIGURE	DESCRIPTION	PAGE
2.1(a)	Load-Displacement curves for a normal and a voided toe pile at Clarence Road bridge (Kilbourn et.al., 1988)	76
2.1(b)	Base load versus pile head displacement curve obtained from the load difference between normal and voided toe piles -Clarence Road bridge (Kilbourn et.al., 1988)	76
2.1(c)	Load-displacement curves for a voided toe and a normal pile (Kilbourn et.al, 1988)	77
2.2	Variation of ultimate shaft load with effective pile length in marl (Kilbourn et.al(1988)	77
2.3(a)	Comparison between observed and predicted load-settlement patterns and plots of predicted shaft and base load versus head settlement-CFA pile in Bristol area (Fleming, 1992)	78
2.3(b)	Predicted variations of pile head settlement, base movement and shortening with applied load for a Continuous Flight Augur (C.F.A.) pile in Bristol area (Fleming, 1992)	78
3.1	Point load test results from Keuper marl strata of various descriptions	112
3.2	Point load test results from Keuper marl strata of various classifications	113
3.3	Point load test results from various weathering zones of Keuper marl	114
3.4	S.P.T. "N" values for various weathering zones of Keuper marl	115
3.5	TP1-Layout	116
3.6	TP2-Layout and instrumentation	117
3.7	TP3-Layout and instrumentation	118
3.8	TP4-Layout and instrumentation	119
3.9	TP5-Layout and instrumentation	120
3.10	TP6-Layout and instrumentation	121
3.11	Short column construction and instrumentation	122
4.1	Load-Displacement-Time behaviour of TP2	172
4.2	Load-Displacement-Time behaviour of TP3	173
4.3	Load-Displacement-Time behaviour of TP4	174
4.4	Load-Displacement-Time behaviour of TP5	175
4.5	Load-Displacement-Time behaviour of TP6	176
4.6(a)	Load-Settlement graph for TP1(voided toe test)	177
4.6(b)	Load-Settlement graph for TP1(End Bearing M.L. test)	177
4.6(c)	Load-Settlement graph for TP1(End Bearing C.R.P. test)	177

4.7(a)	Applied load Va pile strain at instrument 1 at 1 (TDO)	170
4.7(a) 4.7(b)	Applied load Vs pile strain at instrument level No.1 (TP2)	178
. ,	Applied load Vs pile strain at instrument level No.1 (TP3)	178
4.7(c)	Applied load Vs pile strain at instrument level No.1 (TP4)	178
4.7(d)	Applied load Vs pile strain at instrument level No.1 (TP5)	178
4.7(e)	Applied load Vs pile strain at instrument level No.1 (TP6)	179
4.8(a)	Young's modulus of concrete versus strain (TP2) -Loci of load	179
	increments in various load cycles	
4.8(b)	Young's modulus of concrete versus strain (TP3) -Loci of load	179
	increments in various load cycles	
4.8(c)	Young's modulus of concrete versus strain (TP4) -Loci of load	179
	increments in various load cycles	
4.8(d)	Young's modulus of concrete versus strain (TP5) -Loci of load	180
	increments in various load cycles	
4.8(e)	Young's modulus of concrete versus strain (TP6) -Loci of load	180
	increments in various load cycles	
4.8(f)	Representation of column by a series of concentric annuli	181
4.8(g)	Representation of reinforced concrete column as three concentric	181
(0)	annuli	
4.8(h)	Applied load versus instrument readings in short column test	182
	No.1 (steel casing present)-Load cycle 1	
4.8(j)	Applied load versus instrument readings in short column test	182
	No.2 (without steel casing)-Load cycle 1	202
4.8(k)	Applied load versus instrument readings in short column test	183
1.0(N)	No.1 (steel casing present)-Load cycle 1	100
4.8(<i>l</i>)	Applied load versus instrument readings in short column test	183
7.0(1)	No.2 (without steel casing)-Load cycle 1	105
4.9(a)		184
4.9(a) 4.9(b)	Extension reading versus applied load-TP2	184
× ,	Extension reading versus applied load-TP3	184 184
4.9(c)	Extensioneter reading versus applied load-TP4	
4.9(d)	Extensometer reading versus applied load-TP5	184
4.9(e)	Extensometer reading versus applied load-TP6	185
4.9(f)	Shortening between instrument levels versus applied load-TP3	185
4.9(g)	Shortening between instrument levels versus applied load-TP4	185
4.9(h)	Shortening between instrument levels versus applied load-TP5	185
4.9(j)	Shortening between instrument levels versus applied load-TP6	186
4.9(k)	Shortening between instrument levels versus applied load-TP2	186
4.9(<i>l</i>)	Pull-out force versus pile head movement-TP6	186
4.9(m)	Base load versus applied pull-out force - TP6	186
4.9(n)	Strain Vs pull-out force-TP6	187
4.9(p)	Extensometer readings Vs pull-out force -TP6	187
4.9(q)	Apparent concrete modulus Vs strain-TP6	187
4.9(r)	Shaft resistance Vs Depth at zero load following completion of	187
• •	compression test-TP6	
4.10(a)	Axial force versus depth-TP2 (load cycle 1)	188
4.10(b)	Axial force versus depth-TP2 (load cycle 2)	188
4.10(c)	Axial force versus depth-TP2 (load cycle 3)	188
4.10(d)	Axial force versus depth-TP2 (load cycle 4)	188
	1 min 10100 101000 aupur 112 (1000 0/010 1)	

4.11(a)	Axial force versus depth-TP3 (load cycle 1)	189
4.11(b)	Axial force versus depth-TP3 (load cycle 2)	189
4.11(c)	Axial force versus depth-TP3 (load cycle 3)	189
4.11(d)	Axial force versus depth-TP3 (load cycle 4)	189
4.11(e)	Axial force versus depth-TP3 (load cycle 5)	190
4.12(a)	Axial force versus depth-TP4 (load cycle 1)	190
4.12(b)	Axial force versus depth-TP4 (load cycle 2)	190
4.12(c)	Axial force versus depth-TP4 (load cycle 3)	190
4.12(d)	Axial force versus depth-TP4 (load cycle 4)	191
4.12(e)	Axial force versus depth-TP4 (load cycle 5)	191
4.13(a)	Axial force versus depth-TP5 (load cycle 1)	191
4.13(b)	Axial force versus depth-TP5 (load cycle 2)	191
4.13(c)	Axial force versus depth-TP5 (load cycle 2)	192
4.13(d)	Axial force versus depth-TP5 (load cycle 5)	192
4.13(e)	Axial force versus depth-TP5 (load cycle 5)	192
4.13(f)	Axial force versus depth-TP5 (load cycle 5) Axial force versus depth-TP5 (load cycle 6)	192
4.14(a)	Axial force versus depth-TP6 (load cycle 0) Axial force versus depth-TP6 (load cycle 1)	192
4.14(b)	Axial force versus depth-TP6 (load cycle 1) Axial force versus depth-TP6 (load cycle 2)	193 193
4.14(c)		
4.14(c) 4.14(d)	Axial force versus depth-TP6 (load cycle 3)	193
	Axial force versus depth-TP6 (load cycle 4)	193
4.15	Axial force Vs depth in pile TP5-A comparison between the	194
4.16	results of linear and non-linear calibration methods	
4.16	Pile shortening Vs applied load in pile TP5: A comparison	194
	between the results of linear and non-linear calibration methods	
4.17(a)	Shaft resistance (mid level 2-3) Vs settlement-TP2	195
4.17(b)	Shaft resistance (mid level 3-4) Vs settlement-TP2	195
4.18(a)	Shaft resistance (mid level 2-3) Vs settlement-TP3	195
4.18(b)	Shaft resistance (mid level 2-4) Vs settlement-TP3	195
4.18(c)	Shaft resistance (mid level 4-5) Vs settlement-TP3	196
4.18(d)	Shaft resistance (mid level 5-tip) Vs settlement-TP3	196
4.19(a)	Shaft resistance (mid level 2-3) Vs settlement-TP4	196
4.19(b)	Shaft resistance (mid level 3-4) Vs settlement-TP4	196
4.19(c)	Shaft resistance (mid level 4-5) Vs settlement-TP4	197
4.19(d)	Shaft resistance (mid level 5-tip) Vs settlement-TP4	197
4.20(a)	Shaft resistance (mid level 2-3) Vs settlement-TP5	197
4.20(b)	Shaft resistance (mid level 3-4) Vs settlement-TP5	197
4.20(c)	Shaft resistance (mid level 4-5) Vs settlement-TP5	198
4.20(d)	Shaft resistance (mid level 5-tip) Vs settlement-TP5	198
4.20(e)	Shaft resistance (mid level 3-5) Vs settlement-TP6	198
4.20(f)	Shaft resistance (mid level 5-7) Vs settlement-TP6	198
4.20(g)	Shaft resistance (mid-level 7-tip) Vs settlement -TP6	199
4.21(a)	Shaft resistance versus depth-TP2	199
4.21(b)	Shaft resistance versus depth- TP3	199
4.21(c)	Shaft resistance versus depth-TP4	199
4.21(d)	Shaft resistance Vs depth -TP5	200
4.21(d) 4.21(e)	Shaft resistance Vs depth-TP6	200
	Total load, Shaft load & Base load Vs net settlement-TP2	200
4.22(a)	Total Iday, Shall Iday & Dase Iday v Shet Settlement-112	200

4.22(b) 4.22(c) 4.22(d) 4.22(e)	Total load, Shaft load & Base load Vs net settlement-TP3 Total load, Shaft load & Base load Vs net settlement-TP4 Total load, Shaft load & Base load Vs net settlement-TP5 Total load, Shaft load & Base load Vs net settlement-TP6	200 201 201 201
6.1 6.2	Typical plot of shaft load, P_s versus base movement Δ_b Typical plot of base load, P_b versus base movement Δ_b (pile base resting on soil debris and normal pile base compared)	261 261
6.3(a)	Shaft resistance and axial force variation with depth, for $k=0.75$ and $\omega=0.8$	262
6.3(b)	Shaft resistance and axial force variation with depth, for $k=0.75$ and $\omega=0.3$	263
6.4	Comparison between the actual and modeled variation of Young's modulus of concrete versus strain (Piles TP2-TP6)	264
6.5	Comparison between actual and modeled variation of Young's modulus of concrete versus strain for each load cycle in pile TP5	265
6.6(a)	Normalised plot of shaft resistance versus settlement relationship for a range of soils from soft to very stiff ($r=0.05-0.01$)	266
6.6(b)	Normalised plot of base resistance versus settlement relationships for a range of soils from soft to very stiff : $E_b/q_{ub}=5-100$	266
7.1(a)	Test pile TP1 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Load Vs settlement (voided toe pile)	290
7.1(b)	Test pile TP1 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Shortening versus applied load (voided toe pile)	290
7.2(a)	Test pile TP2 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Load settlement plot	291
7.2(b)	Test pile TP2 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Shaft load Vs base movement	291
7.2(c)	Test pile TP2 in Keuper marl at Butetown road link site Peripheral Distributor Road, Cardiff -Base load Vs base movement	292
7.2(d)	Test pile TP2 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Shortening Vs applied load	292
7.3(a)	Test pile TP3 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Load settlement plot	293
7.3(b)	Test pile TP3 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Shaft load Vs base movement	293
7.3(c)	Test pile TP3 in Keuper marl at Butetown road link site Peripheral Distributor Road, Cardiff -Base load Vs base movement	294
7.3(d)	Test pile TP3 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Shortening Vs applied load	294

7.4(a)	Test pile TP4 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Load settlement plot	295
7.4(b)	Test pile TP4 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Shaft load Vs base	295
7.4(c)	movement Test pile TP4 in Keuper marl at Butetown road link site Peripheral Distributor Road, Cardiff -Base load Vs base	296
7.4(d)	movement Test pile TP4 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Shortening Vs applied load	296
7.5(a)	Test pile TP5 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Load settlement plot	297
7.5(b)	Test pile TP5 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Shaft load Vs base movement	297
7.5(c)	Test pile TP5 in Keuper marl at Butetown road link site Peripheral Distributor Road, Cardiff -Base load Vs base movement	298
7.5(d)	Test pile TP5 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Shortening Vs applied load	298
7.5(e)	Comparison between predicted and measured axial force variation with depth-TP5 (Load increments: 2MN, 4MN, 8MN and 9.5MN)	299
7.6(a)	Test pile TP6 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Load settlement plot	300
7.6(b)	Test pile TP6 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Shaft load Vs base movement	300
7.6(c)	Test pile TP6 in Keuper marl at Butetown road link site Peripheral Distributor Road, Cardiff -Base load Vs base movement	301
7.6(d)	Test pile TP6 in Keuper marl at Butetown road link site, Peripheral Distributor Road, Cardiff -Shortening Vs applied load	301
7.7(a)	Test pile in Keuper marl at Eastmoors link(Pile No.2), Peripheral Distributor Road, Cardiff (Kilbourn et al.1988)-Load settlement plot	302
7.7(b)	Test pile in Keuper marl at Eastmoors link(Pile No.2), Peripheral Distributor Road, Cardiff (Kilbourn et al.1988)- Shaft load Vs base movement	302
7.7(c)	Test pile in Keuper marl at Eastmoors link (Pile No.2), Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988)-Base load versus base movement plot	303
7.7(d)	Test pile in Keuper marl at Eastmoors link (Pile No.2), Peripheral Distributor Road, Cardiff (Kilbourn et al.1988)- Shortening Vs applied load	303

7.	.8(a)	Test pile in Keuper marl at Eastmoors link (Pile No.3), Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988)-Load settlement plot	304
7.	.8(b)	Test pile in Keuper marl at Eastmoors link (Pile No.3), Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988)- Shaft load Vs base movement	304
7.	.8(c)	Test pile in Keuper marl at Eastmoors link (Pile No.3), Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988)-Base load versus base movement plot	305
7.	.8(d)	Test pile in Keuper marl at Eastmoors link (Pile No.3), Peripheral Distributor Road, Cardiff (Kilbourn et al.1988)- Shortening Vs applied load	305
7.	.9(a)	Test pile in Keuper marl at Eastmoors link (Pile No.4), Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988)-Load settlement plot	306
7.	9(b)	Test pile in Keuper marl at Eastmoors link (Pile No.4), Peripheral Distributor Road, Cardiff (Kilbourn et al.1988)- Shaft load Vs base movement	306
7.	.9(c)	Test pile in Keuper marl at Eastmoors link (Pile No.4), Peripheral Distributor Road, Cardiff (Kilbourn et al.1988)-Base load versus base movement plot	307
7.	9(d)	Test pile in Keuper marl at Eastmoors link (Pile No.4), Peripheral Distributor Road, Cardiff (Kilbourn et al.1988)- Shortening Vs applied load	307
7.	10(a)	Test pile in Keuper marl at Grangetown link(Test 1), Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988) -Load versus settlement plot	308
7.	10(b)	Test pile in Keuper marl at Grangetown link(Test 1), Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988)- Shaft load Vs base movement	308
7.	10(c)	Test pile in Keuper marl at Grangetown link(Test 1), Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988)-Base load versus base movement plot	309
7.	10(d)	Test pile in Keuper marl at Grangetown link(Test 1), Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988)- Shortening Vs applied load	309
7.	11(a)	Test pile in Keuper marl at Ely bridge, Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988) -Load versus settlement plot	310
7.	11(b)	Test pile in Keuper marl at Ely bridge, Peripheral Distributor Road, Cardiff (Kilbourn et al.1988)- Shaft load Vs base movement	310
7.	11(c)	Test pile in Keuper marl at Ely bridge, Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988)-Base load versus base movement	311
7.3	l 1(d)	Test pile in Keuper marl at Ely bridge, Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988)- Shortening Vs applied load	311

7.12(a)	Test pile in Keuper marl at Clarence Road Bridge, Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988) -Load versus settlement plot	312
7.12(b)	Test pile in Keuper marl at Clarence Road Bridge, Peripheral Distributor Road, Cardiff (Kilbourn et al.1988)- Shaft load Vs base movement	312
7.12(c)	Test pile in Keuper marl at Clarence Road Bridge, Peripheral Distributor Road, Cardiff (Kilbourn et al.1988)-Base load versus base movement	313
7.12(d)	Test pile in Keuper marl at Clarence Road Bridge, Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988)- Shortening Vs applied load	313
7.13(a)	Test pile in Keuper marl at Cogan Spur, Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988) -Load versus settlement plot	314
7.13(b)	Test pile in Keuper marl at Cogan Spur, Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988)- Shaft load Vs base movement	314
7.13(c)	Test pile in Keuper marl at Cogan Spur, Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988)-Base load versus base movement	315
7.13(d)	Test pile in Keuper marl at Cogan Spur, Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988)- Shortening Vs applied load	315
7.14(a)	Test pile in Keuper marl at Kilroot, County Antrim, Northern Ireland (Leach et.al., 1976) -Load versus settlement plot	316
7.14(b)	Test pile in Keuper marl at Kilroot, County Antrim, Northern Ireland (Leach et.al., 1976) - Shaft load Vs base movement	316
7.14(c)	Test pile in Keuper marl at Kilroot, County Antrim, Northern Ireland (Leach et.al., 1976) -Base load versus base movement	317
7.14(d)	Test pile in Keuper marl at Kilroot, County Antrim, Northern Ireland (Leach et.al., 1976) - Shortening Vs applied load	317
7.15(a)	Test pile in Keuper marl-Birmingham International Arena, (Dauncy and Woodland, 1983) -Load versus settlement plot	318
7.15(b)	Test pile in Keuper marl-Birmingham International Arena, (Dauncy and Woodland, 1983) - Shaft load Vs base movement	318
7.15(c)	Test pile in Keuper marl-Birmingham International Arena, (Dauncy and Woodland, 1983) -Base load versus base movement	319
7.15(d)	(Dauncy and Woodland, 1960) Duce for version of the	319
7.16(a)	Test pile in Keuper marl-King's Norton, Birmingham (Davis and Chandler, 1973) -Load versus settlement plot	320
7.16(b)	Test pile in Keuper marl-King's Norton, Birmingham (Davis and Chandler, 1973) - Shaft load Vs base movement	320
7.16(c)	Test pile in Keuper marl-King's Norton, Birmingham (Davis and	321
7.16(d)	Chandler, 1973) -Base load versus base movement Test pile in Keuper marl-King's Norton, Birmingham (Davis and Chandler, 1973) - Shortening Vs applied load	321

7.17(a)	Test pile at Coventry Point, Coventry (Rock socket pile)-Load Vs settlement	322
7.17(b)	Test pile at Coventry Point, Coventry (Rock socket pile)- Shaft load Vs base movement	322
7.17(c)	Test pile at Coventry Point, Coventry (Rock socket pile)- Base load versus base movement	323
7.17(d)	Test pile at Coventry Point, Coventry (Rock socket pile) Shortening Vs applied load	323
7.18(a)	Test pile at Leicester -Load Vs settlement	324
7.18(b)	Test pile at Leicester - Shaft load Vs base movement	324
7.18(c)	Test pile at Leicester - Base load versus base movement	325
7.18(d)	Test pile at Leicester - Shortening Vs applied load	325
7.19(a)	Test pile at Redcar, Teesside (end bearing pile) -Load Vs settlement	326
7.19(b)	Test pile at Redcar, Teesside (end bearing pile) - Base load versus base movement	326
7.19(c)	Test pile at Redcar, Teesside (end bearing pile) -Shortening Vs applied load	327
7.20(a)	Test pile in clay overlying sand at Pancras, London (O'Riordan, 1982) - Applied load Vs settlement	328
7.20(b)	Test pile in clay overlying sand at St. Pancras, London (O'Riordan, 1982) – Axial force Vs depth for 27MN load	328
7.21(a)	Test pile T1 in layered soil: Bannosu Viaduct, Honshu-Shikoku bridge, Japan (Hirayama, 1990)- Applied load Vs settlement	329
7.21(b)	Test pile T1 in layered soil: Bannosu Viaduct, Honshu-Shikoku bridge, Japan (Hirayama, 1990)- Axial force Vs depth at 40 MN applied pile head load	329
7.22(a)	Test pile T2 in layered soil: Bannosu Viaduct, Honshu-Shikoku bridge, Japan (Hirayama, 1990)- Applied load Vs settlement	330
7.22(b)	Test pile T2 in layered soil: Bannosu Viaduct, Honshu-Shikoku bridge, Japan (Hirayama, 1990)- Axial force Vs depth at 40 MN applied pile head load	330
7.23(a)	Test pile T3 in layered so: Bannosu Viaduct, Honshu-Shikoku bridge, Japan (Hirayama, 1990)- Applied load Vs settlement	331
7.23(b)	Test pile T3 in layered soil: Bannosu Viaduct, Honshu-Shikoku bridge, Japan (Hirayama, 1990)- Axial force Vs depth at 40 MN applied pile head load	331

LIST OF PLATES

PLATE	DESCRIPTION	PAGE
3.1	A load cell being installed in a test pile hole	123
3.2	Lowering the full length of the reinforcement cage into the hole.	124
3.3	Detail of attaching a vibrating wire strain gauge to the pile reinforcement	124
3.4	Assembling the pile reinforcement and installing the extensometers with electrical connections leading to the data monitoring unit	125
3.5	Inner and outer casings of the test pile in position. Anchor piles and a bucket augur	125
3.6	Completed test pile with one of the reference beams on which the pile head movement measuring gauges are mounted.	126
3.7	A 2000 ton test loading rig developed by DMD Piling Ltd (Cardiff) utilising 4 anchor piles	126
3.8	Four hydraulically loading jacks mounted on the pile top	127
3.9	Data monitoring cabin located adjacent to a test pile cabin	127

CHAPTER 1

INTRODUCTION AND OBJECTIVES

CHAPTER 1: INTRODUCTION AND OBJECTIVES

1.1 PREVIOUS RESEARCH WORK AT THE UNIVERSITY OF GLAMORGAN This study is part of an on-going research programme on pile foundations at the University of Glamorgan (formerly The Polytechnic of Wales). Since its inception in the mid-1970's, the research work has produced a number of publications and theses. The following is a brief account of the work already undertaken by various research workers and successfully presented for Ph.D awards.

Perren(1978) carried out an investigation into the design, construction and performance of bored piles installed in glacial tills. Amongst his findings were that a satisfactory pile could successfully be formed in a granular material (e.g glacial tills) through the use of a temporary casing down to the underlying strata. This technique effectively sealed off the pile base, thereby preventing any further ingress of water from the till. Thus a "dry condition" was achieved, making it possible to form concrete piles.

Kay(1980) studied the behaviour of a tubular steel pile founded in a layered soil profile by using model laboratory test piles. He eliminated end-bearing by passing the pile base into a frictionless cylinder. He also used sand placed in layers around the pile, to model the overlying granular material. It was shown that there was a linear increase in shaft resistance at a shallow depth, becoming constant at greater depths. Lake(1986) adopted a dynamic approach to pile installation. A pneumatic drop hammer system, incorporating a static axial core load cell and a dynamic load cell, was installed into the model test pile. Thus he was able to measure transient forces along the pile as well as the static load distribution. He found out that:

- (a) The pile top impact force was dependent on the ram impact velocity only,
- (b) Depending on the nature of the bearing surface, the transient force at the pile tip could equal, be greater or less than the impact force
- (c) It was possible to predict the static bearing capacity using the dynamic equations of motion through a theoretical method, which he outlined. A good agreement was achieved between the experimental and theoretical results.

Wersching(1987) carried forward Kay's work by improving the accuracy with which the pile axial forces, shear and normal stresses at the pile-soil interface could be measured. He used various contact stress transducers at the sand/clay interface to monitor the development of effective vertical and radial shear stresses acting at the interface level. He also developed instrumentation to monitor soil vertical movements and density variations. His findings were that:

- a) The local unit shaft resistance and radial effective stress remain practically constant along a pile shaft in sand and increase at a diminishing rate with pile embedded length,
- b) At the maximum embedded pile length and ultimate load, the local coefficient of earth pressure acting on pile shaft at failure may greatly exceed the passive earth pressure coefficient near the pile top. Also it tends to a lower limit of 0.5 near the pile base,

- c) The development of shaft resistance is directly related to the displacements within the sand and on the sand/clay interface, and
- d) Vertical stresses within the sand around the pile shaft are reduced by the development of arching. The radial effective stress is the major principal stress at a location adjacent to the pile shaft.

Robinson(1989) examined the behaviour of single 60mm and 114mm segmented tubular steel model piles driven into loose sand and loose sand overlying clay. This was carried out under laboratory conditions using a 3.0m diameter by 3.0m deep concrete tank. He monitored the static and dynamic axial force distributions in the smaller pile. He also measured the variation in local shaft resistance, axial load and radial effective stresses along the 114mm pile. Vertical and radial displacements were monitored within the sand layer; and for the two layers, radial shear and vertical effective stresses were measured at a selected level. The following were established:

- a) The radial soil displacements during pile installation are directly related to the pile diameter. Within the sand layer, the peak radial displacement may be predicted by the use of an empirical compaction factor to adjust and correct a theoretically obtained representation of soil movements
- b) Adjacent to the pile shaft, the radial effective stress is the major principal stress
- c) The development of shaft resistance is directly related to the displacements within the surrounding sand and on the sand/clay interface
- d) The underlying clay layer affects the development of shaft resistance to different limits above and below the sand/clay interface

- e) For shallow pile penetrations into the clay layer, the draw-down of sand and sand plug driven ahead of the pile significantly reduces the pore water pressure generated at the soil/pile interface
- f) The development and radial distribution of pore water pressure within the clay may be accurately predicted by a logarithmic function.

Jones(1991) carried out a series of analyses of both shallow and deep foundations using soil-structure interaction techniques. This work involved theoretical modelling of raft and piled foundations using beam-column idealisations. No experimental testing was carried out but a number of theories were proposed to study the interaction of uniformly loaded piles. Consistent matrices were also presented to idealise the uniform distribution of soil stiffness along both axially and laterally loaded pile elements.

1.2 CURRENT RESEARCH WORK

1.2.1 Introduction

The previous research work outlined above have addressed different objectives and involved extensive laboratory testing of model piles and soils. In each case useful information regarding particular aspects of pile behaviour in different soil conditions was uniquely achieved. The present research work has utilised an opportunity to analyse data from full scale instrumented test piles load tested in an environment of real and intense civil engineering activity. The load tests were undertaken as part of the design of the Butetown Road Link in Cardiff, U.K. The Butetown Road Link is the penultimate section of the Cardiff Peripheral Distributor Road (P.D.R.).

1.2.2 Peripheral Distributor Road, Cardiff

The P.D.R, approved in principle by South Glamorgan County Council (SGCC) in 1973, has the objective of improving access from the M4 in the west and east to the Cardiff area and the Vale of Glamorgan. The construction of the road was programmed in a number of stages:

(a) The Eastmoors Viaduct, opened in 1984

(b) The Grangetown Viaduct, opened in 1988

(c) The Cogan Viaduct opened, in 1988.

The 2.7 km long Butetown Road Link, which forms the penultimate section of the P.D.R, was completed and opened in 1995. The final phase of the P.D.R will be the Eastern Bay Link. The Butetown Link, although the shortest section scheme of the P.D.R, has been the most challenging and expensive costing £135m. With the route passing through deep Keuper marl cuttings, over river courses filled with refuse and through the Cardiff docklands, each P.D.R scheme has presented major challenges and problems to be overcome.

The P.D.R consists of several long span structures constructed to provide crossings over rivers, railways, existing roads and weak ground. Among the available alternatives, large diameter, bored, cast in-situ bored piles provided the most appropriate solution. These piles were installed in the Keuper marl (Mercia mudstone) of the Triassic period, which occurs extensively in Vale of Glamorgan. It is a sedimentary deposit consisting of red-brown silty mudstones, sometimes with bands of sandstone and siltstone. Within the

Cardiff region, these strata are notorious for having variable engineering properties both in lateral extent and with depth.

The design of the Butetown Road Link commenced in the mid-1980's. During the design of the above structures, engineers from Cardiff County Council-C.C.C. (formerly South Glamorgan County Council) utilised the technique of "voided toe" piles to verify the design parameters for bored piles in Keuper marl. The data generated from this technique, although valuable, proved to be of limited use as far as the assessment of soil/pile interaction is concerned within such highly variable strata. To gain a fuller understanding of this subject C.C.C. considered placing instrumentation within the test piles for the Butetown Road Link project.

The School of the Built Environment (formerly the Department of Civil Engineering and Building), University of Glamorgan, was invited to participate in the selection of instruments and monitoring systems suitable for the pile testing programme. In addition, the school had developed and maintained strong links with the Building Research Establishment (B.R.E.), Hertfordshire, particularly on pile load testing. As a consequence the BRE (Structures and Geotechnics Group) installed and monitored all the instruments used in the pile load tests.

A 2,000 tonne pile load-testing rig was developed by C.C.C. in conjunction with Davies Middleton and Davies (DMD) Cardiff Ltd. This equipment was used in the load testing of six full-scale instrumented piles within the project area. The piles were 0.9m in diameter with lengths varying from 26-32m. The instrumentation comprised vibrating wire strain gauges, rod extensometers, load-cells and displacement transducers. One of the test piles was constructed with a "voided toe" in order to measure shaft resistance only. The load tests generated significant data in terms of strain levels at different cross-sections along the pile shafts.

1.2.3 Objectives of the current research

The purpose of this research was to utilise the extensive information and data produced from the site investigation and the six instrumented pile loading tests for the Butetown Road Link to achieve five prime objectives, namely to:

- 1. Verify, or otherwise, the design of the working piles for the Butetown Road Link
- 2. Develop an information base which will aid future pile designs in Keuper marl
- 3. Move forward from the traditional concept of "voided toe" pile testing by using the data to separate end-bearing from shaft resistance
- 4. Develop and validate a theoretical model which can predict the behaviour of large diameter, bored, cast in-situ piles in Keuper marl in terms of (a) the development of shaft resistance and end bearing (b) the load transfer and pile shortening (c) the load-settlement variation up to the point of pile failure
- Test the theoretical model for its suitability and application for other soil/pile types and loading conditions.

CHAPTER 2

LITERATURE REVIEW

CHAPTER 2:LITERATURE REVIEW

2.1 INTRODUCTION

This chapter examines the fundamental principles and key factors defining the performance of large diameter, bored, cast-in situ piles formed in Keuper marl. The research is concerned with straight-shafted vertically loaded piles. An extensive search of the available information indicates that little knowledge is available regarding pile behaviour in Keuper marl. Much of the existing information, gleaned from literature, is based on piles formed in London clay, chalk and glacial tills. A number of case studies are discussed whereby a variety of theoretical models and numerical techniques are applied to establish the load capacity of piles formed in Keuper marl and weathered mudstones.

2.2 ENGINEERING PROPERTIES OF KEUPER MARL

2.2.1 Nature of Keuper marl

The process of designing piled foundations to transmit large amounts of load to any soil requires adequate knowledge of the engineering properties of the soil. Keuper marl (Mercia mudstone) is an ancient sedimentary deposit of the Triassic age. The term "Keuper" originated in Germany but has been informally used in Great Britain since 1835 to refer to the lower arenaceous and upper argillaceous Triassic. In the South-western part of Britain, "Keuper" deposits are the red mudstone sequences that make up the lower division of the Mercia mudstone Group. Keuper marl accumulated in a series of red-brown silty mudstones, which are often interspersed with sandstone bands containing frequent siltstones (or skerry). However, these siltstones and sandstones

(which are usually grey-green in colour) may not be present in some Keuper marl deposits. White to pink gypsum may also occur, either dispersed throughout, or as discrete nodules and bands.

Mudstones of limited weathering contain a large proportion of silt-sized particles whereas the more weathered mudstones have predominantly clay-sized fractions. Minor quantities of unweathered material are sometimes present even in the fully weathered marl. The unweathered fragments (or "litherolicts") are recognisable by their structure and fabric which are features of the parent rock, Brewer(1964). According to evidence presented by Dumbleton(1967), the clay sized particles originally exist as aggregates during the early stages of weathering. The aggregates constitute much of the silt-sized materials which are predominant in the hitherto less weathered marl.

Besides employing the methods of site investigation recommended in BS 5930(1981), it is usual practice to further identify Keuper marl using the weathering zone classification system proposed by Davis and Chandler(1973) as shown in Table 2.1.

2.2.2 Typical index and strength properties of Keuper marl

The plasticity and shear strength properties of the various zones of Keuper marl present in the Midlands area have been reported by Davis and Chandler and are given in Table 2.2, along with various properties established from the site investigation associated with this research. It is seen that zones I-III strata exhibit similar plasticity and grading properties whereas zone IV marls are considerably more plastic in nature.

Weathering zone		Descriptions		
		Matrix only.		
Fully weathered	IVb	• Can be confused with solifluction or drift deposits, but contains no pebbles.		
		Plastic slightly silty clay.		
		• May be fissured.		
Partially weathered	IVa	• Matrix with occasional clay-stone pellets less than 3mm diameter but more usually coarse sand size.		
		• Little or no trace of original (zone I) structure, though clay may be fissured.		
		• Lower permeability than underlying layers.		
	III	• Matrix with frequent litherolicts, up to 25mm in diameter.		
		• Litherolicts become less angular as weathering progresses.		
		• Water content of matrix greater than that of lithorelicts.		
Ш		• Angular blocks of unweathered marl with virtually no matrix.		
		 Spheroidal weathering. Matrix starting to encroach along joints. 		
		• First indications of chemical weathering.		
Unweathered	Ι	• Mudstone (often fissured).		
		• Water content varies due to depositional variations.		

Table 2.1: Weathering zones of Keuper marl, after Davis and Chandler(1973)

The bulk density, effective angle of friction and cohesion decrease with prolonged weathering. However, zones III and IV marls may exhibit nearly equal values of effective cohesion. It has been noted that fine graded material in zones I and II may sometimes be non-plastic.

	Davis and Chandler(1973)		Present work				
Weathering zones	I and II	111	IV	I	II	III	IV
Bulk density (Mg/m ³)	2.480-2.245	2.32-2.08	2.16-1.84				
Liquid Limit (%)	25-35*	25-40	35-60				
Plastic Limit (%)	17-25*	17-25	17-33				
Plasticity Index	10-15*	10-18	17-35				
$c_u (kN/m^2)$						<u>80.5^s</u>	<u>65.8</u> ^s
				558#	502#	340#	211#
c' (kN/m²)†	>27.5	≤17.2	≤17.2				27.2
ϕ^{\prime} †	>40°	40°-32°	32°-25°				<u>33°</u>
φ _r '	32°-23°	29°-22°	24°-18°				
S.P.T. "N" values	>60‡ (zone I) >40‡ (zone II)	20-50‡	<30‡	-	275 157‡ 150 +	123 86‡ 80-140 	81 57‡ 40-100♣
Modulus of volume change m _v (m ² /MN)	0.004-0.032 (zone I) 0.01-0.1 (zone II)	0.04-0.4	0.06-0.4				
Deformation modulus E (MN/m ²)	26-250 (zone I) 9-70 (zone II)	2-48	2-13		30	13-70	38

<u>Legend</u> * May be non-plastic, \dagger Unfissured marl, \ddagger Corrected for overburden pressure by Gibbs and Holtz(1957) method, #Point load test results, \$ Triaxial undrained test results (for $\phi_u=0$), #Values by Kilbourn et.al(1988) for Keuper marl in Cardiff. Underlined results are based on limited number of tests, typically less than 10.

Table 2.2: Engineering properties of Keuper marl- A comparison between Davis and Chandler's (1973) data and the results obtained from the present work (P.D.R. project area in Cardiff)

The standard penetration "N" values and the deformation modulus values for various weathering zones of Keuper marl in Cardiff are significantly greater than those reported by Davis and Chandler(1973). The effective cohesion and effective angle of friction of

Zone IV Keuper marl in Cardiff are also greater than those given by Davis and Chandler(1973).

2.3 PILE LOAD TEST METHODS

2.3.1 Introduction

Fundamental design parameters such as bearing capacity and expected settlement of a piled foundation under working load are best assessed by load testing. Once a piled foundation has been constructed, neither can it be readily inspected in order to ascertain compliance with design requirements nor can variations in the bearing strata be detected. Therefore, it is essential to carry out load testing, in addition to comprehensive site investigation. Pile load testing is usually an expensive undertaking and a careful cost comparison should be made between risk reduction and assurance of satisfactory behaviour provided by pile testing. The most common type of test is a compression test but piles may also be tested to assess resistance to uplift, lateral loads and torsion.

Pre-contract piles are usually installed and tested to prove the suitability of the proposed piling system and to verify the design parameters inferred from the site investigation. Contract piles may be subjected to integrity testing to check the construction technique, workmanship and performance as foundation elements. The scale of the pile test programme and the extent of instrumentation depend on the availability of piling experience in the prevailing ground conditions and the capital cost of the works. The objectives of pile load testing for foundation design and construction are:

 To provide assurance that failure of the pile does not occur before the design load is reached.

12

- 2) To determine the ultimate bearing capacity for comparison with the theoretically predicted value, or to back-analyse soil data for use in the design of other piles.
- To determine the foundation settlement at working load. This data may then be used to predict the settlement of other single piles and of pile groups.
- 4) To assess the structural soundness of a typical pile.

2.3.2 Methods of conducting pile load tests

2.3.2.1 Introduction

There are three methods for carrying out compression load tests on piles, namely:

- a) Maintained load (M.L.) tests.
- b) Constant-rate-of- penetration (C.R.P.) tests.
- c) Method of equilibrium (M.E.) tests.

2.3.2.2. Maintained load test

Where load-settlement relationship for a test pile is required, it is usual to use the maintained load (M.L.) test procedure. In this method, load is applied in stages, the load at each stage being maintained at a constant level until the resulting settlement of the pile head virtually ceases, before applying the next increment. The loading increments to be applied and the time periods over which these loads are to be held constant are carefully specified prior to the start of the test. A limit is also placed on the rate of pile head settlement to be achieved before the next load increment is applied. It is also a frequent requirement to hold the load constant for 24 hours at the calculated design load of the pile. The maintained load test procedure is sometimes modified, by removing the

load so that the pile is allowed to undergo some recovery, before proceeding to the next increment.

The ICE *Specification for Piling* states a limit of 0.25mm/h, provided that the settlement is decreasing. Fleming et.al(1992) points out that in granular soils or soft rocks, the cessation of movement is not as difficult to establish as in clay soils This is because consolidation settlement occurs over an extended period. Since settlement is a function of the pile/soil system, relatively short intervals between load increments may be acceptable, especially at load levels not approaching failure and a limiting settlement criterion is maintained.

The ultimate or failure load condition can be interpreted in several different ways. Based on ultimate failure in shear of the supporting soil, pile failure is regarded as the condition whereby the pile plunges down into the ground without any further increase in applied load. However, the pile may be deemed to have failed when its settlement reaches a stage where unacceptable distortion and cracking is caused to the superstructure. In order to determine the pile load capacity from the results of M.L. tests, Whitaker(1970) suggested that it is helpful to define a certain physical event by which the failure state of the pile may be recognised. Among the commonly used definitions of ultimate load are:

- The load that produces a settlement equal to 10% of the pile diameter (Terzhaghi, 1942).
- 2) The load at which the rate of settlement continues to increase without additional loading, unless this rate is so low as to indicate that the settlement is due to consolidation of the soil (British Standards BS8004,1986).

The M.L. test method enables the prediction of the expected settlement under the working load of the pile. Such a settlement obviously relates more closely to a maintained load rather than to a constant rate of soil strain. However, some difficulties are usually encountered in interpreting M.L. test results, depending on the ground conditions, namely

- a) If, at a particular stage, the loading is terminated before settlement has ceased, the actual settlement corresponding to that particular load increment is not obtained.
- b) If the periods over which applied loads are held vary from one stage to another, the resulting load-settlement curve is often irregular.
- c) For piles formed in cohesive soils, it is usually difficult to identify the failure point based on the definition that failure occurs when the settlement continues undiminished without further load increments.

2.3.2.3. Constant rate of penetration test

The C.R.P. test method was developed by Whitaker(1957) for testing model piles and was subsequently used in full-scale pile load tests (Whitaker,1963 and Whitaker and Cooke,1961). The main purpose of this test is to determine the ultimate bearing capacity of the pile. In the C.R.P. test method, the pile is made to penetrate the soil at a constant speed from its original position by applying the necessary load at the head and continuously measuring the penetration produced. Whitaker(1976) states that a penetration rate of 0.75mm/min is suitable for friction piles formed in clay where the penetration at failure is likely not to exceed 25mm.

If the C.R.P. test is carried out at the same speed as an undrained shear test of a sample of the soil, there is a reasonable basis on which the two tests can be compared. It is therefore

argued that the conditions under which the supporting soil is stressed approach a constant rate of strain. Hence the ultimate bearing capacity of the pile is reached when the soil is made to fail in shear. The C.R.P. test can be performed rapidly and is therefore suitable as for use in field pile testing. The main disadvantage of the C.R.P. test is that forcepenetration curve obtained does not represent an equilibrium load-settlement relationship for the pile, hence it is difficult to determine the expected settlement under the working load of the pile.

2.3.2.4 Method of equilibrium

The method of equilibrium (M.E.) was proposed by Mohan et.al.(1967). It is a slight modification of the maintained load test procedure in order to reduce the time required for the pile to attain an equilibrium settlement rate. At each stage, a slightly greater load than the prescribed load is applied to the test pile and the jack pressure is allowed to relax until the load decreases to the desired value (rather than being maintained). Using this technique, the rate of settlement decreases much more rapidly than in the M.L. test procedure. Equilibrium is reached in a matter of minutes as compared to hours in the maintained load test and the total time required for the test is reduced by up to 65%. This method is mainly intended to determine the ultimate load capacity of a pile but may also be used to provide settlement data.

Mohan et.al.(1967) observed that the ultimate capacity and load-settlement behaviour of a pile determined using M.E. and M.L. test methods were generally in good agreement. The M.E. test procedure is particularly useful in testing preliminary piles to relatively high load levels whereby difficulty is experienced in maintaining or decreasing the applied load.

2.4 EVALUATION OF PILE LOAD CAPACITY IN COHESIVE SOILS

2.4.1 General

The load resistance of a pile is shared, in varying proportions, between its shaft and base. A pile penetrating a relatively soft layer of soil to found on a stiffer stratum derives most of its load capacity from base resistance. Where a particularly stiff soil stratum is not present, most of the applied load on a pile is carried in shaft resistance. In cohesive soil, the shaft resistance is generally paramount, whereas in granular soil (or for an under-reamed pile base in clay), the load capacity is more evenly divided between the shaft and base. Fleming et.al(1992) gives typical ratios of end-bearing pressure to shaft resistance for piles formed in statistics underscores the importance of shaft resistance for piles formed in sand.

Most pile design problems involve consideration of bearing capacity under downward loading. In special circumstances, lateral loading, uplift loading and torsion are also taken into account. There is limited data on the shaft resistance of piles subjected to uplift loading. Data presented by Sowa(1970) and Downs and Chieurzzi(1966) indicated considerable variations in shaft resistance between withdrawal and compression loading. The data revealed a tendency for the shaft resistance for upward loading to be lower than those for compression loading. Based on these data it was suggested that the shaft resistance values for upward loading were approximately 0.67 times those for compression loading. However, Ireland(1957) examined load test data from piles driven into fine sand and found that there was no difference between the average shaft resistance for upward loading and downward loading.

Conventional design methods for piles formed in weathered mudstone make use of the principles of bearing capacity for piles formed in cohesive soils. Dauncey and Woodland(1984) have explained that it is appropriate to apply the bearing capacity formulae for cohesive soils in the design of bored piles formed in Keuper marl. The results of loading tests on driven piles formed in the Keuper marls of the Severn estuary (Leach and Mellard,1980) support Dauncey and Woodland's(1984) approach to pile design in Keuper marl. There are three basic methods for the calculation of pile load capacity in clay, the first two of which make use of the principles of soil mechanics, whereas the third is based on empiricism and site experience:

- (a) Total Stress method.
- (b) Effective Stress method.
- (c) Empirical correlation.

The above procedures are examined in more detail in the following sections.

2.4.2 Total stress method - Design for end resistance

2.4.2.1 Piles formed in soft to hard clays

The design of piles formed in clay has been based on a conventional total stress method of estimating the ultimate load carrying capacity both in shaft and end resistance. Burland(1973) has pointed out that the use of undrained strength in estimating base resistance may be justified for the following reasons:

 Failure usually occurs through the soil at a distance beneath the base where disturbance during pile installation normally does not affect the clay involved in the shearing process. 2) In the long term, the soil beneath the base will normally experience an increase in effective stress and consequently an increase in strength. Thus the undrained bearing capacity represents a safe lower limit.

The method makes use of the undrained strength of the clay c_u below the foundation base and along the pile shaft. The ultimate bearing capacity of the pile base P_{ub} is given by,

$$P_{ub} = A_b \cdot N_c \cdot c_u \tag{2.1a}$$

where A_b is the area of pile base and N_c is a bearing capacity factor, which is usually taken as 9 (Skempton,1951). For D/B<4 (where D= depth and B= Base diameter), BS8004:1986 recommends $N_c=6$. Fleming *et.al.*(1992) suggested that a linear interpolation should be made between a value of $N_c=6$ for the case of a pile tip just reaching a stiff bearing stratum, and $N_c=9$ where the pile tip penetrates the stratum by 3 diameters or more. Robinson(1989) analysed the behaviour of driven piles formed in sand overlying clay and established that $N_c=7.5$ for the case of a pile tip just reaching the sand/clay interface. This value was back-analysed for 60mm and 114mm diameter model tubular steel piles driven into clay overlain by sand. There was an increase in the value of N_c with increasing embedded length into the clay. The N_c value closely approached the conventional value of 9 when the pile tip had been embedded approximately 700mm into the clay.

2.4.2.2 Piles formed in weathered rock

Partially weathered and unweathered Keuper marl may be regarded as weak rock, for which the general end-bearing capacity formulae for piles founded on rock are appropriate. Bored piles formed by drilling to some depth into weak or weathered rock act in both shaft resistance and end bearing. The development of skin resistance along the embedded length is more complex than in the case of friction piles installed in soft or stiff soil. The factors which influence the skin resistance of rock socket piles have been described by Wyllie(1991). These include (a) the length to diameter ratio of the socket, (b) the strength and stiffness of the rock (c) the roughness of the socket face and extent of disturbance at the base (d) settlement of the pile in relation to the elastic limit of the socket strength.

The ultimate end bearing resistance of bored, cast in-place piles formed in weak rocks is influenced by the drilling techniques employed. Any soft sludge accumulating at the bottom of the drill hole can significantly affect the results hence not revealing the true character of the rock. The ultimate base resistance of bored, cast in-situ piles formed in rock is determined based on the unconfined compression strength and angle of shearing resistance of the rock. Tomlinson(1994) gives the following formula for ultimate base resistance, for driven as well as bored piles.

$$q_{ub} = 2N_{\phi}q_{UCS} \tag{2.1b}$$

Where q_{UCS} is the unconfined compression strength of the intact rock and N_{ϕ} is a bearing capacity factor given by $N_{\phi} = \tan^2 \left(45^\circ + \frac{\phi}{2} \right)$. For piles formed in marl, Wyllie(1991) reported values of angle of shearing resistance $\phi = 20^\circ - 27^\circ$, which may be used as guidelines since these values can vary widely from one site to another.

Kulhawy and Goodman(1980) have suggested that the ultimate end-bearing capacity for piles bearing on jointed rock may be represented by a wedge failure condition beneath the pile base. Hence the ultimate base pressure q_{ub} is given by

$$q_{ub} = cN_{c} + \frac{\gamma BN_{\gamma}}{2} + \gamma DN_{q}$$
(2.1c)

20

Where

c= cohesion

B= width of pile base

D= depth of base below rock surface

 γ = effective unit weight of rock mass

 N_c , N_γ and N_q = bearing capacity factors evaluated for a wedge failure condition, as functions of ϕ , based on curves presented by Pells and Turner(1980). For a circular pile cross-section, a factor of 1.2 is applied to the term cN_c and 0.7 to the term $\frac{\gamma BN_\gamma}{2}$. The latter quantity is usually small in comparison to the former and may be neglected.

Kulhawy and Goodman(1980) point out that c and ϕ values are difficult and expensive to obtain from laboratory tests on large samples of jointed rock. To help overcome this difficulty, Kulhawy and Goodman(1987) have suggested the following approximate relationships between c and ϕ values and Rock Quality Designation (RQD) values (where RQD is the sum of lengths of intact pieces of core greater than 100mm in length divided by length of core advance, expressed as a percentage of the latter).

 RQD
 c
 ϕ

 0%-70%
 0.1q_{UCS}
 30°

 70%-100%
 0.1q_{UCS}
 30°-60°

2.4.3 Total stress method- Design for shaft resistance

2.4.3.1 Introduction

Traditionally, the calculation of shaft resistance for bored piles formed in cohesive soils has been based on the undrained shear strength parameters of soil. Currently, both the total and effective stress methods are widely used, either singly or in combination. The choice of a particular method is dictated by the available database of successful application in a given locality. There are two methods available for the prediction of the ultimate shaft resistance of a pile in clay based on the total stress approach:

a) α method originally devised by Tomlinson(1957) and

b) λ method suggested by Vijayvergiya and Focht(1972)

An average value of shaft resistance can be evaluated for the entire pile length, however a better prediction is to sum the shaft resistance contributions from each stratum penetrated, using the best estimates of the properties of that stratum.

2.4.3.2 The α method

Historically, the α method has been the most widely used procedure for calculating the shaft resistance of both driven and bored piles formed in cohesive soils. The average shaft resistance c_a along the pile shaft is taken to be related to the mean undrained shear strength \bar{c}_{μ} along the pile shaft and is given by,

$$c_a = \alpha c_u \tag{2.2a}$$

Where α is an empirical factor, which is now commonly known as the adhesion coefficient (Tomlinson,1957). The general form of this equation, for layered soil conditions, was given by Tomlinson (1971) and includes both the adhesion and friction components, thus

$$\mathbf{c}_{\mathbf{a}} = \alpha \mathbf{\bar{c}}_{\mathbf{u}} + \mathbf{q} \mathbf{K} \tan \delta \tag{2.2b}$$

Where,

 \bar{q} = average effective vertical stress along the pile shaft

K= coefficient of lateral earth pressure

 δ = effective angle of internal friction of the soil, or the friction angle of the pilesoil interface, as appropriate

(a) Limiting values of c_a : It is interesting to speculate as to how the value of c_a should vary with depth, given the form Eqn.2.2(b) takes. Early studies by Vesic(1964) and Kerisel(1964) indicated that, for cohesionless soil, there is a certain depth (known as the critical depth), below which the unit shaft and base resistances are quasi-constant. This concept was later supported by load tests on full-scale piles reported by Vesic(1970,1977) and Meyerhof(1976). See section 2.4.6 on "Critical Depth".

(b) Values of the adhesion factor, α : Poulos(1980) stated that the value of α depends on a number of factors, such as (i) the shear strength of the clay (ii) the method of pile installation (iii) the effective overburden stress and (iv) the pile type. Early studies by Skempton(1959) showed that the adhesion factor α ranges from 0.3 to 0.6 for piles formed in London clay, for a variety of load tests. For a normal pile shaft condition (where concrete is placed rapidly after drilling), a value of 0.45 was established for London clay. A lower value of 0.3 was taken for short piles where a large proportion of the shaft passed through heavily fissured clay. The American Petroleum Institute (API,1984) also recommends the use of α values which vary with c_u values. In addition, it stipulates a maximum shaft resistance value, based on the state of consolidation of the clay.

For driven piles formed in clay, McClelland(1974) has presented a collection of several plots of adhesion factor, α versus undrained cohesion, c_u as reported by various authors. These curves show that the adhesion factor decreases with increasing strength of clay, both for bored as well as driven piles. In all cases, there is a wide scatter in the observed

variation of adhesion factor with undrained strength. Some of the α values corresponding to particular c_u values indicated by the curves are:

	$c_u = 50$	$c_u = 150$
	kN/m ²	kN/m ²
Peck(1958)	0.90	0.45
Woodward and	0.86	0.32
Boitano(1961)		
Kerisel(1961)	0.72	0.35
Tomlinson(1970)	0.72	0.24

Randolph and Murphy(1985) have deduced α values from load tests on driven piles based on the average in-situ strength ratio. Based on a linear regression analysis of these data it was established that

$$\alpha = \frac{0.5}{\left(\frac{c_u}{\overline{q}}\right)^{0.5}} \text{, when } \frac{c_u}{\overline{q}} \le 1 \text{ and}$$
(2.2c)

$$\alpha = \frac{0.5}{\left(\frac{c_u}{\overline{q}}\right)^{0.25}}, \text{ for } \frac{c_u}{\overline{q}} > 1, \qquad (2.2d)$$

Where \overline{q} is the average effective overburden stress.

These observations seem to agree well with the findings of Sladen(1992) who gives the following relationship for the evaluation of α ,

$$\alpha = C_1 \left(\frac{\bar{q}}{c_u}\right)^{0.45},\tag{2.2e}$$

in which C_1 is an empirical constant, and \overline{q} and c_u are as previously defined. For bored piles, C_1 lies in the range 0.4-0.5 whereas for driven piles $C_1>0.5$. Information becomes more scant for α values for bored piles in comparison to driven piles. Weltman and Healy(1978) have analysed a number of pile tests and produced plots of adhesion factor α versus undrained strength for bored and driven piles formed in glacial till. These curves show that α varies from approximately 0.9 to 0.375 as the undrained cohesion increases from 80 kN/m² to 200 kN/m². For similar pile-soil conditions, the test data indicated that α values for bored were approximately 80% of those for driven piles.

Kulhawy and Phoon(1993) proposed the following correlation for α based on 127 case studies of bored piles load tested to failure in clay at 46 sites.

$$\alpha = 0.5 \left(\frac{p_a}{c_u}\right)^{0.5}$$
(2.2f)

where p_a is atmospheric pressure (approximated for simplicity to 100kN/m² rather than 101.4kN/m²). Based on the load test data, this relationship was judged to be in close agreement with other relationships for driven piles.

(c) Values of α for piles under uplift loading: The shaft resistance of straight-shafted piles under static uplift loading is usually estimated using the same procedures as in piles under downward loading. The shaft resistance of piles under uplift loading is influenced by both the rate of loading and the extent of remoulding of the soil immediately around the pile shaft. Tomlinson(1994) suggested that, in the short term, the uplift resistance of a bored pile in clay is likely to be equal to its shaft resistance in downward loading. St John et.al.(1983) showed that the first pull on a previously unloaded pile in clay would give an uplift resistance equal to the ultimate shaft resistance under compression loading. However, under cyclic loading or creep caused by sustained loading, the uplift shaft resistance could decrease from the peak to the residual value, especially for long piles.

As noted by Poulos(1980), test data for piles loaded in uplift are still rather limited to definitively support the use of the same values of adhesion factors as for downward

loading. However, test pile data reported by Sowa(1970) indicated no significant difference in α values for piles subjected to upward or downward loading.

(d) Determination of c_u for shaft resistance prediction: The undrained strength may be determined using the standard shear strength testing methods for soils and rocks or by empirical correlation with in-situ measurements. For bored piles formed in stiff overconsolidated clay, design procedures have been largely developed on c_u determinations on undrained triaxial tests performed on 38mm diameter specimens. Of late, it has become common practice to test 100mm diameter samples rather than 38mm samples. Patel(1992) has analysed a series of pile loading tests in London clay for which shear strength measurements were carried out using 100mm diameter triaxial samples, rather than the standard 38mm samples. The results indicate that with the use of 100mm diameter samples, a better correlation between the observed shaft resistance and undrained strength is obtained. In addition, it was found that an adhesion factor of 0.6, rather than the conventional value of 0.45, is appropriate when shear strength measurement is based on 100mm diameter triaxial test samples.

For over-consolidated clays, various relationships have been suggested for calculating c_u directly based on the overburden pressure. Azzouz and Lutz(1986) have suggested the relationship $c_u = \sigma_v s(OCR)^m$ in which

$\sigma_{r} =$	effective overburden pressure					
OCR=	over-consolidation ratio (defined as the ratio of					
	the pas	t effective	pressure	to	the	present
	overburden pressure)					
s, m=	empirica	l constants				

(e) Rock-socket piles: Rowe and Armitage(1987) and Horvath and Kenney(1979) have suggested the following relationship between the ultimate shaft resistance f_s and the unconfined compression strength q_{UCS} of the rock,

$$f_s = \chi (q_{UCS})^{0.5}$$
 in MN/m² (2.2g)

where χ is a coefficient. Based on full-scale loading tests using variable pile diameters and rock strengths, Rowe and Armitage(1987) found that χ values lie in the range 0.45-0.6, the units being $[MN/m^2]^{0.5}$. However, different results were obtained by Horvath and Kenney(1979), who inferred values of χ as 0.2-0.25. Carrubba(1997) has suggested an analytical model, based on two-constant hyperbolic load transfer functions which may be used to evaluate the limiting skin resistance at the pile-rock interface. Such functions were initially adopted in pile analysis by Kondner(1963) and later used by Chin(1970), Hirayama(1990) and Fleming(1992), The results of numerical simulation showed that friction along the socketed length generally developed earlier than base resistance. Carrubba(1997) presented test results from five large diameter drilled piles socketed into different types of rock (including marl). The results revealed χ values lying in the range 0.13-0.25, which are close to Horvath and Kenney's(1979) lower limit.

Seidel and Haberfield(1995) have developed a computer program by the name ROCKET which encompasses the various analytical methods to provide a rational basis for the prediction of rock socket behaviour in geomaterials varying from hard soils to strong rock. Limited parametric studies are presented in this reference to demonstrate that the predictions of the program are in general agreement with international databases on pile socket load testing. The program predicts a transition from hard soils to rocks using the method postulated by Kulhawy and Phoon(1993) and takes into account the effects of (a)

27

rock socket roughness (b) pile diameter (c) rock mass modulus (d) Intact strength parameters.

2.4.3.3 The λ method

The λ method has not found as much popularity as the α method. In this method, the ultimate skin resistance f_s is given by Vijayvergiya and Focht(1972) as

$$f_s = \lambda \left(\bar{q} + 2c_u \right) \tag{2.2h}$$

where \overline{q} is the average effective vertical stress along the pile shaft and λ is a coefficient (typically 0.10-0.50), the value of which increases with pile penetration. This coefficient is applicable for the entire pile shaft. This relationship was developed on the basis of regression curve fitting for a large number of load tests on long pile installed for offshore oil production structures in the Gulf of Mexico. The format in which the correlation is expressed is such the method includes both adhesion and friction components of shaft resistance.

According to studies by Kraft(1981), the λ method over-predicts the shaft capacity for piles longer than 15m, in both normally and over-consolidated clays. Values of λ in the range 0.2-0.4 are applicable for such pile lengths.

There are two limitations in the λ method, namely: (a) It uses a single value of λ for the pile, rather than different values for various soil strata and (b) It is not consistent with the widely accepted concept that shaft resistance tends to reach a limiting value, so that \overline{q} does not infinitely increase pile capacity.

2.4.4 Limitations of the total stress method

The total stress approach has proved very useful in pile design, but its empirical nature implies that it is far less reliable when extrapolated to circumstances for which there is no precedent. There is still a lot of uncertainty as to the exact condition of a pile shaft after construction and during sustained loading. Burland(1973) suggests that the use of undrained strength in calculating shaft resistance has little justification because:

- "Only a relatively thin zone of clay around the pile shaft is involved in the shearing process (Cooke and Price, 1973). Thus drainage to and from this narrow zone takes place rapidly during loading or has already occurred in the delay between pile construction and loading.
- 2) Pile installation, whether driven or cast in-situ, inevitably must disturb and remould the ground adjacent to the pile shaft. Therefore excess pore pressures (either positive or negative) will be set up in the soil around the pile.
- Quite apart from the disturbance caused by pile installation, there is no simple relationship between the undrained strength and drained shear strength of the clay".

Indrasurya et.al.(1988) measured ultimate shaft resistance of model piles formed in clay using a special apparatus whereby the boundary stresses of the clay could be independently controlled in the vertical and horizontal directions. The undrained cohesion of the clay was measured both by the laboratory miniature vane shear test and the unconfined compression test. The results showed that there was no correlation between the deduced angle of pile-soil friction and the undrained cohesion values. This observation supports Burland's(1973) conclusion that there is no simple relationship between the undrained and drained strength of a clay.

Chandler(1968) has suggested that when the rate of pile loading is sufficiently slow to ensure drained conditions in the clay, the shaft resistance is controlled by the lateral effective stresses in the ground. Drained conditions are expected to exist in maintained load tests and particularly in long term in-service foundation conditions.

2.4.5 Effective Stress approach

Vesic(1967) and Chandler(1966,1968) have suggested that for piles formed in stiff, over-consolidated clay, the drained load capacity, rather than undrained, may be the critical value. They recommended the use of effective-stress approach in such conditions. Chandler(1968) proposed that the drained strength $,\tau$ of the clay around a pile shaft may be expressed as

$$\tau = c' + \sigma_{h'} \tan \phi' \tag{2.3}$$

where c'= effective cohesion

 $\sigma_{\rm h}$ '= horizontal effective stress acting on the pile, and

 ϕ = effective angle of friction of the clay.

Poulos(1980) suggests that for a pile installed in sand, the vertical stress near the shaft may be less than the overburden, whereas for a pile in clay, the vertical stress near the shaft is reasonably close to the overburden. Assuming that the effective horizontal stress is proportional to the effective overburden pressure, the ultimate shaft resistance per unit area f_s , may be expressed from Eqn 2.3 as

$$f_s = c' + K \ \overline{\sigma_v} \tan \phi' \tag{2.4}$$

where K= coefficient of effective earth pressure, and

 $\overline{\sigma_v}$ = mean value of effective overburden stress along pile shaft.

As a consequence of remoulding during pile installation, the soil has no effective cohesion and c' may be neglected. Therefore the average ultimate shaft resistance along the pile shaft $\overline{\tau_s}$ will be given by

$$\overline{\tau_s} = \beta. \overline{\sigma_v}$$
(2.5)

where,

$$\beta = K_0 \tan \phi$$
 (2.6)

Thus β is similar to the empirical adhesion factor α in the total stress method except that it relates ultimate shaft resistance to fundamental effective stress parameters. Burland(1973) suggests that for bored piles, provided the pile is formed promptly after excavation of the shaft, there is little change in the in-situ effective stress state of the soil hence the use of K_o is appropriate. In heavily over-consolidated clay, where the value of K_o is large, it appears reasonable to make some allowances for stress relaxation by reducing the value of K_o. Alpan(1967) presented a formula relating K_o for an over-consolidated clay K_{o.oc} to that for a normally consolidated clay K_{o.oc} of the form K_{o.oc} = K_{o.nc} OCRⁿ in which *n* is an empirical constant. Other empirical relationships for estimating these parameters are given by Mayne(1984) and Semple and Rigden(1984), based on a number of clay soils studied, typically:

$$K_{o,oc} = \left(A + \frac{c_u}{\sigma_{vo}}\right)$$
(2.7)

where the constant A lies in the range 0.7-1.0, depending on the laboratory test used to obtain the ratio of undrained strength to effective current overburden pressure $\left(\frac{c_u}{\sigma_{uo}}\right)$.

The effective friction angle appropriate for a particular situation is thought to depend on a number of factors. Burland and Twine(1988) suggested that a residual angle of friction is appropriate, at least for bored piles formed in heavily over-consolidated clay. This is based on the argument that the friction angle mobilised on the vertical failure surface at ultimate shear stress depends on the complete state of stress.

Indrasurya et.al.(1988) have measured the load transfer along the shaft of a model pile inserted in a specimen of clay soil. They used special apparatus whereby the boundary stresses of the clay specimen could be independently controlled in the vertical and horizontal directions. The top and lateral surfaces of the clay specimen were free to deform freely. They established that the angle of pile-clay friction is independent of the vertical consolidation pressure in the clay, the over-consolidation ratio (both in the vertical and horizontal directions) and the length of the pile-soil contact.

Flaate and Selnes(1977) have back-computed a number of reported pile load tests to plot ultimate shaft resistance against the mean undrained strength using the β method of Burland(1973). In a similar study, Esrig and Kirby(1979) have used separately the α method and the λ method on observed pile test results to plot similar graphs. On comparing their findings with those of Flaate and Selnes(1977), it was found that although the extent of scatter in the β method was substantial, it was not as great as that encountered when using the α and the λ methods.

As stated by Milititsky(1983), despite the apparent attraction of a fundamental analysis, the difficulties of predicting lateral soil stresses, and accounting for installation effects is

an impediment to the universal use of the effective stress and total stress methods. The lateral soil stresses are generally empirically rather than theoretically determined.

2.4.6 Critical depth considerations

Vesic(1967) explained a mechanism for the occurrence of critical depth by suggesting that vertical arching takes place which causes the average vertical effective stress immediately adjacent to the pile shaft to reach a constant value. According to Bhushan(1982), at some critical length to diameter ratio value, c_a increases at an ever-decreasing rate. Zeitlen and Paikowsky(1982) have suggested that the limiting value of c_a is automatically explained by the decrease in the value of ϕ with effective normal confining pressure.

More recently, there has been mixed opinions regarding the concept of critical depth. Fellenius(1995) has concluded that critical depth is a fallacy which arises from neglect of residual loads in full-scale and model test piles. The same view has been expressed by Randolph(1993) and Kulhawy(1984). In driven piles, residual loads are probably caused by such factors as (a) wave action during driving, (b) soil quakes along the pile shaft, and (c) re-consolidation of the soil subsequent to the disturbance caused by pile installation. In bored, cast in-place piles, residual loads can arise from (i) concrete shrinkage and (ii) pile self-weight.

Fellenius's(1995) analyzed the results of instrumented full-scale and model piles by measuring the initial distribution of shaft resistance due to residual loads. With the residual load effects excluded from the analysis, Fellenius(1995) showed that a critical depth existed at 10-20 pile diameters. Lings(1997) suggested that it is the *average* shear

stress along a pile shaft that reaches a quasi-constant value with depth and not the *local* shear stress. The author's view is that the variation of average unit shaft resistance with depth is significantly influenced by the estimated values of earth pressure coefficient. If critical depth is defined in relation to a limiting unit shaft resistance, then the interpretation of data from a pile load test relies on the accuracy of the assessed values of earth pressure coefficient.

2.4.7 Empirical correlation methods

There are a number of empirical relationships available for predicting the bearing capacity of piles in shaft resistance and end resistance. For shaft resistance of piles formed in cohesive soils, Table 2.3(a) lists the most commonly used formulae for the estimation of undrained strength, c_u . In Table 2.3(b), empirical formulae are given for the evaluation of shaft resistance directly from of S.P.T. and C.P.T. results. The formulae for calculating ultimate base resistance are given in Table 2.3(b).

Reference	Empirical formula	Remarks
Kilbourn et.al(1988)	$c_u=6N$ (kN/m ²)	Large diameter, bored, cast in-place piles formed in Keuper marl- Case studies of P.D.R., Cardiff, South Wales, U.K.
Foley and Davis (1971)	$c_u = 18.5 + 5.74$ N (kN/m ²)	Bored, cast in-situ piles formed in Keuper marl- Case study at Leicester, U.K.
Reese et.al(1976)	$c_{\mu}=7N (kN/m^2)$	Piles formed in stiff clays
Stroud(1989)	c_u =4N to 6N (kN/m ²)	Piles formed in silt and piles formed in hard clays

Table 2.3(a): Empirical formulae for undrained strength, c_u for the design of bored, cast inplace piles formed in cohesive soils based on in-situ tests

Reference	Empirical formula	Remarks
Present work [@]	$f_{S}=3.2N$	Large diameter, bored, cast in-situ piles formed in Keuper marl, P.D.RCardiff.
Yamashita et al(1987)*	f_{S} =5N (kN/m ²)	Cast in place piles formed in cohesive soils.
		$f_s(\text{max.})=150\text{kN/m}^2$
Shioi and Fukui(1982)*	$f_{S}=10N$ (kN/m ²)	Cast in place piles formed in cohesive soils
Decourt(1982)*	$f_{S}=10+3.3$ N (kN/m ²)	Piles cast under bentonite in cohesive soils; $50>N>3$; $f_s(max.)=170kN/m^2$
Shioi and Fukui(1982)*	$f_s=5N$ (kN/m ²)	Piles formed in cohesive soils.
Meyerhof(1976)	$f_{S}=N$ (kN/m ²)	Low-displacement piles (any soil type)
Fleming & Thorburn(1983)	$f_s=0.1q_c$ ($q_c=cone\ resistance$)	Driven and bored piles formed in cohesive soils
Price & Wardle (1982)	$f_s=0.49q_s$ ($q_s=cone\ sleeve$ friction)	Small diameter (168mm) bored pile in stiff clay
Thorburn & McVicar(1979)	$f_{S}=0.025q_{C}$	Driven and bored piles formed in cohesive soils

Legend: @ Back-analysed from pile load tests for P.D.R. (Cardiff), *In Poulos(1989)

 Table 2.3(b): Empirical formulae for shaft resistance of bored and cast in place piles formed in cohesive soils based on in-situ tests

The suggested values in Tables 2.3(a)- (c) vary widely, hence the empirical formulae given should be checked against actual results from field or laboratory soil tests, if available for the particular soil stratum being investigated. Fleming et.al.(1992) have noted that, for non-sensitive clays, the relationship between "N" and c_u proposed by Stroud(1989) is frequently adopted in the U.K.

Reference	Formula	Remarks
Present work [@]	<i>f_b</i> =110-150N	Large diameter, bored, cast in-situ piles formed in Keuper marl, P.D.R Cardiff.
Shioi and Fukui(1982)*	$f_b = 150 \text{N} (\text{kN/m}^2)$	Bored piles formed in clay
Yamashita et al(1987)*	$f_b=90(1+0.16z)$ in kN/m ² where z= depth of pile tip in metres	Cast in place piles formed in cohesive soils
Meyerhof(1976)	$f_{b} = 12N_{Pl} \frac{L_{b}}{B} (kN/m^{2})$ $N_{Pl} = N \text{ value near pile toe}$ (corrected for 100kN/m ² overburden pressure) $L_{b} = \text{ length of penetration of}$ into bearing stratum B = pile width (diameter)	Bored piles (any soil type) Maximum base pressure: <i>fb</i> =<120N
Hobbs & Healy (1979)	$f_b=240N \text{ (kN/m}^2); N<30; f_b=200N \text{ for } N>40$	Piles formed in Chalk

Table 2.3(c): Empirical formulae for end resistance of bored and cast in place piles formed in cohesive soils based on in-situ tests

2.4.8 Summary

The available methods of pile load capacity calculation based on classical soil mechanics theories and empiricism have been discussed. Several empirical formulae have been suggested for calculating pile load capacity based on in-situ soil properties. This suggests that emprical coefficients determined for a given site may not be applicable to another site. Most classical methods of predicting pile load capacity are faced with difficulties in evaluating the various soil properties required. The major cause of this problem is the effect of pile installation. Disturbance to soil during pile installation can cause complex conditions to develop both within the soil mass and at the pile-soil interface thereby affecting shaft and end bearing resistance.

A large collection by Meyerhof(1992) of data from instrumented test piles installed in clay reveals that none of the above described approaches can realistically be said to represent a fundamental design method. Design options are usually reduced by the inadequacy of information regarding the soil properties at a site. Consequently it becomes necessary to either carry out a pile load test programme or resort to a conservative design, with uneconomically high safety factors. In view of these uncertainties, the necessity of further research into pile-soil interaction cannot be over-emphasised.

2.5 CASE STUDIES OF PILE TESTING IN KEUPER MARL

2.5.1 Introduction

A search of the existing publications revealed that the extent of published information regarding the behaviour of large diameter, bored piles installed in Keuper marl (Keuper marl) is limited. It is understood that load testing of piles as a part of site investigation is often an expensive undertaking. Nevertheless, there are situations where pile load tests may be necessary, depending on the

- (a) Significance and scale of the foundation problem
- (b) Information available regarding the ground conditions
- (c) Complexity of the soil condition and of the loading on the foundation
- (d) Financial resources available for foundation design.

A brief review of the some published case histories on the observed behaviour of piles formed in weathered mudstones is discussed in the following sections. Particular attention has been paid to instrumented piles and to situations where conventional construction and testing techniques have been used.

2.5.2 Large diameter, bored, cast in-situ piles formed in Cardiff (P.D.R.)

2.5.2.1 Previous piling experience in Cardiff

Large diameter piles were used for the foundations of the Penarth Bridge in 1967. This created an awareness of the nature and variability of Keuper marl and how these factors affect pile behaviour. In the same year, 1.07m diameter bored piles were required for the foundation work for the 26-storey Pearl Assurance building which was to be built at the Greyfriars site in Cardiff. Plate bearing tests were used to provide the design information for the piles. However, more detailed soil investigation was recommended in order to reveal extensive profiles of the marl and the variations in positions and strengths of the strata. The results of this investigation led to substantial amendments of the original pile design.

During the design and construction of the previously completed sections of the P.D.R., several pile load test programmes were carried out in order to provide certain design parameters and to assess the performance of the working piles. Most of the foundations of the various bridges and other structures constructed utilised large diameter, bored, cast-insitu piles. Among the available options, these pile types were found to provide the most appropriate solution. Load testing was carried out on actual working piles and experimental piles installed at selected locations along the proposed routes.

2.5.2.2 Test piles at Clarence Road bridge, Cardiff P.D.R.

In 1973, trial tests were carried out using 790mm diameter by 26m long bored, cast in-situ piles for the Clarence Road Bridge project. One test pile was provided with a voided toe,

whilst the other was constructed so as to allow the mobilisation of end resistance to occur. Bentonite was used while boring into the marl. The ground stratification profile comprises layers of fill, sand/cobbles and soft silty clay to 9m depth. Below these is a layer of ballast and large cobbles up to 18m depth, at which the Keuper marl surface is located.

Fig 2.1(a) shows the load-settlement plots for the voided toe test (test 1) and the test on the normally constructed pile (test 2). The curve for the voided toe test represents load carried in shaft resistance only. At each settlement value, the difference between the ordinates in test 1 and test 2 may be taken to represent the load carried in end bearing resistance. The deduced plot of base load versus settlement is given in Fig 2.1(b). This calculation may be justified because the voided toe pile and the normal pile were (i) identical in diameter and length, (ii) installed in similar ground conditions and (iii) constructed with the same equipment and care. However, despite the similarity of construction, it is appreciated that some differences in load capacity between the two test piles might still exist.

By using the method given by Mazurkiewicz(1972), the ultimate shaft load was determined by extrapolation of this curve (i.e test 1). Hence by reference to the same curve, Kilbourn et.al.(1988) deduced that at 25mm settlement, some 80% of the ultimate shaft load was mobilised. In addition, by the 25mm settlement stage, the rate of increase of load of the normal pile would be increasing almost directly in response to the stiffness of its base. This implies that, beyond a settlement value of 25mm, the rate of increase of shaft resistance would be low. Hence, at 25mm settlement, the vertical intercept of the tangent from the load-settlement graph (for the normally constructed pile) would give a measure of the mobilised shaft load at this stage. By comparison to the plot of the voided

toe test, the shaft load inferred from the tangent at 25mm settlement is taken to be approximately 80% of the ultimate shaft load. This method of determining ultimate shaft load by drawing a tangent line at a given settlement is similar to the procedure initially suggested by Van Weele(1957). In this procedure, the base load versus settlement graph was adopted as a line drawn through the origin and parallel to the tangent on the loadsettlement curve at the point of ultimate shaft load mobilisation. Brierley et.al.(1979) and Leonards and Lovell(1979) have also used similar methods to separate bearing capacity into shaft resistance and end bearing.

2.5.2.3 Test piles at Grangetown Link and Cogan Spur, Cardiff P.D.R.

In 1985, the Grangetown Road link contract required the load testing of three large diameter bored, cast in-situ piles. The details of the test piles are:

	Type	Diameter	Length
		(m)	(m)
Test 1	Normal	0.9	34
Test 2	Voided toe	1.35	34
Test 3	Voided toe	0.9	27

The voided toe piles were installed at a site adjacent to that of the normal pile. The piles were successfully loaded to three times the working load. The load-settlement curves obtained in tests 1 and 2 showed that at the maximum applied load (equivalent to three times the working load), the gradients of the graphs were still high. Hence, unless brittle failure was imminent, the both piles were still below ultimate load capacity. There were large variations in the soil conditions between these sites and hence the ultimate load capacity of the voided toe pile could not be compared with the ultimate shaft resistance of the normally constructed pile.

At Cogan Spur (test 4) where a 0.9m diameter by 30m long pile was tested, the soil conditions were found to be comparable to the stratification profile encountered at Grangetown Link (test 3). It was intended to compare the performances of these piles in order to test the validity of the method of evaluating ultimate shaft resistance previously developed from the pile test results at Clarence Road bridge. Fig 2.1(c) shows a comparison between the load-settlement plots for the two test piles. By comparing the mobilised shaft load with the total load at 25mm settlement, the results were found to support the previously suggested pattern.

2.5.2.4 Test piles at East moors Link, Cardiff P.D.R.

Three piles, each 1.05m in diameter, were successfully load tested to failure at selected sites within the proposed project area. The test piles were embedded to different lengths in the Keuper marl. Above the Keuper marl surface, the pile portions passing through superficial soil strata were sleeved. No strain gauges or load cells were installed in the test piles. Therefore, in order to separate shaft resistance and end bearing, the method previously developed from pile tests at Clarence Road Bridge, Grangetown Road Link and Cogan spur was applied. This method was used to calculate the ultimate shaft and base resistance values shown in Table 2.3(c).

	Length	Permanent	Load	Ultimate	Ultimate
Pile No.	(m)	casing to	capacity	shaft load	base load
		(m)	(MN)	(MN)	(MN)
2	23.0	12.0	14.0	9.0	5.0
3	21.0	11.0	9.0	4.8	4.2
4	21.0	9.6	15.5	10.8	4.7

Table 2.3(d): Pile load test results-East moors Link (P.D.R.), Kilbourn et.al(1988)

It was proposed to use the pile data collected to develop a design method for the working piles based on SPT "N" values obtained from the site investigation. Figure 2.2 shows the predicted variation of ultimate shaft capacity with embedded length in the marl, based on SPT "N" values. The observed results are plotted on the same graph for comparison. Kilbourn et.al.(1988) deduced that the use of SPT "N" values in estimating ultimate shaft load was reasonably accurate. There was close agreement between the predicted and the measured values of ultimate shaft load for c_u =6N and α =0.375.

2.5.3 Piles formed in Keuper marl at Leicester

Foley and Davis(1971) have reported a case study of pile load testing for a large shopping centre and Civic Theatre in Leicester. The site had layers of Keuper marl commencing from 3.3m to 5m below ground level and extending to a depth of 16m. Below this depth, there was a marked increase in strength up to the proposed installation depth of the working piles. The standing water level was at 9.5m depth below ground level.

Two 0.6m diameter by 18m long, bored, cast-in-situ piles were tested in order to examine the design parameters. One of the piles had a soft toe to separate end bearing from shaft resistance while the other was normally constructed. Laboratory tests were carried out on undisturbed samples of material from depths 4m, 6.5m and 10m. The tests were,

- (i) Undrained triaxial tests,
- (ii) Drained shear box tests, and
- (iii) Capillary tension measurements for in-situ values of the coefficient of earth pressure at-rest, K_0 .

42

Tests for the determination of the effective stress parameters, c'_s and ϕ'_s were carried out on remoulded and softened samples from depths 4m and 10m. As shown in Table 2.4, c' was substantially reduced but remoulding had very little effect on ϕ'_s .

Depth (m)	Consolidated undrained triaxial	Shear box tests	Unconfined comp. strength	S.P.T. result
4m	c'=17.6kN/m ² ϕ '=35° c' _s =3.5kN/m ² ϕ '=34°	-	c _u =107 kN/m ²	-
6.5m	c'=17.6kN/m ² $\phi'=36^{\circ}$	c'=27.4 kN/m ² $\phi'=38^{\circ}$ c' _r =0 $\phi'_{r}=27^{\circ}$	$c_u = 85.4$ kN/m ²	N=32 (c_u =195 kN/m ²)
10m	c'=24.6kN/m ² $\phi'=40^{\circ}$ c' _s =3.5kN/m ² $\phi'_{s}=38^{\circ}$	-	c _u =89.3 kN/m ²	N=30 (c _u =195 kN/m ²)
12.5m	-	-	-	N=20 (c_u =136.7 kN/m^2)
14m	-	-	-	N=36 (c_u =219.7 kN/m^2)
15.5m	-	-	-	N=47 (c_u =293 kN/m ²)
18m	-	-	-	N=35 ($c_u=220 \text{ kN/m}^2$)

Table 2.4 In-situ and laboratory soil test results for test piles at Leicester, Foley and Davis(1971)

The shaft resistance values of the two test piles were calculated using the following three methods,

(i) Total stress method based on c_u derived from unconfined compression tests

- (ii) Total stress method with c_u derived from empirical relationships with SPT "N" values, and
- (iii) Effective stress method.

The results from these methods were compared with the results of the load test given in

Table 2.5.

Design method	Shaft resistance result [@] (tonnes)		
	Voided toe pile	Normal pile	
Total stress method (c _u from UCS test) α=0.45	142	165	
Total stress method (c _u from SPT) α=0.45	320	370	
Effective stress method $c'_{s}=0$ $\phi_{s}'=36^{\circ}$ $K_{o}=1.5$	590	710	
Load test result	300	450	

(a) Shaft resistance values averaged over 13.72m (voided toe pile) and 15.24m (normal pile)

Table 2.5 Comparison of the results of three approaches to the calculation of shaft resistance for test piles at Leicester, Foley and Davis(1971)

It was shown that the total stress method based on unconfined compression tests underestimated the pile shaft capacity by more than 50%. The S.P.T based total stress method is convincing. The effective stress method was found to provide an upper bound solution to the ultimate shaft resistance capacity.

2.5.4 Piles formed in Keuper marl for the Birmingham International Arena

Dauncey and Woodland(1984) have reported a case study of pile testing in Keuper marl for the Birmingham International arena. The main foundations comprised bored, cast insitu piles installed in predominantly zone III marl. The ground strata was described according to the weathering zone as follows:

Depth	Zone
1.4-4.0m	IVa
4.0-18.0m	III
Below 18.0m	II

The Keuper marl was described as a firm, becoming stiff and then very stiff red-brown and grey-brown silty clay or clayey sandy silt. Less weathered material, described as very weak or weak mudstone was encountered in some deep boreholes, below 13-19m depths. Standard Penetration Tests (S.P.T.) and Cone Penetration Tests (C.P.T.) were carried out in the mudstone at regular intervals. The S.P.T. results from the borehole closest to the test pile site showed an approximately linear increase in undrained shear strength from an average of 75 kN/m² at 3m depth to 725kN/m² at 20m depth. The relationship $c_u = 6N$ was adopted in converting S.P.T. "N" values to equivalent undrained strength.

To confirm the design of the working piles, preliminary trial compression pile and tension pile testing was carried out to loads approaching ultimate capacities. The details of the test piles are:

	<u>Diameter</u>	Length	Casing to
Compression pile Tension pile	0.75 m 0.75 m	13.6 m	5.0 m
·	(cased length) 0.6 m (embedded section)	18.8 m	3.5 m

The ultimate capacities of the trial piles were not achieved in either test and the method of Mazurkiewicz(1972) was used to extrapolate the maximum loads. The estimated ultimate capacity of the compression pile was 5400kN whilst that of the tension pile was 3780kN. Hence, the ultimate base capacity of the compression pile is estimated to be 1920kN. Assuming a bearing capacity factor $N_c=9$, the c_u value at the base of the compression pile was obtained as 482 kN/m². This value was therefore consistent with the S.P.T. results at that depth.

Mazurkiewicz's method assumes that the load-deflection curve is approximately parabolic in shape. An alternative method of projecting ultimate load was suggested by Chin(1972), which assumes a hyperbolic load-deflection relationship. This gave ultimate load values about 15% higher than those obtained by Mazurkiewicz's method. However, as Fellenius(1980) pointed out, the Chin's method tends to over-predict pile load capacity. The ultimate shaft resistance values were obtained as 3220kN and 3580kN, for the compression pile and the tension pile respectively. Therefore the average ultimate shaft resistances were calculated to be 105kN/m² for both piles. Hence the adhesion factor, α and the effective stress parameter, β (where β =Ktan δ) were deduced as:

	α	β
Compression pile	0.44	1.06
Tension pile	0.31	0.82

As will be discussed in chapter 5, the average α and β values for the Butetown Road link test piles TP1-TP6 are back-analyzed as 1.42 and 0.53 respectively. Based on the assumption that the ultimate shaft resistance is fully developed at a pile head movement of 20mm (at which the applied load is 4400kN), the stiffness of the material beneath the

base E_b was back-analysed using the relationship $E_b = \frac{q_b D_b (1 - v^2) I f}{D_b}$, where:

 q_b = base stress D_b =base diameter v= Poisson's ratio of soil beneath the base I= influence factor (taken as $\frac{\pi}{4}$) f= depth correction factor (taken as 0.5) Δ_b = base settlement.

It was assumed that at 20mm deflection, approximately half of the ultimate base capacity was developed. The E_{b} value was back analysed to be 40MN/m².

2.5.5 Piles formed in weathered mudstone at County Antrim, Northern Ireland

Piled foundations were required at Kilroot, County Antrim where a power station for Northern Ireland Electricity Service was being built. Preliminary pile testing was carried out to confirm the load capacity of bored piles at the site. The case record has been reported by Leach et al.(1976). It was intended to compare the performance of the test piles against predictions based on conventional design methods using laboratory and insitu soil tests. Three concrete test piles A,B and C, detailed below ,were installed and load tested.

	<u>Pile type</u>	<u>Diameter</u>	<u>Embedded</u>	<u>Test type</u>
			<u>Length</u>	
А	Voided toe	0.74 m	6.37 m	C.R.P.
В	Voided toe	0.74 m	8.98 m	M.L.
С	Normal	0.74 m	7.60 m	C.R.P.

The ground strata comprised glacial deposits of stiff clay with gravel up to 0.3-7.0m depth below which Keuper marl was encountered. The water table was located at a depth of

	Pile A	Pile B
Material around shaft	Mainly zone II marl	Zones III and IV marl
Embedded length into marl (m)	6.37m	8.98m
Ultimate shaft resistance (effective stress method using c' and ϕ' values) (kN/m ²)	152	162
Measured shaft resistance (kN/m ²)	210	119
Values of ultimate shaft resistance (Davis and Chandler,1973)	250-280	150-180

about 2.0m. Table 2.6 gives a comparison between the measured ultimate shaft resistance for test piles A and B and the predicted value using effective stress methods.

Table 2.6: Comparison of ultimate shaft resistance values for two piles A and B at County Antrim, Leach et al(1976)

The bearing capacity for test pile C was predicted using the following five different methods as shown in Table 2.7. It was found that all the above methods underestimated the ultimate capacity of test pile C. The use of laboratory determined c_u values gave only 40% of the measured capacity of the pile. This indicates that laboratory undrained tests on undisturbed samples result in an underestimation of the in-situ strength of Keuper marl. The methods based on c_u values determined from pressuremeter tests gave 85% of the load capacity of the pile. The results also indicated that the use of β =0.8 in Burland(1973) lead to a conservative design. The following design methods resulted in the closest estimate of pile capacity (accurate to within 10%).

- (i) The basic effective stress approach of Davis and Chandler(1973) with α =0.45 and using pressuremeter c_u values, and
- (ii) Chandler's(1968) method using pressuremeter K_o and c_u values and taking $N_c=9$.

48

		Design constants and soil properties		Calculated ultimate load capacities (kN)			
Design method	Shaft	Base	Shaft (kN)	Base (kN)	Total Q _u (kN)	$rac{\mathcal{Q}_{u(predicted)}}{\mathcal{Q}_{u(actual)}}$	
Skempton	α =0.3, c _u laboratory	$N_c=9$, c_u laboratory	770	620	1390	0.23	
(1959)	$\alpha = 0.3$, c _u pressuremeter	$N_c=9$, c_u pressuremeter	2650	2440	5090	0.84	
Menard (1965)	Pressuremeter	Pressuremeter	1590	2720	4310	0.71	
Chandler	ϕ recompacted	$N_c=9, c_u$ laboratory	3080	620	3700	0.61	
(1968)	K_o pressuremeter	$N_c=9$, c _u pressuremeter	3080	2440	5520	0.92	
Burland	$\overline{\beta} = 0.8$	$N_c=9$, c_u laboratory	2150	620	2770	0.46	
(1973)		N _c =9, c _u pressuremeter	2150	2440	4590	0.76	
Davis &	$\alpha = 0.45, c_u$ laboratory		1150	1580	2730	0.45	
Chandler (1973)	α =0.45, c _u pressuremeter	Effective stress parameters for	3980	1580	5560	0.92	
	Average of quoted typical values	undisturbed zone III marl	3060	1580	4640	0.77	

Table 2.7: Different design methods for pile C (Leach et al, 1976)

2.5.6 Piles formed in Keuper marl at Redcar, Teesside

Bored, driven, cast-in-situ piles were constructed to provide a foundation for a large blast furnace structure for British Steel Corporation at Redcar, Teesside. The piles were 0.6m in diameter by 15m long and were designed as end bearing. The piles were provided with enlarged bases founded on relatively unweathered Keuper marl bedrock. The substrata consisted of slag fill and beach sand up to 14.5m depth overlying a 1.2-10m thick layer of clay. Keuper marl was present underneath the clay. The piles were embedded to between 1m and 2m into the marl.

Jorden and Dobie(1977) have reported a case study of preliminary load tests on four piles carried out at the site. The first one was designed to measure base resistance, whereas the second was to measure shaft resistance and the remaining two were intended to measure

combined base and shaft resistance. The load-deflection curves obtained were used to correlate and to check the results of plate loading tests on 865mm and 584mm diameter discs which were proposed to predict the strength parameters. The plate loading tests gave in-situ modulus values of the marl between 50MN/m² (highly weathered) and 3000MN/m² (unweathered).

From the results of the end-bearing pile, the deformation modulus of the material beneath the base was back-analysed as 1230MN/m². This turned out to be much higher than that obtained from the plate loading tests. This high value of soil modulus was attributed to the possible soil density increase beneath the base during pile installation.

2.5.7 Continuous flight augur pile in Bristol

Fleming(1992) has presented a test on a continuous flight auger pile founded in weathered Keuper marl in the Bristol area. The ground stratification profile and average S.P.T. "N" values were recorded as:

Depth	Description	Mean "N" value
Up to 7.2 m	Fill and soft peaty clays	-
7.2-10.0 m	Soft clayey silt	6
10.0-14.2 m	Sand and gravel	45
Below 14.2 m	Keuper marl	120
17.0 m	Pile toe level	

The pile, which was 600mm in diameter by 17m long, was loaded in increments up to 2.5MN for which the recorded settlement was 43.06mm. The ultimate failure load was not reached. Parallel with the observed pile results, Fleming(1992) has proposed an analytical method for the prediction of pile settlement under load. This method used hyperbolic

functions to characterise both shaft and base load mobilisation. These components of load resistance are then combined to give a load-settlement compound function. This function also accounts for pile elastic shortening. For a rigid pile, Fleming(1992) gives the relationship between pile head load P and settlement Δ_{p} as:

$$P = \frac{U_s \Delta_n}{M_s D_s + \Delta_n} + \frac{D_b E_b U_b \Delta_n}{0.6U_b + D_b E_b \Delta_n}$$
(2.7)

Where U_s = ultimate shaft load, U_b = ultimate base load, D_s = pile shaft diameter, D_b = pile base diameter, E_b = secant modulus of soil beneath pile base (taken at 25% of ultimate load) and M_s = shaft flexibility factor (dimensionless).

For a given load P, the settlement Δ_n was calculated by rearranging the equation, thus

$$(eP - ae - b)\Delta_n^2 + (dP + ecP - ad - bc)\Delta_n + cdP = 0$$

$$(2.8)$$

Where $a = U_s$, $b = D_b E_b U_b$, $c = M_s D_s$, $d = 0.6 U_b$, $e = D_b E_b$.

For convenience, let f = eP - ae - b, g = dP + ecP - ad - bc and h = cdP. Therefore Δ_n is given by the positive solution of the equation

$$\Delta_n = \frac{-g \pm \sqrt{\left(g^2 - 4fh\right)}}{2f} \tag{2.9}$$

For a flexible pile, the additional settlement due to elastic shortening Δ_E is evaluated from one of two functions, depending on whether or not the applied load exceeds the ultimate shaft load. For all values of P such that P<U_s, Δ_E was evaluated from:

$$\Delta_{E} = \frac{4}{\pi} \frac{P(L_{a} + K_{E}L_{F})}{D_{s}^{2}E_{c}}$$
(2.10a)

whilst for $P>U_s$, the relationship derived was:

$$\Delta_{E} = \frac{4}{\pi} \frac{1}{D_{s}^{2} E_{c}} \Big[P \Big(L_{o} + L_{F} \Big) - L_{F} U_{s} \Big(1 - K_{E} \Big) \Big]$$
(2.10b)

where

 L_0 = upper length of pile not involved in load transfer

- L_F = lower length of pile transferring load to soil by shaft resistance
- K_E = coefficient, which when multiplied by L_F gives the depth, below the pile
- head level, of the centroid of load transfer.
- $E_c =$ Young's modulus of concrete.

For all cases, the pile head settlement Δ_h was obtained by adding Δ_n to Δ_E . The ultimate shaft load and ultimate base load were back-figured from the load-settlement data using the "inverse slope" method proposed by Chin(1972).

Values of M_s were found to vary with soil conditions, but could be estimated from empirical correlation with S.P.T. "N" values. The M_s value for a particular test pile may also be back analysed from the load-settlement data using the Chin's(1972) method. For marl and shale, the following M_s values were found to be appropriate for given "N" values:

<u>S.P.T. "N"</u>	Flexibility factor M _s
20	2.0x10 ⁻³
50	1.5x10 ⁻³
100	1.2×10^{-3}
150	1.0×10^{-3}

Values of E_b were also determined from relationships with "N" values. For a continuous flight auger pile in marl or shale, the E_b value (in kN/m²) was taken as 1000-1500 times the S.P.T. "N" value.

Condition	<u>K</u> E
Uniform shaft resistance along L _F	0.4
Clay strength increasing with depth	0.45
Sands/Gravels	0.4-0.65

The value of K_E was reported to depend on the generation of load along the shaft and that the following typical values are appropriate for different conditions:

From the geometrical and material properties of the test pile, the following values of various parameters apply: $D_s=0.6m$, $D_b=0.6m$, $L_o=10m$, $L_F=7m$, $E_c=45kN/mm^2$; while from the site conditions; $U_s=800kN$, $U_b=3250kN$, $M_s=0.0007$, $E_b=0.09161kN/mm^2$, $K_E=0.5$. These values were utilised in the above equations to predict the load-settlement behaviour of the test pile and to separate end bearing and shaft resistance.

Fig.2.3(a) shows a plot of the observed data and the predicted curves of total load, shaft load and base load versus settlement. For the range of loading applied, there is a remarkably close agreement between the predicted and actual settlement values at given applied loads. The result shows that the use of hyperbolic load-transfer functions to represent the shaft and base resistance development produces an accurate prediction of the load-settlement characteristics of the pile.

The hyperbolic transfer function has a major limitation in that it does not represent the settlement characteristics of a pile at load levels approaching failure. The function defines ultimate load by an asymptotic value thereby wrongly suggesting that infinite settlement is required to mobilise the full load capacity of the pile.

2.5.8 Piles formed in pre-consolidated Keuper marls of Southwest Germany

Schmidt and Rumpelt(1993) have presented some experience gained in the design and observed performance of large diameter, bored, cast in-situ concrete piles installed in calcareous mudstone. Loading tests were carried out in order to evaluate and adjust the soil parameters used in the design of the working piles for a large office development in Sttutgart City, Germany. The predominant ground strata in Sttutgart and the surrounding region of Southwest Germany is the Triassic Gypsum Keuper. It consists of a large sequence of mudstones and marlstones. The soils and rocks encountered had a wide range of soil/rock qualities, depending on the state of weathering and dissolution of constituent Gypsum and dolomite.

The Keuper marl at the pile test site was found to be generally completely weathered into a very stiff silty clay having consistency index I_c of approximately 1.02 (Definition: I_c=1-LI) at a mean moisture content of 18.6%. In some places, the Gypsum Keuper could be classified as a hard clay or very weak rock. Based on previous pile test results which showed ultimate shaft resistance values ranging from 150-300 kN/m², it was recommended to adopt a design value of 120 kN/m² for shaft resistance and ignore any end bearing resistance. Two pile were load tested in order to check these design assumptions:

	Diameter	Embedded length	<u>Design load, Q_d</u>
Pile 1	900 m	9.3 m	3.16 MN
Pile 2	900 m	15.3 m	5.19 MN

The test piles were bored and concreted without casing. Rod extensometers were installed at selected levels to measure the pile deformation and hence load transfer. The load test was conducted according to the ISSMFE recommendations (Smoltczyk, 1985). The failure load, defined as the load at a settlement equivalent to 10% pile diameter, was not reached in both test piles. The maximum applied loads shown below were taken to be the ultimate loads. The ultimate shaft resistance values were estimated based on the German Standard DIN 4014(1990), and taking $c_u=150$ kN/m². This Standard stipulates a presumed bearing value of $q_{bu}=1150$ kN/m². The total pile capacities were therefore estimated as shown.

	Max. applied	Ultimate shaft	Total
	load	<u>resistance</u>	<u>capacity</u>
Pile 1	3.3 MN	1.31 MN	2.05 MN
Pile 2	5.8 MN	2.15 MN	2.89 MN

Therefore, the observed pile capacities were found to be significantly greater than the design values from DIN 4014(1990). Schmidt and Rumpelt(1993) suggested that the design code postulates very low shaft resistance values as functions of undrained strength.

The load transfer data deduced from the extensioneters indicated that the shaft resistance increased with depth along each pile shaft, up to a maximum value at 7-8 metres depth (equivalent to 52-75% of embedded pile lengths). There was a decrease in shaft resistance in the lower third of a given test pile. In the longer pile, location of the maximum shaft resistance shifted downward with increasing applied load.

Large diameter triaxial shear tests on soil specimens sampled from adjacent test boreholes indicated effective stress parameters c'=30 kN/m² and $\tan \phi'=0.5$. Based on these data, Schmidt and Rumpelt(1993) deduced the average ultimate shaft resistance as $q_{sum}=87$ kN/m². In comparison to the measured mean values of $q_{sm}=94$ and 97 kN/m² in pile 1 and

pile 2 respectively, it was considered that the effective stress method produced reasonable design parameters.

2.6 CASE STUDIES OF PILES FORMED IN WEAK MUDSTONE ROCK 2.6.1 Introduction

Piles installed in intact rock are largely designed as end-bearing piles and any shaft resistance capacity is neglected, although significant load transfer may occur in the soil strata above the rock. For piles formed in strong rock, the maximum design load of the pile is often determined by the allowable stresses of the pile material itself. However, for pile formed in weak rock, the maximum bearing pressure of the rock is the determining factor.

In weathered rock, accurate estimation of the shaft resistance of driven piles is difficult owing to the disruption of the rock structure caused by driving and the wide variability in strength exhibited by soft rocks. Chalk and marl in the weathered state are examples of weak rocks with highly variable strength parameters. Several factors influence the shear transfer along a pile shaft in rock, such as (a) frictional characteristics of the interface, (b) strength properties of the rock and (c) roughness of the socket.

Codes of practice for foundation design stipulate allowable bearing pressures according to different types of rocks. For a given type of rock, the allowable bearing pressure depends on the quality and joint spacing of the rock. For individual rock types, there are substantial variations in strength and permissible bearing pressures. Therefore, it is helpful to express the allowable bearing pressure in terms of the uniaxial compressive strength, which may be derived from the following laboratory and/or field strength tests on the rock:

- a) Unconfined compressive strength tests.
- b) Cube crushing tests.
- c) Point-load strength index tests.
- d) Cross-jacking tests in the pile socket.
- e) Standard penetration test.
- f) Pressuremeter tests.

In the following sections, some case studies of pile load tests are presented which utilise the above rock testing methods to evaluate pile load capacity. The predicted values are compared and contrasted with observed failure loads of the test piles.

2.6.2 Rock socket piles formed in mudstone and siltstone at Coventry

Cole and Stroud(1976) have reported a case study of rock socket pile foundations for an office block development at Coventry Point, Market Way, Coventry. Two office blocks of fifteen and sixteen storeys were being constructed on a highly developed pedestrian mall layout in the city centre. The ground strata at the site comprised 5.0m of fill with firm silty sandy clay overlying multiple beds of siltstone, sandstone and weathered mudstone.

For economic reasons, it was decided to use rock socket piles although there was only limited design information at the time. Therefore it was decided to carry out trial pile testing in order to obtain adequate design parameters. It was considered that driven piles would cause an unacceptably high noise nuisance during installation and also lead to disturbance and possible damage to existing properties. Cast in-situ, bored, piles designed as rock sockets were selected as being more suitable and economical with lower noise levels. A major disadvantage was that the design of piles of this type, especially in weak rock, was relatively untried in the UK at the time.

The proposed design method for the working piles was based on values of rock strength derived from "N" values obtained from rotary core test data. For shaft resistance along the socket, the adhesion factor α was taken as 0.3; while for base performance, N_c was taken as 9.0 with a safety factor of 3.0.

The test pile was 1.06m in diameter with a design load of 4.5 MN. The pile was tested under maintained load conditions using jacks mounted on a test frame for which reaction was provided by six pre-stressed ground anchors. The pile was jacked progressively to the following loads,

- (i) the design load,
- (ii) 1.25 times design load, and
- (iii) 1.5 times the design load.

The load-settlement plot obtained indicated that even at a load in excess of 1.5 times the design load, the pile was far from failure and probably still had a factor of safety greater than two. It was considered that the design of the foundation was unusual in that the load-settlement behaviour was uncertain.

The mobilisation of shaft resistance at design load was analysed by classifying strata around the shaft into different zones according to strength. Equivalent "spring stiffness" values for the zones were derived from the observed load-settlement curve, allowing for estimated elastic shortening. The shear stiffness s_{τ} is defined as $s_{\tau} = \frac{\tau}{\rho}$ whilst the

compressive stiffness is $s_q = \frac{q}{\rho}$ where q is the base stress, τ is the shear stress mobilised on the shaft and ρ is the settlement of the rock socket pile. Based on load tests on rocksocket test piles, Thorburn(1966) and Davis(1974) established that $\frac{s_r}{s_q}$ values were in the range 0.05-0.07 at loads fully mobilising the allowable concrete stress. Hence a mean value was taken as $\frac{s_r}{s_q} = 0.06$. Table 2.8 gives the stiffness analysis of the rock socket test

pile.

Depth below top of socket (m)	Socket grade & "N" value	Stiffness (s _t)	Load for ρ=9mm
Up to 1.5m	F N=90	$s_q x(90/300) x 0.06$ = $s_q x 0.015$	0.82s _q
1.5-3.0m	D N=200	$s_q x(200/300) x 0.06$ = $s_q x 0.033$	1.78s _q
3.0-3.75m	E N=130	$s_q x(130/300) x 0.06$ = $s_q x 0.021$	0.56s _q
Base	C N=300	Sq	7.95s _q

<u>Notes</u>

Shaft load= $0.82s_q+1.78s_q+0.56s_q=3.16s_q$ Base load = $7.95s_q$ Total load = $11.11s_q=4500$ kN (design load) Therefore $s_q=405$ kN/m²/mm; and base stress q=3650kN/m²

Table 2.8 Rock socket analysis using stiffness, Cole and Stroud(1976)

From the above results, it is estimated that about 70% of the applied load were transferred to the base of the socket.

2.6.3 Piles formed in cretaceous mudstone in Port Elizabeth, South Africa

Wilson(1977) has reported a case study in which load tests on bored piles founded in mudstone were carried out at the site of a new bridge in Port Elizabeth, South Africa. The site consisted of sand overlying Cretaceous mudstone, which occurred at a depth of 3m below ground level. The mudstone, which was dark grey in colour and even in texture, was found to be heavily over-consolidated in nature.

It was proposed to predict and to check the ultimate pile base load using values of undrained strength of the mudstone determined through different methods. Four methods were used in evaluating the undrained strength of the mudstone, namely,

- 1. Unconfined compressive strength test,
- 2. In-situ cross-jacking test at base of pile hole,
- 3. Cube strength test, and
- 4. Point-load strength test.

In the cross-jacking test, a loading head 100mm in diameter was forced into the mudstone using a calibrated hydraulic jack. The failure load was taken as the lesser of the ultimate resistance or the load required to produce a penetration of 20mm. Point-load strength tests were performed on cylindrical core samples, both diametrically and axially.

The test pile was end bearing only with a 0.67m diameter toe. The load test result indicated that a settlement of 47mm (i.e 7% of base diameter) was required to reach failure in end bearing. A value for undrained strength at the base was deduced from the ultimate base load by assuming N_c value of 9. The values of c_u deduced from the pile test,

laboratory tests and the in-situ tests are given in Table 2.9. It was established that crushing tests on mudstone cubes and cross-jacking tests in the pile socket provided reasonable correlation with the in-situ strength of the mudstone. It was again demonstrated that the unconfined compressive strength test underestimates the in-situ strength of the mudstone.

TEST	AVERAGE RESULT	EQUIVALENT c _u (kN/m ²)	REMARKS
Cross-jacking test	4990 kN/m ²	832	It is assumed that the test pad acts as a surface footing with a bearing capacity of $6c_u$.
Cube crushing test	2096 kN/m ²	786	Taking UCS=3/4 of cube strength, hence $c_u = \frac{1}{2}UCS$
Point-load (54mm core) index I _s	I _s = 104	1248	Taking UCS=24I _s from Bieniawski(1975). Hence $c_u = \frac{1}{2}UCS$
Unconfined compressive strength (UCS)	1091 kN/m ²	545	$c_u = \frac{1}{2}UCS$
Pile load test result (maximum end resistance)	6878 kN/m ²	764	Taking N _c =9

Table 2.9 Values of c_u from different tests compared with the pile load test result correlation, Wilson(1977)

2.6.4 Rock-socket piles formed in mudstone at Melbourne, Australia

Johston and Haberfield(1993) have proposed an analytical model for evaluating skin resistance of piles formed in soft rock. The analytical model was developed into a computer program, which calculates the distribution, magnitudes and continuity of the stresses and deformations for a range of socket geometry and pile-rock interface roughness

(asperity). The analytical model requires three groups of parameters for input into the program to analyse a rock-socket pile:

	Mean asperity angle, i _m
Interface roughness	Standard deviation of asperity angles, i _{sd}
	Mean asperity height, h _m
	Standard deviation of asperity height, h _{sd}
	Socket length, L
Rock-socket geometry	Socket diameter, D
	Initial normal stress on shaft, σ_{no}
	Uniaxial compressive strength, q _u
	Cohesion, c
	Peak angle of friction, $\phi_{\rm p}$
Rock properties*	Residual angle of friction, ϕ_r
(based on drained conditions)	Mass modulus, E
	Poisson's ratio, v
	Uniaxial tensile strength, σ_t

 Table 2.10: Variables considered in the analytical model for rock-socket piles (Johnston and Haberfield, 1993)

Many singularities were found to eventuate with the point contact and localised crushing which occur with truly random asperity shapes. It was found that the simplified method involving the use of triangular asperity avoided these singularities. The initial normal stress on shaft, σ_{no} , was estimated from the head of concrete placed in the socket, by assuming that the horizontal stress is approximately equal to the vertical stress. The analytical model accounts for the effect of softening due to socket dilation, which occurs during pile loading. Dilation leads to the formation of radial cracks around the circumference of the shaft.

Williams(1980) has reported a case study of load testing of 1.2m diameter piles resisting load in shaft resistance only. The test piles were socketed into moderately weathered Melbourne mudstone. These load test data and other test data published elsewhere have been analysed using the model presented by Johnston and Haberfield(1993). Remarkably close agreement was observed between the measured and predicted socket shear stress versus settlement variation. In practical terms, it was found that difficulties are experienced in determining the socket roughness parameters. Hence it was considered advantageous to categorise the mudstone sockets into three groups: (a) smooth sockets, (b) medium sockets, and (c) rough sockets. On the basis of a study of these roughness categories for rock sockets in Melbourne mudstone, Johnston and Haberfield(1993) suggested the use of the roughness parameters given in Table 2.11.

	Range of values for sockets in Melbourne mudstone			
Parameter	smooth	medium	rough	
i _m (degrees)	10-12	12-17	17-30	
i _{sd} (degrees)	2-4	4-6	6-8	
h_{m} (mm)	1-4	4-20	20-80	
h_{sd}/h_{m}	0.35			
D (m)		0.5-2.0		
$q_u (MN/m^2)$	0.5-10.0			
$\sigma_{no} (kN/m^2)$	50-500			
$E (MN/m^2)$	50-3000			

Table 2.11: Socket properties in Melbourne mudstone (Johnston and Haberfield, 1993)

In order to produce design charts, the following values of E/q_u and q_u/σ_{no} were chosen as representing the general range of mudstone encountered.

Using these values, the numerical model was run 200 times with various selections of i_m , i_{sd} , h_m , and D within the ranges given in Table 2.11. For different roughness categories (i.e smooth, medium or rough) at particular values of q_u/σ_{no} , and E/q_u a mean value of the adhesion factor, α , of the 200 results was calculated by back-analysis. The results revealed that there was a trend for the adhesion factor to increase with increasing roughness and increasing E/q_u ratio, but to decrease with an increasing q_u/σ_{no} ratio. The

predictions using the simplified design charts were found to agree well even with field correlation of the test conducted in rocks of high uniaxial compressive strength. The calculated variation of adhesion factor with uniaxial strength was found to be in good agreement with the correlation suggested by Horvath(1978).

2.6.5 Large diameter rock socket at Rosignamo, Tuscany (Italy)

Carrubba(1997) has reported loading tests on several 1.2m diameter piles with lengths varying from 13.5-37.0m. The load tests were carried out to provide data for the design of the Poggio-Iberna Viaduct. Depending on the particular site, the pile sockets were formed in marl, diabase, limestone or sandstone. Several continuous borings with undisturbed sampling were performed to characterise the mechanical properties of the rocks. The rock quality designation (RQD) of rock formations was evaluated during sampling. Table 2.12 shows the socket lengths and the geotechnical rock properties at each test pile location.

	Socket length (m)	Total length (m)	Rock type	UCS (MN/m ²)	RQD [•] (%)	$\begin{bmatrix} E_{R} \\ (MN/m^{2}) \end{bmatrix}$
Pile 1	7.5	18.5	Intact marl	0.9	100%	200
Pile 2	2.5	19.0	Highly fractured diabasic breccia	15.0	10%	200*
Pile 3	11.0	37.0	Gypsum	6.0	60%	2000
Pile 4	2.0	20.0	Very hard diabase	40.0	50%	10000
Pile 5	2.5	13.5	Intact limestone	2.5	100%	5000*

UCS = Unconfined compressive strength

 RQD^* =Rock quality designation (defined as the sum of lengths of intact pieces of core greater than 100mm divided by the length of core advance)

 E_R = Longitudinal modulus (* denotes values determined from 300mm plate bearing tests; unmarked values are based on UCS tests)

Table 2.12: Rock socket properties at Rosignamo, Tuscany, Italy (Carrubba, 1997)

Loading tests were carried out following a slow-maintained load procedure. During each load increment, pile head settlements were measured at 10 minutes intervals until the settlement rate stabilised to 0.05mm/min. The observed load-settlement behaviour was different under the same load level, depending on the (a) socket length (b) rock strength and (c) upper pile length passing through soil. The shapes of the loadsettlement curves showed that shaft resistance appeared to be mobilised first.

Carrubba(1997) carried out numerical analyses in order to evaluate the limiting shaft resistance at the pile-rock interface. This was by using the computer code developed by Castelli et.al.(1992) which is based on a two-constant hyperbolic transfer function approach and pile equilibrium solution by finite element analysis. Three distinct hyperbolic functions were used to represent (a) the overall load transfer in the soil, (b) the overall load transfer along the pile-rock interface and (c) the base resistance development. The estimated hyperbolic function constants for shaft resistance in soil were maintained constant but the function constants for shaft and base resistance mobilisation in the rock were first estimated and then modified in an iterative process until the experimental load-settlement curve was reproduced. Once this was achieved, the limiting shaft resistance τ_{lim} could be directly obtained from the final hyperbolic function for shear transfer in the rock socket.

A comparison is made in Table 2.13 between the back-analysed limiting shaft resistance τ_{lim} and the mobilised shaft resistance τ_{mob} measured in the pile tests. The ratio $\lambda = \frac{\tau_{lim}}{(q_u)^{\frac{1}{2}}}$

has also been calculated and shown (where q_u is the unconfined compressive strength of the rock).

	Rock type	$ au_{lmob}$ (MN/m ²)	$ au_{lim}$ (MN/m ²)	$\frac{\tau_{\text{mob}}}{\tau_{\text{lim}}}$ (%)	λ $(MN/m^2)^2$
Pile 1	Intact marl	0.14	0.14	100	0.15
Pile 2	Highly fractured diabasic breccia	0.49	0.49	100	0.13
Pile 3	Gypsum	0.12	0.47	25	0.19
Pile 4	Very hard diabase	0.89	1.20	74	0.19
Pile 5	Intact limestone	0.40	0.40	100	0.25

Table 2.13: Measured and back-analysed shaft resistance values for test piles at Rosignamo, Tuscany, Italy (Carrubba,1997)

The back-computed λ values of 0.13-0.25 (MN/m²)^{0.5} were found to be close to the lower limit of 0.2 (MN/m²)^{0.5} suggested by Horvath and Kenney(1979). These values were found to be in contrast to 0.45-0.60 (MN/m²)^{0.5} as given by Rowe and Armitage(1987).

2.7 EFFECTS OF TIME AND MAINTAINED LOAD ON PILE SETTLEMENT

2.7.1 Consolidation and creep settlements

For piles formed in sand or unsaturated soils the final settlement comprises mainly the immediate settlement due to load application. The contribution of consolidation settlement in such conditions is of less significance, but additional settlement due to creep may also occur. For piles formed in clay the immediate settlement occurs under undrained conditions, followed by a time-dependent consolidation settlement. Terzaghi's theory of one-dimensional consolidation is fundamentally based on the dissipation of excess pore water pressure. Consolidation takes place when water diffuses through the soil matrix and may also involve the redistribution and spreading of stresses between soil particles within

the bearing strata. As a consequence, the soil particles undergo deformation and, if the clay is saturated, the excess pore water pressure is dissipated with time.

Consolidation is known to involve considerable structural changes within the soil and may continue beyond the simple dissipation of excess pore water pressure. The structural changes are responsible for "creep", which is a time dependent effect. Creep settlements occur regardless of the state of soil pore water and is particularly significant at high stress levels. For piles formed in saturated soils, the settlement-time variation may not show any distinction between settlements caused as a result of consolidation and those that are due to creep. Creep continues infinitely but its effects diminish with time, tending towards some ultimate state.

With respect to large diameter piles, load tests reported by Whitaker and Cooke(1966) show that immediate settlement is predominant. The tests reveal that at loads well below the ultimate, there is only a relatively small amount of time-dependent settlement. However, at higher loads, significant time-dependent settlements were observed. These settlements were mainly due to shear creep effects.

2.7.2 Assessment of time-dependent settlement of piles

Theoretical solutions for foundation settlement are often used to calculate the final settlement of piles. The analyses carried out by Poulos(1980) show that, in contrast to surface foundations, the consideration of the rate of settlement for a pile is of relatively minor importance. These analyses were used to calculate immediate settlement as a

percentage of the final settlement for incompressible piles having various length to diameter ratios L/d and installed in soils with varying effective Poisson's ratio, v'_s . The results show that for $v'_s = 0.2$ and L/d=25, 89% of the final settlement occurred immediately. For compressible piles having negligible end resistance, the proportion of immediate settlement still remained the most significant portion of final settlement but appeared to decrease with increasing pile compressibility. For end-bearing piles, it was found that the final settlement was almost wholly made up of the immediate settlement.

Cambefort and Chadeisson(1961) have made experimental observations that settlement appears to increase linearly with the logarithm of time. Based on this behaviour, Poulos and Booker(1976) have shown that the slope, C_r of the settlement versus the logarithm of time is given by

$$C_r = \frac{PI_{\rho}B}{d} \quad . \tag{2.11}$$

Where

- d= pile diameter
- I_{ρ} = displacement-influence factor evaluated from elastic theory of pile settlement (Poulos,1980)

B = constant parameter in the logarithmic creep function J(t) of the soil:

$$J(t) = A + B\log_{10}(1+\alpha t)$$
 (2.12)

where $A = \frac{1}{E_s}$ in which E's is the drained Young's modulus of the soil. The constants A,

B and α are experimentally determined soil parameters. The quantity J(t) is the inverse of

P= applied load

the Young's modulus of the soil, which varies with time. Hyperbolic type functions have been found to generally represent pile settlement variation with time, at constant load.

Tan et.al.(1991) has proposed a hyperbolic function of the form $\Delta_k = \frac{t}{k_1 + k_2 t}$ in which

 Δ_{b} = settlement of pile base

t= time elapsed

 k_1 , k_2 = constants to be determined from a straight line plot of $\frac{t}{\Delta_h}$ versus t

 $(k_1 \text{ and } k_2 \text{ are the vertical axis intercept and gradient respectively}).$

In order that the plot of $\frac{t}{\Delta_b}$ versus time, t, does not deviate from a straight line, Carrier(1993) points out that it is necessary to take settlement and time data for a sufficient length of time.

England(1993) has suggested that pile behaviour under load and in time can be modelled using hyperbolic functions and developed a computer program by the name TIMESET for the analysis of time-dependent pile settlements. The method requires the determination of

- The asymptotic settlement values W_s and W_b corresponding to the ultimate shaft and base resistances respectively. These are based on individual hyperbolic functions representing shaft and base performances.
- 2) The half-final strain time T_{50} defined as the time lapsed until 50% of the settlement due to shaft resistance or end bearing has occurred. The half-final strain times for shaft and base are denoted T_s and T_b respectively.

England(1993) used the following double hyperbolic function to predict the settlement Δ_t at any time t

$$\Delta_{t} = \frac{W_{s}t}{T_{s}+t} + \frac{W_{b}t}{T_{b}+t}$$
(2.13)

Owing to minimal volumetric change, the shaft component of the above function is expected to take place significantly faster than that of the base. Thus the two functions can easily be separated if a sufficient length of time is allowed while monitoring load and displacement readings in a static pile test. There are often variations in the relative displacement recorded under constant load, especially for the shaft. This is common in maintained load tests since pile settlement depends on the applied load, the time of holding the load and also the previous load and its duration. For base behaviour, it is observed that subsequent to the mobilisation of the full shaft resistance, the half-strain time T_b does not vary significantly and only the assymptotic value W_b changes from one load increment to another.

2.7.3 Effect of time on the ultimate capacity of piles

The installation of bored, cast in-situ piles inevitably causes soil softening due to (a) stress relief, (b) migration of moisture towards the pile shaft and (c) presence of extra moisture from concrete as it cures. Subsequent to the installation of the pile, the clay consolidates with time and therefore, in the long term, the load capacity of the pile increases.

For driven piles, pore pressure is generated during driving. This dissipates with time hence resulting in consolidation of the soil around the shaft hence increasing its load capacity.

For this reason, the load capacity of a driven pile may also be expected to increase with time. However, according to evidence presented by Bond and Jardine(1991) and Coop and Wroth(1989), the stress changes around a pile shaft driven into stiff clay may produce negative pore pressures. The dissipation of these pore pressures will therefore lead to a decrease in the strength of the clay. Tomlinson(1994) suggested that possible water entry through radial cracks and the gap between the upper part of the pile shaft and the surrounding soil can cause soil softening with time. Hence this will result in a reduction in the pile load capacity.

Observations made by Bjerrum(1973) indicate that a driven pile in soft clay experiences an increase in both the effective shaft resistance and cohesion over a period of time. This phenomenon has also been reported by Orrje and Broms(1967) who established that most of the strength gain takes place within 1-3 months after pile installation. According to load test data presented by Flaate and Selnes(1977), most of the load capacity regain of piles formed in soft clay occurs within 1-3 months after construction. Tavenas and Audy(1972) also reported a that the load capacity for piles formed in sand increases with time, with the principal regain occurring within one month. Load test data reported by Cooke et.al.(1979) for jacked tubular steel piles installed in London clay showed that the shaft resistance increased by 60% between 2 and 3 years after construction.

Wardle et.al.(1992) investigated the effect of elapsed time and maintained load on the ultimate bearing capacity of differently constructed piles founded in stiff London clay.

The site at Cannons Park in North London has 6-7m of brown London clay overlying blue London clay of considerable depth. The details of the test piles are given below.

Pile type	Diameter and material	Embedded length
Jacked pile No.1	6.4 mm mild steel tubing	6.5 m
Jacked pile No.2	6.4 mm mild steel tubing	6.5 m
Bored cast in-situ pile	170 mm diameter reinforced concrete	6.5 m
Driven pile	6.4 mm mild steel tubing	6.5 m

The jacked piles were instrumented with electrical resistance strain gauges and load cells. The bored, cast in-situ pile was installed and instrumented with vibrating wire load cells various levels and at the base. In all test piles, the initial pore pressure in the ground was monitored using piezometers inserted at selected depths and radial distances from the piles. C.R.P. tests were carried out to failure on each test pile at intervals over a period of about 3 years. In each test, the load variation in the piles and the pore pressure in the adjacent soil were monitored. No pore pressure changes were observed in the surrounding soil during the C.R.P. tests. Therefore any changes were small, or confined to an area very close to the pile shaft. The results by Wardle et.al.(1992) showed that the load capacity of all four test piles increased with time as summarised below.

Pile	Time elapsed	Shaft resistance increase
Jacked pile No. 1	Two months	28% then a further 14% three years later
Jacked pile No.2	Two months	28% then a further 20% three years later
Bored, cast in-situ	Three years	47% of the value at two months
Driven pile	One month	14%

Table 2.14: Observed increases in shaft resistance with time (Wardle et.al.1992)

Wardle et.al.(1992) reported that the increase in load capacity of the jacked and driven piles could be attributed to an increase in the shaft resistance rather than base resistance. Since no significant pore pressure changes were observed, it was considered that the increase of pile load capacity with time could be as a result of the gradual "healing" of the failure surfaces in the soil, rather than a general strength increase due to consolidation. The test results also demonstrated that maintained loads applied to the piles over long periods resulted in no additional increase in load capacity.

2.7.4 Creep settlement of piles formed in Keuper marl from pile load tests

Al-Shaikh-Ali and Davis(1975) have studied the creep-time behaviour of Keuper marl using a model pile load tested at a site near the M5/M6 Lymm interchange in Cheshire. The site had a 1m thick cover of boulder clay and weathered mudstones overlying a series of bands of partially weathered to unweathered Keuper marl mudstones. The water table was located at a depth of 2.5m below ground level. From a previous site investigation for the motorway bridge near the site, typical S.P.T "N" values at 3m depth were 135 and 432 blows corresponding to penetrations of 300mm and 225mm respectively.

A model concrete test pile 108mm in diameter by 2m long, embedded over 1.5m length, was installed into the ground by in-situ construction. The pile shaft was lined with greased polystyrene sheeting in order to eliminate shaft resistance. Load testing was carried out in 7 load cycles by jacking against suitable kentledge. The applied load and settlement were recorded throughout the test. Multi-stage consolidated undrained triaxial tests performed on samples from the pile borehole gave c' values of 14-35 kN/m² and ϕ values of 36-39°.

Failure of the pile occurred in the final load cycle at a stress of 5915 kN/m². Using Terzaghi's(1948) bearing capacity formula for a circular footing, a back analysis was performed to evaluate ϕ . It was found that the best-fit value of ϕ was 42.5° and this was close to the triaxial test result of 36-39°. It was also expected that the in-situ value of ϕ would be slightly higher than the laboratory determined value due to sampling disturbances.

At the peak load in each cycle, graphs of settlement (linear scale) against time (log scale) were plotted. At stress levels between 30-80% of ultimate bearing pressure, creep was a significant proportion of total pile settlement. In this range of stress, the variation of creep with the logarithm of time was found to be linear. At higher stress levels, the relationship was non-linear. Moore and Jones(1974) found that creep in well cemented Bunter sandstone may amount to about 20% of total settlement at high stress levels. Al-Shaikh-Ali(1971) carried out plate loading tests on zone II Keuper marl. At an applied pressure of 2800 kN/m², which represents the anticipated working bearing stress level in a pile system, the projected creep settlement for one year amounted to about 40-50% of the total settlement. Therefore creep can be of considerable significance in the long-term performance of a piled foundation formed in weak rock. The effects of creep on pile settlement are even greater for applied pile head loads approaching the pile capacity.

2.8 SUMMARY

Several case studies of pile load tests in Keuper marl were carried out. The most important aspects of these studies include the prediction of pile load capacity using different analytical and conventional methods. The findings generally indicate that,

- a) The use of unconfined compression tests in estimating the undrained strength of the mudstone results in an underestimate of its in-situ strength by as much as 40%.
 Pressuremeter tests carried out in the laboratory and cube crushing tests seem to provide more reliable and consistent results.
- b) Standard penetration tests provide a reasonable method of determining the in-situ strength of the marl for evaluation of bearing capacity. Cross-jacking tests in pile sockets also predict the in-situ strength reasonably accurately.
- c) Effective stress methods provide reasonable predictions of the pile shaft resistance, especially when shear strength values are determined on remoulded samples
- d) For given soil conditions, the contribution of creep settlements to the total long term settlement increases with the applied load as a proportion of the load capacity.
- e) There is evidence that the installation of a bored pile influences the load capacity from the viewpoint of both shaft resistance and end bearing. This is demonstrated by the fact that different load tests on identical piles installed in similar soil conditions reveal varying load capacities. Drilling a pile hole, by whatever means, will result in a relief of lateral pressure on the walls of the hole. Therefore a particular design method should be judged by how realistic it accounts for the all-important factor of pile installation effects. Even with the use of bentonite during drilling to prevent water inflow into the hole, softening of the clay around the pile shaft still occurs. Based on loading tests in London clay, Fearenside and Cooke(1978) established that the use of bentonite during pile construction has no apparent effect on the ultimate shaft ultimate resistance of the pile.

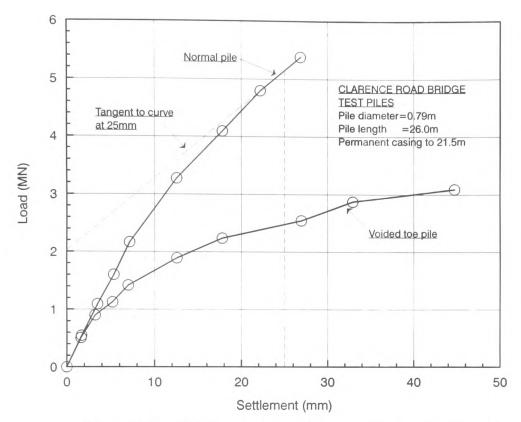
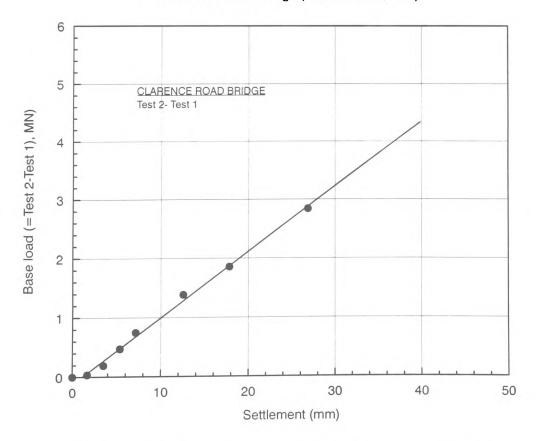
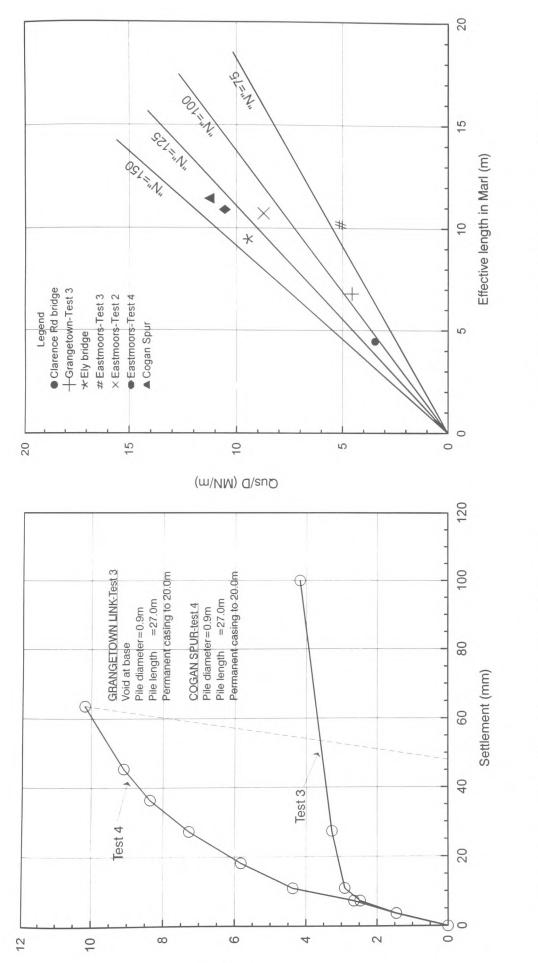
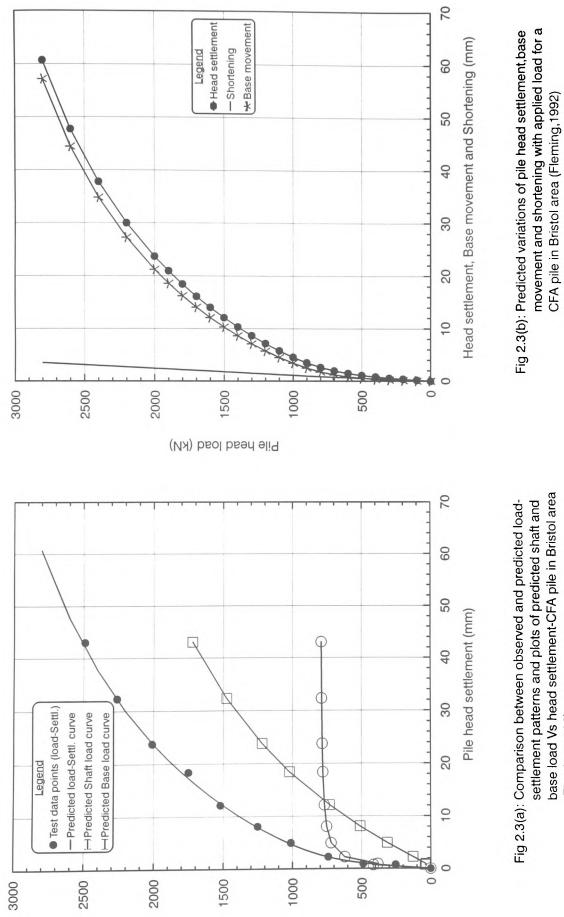


Fig. 2.1 (a): Load-Displacement curves for a normal and a voided toe pile at Clarence Road bridge (Kilbourn et.al., 1988)


Fig. 2.1(b): Base load versus pile head displacement curve obtained from the load difference between normal and voided toe piles -Clarence Road bridge (Kilbourn et.al., 1988)

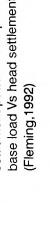

(NM) bsoJ

Fig 2.2 : Variation of ultimate shaft load with effective pile length in marl (Kilbourne et.al(1988)

(KV) Total, shaft load or base load (KV)

CHAPTER 3

GROUND INVESTIGATION AND TEST PILE INSTALLATION

CHAPTER 3: GROUND INVESTIGATION AND TEST PILE INSTALLATION

3.1 INTRODUCTION

The economical design of substructure elements requires an extensive investigation of the underground conditions at the site of the proposed development. The elements of the investigation programme usually depend on the project. For the construction of piled foundations, the ground investigation is aimed at providing adequate information to allow the geotechnical engineer to make a recommendation on the allowable load capacity of the foundation, as well as the expected settlement at working load. A load test programme may then be carried out in order to determine the ultimate bearing capacity and load-settlement behaviour, as a check on the values calculated from the soil data.

This chapter describes the programme of ground investigation, the installation and load testing of six full-scale instrumented test piles carried out as part of the Butetown Link of the South Cardiff peripheral distributor road. The main contractor responsible for the construction of the working piles carried out the installation and load testing of the test piles. The ground investigation activity was intended to provide the necessary geotechnical information for various proposed works, including the design of deep foundations in Mercia mudstone. The investigations were carried out to the instructions of the Engineer to the County of South Glamorgan.

3.2 GROUND INVESTIGATION

3.2.1 Geological description of the project area

Relevant geological survey maps indicate that the ground comprises estuarine mud and clay, which rest on glacial sand and gravel. Beneath these superficial deposits, the Triassic red marls (Mercia mudstone) are present. Little structural information is available on these bedrock materials, due to the general lack of exposure, however no major faults or other geological discontinuities are indicated. The general ground stratification profile with increasing depth is described as follows:

- (i) Made ground,
- (ii) Soft silty and organic clays,
- (iii) Sand and gravel, and
- (iv) Keuper marl.

The layer of "made ground" is 2-3m deep and consists of artificially deposited superficial materials. This layer contains a high proportion of granular material and is likely to be associated with previous developments and services in the Butetown area. Beneath the made ground layer, or directly beneath the surface in the estuarine area, lies a 10.0m thick stratum of very soft to soft occasionally firm silty clay with some pockets of silt and organic materials. Due to the presence of the river channels, the thickness of the clay decreased locally within the estuarine area. Within the Taff River channel, the clay layer does not exist. Beneath the alluvium exists a layer of variable thickness, of 3-12m, consisting of a medium dense to dense sand and gravel which contains cobbles and some boulders. The Keuper marl is present beneath the superficial material layers along the entire route. This material geologically falls under the Upper Triassic period which, in

Great Britain, is nearly always represented by continental red beds. Ever since Sedgwick imported the term "Keuper" in 1835 from Germany, the word has been used informally to refer to the lower arenaceous and upper muddy Triassic. In the South-Western part of Britain, deposits of "Keuper" are understood to be the red mudstone sequence that forms the lower division of the Mercia Mudstone Group. The upper division of this group is known as the Blue Anchor Formation (the Tea Green Marls of earlier classifications).

The marl was found to comprise very silty mudstone and siltstone with bands of fine grey/green sandstone or siltstone. The upper layers of the marl comprised highly weathered to fully weathered materials constituting weak to very weak zones III and IV marl. These generally occurred at penetrations of around 10m. There was a general increase in strength with increasing depth to zone II and zone III marl. However, the strata contained irregular beds of zone III and IV material throughout. In places, the marl was particularly weathered with zone II marl being encountered at penetrations of 25m. Other locations along the route had deep and variable weathering profiles with zone II material occurring after penetrations of only 6-7m. The marl generally had variable composition, containing regular and irregular bands of both weak and strong materials.

3.2.2 The ground investigation process

3.2.2.1 Introduction

The process of designing piled foundations to transmit and resist large forces requires a thorough understanding of the soil properties of the load bearing strata and any such strata which will influence the performance of the structure. The intention of the ground investigation was to provide the engineering parameters of the Keuper marl and the superficial deposits, for use in the detailed design of large diameter bored pile foundations. The investigations were specifically designed to assess the following:

- (i) The nature of the superficial deposits
- (ii) The depth to the Keuper marl surface
- (iii)The variation of the weathering profile of the Keuper marl
- (iv) Groundwater details
- (v) Geotechnical properties of the superficial deposits and of the Keuper marl.

3.2.2.2 Test boreholes and drilling through superficial deposits

A detailed site investigation for the Butetown link project was carried out along the route of the proposed road by Messrs Norwest Holst Soil Engineering(1990). A total of 146 boreholes, initially 200mm in diameter, reducing to 120mm, with depths of up to 58m were drilled along the proposed route. For various reasons, several of the designated borehole positions were relocated and others completed using rotary probing equipment.

Each hole was commenced by standard shell and auger equipment utilising both 200mm and 150mm diameter casings. Care was taken throughout in order to ensure that the casing was not advanced ahead of the materials to be sampled or tested. This traditional drilling technique was effective and provided a means of boring through the relatively weak material overlying the Keuper marl. In addition it enabled rotary drilling methods to be carried out down the same hole. The cable Percussion drilling rig was equipped with tools to enable the recovery of undisturbed samples of cohesive strata and carrying out standard penetration tests. Undisturbed samples of 102mm diameter were obtained where suitable cohesive materials were encountered. These were sealed with wax to prevent moisture loss before being transported to the laboratory for testing. Disturbed samples of the materials encountered were obtained and these were placed in sealed jars or large polythene containers for transport to the laboratory.

Penetration tests were carried out using split spoon or solid cone samplers provided with the cable percussion drilling equipment. In order to obtain an indication of the in-situ properties, the Standard Penetration Test (BS 1377 test 19) was carried out within the granular materials and the Keuper marl bedrock, in the boreholes being advanced, using both percussion and rotary drilling. The results of these tests were included on the borehole logs in the form of "N" values or as blow counts for a specified penetration. High blow counts were observed in the upper soil layers when the penetrometer struck larger obstructions within the materials.

3.2.2.3 Drilling through the Keuper marl

Some 102 of the shell and auger boreholes were temporarily cased on completion in order to allow extension into the underlying bedrock by rotary core drilling techniques. These holes were up to 70m in depth below ground level. Once the surface of the Keuper marl was established, coring was generally carried out using a double tube swivel core barrel fitted with either tungsten or diamond tipped bits suitable for providing 76mm diameter cores. Drilling was also carried out using foam or water as the flushing medium in order to provide a gentle cutting action and to increase the stability of the borehole walls. Good core recovery was generally achieved using the drilling method described. However, some core losses were experienced. This was attributed to the variability of the Keuper marl, which contained bands of both weak clayey material and competent rock. In areas of core loss, data on the in-situ strength was provided where practical by the standard penetration test.

For the main river Taff crossing where a notably weak zone was identified within the Keuper marl strata, larger diameter core drilling, of 112mm and 92mm, was undertaken. Mud was used as the flushing medium and coring was supplemented by the use of a specialist triple barrel for selected use in the weak areas. Where possible, representative samples of the bedrock materials were taken from the core boxes and sealed in cling film and wax to allow further testing in the laboratory.

Calliper tests were undertaken in the boreholes notably through the layers of weak materials located below a marker band of siltstone. This test was to investigate the possible presence of voids in this area.

3.2.2.4 The "marker band" at the river Taff estuary section

A consistent feature was observed in all boreholes drilled at the Taff estuary section of the test area. This was a strong grey green sandy siltstone, with a general thickness of 0.4m. It was directly overlain by up to 4m of moderately strong occasionally strong red brown sandy siltstone. This prominent stratum, which was generally logged as zone II marl, was referred to as "the marker band". It was noted that, above the marker band, the transition

from weathering zones IV and III into the moderately strong siltstone was generally very abrupt. A persistent feature observed in many of the boreholes was a brecciated zone, up to 0.5m thick, below the marker band. This zone composed an irregular assemblage of up to coarse gravel sized siltstone fragments, frequently cemented with calcite. This zone was referred to as "the weak zone". At depths below this zone, the rock quality increased, with Keuper marl zones II and II being encountered. It was expected that piles placed in the vicinity of the "weak zone" would experience additional settlement.

3.2.2.5 Groundwater observations

A complete record of the groundwater conditions encountered during drilling is given on the borehole logs. In order to provide detailed information on the groundwater conditions, water records were taken over tidal cycles with the borehole casing sealed at various levels. A number of standpipe piezometers were also installed. The permeability of the upper clay gravel and underlying marl was assessed from both falling and rising head permeability tests within the borehole casing. Falling head tests were also undertaken in several standpipe piezometers after a period of 3-4 weeks in which the piezometers were allowed to stabilise. Packer permeability tests were carried out within the marl notably in the boreholes formed in the river Taff in order to assess the hydro-geological conditions and to investigate further a permeable/porous "weak" zone identified during drilling.

The ground water records made were those encountered at the time of the investigation and might not be representative of the actual state which may prevail at other times or in large excavations. Seasonal and tidal variations of the ground water level were also expected to occur, hence the water levels measured during drilling would not necessarily be constant.

3.2.2.6 Logging of Keuper marl cores

Engineering geologists were maintained on site in order to allow assessment of conditions as the works proceeded, to ensure that the cores were logged and sampled as soon as possible after drilling, and at moisture contents as near as possible to natural moisture contents. Once the rotary cored holes had been drilled, the core-liner was split and, as a first step of the logging process, a photographic record of the cores was taken prior to logging and sampling, with a master copy of the photographs having been presented to the Engineer. On completion of the engineering classification of the cores, a video record of the Keuper marl was produced. This was deemed necessary due to the susceptibility of the Keuper marl matrix to degradation during storage. It enabled an accurate record to be kept of the freshly drilled cores. All this information was made available to the design engineers and the contractors tendering for the works. The video process recorded brief descriptions by an engineering geologist where the Keuper marl cores were physically impacted with a hammer or broken by hand by the geologist.

The Keuper marl strata encountered in each borehole were classified in accordance with the methods stipulated in BS 5930 (1980). In addition, the weathering zone classification system proposed by Davis and Chandler(1973), as indicated in the CIRIA reports numbers 13 and 47, was adopted. The site investigation report used this classification system extensively, with parameters being given for each weathering zone or sub-zone. It was noted that there was considerable variation with depth relating to the degree of weathering, there being a complete intermixing of the zones which did not follow the envisaged pattern of a decrease in weathering with increasing depth.

After logging and sampling, the cores were transported to the contractor's laboratory for storage or for further examination as appropriate, before being returned to the South Glamorgan County Council for long-term storage and for reference purposes.

3.2.3 In-situ and laboratory soil tests

A programme of laboratory testing was agreed between the site investigation contractor and the supervising engineer. The standard penetration test was carried out within the granular materials by percussion and rotary boring in order to assess the in-situ properties of the soils. The following laboratory tests were undertaken on the superficial soil strata, in accordance with British Standards B.S.1377(1975): (1) Moisture content (2) Atterberg Limits (3) Particle size distribution (4) Organic tests (5) Chemical tests (6) Consolidation (7) Triaxial tests: Undrained, Consolidated drained and Consolidated undrained triaxial tests (8) Permeability tests in conjunction with oedometer tests, to determine the horizontal stress coefficients.

Due to the fractured nature of much of the Keuper marl strata, it was not possible to obtain undisturbed material of the weathered marl in sufficient quantities to enable enough tests to be carried out to provide representative average results. Type U100 samplers only provided class 3 samples and thin walled samples were found to be impractical owing to the danger of damage. Therefore, the strength of the more fractured materials was determined on site by the use of the point load test. These tests were carried out according to the procedure given in the Geological Society Engineering Group working party report dated 1970. The size correction for point load testing was based on the values determined for T500.

Further rock testing was carried out to supplement the field point load strength tests. Laboratory point load tests were undertaken as per the procedure used in the field tests. A small number of unconfined compressive strength tests were carried out in accordance with the methods specified in the Geological Society Engineering Group working party report dated 1970. Difficulty was experienced in preparing samples of the upper marl, due to the incipient fractures, which resulted in sample disintegration. Therefore, much of the testing was carried out on the more competent solid layers.

3.3 ANALYSIS OF BOREHOLE DATA

3.3.1 Introduction

The standard engineering description of rock strata is based on (a) colour, (b) fracture, (c) weathering state, (d) particle size, (e) rock name, and (f) strength. The CIRIA report No. 47 gives the strength data and other engineering properties of Keuper marl according to weathering zone classification only. In the present work, the information from the test boreholes is analysed with the aid of a computer spreadsheet to study the relationships between the measured strength data and the physical properties of the soil strata. This enables an investigation to be made of the influence of one or more physical properties of Keuper marl on its strength, based on a database of all borehole records available. Where a large amount of test data is available, it is a simple matter to carry out a statistical analysis on the data to predict the strength of Keuper marl based solely on core description.

3.3.2 Database of borehole records

The classification and properties of the Keuper marl have been established by analysing the strata descriptions, in-situ and laboratory test information given from 85 boreholes and are listed in the Appendix (Table A.1). The test sampling depths and the results of any in-situ and laboratory tests are given alongside the strata description. This information has been transferred from the site investigation factual report into a computer data file. It covers borehole numbers 49 to 128A, which had depths ranging from 30 to 50m. Borehole numbers 1 to 48 were shallower and provided information on the superficial deposits only. No laboratory or in-situ results were available from borehole numbers 129 to the last borehole (No. 136).

The description of the various Keuper marl strata encountered in each borehole was carried out according to the guidelines given in BS 5930 (1980). In addition, each stratum was classified in terms of the weathering zone. Much of the strength information on the Keuper marl was assessed from the standard penetration (S.P.T.) tests and field/laboratory point load tests.

3.3.3 Standard Penetration Test (S.P.T.) data

In the S.P.T. test, the type of drive rod end has been denoted by "split" to mean a split sampler type; and by "cone" to signify that the split sampler was replaced by a standard cone shoe. Where the required total penetration of 450mm could not be achieved, the number of blows corresponding to the final penetration reached has been recorded in the form $\frac{"N"}{n}$ where N is the blow count and p is the maximum penetration reached.

In order to standardise the S.P.T. "N" values from different boreholes, the overburden pressure and length of drill rod need to be taken into consideration. Liao and Whitman(1986) have catalogued six methods for correcting measured "N" values for overburden pressure. In the U.K, the most commonly used correction method is that of Gibbs and Holtz(1957), although it is limited to the degree of overburden pressure. This method has been adopted in correcting the observed "N" values.

3.3.4 Point load test results

The point load strength test is generally used as a simple procedure for field classification of rock materials but can be closely correlated with the results of uniaxial compression. The "Point-Load index" I_s, was first calculated from $I_s=P/D^2$ (where P is the failure load and D is the distance between the platen contact points). This index was then corrected to a reference diameter of 50m using the charts given by Turk and Dearman(1986). The corrected point load index values were arranged in ascending order and the median value determined by systematically deleting highest and lowest values

until only two values remained. The average of these two values was taken as the median point load index. The median point load index was then converted to the equivalent uniaxial strength by multiplying by a factor of 24. Hence the undrained cohesion was obtained as half of the uniaxial strength.

The test method is not dealt with in a British Standard, however a detailed experimental procedure and further literature is given in Broch and Franklin(1972). The tests were carried out in accordance with the methods indicated by Norman Brooke, in the international Journal of Rock Mechanics, Mining Science and Geomechanics Abstracts relating to size correction for point load testing, with the values determined for T500. The core specimens, which were in the form of cylindrical cores or irregular lumps, were broken by the application of a concentrated load using a pair of conical platens.

In the "axial" test, the load was applied at the ends of the specimen, whereas in the "diametral" test, the specimen was inserted in the test machine such that the platens make contact along a core diameter. The diametral test was used for core specimens with length/diameter ratio greater than 1.4, while the axial test was applied to core with length/diameter ratio of 1.05-1.15. Long pieces of core were tested diametrically to produce suitable lengths for subsequent axial testing.

3.3.5 Soil description using digital codes

In order to investigate the relationship between the physical properties of Keuper marl and its measured strength values, a spreadsheet database was established to analyse the data from all the 136 borehole logs. The method involves identifying the full description of each stratum by a sequence of 21 digits comprising 7 groups of 3-digit numbers. The seven groups of numbers represent respectively the following properties: (a) colour, (b) weathering state, (c) grain size, (d) fracture state, (e) rock name, (e) strength and, (f) weathering zone. For example, the code number 100|220|310|420|500|605|720 identifies the stratum as (i) *Red brown, (ii) highly weathered, (iii) clayey, (iv) highly fractured, (v) silty MUDSTONE, (vi) very weak to weak, (vii) Keuper marl zone III-IVa.*

Tables 3.1-3.3 give 3-digit identification codes used to describe given physical properties of a soil stratum. The first digit denotes the physical property being considered. The next two digits represent descriptions under the physical property in consideration.

Colour (100-199)	Colour (100-199) Fracture state (200-299)		
Description	Description Code		Code
Red brown	100	Fragmented	200
Red brown and locally grey	120	Fragmented to fine gravel sized	205
green		Fragmented to fine to medium/	210
Grey	130	coarse gravel sized	
Grey green	140	Completely fractured to coarse	215
Dark grey	150	gravel and cobble sized	
Light grey	160	Highly fractured	220
Dark grey green	170	Highly fractured to fragmented	225
Red brown and grey	180	Highly to moderately fractured	230
		Moderately fractured	235
		Moderately fractured to	240
		fragmented	
		Moderately to slightly fractured	245
		Slightly fractured	250
		Intact to slightly fractured	255
		Intact	260
		Intact to moderately fractured	265

Table 3.1: Strata description codes for Colour and Fracture state

Weathering state (300-399)		Grain size (400)-499)	Zone (700-799)	
Description	Code	Description	Description Code		Code
Completely weathered	300	Silty	400	IVa-III	700
Highly to completely	305	Sandy	410	IVa	705
weathered		Clayey	420	II-IVa	710
Highly weathered	310		.	III-IVa/II	715
Moderately to highly	315	Rock name (50	Rock name (500-599)		720
weathered		Description	Code	III	725
Moderately weathered	320	MUDSTONE	500	III-II	730
Moderately to slightly	325	SILTSTONE	510	II-III	735
weathered		CLAY	520	II	740
Slightly to highly	330		•	II-I	745
weathered				I-II	750
Slightly weathered	335			Ι	755
Fresh to slightly	340				
weathered					
Fresh	345]		····	

 Table 3.2: Strata description codes for Weathering state, Grain size, Rock name and weathering Zone

Strength (600-699)				
Description	Code			
Very weak	600			
Very weak to weak	605			
Weak	610			
Weak to moderately weak	615			
Moderately weak	620			
Moderately weak and moderately strong	625			
Moderately strong	630			
Moderately strong to strong	635			
Strong	640			
Weak with moderately strong lithorelicts	645			
Very strong	650			
Stiff	655			
Extremely strong	660			
Firm	665			

Table 3.3: Strata description codes for strength

3.3.6 Statistical analysis of test data using digital codes

The above coding system enables the test results on rock cores from various levels to be related to the engineering description of the stratum present at that level. The method enables rapid statistical analyses to be made, which instantly provide information such as the average strength value and frequency of a given stratum, as deduced from as many borehole logs as are available. In addition, the soil test results from a stratum of given description can be analysed taking into account the influence of overburden pressure.

It is possible to assess the influence on strength of weathering, or in combination with one or more additional physical properties. This method was used to study the strength data from the most frequently encountered strata. The classification of point load strength values available from the test summary sheets was carried out on the basis of these strata descriptions and is shown in Fig. 3.1. It is seen that there is a high degree of scatter in the results and no discernible correlation can be said to exist between the engineering description of a stratum and its point load strength.

In Fig. 3.2, the point load data have been classified according to only the strength descriptions of the strata. These descriptions range from *very weak* to *extremely strong*. The test data still highly scattered, with some strata classified as weak apparently having higher strengths than strong strata, and vice versa. Similar scatter of point load data is also observed in Fig.3.3, in which the data have been matched according to weathering zones classification. An analysis of "N" was also carried out based on weathering zone

classification only and this is given in Fig. 3.4. The scatter is not as great as with point load values and it is seen that "N" decreases with increasing weathering.

Any number of borehole logs can be analysed using this method. Present experience shows that the statistical analysis of relevant soil parameters are served more effectively by a detailed selection and targeted site investigation procedure, than choosing an all embracing (large volume) type of study, for which the cross-correlation of data becomes unjustifiable.

3.4 FULL SCALE FIELD TEST PILES

3.4.1 Introduction

A number of case histories of pile load tests in Keuper marl are presented in the literature review. In these case studies, pile load capacity predictions are obtained from soil mechanics considerations and compared against the results of load tests. The load tests are generally carried out with only minimum instrumentation to assess the load-settlement behaviour of the test piles. For the Butetown Road link contract, a further initiative was taken in which six test piles were fully instrumented and load tested in an effort to significantly increase the awareness and understanding of soil-pile interaction in the Keuper marl.

The test piles were 0.9m in diameter, with lengths varying between 28 and 31m. Permanent steel casings were installed along the upper portions of the piles passing through superficial deposits. Therefore the embedded pile lengths in the Keuper marl were approximately 12m. The instrumentation comprised vibrating wire strain gauges and extensometers embedded at predetermined locations within the pile concrete. Load cells were also installed at the bases of the test piles. The test piles were installed and tested near the proposed sites of the actual working piles for the foundations of the major structures forming part of the Butetown road link.

3.4.2 General construction of the test piles

The first pile, TP1, because of the contract programme, was undertaken without instrumentation. This test pile was formed in a similar manner to that used during previous piling contracts in the area. It is typically termed a "voided toe" test pile, where as the name suggests, the pile was initially provided with a voided base and load tested to establish the skin resistance. Before subsequent load tests, the pile base was grouted with cement and, after curing, a traditional load test was performed on the simulated full test pile. The results were then used to try and isolate the contribution made by skin resistance and end bearing to the total load capacity of the test pile.

The second pile, TP2, was instrumented except that the base load cell proved too difficult to place. This was due to not only insufficient tolerance in its diameter to that of the steel pile liner but also some possible effects of displacing the drilling fluid. Load testing of this pile was conducted in 4 cycles but not taken to failure. Test piles TP3 and TP5 were successfully installed with full instrumentation and load tested in 5 and 6 load cycles respectively. The failure points were clearly shown and the load-settlement curves depicted clear maximum loads.

Test pile TP4, although formed with full instrumentation, was found to have interference between the liner and the pile shaft. Vibrations caused by earth-moving plant which suddenly erupted close to the site resulted in uncertainty as to whether the pile shaft was formed as intended. Thus a very careful interpretation of the results was required. The test pile was tested in 5 load cycles to failure.

The last test pile, TP6, was successfully instrumented and load tested in a series of 4 compressive load cycles and then subjected to withdrawal loading. A full failure criterion was not reached in either test.

3.4.3 Forming the borehole for a typical test pile

Figures 3.5 to 3.10 illustrate the layout and instrument locations in each of the completed test piles, including descriptions of the ground strata encountered. A full description of the instrumentation needed is given in section 3.5. The following procedure was adopted while forming the pile shaft:

A hole was drilled through the superficial deposits to a predetermined depth (generally about 20m) just below the Keuper marl surface. This was achieved by first driving a 1.3m diameter by 10mm thick mild steel tube to the required depth of the hole. The function of this temporary casing was to prevent the superficial deposits overlying the Keuper marl from collapsing and entering the hole. In addition, this ensured that there was no soil-pile contact along the upper pile portion passing through the superficial soils. Therefore, this

enabled the monitoring of load transfer within the pile length embedded in the Keuper marl, which was the material of interest.

Having excavated to the bottom of the steel sleeve, an inner mild steel casing 900mm in internal diameter by 10mm thick was centrally lowered to the bottom of the hole. The casing was then vibrated into the marl and seated at a distance of approximately 1-2m below the top surface of the marl. For the actual working piles, this inner casing was permanently installed so as to prevent "wash out" if substantial hydrostatic pressure was anticipated.

Drilling under bentonite in the marl, within the inner casing, was carried continued to the required length of the pile. The size of the completed borehole was logged using a mechanical calliper along the entire length of the shaft. According to investigations carried out by Barker and Reese(1970) and Fearenside and Cooke(1978) bentonite has no detrimental effects on pile load bearing capacity. Rather, it is the pile/soil properties and the installation technique, which determine the performance of a pile. Bentonite has the property of remaining in suspension in water to form a stiff gel when allowed to become static. However, stirring or pumping agitates the slurry and causes it to have a mobile fluid consistency. When used to support granular soil, the bentonite slurry penetrates the borehole walls and gels there to form a strong and stable "filter-cake". In a clay soil, there is no penetration of the slurry, but the hydrostatic pressure of the fluid prevents collapse at places weakened due to fissures.

3.4.4 "Cleanliness" at the pile base level

The bottom of a borehole for a working pile should not contain any accumulated gravel, which can have a significant effect on the performance of the pile at working loads. The effect of the loose soil present beneath a pile base is to result in relatively high pile movements during the initial stages of base resistance development. However, ultimate end-bearing resistance remains unaffected, because the loose soil will have been fully compressed as the base pressure increases.

The formation of the test piles was expected to continue even under wet borehole conditions since some inflow of groundwater was anticipated. In some cases water could be evacuated, depending on the permeability of the marl strata below the temporary casing and the effectiveness of the seal formed by the casings. In any event care was taken to balance any water pressure by the use of bentonite slurry.

The procedure for cleaning a pile toe involves the use of a bucket with a "slotted" bottom. This is done immediately before placing the reinforcement cage. The bottom of each borehole was tested for cleanliness by measuring the depth with a heavy drop weight attached to the end of the tape. The bore was plumbed and the depth recorded as soon as it had been bottomed out. This process was carried out before installing the reinforcement cage.

After the reinforcement cage was installed, the depth was measured again. Based on experience, up to 500mm thickness of debris was expected to have collected at the bottom

99

of the hole. If the shackle pin slowly sank into the debris, then it was probably slurry, which could simply be lifted out during concrete placement. If the shackle did not sink into the debris, then it was more likely to be a gravel-sized mix, which could stay in place during concrete placing. In this case a suction pump was used to remove the material or alternatively, the material was stirred up into suspension using an air-line, before pouring concrete.

3.4.5 Pile reinforcement and concrete placement

Whilst drilling of the pile shaft was in progress, the steel reinforcement cage for the pile was assembled near the site of the borehole. The reinforcement comprised 18 no. 32mm diameter H.Y.S bars arranged at equal spacing and running the full length of the pile. A concrete cover of 75mm was provided between the reinforcement and the inside surface of the steel casing. The reinforcement were bound together at the periphery by T12 steel bars arranged at equal spacing and welded to the main bars.

The various instruments were installed on the reinforcement cage before the latter was lowered into the hole. A base load cell was installed at the bottom of the hole, (Plate 3.1) and a concrete plug 500mm deep placed over it. In order to protect the instrumentation and to minimise the loosening of material from the sides of the bore, which might cause the cage to fall to the bottom of the hole, the full length of the reinforcement cage was carefully lowered into the hole. (Plate 3.2). Grade 50 normal-weight concrete was specified for the actual contract piles. In order to maintain the same material properties for test piling, the same concrete mix type was used in the test piles. Concrete was placed

using a "tremie" pipe, 250mm in diameter, in order to avoid segregation and contamination. A hopper was provided at the top of the first tremie pipe section. At each stage, the required pipe length was achieved by screwing additional segments. Because of the small diameter of the tremie pipes and their long lengths (up to 31m), the concrete mix had to be designed to give a minimum workability of 150mm slump. For each pile hole, concrete placement was commenced not later than 12hrs after drilling.

Sample concrete test cubes and cylinders were prepared and tested at the University of Glamorgan's civil engineering laboratories. The tests were carried out in order to determine the compressive strength and the static modulus of elasticity of the concrete. The test piles were cured, under natural conditions for a minimum of 14 days, before commencement of load tests.

3.4.6 Problems encountered during construction of test piles

The installation of large diameter, bored, cast-in place piles is subject to a wide range of difficulties. The construction problems arising with bored piles have been described by Pandey(1967). Even during placement of workable concrete in a dry open hole, large unfilled voids or pockets of clay and silt may still be created due to a number of causes.

In the U.K, the current practice is to use the guidelines given in the Institution of Civil Engineers Specification for Piling(1988) in order to overcome as many of these difficulties as possible. Additional information and guidance on the installation procedures for bored piles is also given by Thorburn & Thorburn(1977).

3.5 MONITORING OF PILE RESPONSE UNDER LOAD

3.5.1 Instrumentation and test schedule

The following instruments were installed at selected positions in each test pile:

- i) Vibrating wire strain gauges,
- ii) Rod extensometers,
- iii) Pile head displacement transducers, and
- iv) Base load cell.

All instruments were electronically connected to a computerised data logger and monitor situated in a small cabin close to the site. The instruments were supplied, installed and monitored by the Geotechnics division of the Building Research Establishment (B.R.E.), Garston, Hertfordshire. Figures 3.5-3.10 illustrate the locations of these instruments as deployed in test piles TP2-to TP6.

The general specifications for each of the instruments the total number required for a given test pile are shown in Table 3.4. These instruments are discussed in more detail in the next section. Table 3.5 lists the various instruments deployed at specific locations with respect to each test pile.

Chapter 3: Ground	Investigation a	and Test	Pile	Installation
-------------------	-----------------	----------	------	--------------

INSTRUMENTA	FION REQUIRED FO	R ONE TEST PI	LE
INSTRUMENT	ТҮРЕ	QUANTITY	RANGE
Load cell (inclusive of cable from load cell to monitoring unit	Employing a strain gauge sensing unit	1	7500 kN
Embedment strain gauge	Vibrating wire	12 for TP2	±1500
(inclusive of cable from	strain gauge	15 for TP3 to	microstrain
load cell to monitoring		TP6	
unit)			
Extensometer	Employing LVDT	3 for each pile	±25 mm
(Complete with protective	or similar	and in	
tubes and connecting cable		addition 3	
to monitoring unit		short length	
		gauges in TP6	<u> </u>

Table 3.4: Instrumentation required for each test pile

Pile	Length		Instrument level No.						
No.	(m)	1	2	3	4	5	6	7	Base
TP2	28.81	VW	VW El	VW E1	VW El	*	*	*	-
TP3	30.00	VW	VW	VW E1	VW El	VW E1	*	*	LC
TP4	24.35	VW	VW	VW E1	VW E1	VW E1	*	*	LC
TP5	30.00	VW	VW	VW E1	VW E1	VW E1	*	*	LC
TP6	31.55	VW	VW	VW	E1 E2	VW E1 E2	E2	VW El	LC

Legend

VW Vibrating wire strain gauge

E1 Extensometer running from pile head level to this level

E2 Short length extensometer (1m gauge length)

LC Load cell

- No instrument installed at this level

* Instrument level does not exist in this pile

Table 3.5: Types of instruments installed in the test piles

3.5.2 Vibrating wire strain gauges

A vibrating wire strain gauge is an electrical device consisting of a wire stretched between two points. The strain gauge is mechanically clamped to a structural element such as a steel bar, and can be embedded in concrete when placed inside a protective tube. When vibrated by a small electromagnet, the wire produces a frequency proportional to the tension in it. Any load change in the structural member causes a change in tension, that in turn causes a change in the frequency when the wire is vibrated. To determine the frequency of vibration, the time it takes for the signal generated by the vibrating wire to go through 100 cycles (peak to peak) is measured. Minor seepage of water into the cable containing the strain gauge does not affect the frequency of the signal being generated by the vibrating wire. Nevertheless precautions should be taken to prevent the enclosing tubes from being completely filled with water.

The vibrating wire strain gauges used for these test piles had 150mm gauge lengths and could measure up to 1500 micro strain range. At selected levels, three strain gauges were installed in a 120° pseudo-rosette arrangement. The strain gauges, which were enclosed within protective tubes, were suspended from the reinforcement cage and embedded within the pile concrete (Plate 3.3).

3.5.3 Extensometers

Extensometers were deployed for the measurement of pile shortening at various depths. This was intended to supplement the information provided by the vibrating wire strain gauges and the load cells. The extensometers used in the test piles comprised a Linear Variable Displacement Transformer (LVDT) which formed the movement sensing transducer. The transducer was fitted at the bottom of the reference rod, which was suspended from the pile head. All extensometers installed in the test piles were accurate to 0.001mm and were embedded in the concrete. For each test pile, three number rod extensometers were longitudinally installed so as to run from the pile head level to certain selected depths along the shaft (Plate 3.4).

It was noted that cracks that develop in the concrete as it is stressed could significantly affect the strain levels measured. Therefore if two cracks are located outside the gauge length covered by a typical vibrating wire strain gauge, the strain gauge will monitor low levels of strain. Conversely, a crack developing in the middle of a strain gauge will cause it to monitor large strain levels. Hence great care is needed in interpreting the strain readings for concrete under tensile loads. For test pile TP6, which was tested in three cycles of upward, additional short length extensometers (1m long) were installed at certain levels within the shaft. This enabled the monitoring of strain over a relatively larger section of pile to include the effects of cracks. It was anticipated that the 1m gauge-lengths would not be significantly influenced by the crack locations within the tensile zone of the composite pile structure.

3.5.4 Pile head movement monitoring

Before concrete was placed in the pile hole, great care was taken in order to ensure that all instruments were correctly identified and connected to the computer logging facility located at the data monitoring cabin. The gap between the inner and outer steel casings

(Plate 3.5) of the test pile was covered in order to prevent any soil or other objects from falling into the hole.

A reference frame was supported on two foundations placed sufficiently far from the test pile and reaction assembly, typically 3 to 5 pile diameters, so as not to be affected by ground movements caused by pile loading (Plate 3.6). Electrical displacement transducers were fixed to the frame and bearing on the top of the pile head. The transducers were accurate to 0.01mm, hence complying with the minimum requirement of 0.1mm according to BS 8004(1986).

3.5.5 Pile base load cells

The load cells were manufactured, calibrated and supplied by BRE. A typical one incorporates vibrating wire sensing elements inside a sealed loading unit. By calibrating the change in frequency of the wire against changes in load applied to the tube, it was possible to use the instrument as a load-measuring unit. Each load cell comprised six vibrating wire-sensing units encased in a cylindrical concrete block, which was provided with an inflatable rubber gasket around its perimeter. When the load cell had been placed in position, using the Kelly bar of the drilling rig, the rubber gasket was inflated in order to prevent fresh concrete from flowing along the sides.

3.6 PILE LOAD TESTS

3.6.1 Load test arrangement

A 2000 tonne load test rig (Plate 3.7) specially developed by the main piling contractor Davis Middleton and Davis Ltd (Cardiff) was used to load test the piles. The frame comprised two main beams situated on opposite sides and stiffened with smaller secondary members in the transverse direction. The ends of the main beams were anchored to four tension piles formed at the corners of the frame. Load was applied to the pile head via a system of four 500 tonne hydraulic jacks symmetrically placed on the pile head so as to apply axial load to the pile (Plate 3.8).

3.6.2 Load test procedure

Each pile was tested under maintained load (ML) conditions. The number of load cycles varied from one test pile to another. In each load cycle, the pile was loaded in increments (or unloaded in decrements) between 500kN and 1500kN. Each load increment or decrement was maintained until the rate of change in pile head settlement with time had fallen to less than 0.25mm/hr, in compliance with BS 8004 (1986). Tables 3.6 and 3.7 give the proposed loading schedule for a typical test pile (TP3).

At each load increment or decrement, and at intervals of 10 minutes, the magnitude of the applied load and the steady state readings on the instruments were automatically logged and stored by computer, which also continuously recorded time. The data logger was housed in a cabin located adjacent to the test pile site (Plate 3.9).

	LOAD (CYCLE			2		
Incren	nents (kN)	Decrei	ments (kN)	Increr	Increments (kN)		ements (kN)
Load	Time held	Load	Time held	Load	Time held	Load	Time held
500	Minimum	5000		500		8000	until
1000	1 hr or	4000	until	1000	Minimum	7000	cessation in
1500	cessation in	3000	cessation in	2000	1 hr or	6000	settlement
2000	settlement	2000	settlement	4000	cessation in	4000	< 0.25mm
3000	< 0.25mm	1500	< 0.25mm	5000	settlement	2000	per hour
4000	per hour	1000	per hour	6000	< 0.25mm	1000	
5000		500		7000	per hour	0	
6000	4-6 hrs	0		8000			
				9000	4-6 hrs	1	

Table 3.6: Maintained load test schedule for TP3 (load cycles 1 and 2)

	LOAD CYCLE 3 LOAD			CYCLE 4			
Increm	nents (kN)	Decrei	Decrements (kN)		nents (kN)	Decre	ements (kN)
Load	Time	Load	Time held	Load	Time held	Load	Time held
	held						
500		10000		1000		15000	
1000	Minimum	8000	until	2000		14000	until
2000	1 hr or	6000	cessation in	4000		12000	cessation in
4000	cessation in	4000	settlement	6000		10000	settlement
6000	settlement	2000	< 0.25mm	8000		8000	< 0.25mm
8000	< 0.25mm	1000	per hour	10000	30 minutes	6000	per hour
9000	per hour	0		11000		4000	
10000				11500		2000	
11000				12000		0	
11500				12500			
12000	12 hrs	:		13000			
	\downarrow			13500			
or minin	mum load			14000			
giving 2	25mm net			14500			
settl.				15000			
				\downarrow	\downarrow		
				or load to	o failure		

Table 3.7: Maintained load test schedule for TP3 (load cycles 3 and 4)

3.6.3 Pile calibration using a short reinforced concrete column

To substantiate and validate the data generated from the pile test programme, a 2.0m long reinforced concrete column with the same diameter, reinforcement and concrete mix type as the test piles was tested. These dimensions gave a satisfactory height to diameter ratio of 2:1. Figure 3.11 illustrates the construction of the short column. The column was formed within a 10mm thick mild steel tube throughout its length and was instrumented with strain gauges to monitor longitudinal, radial and circumferential strains. All the gauges installed in the column were identical to the ones used in the test piles, except that the extensometers were 1220 mm long. The radial, circumferential and axial strain gauges were installed at the mid-height of the column while the extensometers covered the middle 1220mm length of the column, as shown in Fig. 3.11. The instruments were installed as described in Table 3.8.

INSTRUMENT TYPE	DIRECTION OF DEPLOYMENT	MARK	GAUGE LENGTH (mm)	DISTANCE FROM COLUMN AXIS (mm)
Vibrating wire gauge	Axial	VW1 VW2 VW3	150 150 150	343 343 343
Vibrating wire gauge	Radial	VW4 VW5	150 150	253 253
Vibrating wire gauge	Circumferential	VW6 VW7	150 150	343 343
Extensometer	Axial	E1 E2 E3	1220 1220 1220	343 343 343

The co-operation with BRE has taken the work outside of the normal range of university civil engineering research. The short column was load tested using a 1000 tonne Avery compression machine at the BRE laboratories in Garston, Hertfordshire. The base of the test column was laid on a rigid platform beneath the testing frame and the axis of the column aligned with that of the loading frame. This ensured that the load was applied axially. Three compressive load cycles were applied as listed in Table 3.9. Each load increment/decrement was held until steady state readings were achieved (minimum 10 minutes).

LOAD CYCLE 1	LOAD CYCLE 2	LOAD CYCLE 3
(kN)	(kN)	(kN)
0	0	0
50	500	500
500	1000	1000
1000	1500	1500
1500	2000	2000
2000	2500	2500
2500	3000	3000
3000	4000	4000
3500	5000	5000*
4000	6000	6000
4500	7000	7000
5000	7500	8000
		9000
		9500
		$10000^{@}$
4000	7000	9000
3000	6000	8000
2000	4000	6000
1000	2000	4000
0	1500	2000
	1000	1500
	0	1000
		500
		0

<u>Legend</u>

* Denotes load held for 60 minutes

@ Denotes load held for 30 minutes

Table 3.9: Loading schedule for short column

The results of the load test on the steel encased column were intended to assess the deformation properties of the sleeved portions of the test piles. Several weeks after the test, the steel casing was removed from the column and a similar load test was repeated. This test was intended to assess the effect of the steel casing on the stiffness of the column.

* ****** ******	
* * * *** ****	X X Zone I-II) strong with (Zone I-II)
* ** **	الله المحالية المحالة محالة المحالة المحالة المحالة المحالة محالة محا محالة مح محالة محالة محال
** ** *	FONE, moder tely weak an ak (Zone II-II) ak (Zone II-II)
* * ************	H Sailty MUDS ONE modera noderately we
* * * * *	
××× × × × × × *******	B C D E F Stratum des Stratum
× × × × × × × × × × × × × × × × × × ×	+ E E actured slight actured slightly we o slightly we NE moderate Incel fresh to
* ******	D D en slightly fr in moderately t by MUDSTO na slightly frac
***	C C C ally grey greet II) tely fractured weathered,still ally grey greet
** ** ** *	B End Red brown and locally Red brown and locally strong bands (Zone II) Red brown moderately Red brown and locally Wed brown and locally Ded brown and local
* ** ** **	A Legend Legend B Red brown B Red brown C Red brown D Red brown E Red brown

Uniaxial strength (MN/m2)- Point load tests

Fig.3.1: Point load test results from Keuper marl strata of various descriptions

Red brown,sugnry tractured,singmry weatnered,sury MUDS HOWE,moderatery strong and strong Core length up to 0.4m (Lone I-HJ). Red brown and grey green,slightly fractured,slightly weathered,slity MUDSTONE,moderately strong to strong (Zone II with bands of strong zone II-I) Red brown, slightly weathered, slightly weathered, slity MUDSTONE, moderately strong to strong (Zone II-II). Red brown, slightly weathered, slightly fractured to slightly weathered, slity MUDSTONE, moderately strong (Zone II-I). Red brown, slightly weathered, slightly fractured, slity MUDSTONE, moderately strong (Zone II-I). Red brown and locally grey green, moderately to slightly fractured, slightly weathered, slity MUDSTONE, moderately strong. (Zone II-I). Red brown, slightly weathered, moderately to slightly fractured, slightly weathered, slity MUDSTONE, moderately strong, occasionally strong. (Zone II-I). HIJY

Ĺ

Uniaxial strength (MN/m2)- Point load tests

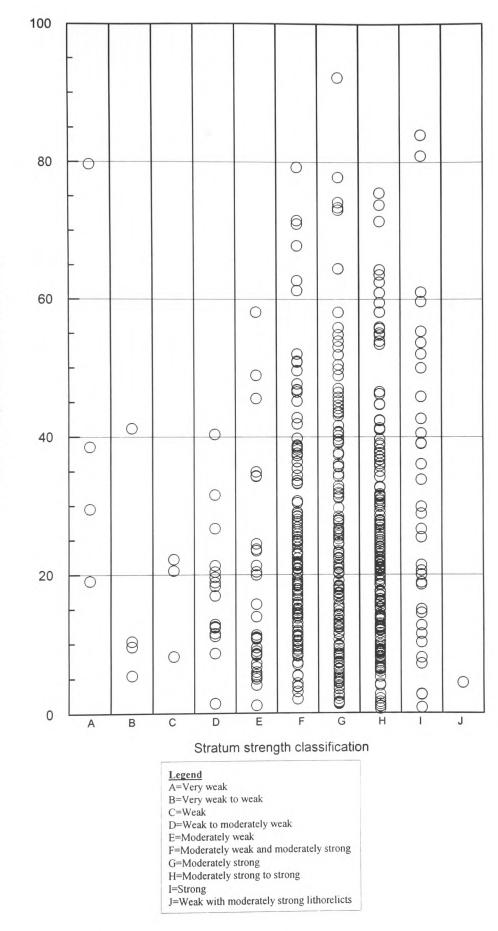


Fig.3.2: Point load test results from Keuper marl strata of various classifications

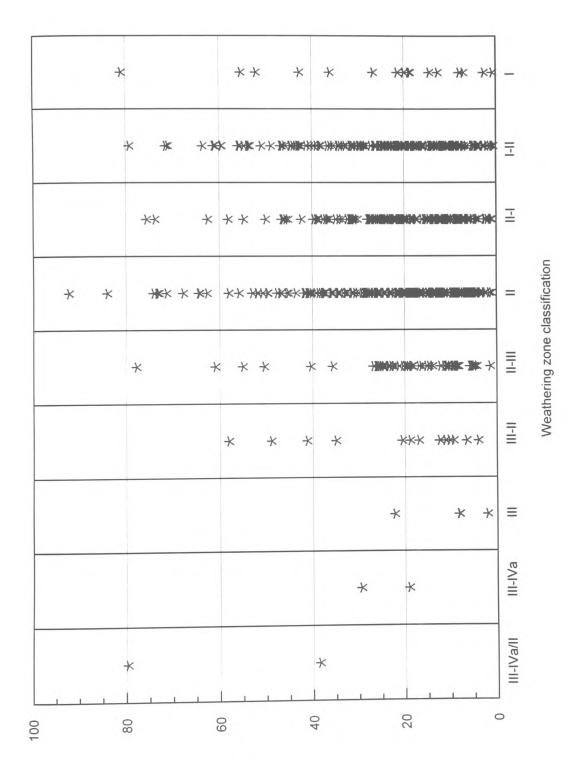


Fig.3.3: Point load test results from various weathering zones of Keuper marl

Uniaxial strength (MV/MM)-Point load test

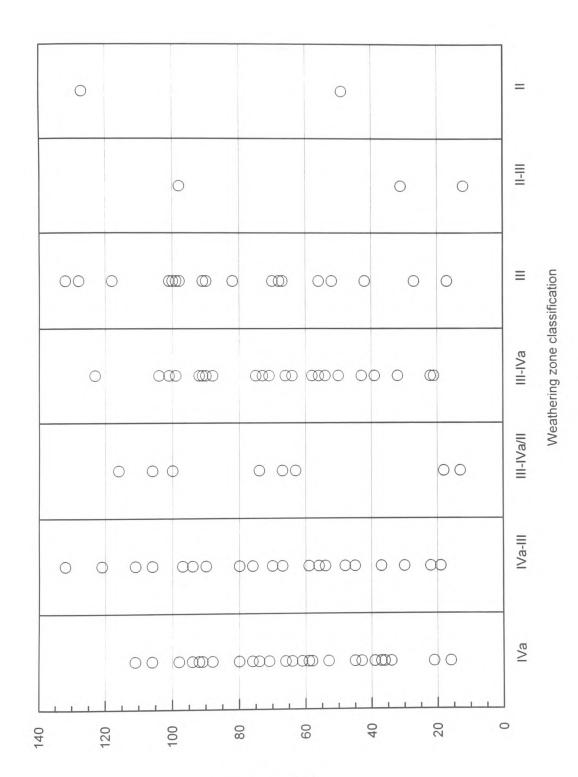


Fig.3.4: S.P.T. "N" values for various weathering zones of Keuper marl

S.P.T. "N" value

115

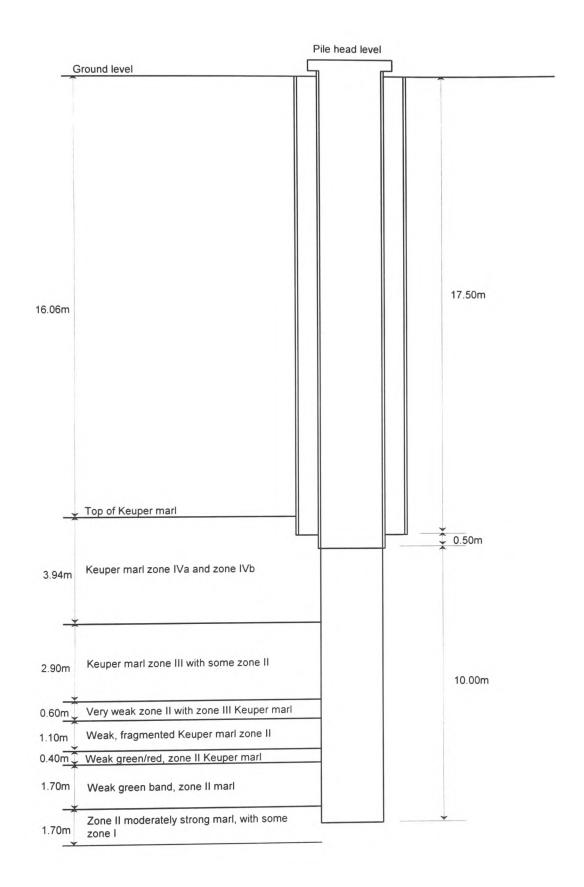


Fig 3.5:TP1-Layout

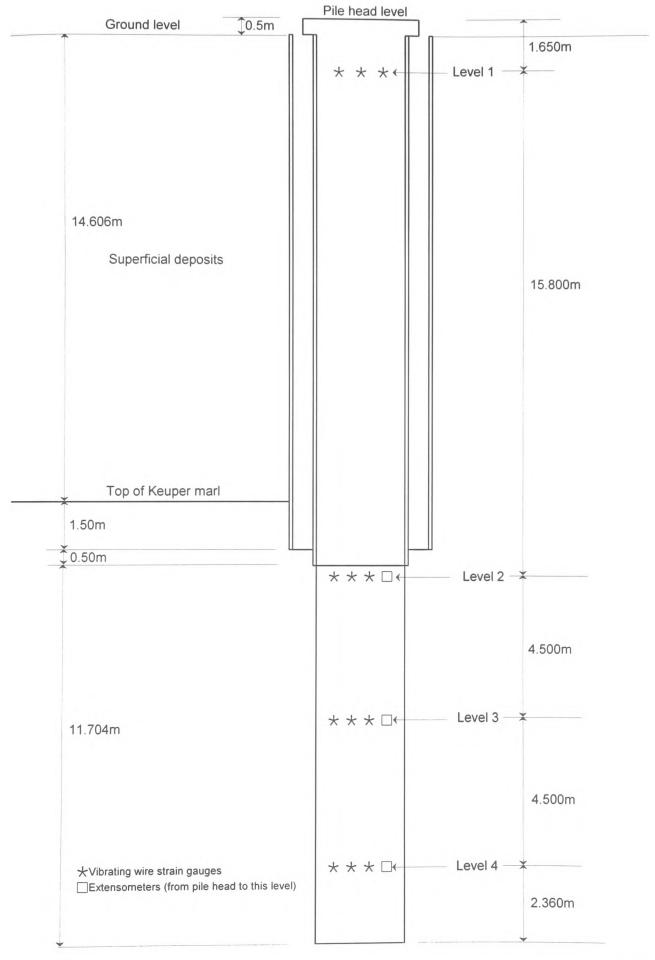
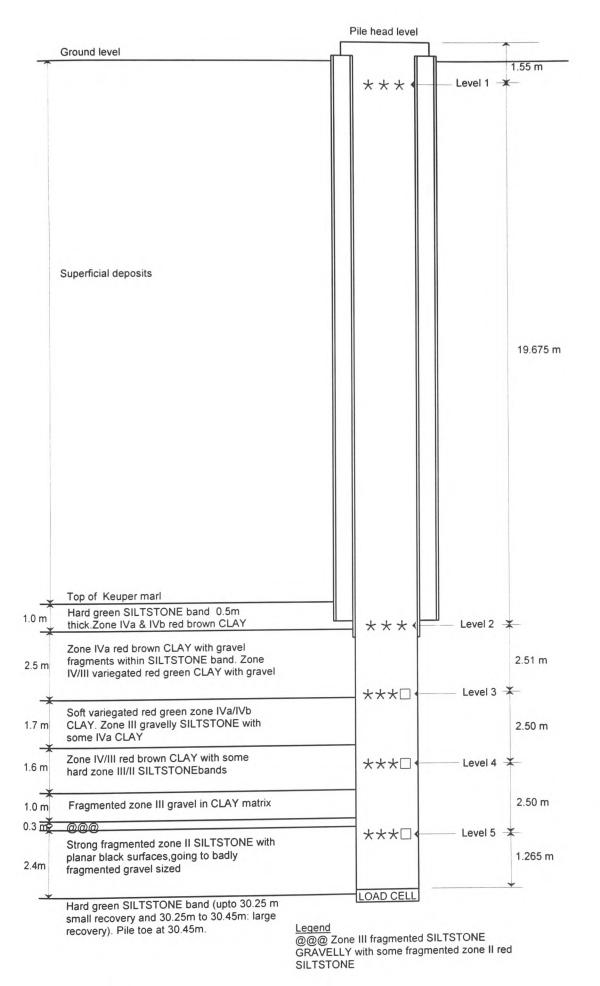
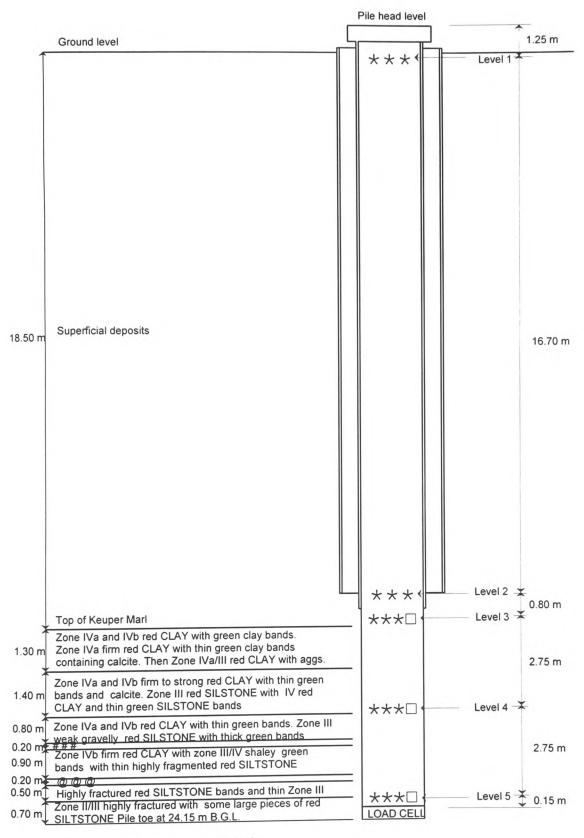




Fig 3.6:TP2-Layout and instrumentation

Legend

Zone IV/III red CLAY with aggregates and thin green bands

@ @ @ Zone III/IV red SILSTONE with some CLAY.

Fig 3.8:TP4-Layout and instrumentation

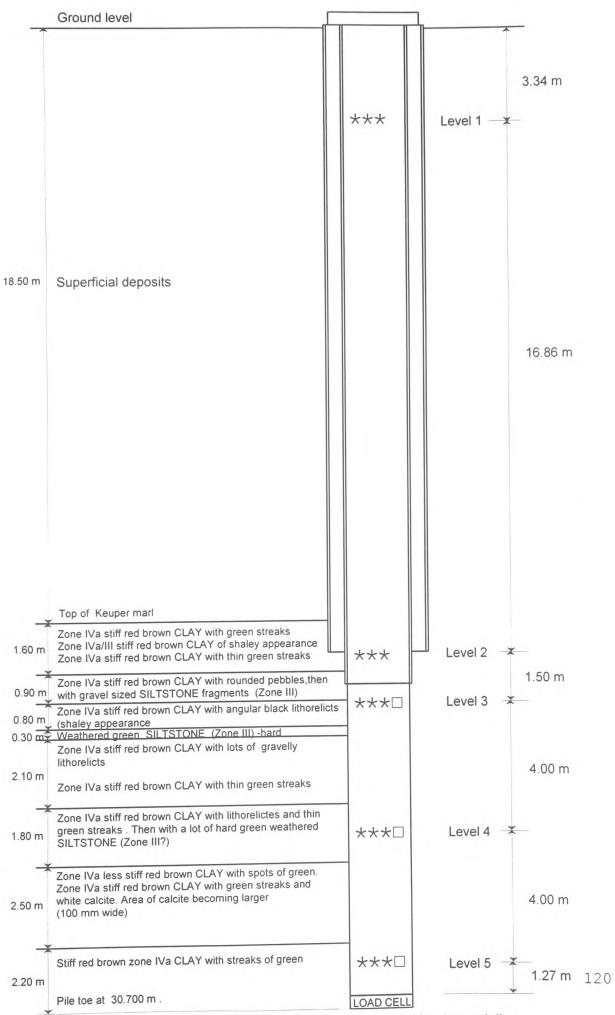
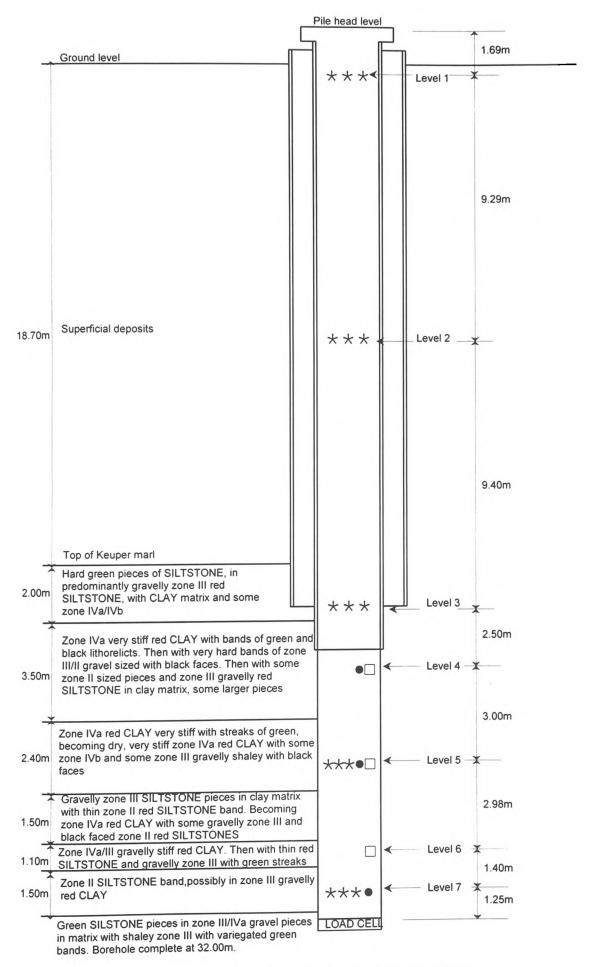



Fig 3.9: TP5-Layout and innstrumentation

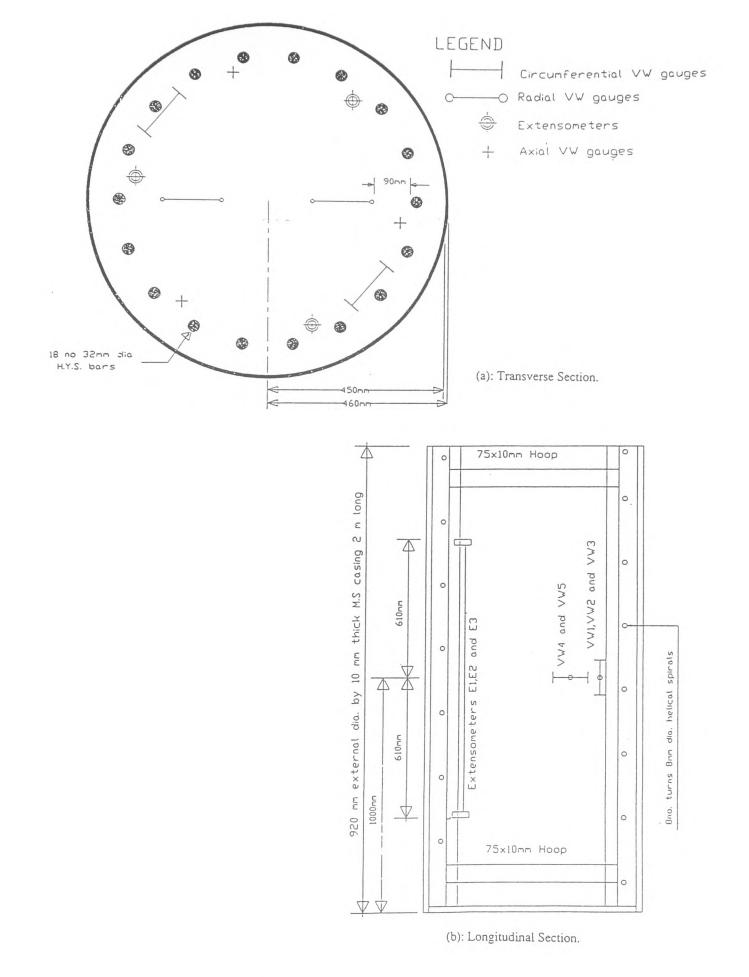


Figure 3.11: Short column construction and instrumentation

Plate 3.1 A load cell being installed in a test pile hole

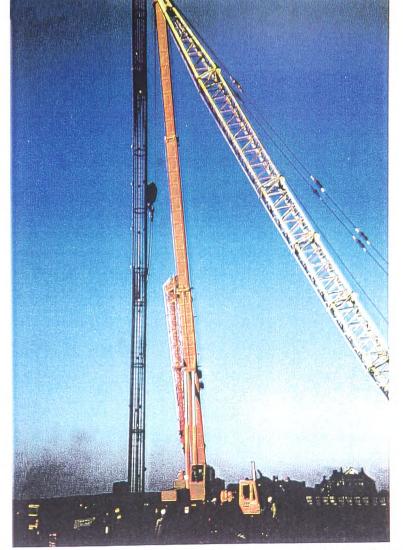


Plate 3.2 Lowering the full length of the reinforcement cage into the hole in order to avoid damage to the instrumentation and electrical connections

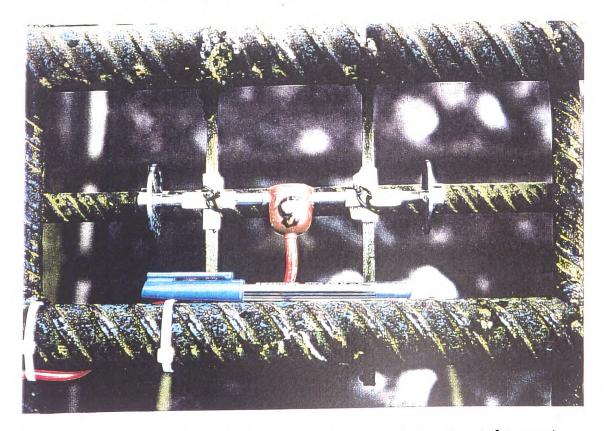


Plate 3.3 Detail of attaching a vibrating wire strain gauge to the pile reinforcement



Plate 3.4 Assembling the pile reinforcement and installing the extensometers

Plate 3.5 (a) Left: Inner and outer casings of the test pile in position. Bags are placed over the gap between the casings in order to prevent debris or other objects falling into the hole. (b) Right: Anchor piles and a bucket augur

Plate 3.6 Completed test pile with one of the reference beams on which the pile head movement measuring gauges are mounted

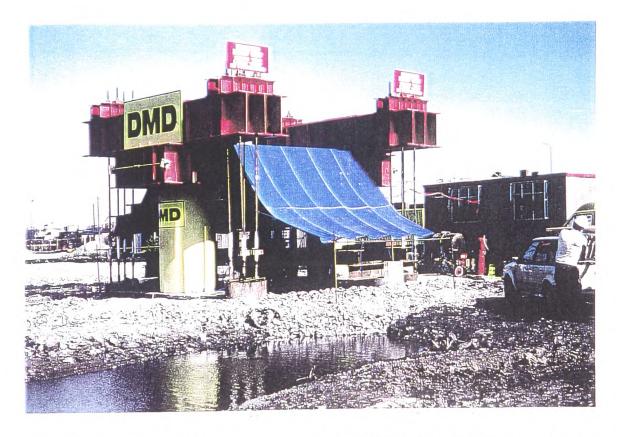


Plate 3.7 A 2000 ton test loading rig developed by DMD Piling Ltd (Cardiff) utilising 4 anchor piles

Plate 3.8 Four loading jacks mounted on the pile top

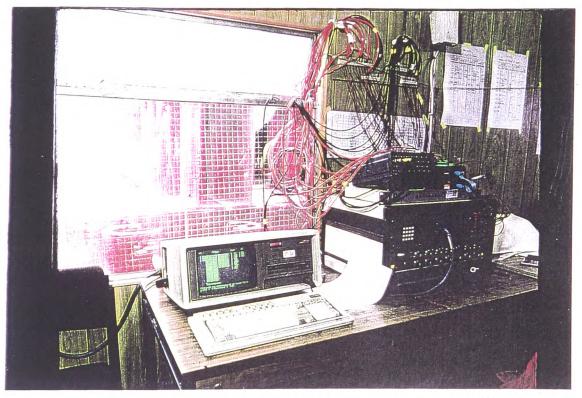


Plate 3.9 Data monitoring cabin located adjacent to a test pile site

CHAPTER 4

ANALYSIS OF PILE LOAD TEST DATA

CHAPTER 4: ANALYSIS OF PILE LOAD TEST DATA

4.1 INTRODUCTION

This chapter presents an analysis and interpretation of the pile load test data in order to establish the load transfer and resistance mechanisms of large diameter, bored, cast insitu piles formed in Keuper marl. In addition, the pile test data are presented in the traditional form of time, load, and displacement graphs. It was anticipated that the stiffness of a typical test pile would vary both longitudinally and laterally at a given cross-section. These variations are due to (a) the composite nature of the piles (b) the non-linear stress-strain response of concrete, and (c) stiffness variations of plain concrete with distance from the axis of a test specimen. Therefore, it was considered necessary to establish realistic elastic properties of the cross section of each test pile by examining various numerical methods.

Using the established elastic properties of each pile, the variation of shaft resistance and end bearing resistance of each test pile was determined. Due to the nature of the pile tests, no attempt has been made to include the influence of time dependent settlements, although the time/displacement criteria of 0.25mm/min for the maintained load test was complied with, in accordance with the specifications for pile load tests.

4.2 TEST PILE RESULTS

4.2.1 Introduction

A large volume of data was produced from the various pile instruments during load

testing in several cycles of load increments and decrements. The data was stored on computer files and was processed by running a purpose designed computer program by the Building Research Establishment (B.R.E.), Geotechnics Division. A listing was made of all instrument readings, corresponding to a given applied pile head load, at every 10 minutes time increment during sustained loading. The listing was carried out for the entire period over which a given load was maintained. In some cases, the load was held for up to 20 hours.

The whole test data was retrieved into a spreadsheet in order to facilitate further analysis. In order to analyse the immediate settlement of each test pile, the readings of strain gauges, extensometers, base load cells and pile head movement gauges were tabulated at various load increments/decrements. Creep behaviour was investigated by including displacement-time variations. The load test data from all test piles are presented in the Appendix. The data for pile TP1 is given in Table A.2. Tables A.3(i)-A.3(xii) show the test data for TP2. The data for test piles TP3-TP6 are given in Tables A.4(i) up to Table A.8(iv). These include the results of the pull-out test on TP6.

4.2.2 Pile head load-Displacement-Time graphs

Plots of Applied load versus time, Pile head displacement versus time and Pile head load versus pile head settlement for test piles TP2-TP6 are given in Figs 4.1-4.5. Table 4.1 summarises the gross and net settlement at working load for each pile. The underlined values are the observed load capacities of the various test piles. These values are based on a definition of pile failure as a clear maximum load reached or the load

required to produce a net settlement of 10% of the pile base diameter. Net settlement is defined as the gross pile head settlement less the pile shortening. The working load of a given pile is taken as one third of the load capacity.

	Test duration	Max. test	Gross settlement at	Net settlement at
	(hours)	load (MN)	working load (mm)	max. load (mm)
TP2	78.5	13.5	8.5	21.5
TP3	169	18.0	6.2	97.0
TP4	95.8	12.0	7.1	61.5
TP5	123.5	<u>11.2</u>	4.7	227.0
TP6	109.6	12.5	7.0	15.0

Table 4.1: Gross and net settlement at working load for piles TP2-TP6

It is seen that whereas the settlement values at maximum loads are so much at variance, the range of settlement at working loads is confined to 4.7-8.5mm. These values are approximately 0.5-1% of pile diameter, which represent the settlement expected to mobilise full shaft resistance. From Figs. 4.1-4.5, the following values of creep at working loads are computed based on an average over the maintained load time periods indicated.

	Creep at working	Period over which
	<u>load (mm/hr)</u>	creep is averaged
TP2	0.23	3.5 hrs
TP3	0.07	16 hrs
TP4	0.10	13 hrs
TP5	0.15	4 hrs
TP6	0.08	4 hrs

These values are less than the limiting settlement rate of 0.25mm/hr, which is the stipulated maximum settlement rate for steady state conditions. In comparison, the creep in pile TP5 at a load corresponding to the ultimate capacity of 11.2MN is 49.7mm/hr. This value represents an average over 19 minutes. Therefore, the increase in deflection as a result of sustained loading with time is insignificant for load values well beyond the

working load. During cyclic loading, it is observed that the pile head settlement increases with applied load and on unloading to zero, the unrecoverable displacement remains approximately constant until the next load increment is added. On increasing the load to the next prescribed value, the settlement increases and the cycle is repeated. Due to unrecoverable deformations, there are discontinuities between successive load cycles, in the load-settlement plots for all test piles.

4.2.3 Load-Settlement curves

The plots in Figs 4.1-4.5 also include the load-settlement curves obtained from the test piles. Each curve typifies the variations expected for bored, cast in-situ piles. The difference in the initial gradients of the graphs and in the paths of progress towards failure conditions can be attributed to the variation in the ground conditions and differences in the pile installation process. In addition, the load-settlement curve for a given pile depends on its length and on the deformation properties of the pile cross-section.

Comparisons of pile performance can be made from Figs. 4.1-4.5. In the loading range 0-1000kN, the rates of increase of pile head settlement with applied load for piles TP2 and TP6, which have projected load capacities of 22MN and 19MN respectively, are 0.22 and 0.23mm/MN respectively. In the same load range, the rate of settlement of pile TP5, which has a load capacity of 11.2MN, is 0.09mm/MN. Pile TP3, with a capacity of 18MN indicates a settlement rate of 0.16mm/MN. Excluding pile TP4 in which there was some interference between the permanent casing and the shaft, a

common pattern is observed. For these pile lengths and diameters, it can be concluded that the initial slope of the graph of pile head settlement versus applied load is approximately equal to one percent of the ultimate load capacity. Table 4.2 gives a comparative illustration of the differences observed in the load-settlement behaviour of the test piles.

	Applied pile head load									
Pile	2MN	4MN	6MN	8MN	10MN	12MN	14MN	16MN	18MN	
TP1	2.90	14.22	-	68.20	-	-	-	-	-	
TP2	0.93	3.48	6.07	10.31	18.49	27.94	-	-	-	
TP3	0.89	3.33	6.16	10.53	17.40	24.84	36.95	60.79	116.41	
TP4	2.38	8.75	20.16	37.53	63.39	155.60	-	-	-	
TP5	0.94	4.78	10.86	27.11	62.02	-	-	-	-	
TP6	1.17	3.60	6.92	10.92	18.26	24.70	-	-	-	

Denotes pile head settlement values corresponding to these loads not available

Table 4.2: Pile head settlement values (mm) corresponding to selected applied loads (TP1-TP6)

The load-settlement response of piles TP2, TP3 and TP6 illustrate a high degree of similarity up to an applied load of 12MN. Pile TP3 was loaded to a maximum of 116.41mm. The piles were of similar length and the soil strata at these sites generally comprised Keuper zone IV/III and III/II. Considering values of applied load in the range 6MN to 12MN, the maximum deviation in pile head deflection in these piles is only about 14%. Figure 4.6(a) shows the load-settlement plot for pile TP1. Since this pile was formed with a voided toe, its load-settlement response cannot be directly compared with those of the other test piles. In addition, it should be noted that TP5 was installed in particularly weak ground where the soil was predominantly Keuper marl zone IVa and IVb. The fact that this pile had the lowest load capacity is also consistent with the ground conditions. The large settlement values observed in pile TP4 strongly indicate the uncertainty with

which this pile was installed. It is probable that this pile was significantly weakened by the collapse of the steel casing following strong vibrations of heavy plant and machinery adjacent to the test pile location.

4.2.4 Observed ultimate load capacities

For the test piles being considered, the maintained load test cycles adopted poses some difficulty in expressing the true value of ultimate load capacity. Adopting a pile failure definition as the clear maximum load reached, or the load at which the pile head settlement is equivalent to 10% pile diameter, the following are the ultimate loads for piles TP3-TP5.

<u>Test pile</u>	Ultimate load (MN)
TP3	17.0
TP4	11.5
TP5	11.2

The load-settlement graph for the end-bearing M.L. test in TP1 is shown in Fig 4.6(b) while Fig 4.6(c) illustrates the result of the C.R.P. test. The displacements plotted in the C.R.P. curve are based continued instrument readings above the last recorded readings following the completion of the M.L. test. The ultimate end resistance is clearly evident in the C.R.P. curve and the value is approximately 11.7 MN.

4.3 LOAD-STRAIN CALIBRATION OF THE TEST PILES

4.3.1 Introduction

The technique of load transfer measurement in test piles using strain gauges has been in use for a couple of decades and offers a reasonably cost effective means of obtaining the profile of axial force along a pile shaft when the pile is subjected to loading. The method is also useful in checking the results of analytical formulae for pile settlement The strain gauges located at different depths along the pile axis give the variation of strain with depth as a result of the applied pile head load. This enables the axial load distribution to be determined, for an elastic pile where the elastic properties of the material are known.

4.3.2 Performance of strain gauges

Table 4.3 illustrates the typical strain gauge readings at the first level for applied loads in the range 0-6000 kN, for all the test piles. The mean strain at a given level was obtained by averaging the values of the strains at the pseudo-rosette locations θ , (θ +120°) and (θ +240°). This minimised any effects of load eccentricity on stress distribution. The justification for averaging the strain values was confirmed through a separate but simple mathematical formula as given in section 4.4.3.2. Since all the test piles had identical cross-sections in terms of concrete and steel areas, any differences in the average strains at level No.1 must be due to variations in the concrete strength, which is also a function of the time elapsed since pile installation.

4.3.3 Stress-strain calibration methods

In order to calculate axial forces in the test piles from strain gauge readings, it is necessary to accurately assess the stiffness of each pile. This may be based on a laboratory determined static modulus value for concrete or on the calibration constant for a given strain gauge provided by the manufacturer. Nevertheless, it was considered necessary to study the behaviour of these gauges as installed within the composite pile section. This is because of the non-homogeneity of the pile concrete surrounding the gauges and possible eccentric transmission of load along the pile, which alters the stress distribution from one cross-section to another.

Three approaches to stress-strain calibration were proposed:

- a) A linear load-strain relationship based on the observed behaviour of the strain gauges installed within the cased part of each pile,
- b) A non-linear load-strain relationship based on the apparent variation of Young's modulus of concrete with strain and
- c) A method of back-analysis of the variation of Young's modulus and Poisson's ratio across a given pile cross section, based on load testing of a short instrumented, reinforced concrete column under controlled conditions.

The first method derives a relationship between axial load and strain at a cross-section of known axial load. Based on the assumption that the concrete has constant properties at all other cross sections, the relationship is then used to predict axial force load for the other levels where strain values are available. This method is referred to as the "Linear method" (after O'Riordan,1982) but is modified to account for the composite nature of the pile cross-section. The second method involves curve fitting of the apparent concrete modulus variation with strain using power regression methods. Different regression coefficients are obtained for different load cycles hence this method accounts for the influence of stress history on the Young's modulus of concrete. The load corresponding to a particular measured strain is then calculated using the appropriate value of Young's modulus of concrete calculated from the idealised function.

Load	Test		Strain val	$\frac{1}{10^{-6}}$)
(kN)	pile	VW1	VW2	VW3	Mean
	TP2	10	17	1	13.5*
	TP3	15	7	7	9.6
1000	TP4	34	20	0	27.0*
	TP5	6	4	7	5.7
	TP6	27	7	14	16.1
	TP2	33	58	10	45.5*
	TP3	50	24	32	35.4
2000	TP4	73	48	27	60.5*
	TP5	45	25	25	31.7
	TP6	57	40	44	47.2
	TP2	62	87	38	74.5*
	TP3	86	60	71	72.3
3000	TP4	113	76	50	94.5*
	TP5	81	58	57	65.6
	TP6	88	75	76	80.0
	TP2	91	118	66	104.5*
	TP3	123	96	109	109.4
4000	TP4				
	TP5	118	93	8 9	99.8
	TP6				
	TP2	119	148	96	133.5*
	TP3	163	134	150	148.9
5000	TP4				
	TP5	154	129	122	135.4
	TP6				
	TP2	149	181	124	165.0*
	TP3	201	170	188	186.6
6000	TP4				
	TP5	193	168	157	172.7
	TP6				

* Mean values for Strain gauges VW1 and VW2 only

Table 4.3: Strain gauge readings at level No. 1 for all piles (load cycle 1)

The third method enables the assessment of the stiffening effect of steel on concrete, depending on the relative proximity of the steel casing and of the reinforcing bars. The short column tested has cross-sectional dimensions and materials identical to the test piles. Strains are measured at known locations, along the three cylindrical co-ordinates and the elastic properties of the column are back-figured using a proposed mathematical model.

4.3.4 The linear (Gauge Stiffness) calibration method

This method has been used by O'Riordan(1982) and Fort et al(1989) for a pile with a constant area of steel to represent the load-strain relationship for the entire pile. In the present analysis, an adjustment is made to take into account the composite nature of the pile section. The cross-sectional area of steel changes from the sleeved portion to the embedded portion of the pile. Figs 4.7(a)-(e) are plots of pile head load against strain at instrument level No.1 for test piles TP2-TP6 respectively. For each pile, the strain gauges at level No.1 lie within the sleeved section where the axial force is assumed to be equal to the applied load at the pile head. The graphs show that most of the strain gauges functioned satisfactorily, although there were slight variations in the hysteresis resulting from the effects of cyclic loading. The degradation of concrete stiffness in pile TP3 from one load cycle to another is more rapid than in the other test piles. This probably implies a poor concrete quality at the corresponding instrument level in this pile.

For each load cycle, a linear load-strain relationship for the pile was obtained from these graphs. The mean gradient and the intercept on the vertical axis were calculated by linear regression. Considering force equilibrium, the applied pile head load P can be expressed in terms of the longitudinal stresses, σ_s and σ_c , in the steel and concrete as

$$P = \sigma_s A_s + \sigma_c A_c \tag{4.1}$$

Where A_s and A_c are the cross-sectional areas of steel and concrete respectively. Assuming that there is no slip between the concrete and the steel at all cross-sections, the axial force P can be expressed in terms of the strain ε as

$$P = \varepsilon (E_s A_s + E_c A_c) \tag{4.2}$$

For the load range for which the graph is linear, the relationship linking P and ε can be written as

$$\mathbf{P} = \frac{\Delta \mathbf{P}}{\Delta \varepsilon} \varepsilon + \mathbf{P}_{o} \tag{4.3}$$

Where $\frac{\Delta P}{\Delta \epsilon}$ represents the average stiffness of the strain gauges and P_o is the apparent load

at zero strain. Comparing Eqn. (4.3) with Eqn. (4.2), the axial force can be written as

$$P = \varepsilon (E_s A_s + E_c A_c) + P_o$$
(4.4)

Hence the gauge stiffness $\frac{\Delta P}{\Delta \epsilon}$ is given by the expression

$$\frac{\Delta P}{\Delta \varepsilon} = E_s A_s + E_c A_c \tag{4.5}$$

Hence the modulus of the pile concrete E_c is expressed as by

$$E_{c} = \frac{1}{A_{c}} \left(\frac{\Delta P}{\Delta \varepsilon} - E_{s} A_{s} \right)$$
(4.6)

By back substitution of E_c into equation (4.4) the axial force at any section along the pile where the strain is known can be calculated from the expression

$$P = (A_c + \frac{E_s A_s}{E_c})(\varepsilon E_c + \sigma_o)$$
(4.7)

Where σ_o is given by

$$\sigma_{o} = \frac{P_{o}}{A_{c} + \frac{E_{s}A_{s}}{E_{o}}}$$
(4.8)

For each test pile, the E_c and σ_o values were calculated for each load cycle and the results are presented in Table 4.4. The laboratory determined compressive strength and static modulus values are included at the bottom of the Table. The mean values of E_c for all load cycles are 44.00, 29.20, 35.99 and 34.47 kN/mm² for TP2, TP3, TP4 and TP5 respectively. In comparison with the static modulus values, the mean E_c value for TP2 is 16% higher while the mean E_c values for TP4 and TP5 are approximately 14% less. Test pile TP3 shows that the average E_c value is less than the static modulus value by 38%, which leaves some doubt regarding the quality of concrete in this pile. From the experience gained here, it would therefore be inappropriate to adopt the laboratory E_c determined values to evaluate pile axial forces.

4.3.5 Non-linear load-strain relationship by power regression

The elastic modulus of concrete E_c may be back-analysed from the strain ε at the first instrument level where the axial force P is known, hence

$$E_{c} = \frac{P - E_{s} A_{s} \varepsilon}{\varepsilon A_{c}}$$
(4.9)

Curve fitting was carried out on plots of E_c versus ε to express E_c in the form

$$\mathbf{E}_{a} = \mathbf{a}_{a} \varepsilon^{-\mathbf{a}_{1}} \tag{4.9a}$$

in which the constants a_o and a_1 were evaluated by power regression. The force P at a given level was then calculated by making P the subject in Eqn. (4.9) and substituting for E_c from Eqn (4.9a), hence

$$\mathbf{P} = \mathbf{a}_{o} \varepsilon^{(1-\mathbf{a}_{1})} \mathbf{A}_{c} + \mathbf{E}_{s} \mathbf{A}_{s} \varepsilon \tag{4.9b}$$

139

Chapter 4: Analysis of pile load test data

		Ε _c , σ _o	TP2*	TP3	TP4*	TP5	TP6
	Load	······································	41.05	28.59	33.46	31.85	36.36
1	Louid	Ec	0.539	1.175		4	
		σο			0.251	1.266	0.596
	Unload	Ec	46.54	32.48	38.04	34.81	39.52
		σο	-0.160	0.230	-0.381	0.631	0.274
_		Ec	40.75	28.73	32.85	32.80	36.00
2	Load	σο	0.423	0.840	0.224	0.990	0.510
	Unload	Ec	45.43	32.18	34.67	34.75	37.75
		σο	-0.648	-0.519	-0.340	0.067	0.138
		Ec	42.53	26.90	33.33	31.58	34.94
3	Load	σ_0	0.099	0.504	0.059	0.690	0.509
	Unload	Ec	44.98	31.63	35.65	35.04	36.85
		σο	-0.464	-1.570	-0.517	-0.487	-0.368
		Ec	43.29	24.94	35.36	34.70	34.15
4	4 Load	σο	0.369	0.204	-0.097	0.551	0.120
	Unload	E _c	46.09	30.11	39.83	38.45	37.13
		σο	-0.291	-3.240	-1.401	-0.419	-0.948
		Ec	-	25.55	36.93	33.65	-
5	Load	σο	-	-0.921	-0.556	0.322	-
	Unload	E _c	-	30.88	38.85	37.74	-
		σ ₀	-	-4.327	-1.206	-0.670	-
		E _c	-	-	-	32.96	-
6	Load	σ ₀	-	-	-	0.446	-
	Unload	E _c	-	-	-	35.84	-
		σ_0	-	-	-	-0.268	-
Mea	Mean cylinder strength (kN/mm ²)		47.0	47.3	42.1	51.0	-
Me	Mean static modulus (kN/mm ²)			40.0	41.1	39.0	-

<u>Notes</u>

1) * Average readings of 2 strain gauges used because malfunction in the third strain gauge 2) Both E_c and σ_0 values are in kN/mm² but σ_0 values are to be multiplied by 10⁻³.

Table 4.4: Gauge stiffness calibration parameters for TP2-TP6

The back-figured variations of E_c with strain for all test piles are illustrated in Figs. 4.8(a)-(e), which also shows the best-fit curves calculated by power regression. For strain values less than 100×10^{-6} , the apparent E_c value is very sensitive to the strain magnitude. This behaviour is reasonably well represented by the best-fit curve, which is also consistent with the fact that E_c approaches a constant value with high strain levels. The derived E_c versus strain relationships for pile TP5 are presented in Table 4.5.

Cycle	Power regression curve fitting
1	$E_{c} = 0.36616\epsilon^{-0.53737}$
2	$E_{c} = 0.72129 \varepsilon^{-0.46515}$
3	$E_{c} = 8.21102\varepsilon^{-0.176823}$
4	$E_c = 16.35066\epsilon^{-0.101965}$
5	* As for load cycle 4
6	* As for load cycle 4

Table 4.5 Typical Power regression functions for E_c against ε variation (TP5)

Table 4.6 gives the calibrated values of E_c for various strain values for pile TP5. Virgin concrete generally exhibits considerably high E_c values due to structural changes. During a particular load cycle, the E_c value corresponding to a given strain value depends on the previous loading history.

Load		E_c values (kN/mm ²) for given values of ϵ (x10 ⁻⁶)								
cycle	50	100	150	200	250	300	350	400		
1	65.2	51.8	47.4	45.2	43.8	42.9	42.3	41.8		
2	57.7	45.4	41.3	39.2	38.0	37.1	36.6	36.1		
3	47.0	41.5	38.3	36.5	35.3	33.8	34.2	36.8		
4	43.9	41.7	40.2	39.0	38.2	37.4	36.7	36.8		
5	As for load cycle 4									
6				As for lo	ad cycle 4					

Table 4.6: Typical E_c values obtained by power regression for TP5

4.4 ELASTIC CONSTANTS FROM A SHORT CONCRETE COLUMN

4.4.1 Introduction

According to evidence presented by Klink(1985a) and Klink(1985b), both the Young's modulus and the Poisson's ratio of concrete vary with radius on a cross-section of a cylindrical specimen. Both of these quantities could be 1.5 times greater at the centre than at the periphery of a concrete column. In the case of the test piles being calibrated, the problem is further complicated by the presence of steel casing in the upper part of the pile.

In the present study, the elastic properties of the test piles are investigated by separating the displacement patterns for steel, reinforced concrete and plain concrete. The displacements in these constituent materials are measured at selected radial distances from the centre of the short column, so that the variations in the values of elastic constants with position of measurement are taken into consideration. This provides an analytical capability that represents the composite nature of the column cross-section better than the technique of modular ratio and transformed area of concrete.

4.4.2 Simulation of pile material properties

It was envisaged to model the test pile properties using a 0.9m in diameter by 2m long reinforced concrete column constructed with the same concrete mix type and reinforcement as the test piles. The height of 2m was selected so as to have a suitable height to diameter ratio to minimise slenderness effects. At the same time, this length was adequate to allow the measurement of strains at the column mid height sufficiently away from the ends where stress concentrations would inevitably occur. The column was also provided with the same type and size of steel casing as in the test piles, except that the casing covered the full length of the column.

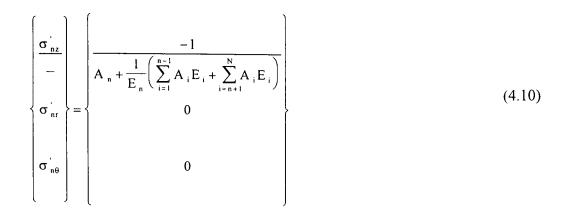
The instruments used in the column were vibrating wire gauges and extensometers of the kinds used in the test piles. However, in the short column, strains were measured not only in the longitudinal direction but also in the circumferential and radial directions. In order to take into account the behaviour reported by Klink(1985a) and Klink(1985b), the radial and circumferential strains were measured at selected known radial distances from the axis of the column. The behaviour of the sleeved part of the test piles passing through the superficial deposits was modelled using test No.1 of the short column in which the steel casing was present. In test No.2 of the short column, the casing was removed, and this was intended to simulate the deformation patterns in the unlined sections of the test piles.

4.4.3 Numerical modelling of the short column

4.4.3.1 Theoretical representation of pile cross-section

Let the column cross-section be represented by a number of (say N), concentric hollow cylinders with different material properties. This is shown in Fig. 4.8(f). Let the dimensions and properties of the nth cylinder be:

 r_{n-1} = internal radius; r_n = external radius; E_n = Young's modulus; v_n = Poisson's ratio; A_n = Cross-sectional area. For the innermost cylinder, n=1, and for the outermost, n=N. It is assumed that the deformation of the column comprises the deformations of the individual constituent cylinders. The following three loading stages are considered:


- 1) A unit applied longitudinal load,
- 2) Artificially introduced lateral pressures on the contact surfaces of the cylinders to correct the incompatible radial displacements arising from load case (1) above, and
- 3) Superposition of above load cases to produce the final state of stress and deformation

The following assumptions are made:

- (a) Each cylinder is free to displace radially in isolation.
- (b) There is no eccentricity in the applied load.
- (c) Shear stresses on boundary surfaces may be neglected.
- (d) The material of each cylinder obeys Hooke's law, and
- (e) There is a small but essential cavity of radius r_o at the centre of the column (the cavity can be mathematically set to zero).

4.4.3.2 Analysis of stresses and strains

In load case (1), elasticity relationships from elementary mechanics (Timoshenko and Gere,1972) are used to derive the axial, radial and circumferential stresses, $\sigma_{nz}, \sigma_{nr}, \sigma_{n\theta}$ in the nth cylinder due to unit applied axial load. Taking tensile stresses as positive, the stresses for load case (i) can be expressed in matrix form as:

Therefore the resulting axial, radial and circumferential strains $\varepsilon_{nz}^{'}, \varepsilon_{nr}^{'}, \varepsilon_{n\theta}^{'}$ in the nth cylinder due to load case (i) are:

$$\begin{cases} \boldsymbol{\varepsilon}_{nz}^{'} \\ \boldsymbol{\varepsilon}_{nr}^{'} \\ \boldsymbol{\varepsilon}_{nr}^{'} \end{cases} = \frac{1}{E_{n}} \begin{bmatrix} 1 & -\nu_{n} & -\nu_{n} \\ -\nu_{n} & 1 & -\nu_{n} \\ -\nu_{n} & -\nu_{n} & 1 \end{bmatrix} \begin{cases} \boldsymbol{\sigma}_{nz}^{'} \\ \boldsymbol{\sigma}_{nr}^{'} \\ \boldsymbol{\sigma}_{n\theta}^{'} \end{cases}$$

$$=\frac{1}{E_{n}}\begin{bmatrix}\frac{1}{E_{n}} & \frac{-\nu_{n}}{E_{n}} & \frac{-\nu_{n}}{E_{n}}\\ -\nu_{n} & 1 & -\nu_{n}\\ -\nu_{n} & -\nu_{n} & 1\end{bmatrix}\begin{bmatrix}\frac{-1}{A_{n} + \frac{1}{E_{n}}\left(\sum_{i=1}^{n-1}A_{i}E_{i} + \sum_{i=n+1}^{N}A_{i}E_{i}\right)}\\ 0\\ 0\end{bmatrix}$$
(4.11)

In load case (ii), let contact pressures p_{n-1} and p_n be imposed on the inner and outer surfaces of the nth cylinder. For radial force equilibrium, the contact pressure on the outer surface of the (n-1)th cylinder must equal p_{n-1} . Similarly the pressure on the inner surface of

the $(n+1)^{th}$ next cylinder must equal p_n There is no pressure on the inner surface of the first cylinder as well as on the outer surface of the last cylinder.

The stresses induced at any radial co-ordinate r (measured from the centre of the column) within the nth cylinder, may be derived from established formulae from the theory of "thick cylinders" (Popov,1976). Hence the axial, radial and circumferential stresses $\sigma_{nz}^{"}, \sigma_{nr}^{"}, \sigma_{n\theta}^{"}$ in the nth cylinder for load case (ii), which now vary with radial distance, are given by:

$$\begin{cases} 1\sigma_{nz}^{"} \\ -\sigma_{nr}^{"} \\ -\sigma_{n\theta}^{"} \end{cases} = \begin{cases} 0 \\ -p_{n-1} \left(\frac{r_{n-1}^{2}}{r_{n}^{2} - r_{n-1}^{2}} \right) \left(1 - \frac{r_{n}^{2}}{r^{2}} \right) + p_{n} \left(\frac{r_{n}^{2}}{r_{n}^{2} - r_{n-1}^{2}} \right) \left(1 - \frac{r_{n-1}^{2}}{r^{2}} \right) \\ -p_{n-1} \left(\frac{r_{n-1}^{2}}{r_{n}^{2} - r_{n-1}^{2}} \right) \left(1 - \frac{r_{n}^{2}}{r^{2}} \right) + p_{n} \left(\frac{r_{n}^{2}}{r_{n}^{2} - r_{n-1}^{2}} \right) \left(1 + \frac{r_{n-1}^{2}}{r^{2}} \right) \end{cases}$$
(4.12)

The ensuing strains $\varepsilon_{nz}^{"}, \varepsilon_{nr}^{"}, \varepsilon_{n\theta}^{"}$ are again given in terms of the stresses and elastic constants as,

$$\begin{cases} \tilde{\varepsilon}_{nz}^{"} \\ \tilde{\varepsilon}_{nr}^{"} \\ \tilde{\varepsilon}_{nr}^{"} \end{cases} = \frac{1}{E_{n}} \begin{bmatrix} 1 & -\nu_{n} & -\nu_{n} \\ -\nu_{n} & 1 & -\nu_{n} \\ -\nu_{n} & -\nu_{n} & 1 \end{bmatrix} \begin{cases} \sigma_{nz}^{"} \\ \sigma_{nr}^{"} \\ \sigma_{n\theta}^{"} \end{cases}$$

$$= \frac{1}{E_{n}} \begin{bmatrix} 1 & -\nu_{n} & -\nu_{n} \end{bmatrix} \begin{cases} -\nu_{n} & 1 & -\nu_{n} \end{bmatrix} \begin{cases} -p_{n-1} \left(\frac{r_{n-1}^{2}}{r_{n}^{2} - r_{n-1}^{2}} \right) \left(1 - \frac{r_{n}^{2}}{r^{2}} \right) + p_{n} \left(\frac{r_{n}^{2}}{r_{n}^{2} - r_{n-1}^{2}} \right) \left(1 - \frac{r_{n-1}^{2}}{r^{2}} \right) \end{cases}$$
(4.13)
$$-\nu_{n} & -\nu_{n} & 1. \end{bmatrix} \begin{cases} -p_{n-1} \left(\frac{r_{n-1}^{2}}{r_{n}^{2} - r_{n-1}^{2}} \right) \left(1 - \frac{r_{n}^{2}}{r^{2}} \right) + p_{n} \left(\frac{r_{n}^{2}}{r_{n}^{2} - r_{n-1}^{2}} \right) \left(1 + \frac{r_{n-1}^{2}}{r^{2}} \right) \end{cases}$$

The stresses and strains in load cases (i) and (ii) can be superimposed, since the problem is assumed to be linearly elastic. Hence the final stresses $\sigma_{nz}, \sigma_{nr}, \sigma_{n\theta}$ in the nth cylinder are given by:

$$\begin{cases} \frac{\sigma_{nz}}{-} \\ \frac{\sigma_{nr}}{-} \\ \frac$$

Similarly, the final strains $\epsilon_{nz},\!\epsilon_{nr},\!\epsilon_{n\theta}$ in the n^{th} cylinder are given by:

$$\begin{cases} \boldsymbol{\varepsilon}_{nz} \\ \boldsymbol{\varepsilon}_{nr} \\ \boldsymbol{\varepsilon}_{nr} \\ \boldsymbol{\varepsilon}_{n\theta} \end{cases} = \begin{cases} \boldsymbol{\varepsilon}_{nz}^{'} \\ \boldsymbol{\varepsilon}_{nr}^{'} \\ \boldsymbol{\varepsilon}_{n\theta}^{'} \end{cases} + \begin{cases} \boldsymbol{\varepsilon}_{nz}^{''} \\ \boldsymbol{\varepsilon}_{nr}^{''} \\ \boldsymbol{\varepsilon}_{nr}^{''} \\ \boldsymbol{\varepsilon}_{n\theta}^{''} \end{cases}$$
(4.15)

4.4.3.3 Boundary conditions

The final state of stress and strain may be applied to satisfy the boundary conditions for force equilibrium and displacement compatibility. Once these conditions are satisfied, the cylinders are "assembled" to form the final state of stress and deformation of the column.

 At the outside surface of the outermost cylinder (i.e the Nth cylinder), the pressure is atmospheric. Hence the net radial stress there is zero, thus

$$\left(\sigma_{Nr}\right)_{r=\frac{D}{2}} = 0 \tag{4.16a}$$

Where D= column diameter.

2) The radial stresses at the interfaces of the cylinders must be in equilibrium. Consider the nth and the $(n+1)^{th}$ cylinders. Let the radial stress at the outside face of the nth cylinder be $(\sigma_{nr})_{outside}$ while that at the inside face of the $(n+1)^{th}$ cylinder be $(\sigma_{(n+1)r})_{inside}$. For equilibrium, we have

$$\left(\sigma_{(n+1)r}\right)_{inside} = \left(\sigma_{nr}\right)_{outside}$$
(4.16b)

3) For compatibility of radial displacements at boundaries, the radial displacement of the outer surface of the nth cylinder must equal the radial displacement of the inner surface of the (n+1)th cylinder. Hence

$$\left(u_{nr}\right)_{outside} = \left(u_{(n+1)r}\right)_{inside}$$
(4.16c)

 Assuming that there is a small cavity at the centre of the column (the radius r_o of which can be mathematically set to zero), the radial stress at the inner surface of the first cylinder is zero, hence

$$\left(\sigma_{1r}\right)_{r=r_{o}} = 0 \tag{4.16d}$$

4.4.3.4 Determination of stresses and displacements

Equation 4.16(c) may be re-written to express the boundary radial displacements in terms of circumferential strains. The circumferential strain at the outer surface of the n^{th} cylinder is given by

$$\left(\varepsilon_{n\theta}\right)_{outside} = \frac{\left(u_{nr}\right)_{outside}}{r_{outside}}$$
(4.17)

The circumferential strain at the inner surface of the $(n+1)^{th}$ can be expressed in a similar way. Therefore, the necessary and sufficient condition for displacement compatibility at boundaries is for the corresponding hoop strains to match. In addition, equating hoop strains rather than radial displacements eliminates the need for an integration process. For N number of cylinders, there are (N-1) boundaries. Thus, there will be (N-1) equations of compatibility containing an equal number of unknown radial pressures. These pressures can then be solved if the material properties are known.

4.4.3.5 Application of the analysis to predict the behaviour of the short column

In order to accurately model the behaviour of the short column and to account for the variation of elastic properties with radial distance, a three-cylinder configuration was proposed. The encased column is divided into concentric cylinders of three materials: (a) a plain concrete core, (b) a reinforced concrete zone, and (c) the pure steel casing. This is shown in Fig. 4.8(g). For stress and strain predictions for the column tested without steel casing, there are only two constituent cylinders. Parallel with the load test, the foregoing method has been used to calculate the deformations of the column.

The Young's modulus of steel and concrete were determined from laboratory tests on samples as 205 kN/mm² and 38 kN/mm² respectively. The Poisson's ratio value for steel and plain concrete were taken as 0.3 (BS5950:1990) and 0.2 respectively (BS8110:1985). The Young's modulus value for the reinforced concrete zone is initially estimated using an "equivalent area" approach, which gives a value of 43 kN/mm². Trial values of Poisson's ratio for reinforced concrete are then taken in the range 0.15-0.4.

Graphs of applied load versus the average strains from test No.1 are given in Fig.4.8(h). To avoid clutter, only the results of the first load cycle are shown, since the graphs for load cycles 2 and 3 also show approximately identical gradients. The plots for test No.2 are given in Fig. 4.8(j), for the first load cycle. The average gradients of these graphs represent strain per unit (1 kN) applied load and are called "normalised strains". The normalised strain values from all the gauges are presented in Table 4.7. The normalised strain values shown have been calculated by linear regression on at least 15 test data points.

	Test 1-column with 10mm steel				Test 2-column without steel				
	casing					casing			
	Extenso	Axial	Radial	Circum	Extenso	Axial	Radial	Circum	
Cycle 1 Load	33.64	29.90	7.95	8.96	35.45	30.35	8.60	8.20	
Unload	33.17	27.58	7.95	8.53	34.79	30.45	8.36	8.35	
<u>Cycle 2</u> Load Unload	29.63 27.38	28.21 27.87	7.95 7.95	7.26 7.26	35.45 35.12	30.66 30.56	8.58 8.49	8.24 8.31	
<u>Cycle 3</u> Load Unload	29.85 28.88	27.81 26.63	7.78 7.78	7.31 7.74	35.85 35.47	30.42 30.89	8.63 8.40	8.37 8.44	
Mean	30.43	28.00	7.89	7.39	35.36	30.56	8.51	8.32	
Predicted	31.	41	7.74	7.35	38.4	44	8.38	8.80	

Table 4.7: Measured and predicted normalised strains (x 10⁻⁹) per kN applied load

A back analysis method was devised to determine the elastic constants from actual measured strains. Tables 4.8-4.10 illustrate the influence of E and v values on the predicted axial, radial and circumferential strains. In all cases, the following values have been kept constant:

$$E_s=205,000 \text{ N/mm}^2$$
, $v_s=0.3 \text{ and } v_c=0.2$.

Various incremental values of the elastic constants E_c , E_b and v_b were input into a purpose written computer program so that stresses and strains could be generated at required increments. It was also imperative to generate the strain values at radial co-ordinates corresponding to the locations of the embedded strain gauges.

Having carried out a sequence of formulations in order to determine the elastic constants, there are still uncertainties as to the true value of concrete modulus under loading. Therefore a range of values of elastic constants was generated with a view to judging the predicted strains. This study was carried out by the use of a purpose written computer program to compute stresses and strains, in three mutually perpendicular directions, at required locations. The measured strains were "targeted" in order to enable the choice of a range of correct E and ν values.

From this parametric study, the appropriate set of elastic constants to give the most accurate prediction of strain values, in all three directions, are listed in Table 4.11. The experimentally observed strains and the predicted strains in the short column are shown in the last two rows of Table 4.7. It is seen that the predicted strains are accurate to within 5% of the measured values and are remarkably consistent throughout.

Elastic consta reinforced co		Predicted strains (x10 ⁻⁹) at Instrument locations			
$E_b (N/mm^2)$	ν_{b}	Circum	Radial	Axial	
38000	0.20	7.04	7.04	33.88	
	0.22	7.37	7.55	33.80	
	0.24	7.71	8.06	33.72	
	0.26	8.04	8.56	33.65	
	0.28	8.38	9.07	33.57	
	0.30	8.71	9.58	33.49	
40000	0.20	6.84	6.83	32.91	
	0.22	7.17	7.33	32.84	
	0.24	7.50	7.83	32.77	
	0.26	7.82	8.32	32.69	
	0.28	8.15	8.82	32.62	
	0.30	8.48	9.32	32.54	
42000	0.20	6.64	6.63	31.99	
	0.22	6.96	7.12	31.92	
	0.24	7.29	7.60	31.85	
	0.26	7.61	8.09	31.78	
	0.28	7.94	8.57	31.71	
	0.30	8.26	9.06	31.64	
44000	0.20	6.45	6.45	31.12	
	0.22	6.77	6.92	31.05	
	0.24	7.09	7.40	30.99	
	0.26	7.41	7.87	30.92	
	0.28	7.73	8.35	30.86	
	0.30	8.05	8.82	30.79	

Table 4.8: Predicted normalised strains for $E_c=36000N/mm^2$ per kN applied load

Elastic constants for reinforced concrete			Predicted strains $(x10^{-9})$ at Instrument locations			
$E_b(N/mm^2)$	ν _b	Circum	Radial	Axial		
40000	0.20	6.74	6.74	32.48		
	0.22	7.06	7.23	32.41		
	0.24	7.38	7.72	32.33		
	0.26	7.71	8.20	32.26		
	0.28	8.03	8.69	32.18		
	0.30	8.35	9.18	32.11		
42000	0.20	6.55	6.54	31.58		
	0.22	6.87	7.02	31.51		
	0.24	7.19	7.50	31.44		
	0.26	7.50	7.97	31.37		
	0.28	7.82	8.45	31.30		
	0.30	8.14	8.93	31.23		
44000	0.20	6.37	6.36	30.74		
	0.22	6.68	6.83	30.67		
	0.24	6.99	7.30	30.60		
	0.26	7.30	7.76	30.54		
	0.28	7.62	8.23	30.47		
	0.30	7.93	8.70	30.40		
46000	0.20	6.20	6.19	29.93		
	0.22	6.51	6.65	29.87		
	0.24	6.82	7.11	29.80		
	0.26	7.12	7.56	29.74		
	0.28	7.43	8.02	29.67		
	0.30	7.74	8.48	29.61		
48000	0.20	6.04	6.02	29.17		
	0.22	6.34	6.47	29.11		
	0.24	6.65	6.92	29.05		
	0.26	6.95	7.37	28.99		
	0.28	7.26	7.82	28.93		
	0.30	7.56	8.27	28.87		

Table 4 9: Predicted normalised strains for $E_c=38000N/mm^2$ per kN applied load

Elastic consta reinforced cor			strains (x10 at locations) ^{.9}) at
E_{b} (N/mm ²)	V _b	Circum	Radial	Axial
42500	0.20	6.42	6.42	30.98
	0.22	6.73	6.89	30.91
	0.24	7.04	7.35	30.84
	0.26	7.34	7.82	30.78
	0.28	7.65	8.28	30.71
	0.30	7.96	8.75	30.64
45000	0.20	6.16	6.15	29.77
	0.22	6.46	6.61	29.72
	0.24	6.77	7.08	29.68
	0.26	7.07	7.54	29.63
	0.28	7.38	8.01	29.59
	0.30	7.69	8.46	29.54
47500	0.20	6.00	5.99	29.02
	0.22	6.30	6.43	28.96
	0.24	6.60	6.88	28.90
	0.26	6.90	7.32	28.83
	0.28	7.20	7.77	28.77
	0.30	7.50	8.21	28.71
50000	0.20	5.81	5.80	28.13
	0.22	6.10	6.23	28.07
	0.24	6.40	6.66	28.01
	0.26	6.69	7.10	27.95
	0.28	6.99	7.54	27.89
	0.30	7.28	7.97	27.83
52500	0.20	5.64	5.62	27.29
	0.22	5.93	6.04	27.23
	0.24	6.22	6.47	27.18
	0.26	6.50	6.89	27.12
	0.28	6.79	7.32	27.07
	0.30	7.08	7.74	27.01

Table 4.10: Predicted strains for $E_c=40000N/mm^2$ per kN applied axial load

Material	Young's modulus (kN/mm ²)	Poisson's ratio
Steel casing	205	0.30
Reinforced concrete zone (253mm-450mm radius)	42	0.25
Plain concrete core (0- 253 mm radius)	38	0.20

Table 4.11: Appropriate elastic constants for constituent materials of the short column

4.5 EVALUATION OF LOAD TRANSFER FROM PILE TO SOIL

4.5.1 Introduction

The axial load distribution along a pile shaft gives a direct measurement of the pattern of load transfer to soil through the action of shaft resistance and end bearing. A careful interpretation of the axial force profile is necessary where there is potential for anomalies caused as a result of residual forces in the pile. The axial force variation along a given pile shaft is based on the strain gauge results incorporating the calibration methods previously described, namely:

- 1) The linear gauge stiffness method
- 2) The non-linear power regression method
- 3) The back-analysed elastic constants from a short composite column.

In addition to the use of the vibrating wire strain gauge readings, the shortening between various levels have also been calculated form the readings of the extensometers, and this also enables an assessment of axial forces. In this method, the elastic constants are taken from the polynomial function fit, since small values of compression are expected, which can be affected by the use of inaccurate elastic parameters for concrete.

4.5.2 Use of extensometer readings in estimating axial forces

Figures 4.9(a)-4.9(e) present the plots of extensometer readings versus applied load for test piles TP2-TP6. The overall pattern of increase in compression with applied load, even within the friction transferring length of the pile, is approximately linear. Connection of the graphs for successive load cycles produces discontinuities, but this does not substantially affect the calculated shortening, which is based on the algebraic difference between the readings of adjacent extensometers.

In Figures 4.9(f)-(k), the deduced shortening values between the various instrument levels have been plotted against the applied load. In order to use the calculated values of shortening to estimate axial forces, it is important to distinguish between the correct values and the cases of apparent malfunction of the extensometers. In addition, because of the non-linear behaviour of concrete at low strain values, it important to use the correct Young's modulus in order to achieve accurate results. Starting from a level of known axial force P_i , the force P_i at the next extensometer position is calculated from

$$\frac{\frac{1}{2}(P_i + P_j)L_{ij}}{E_{ij}A_{ij}} = e_{ij}$$
(4.18)

where L_{ii} = length of section from level i to j

- E_{ij} = Young's modulus of concrete, appropriate for length i-j, depending on the mean value of strain in this section
- A_{ii} = Equivalent concrete area for length i-j
- e_{ij} = shortening of length i-j, deduced from extensioneter readings.

4.5.3 Behaviour of pile TP6 in a pull-out test

Figure 4.9(l) is a plot of applied pull-out force versus pile head movement observed in pile TP6. In load cycle No. 1, for applied forces of 0-1MN, the pile head moves upwards at an approximate rate of 1.61mm/MN. The rate of movement of the pile head sharply increases to 6.28mm/MN for loads of 1.5-2.0MN. There is an unrecoverable pile head uplift of 2.46mm on unloading to zero. In load cycle No.2, the applied force versus pile head movement curve follows approximately the same path as that of unloading in the previous load cycle, until the applied load equals the maximum load in the previous load cycle. After this load level, the uplift rate increases steeply to about 12.2 mm/MN. This rate is more or less maintained throughout the load increment loci in cycles 3 and 4, although there is a slight recovery in load cycle 3. The broken line in Fig. 4.9(l) represents the variation of shaft resistance with pile head movement. At the maximum load of 8.5MN in load cycle 4, the shaft resistance is still increasing and therefore the failure point has not been reached.

A plot of base load versus applied pull-out force is shown in Fig 4.9(m). It is seen that the base load is constant at 326kN for applied loads of up to 250kN. The base load then decreases approximately linearly with applied load. Although the results available are insufficient to indicate the extent of linearity, if the straight line is projected until it cuts the horizontal axis, the upward force required to produce zero base resistance is estimated as 2.3MN. At this point, the shaft resistance equals the applied force less the self-weight of the pile.

Figure 4.9(n) illustrates the variation of strain at different levels with applied load. When the load reaches 2MN, there are rapid increases in strain at levels 1,2 and 4, which is due to concrete cracking. The cracking at 2.5MN load coincides with the dramatic change in the gradient of the applied force versus pile head movement. Very little tensile load reaches level 5 and hence the strain readings at this level remain approximately constant throughout the test. The level 3 gauges have not registered any cracking effects until the applied load reaches 3.5MN. The load-displacement behaviour and the strain gauge response are also supported by the data from the extensometers. Figure 4.9(p) shows that the all three extensometers record large movements when the applied load reaches 2MN. The concrete is fully cracked at applied loads in excess of 6MN when the extensometer readings become constant with applied load. The initial state of the pile prior to commencement of the pull-out test can be assessed by calculating the residual loads left in the pile at the end of the compression test. Since the strains left in the pile on zero load are small, it is necessary to obtain appropriate calibration curves for the calculation of axial forces, depending on the stress history of the concrete at a given level.

Figure 4.9(q) shows the variation of the apparent concrete modulus with strain as backanalysed from level 1 gauges in the compression test. The path of load increment in the first load cycle is marked 1+ whereas the load decrement curve is marked 1- (and so on). Table 4.12 shows the selected calibration curves for calculating axial forces at a given level, for a given load cycle.

	Level 1 [*]		Leve	el 2*	Lev	el 3	Level 4		Lev	Level 5
	ε _{max} ,	Curve	ε _{max} ,	Curve	ε _{max} ,	Curve	ε _{max} ,	Curve	ε _{max}	Curve
	^e min		^e min		ε _{min}		ε _{min}		ε _{min}	
1. LD	97.7	1+	85.0	<u>i</u> +	79.0	1+	59.0]+	11.7	1+
UNLD	0.3	1-	-1.7	1-	0.3	1-	10.0	1-	0.7	1-
2. LD	166.0	2+	145.7	2+	138.3	2+	105.3	2+	17.3	1+
UNLD	1.0	2-	-2.0	2-	1.0	2-	15.7	2-	-2.3	1-
3. LD	286.0	3+	252.3	3+	254.0	3+	181.0	2+	28.3	1+
UNLD	8.3	3-	-0.3	3-	16.0	3-	23.7	2-	-5.3	1-
4. LD	420.3	4+	367.7	4+	377.7	4+	276.3	3+	69.0	1+
UNLD	26.0	4-	9.3	4-	36.7	4-	36.7	3-	3.7	1-
	Concrete area, $A_c = 621.696 \times 10^3 \text{ mm}^2$						Ac	= 621.69	6x10 ³ m	m ²
	Steel area, $A_s = 43.065 \times 10^3 \text{ mm}^2$							= 14.476		

These levels are located within the sleeved part of the pile

Table 4.12: Selection of calibration curves for pile TP6

Curves 2+ and 2- are not utilized in the 4^{th} load cycle, for which the axial force profile is required at zero loading. The functions given in Table 4.13 were derived, by regression methods, for the rest of the calibration curves.

		$E_c = a_o \epsilon^{a_1}$		$E_{c} = a_{o} + a_{1} \ln \varepsilon$			
	С	urve numbe	rs	Curve numbers			
	1+ 1- 3+		3-	4+	4-		
a	301.360	226.330	156.330	7.971	21.202	-25.216	
a_1	0.431	-0.394	-0.271	4.952	2.442	10.301	
r	-0.994	-0.964	-0.956	0.965	0.723	0.969	

* Correlation coefficient values

Table 4.13: Calibration curves for load cycles 1,3 and 4: Pile TP6

Utilising the above stress-strain relationships of concrete, the shaft resistance distribution profile at zero load is shown in Fig. 4.9(r). The total shaft resistance of 311kN is almost balanced by the measured base resistance of 276kN. Therefore the initial positive shaft resistance before the start of the pull-out test is at most 3.7% of the projected peak shaft resistance in upward loading (taken as the maximum value reached

of 8.5MN). In comparison, the peak shaft resistance in the compression test is estimated to be 12.0MN, using Chin's(1972) method.

4.5.4 Graphs of axial force versus depth for test piles loaded in compression

The variations of axial force for pile TP2 during load cycles 1-4 are presented in Fig. 4.10(a)- Fig. 4.10(d). Because the base load cell was omitted, the force at the toe has been estimated based on the difference between the total shaft resistance from level 1 to level 4 and the applied pile head load. However, this assumption produces much higher base resistance in comparison to other test piles. The continuous lines refer to the path of incremental loading, whereas the broken lines indicate axial force distributions during load decrements. Figures 4.11-4.14 present the axial force variations in piles TP3, TP4, TP5 and TP6. The force at a given level increases with an increase in the applied load, the axial force decrease with depth along the pile.

The fashion of axial force variation along a given pile indicates the nature of load transfer to soil. In all cases, the axial force distribution at a given applied load, during load increment, is consistent with that on load decrement. The average unit shaft resistance at the mid-point between instrument levels was derived from the gradients of these graphs. Fig. 4.13(f) shows that, in pile TP5, which was pushed up to 227mm (equivalent to 25% diameter) a negative shaft resistance of 87kN was developed in load cycle 6, owing to pile recovery. With the exception of TP2, the average strain at the gauge level located just below the sleeved section of each pile is marginally less than that at the gauge level nearest to the pile head. At maximum applied loads in piles TP3,

TP4, TP5 and TP6 the strain decrements from the pile head level to the bottom of the outer casing were 5%, 13%, 6% and 10% respectively. However, at the maximum applied load in pile TP2, there was a 19% increase in strain from the pile head level to the bottom of the outer casing. These strain differentials resulted in apparent load losses within the sleeved section of a given pile. It is thought that these losses were due to:

- Friction at the knuckles installed at various points to ensure constant clearance between the inner and outer casings,
- 2) Possible variations in the pile cross-sectional area from one level to another,
- Heterogeneity of concrete which makes the calibrated stress-strain relationship not a perfect representative of the behaviour of the entire pile.

In order to check the vertical equilibrium of a given pile, the shaft resistance was calculated from the load shedding curves and compared with the difference between the applied pile head load and the base load cell reading. Taking into account the load losses in the sleeved parts of the test piles, it was found that the maximum out-of-balance force was 13%. However, this margin reduced to 5% with the inclusion of the pile self weight.

Figures 4.12(a)-(e) shows extremely large decreases in axial force, in TP4, from instrument level 2 to level 3. Below strain gauge level 3, the slopes of the graphs are approximately constant, indicating a uniform shaft resistance. It is thought that the apparently large shaft resistance in mid-level 2-3 can be attributed to the interference with the steel liner during the installation of this pile. Therefore, the sudden collapse of the steel

liner might have resulted in concrete being placed in the space between the liner and the pile surface, along part of mid-level 2-3.

4.5.5 Comparison between linear and non-linear calibration methods for axial force prediction

The axial forces at various strain gauge levels in each pile were calculated using both the linear and the non-linear concrete stress-strain approaches. Figure 4.15 shows the calculated variation of axial force with depth for test pile TP5, wherein the results of the two methods have been plotted on the same diagram. All the test piles show a similar behaviour, hence the graphs for these piles have not been included. The plots for TP5 show the locus of incremental loading only, from 2MN up to the failure point of approximately 11.2MN. This covers load cycles 1-4 only, since the maximum load of 11.2MN was realised in load cycle 4. Load cycles 5 and 6 were carried out for the purpose of studying the end bearing resistance development, since this required much larger pile deflections.

From Fig. 4.15, it is evident that both the linear and the non-linear calibration methods produce consistent and reliable predictions of the axial force variation along the pile shaft. There are small differences in the results obtained from these methods, which may be due to the imperfect linearity of the load-strain calibration graphs and to errors in representing the variation of concrete modulus with strain.

4.5.6 Comparison between the linear and non-linear calibration methods for pile shortening prediction

The elastic shortening of each test pile was calculated from the load transfer graphs and the pile stiffness results evaluated using both the linear and the non-linear methods. The calculated shortening values were then compared with the measured values, as deduced from the readings of the extensometers covering the entire pile length. For test pile TP5, this comparison is illustrated in Fig. 4.16. All the other test piles produced a similar pattern of behaviour, and hence have not been reproduced here. As expected, the nonlinear method gives a more accurate prediction of pile shortening in the initial loading stages. Therefore, the deformation of the pile is sensitive to the variation of the apparent concrete stiffness along the pile.

The linear approach apparently provides a better accuracy in estimating axial load distribution and pile deformation at large load values. Virgin concrete generally shows initially high values of tangent modulus. As the strain is increased, the tangent modulus decreases rapidly and becomes approximately constant, provided the maximum compressive stress is not approached. Since there are strain variations along a typical pile, the total shortening at a given load is sensitive to the average stiffness of the pile.

4.6 MOBILISATION OF SHAFT AND BASE RESISTANCES

4.6.1 Introduction

A typical pile must be made to settle, to some extent, in order to mobilise either shaft resistance or end bearing resistance. The peak shaft resistance of a pile is produced at some small value of relative pile-soil slip. Slip is caused by the accumulated differences in shaft strain from axial load and the soil strain caused by the load transferred to it through shaft resistance. It has been argued by Bowles(1996) that as the applied load is increased, slip progresses downward along the pile. As the slip reaches maximum shaft resistance in the upper regions of the pile, load is transferred to lower regions, which reach maximum shaft resistance, and finally the pile base begins to support load. This mechanism is also a function of the length to diameter ratio for the pile.

Nevertheless, it is thought that the mechanism of load transfer in bored, cast in-situ piles formed in clay or weathered Keuper marl does not necessarily follow the trend suggested by Bowles(1996). The major objective of the instrumentation placed in the test piles was to establish the load transfer mechanism of large diameter, bored piles formed in Keuper marl. The pile test data are analysed to determine how pile settlement influences both shaft and base resistance development. In addition, the data is used to examine the forecasted pile settlement based on the recommendations contained in the soil investigation report. The differences between the rate of development of shaft resistance and end bearing for large diameter bored piles have already been discussed in the literature review.

4.6.2 Shaft resistance at strain gauge mid levels versus settlement

4.6.2.1 Pile TP2

The average shaft resistance between successive strain gauge levels was estimated from the slope of the plots of axial force versus depth. Figures 4.17(a) and (b) are plots of shaft resistance in mid-levels 2-3 and 3-4 respectively versus pile head settlement, for pile TP2. The results indicate that the shaft resistance in mid-level 2-3, in load cycle 1, increases with settlement at a slower rate than in load cycle 2. This is unlikely to be the true behaviour of the pile, since the pile shaft stiffness is expected to be greatest in the virgin load cycle. It is thought that the apparent shaft stiffness increase in load cycle 2 is due to the effects of installation of the pile. Another possibility is error resulting from using an average of only two strain readings to calculate axial forces. The third strain gauge located at the first instrument level did not function consistently. Figure 4.17(b) shows that the shaft resistance mobilised in mid-level 3-4 is much less than that in mid-level 2-3. It can be seen that as the maximum test load of 13.5MN approached, the slope of the shaft resistance versus settlement graph for mid-level 3-4 approaches zero while that of mid-level 2-3 is still high. Therefore, maximum shaft resistance is first developed in mid-level 3-4.

4.6.2.2 Pile TP3

Figures 4.18(a)-(d) present the variation of shaft resistance, at various mid-levels, with pile head settlement for pile TP3. The shaft resistance at all mid-levels are higher than in any other test pile, with the exception of TP4 which was known to have interference between the outer and inner casings. The mobilisation of shaft resistance at a given level, with respect to pile shaft settlement, again reflects variations in the properties of the Keuper marl. It was noted that the strains at levels 3 and 4 were approximately equal throughout all test cycles, hence producing equal forces at these levels. In Fig. 4.18(b), shaft resistance has been calculated over length 2-4. The strain readings indicate

apparently very large shaft resistance between level 5 and the pile tip. It is thought that the actual pile diameter at level 5 might have been smaller than intended.

4.6.2.3 Pile TP4

Figure 4.19(a) represents the variation of shaft resistance in mid-level 2-3 with pile head settlement for TP4. There is an anomaly in the sense that shaft resistance is mobilised very rapidly up to 732kN/m² at the peak load in cycle 3. Thereafter no significant increase in shaft resistance occurs during load cycle 4, despite an increase in pile head settlement from 25mm to 90mm. There is a sudden increase in shaft is resistance from 432kN/m² to 1125kN/m² when the pile head settlement increases from 90.4mm to 93.6mm. These anomalies reflect the uncertain condition of the pile shaft, following a suspected collapse of the casing. Figure 4.19(b) shows that a peak shaft resistance of 430kN/m² occurred in mid-level 3-4 at a pile head settlement of 90mm, in load cycle 4. In load cycle 5, there is a decrease in shaft resistance to 320kN/m². The shaft resistance variation with pile head settlement, for mid-level 4-5, is shown in Fig. 4.19(c). At the maximum applied load, the gradient of the graph is high and hence a substantial shaft resistance capacity still exists. Figure 4.19(d) presents the shaft resistance mobilisation in the region between level 5 and the pile tip. Similar to the results of pile TP3, the measured strains produce apparently very large shaft resistance of up to 2200kN/m² in this region.

4.6.2.4 Pile TP5

Figures 4.20(a)-(d) present the shaft resistance variation with pile head settlement for mid-levels 2-3, 3-4, 4-5 and 5-pile toe, respectively. In Fig. 4.20(a), it can be seen that a

peak shaft resistance of 330kN/m² is attained in mid-level 2-3 at a settlement of 44.8mm. The shaft resistance remains approximately constant as settlement increases in the subsequent load cycles. At 238mm settlement corresponding to the maximum applied load in cycle 6, the shaft resistance has only decreases to 317kN/m². From Fig. 4.20(b), the peak shaft resistance in mid-level 3-4 is 243kN/m² and occurs at a settlement of 72mm. Hence peak shaft resistance in mid-level 3-4 is less than that in mid-level 2-3 and also requires more settlement to mobilise. As the pile head settlement increases to 178mm, in load cycle 6, the shaft resistance in mid-level 3-4 decreases to only 62kN/m².

From Fig. 4.20(c), it is seen that a peak shaft resistance of 284kN/m² is reached in midlevel 4-5 at a settlement of 44.8mm. Thereafter the shaft resistance decreases with increasing settlement but to a much lesser extent in comparison to mid-level 3-4. At the end of load cycle 6, there is a negative shaft resistance of -172kN/m² in mid-level 4-5. This may be a function of the pile recovery or of short-term development of residual load in the pile system, after a large pile head movement. Figure 4.20(d) illustrates that shaft resistance develops slower in the region between level 5 and the pile toe as compared to the upper portions of the pile. While peak shaft resistance has been developed in mid-levels 2-3, 3-4 and 4-5, the shaft resistance between level 5 and the pile toe is still increasing in load cycle 6.

4.6.2.5 Pile TP6

The shaft resistance versus settlement plots for the various mid-levels in pile TP6 are shown in Fig. 4.20(e)-(g). Maximum shaft resistance is not achieved anywhere along the pile. In mid-level 7-pile tip, the maximum positive shaft resistance of 240kN/m² is approximately equal to the negative shaft resistance of 230kN/m² on unload. This is consistent with the fact that having subjected the Keuper marl to shearing stresses approaching its peak resistance, in one direction, it should exhibit approximately the same shear strength in the reverse direction. This provides evidence that, prior to the load test, insignificant residual forces existed in the pile.

4.6.3 Comparison of shaft resistance with data from C.I.R.I.A. Report No. 47

The measured peak shaft resistance at various mid-levels in test piles TP3, TP4 and TP5, which were loaded to failure, are presented in Table 4.14. A description, of the Keuper marl strata at these mid-levels, based on weathering zone classification, is also included. The observed peak shaft resistance values are compared with values given in the C.I.R.I.A. Report No. 47, which are based on weathering zone classification. It is seen that the observed shaft resistance values are generally three times greater than the values given in C.I.R.I.A. Report No. 47. Therefore the Keuper marl at the Cardiff test pile sites has a higher strength than that that in the Midlands area on which the C.I.R.I.A. Report No. 47 data are based.

4.6.4 Shaft resistance variation with depth along the test piles

Figures 4.21(a)-(e) present the variation of shaft resistance with depth along each pile shaft, for given load increments up to the last load cycle. The graphs generally show

that shaft resistance decreases with depth and reaches a minimum value at a point near the middle of the pile shaft.

	Strata zones	Measured peak shaft resistance (kN/m ²)	C.I.R.I.A. mean shaft resistance values (kN/m ²)
<u>TP3</u>			
2-4	IV & III	350	150
4-5	III	600	240
<u>TP4</u>			
2-3	IVa & IVb	*	75
3-4	IV & III	430	150
4-5	111 & IV	*	150
<u>TP5</u>			
2-3	IVa	330	100
3-4	IVa	243	100
4-5	IVa	284	100
5-tip	IVa	450 [#]	100

* Denotes not available; # Maximum value reached in test

Table 4.14: Shaft resistance compared with C.I.R.I.A. Report No. 47 data

Figure 4.21(a) shows that in TP2, the ratio of shaft resistance in the upper regions of the pile to that in the region near the pile toe decreases to approximately unity as the load is increased from 1MN to 13.5MN. Further, as the load is increased, the middle part of the pile develops shaft resistance at the lowest rate in comparison to other regions. Figure 4.21(b) shows that, at each loading stage, the shaft resistance between depths 24-28m increases only marginally with depth. In contrast, there is a rapid increase in shaft resistance from depth 28m to the pile tot level. The trend observed in TP2 in which there is a minimum shaft resistance near the middle of the pile is also shown in TP4 (Fig. 4.21(c)). In pile TP5, Fig. 4.21(d) reveals that there is also a minimum shaft resistance at a location close to the middle of the pile. The peak shaft resistance in this pile was mobilised at an applied load of 9.5MN. It can be seen from Fig. 4.21(d) that

after the mobilisation of peak shaft load, the shaft resistance distribution along the pile becomes approximately constant. In pile TP6, the variation of shaft resistance with depth shows a high sensitivity to the applied load level. Figure 4.21(e) reveals that for applied loads of up to 3.5MN, shaft resistance increases at an increasing rate with depth. At 5MN, the shaft resistance increases approximately linearly with depth. For greater loads, shaft resistance increases with depth at a decreasing rate and depicts a maximum point.

4.6.5 Mobilisation of end bearing resistance

In addition to the available data from the load cells, the load transmitted to the base of each test pile was estimated from the axial force distribution graphs. This was based on the assumption that the shaft resistance distribution between the last instrument level and the pile toe level was equal to that in the mid-level immediately above. In comparison to the base load cell reading, it was found that the estimated base loads from strain gauges were greater.

For low loads and pile head displacement values, it was anticipated that the strain gauges installed close to the pile toe level would record low strain values. Since the Young's modulus of concrete at low strains is subject to wide variations, greater error was expected in the computed axial force at the last instrument level, in comparison to other levels where larger strains were recorded. For this reason, it is thought that the base loads obtained directly from the load cells are more reliable. Figures 4.22(a)-(d) present plots of applied load, shaft load and base load versus net settlement (base

movement) for the test piles. The base resistance versus base movement graph for pile TP2 (Fig. 4.22(a)) is thought not to represent the actual behaviour of the pile since the assumptions outlined above had to be made. These assumptions were necessary because no base load cell was installed in this pile. Apart from TP2, for base movements up to 50mm, very little base resistance was developed in the piles. Also, in this loading range, the base resistance appears to increase with base movement at an increasing rate. The excessive base movement initially occurring, with little development of load resistance, indicates that loose soil debris might have been present in the pile holes as concrete was placed.

Figure 4.22(d), which presents the results for pile TP5, reveals the base behaviour most comprehensively. For base movements exceeding 50mm, the base resistance increases with base movement at a decreasing rate. Figure 4.22(d) also shows that, at 228mm movement (equivalent to 25% of pile diameter), the point of ultimate base resistance is approached. In contrast, the peak shaft resistance occurs at a base movement of about 36mm (equivalent to 4% of pile diameter). At this point only about 18% of the ultimate base resistance are developed. Pile TP5 developed a clear maximum load capacity of 11.2MN at a base movement of 100mm (about 11% of the pile diameter). At this point, the shaft resistance had decreased to 7.7MN whereas the base resistance was 2.9MN. Therefore, the ultimate pile load capacity is not the sum of the peak shaft resistance plus the ultimate base resistance but rather, it comprises portions of these components of load resistance.

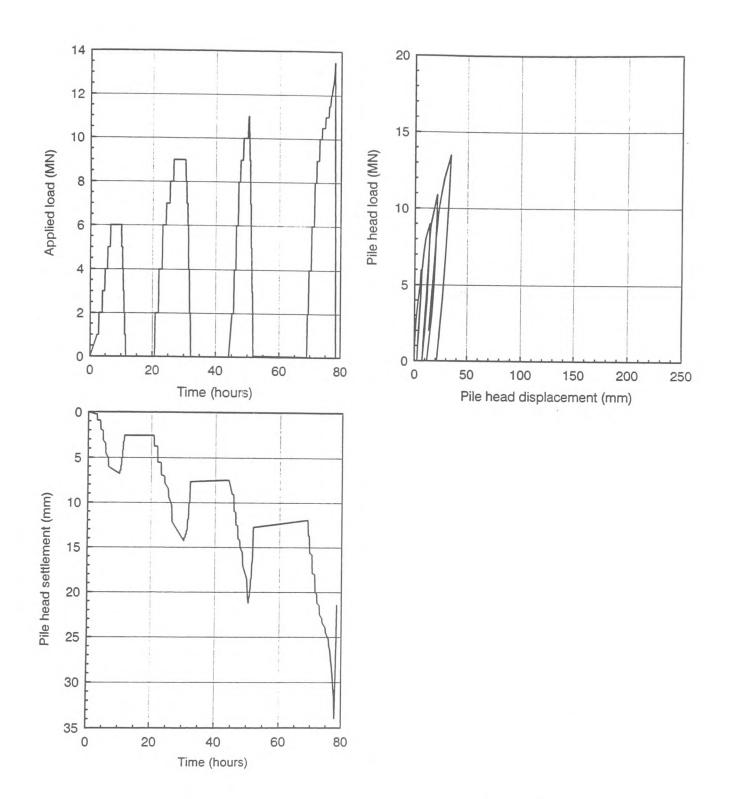


Fig 4.1: Load-Displacement-Time behaviour of TP2

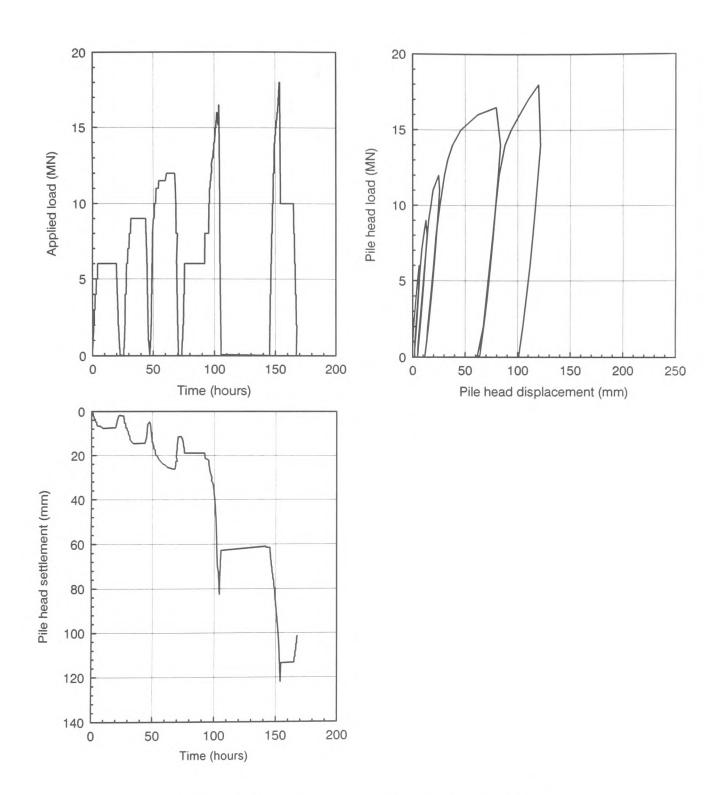


Fig 4.2: Load-Displacement-Time behaviour of TP3

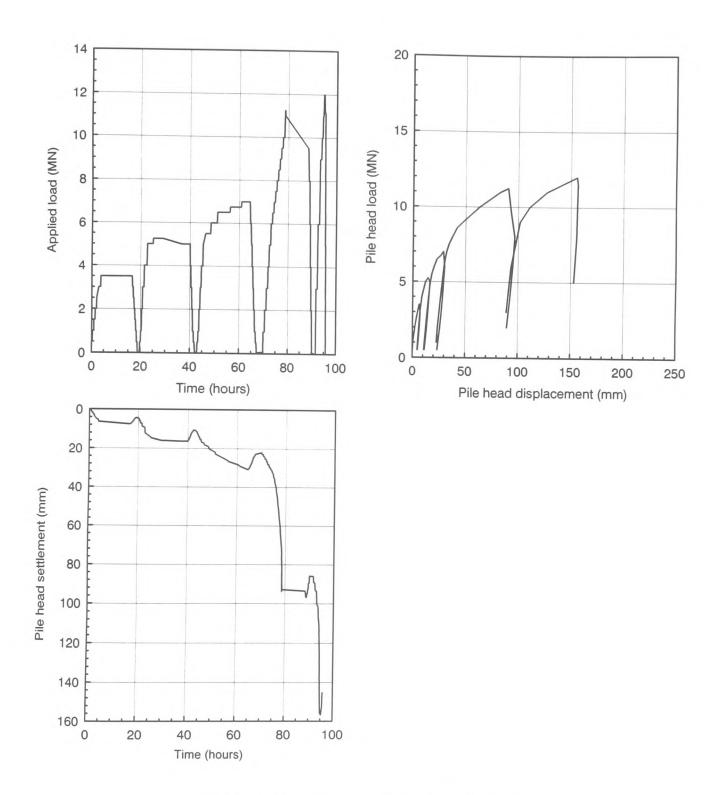


Fig 4.3: Load-Displacement-Time behaviour of TP4

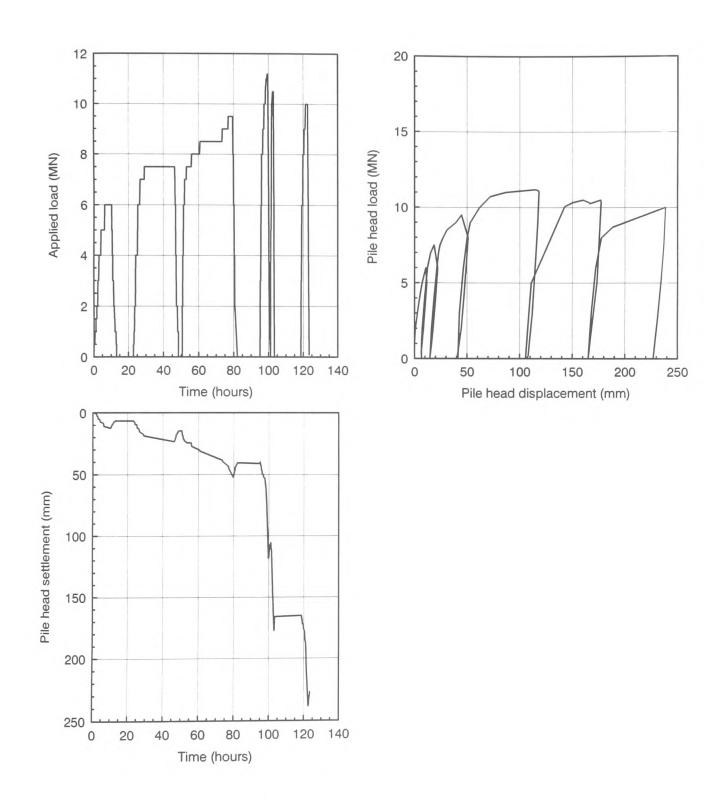
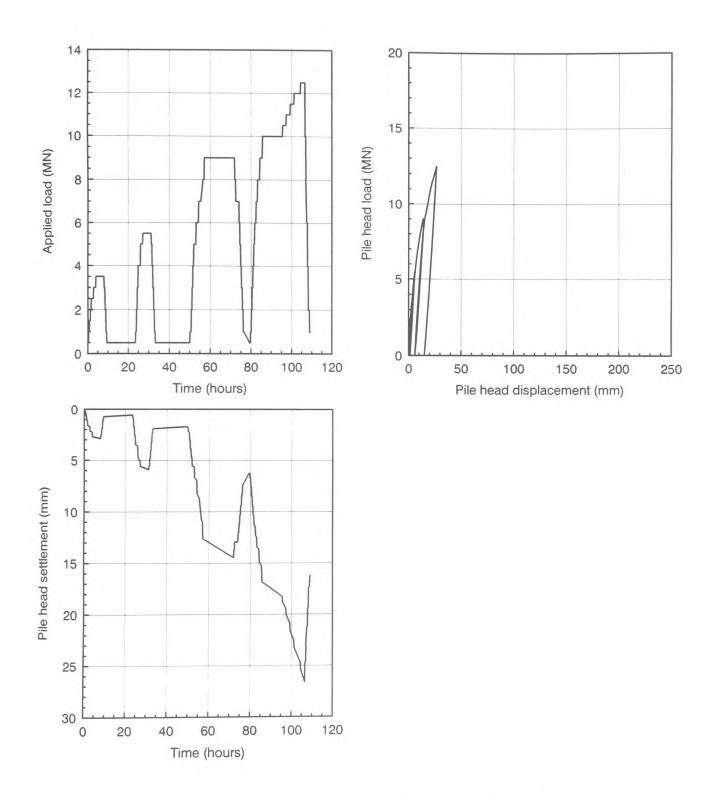
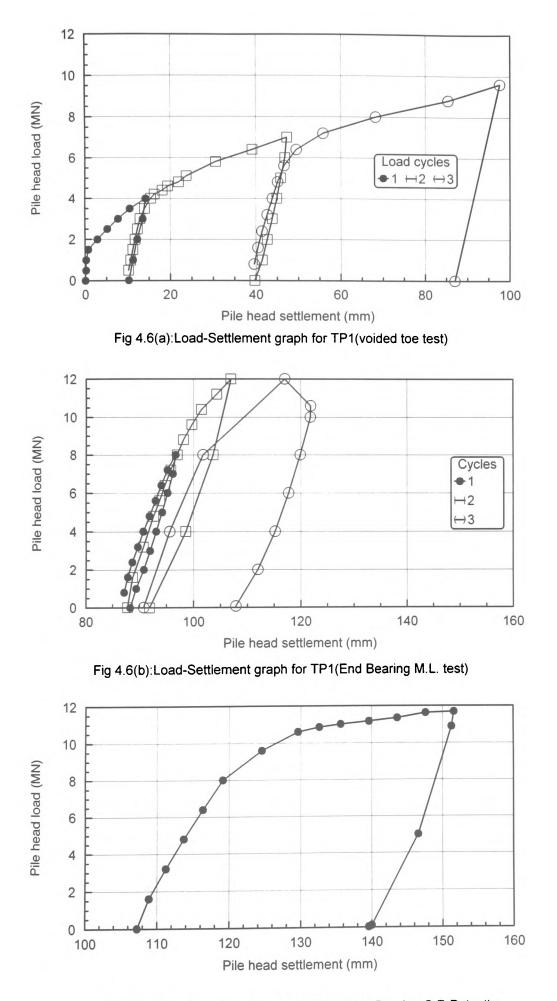
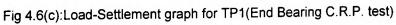
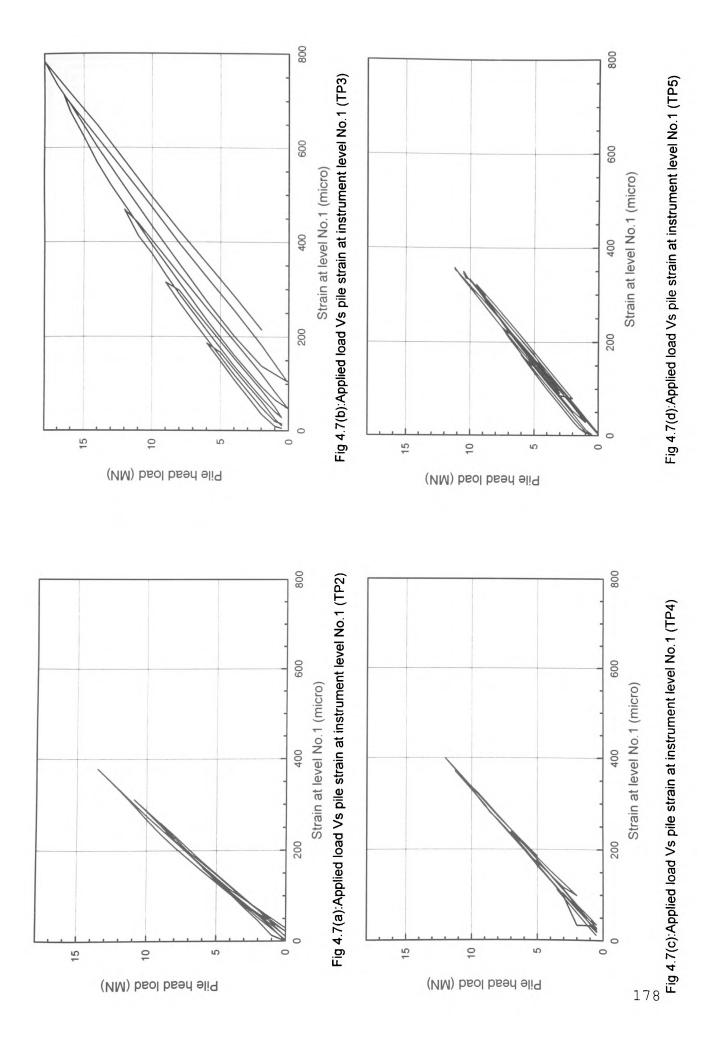
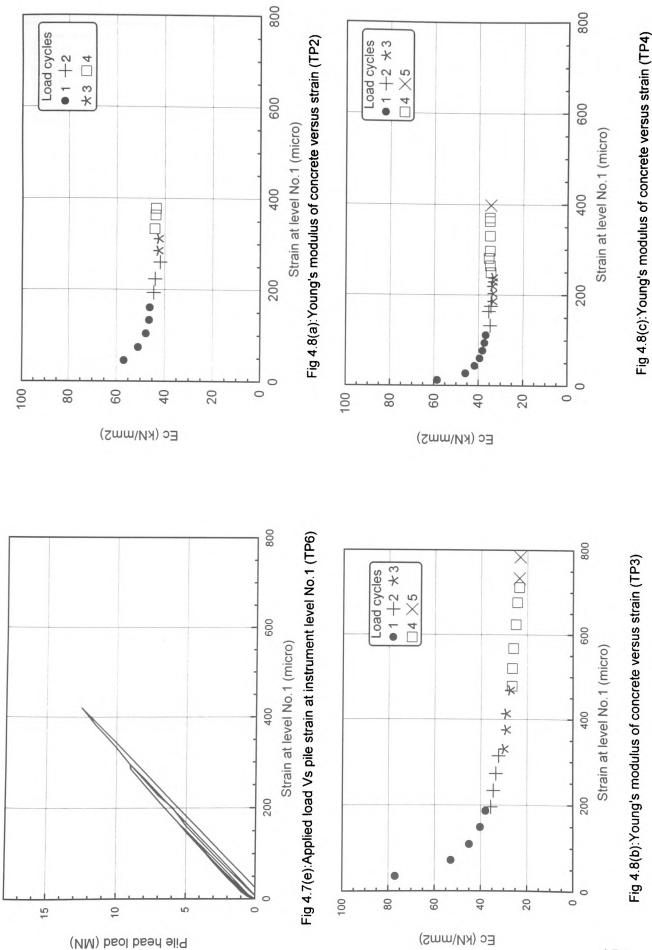
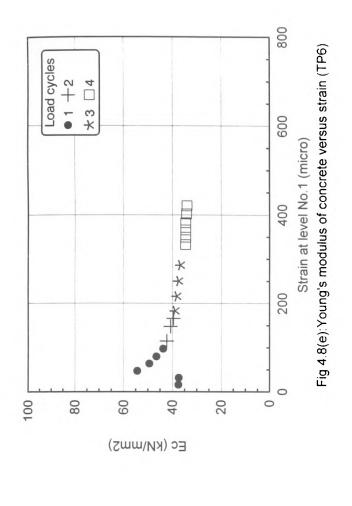
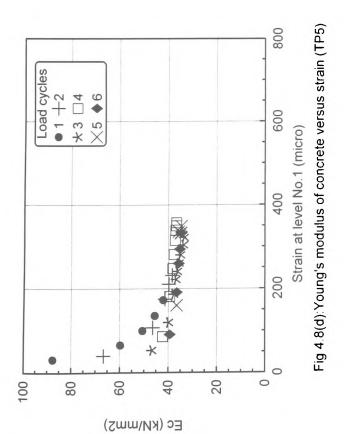


Fig 4.4: Load-Displacement-Time behaviour of TP5


Fig 4.5: Load-Displacement-Time behaviour of TP6



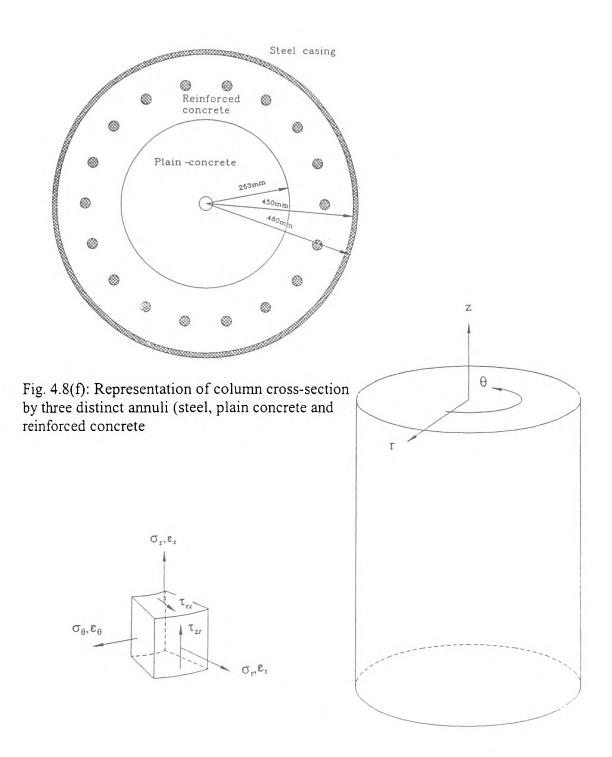
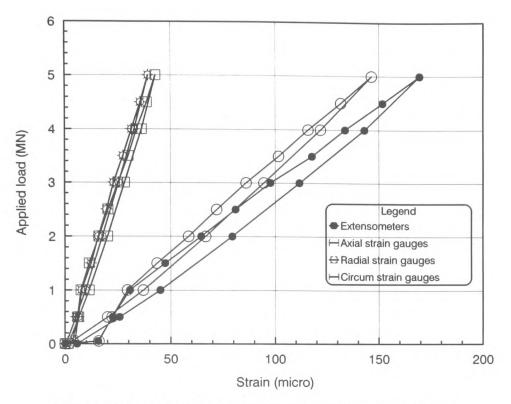
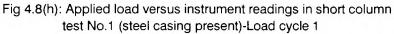




Fig. 4.8(g): Cylindrical co-ordinate system for stresses and strains

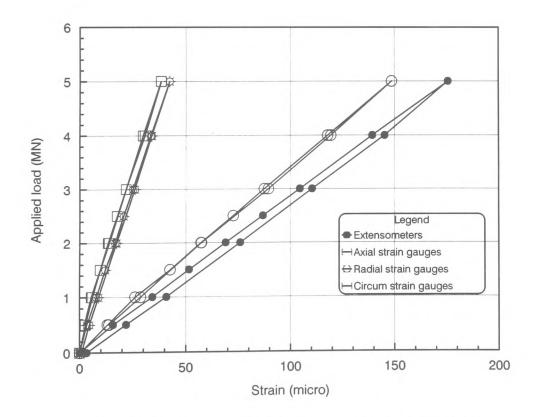
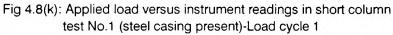
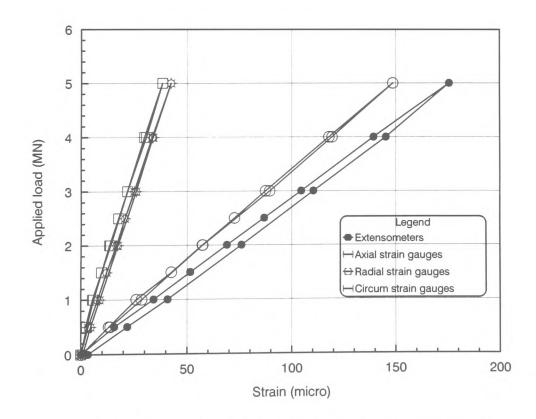
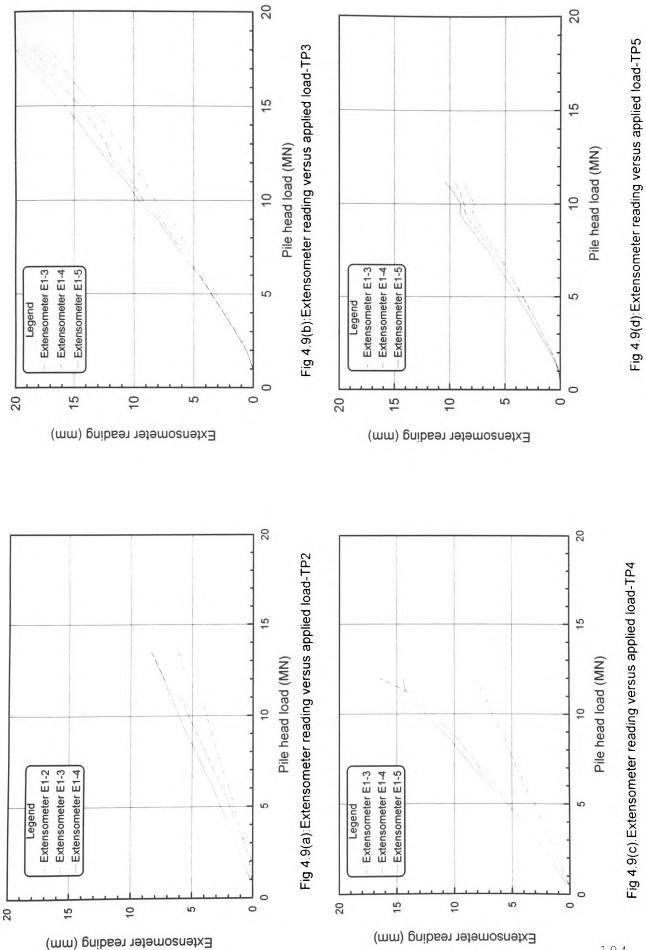
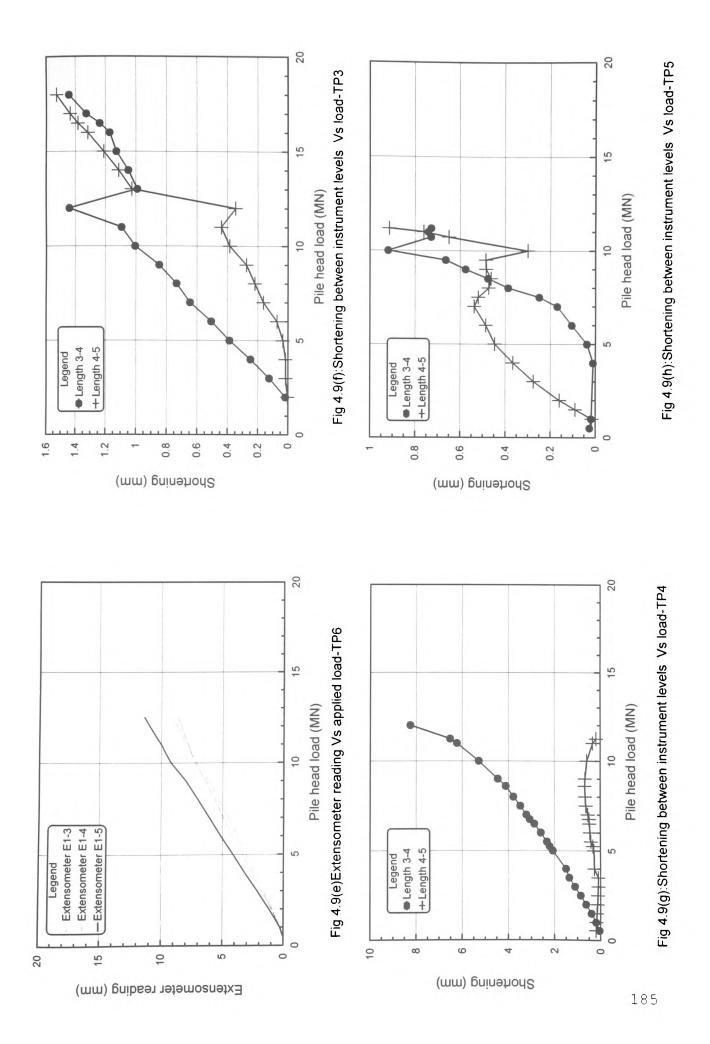
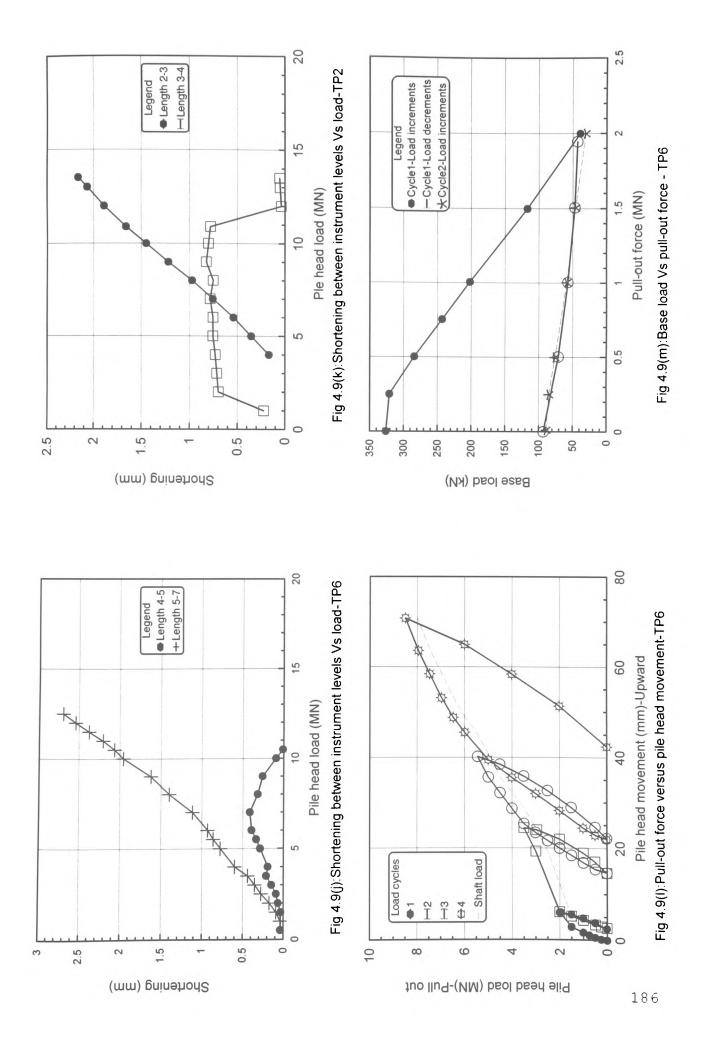
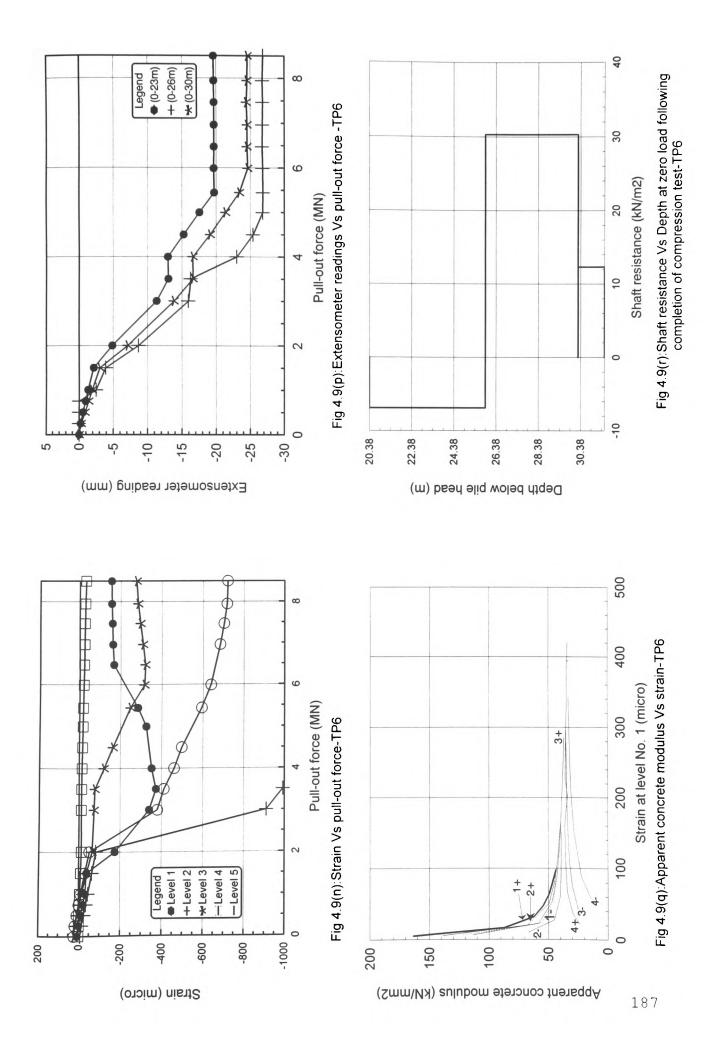
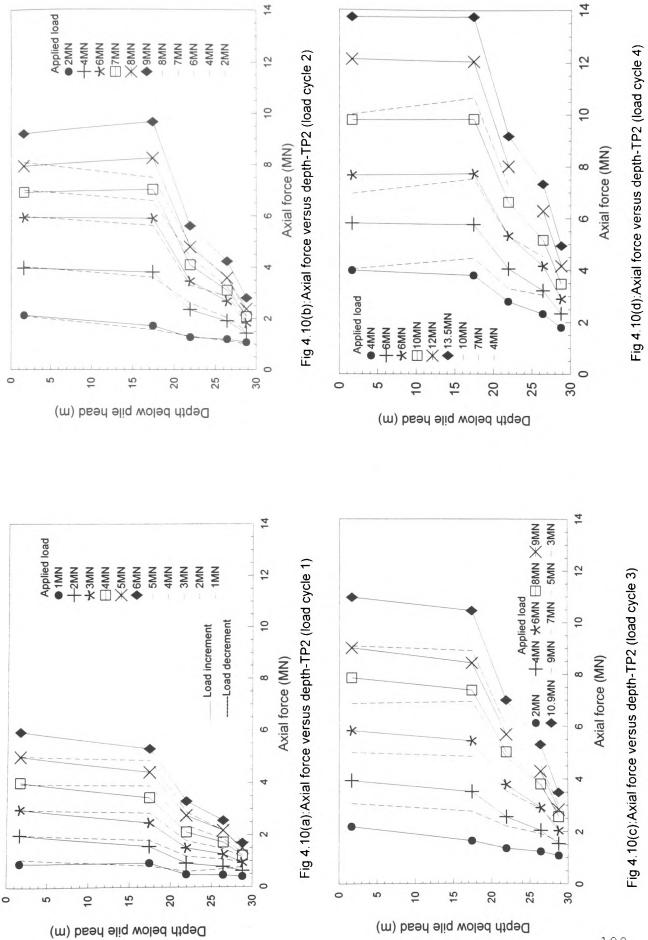
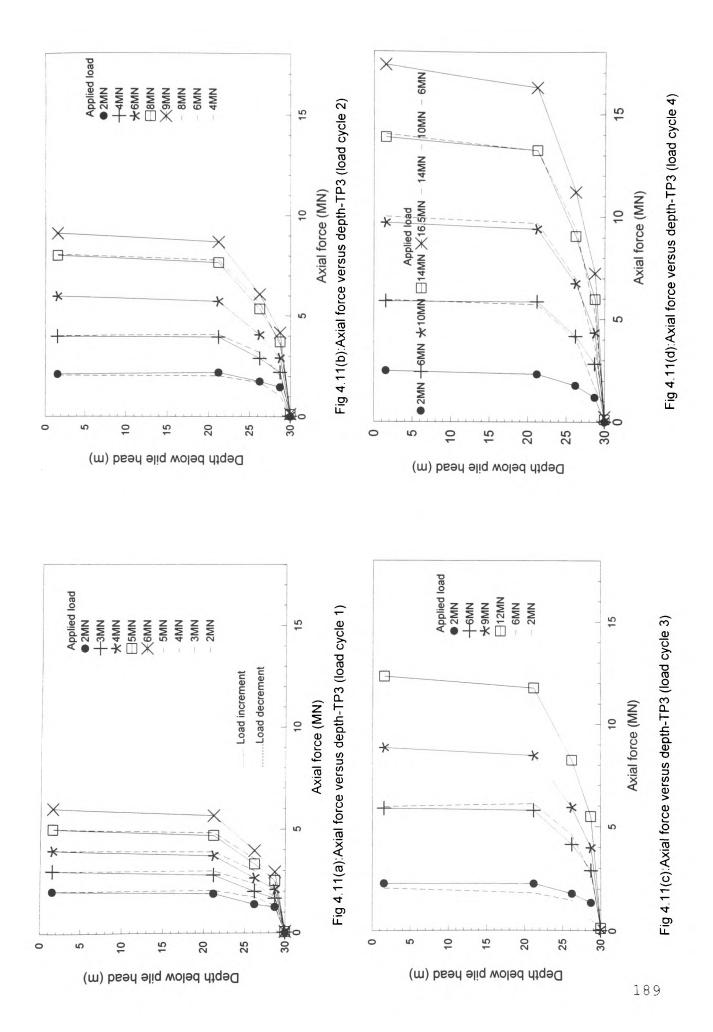
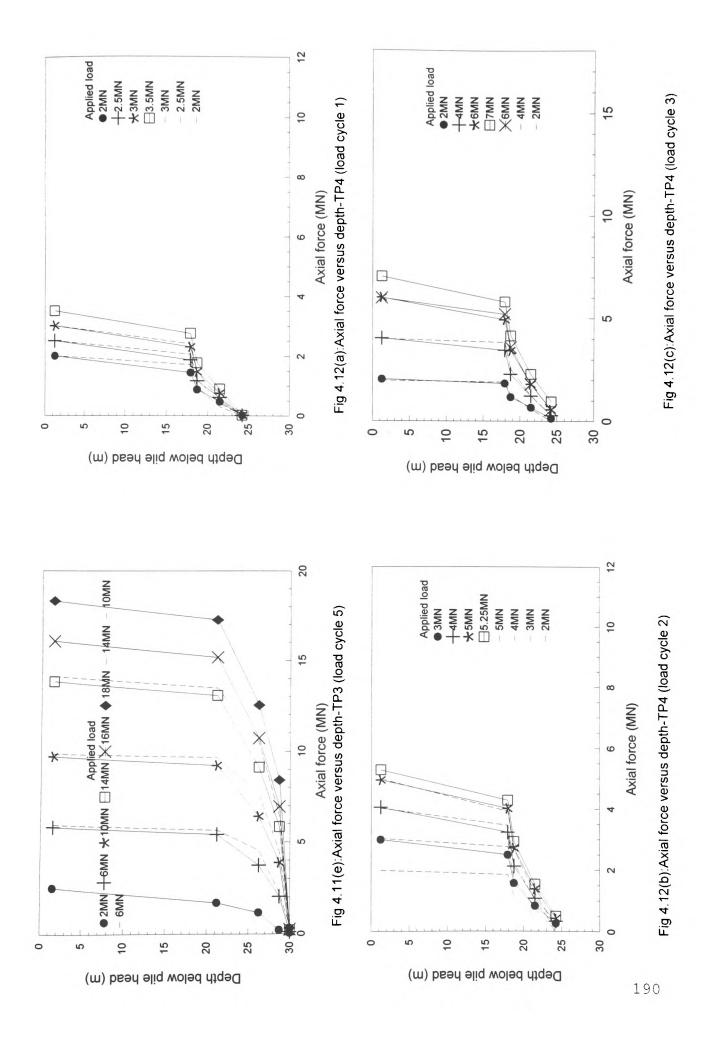



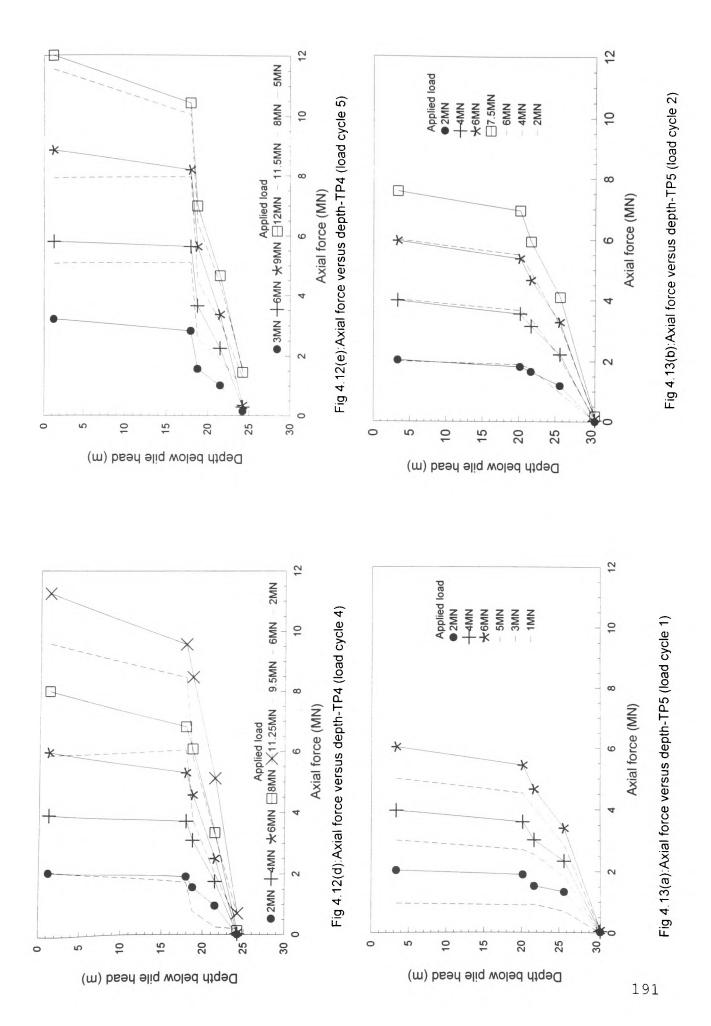
Fig 4.8(j): Applied load versus instrument readings in short column test No.2 (without steel casing)-Load cycle 1

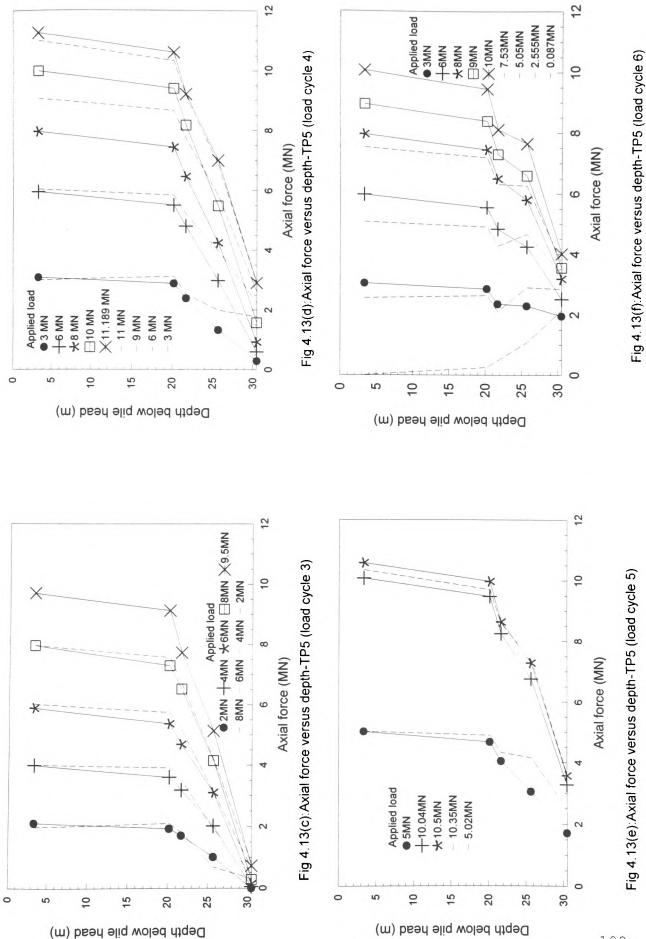






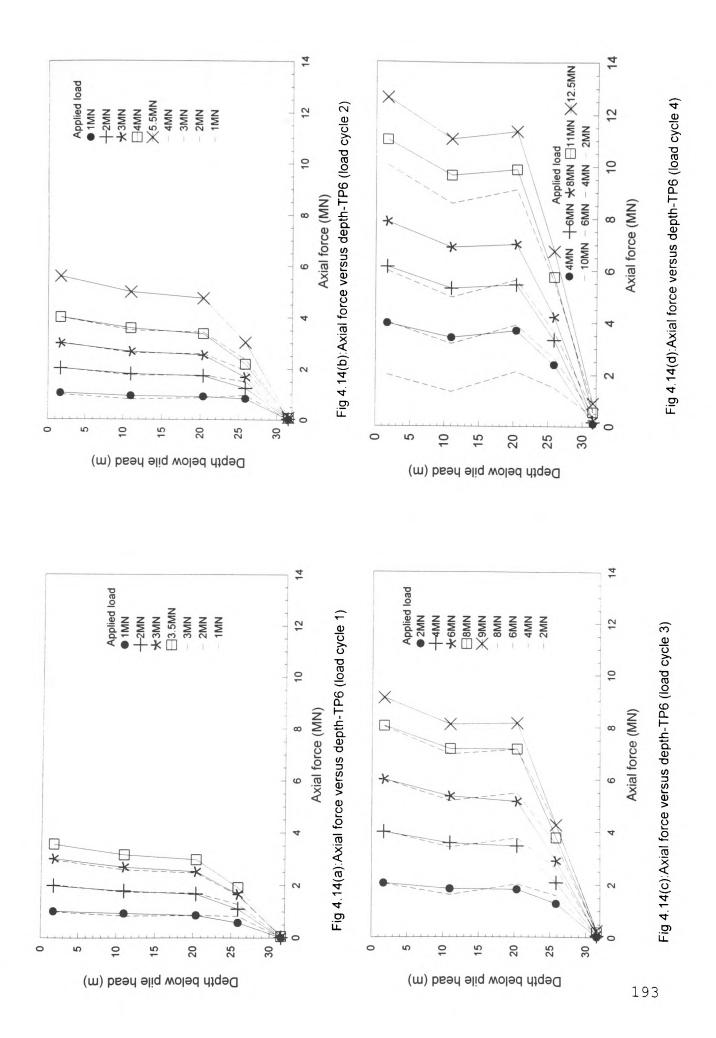

Fig 4.8(I): Applied load versus instrument readings in short column test No.2 (without steel casing)-Load cycle 1











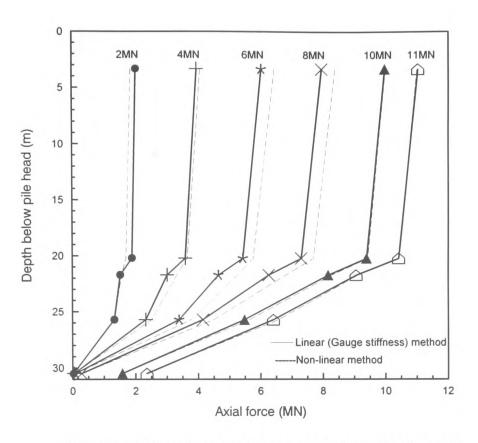
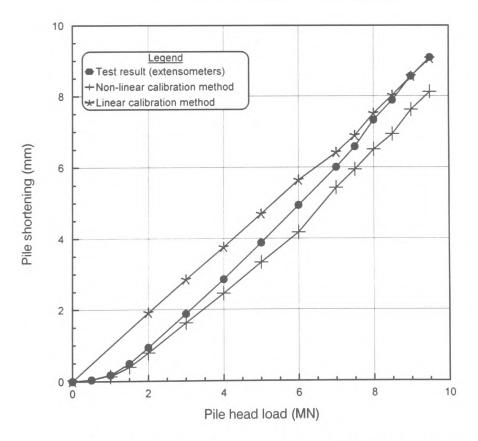
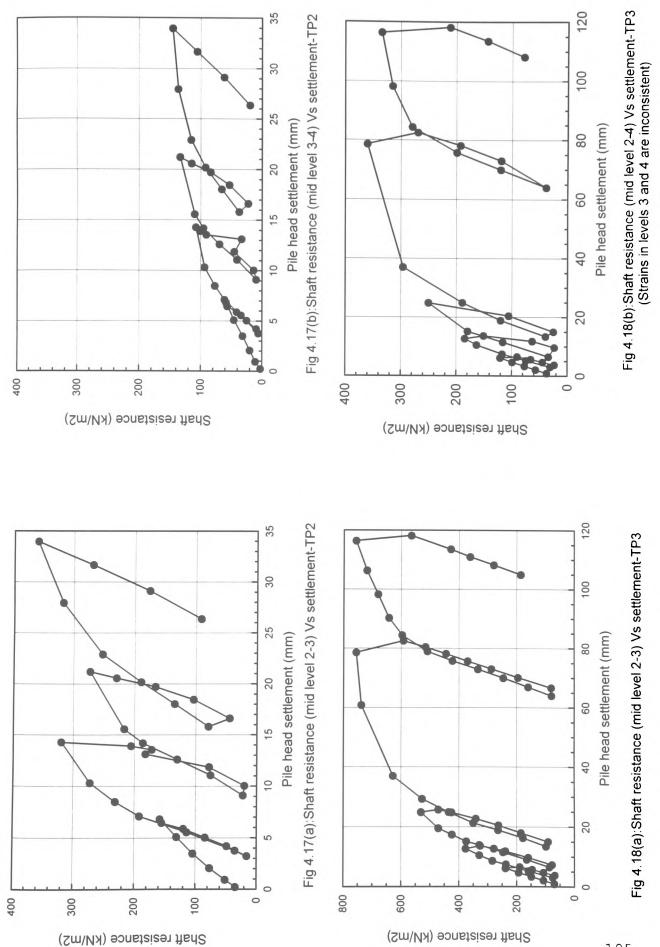
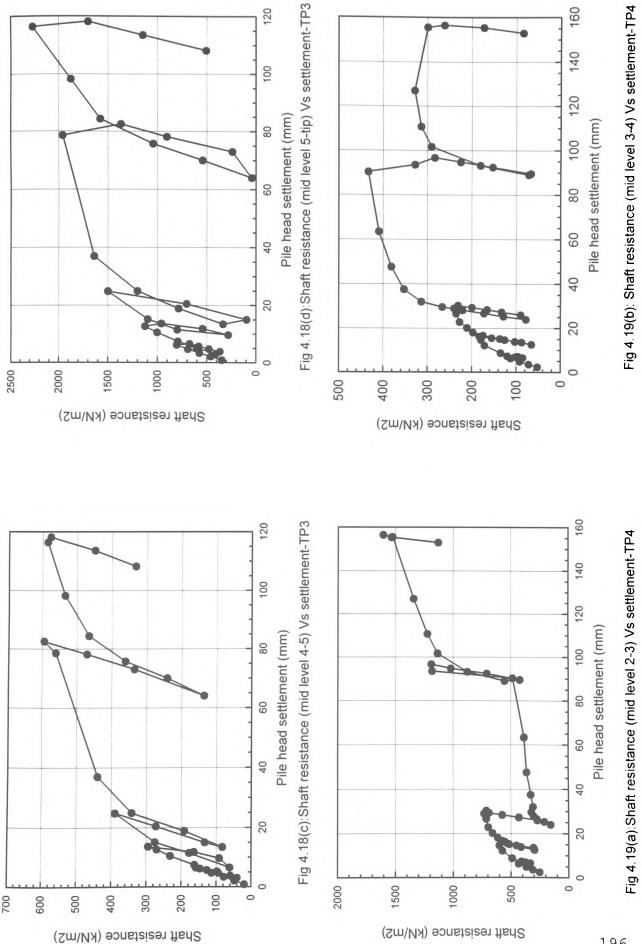
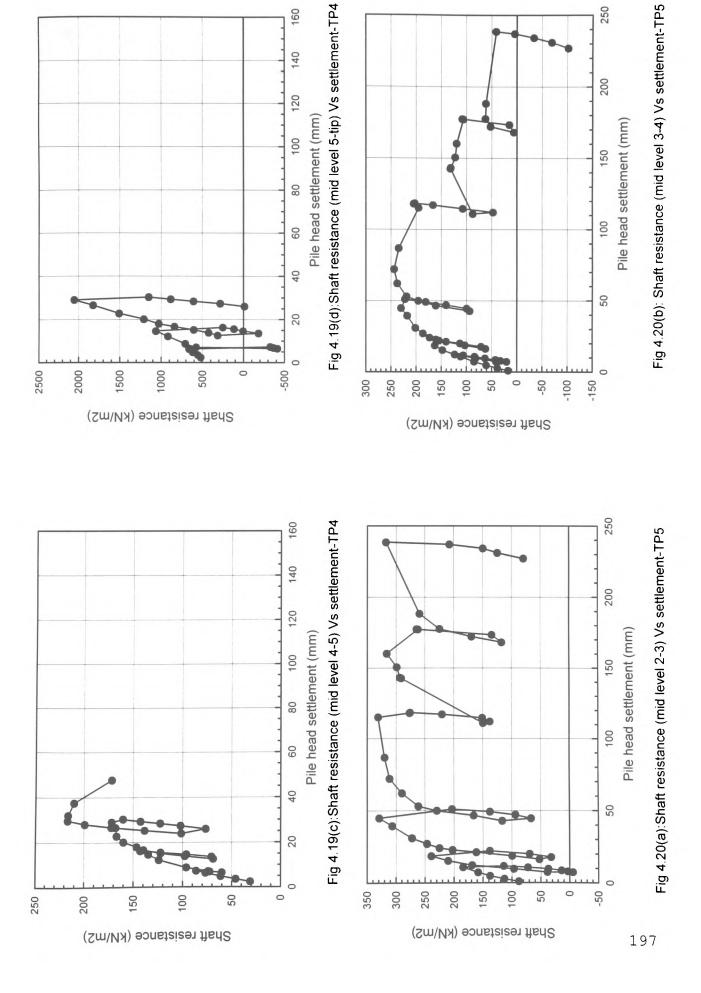
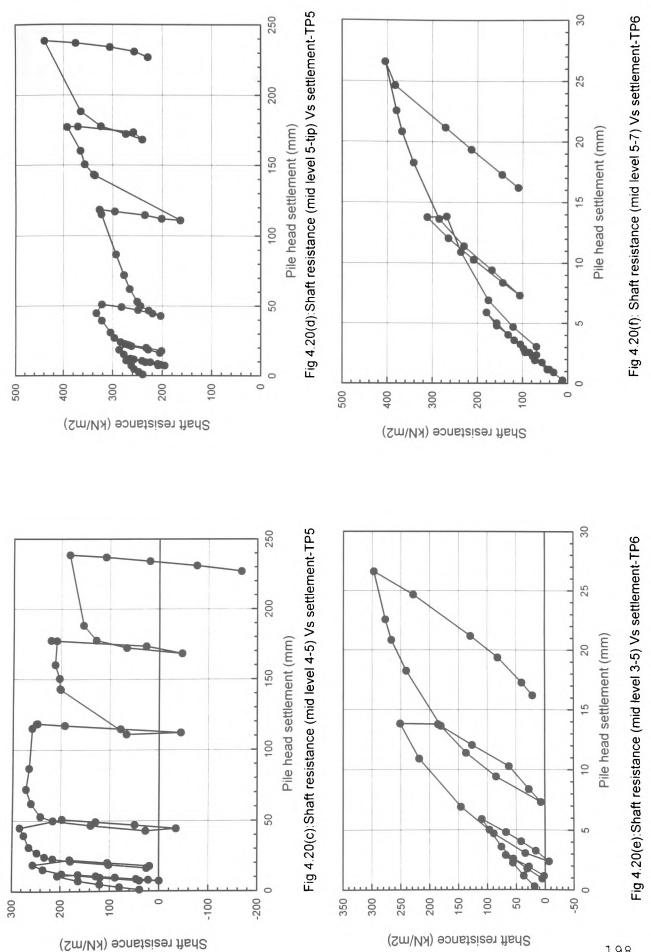
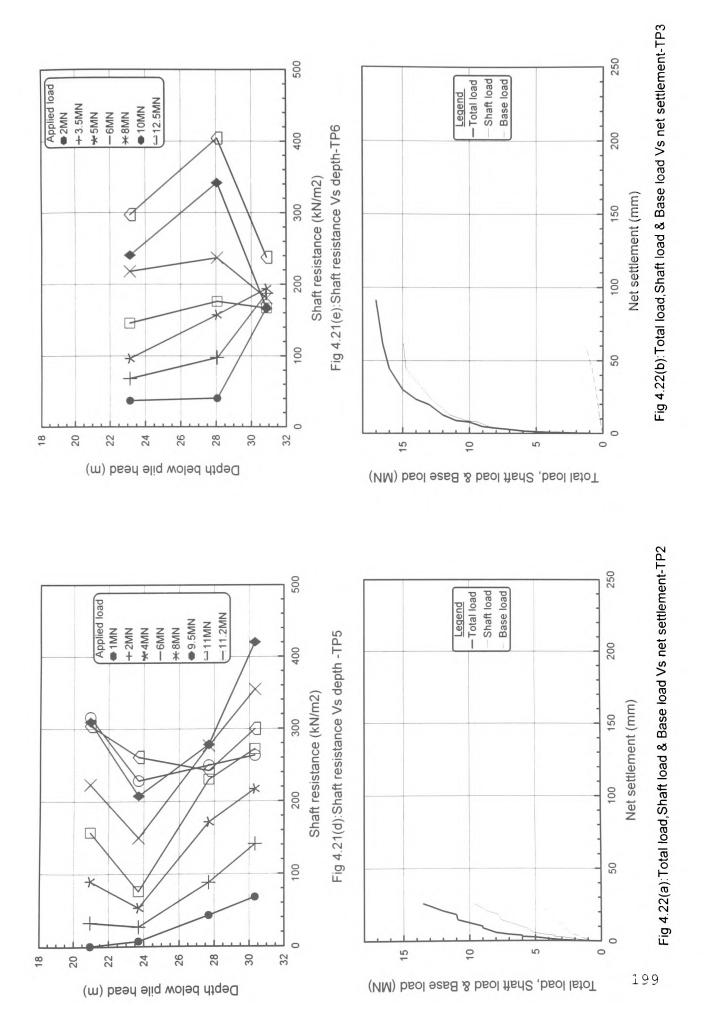
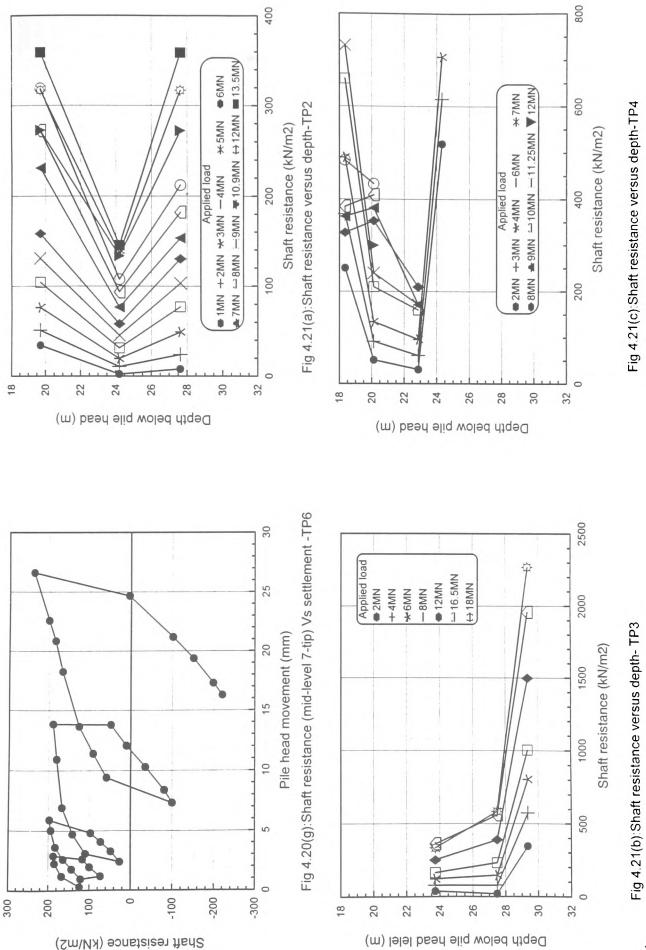
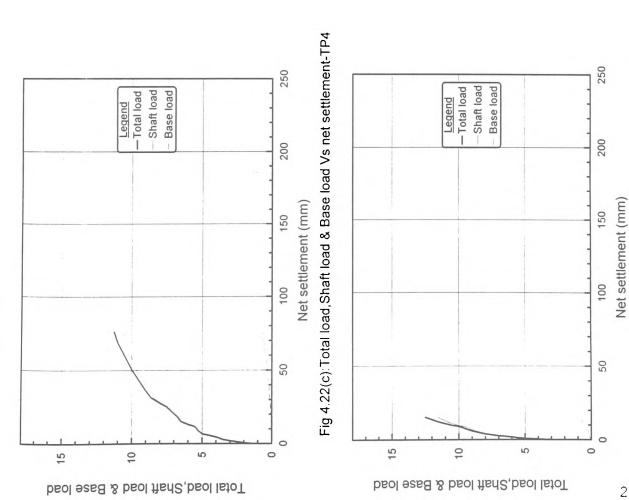


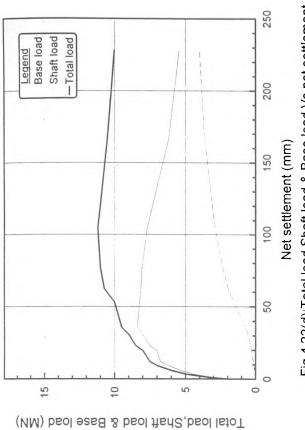
Fig 4.15: Axial force Vs depth-A comparison between the results of linear and non-linear calibration methods -TP5


Fig 4.16: Pile shortening Vs applied load-TP5: A comparison between the results of linear and non-linear calibration methods -TP5







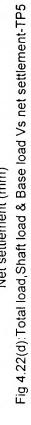


Fig 4.22(e): Total load, Shaft load & Base load Vs net settlement-TP6

CHAPTER 5

EVALUATION OF PILE DESIGN FOR THE BUTETOWN ROAD LINK, P.D.R-CARDIFF

CHAPTER 5: EVALUATION OF PILE DESIGN FOR THE BUTETOWN ROAD LINK

5.1 INTRODUCTION

Several construction projects requiring the use of pile foundations have been undertaken in the Cardiff dock-land area. The most recent occasion is the construction of a number of bridges to link several sections of the new Peripheral Distributor Road. Based on the experience gained, it was considered that driven piles terminated in the Keuper marl would not provide a suitable solution for the Butetown Road link. In addition, the choice of an appropriate pile type depended on other works forming part of the project. The carrying capacity of the selected pile type and size was expected to vary quite significantly due to the variability of the Keuper marl. The load capacity of the piles was also expected to depend on the method of installation.

Large diameter, bored, cast-in place piles were found to offer the most appropriate solution. The following design methods were proposed for the 900mm diameter bored piles:

- 1) Design method suggested in the interpretative report of the site investigation (this is based on the C.I.R.I.A. Report No. 47 together with previous site experience),
- Effective stress method (Burland, 1973) for shaft resistance prediction, with the drained shear strength values given by Davis and Chandler(1973),
- Total stress design method with undrained cohesion values obtained by empirical correlation with field S.P.T. results, and
- 4) Total stress design method with undrained cohesion values obtained by empirical

correlation with point load strength data.

5.2 SITE INVESTIGATION RECOMMENDATIONS

5.2.1 Factors of safety

In line with the current piling practice, it was suggested that for these large diameter piles, a factor of safety of 1.5 should be allowed for the shaft resistance and 3 for the base resistance. After incorporating shaft resistance and base resistance, the required pile length was chosen as that which gave an overall factor of safety of at least 2.5. This separation of factors of safety for shaft resistance and end bearing is desirable because of the different degrees to which these components are mobilised at a given pile settlement The safety factors were suggested by Skempton(1966). BS8004 recommends a safety factor of between 2 and 3 subject to various qualifications. However, the regulations given in Eurocode 7 appear to produce an equivalent safety factor of 2 on pile capacity calculated using average shear strengths for the shaft resistance and lower bound strengths for base resistance. In the design of large diameter bored piles, the working load is generally expected to be determined by settlement considerations rather than by ultimate load capacity. This is substantiated by evidence presented by many researchers, notably Whitaker and Cooke(1966) and Burland et al.(1966).

5.2.2 Negative shaft resistance

Because of the instability of the layer of made ground and of the underlying soft clay layers underlying, it was expected that these materials would produce relatively large settlements due to the construction of embankments adjacent to the pile site. Therefore it was considered that the superficial deposits and the upper marl layers would develop negative shaft resistance on the pile shafts. The precise value of negative shaft resistance would vary locally, but it was suggested that an overall negative shaft resistance value of 20kN/m² should be allowed for all layers up to the top of the Keuper marl surface. Also as a result of the earthworks, the settlement caused to the superficial layers implied that the full weights of the pile caps had to be carried directly by the piles.

5.2.3 Shaft resistance of the gravel layer above Keuper marl

Generally the unit weight of the gravel layer above the marl was found to be relatively consistent throughout the site. A mean S.P.T. "N" value of 30 was recorded and this was satisfactorily representative of the material. Adopting this value in approximate calculations and assuming that a permanent casing is installed, the average maximum shaft resistance within this layer was estimated to be 40 kN/m².

5.2.4 Shaft resistance and base resistance of the Keuper marl

The ground investigation revealed that the Keuper marl was a highly variable material comprising of irregular bands which show a range of strength variations from a firm to stiff clay through to a strong rock. Because of its nature of being intermediate between a rock and clay/silt it is generally not easily analysed, particularly with regard to laboratory strength properties.

Much of the literature available refers to Keuper marl in the Midlands area and the profile of weathering in Cardiff is not the same. The weathered zone associated with a varied depositional environment is much greater in the Cardiff marls. In addition, the Cardiff marls show a general but not consistent decrease in weathering zone with depth and the "N" values also show some variance in comparison with the Midlands.

In using undrained cohesion values, previous experience was relied upon which seemed to indicate that to achieve reasonable results, lower adhesion factors than conventional values for clay, are appropriate. It was also noted that the method of boring and the final state of the pile shaft would have major effect on shaft resistance. For an exposed pile shaft left standing overnight before concrete placement, a much lower adhesion factor of around 0.1 could be required.

5.2.5 Pile settlement

The settlement of a single pile was expected to be a function of the precise length of the pile and the properties of the Keuper marl strata at the exact location of the pile shaft. According to the predictions made by the Soils engineer, it was expected that the maximum shaft resistance would be mobilised when the base movement reached 2-5% of the pile diameter. However, in order to fully mobilise base resistance, a much greater settlement of around 5-10% was expected to be required. This assumption was based on a clean pile toe free from any debris. The magnitude of settlement required for the maximum base resistance to be mobilised could be slightly lower for the more competent zone II and I marl.

Previous studies of load- settlement and load transfer curves for piles (Coyle and Reese, 1966) indicated that the pile-soil slip required to develop the maximum shaft

resistance is of the order of 5-10 mm. It was suggested that the pile-soil slip is relatively less dependent on shaft diameter, but rather more influenced by the cohesion and friction angle values for the soil. However, whereas the effect of cohesion and friction angle values is a major factor, the contribution of shaft diameter to settlement at a given load cannot be neglected, particularly for large, bored piles.

5.3 DESIGN BASED ON THE SITE INVESTIGATION RECOMMENDATIONS

5.3.1. Shaft resistance

Table 5.1 gives the "N" suggested in the site investigation recommendations, for the various weathering zones of Keuper marl, based on the C.I.R.I.A report No.47. The suggested maximum shaft resistance values are also given.

Weathering zone	S.P.T "N"	Maximum shaft
	value	resistance, q _{us}
		(kN/m^2)
IVb	<40	50
IVa	40-80	100
IVa with bands of III	80-150	150
III with bands of IVa	**	200
III	150-250	240
III with bands of II	250-350	270
II	>350	350

<u>Notes</u>

- 1) Factor for "N" values k=5 to 6 (as suggested for the Midlands area).
- 2) Maximum shaft resistance $q_{us}=kN\alpha$
- 3) Adhesion factors of 0.4 and 0.3 are appropriate for zone IV and zone III marl respectively while a lower value of 0.2 was taken for zone II marl.

Table 5.1: Maximum shaft resistance from site investigation recommendations

The above maximum shaft resistance values were applied in order to predict the load capacities of the test piles, based on the weathering zone descriptions of the strata encountered during formation of the pile holes. The results are presented in Tables 5.2-

			Site investigatior recommendation		
Depth (m)	Marl zones	$\Delta l(\mathbf{m})$	q _{us} (kN/mm ²) Table 5.1	ΔQ_{us} (kN)	
16.56-20.00m	IVa with IVb	3.44	75	729	
20.00-22.90m	III with II	2.90	270	2214	
22.90-23.50m	II with III	0.60	350	594	
23.50-24.60m	II	1.10	350	1089	
24.60-25.00m	I1	0.40	350	396	
25.00-26.70m	II	1.70	350	1682	
26.70-27.10m	II	0.40	350	396	
		10.54m		7100	

Table 5.2:Calculation of maximum shaft load for TP1 from "N" values (Design method recommended in the site investigation)

			Site investigation		
			recommenda	ation	
Depth (m)	Marl zones [#]	$\Delta l(\mathbf{m})$	q _{us}	ΔQ_{us}	
			(kN/mm^2)	(kN)	
			Table 5.1		
16.11-18.00	Gravel	1.89	40 [@]	213	
18.00-20.50	II with III	2.50	350	2474	
20.50-20.70	III-II	0.20	240	136	
20.70-22.00	IVa-III	1.30	150	551	
22.00-22.60	III-II	0.60	240	407	
22.60-25.00	III-IVa	2.40	200	1357	
25.00-25.30	II	0.30	350	297	
25.30-26.20	III-II	0.90	240	611	
26.20-26.90	II	0.70	350	693	
26.90-27.20	III	0.30	270	229	
27.20-27.45	II	0.25	350	247	
27.45-27.90	III	0.45	270	343	
27.90-28.31	II-III	0.41	270	313	
		12.20m		7874	

Borehole No.52 results adopted since TP2 strata log not available @ Value recommended for the gravel layer (see section 5.2.3)

Table 5.3:Calculation of maximum shaft load for TP2 from "N" values (Design method recommended in the site investigation)

5.7.

			Site investi recommenda	
Depth (m)	Marl zones	$\Delta l(m)$	q _{us} (kN/mm ²) Table 5.1	ΔQ_{us} (kN)
20.65-23.15m	IVa with III	2.50	150	1060
23.15-24.00m	IVa	0.85	100	240
24.00-24.85m	III with IVa	0.85	200	481
24.85-26.45m	IV-III and	1.60	210	950
26.45-27.45m	III-II	1.00	240	678
27.45-27.75m	III	0.30	270	229
27.75-30.15m	III with II	2.40	350	2375
30.15-30.45m	II	0.30	350	297
		9.80 m		6310

Table 5.4:Calculation of maximum shaft load for TP3 from "N" values (Design method recommended in the site investigation)

			Site investigation recommendation		
Depth (m)	Marl zones	Δl (m)	q _{us} (kN/mm ²) Table 5.1	ΔQ_{us} (kN)	
17.02-18.15m	IVb	1.13	50	160	
18.15-18.58m	IVa with IVb	0.433	75	92	
18.58-19.02m	IVa	0.433	100	122	
19.02-19.45m	IVa-III	0.433	150	184	
19.45-20.15m	IVa with IVb	0.70	75	148	
20.15-20.85m	III with IVa	0.70	200	396	
20.85-21.25m	IVa with IVb	0.40	75	85	
21.25-21.65m	III	0.40	240	271	
21.65-21.85m	IV-III	0.20	150	85	
21.85-22.75m	IVb&III-IV	0.90	125	318	
22.75-22.95m	III-IV	0.20	200	113	
22.95-23.45m	III	0.50	240	339	
23.45-24.15m	II-III 0.70 270		534		
		7.13 m		2847	

Table 5.5:Calculation of maximum shaft load for TP4 from "N" values (Design method recommended in the site investigation)

			Site investigation recommendation		
Depth (m)	Marl zones	$\Delta l(\mathbf{m})$	q _{us} (kN/mm ²)	ΔQ_{us} (kN)	
			Table 5.1		
19.70-20.10m	IVa	0.40	100	113	
20.10-21.00m	IVa with III	0.90	150	382	
21.00-21.80m	IVa	0.80	100	226	
21.80-22.10m	III	0.30	240	204	
22.10-24.20m	IVa	2.10	100	594	
24.20-26.00m	IVa with II1	1.80	150	763	
26.00-28.50m	IVa	2.50	100	707	
28.50-30.20m	IVa	1.70	100	481	
	<u> </u>	10.50m		3470	

Table 5.6:Calculation of maximum shaft load for TP5 from "N" values (Design method recommended in the site investigation)

			Site investigation recommendation		
Denth (m)			recommenda	ation	
Depth (m)	Marl zones $\Delta l(m)$ q_{us}		ΔQ_{us}		
			(kN/mm^2)	(kN)	
			Table 5.1		
19.70-20.70m	III with IVa-Vb	1.00	200	566	
20.70-21.58m	IVa	0.875	100	247	
21.58-22.45m	IVa with III-II	0.875	150	371	
22.45-23.33m	IVa with II-III	0.875	150	371	
23.33-24.20m	III	0.875	240	594	
24.20-25.40m	IVa	1.20	100	339	
25.40-26.60m	IVa with IVb-III	1.20	150	509	
26.60-27.15m	III with II	0.55	270	420	
27.15-27.70m	IVa with III-II	0.55	150	233	
27.70-28.45m	IVa with III	0.75	150	318	
28.45-29.20m	IVa with III	0.75	150	318	
29.20-30.70m	II with III	1.50	350	1484	
30.70-30.85m	III with IVa	0.15	200	85	
		11.15m		5855	

Table 5.7:Calculation of maximum shaft load for TP6 from "N" values (Design method recommended in the site investigation)

5.3.2 End bearing resistance

The design method recommended in the site investigation utilises the effective stress parameters given in the C.I.R.I.A. report No. 47 for the calculation of end bearing of piles in Keuper marl. Table 5.8 presents the effective cohesion and the effective angles of friction taken for the various grades of Keuper marl.

Zone	Effective	Effective angle
	cohesion	of friction ϕ
	c' (kN/m ²)	
IVa	15	30
IVa-III	15	32
III	15	35
III-II	18	37
II	27	40

 Table 5.8: Effective stress parameters for different Keuper marl zones (Design method recommended in the site investigation)

The report notes that in order to use the above properties, the material at the base should be at least two pile diameters thick, otherwise the end bearing of the pile should be designed based on the weakest strata present within three pile diameters beneath the base. The ultimate base pressure q_{ub} is then calculated from the following relationship

$$q_{ub} = c' N_c + \sigma_{vb} N_q + 0.5\gamma DN_c$$

Where $\,N_{c}^{}\,,N_{q}^{}$ and $N_{\gamma}^{}$ are bearing capacity factors

- σ'_{vb} =Vertical effective stress at the pile base level
- γ = Unit weight of the soil above the pile base level
- D =Diameter of pile.

The terms containing the N_c and N_γ may be ignored since they account for only less than 5% of the ultimate base pressure. N_q is calculated from the Prandtl and Reissner(1923) solution, hence:

$$N_q = tan^2 \left(45^0 + \frac{\phi'}{2} \right) e^{\pi tan\phi'}$$

Table 5.9 illustrates the calculation of ultimate base resistance values for test piles TP1-TP6. Based on the site investigation data, an average unit weight of the soil strata above the pile base level has been taken as $\gamma = 20$ kN/m³, and the water table assumed to be located at the ground surface.

5.3.3 Comparison between predicted and observed load capacities

A comparison between the predicted ultimate bearing values and the results of the pile tests is given in Table 5.10. Where a test pile was not loaded to failure, the "inverse slope" method of extrapolation by Chin(1972) has been used to project the ultimate load. Fellenius(1980) has drawn attention to the fact that Chin's method appears to

Pile	Depth to pile toe (m)	Material beneath base	<i>ø</i> (deg)	N _q	q _{ub} (kN/m²)	Q _b (kN)
TP1	27.10	Zone II	40	64.19	17395	11066
TP2	28.31	Zone II-III	37	42.92	12510	7730
TP3	30.45	Zone II	40	64.19	17395	11066
TP4	24.15	Zone II-III	37	42.92	10365	6594
TP5	30.20	Zone IVa	30	18.40	5557	3535
TP6	31.05	Zone III	35	33.30	10340	6578

over-predict. With the exception of TP5, the ultimate base load could not be extrapolated using this method because of low values of base movement achieved.

Table 5.9:Calculation of ultimate base loads for TP1-TP6 based on the design method recommended in the site investigation

For piles with disturbed bases, such as these ones, the Chin's straight line starts to emerge at base movement values higher than 100mm. Penetrations above this value were achieved in TP5 only.

5.3.4 Comments

It can be seen from Table 5.10 that, using the method recommended in the site investigation report, the calculated shaft resistance values are 40-57% of the measured values. This is true for all test piles, except TP4, where there was interference between the permanent casing and the shaft. Lord(1989) suggested that the S.P.T. approach is not appropriate for assessing the shaft resistance of bored or driven piles bearing on rock. For design purposes, Lord(1989) recommends the use of the maximum shaft resistance derived on the basis of weathering zone classification, as given by Davis & Chandler(1973) and Leach et.al.(1976).

The use of decreasing values of the adhesion factor with increasing Keuper marl shear strength seems satisfactory. Previous research results indicate that the adhesion factor depends on, among others, the cohesive strength of the soil. Early studies by Tomlinson(1957) showed a general trend of decreasing adhesion factors from unity in very soft clays to values as low as 0.2 for clays of very stiff consistency. In the last three decades, several researchers have proposed various formulae relating adhesion factors to shear strength, for various types of clay.

		TP1	TP2	TP3	TP4	TP5	TP6
	Predicted	7.100	7.874	6.310	2.847	3.470	5.855
Shaft (MN)	Measured	15.90 [@]	13.80 [@]	15.00	8.90	8.770	12.00 [@]
	$rac{Q_{us(predicted)}}{Q_{us(measured)}}$	0.446	0.570	0.421	0.320	0.400	0.488
	Predicted	11.066	-	11.066	6.594	3.535	6.578
Base (MN)	Measured	12.0 [#] 11.7	-	-	-	5.847 [@]	-
	$rac{Q_{ub(predicted)}}{Q_{ub(measured)}}$	0.946	-	-	-	0.605	-
	Predicted	18.166	-	17.376	9.441	7.005	12.433
Total (MN)	Measured	-	22.0 [@]	17.0	11.5	11.2	18.9 [@]
	$rac{Q_{u(predicted)}}{Q_{u(measured)}}$	-	-	1.002	0.821	0.625	0.658

Legend

[@] Denotes values extrapolated by the Chin's(1972) method

[#] Denotes result obtained from an M.L. test

Denotes result of a C.R.P. test

 Table 5.10: Comparison between the observed load capacities and the predictions from site investigation recommendations

As far as base resistance is concerned, the design method recommended in the site investigation seems to produce reasonable results. Based on the information from TP1, which was designed to provide a direct measurement of base resistance, it is seen from

Table 5.10 that the predicted result is accurate to within about 5%. Both the M.L. and the C.R.P. test results confirm this, coupled with the comparatively higher reliability in the experimental data from this test pile since no interaction between shaft and base behaviour was allowed. The base resistance prediction for TP5 gives a value 60% lower than the value extrapolated using Chin's method.

5.4 EFFECTIVE STRESS DESIGN METHOD

5.4.1 Burland's(1973) formula

This method has already been reviewed in chapter 2 and its use is now explained with regard to the category of bored piles in stiff clay in which the test piles TP1-TP6 fit best. Burland(1973) proposed a relationship between the average maximum shaft resistance $\overline{\tau_s}$ and average effective overburden pressure \overline{p} as $\overline{\tau_s} = \overline{\beta}.\overline{p}$. He showed that, for soft clays, the value of β changes only marginally for a wide range of clays.

For soft clay, assuming that shear failure takes place in the remoulded soil close to the shaft (Tomlinson, 1971), the appropriate angle of friction to use is the remoulded drained angle ϕ_r . For a normally consolidated clay, the coefficient of earth pressure at rest is given by $K_o = 1 - \sin \phi_r$, where ϕ_r is the remolded angle of friction. Hence β is given by $\beta = (1 - \sin \phi_r) \tan \phi_r$. Poulos and Davis(1980) suggest that for over-consolidated soils, $K_o = (1 - \sin \phi_r) (OCR)^{1/2}$, in which OCR is the over-consolidation ratio.

5.4.2 Values of earth pressure coefficient, K

An effective stress approach to the evaluation of shaft resistance of stiff clays is subject to a range of uncertainties since it is difficult to evaluate the earth pressure coefficient, K, For heavily over-consolidated clay, the value of K_0 , in the undisturbed state, varies with depth and can have values as high as 3 near the surface decreasing to less than unity at great depth. Because of this variation of K, the calculation of shaft resistance is carried out on a level by level basis.

Wide variations in friction angle values of marl have been reported by Wyllie(1991), who pointed that despite this variation, values of 20-27° may be taken for less weathered and unweathered marl zones approximating to intact rock The following values of remoulded friction angles as given by Davis & Chandler(1973) have been utilised.

Zone	Remoulded angle of
	friction ϕ_r' (deg)
IVb	18
IVa	20
IVa-III	23
III	25
III-II	28
II	32

Tables 5.11-5.16 give the calculation of maximum shaft loads for TP1-TP6 using the above method. The profile of variation of K_o with depth as reported by Skempton(1961) and Bishop et.al(1965) for stiff over-consolidated clay have been adopted. In each case, the mean of the two values has been utilised in calculating maximum shaft resistance.

Depth (m)	Zones	Δ <i>l</i> (m)	$\phi_{r'}$ (deg.)		K _o value		$\overline{p'}$ (kN/m ²)	ΔQ_u (kN)
				Skempton	Bishop et	Mean		
				(1961)	al(1965)			
16.56				2.010	2.456			
	IVa with IVb	3.44	19			2.156	183	1320
20.00				1.867	2.292			
	III with II	2.9	28			2.014	215	1884
22.90				1.746	2.153			
22.50	II with III	0.6	28			1.936	232	405
23.50	11	1 1	20	1.721	2.124	1 000		
24.60	II	1.1	32	1 (75	0.071	1.898	241	887
24.00	II	0.4	32	1.675	2.071	1.964	249	227
25.00	11	0.4	32	1.658	2.052	1.864	248	327
23.00	II	1.7	32	1.050	2.032	1.817	259	1411
26.70	**	1.7		1.588	1.971	1.01/	239	1411
	II	0.4	32	1.200	1.771	1.770	269	337
27.10				1.571	1.951		,	
			•				Total=	6570kN

Chapter 5: Evaluation of pile design for the Butetown road link

Table 5.11:Calculation of maximum shaft load for TP1 using effective stress method (with C.I.R.I.A ϕ_r values)

Depth	Zones [#]	Δl	ør'		K _o value		p'	ΔQ _u
(m)		(m)	(deg.)				(kN/m^2)	(kN)
				Skempton	Bishop et	Mean		
				(1961)	al(1965)			
16.11				2.029	2.478			
18.00	Gravel	1.89		1.950	2.387	2.211		213@
10.00	II with III	2.50	28	1.950	2.307	2.113	193	1529
20.50				1.846	2.268	2.113	195	1525
	111-11	0.20	28			2.052	206	127
20.70	IVa-III	1.30	23	1.838	2.258	2 0 1 0	214	(72)
22.00	1 v a-111	1.50	23	1.783	2.196	2.019	214	672
	111-11	0.60	28	11702		1.976	223	398
22.60				1.758	2.167			
25.00	III-IVa	2.40	23	1 6 5 0	2.052	1.909	238	1309
25.00	II	0.30	32	1.658	2.052	1.849	252	246
25.30				1.646	2.038	1.015	252	210
	III-II	0.90	28			1.822	258	635
26.20	ĨŢ	0.70	22	1.608	1.995	1 796	200	596
26.90	II	0.70	32	1.579	1.961	1.786	266	586
20120	III	0.30	25	1.577	1.501	1.763	271	189
27.20				1.567	1.947			
07.45	II	0.25	32	1.000	1.025	1.751	273	211
27.45	III	0.45	25	1.556	1.935	1.735	277	285
27.90	111	0.45	25	1.538	1.913	1.755	211	205
	II-III	0.41	28			1.716	281	297
28.31				1.521	1.894			
			I			<u> </u>	Total=	6697kN

Chapter 5: Evaluation of pile design for the Butetown road link

Borehole No.52 results assumed since TP2 strata log not available @ Value recommended for the gravel layer (see section 5.2.3)

Table 5.12:Calculation of maximum shaft load for TP2 using effective stress method (with C.I.R.I.A $\phi_r^{'}$ values)

Depth (m)	Zones	Δ/ (m)	$\phi_{\rm r}'$ (deg.)		K _o value		 p' (kN/m ²)	$\begin{array}{c} \Delta Q_{\mathbf{u}} \\ (kN) \end{array}$
				Skempton	Bishop et	Mean		
				(1961)	al(1965)			
20.65				1.840	2.261			
	IVa with III	2.5	23			1.994	219	1310
23.15				1.735	2.141			
	IVa	0.85	20			1.919	236	396
24.00				1.700	2.100			
	III with IVa	0.85	23			1.881	244	469
24.85				1.665	2.059			
	IV-III & III-II	1.6	25			1.826	257	988
26.45				1.598	1.983			
	III	1	25			1.768	270	628
27.45				1.556	1.935			
	III with II	0.3	28			1.739	276	216
27.75				1.544	1.920			
	II	2.4	32			1.678	290	2060
30.15				1.444	1.805			
	II	0.3	32			1.618	303	260
30.45				1.431	1.791			
					·····		Total=	6327kN

Chapter 5: Evaluation of pile design for the Butetown road link

Table 5.13:Calculation of maximum shaft load for TP3 using effective stress method (with C.I.R.I.A ϕ_r ' values)

Depth	Zones	ΔΙ	¢r'	······································	K _o value		p'	ΔQu
(m)		(m)	(deg.)		0		р (kN/m ²)	(kN)
				Skempton	Bishop et	Mean	(
				(1961)	al(1965)			
17.02				1.991	2.434	-		
	IVb	1.13	18			2.187	176	399
18.15				1.944	2.380			
10.00	IVa with IVb	0.433	19	1.007	• • • •	2.152	184	167
18.58	11/-	0 422	20	1.926	2.360	0 1 0 0	100	1.70
19.02	IVa	0.433	20	1.908	2 2 2 0	2.133	188	179
19.02	IVa-III	0.433	23	1.908	2.339	2.113	192	211
19.45	1 v d-111	0.455	25	1.890	2.318	2.115	192	211
	IVa with IVb	0.7	19	1.070	2.510	2.088	198	282
20.15				1.860	2.284	2.000	170	202
	III with IVa	0.7	23			2.057	205	354
20.85			:	1.831	2.251			
	IVa with IVb	0.4	19			2.032	211	167
21.25				1.815	2.232			
	III	0.4	25			2.014	215	228
21.65				1.798	2.213			
01.05	IV-III	0.2	23	1 700	0.000	2.001	218	104
21.85	13.71		21	1.790	2.203	1.076	222	420
22.75	IVb with III-IV	0.9	21	1.752	2.160	1.976	223	430
22.73	III-IV	0.2	23	1.732	2.100	1.952	229	107
22.95	111-1 V	0.2	25	1.744	2.150	1.954	229	107
	III	0.5	25	*** 17	2.100	1.936	232	296
23.45				1.723	2.126			
	II-III	0.7	28			1.909	238	478
24.15				1.694	2.093			
<u> </u>		•					Total =	3402kN

Chapter 5: Evaluation of pile design for the Butetown road link

Table 5.14:Calculation of maximum shaft load for TP4 using effective stress method (with C.I.R.I.A ϕ_r values)

5.4.3 Comparison between predicted and observed shaft resistance values

Table 5.17 gives a comparison between the predicted maximum shaft loads using the effective stress method and the observed pile test results. It can be seen from Tables 5.10 and 5.17 that there is a striking similarity between the predictions obtained using

Depth	Zones	Δl	$\phi_{\mathbf{r}'}$		K _o value		p'	ΔQ_{u}
(m)		(m)	(deg.)				(kN/m ²)	(kN)
				Skempton	Bishop et	Mean		
				(1961)	al(1965)			
19.70	1			1.879	2.306			
	IVa	0.4	20			2.084	199	171
20.10	***			1.863	2.287			
21.00	IVa with III	0.9	23	1.025	2.244	2.055	206	456
21.00	IVa	0.8	20	1.825	2.244	2.016	214	355
21.80	1 V d	0.0	20	1.792	2.205	2.010	214	333
	III	0.3	25	1.172	2.205	1.992	220	173
22.10				1.779	2.191			
:	IVa	2.1	20			1.938	232	970
24.20				1.692	2.090			
26.00	IVa with III	1.8	23	1 (15	• • • • •	1.851	251	1004
26.00	IV.	25	20	1.617	2.004	1 75 4	272	1220
28.50	IVa	2.5	20	1.513	1.884	1.754	273	1230
20.50	IVa	1.7	20	1.515	1.004	1.660	294	853
30.20	- / u			1.442	1.803	1.000	- / /	000
L1		·	<u></u>	4	······		Total=	5211kN

the effective stress method and those evaluated from the S.P.T. design method recommended in the site investigation.

Table 5.15:Calculation of maximum shaft load for TP5 using effective stress method (with C.I.R.I.A ϕ'_r values)

Excluding pile TP4 the predicted ultimate loads are 41%-59% of the observed values. Therefore, it both methods appear to be reasonable and appropriate for pile design. The fact that the observed shaft resistance values are higher than predicted may be attributed to the choice of empirical factors and soil parameters. Table 5.17 also gives the $\bar{\beta}$ values back-analysed from the observed maximum shaft resistance values for each test pile. The overal mean value of is $\bar{\beta}$ 1.42. Three assumptions have been made when calculating the mean effective overburden stresses.

Depth	Zones	Δl	ø _r '		K _o value		p'	$\Delta Q_{\rm u}$
(m)		(m)	(deg.)		-		(kN/m^2)	(kN)
				Skempton	Bishop et	Mean		
				(1961)	al(1965)			
19.70				1.879	2.306			
	III with IVa-IVb	1	22			2.070	202	478
20.70				1.838	2.258			
21.50	IVa	0.875	20			2.028	211	386
21.58		0.076	24	1.801	2.216			
22.45	IVa with III-II	0.875	24	1765	0.174	1.989	220	482
22.45	IVa with II-III	0.875	24	1.765	2.174	1.050	220	102
23.33		0.875	24	1.728	2.132	1.950	229	492
25.55	III	0.875	25	1.720	2.132	1.911	238	524
24.20		0.075	25	1.692	2.090	1.711	230	524
	IVa	1.2	20	1.072	2.070	1.864	248	571
25.40				1.642	2.033		210	571
	IVa with IVb-III	1.2	22			1.810	260	645
26.60				1.592	1.975			
	III with II	0.55	28			1.771	269	394
27.15				1.569	1.949			
	IVa with III-II	0.55	24			1.747	274	332
27.70				1.546	1.923			
	IVa with III	0.75	23			1.717	281	434
28.45				1.515	1.887			
20.20	IVa with III	0.75	23	1 402	1.051	1.684	288	437
29.20	II	1.5	20	1.483	1.851	1 (22	200	1102
30.70	II with III	1.5	28	1.421	1.779	1.633	300	1103
30.70	III with IVa	0.15	23	1.421	1.//9	1.597	308	88
30.85	ini witti i va	0.15	23	1.415	1.772	1.397	202	00
50.05				1.715	1.112		Total =	6366kN
							10tal =	0300KIN

Chapter 5: Evaluation of pile design for the Butetown road link

Table 5.16:Calculation of maximum shaft load for TP6 using effective stress method (with C.I.R.I.A ϕ_r' values)

Based on the boreholes data, the bulk density of the Keuper marl has been taken as 26.5kN/m³ (and considered unsaturated) and that of the superficial deposits as 20kN/m³. Hence the unit weight of water has been subtracted from the unit weight of the superficial soil layers only.

Test pile	Effective stress method result (MN)	Pile test result (MN)	$rac{Q_{u(predicted)}}{Q_{u(measured)}}$	$\overline{\beta} = \frac{\overline{\tau}_s}{\overline{p}}$ (Back-analysis)
TP1	6.57	15.90	0.41	1.70
TP2	6.70	13.80	0.48	1.22
TP3	6.33	15.00	0.42	1.90
TP4	3.40	8.90	0.38*	1.84
TP5	5.21	8.77	0.59	0.75
TP6	6.37	12.00	0.53	1.08

Chapter 5: Evaluation of pile design for the Butetown road link

* Not reliable since the casing displaced during concreting

 Table 5.17: Comparison between the predicted maximum shaft loads using effective stress method with the test pile results

5.5 TOTAL STRESS DESIGN BASED ON S.P.T. "N" VALUES

5.5.1 Field S.P.T. results

Table 5.16(a) and 5.16(b) present the S.P.T. "N" values measured in various boreholes during the site investigation for the proposed Butetown road link. All other boreholes not listed had S.P.T. data relating to superficial soil strata only. The weathering zone descriptions of the strata penetrated are also given. Where the required total penetration of 450mm was not achieved, the blow count corresponding to the settlement reached has been linearly extrapolated in order to estimate the number of blows required to produce a penetration of 300mm, beyond the initial seating penetration of 150mm.

5.5.2 Kilbourne et.al.(1988) design formula

Based on pile load tests previously carried out in Cardiff, Kilbourne et al.(1988) proposed an empirical formula for calculating the shaft resistance of large diameter, bored, cast in-situ piles formed in Keuper marl. They suggested the use of a factor of 6 to convert field S.P.T. "N" values to equivalent undrained strength.

BH No.	Donth	Sulit ou		<u> </u>			
DELINO.	Depth	Split or				er marl zo	
	(m)	Cone	IVa	IVa &	III	III & II	II
BH102	16.50			III			
BHIUZ	;	С		16		}	
	18.00 19.50	S		56			
	22.50	S		73			• • • •
	37.00	с					200
	40.00	S S				402	500
BH103	16.50			21			500
DITIO	18.00	c		21			
	19.50	c		43 71			
	21.00	с		/1	176		
BH104	18.50	с		56	170		
DITIO4	20.00	L L		123			
BH105	16.80	с	45	125			
	18.30	c	92				
	19.80	c	94				
	21.30	c	111				
	22.80	c					
BH106A	18.50	S		99			
	19.55	s			100		
	20.55	s			42		ĺ
	21.55	s				182	
	22.55	s				106	
	23.55	S		i		200	
	25.50	s				200	
BH107	17.70	S			70		
	18.50	S			68		
	19.50	S				160	
BH108	18.00			99			
	19.00	s				Ì	Ì
	20.00	S		202			
	21.00	S	106				
	22.00	S			118		
	23.00	S					
	24.00	S	92				1
1	25.00	ļ		Į	90		Į
	26.00	S			174		
	27.00	S			128		
	28.00	S					200
	28.70	S					200
	35.00	с					

Chapter 5: Evaluation of pile design for the Butetown road link

Table 5.18: Observed S.P.T. "N" values (Borehole Nos 102-108)

With this correlation, Kilbourne et al(1988) established that an adhesion factor of α =0.375 was generally appropriate for the Keuper marl strata in Cardiff. This design

method has been applied to piles TP1-TP6 as presented in Tables 5.20-5.25. For the purpose of back-analysing adhesion factors from measured shaft resistance values, a summation $\sum N.\Delta l$ is included in the last columns of these Tables.

BH No.	Depth	Split or	"N" 1	for vario	us Keupe	er marl zo	nes*
	(m)	Cone	IVa	IVa &	III	III & II	II
				III			
BH109	17.55	s		39			
	18.55	s	43				
	19.55	s			132		
	20.55	S			56		
	21.55	s		52			
	22.55	S		17			
	23.55	S		178			
	24.55	S		37			
	25.55	S		173			
	25.55	S		76			
	26.55	s		48			
	27.55	S		45			
	28.55	S		67			
	29.55	S					
	30.55	S			182		
	31.55	S	64				
	32.55	s				74	
	33.55	S			82		
	34.55	S			139		
	35.55	S				396	
	36.55	S				200	
BH110	19.50	S				136	
	21.50	S		19			
	22.50	S		152			
	23.50	S		22			
	24.75	S		148			
BH117	13.30						
	13.80			174			
	15.00					200	
BH118	13.20	c			162		
	15.20	с				154	
	16.20	c			182		
	17.20	c			186		
		Average	80.875	81	122.76	200.83	275

Table 5.19: Observed S.P.T. "N" values (Borehole Nos. 109-118) and overall average values for various weathering zones

Depth	Marl zones	S.P.T.	$\Delta l(m)$	ΔQu	N. Δl
(m)		"N"		(kN)	(m)
16.56-20.00	IVa with IVb	81	3.44	1773	279
20.00-22.90	III with II	201	2.90	3708	583
22.90-23.50	II with III	201	0.60	767	121
23.50-24.60	II	275	1.10	1924	303
24.60-25.00	II	275	0.40	700	110
25.00-26.70	II	275	1.70	2974	468
26.70-27.10	II	275	0.40	700	110
			Totals	12546	1972

Chapter 5: Evaluation of pile design for the Butetown road link

Table 5.20: Kilbourne et.al(1988) design method-TP1

Depth	Marl zones	S.P.T.	$\Delta l(\mathbf{m})$	ΔQ_{u}	N. Δl
(m)		"N"		(kN)	(m)
16.11-18.00	Gravel		1.89	213	
18.00-20.50	II with III	201	2.50	3197	503
20.50-20.70	III-II	201	0.20	256	40
20.70-22.00	IVa-III	81	1.30	670	105
22.00-22.60	III-II	201	0.60	767	121
22.60-25.00	III-IVa	81	2.40	1237	194
25.00-25.30	II	275	0.30	525	83
25.30-26.20	III-II	201	0.90	1151	181
26.20-26.90	II	275	0.70	1225	193
26.90-27.20	III	123	0.30	235	37
27.20-27.45	II	275	0.25	437	69
27.45-27.90	III	123	0.45	352	55
27.90-28.31	II-III	201	0.41	524	82
			Totals	10788	1662

Table 5.21: Kilbourne et.al(1988) design method-TP2

Depth	Marl zones	S.P.T.	$\Delta l(m)$	ΔQu	$N.\Delta l$
(m)		"N"		(kN)	(m)
20.65-23.15	IVa with III	81	2.50	1288	203
23.15-24.00	IVa	81	0.85	438	69
24.00-24.85	III with IVa	81	0.85	438	69
24.85-26.45	IV-III & III-II	141	1.60	1435	226
26.45-27.45	III	123	1.00	782	123
27.45-27.75	III with II	201	0.30	384	60
27.75-30.15	II	275	2.40	4199	660
30.15-30.45	II	275	0.30	525	83
<u> </u>	· · · · · · · · · · · · · · · · · · ·		Totals	9489	1492

Table 5.22: Kilbourne et.al(1988) design method-TP3

Depth	Marl zones	S.P.T.	$\Delta l(m)$	ΔQ_{u}	$N.\Delta l$
(m)		"N"		(kN)	(m)
17.02-18.15	IVb	81	1.13	582	92
18.15-18.58	IVa with IVb	81	0.43	223	35
18.58-19.02	IVa	81	0.43	223	35
19.02-19.45	IVa-III	81	0.43	223	35
19.45-20.15	IVa with IVb	81	0.70	361	57
20.15-20.85	III with IVa	81	0.70	361	57
20.85-21.25	IVa with IVb	81	0.40	206	32
21.25-21.65	III	123	0.40	313	49
21.65-21.85	IV-III	81	0.20	103	16
21.85-22.75	IVb with III-IV	81	0.90	464	73
22.75-22.95	III-IV	81	0.20	103	16
22.95-23.45	III	123	0.50	391	62
23.45-24.15	11-111	201	0.70	895	141
			Totals	4448	699

Chapter 5: Evaluation of pile design for the Butetown road link

Totals4448Table 5.23: Kilbourne et.al(1988) design method-TP4

Depth	Marl zones	S.P.T.	$\Delta l(m)$	ΔQu	$N.\Delta l$
(m)		"N"		(kN)	(m)
19.70-20.10	IVa	81	0.40	206	32
20.10-21.00	IVa with III	81	0.90	464	73
21.00-21.80	IVa	81	0.80	412	65
21.80-22.10	III	123	0.30	235	37
22.10-24.20	IVa	81	2.10	1082	170
24.20-26.00	IVa with III	81	1.80	928	146
26.00-28.50	IVa	81	2.50	1288	203
28.50-30.20	IVa	81	1.70	876	138
			Totals	5491	863

Table 5.24: Kilbourne et.al(1988) design method-TP5

Depth	Marl zones	S.P.T.	$\Delta l(m)$	ΔQ_{u}	$N.\Delta l$
(m)		"N"		(kN)	(m)
19.70-20.70	III with IVa-Ivb	81	1.00	515	81
20.70-21.58	Iva	81	0.88	451	71
21.58-22.45	IVa with III-II	141	0.88	785	123
22.45-23.33	IVa with II-III	141	0.88	785	123
23.33-24.20	III	123	0.88	685	108
24.20-25.40	Iva	81	1.20	618	97
25.40-26.60	IVa with IVb-III	81	1.20	618	97
26.60-27.15	III with II	201	0.55	703	111
27.15-27.70	IVa with III-II	141	0.55	493	78
27.70-28.45	IVa with III	81	0.75	386	61
28.45-29.20	IVa with III	81	0.75	386	61
29.20-30.70	II with III	201	1.50	1918	302
30.70-30.85	III with Iva	81	0.15	77	12
L			Totals	8422	1324

Table 5.25: Kilbourne et.al(1988) design method-TP6

Depth Marl zones S.P.T. $\Delta l(\mathbf{m})$ ΔQ_{u} $N.\Delta l$ (m) "N" (kN) (m) 17.02-18.15 IVb 81 1.13 582 92 18.15-18.58 IVa with IVb 81 0.43 223 35 18.58-19.02 IVa 81 0.43 223 35 19.02-19.45 IVa-III 81 0.43 223 35 19.45-20.15 IVa with IVb 81 0.70 361 57 20.15-20.85 III with IVa 81 0.70 361 57 20.85-21.25 IVa with IVb 81 0.40 206 32 21.25-21.65 Ш 123 0.40 313 49 21.65-21.85 IV-III 81 0.20 103 16 21.85-22.75 IVb with III-IV 81 0.90 464 73 22.75-22.95 III-IV 81 0.20 103 16 22.95-23.45 Ш 123 0.50 391 62 23.45-24.15 II-III 201 0.70 895 141 Totals 4448 699

Chapter 5: Evaluation of pile design for the Butetown road link

Table 5.23: Kilbourne et.al(1988) des	sign method-TP4
---------------------------------------	-----------------

Depth	Marl zones	S.P.T.	$\Delta l(m)$	ΔQ_{u}	$N.\Delta l$
(m)		"N"		(kN)	(m)
19.70-20.10	IVa	81	0.40	206	32
20.10-21.00	IVa with III	81	0.90	464	73
21.00-21.80	IVa	81	0.80	412	65
21.80-22.10	III	123	0.30	235	37
22.10-24.20	IVa	81	2.10	1082	170
24.20-26.00	IVa with III	81	1.80	928	146
26.00-28.50	IVa	81	2.50	1288	203
28.50-30.20	IVa	81	1.70	876	138
<u> </u>			Totals	5491	863

Table 5.24: Kilbourne et.al(1988) design method-TP5

Depth	Marl zones	S.P.T.	$\Delta l(m)$	ΔQ_u	$N.\Delta l$
(m)		"N"		(kN)	(m)
19.70-20.70	III with IVa-Ivb	81	1.00	515	81
20.70-21.58	Iva	81	0.88	451	71
21.58-22.45	IVa with III-II	141	0.88	785	123
22.45-23.33	IVa with II-III	141	0.88	78 5	123
23.33-24.20	III	123	0.88	685	108
24.20-25.40	Iva	81	1.20	618	97
25.40-26.60	IVa with IVb-III	81	1.20	618	97
26.60-27.15	Ill with II	201	0.55	703	111
27.15-27.70	IVa with III-II	141	0.55	493	78
27.70-28.45	IVa with III	81	0.75	386	61
28.45-29.20	IVa with III	81	0.75	386	61
29.20-30.70	II with III	201	1.50	1918	302
30.70-30.85	III with Iva	81	0.15	77	12
			Totals	8422	1324

Table 5.25: Kilbourne et.al(1988) design method-TP6

5.5.3 Comparison between predicted and observed shaft resistance

Table 5.26 presents a comparison between the predicted and measured maximum shaft resistance values. Values of adhesion factor back-analysed from measured shaft resistance are also shown.

Test pile	Kilbourne et.al(1988) (MN)	Measured (MN)	$rac{Q_{u(predicted)}}{Q_{u(measured)}}$	α (Back- analysis)
TP1	12.55	15.90	0.79	0.475
TP2	10.79	13.80	0.78	0.482
TP3	9.49	15.00	0.63	0.593
TP4	4.45	8.90	0.50	0.750*
TP5	5.49	8.77	0.62	0.599
TP6	8.42	12.00	0.70	0.534

* Not reliable since the casing displaced during concreting

Table 5.26: Comparison between predicted and measured shaft resistance values usingKilbourne et. al(1988) method

5.5.4 Comments

From Table 5.20, it can be seen that the method proposed by Kilbourne et.al(1988) also gives consistent predictions for varying soil conditions. This method gives more accurate results than the method suggested in the site investigation interpretative report and the effective stress method. However, it appears that the adhesion factor of α =0.375 suggested by Kilbourne et.al(1988) is inappropriate for the sites of test piles TP1-TP6. Table 5.20 gives back-analysed adhesion factors, α , based on the observed shaft resistance values, for use with the formula proposed by Kilbourne et.al(1988). There is not a significant variation between the back-analysed adhesion factors and an average value of α =0.53 may therefore be considered appropriate.

5.6 TOTAL STRESS DESIGN BASED ON POINT LOAD TEST RESULTS

5.6.1 Analysis of Point Load test data

The point load strength test is generally used as a simple procedure for field classification of rock materials. From the tabulated values of P and D the first step is to calculate the Point-Load strength index I_s from the ratio $I_s = \frac{P}{D^2}$. This is then corrected to a reference specimen diameter of 50 mm by obtaining the index I_s(50) from a correction chart (Turk and Dearman, 1986). The I_s(50) values are then arranged in ascending order and the median value is found by systematically deleting highest and lowest values until only two remain. The average of these is the required median value.

5.6.2 Estimation of maximum shaft resistance

Point-Load strength is closely correlated with the results of uniaxial compression. An approximate conversion factor of 24 can be used in order to obtain uniaxial compression strength values from $I_s(50)$ values. The median values of uniaxial strengths of various Keuper marl zones as determined during the site investigation are as follows:

Weathering	Comp. Strength
zone	(kN/m^2)
IVa	211
IVa-III	274
III	340
III-II	375
II	502
II-I	480
Ι	558

Using these values in conjunction with the strata descriptions for the test piles sites TP1-TP6 the results shown in Table 5.27 are obtained, for a typical range of values of adhesion factor, α .

		Predicted shaft resistance, Qu(predicted) (MN)					MN)
Pile	Qu(measured) (MN)	α=0.3	α=0.4	α=0.5	α=0.6	α=1.0	α=1.45
TP1	15.90	3.26	4.35	5.15	6.52	10.87	10.00
TP2	13.80	3.29	4.31	5.34	6.36	10.46	15.10
TP3	15.00	2.91	3.87	4.84	5.81	9.68	14.10
TP4	8.90	1.36	2.10	2.63	3.15	5.26	7.60
TP5	8.77	2.06	2.74	3.43	4.11	5.84	8.50
TP6	12.00	2.71	3.62	4.52	5.42	9.04	13.10

 Table 5.27: Design based on point load test data-Comparison predicted and observed shaft resistance

5.6.3 Comments

From Table 5.27, it is indicated that the use of point load design method seriously underestimates shaft resistance. For an adhesion factor α =0.5, the calculated maximum shaft resistance values are only 30-40% of the measured values. For α =1.0, the predicted values are still less than the observed ones. A value of α =1.45 is necessary to reduce the discrepancy between the observed and predicted values to an acceptable margin. There is a wide scatter in the point load strength values for a Keuper marl stratum of given weathering zone classification. Therefore, the median point load strength values used to assess the shaft resistance values are subject to variations. These values are also likely to be affected by differences in the population of the point load strength data available for various weathering zone categories.

CHAPTER 6

MODELING PILE BEHAVIOUR

CHAPTER 6: MODELLING PILE BEHAVIOUR

6.1 OVERVIEW OF EXISTING METHODS OF PILE ANALYSIS

6.1.1 Introduction

A number of methods currently exist for the prediction of pile deflection under applied load. These range widely from simple methods to sophisticated methods utilising finite element analysis. Some of the methods present graphical illustrations of the relationship between pile head settlement and various parameters such as pile dimensions, pile stiffness and soil properties. These methods attempt to provide an understanding of the mechanism of load transfer from pile to soil. The methods have varying degrees of success, as judged from back-analysis using pile load test results. The various methods currently available are briefly reviewed below.

6.1.2 Load transfer analysis by linear spring representation

The earliest method is the simple load transfer analysis (Coyle and Reese,1966 and Vesic,1969). This method, to which reference is often made as the t-z analysis, involves representing the relationship between the skin resistance and the relative vertical displacement between the soil and the pile, using linear soil spring modelling. A linear soil spring model is also used to develop curves (q-z curves) relating the pile tip bearing stress to the pile tip vertical displacement. This method is now generally discredited as it does not provide for the influence of the interaction between soil layers on pile settlement.

6.1.3 Boundary Element Method (or Integral Equation Analysis)

This method was invented by Poulos and Davis(1968) and has been extended and modified by Butterfield and Banerjee,(1970&1971). It is an extension of the t-z analysis, to include a consideration of the interaction between various soil elements in which a pile is embedded (by non-linear soil spring modelling). This is achieved using the solution presented by Mindlin(1936) for a point load acting in an elastic half-space. However, both the load transfer and the Boundary element analyses are somewhat limited in the sense that it is difficult to accurately account for a particular site in terms of the non-homogeneity and non-linearity of the soil response under load.

6.1.4 Approximate analysis based on elasticity

Various methods under this category have been developed by Randolph and Wroth(1978), Lee(1993) and Poulos(1980). These are based on considering the pile-soil system as perfectly linearly elastic materials. Some extension to the methods is made to account for non-homogeneity of soil in the lateral and vertical directions.

6.1.5 Functional representation of pile characteristics

These methods (for example Hirayama,1990 and Fleming,1992) utilise mathematical functions to represent various relationships which describe pile load-settlement response. Separate functions may be used to represent individual components of load resistance. The various parameters of the functions are empirically assessed from soil and pile properties. These methods are simple and readily applicable for piles in

different soil conditions.

6.1.6 Finite element analysis -FEA

Finite element analysis for piles have been adopted by Frank(1974&1975), Baguelin(1975), Ottaviani(1975), Dasgupta(1985), Chow(1989) and Phoon et.al.,1990). This method has undergone extensive development in recent times and has also gained considerable popularity due to its flexibility and accuracy. The following are examples of the different approaches in which the equations are formulated:

- Finite layer analysis (Small and Booker, 1984&1986; Lee and Small, 1991). In this method, the soil is treated as consisting of a series of horizontal isotropic or crossanisotropic elastic layers of infinite lateral extent.
- Infinite layer analysis (Guo et.al., 1987) in which the soil displacement functions are represented by a product of piece-wise polynomial and series expansion functions.
- 3) Discrete Fourier Series approach (Lai and Booker,1989). In this method, the soil displacement fields are represented as discrete Fourier series and solved by finite element methods.
- 4) Use of composite filamented beam elements in structural analysis to model the pile stiffness and non-linear soil springs to model pile displacements by means of hyperbolic functions (San-Shyan Lin, 1997).

With the use of FEA, some of the shortcomings of the Boundary element method have been adequately covered since the former enables the consideration of the variations in soil properties which could extend with depth as well as laterally across the site.

6.2 PERFORMANCE OF LARGE DIAMETER, BORED PILES

6.2.1 The need for a simple numerical model

Poulos(1989) and Fleming(1992) have drawn attention to the fact that, although complex analytical methods are capable of modelling pile-soil systems with significant flexibility, the sophisticated input data required are not available from standard site investigations. Therefore there is need for a simple but accurate numerical model where the required parameters can be readily correlated with conventional soil strength parameters. In addition, the analysis should be easily adaptable and understood by foundation engineers/designers.

In this chapter, a new method is developed which is capable of predicting the loadsettlement variation of a pile up to and including the ultimate state of the pile-soil system. The emphasis is on the ease of use by ordinary practising engineers, rather than elaborate theoretical and mathematical sophistication. The analysis is based on mathematical representation of: (a)the development of shaft resistance and end bearing, (b) the variation in load sharing between the pile shaft and base (c) the influence of nonlinear concrete stress-strain behaviour on pile compression (d) the influence on pile settlement of additional compressibility due to any loose soil possibly present at the pile base level.

6.2.2 Pile load-settlement prediction

In any pile design activity, settlement control receives considerable attention. Pile

settlement is influenced by a number of factors such as installation techniques, groupaction and soil conditions. The problem to the designer is not only the consideration of pile integrity and performance as a unit but also the function of the pile as the interface between the superstructure and the surrounding soil.

The elastic theory is of significant help in the development of the numerical model presented. The method is simple and offers a practical solution to the problem of load-settlement prediction and is successful in utilising the parameters readily available from standard site investigations. The model can also be applied to pile-soil systems with variable characteristics.

6.2.3 Load resistance mobilisation

Much of the existing literature on large diameter, bored piles relates to the recorded bahaviour in London clay in which designers often utilise the early investigations carried out by Cooke and Whitaker(1961) and Whitaker and Cooke(1966). These studies show that the shaft and base resistance are developed to different extents for a given pile settlement. Studies such as those carried out by Randolph and Wroth(1982), indicate that shaft resistance at a given applied load also depends on the pile diameter.

Many researchers have attempted to define the settlement at peak shaft load in terms of either the shear strain around the shaft or the penetration of the pile tip. Some of these definitions are summarised in Table 6.1, which also include definitions of the base movement Δ_{ub} at ultimate base resistance, P_{ub} .

Reference	Definition for $\Delta_{\mu s}$	Definition for Δ_{ub}	Soil type
Cooke &	0.5-1% of shaft diameter	10-15% of the base	London clay
Whitaker(1961) and		diameter	
Poulos(1980) Burland et al.(1966)	Occurrence of D is defined		
	Occurrence of P _{us} is defined in terms of shear strains	Not identified	Clay
	around pile shaft and this		
	strain is 0.1 (not dependent		
	on pile diameter)		
Whitaker &	Occurrence of Δ_{us} is defined	10% and 30% of	Cohesive soils
Cooke(1966), Coyle	in terms of the relative pile	base diameter for	
& Reese(1966), AISI(1975) and	soil slip required, which is 5-	driven and bored	
Bowles (1996)	10cm and is independent of pile diameter and embedded	piles respectively	
	length, but may depend on		
	the strength properties of the		
	soil		
Fleming et.al.(1992)	Typically 0.5-2% of the pile	5-10% of the pile	For a range of
	diameter	base diameter	soils
		(larger for low-	
		displacement piles	
Tomlinson(1994)	For piles with diameters	in granular soil For bored piles in	Stiff clay
	greater than 600mm,	stiff clay with	(definition is
	$\Delta_{\rm us}$ =10mm (i.e 1.6%	diameters greater	for bored piles)
	diameter, maximum).	than 600mm,	
	Further, at peak shaft load,	Δ_{ub} =150mm (i.e	
	only 22% of the ultimate base	20% diameter,	
	load is developed.	maximum)	
Barnes(1995) and	1-2% of pile shaft diameter	10-20% pile base diameter	Clay
BS8004(1986) Present work	1.5-4% pile shaft diameter	15-30% pile base	Keuper marl
I ICSUIT WOIK	(for pile diameters greater	diameter	zones I-IV in
	than 600mm) and 5-15% for		South Wales
	small diameter piles,		(Based on
	depending on soil stiffness.		dedicated load
			tests and
			Kilbourn et
			al,1988).

Table 6.1:Existing definitions for pile base settlements necessary to develop the full shaft resistance and end bearing

6.3 MODELLING OF SHAFT RESISTANCE MOBILISATION

6.3.1 Extension of Reese et.al(1969) method

For large bored piles in clay, Reese et.al.(1969) suggested the following relationship between the local unit shaft resistance at a given level along a pile shaft and the displacement at that level. The symbols used in the equation may differ from the original publication, to maintain the nomenclature adopted by the author.

$$\tau(z) = \tau_{\max} \left[2 \sqrt{\frac{\Delta(z)}{s_o}} - \frac{\Delta(z)}{s_o} \right]$$
(6.1a)

Where

 $\tau(z)$ =Shaft resistance at depth z (originally in tons/ft²)

 τ_{max} =Maximum shaft resistance that can occur at any depth

 $(tons/ft^2)$

 $\Delta(z)$ =Pile movement at depth z (originally in inches)

 $s_0 = 2 D_s \epsilon$, where

 D_s = diameter of pile shaft (in inches)

 ε = Average failure strain (in percent) of the soil near the pile toe, obtained from unconfined compression tests.

Equation (6.1a) can be extended to predict the variation between the total load supported by the pile shaft and the settlement of the pile base. Consider the integral of Eqn.(6.1a), with respect to depth, z, between the limits z=0 to $z=L_s$ (where L_s is the shaft length). Two variables are identified, which are both functions z, namely $\tau(z)$ and $\Delta(z)$. Hence,

$$\int_{0}^{L_{s}} \tau(z) dz = \tau_{\max} \int_{0}^{L_{s}} \left[\frac{2}{\sqrt{s_{o}}} \Delta(z)^{\frac{1}{2}} - \frac{\Delta(z)}{s_{o}} \right] dz$$
(6.1b)

On expanding the right hand side, we have

$$\int_{0}^{L_{x}} \tau(z) dz = \frac{2\tau_{\max}}{\sqrt{s_{o}}} \int_{0}^{L_{x}} \Delta(z)^{\frac{1}{2}} dz - \frac{\tau_{\max}}{s_{o}} \int_{0}^{L_{x}} \Delta(z) dz$$
(6.1c)

The total shaft load P_s is related to the left-hand side of this equation by

$$P_s = \pi D_s \int_0^{L_s} \tau(z) dz \tag{6.1d}$$

Consider the variations of $\Delta(z)^{\frac{1}{2}}$ and $\Delta(z)$ as functions of z, defined over the domain

z=0 to z= L_s. The mean values $\left[\Delta^{\frac{1}{2}}\right]_{mean}$ and $\left[\Delta\right]_{mean}$ respectively of these functions are

defined by

$$\left[\Delta^{\frac{1}{2}}\right]_{mean} = \frac{1}{L_s} \int_0^{L_s} \Delta(z)^{\frac{1}{2}} dz$$
(6.1e)

(i.e the mean square root displacement for all points along L_s),

$$\left[\Delta\right]_{mean} = \frac{1}{L_s} \int_{0}^{L_s} \Delta(z) dz$$
(6.1f)

(i.e the mean displacement for all points along L_s).

Substituting for $\int_{0}^{L_x} \tau(z) dz$, $\int_{0}^{L_x} \Delta(z)^{\frac{1}{2}} dz$ and $\int_{0}^{L_x} \Delta(z) dz$ from Eqns.(6.1d)-(6.1f) into

Eqn.(6.1c) gives

$$P_{s} = \frac{2\pi D_{s}\tau_{\max}L_{s}}{\sqrt{s_{o}}} \left[\Delta^{\frac{1}{2}}\right]_{mean} - \frac{\pi D_{s}\tau_{\max}L_{s}}{s_{o}} \left[\Delta\right]_{mean}$$
(6.1g)

From physical considerations, the mean displacement for all points along a pile shaft is

made up of two components:

- 1) the base penetration, $\Delta_{\rm b}$, and
- 2) the weighted FAPR displacements $\left[\Delta_{es}\right]_{mean}$ for all points along L_s, hence

$$\left[\Delta\right]_{mean} = \Delta_{b} + \left[\Delta_{es}\right]_{mean} \tag{6.1h}$$

From 5 fully instrumented test piles, it has been assessed that $80:1 \le \frac{\left[\Delta_{es}\right]_{mean}}{\Delta_{b}} \le 10:1$, for

applied pile head loads down from P_{ult} to $0.3P_{ult}$. Hence $[\Delta_{es}]_{mean}$ is insignificant in comparison to Δ_b for most of the loading range. Thus it is sufficiently accurate to take

$$\left[\Delta\right]_{mean} = \Delta_b \tag{6.1i}$$

Therefore, in Eqn.(6.1g), $[\Delta]_{mean} = \Delta_b$, and within the first order of approximations,

 $\left[\Delta^{\frac{1}{2}}\right]_{mean} = \sqrt{\Delta_{b}}$. Since τ_{max} and s_{o} are unknown at this stage, the groups of constants in

Eqn.(6.1g) may be replaced by single coefficients, a_o and a_1 which are evaluated from the following boundary conditions. Hence we have,

$$P_s = a_o \sqrt{\Delta_b} - a_1 \Delta_b \,. \tag{6.2}$$

6.3.2 Boundary conditions

- The function in Eqn.(6.2) obviously satisfies the fact that no shaft load is developed without pile displacement
- 2. At the peak shaft load, the plot of P_s versus Δ_b must either depict a clear maximum

point or reach a plateau, Fig.6.1, hence $\frac{dP_s}{d\Delta_b} = 0$ when $\Delta_b = \Delta_{us}$, where Δ_{us} is the base movement at peak shaft load, P_{us} . Based on a number of case studies, it is sufficient

to assume that the residual shaft load is reached at a settlement equivalent to the base penetration Δ_{ub} necessary to cause failure in end bearing. The residual shaft load is given by R_sP_{us} , where R_s is an empirical factor. By differentiating Eqn.(6.2) with respect to Δ_b and invoking this condition, the following relationship is obtained:

$$\frac{a_o}{2\sqrt{\Delta_{us}}} - a_1 = 0.$$
(6.3a)

3. When $\Delta_b = \Delta_{us}$, and $P_s = P_{us}$, substituting this into Eqn(6.2) gives

$$a_o \sqrt{\Delta_{us} - a_1 \Delta_{us}} = P_{us} \,. \tag{6.3b}$$

Solving Eqns(6.3a) and (6.3b) simultaneously gives

$$P_{s} = P_{us} \left(\frac{2\sqrt{\Delta_{b}}}{\sqrt{\Delta_{us}}} - \frac{\Delta_{b}}{\Delta_{us}} \right).$$
(6.4a)

There is evidence that the settlement of a pile shaft is directly proportional to the pile shaft diameter, D_s . Therefore it is possible to express Δ_{us} as $\Delta_{us} = rD_s$, in which **r** is a constant parameter in the form of a pile shaft flexibility factor. The value of **r** decreases with increasing soil stiffness. The following additional factors are also thought to have an influence on the shaft flexibility: (a) the method of pile installation (b) the pile type (c) the pile length, and (d) the time elapsed since pile installation.

6.3.3 Variation in mobilised shaft resistance

After the mobilisation of full shaft resistance, the shaft resistance either remains constant (the path XZ, Fig.6.1) or decreases in value, with increasing base movement (the path XY, Fig.6.1). This is a typical variation of shear stress versus shear strain for

soils, where peak and residual shear strengths may be experienced. To provide for this situation, it is observed that a cubic power series function can be used to represent the pattern along **XY**, although a number of other functions were attempted. This functional representation is supported by the results of the instrumented test piles in formed in Keuper marl. It is assumed that the shaft resistance decreases to a residual value at a base penetration corresponding to the point of ultimate base resistance (point **Y**, Fig.6.1). The base movement Δ_{ub} at ultimate base load is taken as $\Delta_b = mD_b$, where D_b is the base diameter and *m* is a constant parameter as defined in Table 6.1. The relationship is expressed as

$$P_{b} = C_{o} + C_{1}\Delta_{b} + C_{2}\Delta_{b}^{2} + C_{3}\Delta_{b}^{3}$$
(6.4b)

where C_0 , C_1 , C_2 , and C_3 are constants to be evaluated from the following boundary conditions:

(1) When
$$\Delta_b = \Delta_{us}$$
, $P_s = P_{us}$, (2) and $\frac{dP_s}{d\Delta_b} = 0$, (3) When $\Delta_b = mD_b$, $P_s = R_s P_{us}$ and (4)

 $\frac{dP_s}{d\Delta_b}=0$, where **m** is the percentage of pile base diameter which defines the base movement at ultimate base load, see Figs.6.1 and 6.2. The coefficient R_s (Fig.6.1) gives the value of the residual shaft resistance when multiplied by the maximum shaft resistance P_{us}. These boundary conditions lead to the following set of equations, from which the unknown coefficients are solved:

$$\begin{bmatrix} 1 & \Delta_{us} & \Delta_{us}^{2} & \Delta_{us}^{3} \\ 0 & 1 & 2\Delta_{us} & 3\Delta_{us}^{2} \\ 1 & mD_{b} & m^{2}D_{b}^{2} & m^{3}D_{b}^{3} \\ 0 & 1 & 2mD_{b} & 3mD_{b}^{2} \end{bmatrix} \begin{bmatrix} C_{o} \\ C_{1} \\ C_{2} \\ C_{3} \end{bmatrix} = \begin{bmatrix} P_{us} \\ 0 \\ R_{s}P_{us} \\ 0 \end{bmatrix}$$
(6.4c)

On solving these equations, the coefficients are obtained as follows:

$$C_{3} = \frac{P_{us}(1 - R_{s})}{\left[\left\{3m^{2}D_{b}^{2}\left(mD_{b} - \Delta_{us}\right) - \left(m^{3}D_{b}^{3} - \Delta_{us}^{3}\right)\right\} - \frac{3}{2}\left(mD_{b} + \Delta_{us}\right)\left(mD_{b} - \Delta_{us}\right)^{2}\right]}$$
(6.4d)

$$C_{2} = -\frac{3}{2} \left(m D_{h} + \Delta_{us} \right) C_{3}$$
 (6.4e)

$$C_1 = -2\Delta_{us}C_2 - 3\Delta_{us}^2C_3$$
(6.4f)

$$C_o = P_{us} - \Delta_{us} C_1 - \Delta_{us}^2 C_2 - \Delta_{us}^3 C_3$$
(6.4g)

6.4 MODELLING OF BASE RESISTANCE MOBILISATION

6.4.1 A normally constructed pile base

Randolph and Wroth(1978) have discussed the "rigid punch" elasticity solution given by Timoshenko and Goodier(1970) in calculating the settlement of pile foundations. For a circular cross-section, the settlement of the base is expressed as

$$\Delta_b = \frac{\pi}{4} \frac{q_b}{E_b} D_b (1 - \upsilon^2) \eta \tag{6.5a}$$

where

 D_b =base diameter

 E_{b} =Young's modulus of soil beneath the base

v=Poisson's ratio of soil beneath the base

q_b=base pressure

 η =settlement reduction factor (this is related to the foundation depth).

The coefficient η distinguishes the pile base behaviour from the characteristics of a punch, located at the surface of an elastic half-space, for which the original solution was

intended. Through calculations for a loaded area embedded in a soil mass, a value of η =0.5 has been calculated for depth/diameter ratio greater than 6. This conclusion is supported by the evidence presented by Banerjee(1970). For a loaded area that is located at the bottom of an open hole, Burland(1969) showed that η =0.85 is the limiting value. For London clay, Marsland(1971) has pointed out that this value is appropriate, depending on the Poisson's ratio of the soil. For the analysis of a pile base, Burland and Cooke(1974) have suggested the use of η =0.5.

For a pile of uniform cross-section ($D_b=D_s$ where D_s is the pile shaft diameter) hence Δ_b can be written as

$$\Delta_{b} = \frac{P_{b}(1-\nu^{2})}{D_{b}E_{b}} \eta = \frac{P_{b}(1-\nu^{2})}{D_{s}E_{b}} \eta.$$
(6.5b)

6.4.2 A pile base resting on debris

Figure 6.2 shows a possible plot of base load versus base movement where significant softening of the soil beneath the toe has occurred. This is a typical consequence of a bored pile that has been installed without an effective clean up of soil fragments deposited at the bottom of the hole. It is suggested that the effect of an unclean base may be represented by a shift in the origin, by a distance **S** (from point **E** to point **F**). The path along **FA** represents a progressive increase in the stiffening of the debris beneath the base, as the base pressure increases. Based on a small number of test pile case studies, a parabolic function is found to fit the trend reasonably well. The initial stiffness of the base material before pile installation is assumed to be restored at point **A**. Hence the linear settlement function in Eqn.(6.5b) applies for the path **AB**.

In Fig.6.2 the coefficients **n** and ϕ represent the proportions of P_{ub} which define the three loading ranges considered. The displacements Δ_k and Δ_{ϕ} are the base movements corresponding to base load values nP_{ub} and ϕP_{ub} , respectively, for a normally constructed pile base. The base movement Δ_{ub} at ultimate base load is defined in terms of a percentage of the base diameter as $\Delta_{ub} = mD_b$. The empirical constants: **n**, ϕ and **m** are determined based on the experience gained from instrumented test piles, whereas P_{ub} is evaluated from well known bearing capacity formulae. The parameters for bearing capacity calculations are based on the site investigation report or other relevant information. From Eqn(6.5b), the displacements Δ_k and Δ_{ϕ} are expressed as:

$$\Delta_k = \frac{nP_{ub}(1-\upsilon^2)\eta}{E_b D_b}$$
(6.5c)

$$\Delta_{\phi} = \frac{\phi P_{ub} \left(1 - \upsilon^2\right) \eta}{E_b D_b} \tag{6.5d}$$

The suggested parabolic function $P_h = A_o + A_1 \Delta_h + A_2 \Delta_h^2$ (where A_o , A_1 and A_2 are constants) may be used to evaluate the shift, **S**, for the variation along **FA** if the following boundary conditions are assumed:

- 1. the parabola has a zero gradient at the new origin F
- 2. the parabolic and linear portions join at the same gradient, G, which is available

from Eqn(6.5b) as $G = \frac{E_b D_b}{(1 - v^2)\eta}$

The above conditions yield $A_0 = A_1 = 0$ and $A_2 = \frac{G}{2(\Delta_k + S)}$. Utilising the condition that

 $P_b=P_{ub}$ when $\Delta_b=(\Delta_k+S)$ leads to $S=\Delta_k$, and the parabolic function is now fully defined hence:

$$P_{b} = \frac{1}{nP_{ub}} \left[\frac{E_{b} D_{b}}{2(1-\nu^{2})\eta} \right]^{2} \Delta_{b}^{2}.$$
(6.6a)

The general equation of the linear portion is

$$P_b = G(\Delta_b - S). \tag{6.6b}$$

For a normal pile base, S is taken as zero whilst for a pile base resting on debris, substituting for S gives

$$P_{b} = \frac{E_{b}D_{b}}{(1-\nu^{2})\eta} \left[\Delta_{b} - \frac{nP_{ub}(1-\nu^{2})\eta}{E_{b}D_{b}} \right].$$
(6.6c)

6.4.3 Non-linear base load versus base movement variation

It is considered that, beyond point B (Fig.6.2), the settlements are so large that the linear function is no longer valid. Observed data from test piles at Butetown road link, Cardiff, suggest that the settlement response along the path BC may be represented analytically. A large number of functions have been examined, in attempting to describe the trend **BC**, with varying degrees of success. Of these, the most appropriate is the hyperbolic cosine function expressed in the form:

$$P_b = A_o - A_1 \cosh(A_2 \Delta_b - A_3) \tag{6.7}$$

where A_0 , A_1 and A_2 and A_3 are constants, to be determined from the following boundary conditions:

- (1) When $\Delta_b = (\Delta_{\phi} + S)$, $P_b = \phi P_{ub}$ (2) When $\Delta_b = (\Delta_{\phi} + S)$, $\frac{dP_b}{d\Delta_b} = G$
- (3) When $\Delta_b = mD_b$, $P_b = P_{ub}$ (4) When $\Delta_b = mD_b$, $\frac{dP_b}{d\Delta_b} = 0$.

The boundary conditions (1), (2), (3) and (4) above lead to the following:

$$A_o - A_1 \cosh\left[A_2\left(\Delta_{\phi} + S\right) - A_3\right] = \phi P_{ub}$$
(6.8a)

$$-A_1 A_2 \sinh \left[A_2 \left(\Delta_{\phi} + S\right) - A_3\right] = G \tag{6.8b}$$

$$A_{o} - A_{1} \cosh[A_{2}mD_{b} - A_{3}] = P_{ub}$$
 (6.8c)

$$-A_{1}A_{2}\sinh[A_{2}mD_{b}-A_{3}] = 0$$
(6.8d)

From Eqn.(6.8d), a relationship between A_2 and A_3 emerges, since $A_1A_2 \neq 0$. Hence the non-trivial solution is $A_3 = A_2mD_b$. Using this relationship to substitute for A_3 in Eqn.(6.8c) yields $A_o - A_1 = P_{ub}$. Two simultaneous equations containing A_1 and A_2 are obtained, by substituting for A_3 and A_o in Eqn(6.8b) and in Eqn(6.8a). On eliminating A_1 , the following expression is obtained, which may be solved by iteration, to evaluate A_2 :

$$A_{2} = \frac{G\left\{\cosh\left[A_{2}\left(mD_{b} - \left(\Delta_{\phi} + S\right)\right)\right] - 1\right\}}{P_{ub}\left(1 - \phi\right)\sinh\left[A_{2}\left(mD_{b} - \left(\Delta_{\phi} + S\right)\right)\right]}$$
(6.9a)

Hence, by back-substitution, A₁, A₀ and A₃ are obtained as follows:

$$A_{1} = \frac{G}{A_{2} \sinh\left[A_{2}\left(mD_{b} - \left(\Delta_{\phi} + S\right)\right)\right]}$$
(6.9b)

$$A_o = A_1 + P_{ub} \tag{6.9c}$$

$$A_3 = A_2 m D_b \tag{6.9d}$$

6.4.4 Minimum value of the coefficient m

It is important to recognise the possible mathematical limits of the constants used in the hyperbolic cosine function for base load versus base movement variation. In order to fully define the function, convergence of the iteration process in Eqn. 6.9(a) must be realised, for all practical values of the parameters involved. For given site conditions, the most important parameters controlling the pile base response are the deformation modulus E_b and the ultimate bearing capacity q_{ub} . The gradient of the base load versus base movement curve increases with the ratio $\frac{E_b}{q_{ub}}$. In addition, the higher the ratio E_b

 $\frac{E_b}{q_{ub}}$ the lower the base displacement at which ultimate base resistance occurs.

The nature of the selected function is such that convergence of the iteration involved in Eqn.6.9(a) is always obtained for all $\frac{E_h}{q_{uh}}$ ratios so that the coefficients A_o , A_1 , A_2 and A_3 can always be determined whatever the stiffness and bearing capacity values are at a given site. However, for this to be guaranteed, a situation must be investigated whereby the $\frac{E_h}{q_{uh}}$ ratio at a given site is so small that the slope of line **AB** (Fig.6.2b) reaches its minimum value. This condition is mathematically represented by equating the slope of **AB** to that of a line drawn through **AC** (Fig. 6.2b). In these circumstances, a value of *m* is obtained by equating these slopes, thus

$$m > \frac{P_{ub} \left(1 - \upsilon^2\right) \eta + E_b D_b S}{E_b D_b^2}$$
(6.9e)

6.5 LOAD TRANSFER/PILE DEFORMATION RELATIONSHIP

6.5.1 Modelling the non-linear stress-strain behaviour of concrete

Consider a typical bored, cast in-situ reinforced concrete pile shown in Fig.(6.3a) and Fig.(6.3b). The dimensions of the pile are:

L_o= friction free length (section of pile passing through material of low friction)

 L_s = length of pile shaft transmitting load to soil

L= total length of pile

 D_s = diameter of pile shaft

 D_{b} = diameter of pile base.

Particularly at the early stages of loading, proper attention must be given to the nonlinear stress-strain variation of concrete. Deformation modulus concrete is usually difficult to evaluate, as it is affected by a number of factors such as creep and loading rates. For normal loading rates applied in pile testing, the Young's modulus of concrete is found to decrease with increasing strain, up to a certain strain level after which it tends to remain approximately constant.

It is reasonable to express the Young's modulus versus strain variation by a simple polynomial function, which can easily be incorporated in the derivation of pile shortening. Figures 6.4(a)-(d) show the apparent Young's modulus-strain variation in test piles TP2, TP3, TP4 and TP6, back-analysed from the strain gauge readings at levels of known axial force. Best fitting polynomial functions are also shown for comparison. In Fig. 6.5, different functions are derived for each load cycle. The general form of the function used is

$$E_{c} = a_{o} + \frac{a_{1}}{\varepsilon}$$
(6.10)

where,

E_c= Secant modulus of deformation of concrete (strain dependent)

 ε = Strain in concrete ($\varepsilon \neq 0$)

 a_0, a_1 = numerical constants.

6.5.2 Variation of shaft resistance with depth

Burland(1973) has advocated an effective stress approach to the evaluation of the shaft resistance of pile formed in clay. The shaft resistance τ_{us} (z) at depth z (Fig. 6.3) below the bottom of the sleeved part of the pile is given by

$$\tau_{\mu\nu}(z) = K(z)\sigma_{\nu}'(z)\tan\delta(z)$$
(6.11)

where

K(z)=earth pressure coefficient at depth z

 $\sigma_{v}'(z)$ =effective overburden pressure at depth z

 $\delta(z)$ =effective angle of friction between the soil and the pile, at depth z.

Two possible patterns of shaft resistance variation are identified. Fig 6.3(a) shows a typical profile for a pile formed sand, such as those reported by Vesic(1969). Fig 6.4(b) describes the shaft resistance versus depth variation for a pile formed in cohesive soil, for example the pile test results reported by Cooke et.al.(1979).

6.5.3 Functional modelling of shaft resistance profiles

It is assumed that the shaft resistance at a given level is consistent with in-situ effective stresses. However, for a given load applied at the pile head, different locations of the

pile shaft mobilise different proportions of the maximum shaft resistance available. Hence there will be a re-distribution of shaft resistance along the pile, which is likely to depend on the applied load. It is assumed that the ratio of the final shear stress τ_t at the level of the Keuper marl top (i.e at level z=0), to that at the pile base τ_b (i.e at level z=L_s) is given by

$$\frac{\tau_i}{\tau_b} = \frac{K_i \tan(\delta_i) \sigma_{v'i}}{K_b \tan(\delta_b) \sigma_{v'b}}$$
(6.12)

where K_t and K_b are the coefficients of earth pressure corresponding to the top and bottom of the pile portion involved in load transfer to soil respectively. Similarly, σ_{vt} and σ_{vb} ' are the effective overburden pressures at the level of the top and bottom of the pile portion involved in load transfer to soil respectively. At these levels, the effective angles of internal friction of the soil, or the pile-soil interface friction angle as appropriate, are denoted δ_t and δ_b respectively.

For a bored pile, the earth pressure coefficients K_t and K_b are likely to be less than the coefficient of earth pressure at rest, K_o , due to ground disturbance caused as a result of boring. Hence setting both K_t and K_b to be equal to K_o represents a safe lower limit. For heavily over-consolidated clays, Burland(1973) observed that the value of K_o varies with depth from around 3 near the surface, decreasing to less than unity at great depth. Keuper marl, due to its heavily over-consolidated nature, may be expected to exhibit similar variations of K_o . Therefore, if the shear strength of the clay increases with depth, it is reasonable to expect values of k to lie in the range 1<k<3 for long piles (typically 60m). For short piles, k is likely to be close to unity.

It is also assumed that the extent of the punching effect on the pile shaft is narrow, so that it is sufficiently accurate to take τ_b at the full shaft length. If it is assumed that the nature of the function representing the variation of shaft resistance variation with depth is independent of the applied load, then Eqn.(6.12) may be written as

$$\frac{\tau_i}{\tau_b} = k \frac{\sigma_{v'i}}{\sigma_{v'b}}$$
(6.13)

Where $k = \frac{K_{ot} \tan(\delta_t)}{K_{ob} \tan(\delta_b)}$ and remains constant with increasing applied pile head load.

The axial force P(z) at any depth z (Figs.6.3a and 6.3b) may be expressed as a function of the shaft resistance $\tau(z)$ at that level as

$$\frac{\partial P_{(z)}}{\partial z} = -\pi D_s \tau(z) \tag{6.14}$$

According to Vesic(1969) and Schmidt and Rumpelt(1993), the shaft resistance variations shown in Figs.6.3(a) and 6.3(b) can be represented by a parabolic function. There is a stationary point at a certain depth, $z=L_m$, below the bottom of the upper pile portion not involved in load transfer to soil. Thus the shaft resistance variation with depth is expressed as

$$\tau(z) = az^2 + bz + c \tag{6.15}$$

Where a, b and c are constants. Integrating Eqn.(6.14) gives

$$P(z) = -\pi D_s \left(\frac{a}{3}z^3 + \frac{b}{2}z^2 + cz + d\right)$$
(6.16)

where d is the constant of integration. These constants are determined from the following boundary conditions.

6.5.4 Boundary conditions and solution of equations

a) At level $z=L_m$ the slope of the plot of τ against z is zero (Fig .6.3), thus from

Eqn.(6.15), we have
$$\frac{\partial \tau_{(z)}}{\partial z} = 2az + b = 0$$
. Hence $b = -2aL_m$.

- b) At level z=0, P(z)= P_h, hence from Eqn.(6.16), $d = -\frac{P_h}{\pi D_s}$.
- c) At the pile toe level ($z=L_s$), $P(z)=P_b$ where P_b is the load transferred to the pile base. Hence from Eqn.(6.16), we have

$$\frac{-P_{h}}{\pi D_{s}} = a \left(\frac{L_{s}^{3}}{3} - L_{m} L_{s}^{2} \right) + cL_{s} - \frac{P_{h}}{\pi D_{s}}$$
(6.17)

d) Using Eqn.(6.13) in conjunction with Eqn.(6.15) and assuming a constant unit weight of soil, a relationship involving a and c can be obtained as

$$\frac{c}{aL_s^2 + bL_s + c} = \frac{kL_o}{L} \tag{6.18}$$

Substituting for b gives

$$\frac{(P_h - P_b)}{\pi D_s} = a \left(\frac{L_s^3}{3} - L_m L_s^2 \right) + cL_s$$
(6.19)

Equations (6.17) and (6.19) are then solved simultaneously for a and c, hence

$$a = \frac{(P_h - P_h)}{\pi D_s \left\{ \frac{L_s^3}{3} - L_m L_s^2 + \frac{k L_o L_s^2}{k L_o - L} [2L_m - L_s] \right\}}$$

Substituting *a* from the relationship $b = -2aL_m$ gives

$$b = \frac{-2L_m(P_h - P_b)}{\pi D_s \left\{ \frac{L_s^3}{3} - L_m L_s^2 + \frac{kL_o L_s^2}{kL_o - L} \left[2L_m - L_s \right] \right\}}$$

From Eqn.(6.18), the expression for c can be written as

$$c = \frac{-kL_o L_s}{kL_o - L} \left(aL_s + b \right)$$

For convenience, substitute $L_m = \omega L_s$ in which ω is a constant, and let

$$\Omega = \frac{kL_o L_s}{\left(kL_o - L\right)} \tag{6.20}$$

$$\lambda = \pi D_{s} \left\{ \frac{L_{s}^{3}}{3} - \omega L_{s}^{3} + \Omega L_{s}^{2} (2\omega - 1) \right\}$$
(6.21)

It will be seen that for $\tau_t < \tau_b$, setting $0.5 < \omega < 1.0$ results in the shaft resistance distribution profile given in Fig. 6.3(b) whilst taking $0 < \omega < 0.5$ gives the profile in Fig. 6.3(c). The former profile was observed, for piles formed in sand, by Vesic(1969), Hirayama(1990) and Altaee et.al.,1993) whereas the latter profile was reported by Cooke et.al.(1979) and O'Riordan(1982), for piles installed in clay. If $\omega < 0$ then there is no stationary point on the shaft resistance versus depth variation. In the present work, the test piles, installed in Keuper marl, exhibit the shaft resistance distribution profile described by $0 < \omega < 0.5$. It is noted that as ω decreases, the rate of decrease of axial force in the pile with depth increases. The effect of an increase in the value of *k* is to decrease the rate of axial force decrease with depth along the pile.

6.5.5 Load sharing between the shaft and base

The proportion of the load carried in shaft resistance P_s may be considered to be related to the applied pile head load P_h by a factor ψ , so that

$$\mathbf{P}_{s} = \boldsymbol{\psi} \mathbf{P}_{h} \tag{6.22}$$

For large diameter, bored piles, ψ actually varies with P_h, and will be calculated by back

analysis. Thus the constants a, b and c now become,

$$a = \frac{\Psi P_{h}}{\lambda} \tag{6.23a}$$

$$b = \frac{-2\omega L_{s} \psi P_{h}}{\lambda}$$
(6.23b)

$$c = -\frac{\Omega \psi P_{h}}{\lambda} L_{s} (1 - 2\omega)$$
(6.23c)

The shear stress distribution function $\tau(z)$ is now fully defined and, from Eqn.(6.15), this function may be written as

$$\tau(z) = \frac{\Psi P_{h}}{\lambda} \left[z^{2} - 2\omega L_{s} z - \Omega L_{s} (1 - 2\omega) \right].$$
(6.24)

From Eqn.(6.16), P(z) then becomes

$$P(z) = -\pi D_{s} P_{h} \left\{ \frac{\Psi}{\lambda} \left[\frac{z^{3}}{3} - \omega L_{s} z^{2} - \Omega L_{s} z (1 - 2\omega) \right] - \frac{1}{\pi D_{s}} \right\}$$
(6.25)

6.5.6 Axial force profile and pile shortening

The elastic shortening of the pile at a given value of applied load may be obtained by considering the equilibrium of the pile cross-section at any depth, z. Hence $P(z) = \varepsilon(z) \cdot \left[E_c(z)A_c + E_sA_s \right]$, where A_c and A_s are the concrete and steel areas respectively. From Eqn.(6.10), the expression for strain at a given level is

$$\varepsilon(z) = \frac{P(z) - A_c a_1}{A_c a_o + E_s A_s}$$
(6.26)

Substituting for P(z) from Eqn.(6.25) gives:

$$\varepsilon(z) = \frac{1}{A_{c}a_{o} + E_{s}A_{s}} \left(-\pi D_{s}P_{h} \left\{ \frac{\psi}{\lambda} \left[\frac{z^{3}}{3} - \omega L_{s}z^{2} - \Omega L_{s}z(1 - 2\omega) \right] - \frac{1}{\pi D_{s}} \right\} - A_{c}a_{1} \right)$$
(6.27)

The shortening e_0 of the upper portion of the pile not transferring load to soil is given by

$$e_{o} = \int_{0}^{L_{o}} \varepsilon(z) dz \tag{6.28}$$

Substituting for $\varepsilon(z)$ from Eqn.(6.26) and recognising that axial force is constant over the sleeved section,

$$e_{o} = \frac{(P_{h} - A_{c}a_{1})L_{o}}{A_{c}a_{o} + E_{s}A_{s}}$$
(6.29)

The shortening e_s of the lower portion of the pile involved in load transfer is given by

$$e_s = \int_0^{L_s} \varepsilon(z) dz \,. \tag{6.30}$$

Substituting for $\varepsilon(z)$ from Eqn.(6.26) and integrating between the limits, we have

$$e_{s} = \frac{1}{A_{c}a_{o} + E_{s}A_{s}} \left(-\pi D_{s}P_{h} \left\{ \frac{\psi}{\lambda} \left[\frac{L_{s}^{4}}{12} - \frac{\omega L_{s}^{4}}{3} - \frac{\Omega(1 - 2\omega)L_{s}^{3}}{2} \right] - \frac{L_{s}}{\pi D_{s}} \right\} - A_{c}a_{1}L_{s} \right)$$
(6.31)

6.5.7 Pile head load versus pile head settlement relationship

The load-settlement relationship for the pile can be obtained by considering the variation of displacements with depth from z=0 to $z=L_s$. The settlement $\Delta(z)$ at any depth, z, below the bottom of the upper pile portion not involved in load transfer is related to the strain in the pile $\varepsilon(z)$ at that level by the expression

$$\frac{\partial \Delta(z)}{\partial z} = -\varepsilon(z) \tag{6.32}$$

Hence

$$\Delta(z) = -\int \varepsilon(z) dz \tag{6.33}$$

Substituting for $\varepsilon(z)$ from Eqn.(6.27) and integrating leads to,

$$\Delta(z) = \frac{-1}{A_c a_o + E_s A_s} \left(-\pi D_s P_h \left\{ \frac{\Psi}{\lambda} \left[\frac{z^4}{12} - \frac{\omega L_s z^3}{3} - \frac{\Omega L_s (1 - 2\omega) z^2}{2} \right] - \frac{1}{\pi D_s} z \right\} - A_c a_1 z \right) + c_1$$
(6.34)

where c_1 is the constant of integration. This constant can be evaluated using the boundary condition that, when z=0, the displacement $\Delta(z)$ is given by $\Delta(z) = e_s + \Delta_b$ in which Δ_b is the base movement, thus

$$c_1 = e_s + \Delta_b \tag{6.35}$$

The settlement of the pile head Δ_h is given by

$$\Delta_h = e_o + e_s + \Delta_h \tag{6.36}$$

The expressions for e_o and e_s are available from Eqns.(6.29) and (6.31). The solutions for Δ_h are obtained by substituting $P_b = (1 - \psi)P_h$ in Eqns.(6.6a), (6.6c) and (6.7) and making Δ_b the subject. Hence

1) For a pile base resting on debris, in the interval: $0 \le \Delta_h \le (\Delta_k + S)$

$$\Delta_{h} = e_{o} + e_{s} + \frac{2(1-\upsilon^{2})\eta}{E_{b}D_{b}}\sqrt{(1-\psi)P_{h}nP_{ub}}$$
(6.37)

2) For a pile base resting on debris, in the interval: $(\Delta_k + S) \le \Delta_b \le (\Delta_{\phi} + S)$

$$\Delta_{h} = e_{o} + e_{s} + \frac{(1 - \upsilon^{2})\eta}{E_{b}D_{b}} [(1 - \psi)P_{h} + nP_{ub}]$$
(6.38)

3) For a normally constructed pile base, in the interval: $0 \le \Delta_b \le \Delta_{\phi}$

$$\Delta_{h} = e_{o} + e_{s} + \frac{(1 - \psi)P_{h}(1 - \upsilon^{2})\eta}{E_{b}D_{b}}$$
(6.39)

4) In the interval: $(\Delta_{\phi} + S) \leq \Delta_b \leq mD_b$

$$\Delta_{h} = e_{o} + e_{s} + \frac{1}{A_{2}} \left\{ \cosh^{-1} \left[\frac{A_{o} - (1 - \psi)P_{h}}{A_{1}} \right] + A_{3} \right\}$$
(6.40)

The coefficients A_0 , A_1 , A_2 and A_3 are determined from Eqns.(6.9a)-(6.9d).

6.5.8 Summary of the analysis procedure

Since the parameter ψ varies with P_h, the settlement at a given load can only be determined numerically. A computer program has been written for this purpose. The procedure for predicting the load-settlement curve for a pile with known geometry, material properties, and the soil properties is as follows:

- 1) Take various incremental values of Δ_b from zero up to mD_b
- 2) Calculate P_b from Eqns.(6.6a), (6.6c) or (6.7), as appropriate
- 3) Calculate P_s from Eqns.(6.4a) or (6.4b), as appropriate
- 4) Obtain P_h by summing P_b and P_s
- 5) Calculate ψ from $\psi = \frac{P_s}{P_h}$
- 6) Calculate e_0 from Eqn.(6.29)
- 7) Calculate e_s from Eqn(6.31)
- 8) Obtain the total shortening e_p as $e_p = e_o + e_s$
- 9) Obtain the total pile head settlement as $\Delta_h = e_p + \Delta_b$
- 10) Plot the graph of P_h versus Δ_h

11) Read Δ_h value for a given P_h value.

12) If required to know the amounts of shaft load, base load or shortening at a given Δ_h or P_h value, read off directly from relevant graphs.

A FORTRAN coded computer program, by the name OMSET, has been developed inhouse for the complete analysis of a pile using the model.

6.6 DESIGN CHARTS UTILISING THE NUMERICAL MODEL

6.6.1 Introduction

Having accepted that the numerical model closely represents pile load-settlement response, the analytical procedure described is clear and is successful in relating the shaft and base response functions to conventional soil parameters. Since the method makes extensive use of observed pile behaviour, the solutions obtained show the familiar characteristics of pile load -settlement relationships.

6.6.2 Design for shaft resistance

Since the settlement at peak shaft resistance directly relates to a failure strain, the parameter r represents the flexibility of the pile shaft. A range of values r=0.05-0.01 are appropriate for soils ranging from soft to very stiff, respectively. Although these numbers are quoted in percent, the corresponding absolute real number values are equivalent to Fleming's(1992) values of shaft flexibility factor, M_s. The M_s values suggested by Fleming(1992) for a range of soils from soft to very stiff are M_s=0.005-0.005.

Figure 6.6(a) gives the predicted normalised plots of shaft resistance against base movement, for a range of soil varying from soft to very stiff. These relationships have been calculated from the equations presented. The variations are fully dimensionless and can be used to identify the shaft resistance component of load bearing for a pile with given diameter.

6.6.3 Design for base resistance

The analysis of base load mobilisation is carried out in a similar series of steps using normalised graphs of base load against base movement. The important parameters required are the deformation modulus values E_b and the ultimate bearing capacity q_{ub} . The deformation modulus is one of the most interesting parameters of the numerical method. This parameter is not only manifested in the soil properties at a pile site but is also influenced by the effects of pile installation. In a stiff clay soil type such as Keuper marl, the over-consolidation ratio has a significant effect on the deformation modulus.

Most site investigations presently carried out are focused more on soil strength rather than deformation behaviour. Nevertheless, there are a number of formulae available for calculating deformation modulus values based on correlation with other soil properties. Some of these formulae have been tabulated in the literature review (Chapter 2). Other than published formulae, there may also be opportunities whereby data from pile load tests are available from which the deformation modulus could be back-analysed. In general, this alternative leads to a better estimate, since it incorporates the construction dependent factors. In Fig. 6.6(b) normalised plots of base load against base movement shown. These values follow from the numerical model, when incremental values of the ratio $\frac{E_h}{q_{uh}}$ are taken and used to compute the base behaviour function for a pile of general dimensions. Selected $\frac{E_h}{q_{uh}}$ values lying in the range 5-100 are examined which increase with increasing soil stiffness.

6.6.4 Summary

The proposed model can be readily utilised for the purpose of designing single piles provided the required soil properties are available. The computer program, which has been developed to facilitate rapid calculations, may be used to assess whether or not the pile satisfies the design requirements. Where a pile load test has been carried out in advance of the main pile construction programme, the model may also be used to backanalyse the required design parameters. However, it good quality test data are required to enable an accurate prediction during back-analysis. In maintained load tests, it may be necessary to project the measured pile head displacements to infinite time before plotting the input data.

Where the capability to maintain applied loads at constant values is significantly affected, some corrections to the measured curve may be necessary. This is necessary to identify and distinguish between creep-related settlements and transient displacements.

Sufficient data points are needed to ensure that a reasonable part of the load-settlement

curve is available for back-analysis purposes.

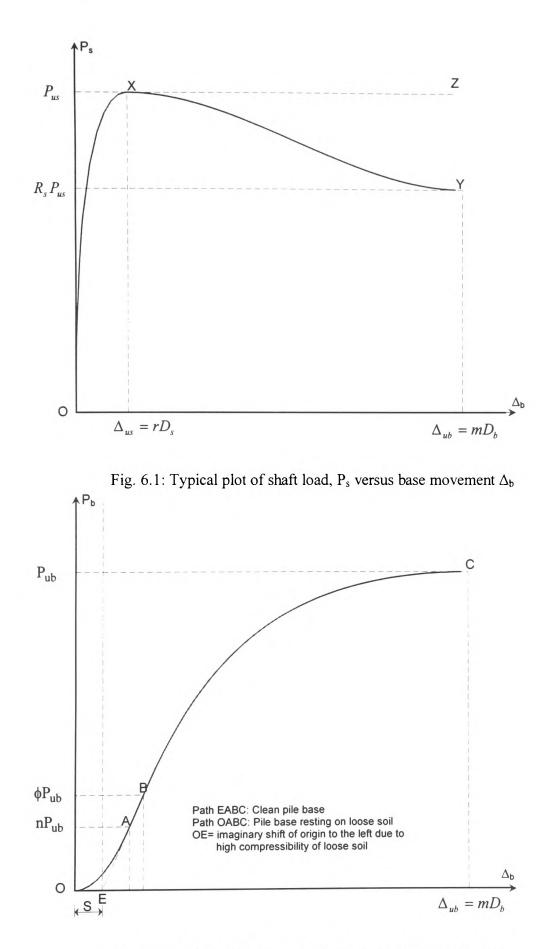


Fig.6.2: Typical plot of base load, P_b versus base movement Δ_b (pile base resting on debris and normal pile base compared)

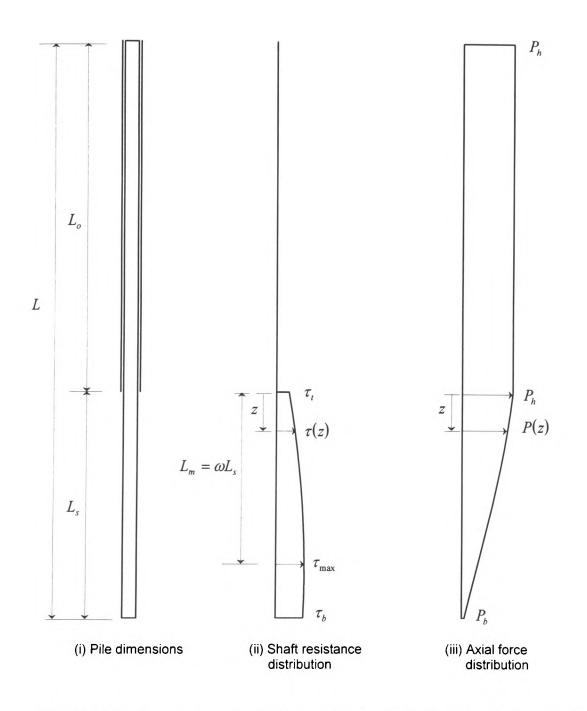
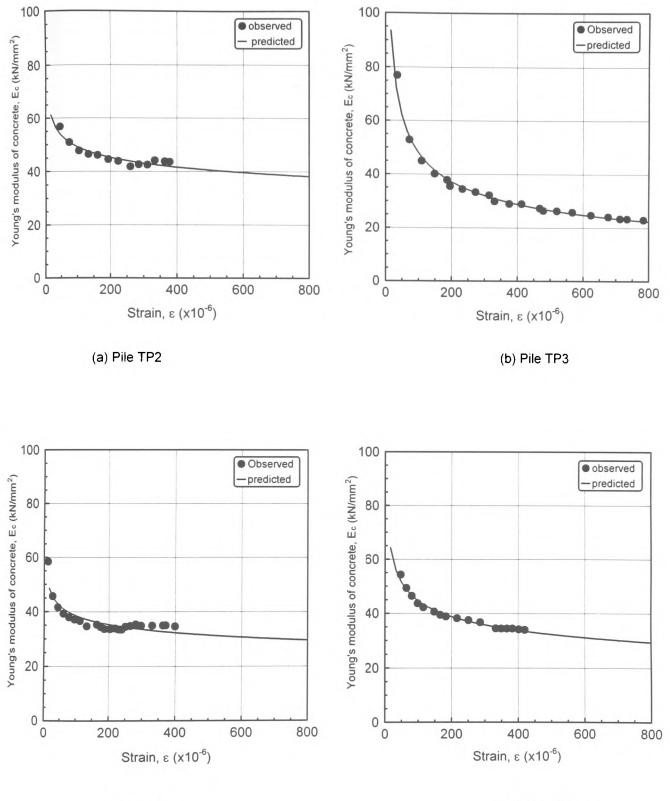



Fig. 6.3(a) Shaft resistance and axial force variation with depth, for k=0.75 and $\omega=0.8$

Fig. 6.3(b):Shaft resistance and axial force variation with depth, for k=0.75 and $\omega=0.3$

(c) Pile TP4

(d) Pile TP6

Figure 6.4: Comparison between the actual and modelled variations of Young's modulus of concrete versus strain (Piles TP2-TP6)

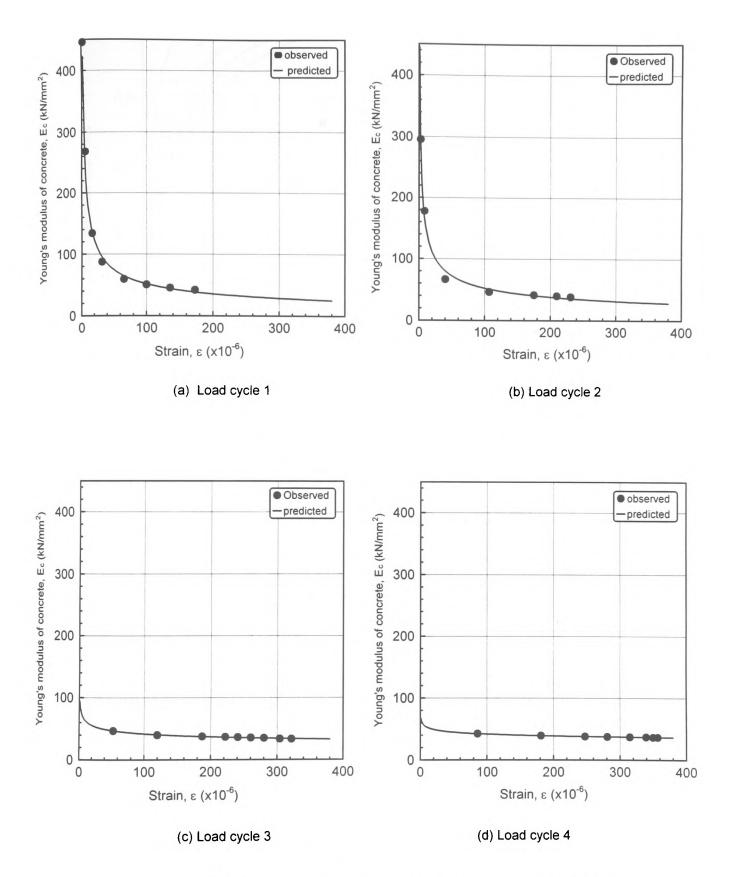


Fig. 6.5: Comparison between actual and modeled variation of Young's modulus of concrete versus strain for each load cycle in pile TP5

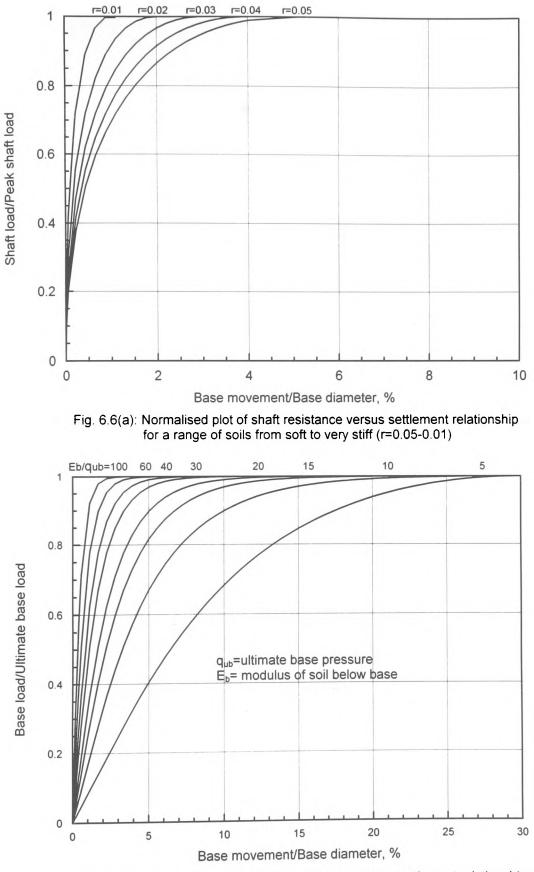


Fig. 6.6(b): Normalised plot of base resistance versus settlement relationships for a range of soils from soft to very stiff : E_b/q_{ub} =5-100

CHAPTER 7

APPLICATION OF THE NUMERICAL MODEL TO PILE ANALYSIS AND DESIGN

CHAPTER 7: APPLICATION OF THE NUMERICAL MODEL TO PILE ANALYSIS AND DESIGN

7.1 INTRODUCTION

A large and growing number of pile load test data have been analysed using the proposed numerical model. The objective of this exercise is to demonstrate the validity and accuracy of the method. The pile test data analysed using the model include bored piles in Keuper marl as well as test piles formed in other soil types. Where it is possible to find instrumented pile test results, the data further supports the validity of the assumptions made in the numerical model.

Some examples have been selected from the database of pile test results back-analysed using the proposed method. When a large database has been gained, it is a simple matter to apply the method to predict the load-settlement behaviour of a pile, since the main parameters involved are easily linked to the prevailing ground conditions. The database currently includes 50 test pile case histories and is expanding, as more information becomes available. Of the test piles already analysed, 25 are presented here. These data show that the proposed model gives accurate and reliable predictions of the load-settlement behaviour, up to failure. Where the observed load-settlement curve for a pile does not include the failure stage, the ultimate load capacity has been extrapolated using Chin's(1972) method.

7.2 TEST PILES FOR THE BUTETOWN ROAD LINK, P.D.R.-CARDIFF

7.2.1 Introduction

Most classical methods of pile load-settlement analysis have not been developed to

sufficient depths to be used solely as design tools. For this reason, foundation designers often rely on established soil parameters, supported by site experience. Pile load testing for the Butetown road link has already been discussed in chapters 3 and 4. The results of the load tests and the site investigation are now utilised in testing the validity of the proposed numerical model.

7.2.2 Test pile TP1 (Voided toe pile)

The ultimate base resistance determined by both the M.L and C.R.P. tests was found to be approximately 12MN. The observed load-settlement curve for the voided toe test revealed that, at a settlement of 90mm (10% pile diameter) the ultimate shaft resistance was not yet mobilised. By extrapolation, the estimated ultimate shaft resistance was 15.9MN. This value has been adopted in the numerical model to predict the loadsettlement behaviour of the pile.

A comparison between the observed and predicted load-settlement curves is shown in Figures 7.1(a). Figure 7.1(b) shows the predicted variation of pile shortening with applied load. It can be seen that the numerical model is capable of predicting the load-settlement response even for pile TP1 where base resistance was deliberately eliminated.

7.2.3 Test pile TP2

Figs. 7.2(a)-7.2(d) illustrate comparisons between the observed and the predicted behaviour of Pile TP2. No load cell was installed in this pile as a result of certain construction difficulties. Therefore an attempt has been made to utilise the strain gauge

data to calculate the shaft load at each applied pile head load increment. However, the results obtained are considered unreliable since the differences in strain gauge readings from level 2 to level 3 were too high, resulting in unreasonable values of local unit shaft resistance. The data is discussed in chapter 4. It is thought that either the level 3 gauges appeared to over-read, or the actual cross-sectional area of the pile at this level was smaller that intended.

Failure was not fully developed in the load test, hence the peak shaft resistance and the ultimate base load has been obtained by extrapolation, for use in the analytical model. The variation of Young's modulus of concrete with strain has been evaluated from the first strain gauge readings within the sleeved portion of the pile.

The coefficients R_s and r have been taken as $R_s=0.8$ and r=0.035 respectively. The latter value has been deliberately made larger than the average range given in Table 6.1 in order to allow for additional settlement due to shortening. This is necessary since Eqn.(6.4a) is based on total settlement at a point along the shaft, in accordance with Reese et al.(1969). Even under these conditions where a number of assumptions have been made based on other test pile data the analytical model produces reasonably accurate results.

7.2.4 Test pile TP3

The observed and predicted curves for TP3 are shown in Figs. 7.3(a)- 7.3(d). As part of the input data in the analysis, the maximum shaft load has been taken as the approximate value determined by the load test. Failure in end bearing did not occur, and the ultimate base resistance has been obtained by extrapolation. The ultimate base load

to be input into the program was estimated by subtracting the extrapolated value of peak shaft load from the observed ultimate pile head load.

Based on the Keuper marl weathering zone for the stratum beneath the base, an E_b value has been selected from the values given by Davis and Chandler(1973). Since the shaft flexibility factor, r varies inversely as the rigidity of the pile shaft, a longer pile is expected to have r value slightly greater than that for a shorter pile. Pile TP3 was slightly longer than pile TP2, hence r value for TP3 was taken to be 4.5% of shaft diameter and proved appropriate. This is marginally higher than that adopted for TP2 (3.5%), due to differences in lengths and ground conditions.

7.2.5 Test pile TP4

The results for the pile TP4 are given in Figs.7.4(a)-7.4(d). The measured value of peak shaft load has been adopted in the analytical model, whereas the ultimate end bearing has been estimated by extrapolation. There is some scepticism regarding the quality of the data in this test pile, since there was a sudden collapse of the inner steel casing during the formation of the test pile. Nevertheless, the predicted results seem to be in reasonable agreement with the experimental data.

7.2.6 Test pile TP5

The predicted behaviour of pile TP5 is presented in Figs. 7.5(a)-(d). In addition, the predicted and measured axial force variations with depth are shown in Fig. 7.5(e). Both the maximum shaft load and ultimate base load values input into the model are as obtained from the load test. Similarly, the observed variation of Young's modulus of concrete with strain has been adopted in the analysis. The test data also reveal that the

residual shaft resistance was likely to be less than 60% of the peak shaft resistance. In the analytical model, the value of R_s has been taken as 0.7. There is a remarkable agreement between the predicted and actual behaviour of the pile, not only in the loadsettlement response but also in the load transfer characteristics.

7.2.7 Test pile TP6

The last of the Butetown test piles (TP6) measured and predicted curves are shown in Figs. 7.6(a)- 7.6(d). Obviously, pile failure was not realised and the observed load-settlement graph is still steep at the last data point reached. In order to obtain the required input data for the application of the analytical model, both P_{us} and P_{ub} were determined by extrapolation since failure was not reached. It is again demonstrated that the proposed model gives accurate results even for relatively low displacements of the pile head.

7.3 PREVIOUS PILE TESTING IN KEUPER MARL (CARDIFF P.D.R.)

7.3.1 Test piles at Eastmoors Link

The Eastmoors link viaduct, which was opened in 1984, forms part of a new Peripheral Distributor Road network in Cardiff. Three bored, cast in-situ piles, each 1.05m in diameter, were installed and load tested. No instrumentation to measure axial load variation was placed in these piles, except pile head movement gauges. The piles were tested to loads approaching their ultimate capacities. However, use has been made of other voided-toe piles tested in similar ground conditions in Cardiff in order to project the load capacities in both shaft and end resistance.

7.3.2 Eastmoors link-pile No.2

Table 7.1 shows the mean standard penetration test (S.P.T.) "N" values obtained at the Eastmoors site of pile No.2. The ultimate head load was not reached and the method of Mazurkiewicz(1972) was used to extrapolate the ultimate head load. Using the method proposed by Kilbourn et.al.(1988), the maximum shaft resistance was estimated from the observed load-settlement data. This was supported by data from a voided-toe test. A comparison between the observed and predicted response of the pile is shown in Figs. 7.7(a). The shaft resistance, base resistance and shortening predictions are presented in Figs. 7.7(b)-(d). It is again demonstrated that the proposed model provides accurate load-settlement predictions.

Depth (m)	Zones	Mean "N"	
		value	
11.74-14.62	IVa	40	
14.62-20.03	III/II and IVa	140	
20.03-24.90	III/II and IVa	100	

Table 7.1: S.P.T. "N" values at Eastmoors link site (Pile-2)

7.3.3 Eastmoors link-pile No.3

The S.P.T. mean "N" values at the site of pile No.3 are given in Table 7.2.

Depth (m)	Zones	Mean "N"	
-		value	
10.93-12.00	IV and III	30	
12.00-17.00	IV and III	50	
17.00-20.93	III	80	
20.93-23.78	20.93-23.78 III		

Table 7.2: S.P.T. "N" values at Eastmoors link site (Pile-3)

The tabulated S.P.T. "N" values were used to calculate the peak shaft resistance, as before. For the purpose of application of the analytical method, the peak shaft and base

loads calculated by the Kilbourn et al.(1988) procedure have been adopted. Figures 7.8(a)-(d) illustrate the comparison between the observed and the predicted pile performance. It is clear that the present method of analysis produces reliable and accurate predictions.

7.3.4 Eastmoors link-pile No.4

Depth (m)	Zones	Mean "N"	
		value	
9.45-10.11	Sand and	25	
	Gravel		
10.11-12.00	IV and III	75	
12.00-16.18	III/II and IV	150	
16.18-21.27	III/II and IV	100	

The S.P.T. "N" values obtained at the site of pile No.4 are shown in Table 7.3.

Table 7.3: S.P.T. "N" values at Eastmoors link site (Pile-4)

The peak shaft and base loads were calculated using the same procedure as in the previous test piles. In this test pile, failure was approached very closely at a settlement of 100mm and the maximum applied pile head load of about 15.1MN is consistent with the extrapolated load capacity vale of 15.5MN. The predicted and measured curves are illustrated in Figs 7.9(a)-(c).

7.3.5 Test piles at Grangetown Link

Three piles were installed and load tested for the design of the Grangetown road link. Two of these piles were of the voided toe type and were 1.3m and 0.9m in diameter. The third pile was normally constructed. It was 0.9m in diameter and was loaded to 4182kN, close to its ultimate capacity. This result was used as a guideline in estimating the peak shaft load for the working piles. Based on extrapolation of the data for the 1.3m diameter voided toe pile, the peak shaft load for the normal pile was estimated as 32.49MN. Assuming that at the ultimate load capacity of the pile, 88% of the load was carried in shaft resistance, the ultimate base load was estimated as 4430kN. The predicted and measured load-displacement curves are compared in Figures 7.10(a). Figure 7.10(b)-(c) present plots of the predicted shaft load and base load versus base movement, while Fig. 7(d) shows the variation of shortening with applied load.

7.3.6 Test piles at Ely Bridge

Load testing was carried on a 0.9m diameter bored, cast in-situ pile installed in Keuper marl. No S.P.T. testing was carried out at the site, but preliminary pile design was based on percentage total core recovery and rock quality designation, alongside other published information and data. The test pile was 21.5m long and was embedded 10.5m into the Keuper marl. At the maximum applied load of 10.5MN in the test, the load-settlement curve was observed to be steep and the pile was still below its ultimate capacity.

Extrapolation of the observed load-settlement curve gave an ultimate load of 18.074MN. Using the method suggested by Kilbourn et al.(1988) of separating shaft resistance and base resistance, the peak shaft load was estimated to be 10.38MN. The ultimate base load was therefore obtained by subtracting the peak shaft load from the ultimate total load. This gave P_{ub} =7.69MN. These values have been used as guidelines when analysing the test pile using the numerical model.

Figure 7.11(a) illustrates a plot of load versus settlement where the observed test data are compared with the predicted curve. The choice of the parameter r is dictated by the rigidity of the pile-soil system.

7.3.7 Test pile at Clarence Road Bridge

In 1973, trial pile testing was carried out using 790mm diameter piles for the Clarence road bridge project in Cardiff. One test pile was provided with a voided toe while the other was normally constructed. The skin resistance was interpreted based on the results of the voided toe test pile. Both piles were of the same overall length and both were embedded 4.5m into the Keuper marl.

The load-settlement curve for the voided toe test pile approached failure and the peak shaft load was estimated to be about 3100kN. For various increments of settlement, the base resistance of the normally constructed pile was estimated as the difference between the pile head load in the normally constructed pile and that in the voided toe test pile. It was found that the resulting graph of base load versus pile head settlement was linear. Extrapolation of the load-settlement curve gave an ultimate load of 13.12MN for the normal pile, and 3.89MN for the voided toe pile. The latter prediction is higher than that obtained from the actual test. These values were input in the analytical model and the predicted performance curves are shown in Figs. 7.12(a)-(d).

7.3.8 Test piles at Cogan spur

For the Cogan Spur contract a test pile 0.9m in diameter was constructed and load tested. The ground profile at the site of the Cogan Spur test pile was found to be comparable to the site of the Grangetown link pile tests. The voided toe test pile at

Grangetown (pile-3) gave a peak shaft load of 4458kN (equivalent to 225.24kN/m²) by extrapolation. Using the same shaft resistance per unit area for the Cogan Spur test pile, a peak shaft load value of 7.0MN was estimated. The ultimate total load capacity for the Cogan Spur pile was projected to be 14.23MN. Hence the ultimate base load was estimated to be 7.23MN. Using the numerical model, it was found that the peak shaft and base loads of 6.5MN and 7.0MN respectively produced the correct load-displacement curve. The results are shown in the plots of Fig. 7.13(a)-(d).

7.4 PILES FORMED IN KEUPER MARL AT OTHER LOCATIONS

7.4.1 Test pile at Kilroot, County Antrim, Northern Ireland

Pile loading tests were carried out for the construction of the a power station for Northern Ireland Electricity Service at Kilroot, County Antrim, Northern Ireland. Three test piles A, B and C were constructed and load tested in order to measure the peak shaft resistance of bored piles in the marl. Piles A and B were formed with voided toe while pile C was normally constructed to allow both shaft resistance and end bearing resistance to be developed.

In the C.R.P. test in pile A, the failure load due to shaft resistance alone was 3110kN, which corresponded to a penetration of 0.9% of the pile diameter. In pile C, where both shaft and base resistance were developed, the failure load was assessed as 6030kN. This was the load corresponding to a settlement of 10% of the pile diameter. Sudden failure occurred in the M.L. test on pile B when the load, due to shaft resistance only, reached 2490kN.

Leach et.al(1976) showed that the ultimate load of pile C was most accurately calculated using Davis and Chandler's(1973) method with pressuremeter c_u values and adhesion factor α =0.45, for the shaft; and effective stress parameters for undisturbed zone III marl (for the base). The calculated ultimate shaft resistance and ultimate base resistance values have been used in the analytical model to predict the load-settlement curve for the test pile. Figures 7.14(a)-(d) illustrate the results obtained.

7.4.2 Test piles for the Birmingham International Arena

Two piles were installed and load tested for the design of the foundations of the Birmingham International Arena. The first pile was 750mm in diameter and 13.6m long. The upper 5m length of this pile was sleeved and the pile was tested in compression. The second pile was 600mm in diameter by 18.8m long and was load tested in upward loading. The upper 3.5m length of this pile was 750mm in diameter and was sleeved.

The ultimate capacities of the trial piles were not achieved in either test and the method of Mazurkiewicz(1972) was used to extrapolate the maximum loads. The estimated ultimate capacity of the compression pile was 5400kN whilst that of the tension pile was 3780kN. Hence, the ultimate base capacity of the compression pile was estimated to be 1920kN. From these projections, the peak shaft resistance values were therefore deduced as 3220kN and 3580kN, for the compression pile and the tension pile respectively. From back-analysis, the deformation modulus E_b of the material beneath the base of the compression pile was evaluated as $E_b=40 \text{ MN/m}^2$. This was based on the assumption that the peak shaft resistance was fully developed at a pile head movement of 20mm (at which the applied load was 4400kN). Based on the data given by Dauncey

and Woodland(1984), the settlement response of pile C has been predicted using the numerical model. The results are shown in Figs. 7.15(a)-(d).

7.4.3 Test piles at Kings Norton, Birmingham

Two bored piles, each 400mm in diameter by 6.7m long, were installed and load tested at Kings Norton, Birmingham. The piles were embedded 4.6m into a stratum of Keuper marl strata having c_u values in the range 103-208kN/m². This was overlain by harder marl with c_u values varying from 138-276kN/m². These values were determined from quick undrained triaxial tests.

One of the test piles was constructed normally to allow both shaft resistance and end resistance to be developed. However, the other pile was specially constructed to allow the mobilisation of end bearing resistance only. The piles were load-tested under C.R.P. conditions at a settlement rate of 0.75mm/min. The failure stage in end base resistance was not reached.

The plot of settlement divided by load versus settlement, for the end bearing pile, was found not to be a straight line hence the ultimate base load value could not be evaluated. A similar plot for the normal pile gave a projected ultimate total load of 3153kN. It was also observed that at 25mm settlement, on comparing the two piles, the base load and the shaft load mobilised in the normal pile were 192kN and 1676kN respectively. Hence, assuming that 88% of the ultimate capacity of the normal pile was carried in shaft resistance, the peak shaft resistance has been estimated to be 2775kN. Therefore the ultimate base load the remainder 12% which is 378kN. The predicted performance of the pile is shown in Figs. 7.16(a)-(d).

7.4.4 Test piles at Coventry (rock-socket piles)

A test pile 1.06m in diameter was installed with its lower 3.75m length socketed into mudstone and siltstone strata. The upper 4.6m passing through fill was sleeved. The pile was loaded in increments up to about 6.75MN which was still below the ultimate capacity. This test pile was left to become part of the foundation.

Cole and Stroud(1976) analysed the test pile by considering the distribution of load between the base and the shaft of the socket in terms of two rock "spring stiffnesses". These are (i) a compressive stiffness $s_q=q/\rho$ and (ii) a shear stiffness $s_r=\tau/\rho$, where

- q= base stress
- τ = shear stress developed on the shaft

 ρ = settlement of the rock socket pile

The ratio s_r/s_q of the spring constants was taken as constant at 0.06, while s_r and s_q varied with the S.P.T "N" value of the materials. This conclusion is supported by Poulos and Davis(1968) and Butterfield and Banerjee(1971) who considered the distribution of load between the base and the shaft for a pile in a homogeneous isotropic linear elastic soil. The analysis showed that the ratio of the base load to the shaft load depended on the length to diameter ratio (L/D) and was only slightly influenced by Poisson's ratio. Assuming Poisson's ratio to be 0.3, for typical rock socket pile dimensions where L/D lies between 2 and 5, the shaft to base load ratio varies from 2 to 5. However, τ/q varies

only from 0.22-0.25. Hence s_r/s_q for a given material might be expected to be constant, for these pile dimensions.

The equivalent spring stiffness for each stratum on the shaft was computed from the ratio of its "N" values to the "N" value for the base material and based on $s_r/s_q=0.06$. Hence the base stress was evaluated to be 3650 kN/m², for a design load of 4500kN. At this load, the settlement of the pile was 12mm. Reducing this value by 3mm, in order to allow for the elastic compression of the pile, the settlement of the socket ρ was estimated as 9mm. The modulus of elasticity of the sandstone beneath the base was therefore back computed to be 0.15kN/mm². This value has been used in the numerical model to predict the performance of the pile. The results are given in Figs.7.17(a)-(d) which further demonstrate the accuracy of the predictive model.

7.4.5 Test piles at Leicester

Two test piles, each 0.6m in nominal diameter by 18m long, were tested. One pile was constructed with a voided toe in order to allow only shaft resistance to be mobilised while the other pile was normally constructed. Both piles were constructed considerably larger than expected. The voided toe pile turned out to be 762mm whilst the normally constructed pile was 813mm in diameter. These dimensions were confirmed by excavating the top 0.5m and then drilling down against the voided toe pile to check if any belling had occurred.

The voided toe pile was loaded to 2940kN at which the settlement of the pile head was 3.35mm whilst in the normally constructed pile, the maximum test load was 4410kN

which produced a settlement of 6.60mm. The available loads were considerably short of those required to produce failure conditions in either pile. Foley and Davis(1971) estimated the average peak shaft resistance using (a) a total stress analysis and (b) an effective stress analysis. The adhesion factor was taken as α =0.45 and c_u was obtained from correlation with the measured "N" values. In the effective stress method (Chandler,1968), the mean coefficient of earth pressure at rest K_o was taken as 1.5, which was supported by the results of capillary tension measurements. The effective cohesion was assumed to be zero while the effective angle of friction was determined from triaxial tests on remoulded and softened samples.

The calculated average shaft resistance from the two methods was averaged and found to be 1.75 t/ft². It was recognised that this value was close to the 1.5 t/ft² measured at Tees Dock as reported by the C.I.R.I.A. report No.13. Using this value, the peak shaft resistance values were found to be 590 tons and 710 tons, for the voided toe pile and the normal pile respectively.

The peak resistance values have been used in applying the numerical model to predict the behaviour of the normal pile. The results of the analysis are shown in Figs. 7.18(a)-(d). It is therefore seen that accurate predictions are possible if appropriate soil parameters are input into the analysis program.

7.4.6 Test piles at Redcar, Teeside (End bearing-only pile)

A total of four piles each 0.5m in diameter were installed and load tested. The load test was organised as follows follows:

- 1) Pile 3- base resistance only
- 2) Pile 4- shaft resistance only (embedded 3.3m into the marl)
- 3) Pile 1 and Pile 2- shaft and base resistance (these were embedded 1.1m and 2.0m respectively, into the Keuper marl)

Another complete pile (Pile 6) was tested later during the contract at another part of the site. Plate loading tests were carried out on 865 and 584mm diameter plates in 900mm diameter holes. A total of 8 plate tests were carried out in the marl, four at the top of the weathered zone near the marl surface and four at the top of the relatively unweathered zone at a depth of 2.5-4.0m into the marl. Jorden and Dobie(1976) reported values of equivalent elastic moduli ranging from around 50MN/m² in the highly weathered marl and increasing to 3000MN/m² in the unweathered marl were deduced.

Pile 3 yielded an equivalent secant modulus of 1230MN/m², which is significantly greater than the result obtained from the plate loading tests. The proposed numerical has been used to analyse pile 3, utilising the deformation modulus value back analysed from the load test. The analysis of this pile is unique, since it is the only occasion where good quality load test data are found to test the validity of the suggested function for end bearing response. The predicted curves are shown in Figs. 7.19(a)-(d). It is therefore shown that accurate predictions are possible even for pile conditions where shaft resistance is negligible.

282

7.5 PILES FORMED IN OTHER SOIL TYPES

7.5.1 Pile in clay overlying sand

O'Riordan(1982) reported data obtained from pile testing for the design of the foundations of the British Library which was to be built adjacent to St. Pancras Station,

London. The site investigation revealed the following soil stratification profile:

Depth (m)	Strata description
0.0-2.0	Fill
2.0-20.5	London clay
20.5-35.0	Silty clays (Woolwich and Reading Clay)
35.0-40.0	silty clays, increased sand content (Woolwich and Reading
	Sand)
40.0-43.5	Thanet Sands
Below 43.5m	Chalk (more than 88 mm thick)

Two bored, cast in-situ piles were installed and load tested. One test pile was 1.05m in diameter while the other was 1.53m in diameter. The smaller pile was fully sleeved in order to the development of end resistance only. The larger test pile, which was 38.5m long, was designed to measure both shaft resistance and end bearing behaviour. The upper two-thirds of the pile length was sleeved so as to found the pile 2m into the Woolwich and Reading Sand. A 50mm polystyrene base was installed at the pile toe to enable the measurement of shaft resistance only initially. The pile was instrumented with vibrating wire strain gauges, rod extensometers and magnetic extensometers.

The pile was tested under maintained load conditions, in 7 load cycles, taking the equilibrium settlement rate as 0.1mm per hour. The full shaft resistance was mobilised when the polystyrene base crashed at an applied load of about 10.4MN. Subsequent to this, any additional loads were resisted in both shaft resistance and end bearing. The data from strain gauges were interpreted in order to determine the axial force variation

along the pile shaft. The final load cycle was carried out using a C.R.P. test procedure. The ultimate bearing capacity of the pile was attained at an applied load of 27MN at which the pile head settlement was 190mm.

The analytical model has been used to predict the load settlement variation and the load transfer of this test pile using input data directly obtained from the load test results. After making adjustments for residual loads due to the self weight of the pile (O'Riordan,1982), the ultimate shaft and base loads have therefore been taken as 9.205MN and 19.795MN respectively. The deformation modulus of the soil beneath the base has been back-figured to be 0.1 kN/mm². Figure 7.20(a) illustrates the predicted and observed load-settlement variation. The measured and predicted axial force variation with depth, corresponding to the ultimate load capacity of 27MN, is shown in Fig. 7.20(b). There is a good agreement between the observed and predicted behaviour. This demonstrates that the analytical model is capable of producing accurate and reliable results even for piles formed in clay/sand strata.

7.5.2 Piles in layered soils

Hirayama(1990) has reported loading tests of large diameter bored piles (2-3m in diameter and 40-70m in length) carried out for the design of a Viaduct at Honshu-Shikoku Bridge, West Japan. The point of failure was not reached in any of the test piles. The numerical model has been used to analyse the data from 3 instrumented test piles (T1, T2 and T3). In order to estimate the input data, the ultimate shaft resistance P_{us} and ultimate base resistance bearing P_{ub} were deduced from empirical correlation (Hirayama,1990) with S.P.T. results as given in Table 7.4.

Ultimate shaft	Sand: $q_{us} = 5N$ ($\leq 200 \text{ kN/m}^2$)
resistance, q_{us} (kN/m ²)	
(kN/m^2)	Clay: $q_{us} = c_u \text{ or } 10N \ (\le 150 \text{ kN/m}^2)$
Ultimate shaft	Sand: 400N
resistance, q _{us}	
(kN/m^2)	Clay: 9c _u or 100N

Table 7.4: Estimation of shaft and base resistances from S.P.T results (Hirayama, 1990)

The dimensions of the test piles were:

<u>Pile No.</u>	Diameter (m)	Length (m)
T1	3 m	70 m
T2	2 m	40 m
T3	2 m	70 m

To obtain the input data, the ultimate shaft loads were evaluated by summing the contribution ΔQ_{us} to shaft resistance of each stratum. The calculations for test piles T1 and T2 are shown in Tables 7.5 and 7.6.

Depth (m)	Thickness	Stratum	S.P.T.	q_{us}	ΔQ_{us}
	(m)		N	(kN/m^2)	(MN)
Up to 2.9m	2.9	Sand	5	30	0.819
2.9-10.9m	8	Sand	10	60	4.524
10.9-14.9m	4	Sand	20	100	3.770
14.9 - 17.9m	3	Sand	30	120	3.393
17.9-20.9m	3	Sand	40	160	4.524
20.9-28.9m	8	Clay	20	120	9.048
28.9-32.9m	4	Clay	8	80	3.016
32.9-38.9m	6	Sand	30	225	12.723
38.9-48.9m	10	Clay	20	375	35.343
48.9-53.9m	5	Clay	50	375	17.671
53.9-67.9m	14	Sand	50	500	65.973
67.9-70m	2.1	Sand	50	500	9.896
	<u> </u>		q _{ub} =2000	0 Total =	170.7

Table 7.5: Evaluation of P_{us} and P_{ub} for pile T1 from data by Hirayama(1990)

Depth (m)	Thickness	Stratum	S.P.T.	q _{us}	ΔQ_{us}
	(m)		N	(kN/m^2)	(MN)
Up to 2.9m	2.9	Sand	5	30	0.546
2.9-10.9m	8	Sand	10	60	3.016
10.9 - 14.9m	4	Sand	20	100	2.513
14.9-17.9m	3	Sand	30	120	2.262
17.9-20.9m	3	Sand	40	160	3.016
20.9-28.9m	8	Clay	20	120	6.032
28.9-32.9m	4	Clay	8	80	2.011
32.9-38.9m	6	Sand	30	225	8.482
38.9-40.0m	1.1	Clay	20	375	2.592
			q _{ub} =1800	0 Total =	30.47

Chapter 7: Application of the numerical model to pile analysis and design

Table 7.6: Evaluation of P_{us} and P_{ub} for pile T2 from data by Hirayama(1990)

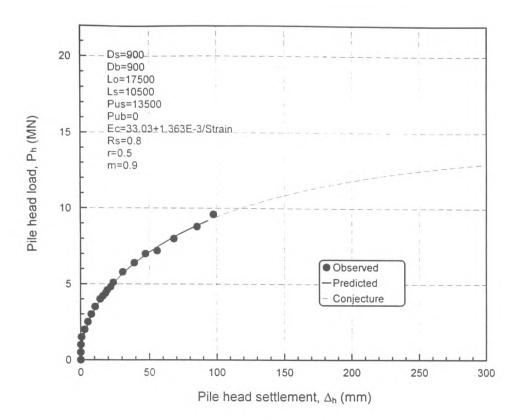
A calculation Table for pile T3 is not necessary since this pile had the same length as pile T1 and was installed in the same types of soil strata. The only difference was in the diameters (2 m for pile T3 and 3 m for pile T1). Therefore the ultimate shaft load for pile T3 can be obtained by multiplying that for pile T1 by a factor of two-thirds. Fig. 7.21(a) shows the predicted and measured load-settlement curves for pile T1 while the Fig. 7.21(b) illustrates a comparison of the axial force variations at an applied load of 40 MN. There is a remarkable agreement between the predicted and observed results. This demonstrates the suitability and success of the proposed analytical method. Similar comparisons for test piles T2 and T3 are given in Fig.7.22 and Fig 7.23. It demonstrated strongly that provided the correct input data are determined, the proposed method is reliable and accurate for a wide range of soil conditions and pile sizes.

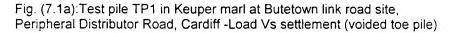
7.6 SUMMARY OF THE INVESTIGATION OF PILE BEHAVIOUR

The above examples favourably suggest that, using the proposed method, both the nature of the load-settlement representation and the imposed parameters produce a very reliable prediction of pile response. Additional test pile cases are currently being

examined, in a wide range of soil types, to verify if the method is capable of predicting the performance of piles in soil strata of random geometry and under different conditions.

Attempts have been made to predict the complete load-settlement behaviour of different piles, covering not only clean pile bases but also the effects of a pile base formed on debris. These studies show that


- Reliable predictions of shaft and base resistance mobilisation are uniquely and successfully achieved by utilising basic soil parameters easily available from the results of soil investigations. The major parameters are the ultimate shaft and base resistance, modulus of deformation of the soil beneath the pile base and modulus of rigidity of the soil around the pile shaft.
- 2) Considerable errors in the computed load-settlement curve can occur if the soil properties are not established accurately. In addition, the effect on pile settlement of any soil debris present at the bottom of the hole should be considered.
- 3) The calculation of pile shortening under applied load must take into account the true stress- strain response of concrete. The use of a constant static modulus value for the pile concrete results in an overestimate of the pile shortening. This is because concrete tends to exhibit much higher stiffness values at low strains than at strains in excess of about 0.0002.
- 4) The possible decrease in shaft resistance with increasing pile settlement, subsequent to the point of peak shaft resistance, should be taken into consideration in order to determine the load capacity of a pile accurately.


7.7 CONCLUSION

The analytical model described is simple and accurate, provided that the input data and the soil parameters are determined accurately. The manner in which the model is linked to soil properties is straightforward and easy to understand. Moreover, the required soil parameters are those that would be readily available from conventional site investigation. The success of the method relies on the correct determination of these soil parameters. For test piles analysed, the predicted aand observed load-settlement curves agree remarkably well. However, there is no complacency in proposing that the model is infallible in all cases. Hence, further investigation of the method using additional test pile data will obviously be helpful. More pile test data are being sought and as relevant information becomes available, updating of the existing database will take place progressively.

The model can be readily adopted for use in designing a single pile, based on known soil properties. The process requires input of the various pile material and soil properties. The program is driven by the input data and enables the determination of whether or not the pile satisfies the design requirements. The model may also be used to back-analyse a test pile, provided that sufficient settlement has been achieved, so that a reasonable part of the load-settlement characteristic is extracted.

The program is coded such that it can be identified with the parameters available from any routine site investigation activity. The remaining parameters are available from well-cited design codes of practice and the appropriate standards and publications such as C.I.R.I.A. reports. In other words, the program provides all the information relevant to the design of piles short of being a "design program". The versatility of the proposed numerical model demonstrates that there is potential in theoretical investigation of pile performance, since pile behaviour is not a random phonomenon.

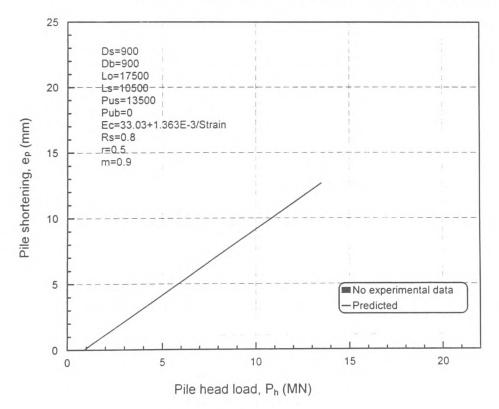


Fig. (7.1b):Test pile TP1 in Keuper marl at Butetown link road site, Peripheral Distributor Road, Cardiff -Shortening versus applied load (Voided toe test)

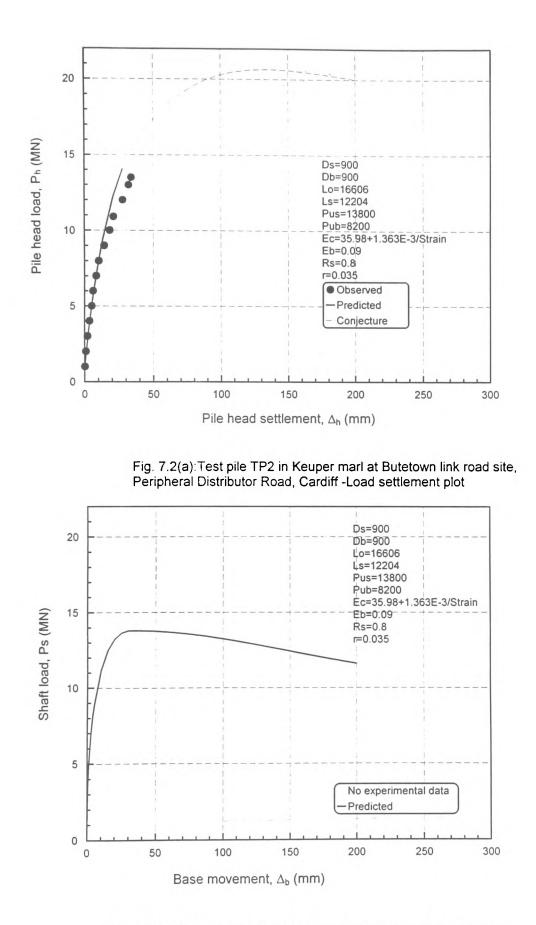
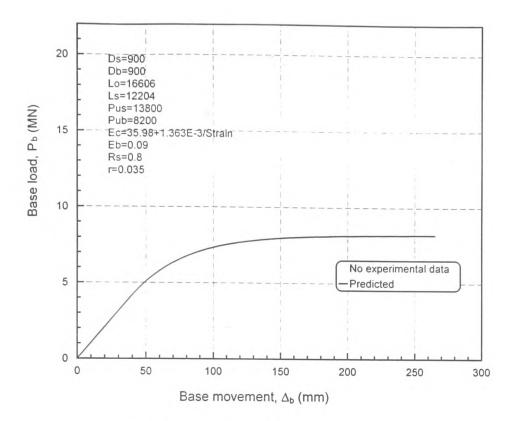
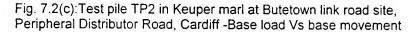




Fig. 7.2(b):Test pile TP2 in Keuper marl at Butetown link road site, Peripheral Distributor Road, Cardiff -Shaft load Vs base movement

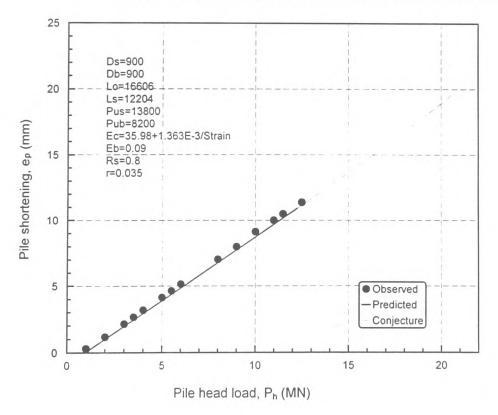


Fig. 7.2(d):Test pile TP2 in Keuper marl at Butetown link road site, Peripheral Distributor Road, Cardiff -Shortening Vs applied load

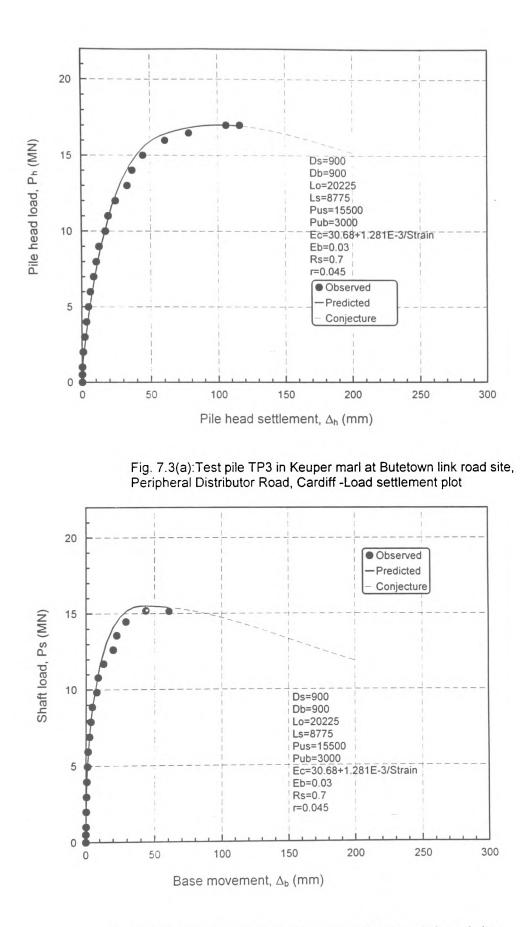


Fig. 7.3(b):Test pile TP3 in Keuper marl at Butetown link road site, Peripheral Distributor Road, Cardiff -Shaft load Vs base movement



Fig. 7.3(c):Test pile TP3 in Keuper marl at Butetown link road site, Peripheral Distributor Road, Cardiff -Base load Vs base movement

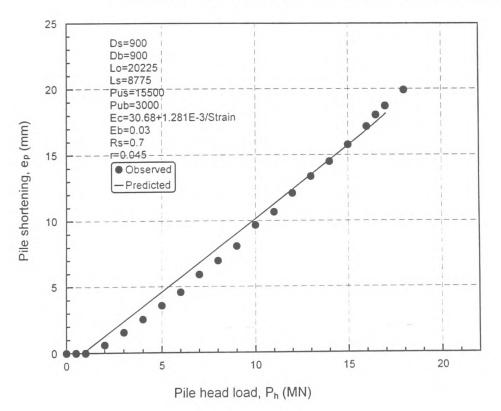


Fig. 7.3(d):Test pile TP3 in Keuper marl at Butetown link road site, Peripheral Distributor Road, Cardiff -Shortening Vs applied load

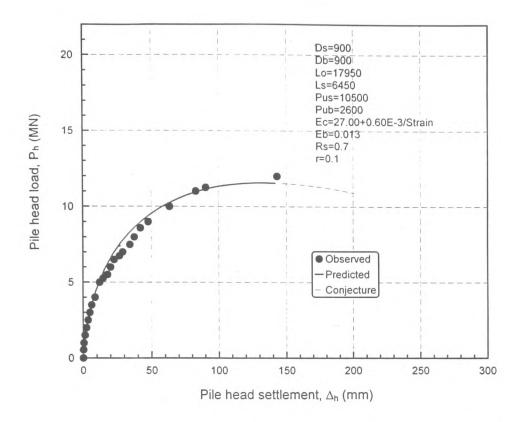


Fig. 7.4(a):Test pile TP4 in Keuper marl at Butetown link road site, Peripheral Distributor Road, Cardiff -Load settlement plot

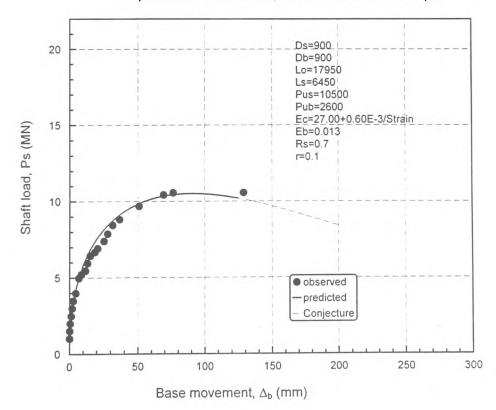


Fig.7.4(b):Test pile TP4 in Keuper marl at Butetown link road site, Peripheral Distributor Road, Cardiff -Shaft load Vs base movement

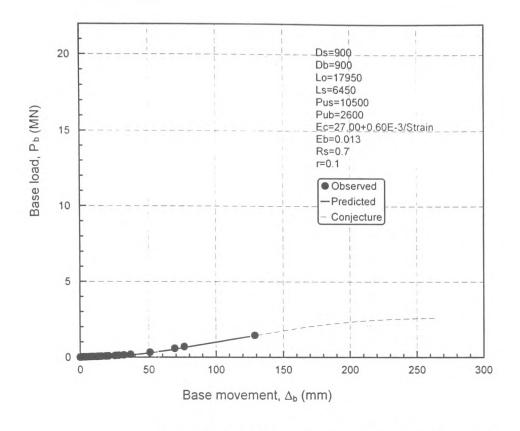


Fig.7.4(c):Test pile TP4 in Keuper marl at Butetown link road site, Peripheral Distributor Road, Cardiff -Base load Vs base movement

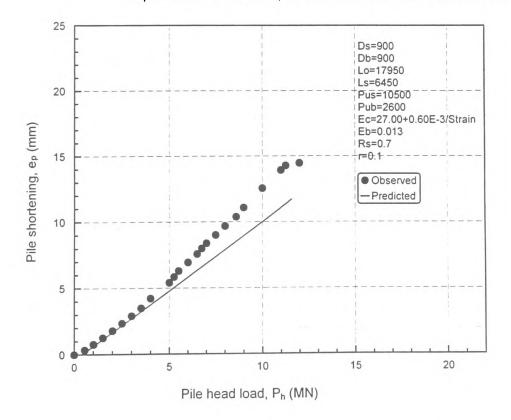


Fig. 7.4(d):Test pile TP4 in Keuper marl at Butetown link road site, Peripheral Distributor Road, Cardiff -Shortening Vs applied load

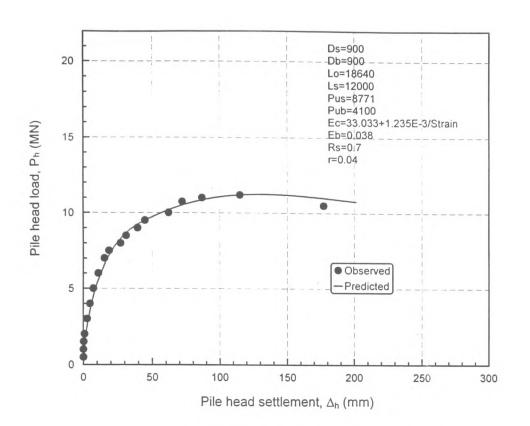


Fig. 7.5(a):Test pile TP5 in Keuper marl at Butetown link road site, Peripheral Distributor Road, Cardiff -Load settlement plot

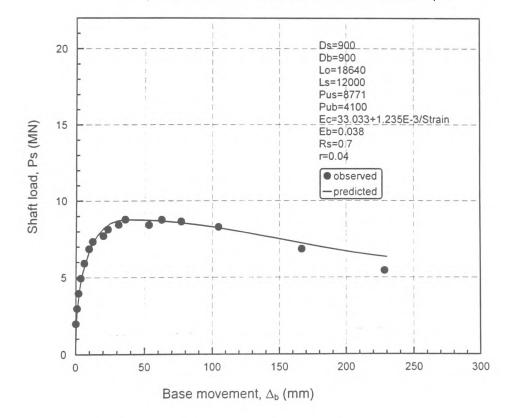


Fig. 7.5(b):Test pile TP5 in Keuper marl at Butetown link road site, Peripheral Distributor Road, Cardiff -Shaft load Vs base movement

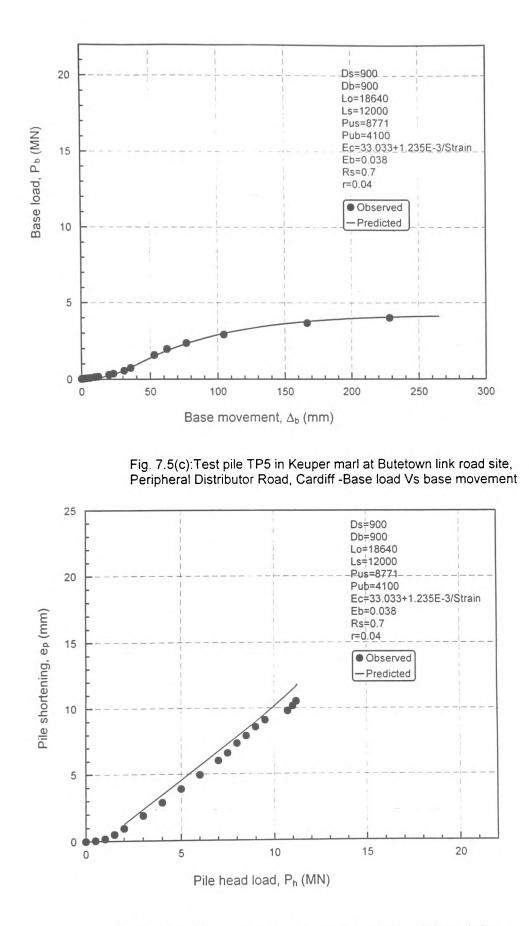


Fig. 7.5(d):Test pile TP5 in Keuper marl at Butetown link road site, Peripheral Distributor Road, Cardiff -Shortening Vs applied load

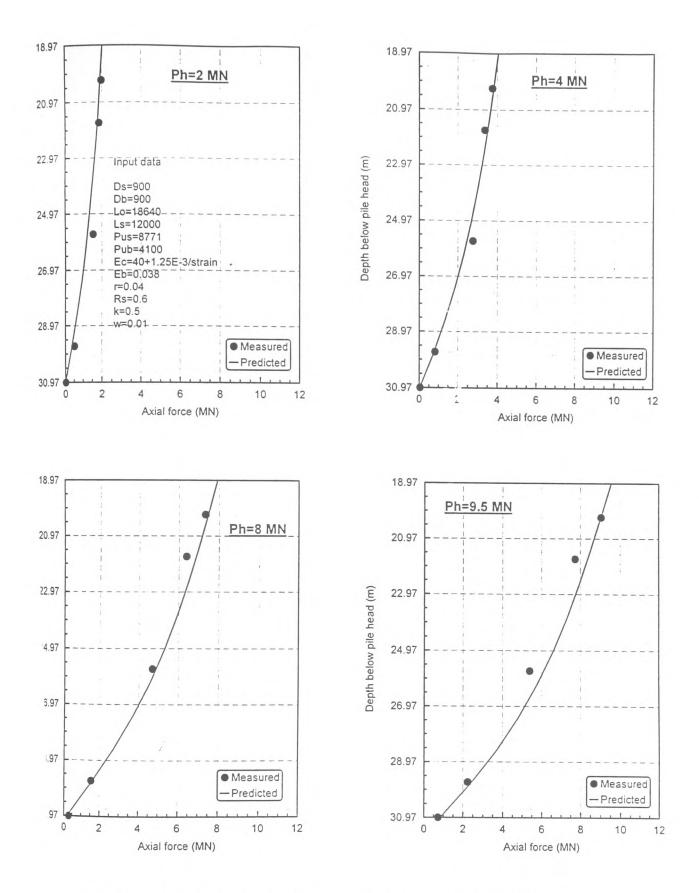


Fig 7.5(e): Comparison between predicted and measured axial force variation with depth-TP5 (for applied pile head loads of 2MN, 4MN, 8MN and 9.5MN:Locus of load increments)

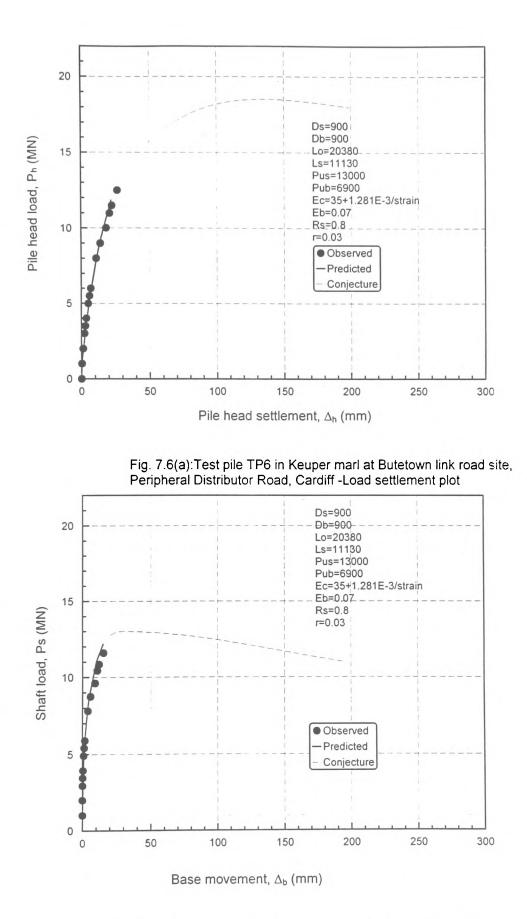


Fig. 7.6(b):Test pile TP6 in Keuper marl at Butetown link road site, Peripheral Distributor Road, Cardiff -Shaft load Vs base movement

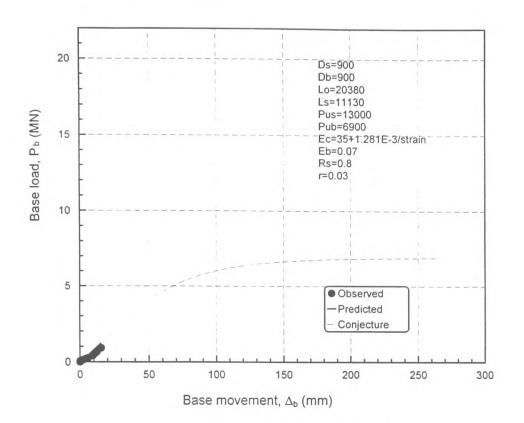
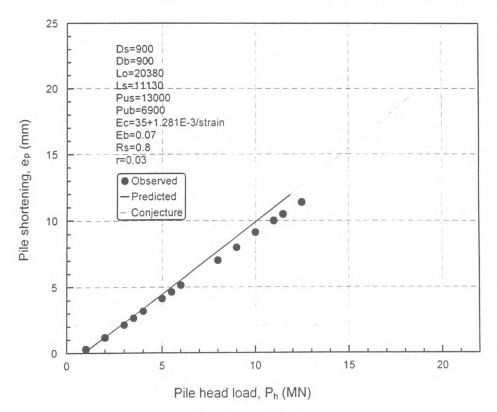
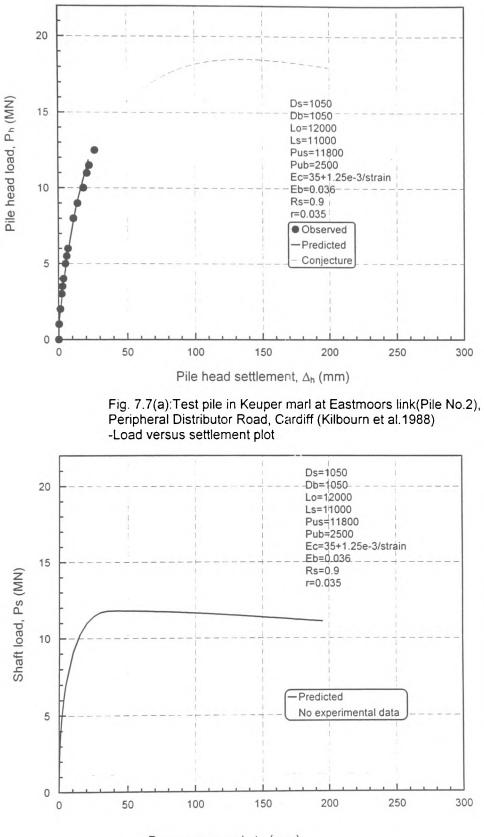
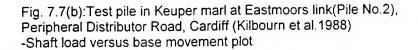
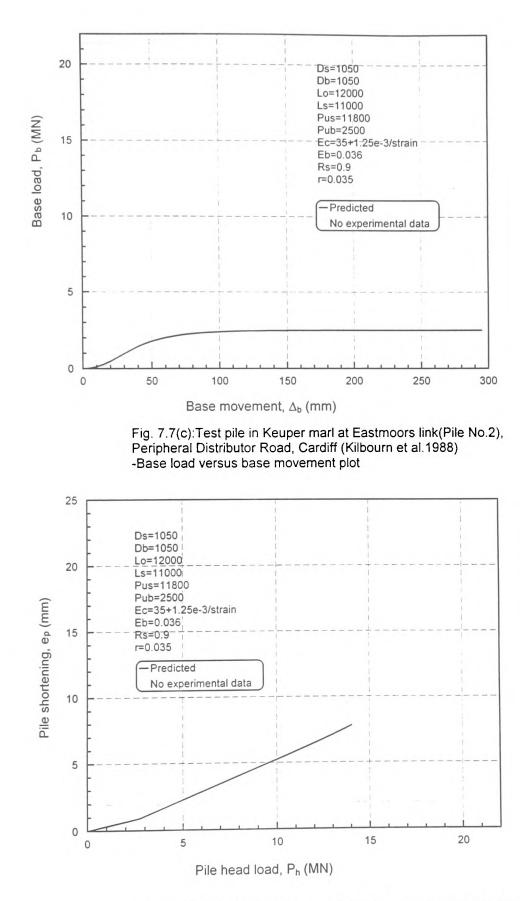
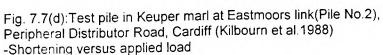
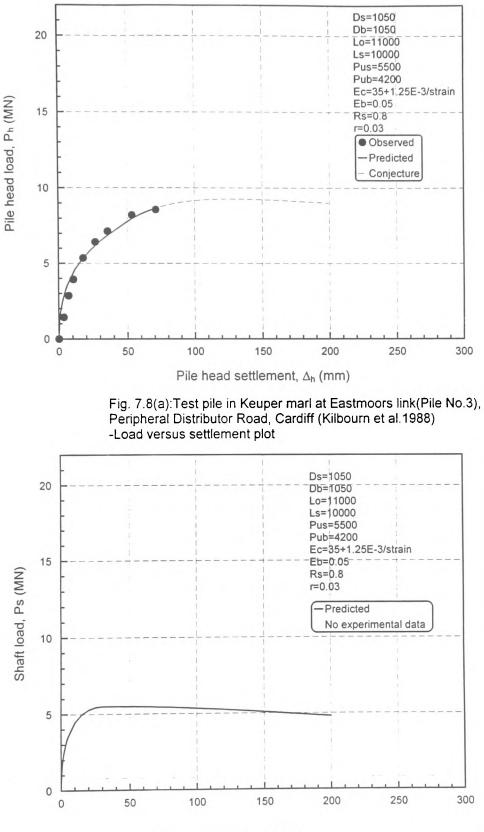


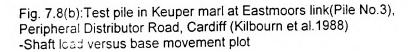
Fig. 7.6(c):Test pile TP6 in Keuper marl at Butetown link road site, Peripheral Distributor Road, Cardiff -Base load Vs base movement

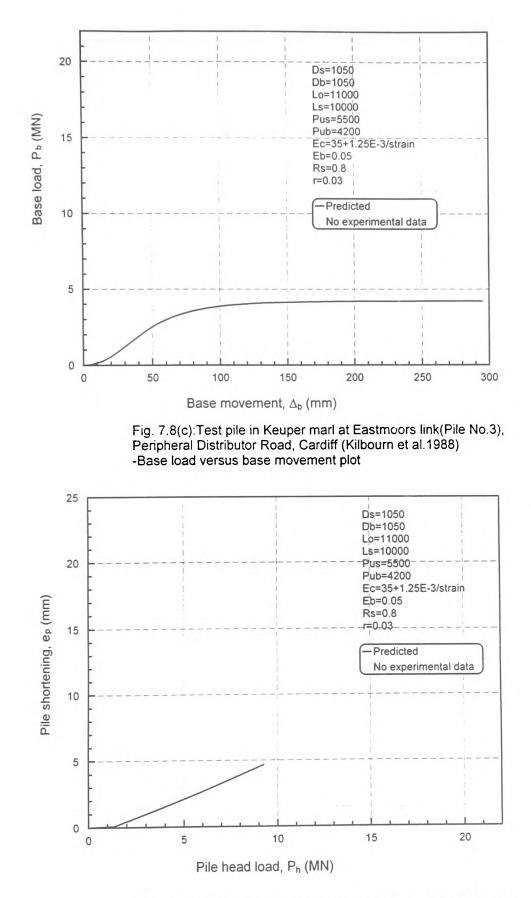





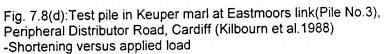

Fig. 7.6(d):Test pile TP6 in Keuper marl at Butetown link road site, Peripheral Distributor Road, Cardiff -Shortening Vs applied load

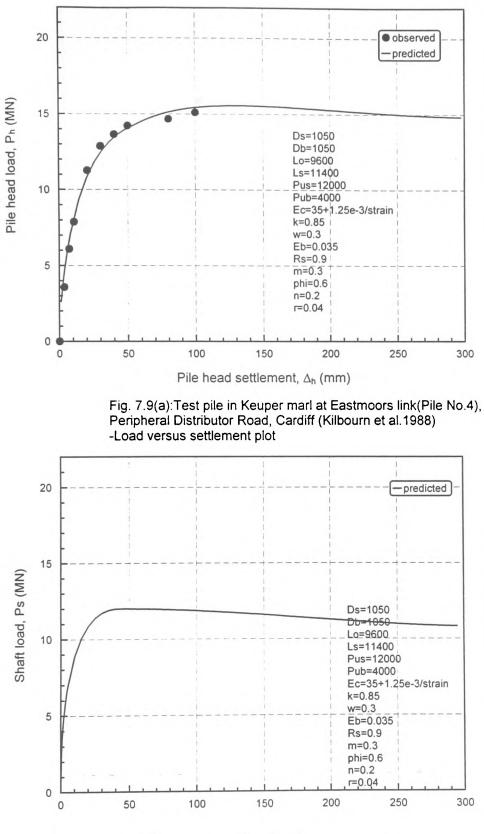


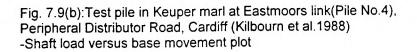
Base movement, ∆_b (mm)

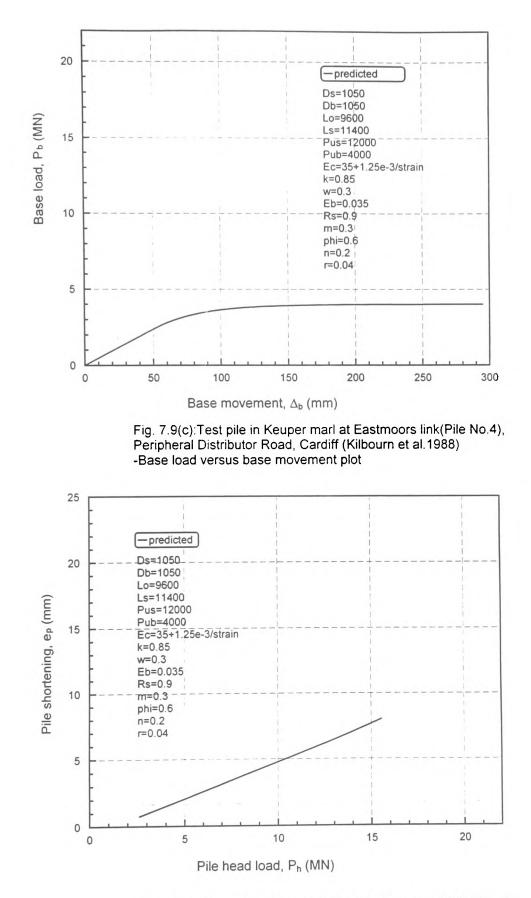


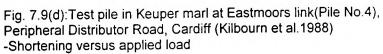


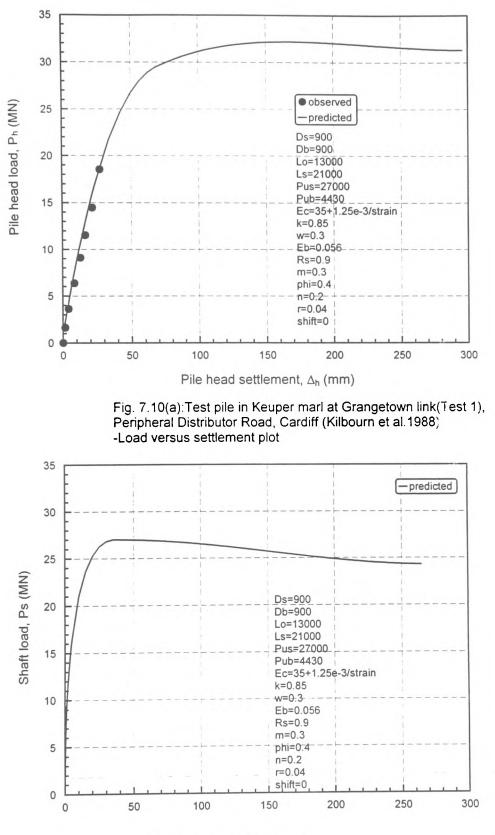




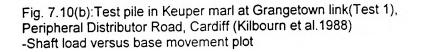


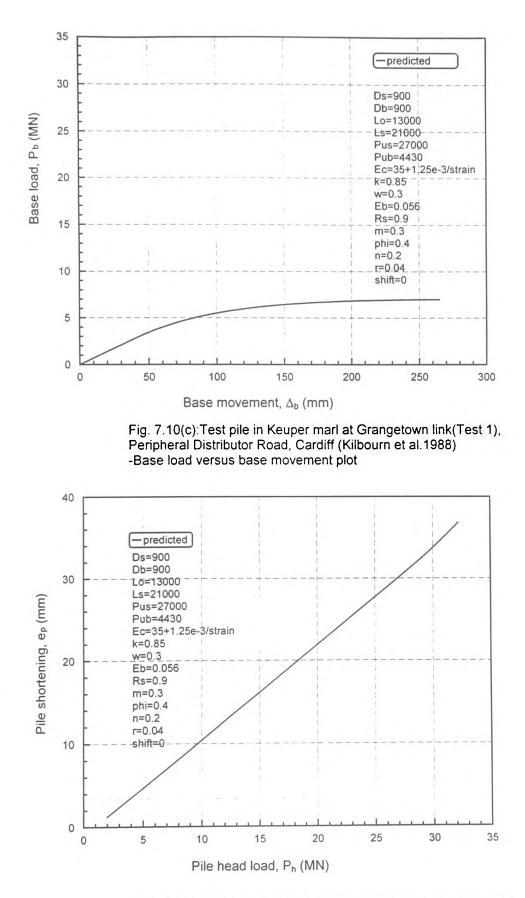


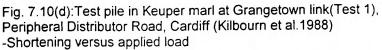


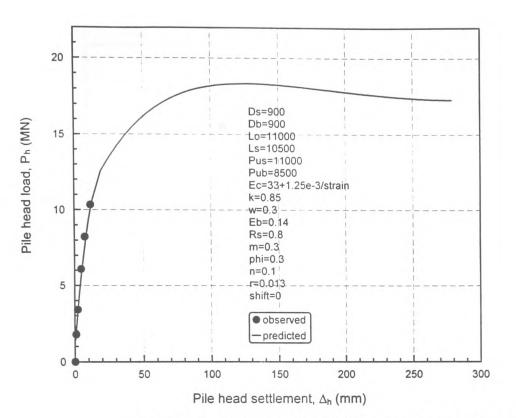


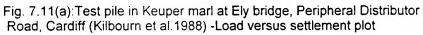
Base movement, Δ_{b} (mm)










Base movement, Δ_{b} (mm)

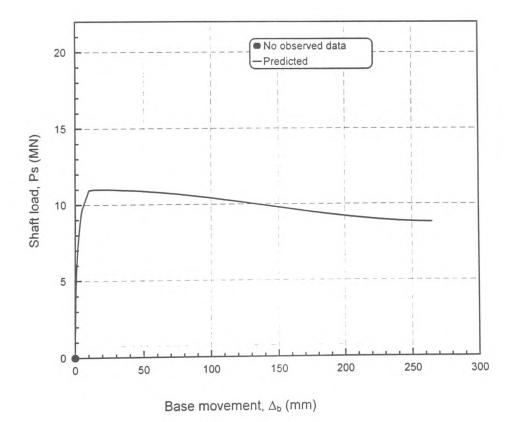
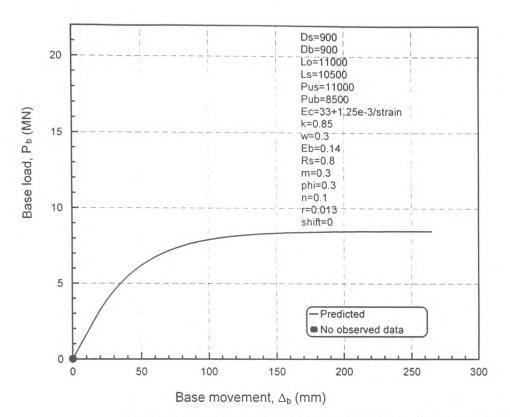
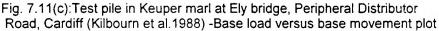




Fig. 7.11(b):Test pile in Keuper marl at Ely bridge, Peripheral Distributor Road, Cardiff (Kilbourn et al.1988) -Shaft load versus base movement plot

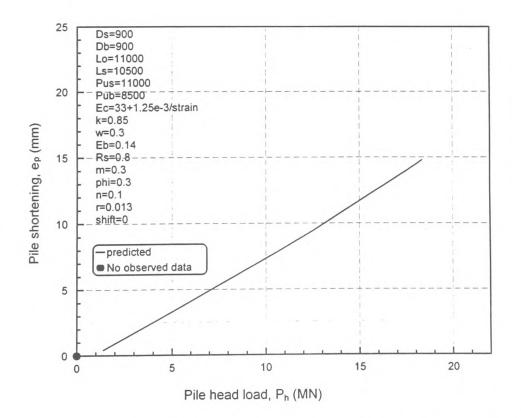
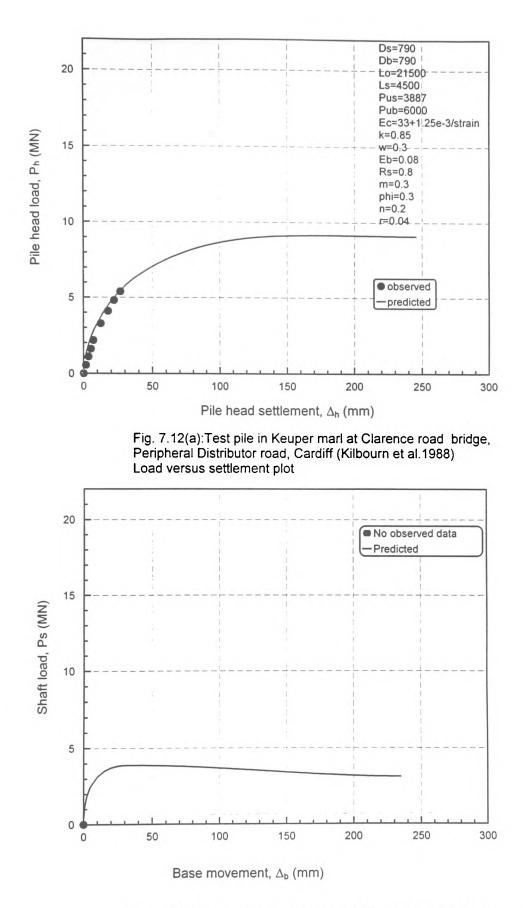
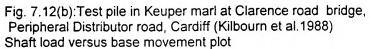
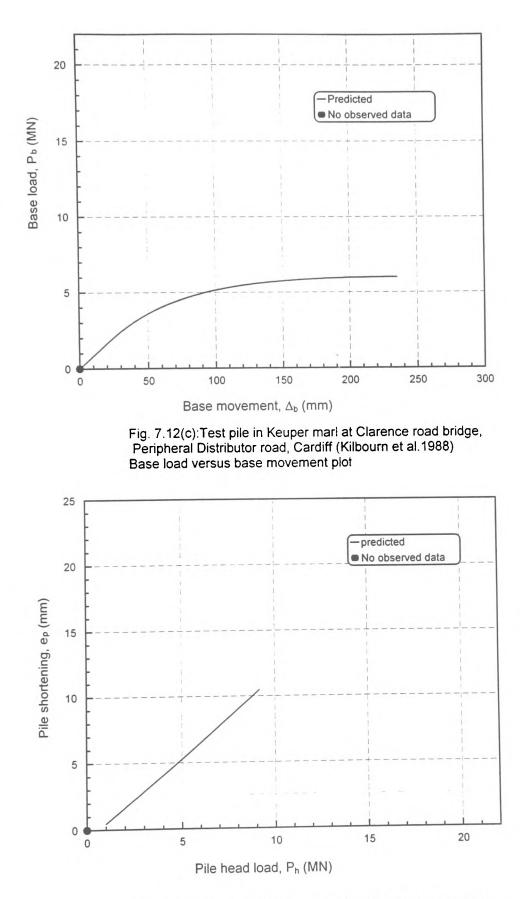
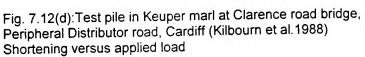






Fig. 7.11(d):Test pile in Keuper marl at Ely bridge, Peripheral Distributor Road, Cardiff (Kilbourn et al. 1988) -Shortening versus applied load

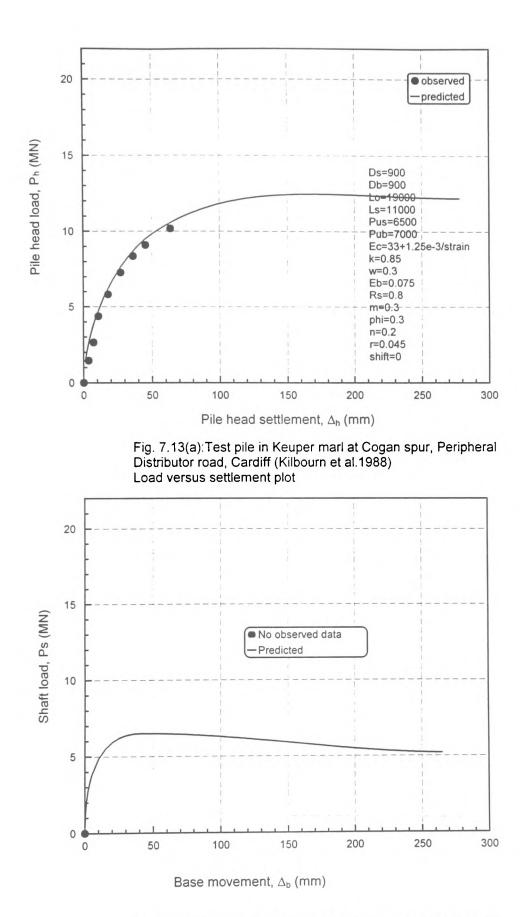
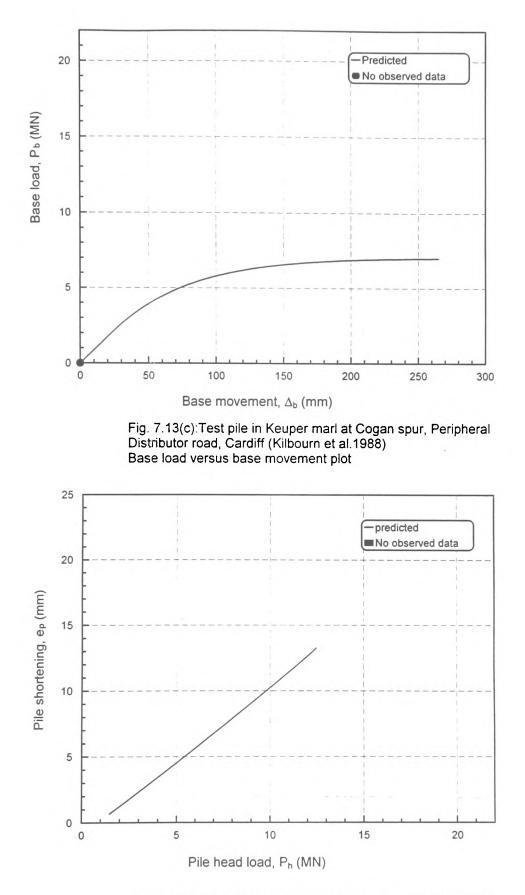
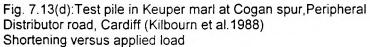
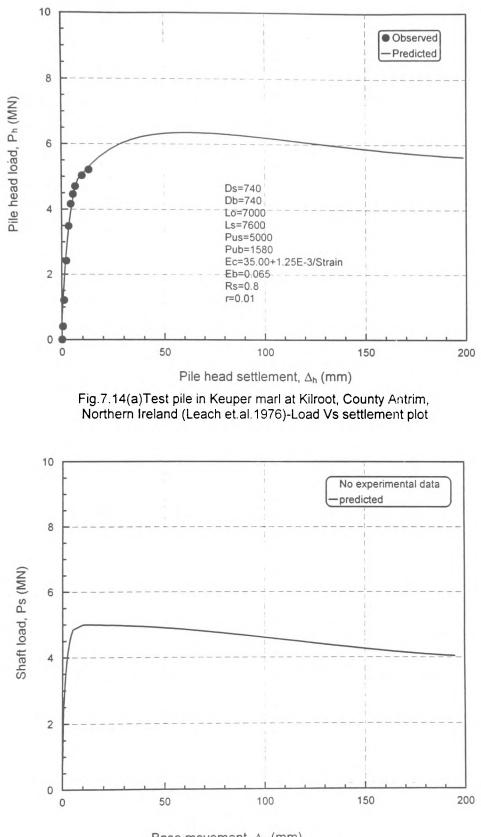





Fig. 7.13(b):Test pile in Keuper marl at Cogan spur,Peripheral Distributor road, Cardiff (Kilbourn et al.1988) Shaft load versus base movement plot

Base movement, Δ_{b} (mm)

Fig.7.14(b)Test pile in Keuper marl at Kilroot, County Antrim, Northern Ireland (Leach et.al.1976)-Shaft load Vs base movement

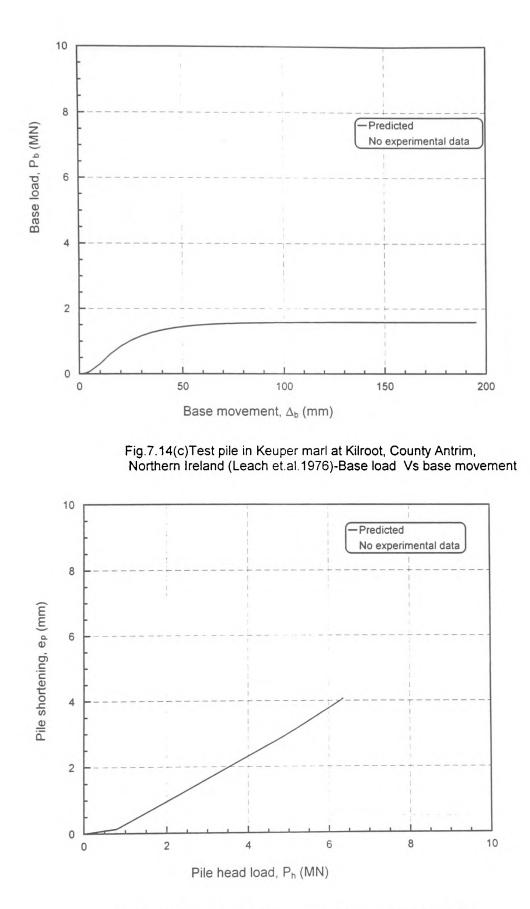


Fig.7.14(d)Test pile in Keuper marl at Kilroot, County Antrim, Northern Ireland (Leach et.al.1976)-Shortening Vs aplied load

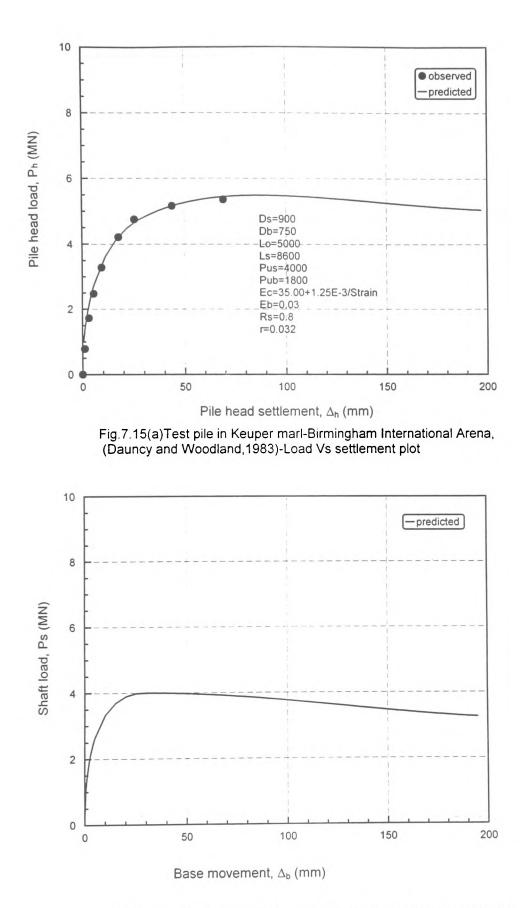


Fig.7.15(b)Test pile in Keuper marl-Birmingham International Arena, (Dauncy and Woodland, 1983)-Shaft load Vs base movement

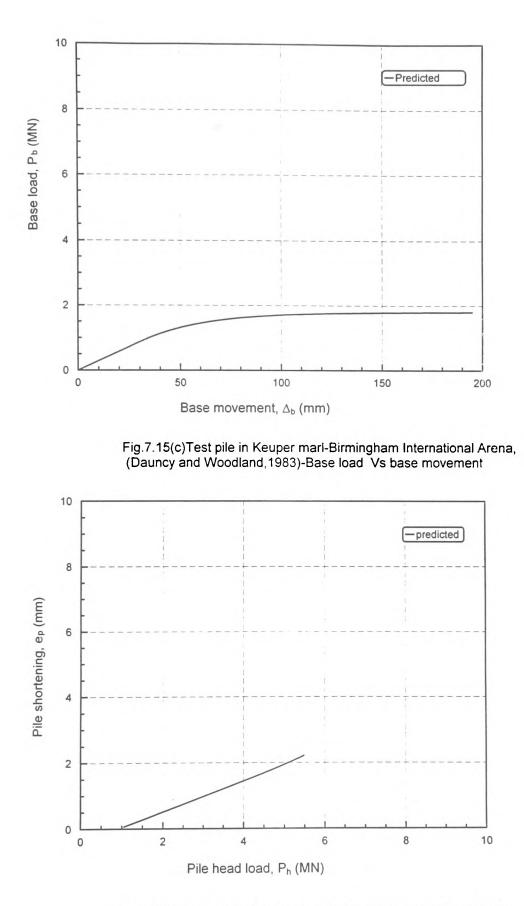


Fig.7.15(d)Test pile in Keuper marl-Birmingham International Arena, (Dauncy and Woodland, 1983)-Shortening Vs aplied load

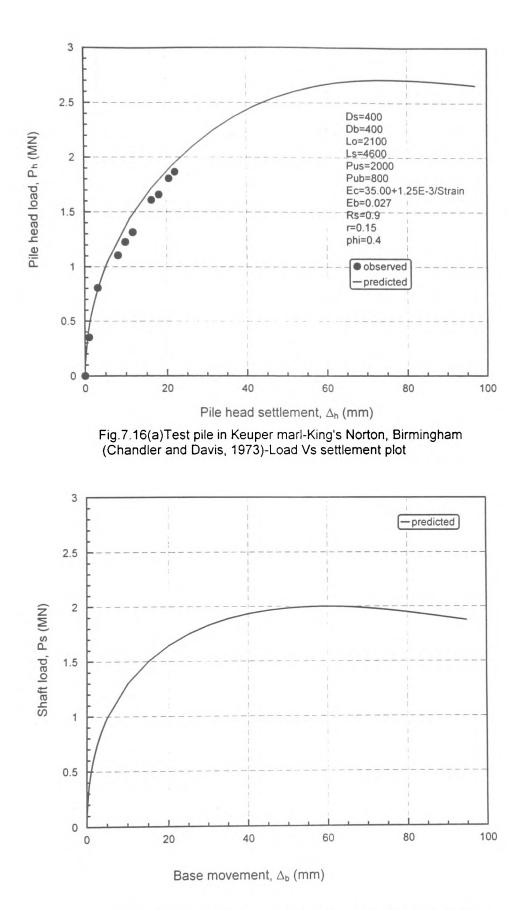


Fig.7.16(b)Test pile in Keuper marl-King's Norton, Birmingham (Chandler and Davis, 1973)-Shaft load Vs base movement

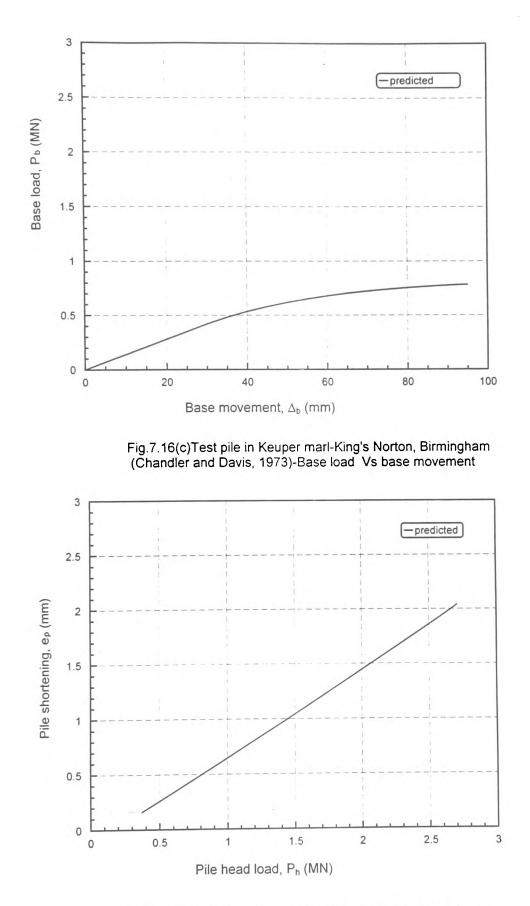
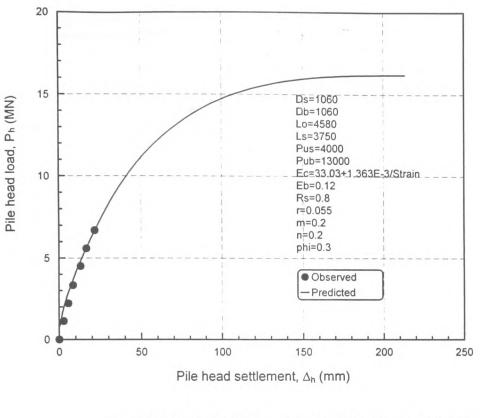
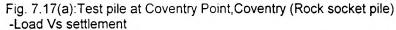
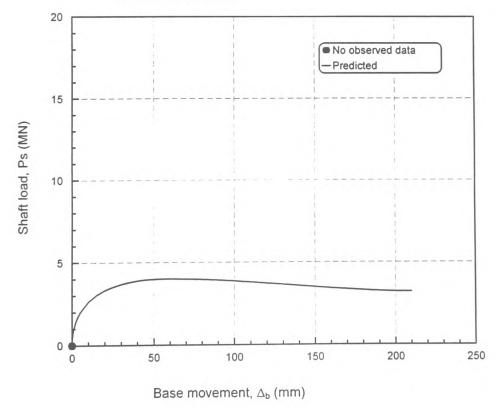
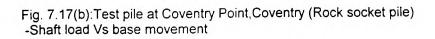






Fig.7.16(d)Test pile in Keuper marl-King's Norton, Birmingham (Chandler and Davis, 1973)-Shortening Vs aplied load

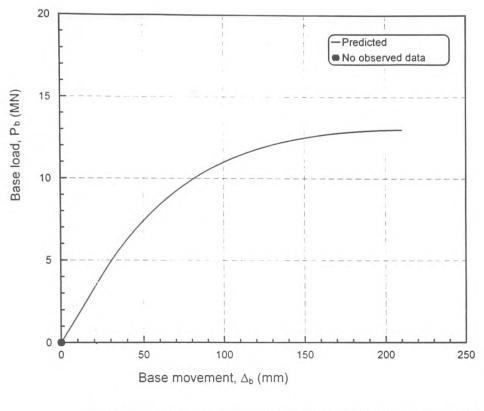


Fig. 7.17(c):Test pile at Coventry Point,Coventry (Rock socket pile) -Base load Vs base movement

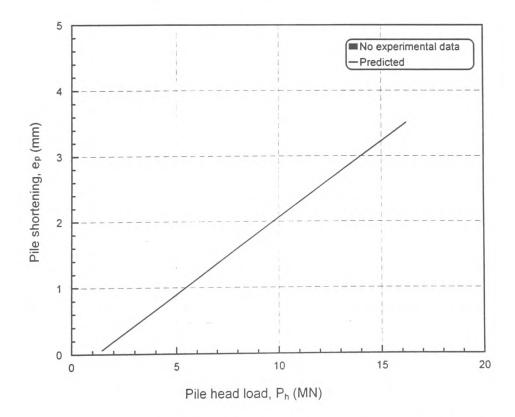


Fig. 7.17(d):Test pile at Coventry Point,Coventry (Rock socket pile) -Shortening Vs applied load

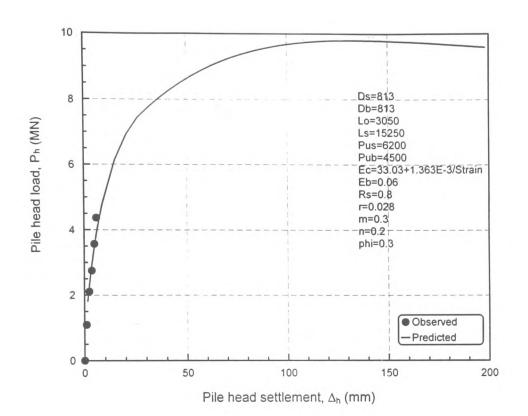
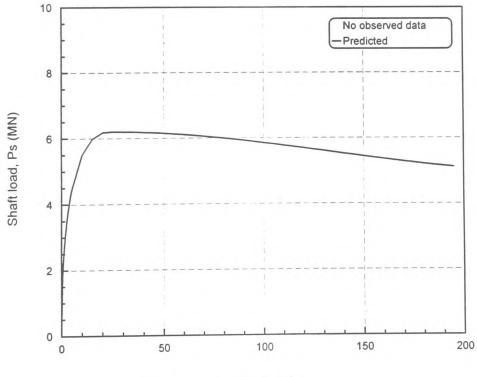



Fig. 7.18(a): Test pile at Leicester -Load Vs settlement

Base movement, Δ_{b} (mm)

Fig. 7.18(b):Test pile at Leicester -Shaft load Vs base movement

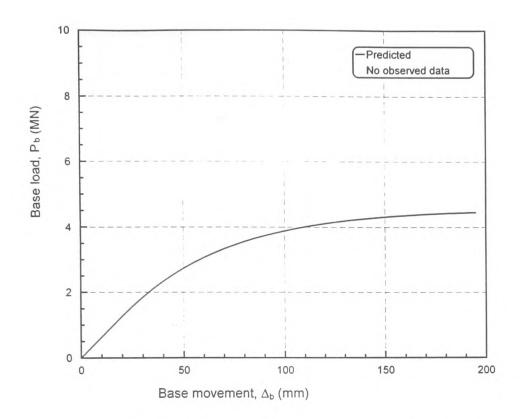


Fig. 7.18(c):Test pile at Leicester -Base load Vs base movement

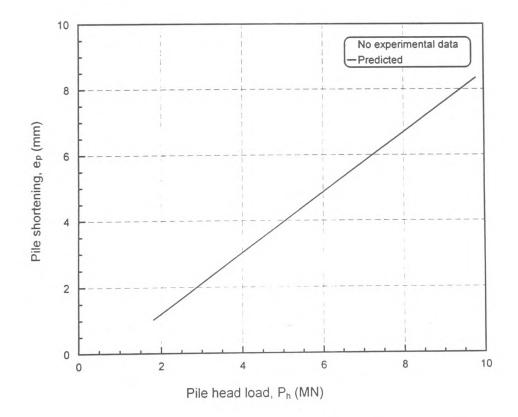


Fig. 7.18(d):Test pile at Leicester -Shortening Vs applied load

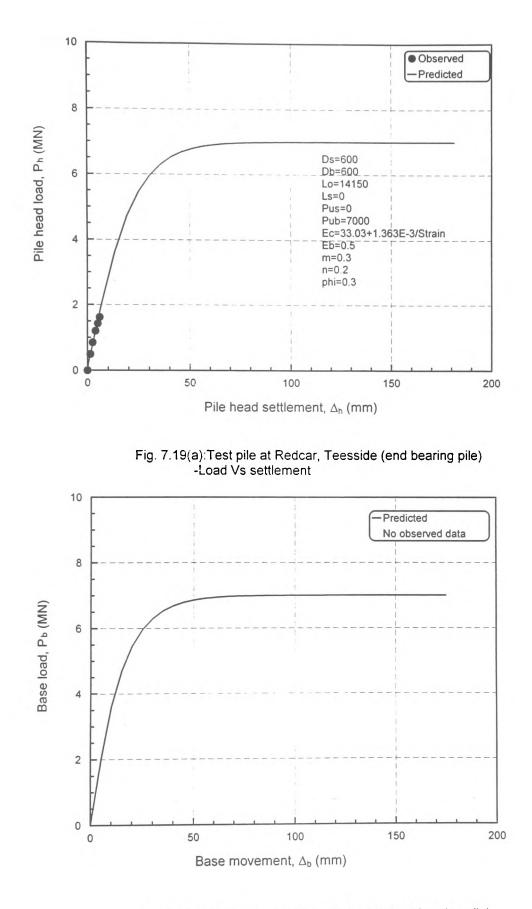


Fig. 7.19(b):Test pile at Redcar, Teesside (end bearing pile) -Base load Vs base movement

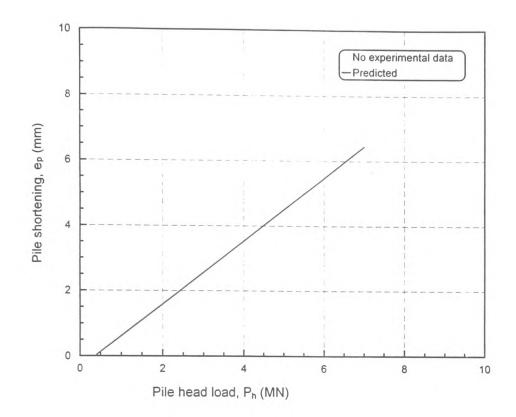
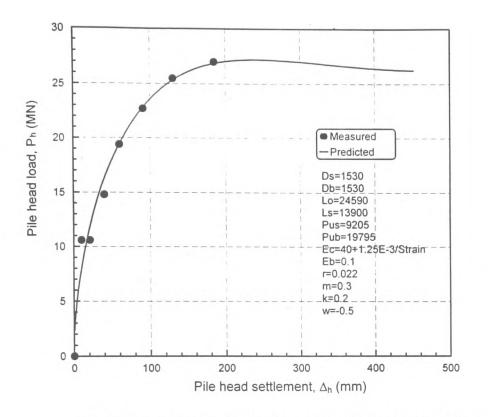
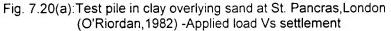




Fig. 7.19(c):Test pile at Redcar, Teesside (end bearing pile) -Shortening Vs applied load

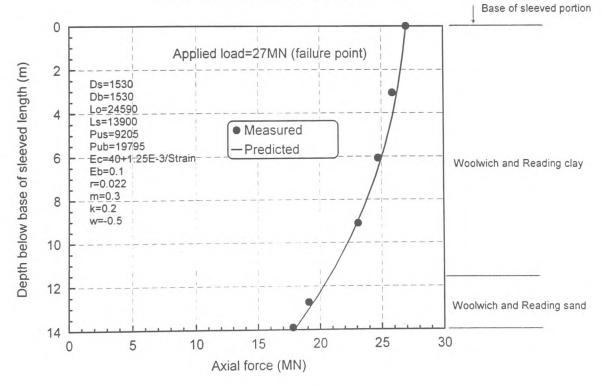


Fig. 7.20(b):Test pile in clay overlying sand at St. Pancras,London (O'Riordan,1982) -Axial force Vs depth for 27MN load

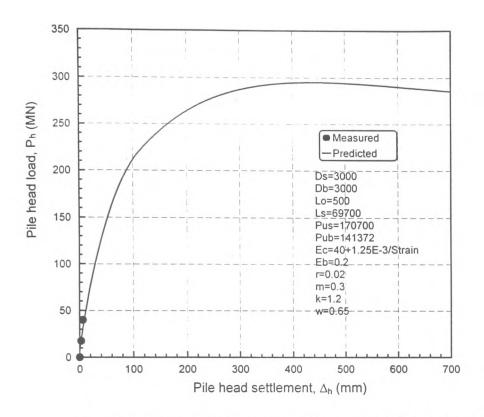


Fig. 7.21(a):Test pile T1 in layered so: Bannosu Viaduct, Honshu-Shikoku bridge,Japan (Hirayama,1990)- Applied load Vs settlement

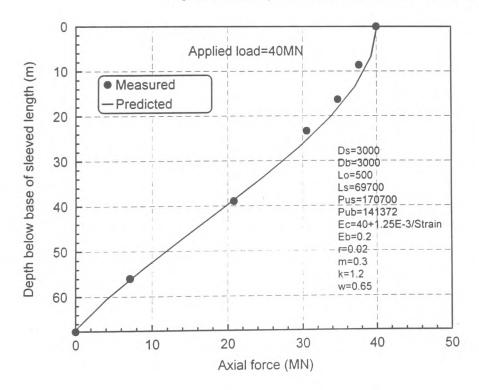


Fig. 7.21(b):Test pile T1 in layered soi: Bannosu Viaduct, Honshu-Shikoku bridge,Japan (Hirayama,1990)- Axial force Vs depth at 40 MN appliedpile head load

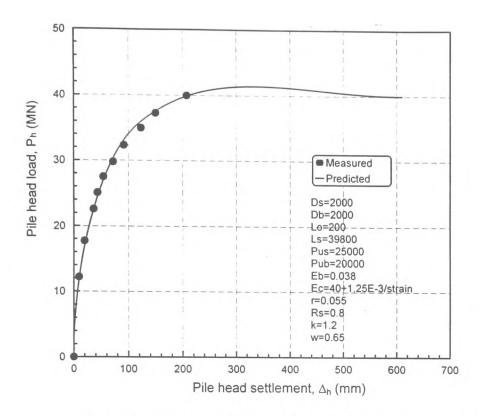


Fig. 7.22(a):Test pile T2 in layered so: Bannosu Viaduct, Honshu-Shikoku bridge,Japan (Hirayama, 1990)- Applied load Vs settlement

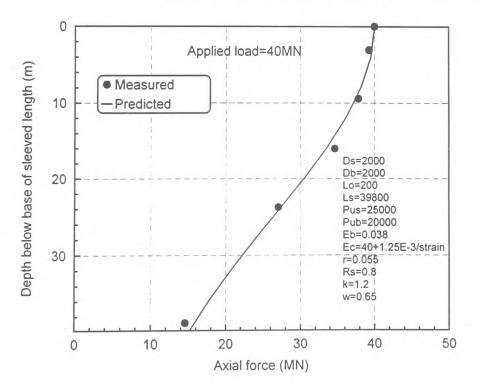


Fig. 7.22(b):Test pile T2 in layered soi: Bannosu Viaduct, Honshu-Shikoku bridge,Japan (Hirayama,1990)- Axial force Vs depth at 40 MN appliedpile head load

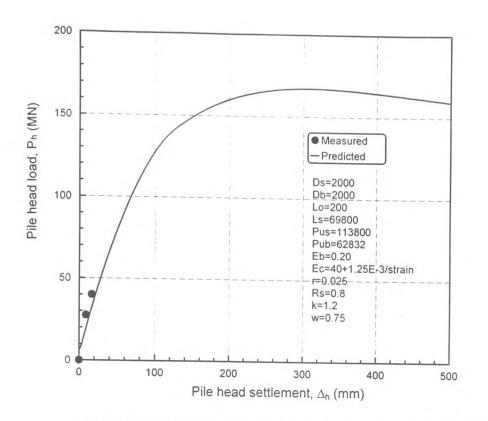


Fig. 7.23(a):Test pile T3 in layered so: Bannosu Viaduct, Honshu-Shikoku bridge,Japan (Hirayama,1990)- Applied load Vs settlement

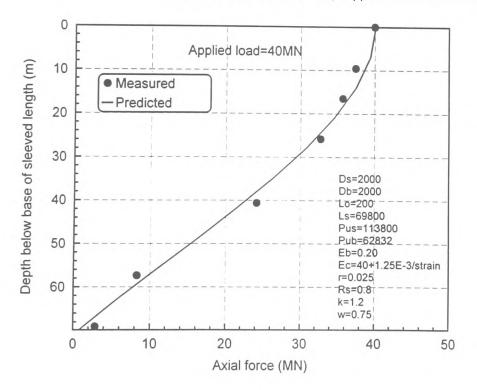


Fig. 7.23(b):Test pile T3 in layered soi: Bannosu Viaduct, Honshu-Shikoku bridge,Japan (Hirayama,1990)- Axial force Vs depth at 40 MN appliedpile head load

CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

uncertainties. Hence a detailed soil investigation at the particular site of interest remains the most suitable method of assessing the appropriate correlation formula. In one case study of rock socket piles, cross-jacking tests and cube crushing tests were found to produce reasonable predictions of the in-situ shear strength parameters whereas the point load index test method significantly overestimated the shear strength of the rock.

- d) The effective stress approach to the calculation of peak shaft resistance gave reasonable results, subject to the testing methods adopted. It was observed that drained triaxial tests on recompacted soil samples lead to a good estimate of the peak shaft resistance. Pressuremeter test methods provided reasonable values of the coefficient of earth pressure at rest K_o for use in predicting maximum shaft resistance based on the effective stress approach by Chandler(1968).
- e) There is substantial evidence that the process of installation of bored piles has a significant effect on the load-settlement response. Changes in the properties of the soil caused by drilling affect the shaft resistance of the pile. The extent of influence is more pronounced in the development of shaft resistance than in end bearing performance. With respect to a bored cast-in-place pile, the suitability of a particular design formula depends on its capability to take into account the effects of pile installation.

8.1.2 Performance of pile instruments

A successful pile loading test programme was carried out and useful data obtained which showed that:

- a) The observed readings from the embedded vibrating wire gauges were both accurate and consistent during all loading stages.
- b) The extensometer readings at all levels were reasonably consistent and were found to confirm and support the strain gauge data. The pile shortening per unit applied load was calculated using both the strain gauge and extensometer readings. The results revealed that, for each test pile, a good correlation existed between the strains experienced by the strain gauges and extensometers.
- c) At every loading stage, the force recorded by the base load cell was consistent with axial force calculations obtained from strain gauge readings. On consideration of all forces acting on a given pile, vertical equilibrium was satisfied at all loading stages.

8.1.3 Force-strain calibration of the test piles

The difficulties of establishing the correct load- deformation function for the test piles was overcome by applying two calibration methods which were all based on the "as built" condition of the test piles. These are (i) the gauge stiffness and (ii) the curve fitting method for Young's modulus versus strain variations. The calibration was necessary in order to take the following points into consideration:

- Possible eccentric transmission of the applied load down the pile, which would alter the stress distribution from one cross-section to another.
- Difficulty in reproducing the actual test pile material properties, as constructed, in laboratory testing of concrete specimens.
- 3) Non-homogeneity of the pile concrete surrounding the strain gauges.

By applying these calibration methods to predict the shortening of the test piles, a remarkable agreement between the two methods was achieved. The results of the shortening prediction were found to be consistent with the measured values deduced from the extensometers.

8.1.4 Elastic constants from a model short pile

The material characteristics of the composite reinforced concrete short column were assessed accurately and successfully using a simple mathematical model. The stiffening effect of steel on concrete has been accurately determined. This was by projecting the effective Young's modulus and Poisson's ratio of the reinforced zone of concrete at a given pile cross-section. The validity of the model was demonstrated by comparing predicted strains with measured values in three mutually perpendicular directions. An excellent agreement, to within 5% was observed between the measured and the predicted strain values at several locations. The results indicate the following:

- a) The change in material properties due to reinforcing of concrete was found to affect the effective Poisson's ratio more than the Young's modulus.
- b) For a specific amount of reinforcement, it was found that the Poisson's ratio of concrete increased by 25% whilst the Young's modulus increased by 10.5%.
- c) There was evidence that the elastic constants for plain concrete were position sensitive, which support previous observations by other researchers. The evidence arose from the fact that lower strain values were recorded near the central axis of the column. This suggested that there was compression of concrete centrally.

8.1.5 Load transfer of large bored piles in Keuper marl

The development, distribution and magnitude of shaft resistance were calculated using the two independent calibration methods. It was found that:

- a) The calculated results were consistent using both methods and the differences were considered nominal. The maximum difference in the calculated axial force at any point along a typical test pile was found to be less than 4%, in comparing the two methods.
- b) Through continuous force equilibrium checks for each test pile, the maximum out of balance force was less than 5% of the applied pile head. The apparent loss of force within the sleeved portion could be attributed to frictional losses at the knuckles installed at various points to ensure constant clearance between the inner and outer casings.
- c) The percentage of nominal force resisted by the pile base varied from approximately 0.1% to 15%, for applied loads varying from zero to the maximum pile capacity. The load transfer profile varies with the intensity of applied load and so do the proprtionate shaft and base resistance mobilised.
- d) In every test pile case, the rate of development of shaft resistance with increasing pile penetration was much more rapid than that of base resistance. The peak shaft load was attained at net settlement values in the range 35-50mm (4%-5% diameter). In contrast, the base resistance had not been reached, even at penetrations in excess of 230mm (26% diameter). There was a decrease in the shaft resistance with increasing penetration beyond the point of peak shaft load. Due to this behaviour, the total load capacity of the pile consisted of a portion of the ultimate base resistance and a portion of the peak shaft load.

8.1.6 Verification of the design of the contract piles for Butetown road link

The design of the contract piles for the Butetown road link was based on the recommendations of the site investigation report. The report gave values of maximum shaft resistance for various weathering zones, empirically correlated with S.P.T. "N" values. The pile load capacity predictions were compared with the results of the following alternative design methods:

- Effective stress method (Burland,1973) for shaft resistance prediction utilising the strength parameters given by Davis and Chandler(1973) and allowing for the variation of the in-situ earth pressure coefficient with depth.
- Empirical method using the S.P.T. "N" values obtained from the site investigation and converted to equivalent undrained cohesion based on the coefficients given by Kilbourn et al(1988).
- Total stress method based on the point load strength data obtained from the site investigation cohesion.
- 4) Observed load capacity values from the pile tests.

The design for end bearing was carried out using the use of effective stress parameters for different weathering zones, as given in the site investigation interpretative report. The design results showed that:

- a) The design method suggested in the site investigation report resulted in shaft resistance being underestimated by 40-57%. However, this method produced reasonable predictions of base resistance. The calculated base resistance of pile TP1, where the full base capacity was realised, was found to be accurate to within 5%.
- b) The effective stress design method produced shaft resistance values consistent with

the results of the S.P.T design method suggested in the site investigation report. The predicted shaft resistance values were 41%-59% of the observed values. By back-analysis, it was found that, on average, value of $\overline{\beta}$ (in Burland's,1973 notation) is 1.42.

- c) The use of measured S.P.T. "N" values in the design formula suggested by Kilbourn etal(1988) produced shaft resistance predictions of 62%-79% of the measured values. By back-analysis, it has been shown that accurate shaft resistance predictions (with a maximum error of 5%) may be obtained using an adhesion factor of 0.53 when a factor of 6 is applied to convert S.P.T "N" values to equivalent undrained cohesion. Alternatively, back-analysis also showed that a factor of 3.2 is appropriate for converting the average "N" value (along the pile shaft) into average unit shaft resistance (in kN/m²).
- d) The design method utilising point load data with an adhesion factor of 0.5 resulted in calculated shaft resistance of 30%-40% of the observed values. In order to match the observed shaft resistance values, it was found that an average adhesion factor of 1.45 was required. It was therefore shown that the use of point load data seriously underestimated the strength of the Keuper marl.

8.1.7 Prediction model for large diameter piles

The proposed analytical model is simple and has been proven accurate, provided that the input data and the soil parameters are determined accurately. The manner in which the model is linked to soil properties is straightforward and easy to understand. Moreover, the required soil parameters are those that would be readily available from conventional site investigation. The success of the method relies on the correct determination of these soil parameters. The numerical model has been applied to 19 test pile case histories, some of which include full instrumentation. In all the test piles analysed, there is a very good agreement between the predicted and the measured data. However, there is no complacency in proposing that the model is infallible in all cases. The improved predictive capability of this model is likeky to lead to a more cost-effective pile design. This is by enabling the use of shorter pile lengths and smaller pile diameters to achieve the same design criteria, with respect to load capacity as well as settlement limits.

The model can be readily adopted for use in designing a single pile, based on known soil properties. The model may also be used to back-analyse a test pile, provided that sufficient settlement has been achieved, so that a reasonable part of the load-settlement characteristic is extracted. All the available pile test results have been utilised in checking the validity of the model. The results strongly reveal the influence of the condition of a pile base on the settlement of the pile head The proposed method demonstrates that there is potential in theoretical investigation of pile performance, since piles behave according to certain identified trends.

The following are the salient points regarding the capability of the program:

- Input data utilises site investigation and/or existing British Standard, or C.I.R.I.A. information.
- 2) Estimates the pile elastic (and non-recoverable) shortening.
- 3) Predicts the load transfer mechanism along the embedded pile length.

- Predicts the actual and weighted displacements corresponding to gradual and full mobilisation of the shaft resistance and end bearing resistance.
- Projects the complete pile head load-settlement curve for the loaded pile to include an adjustment for the condition of the pile base, whether clean or resting on soil debris.
- 6) The prediction is extended to the stage of sequential failure in both shaft resistance and end bearing, together with the percentage make-up of these components.

8.1.8 Validation of the proposed mathematical model

All the available pile test results have been utilised in checking the validity of the model. The results strongly demonstrate that:

- a) The numerical model is capable of predicting the load-settlement behaviour of large diameter, bored piles installed in soils having a wide range of properties. The loadsettlement curve is determined by the soil properties at a particular site, the geometrical and material properties of the pile.
- b) The proposed model may be used to analyse not only conventionally constructed piles but also piles with either negligible shaft resistance or end bearing.
- c) The model is capable of separating shaft resistance and end bearing, at any stage of loading, for piles with different length to diameter ratios. It is also possible to predict the elastic shortening of the pile and the variation of axial force in the pile with depth.

8.2 RECOMMENDATIONS AND PROPOSALS FOR FURTHER WORK

A comprehensive analysis of the pile test data and further numerical modelling has been carried out to predict pile response under loading. Although the studies have been successful in describing the characteristics of large bored piles in Keuper marl, the analyses are not definitive. The hypotheses put forward are tested using the current and other pile test data. However, more work is needed to further validate and prove the reliability of these theories.

The following points are considered to be of further interest for future research into pile response in Keuper marl:

- 1) Work is needed to establish the appropriate design approach, especially for shaft resistance capacity of bored cast in-situ piles. It is also important to determine the most suitable and accurate method of evaluating the required soil strength parameters from laboratory or in-situ testing. Currently, there are numerous claims as to which design methods and laboratory test methods should be used. However, it seems as yet not possible to identify a single method, which can be said to produce consistent and reliable pile load capacity predictions.
- 2) Further investigations are necessary using instrumented test piles, with strains monitored at close intervals along the pile shaft, in order to study the exact load transfer mechanism of large diameter, bored piles.
- Additional work is required to address the influence of multi-layered ground on the development of load resistance and the settlement response of the pile.
- 4) The available design methods for bored piles in Keuper marl such as the C.I.R.I.A. method are informative and useful. However, further research is necessary in order

to produce a more flexible and universal method that could be applicable to as many different sites as possible.

- 5) Although the proposed analytical model is reliable and accurate, additional research work should be carried out in order to help relate the input parameters of the model to the soil and pile properties at a given site.
- 6) Further work is necessary in order to include the effect of time dependent functions on the load-settlement behaviour of a pile system.

REFERENCES

REFERENCES

AISI(1975) "Steel Pile Load Test Data"., American Iron and Steel Institute., Washington, DC, pp84.

ALPAN,I.(1967) "The Empirical Evaluation of K_0 and K_{OR} "., Soil and Foundations., Tokyo., Vol.7., No.1,pp31-40.

AL-SHAIKH-ALI, M.(1971) "Creep in Keuper marl". Proc. Symposium on Interaction of Structure and Foundations. University of Birmingham, pp50-71.

AL-SHAIKH-ALI, M. & DAVIS, A.G (1975) "The In-Situ Creep In Soft Rocks Using a Prolonged Model Test Pile". **Proc. Conf. Soil Mech. & Found. Engng**, Istanbul Technical University, Vol.1, pp213-229.

ALTAEE, A., EVGIN, E. & FELLENIUS, B.H. (1993) "Load Transfer for Piles in Sand and the Critical Depth". Canadian Geotechnical Journal. Vol. 30, No.3, pp455-463.

AMERICAN PETROLEUM INSTITUTE(1984) "Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms"., **15/e**, **API..**, **RP2A**., pp 115.

AZZOUZ, A.S & LUTZ, D.G(1986) "Shaft Behaviour of a Model Pile in Plastic Empire Clays". Jnl.Getech. Engng., ASCE., Vol.112, No.4, Paper No.2054., pp389-407.

BAGUELIN, F et al.(1975) "La Capacite Portante des Pieux"., Annales de l'Institut Technique du Batiment et des Travaux Publics., Supplement 330., Serie SF/116., July-Aug., 1975.

BANERJEE, P.K.(1970) "A Contribution to the Study of Axially Loaded Pile Foundations"., **Ph.D Thesis., University of Southampton., England**.

BANERJEE, P.K & DAVIES, T.G.(1977) "Analysis of Pile Groups Embedded in a Gibson Soil"., Proc. 9th Int. Conf. S.M.& F.E., Tokyo., Japan.

BARKER, W.R & REESE, L.C (1970) "Load Carrying Characteristics of Drilled Shafts Constructed With the Aid of Drilling Fluids"., Res. Rep 89-9., Center For High. Res., Univ. of Texas, Austin.

BARNES, G.E.(1995) Soil Mechanics Principles and Practice. Macmillan., pp229. ISBN 0-333-59654-4.

BHUSHAN,K.(1982) "Discussion:, New Design Correlations For Piles In Sand"., Jnl. Geotech. Eng. Div., ASCE., GT11., Nov., pp1508-1510.

BIENIAWSKI,Z.T.(1975) "The Point Load test in Geotechnical practice". Engineering Geology, Vol.9, No.1, pp1-11.

BISHOP, A.W., WEBB, D.C & LEWIN, P.I (1965) "Undisturbed Samples of London Clay From Ashford Common Shaft: Strength/Effective Stress Relationships., Geotechnique., Vol.15., pp1-31.

BOND, A.J&JARDINE, R.J (1991) "Effects of Installing Displacement Piles in a High OCR Clay"., Geotechnique., Vol.41., No.3, pp341-363.

BOOKER, J.R & POULOS, H.G(1976) "Analysis of Creep Settlements of Pile Foundations"., Jnl. Goet. Eng. Div., ASCE., Vol. 102, No. GT1, pp1-14.

BOWLES, J.E. (1996) Foundation Analysis and Design. 5th Edition., McGraw-Hill., pp886-888., ISBN 0-07-114052-2

BJERRUM,L.(1973) "Problems of Soil Mechanics and Construction in Soft Clay", Proc. 8th Int. Conf. ISSMFE, Moscow, Vol.3, pp150-157.

BRIERLEY, G.S. et al.(1979) "Interpreting End-Bearing Pile Load Test Results." ASTM STP No.670, pp181-198.

BREWER,R(1964) "Fabric and mineral analysis of soils". John Wiley and Son (New York).

BROMHAN,S.B & STYLES,J.R(1971) "An analysis of Pile Loading Tests in Stiff Clay"., **Proc. 1st Aust.-N.Z. Conf. Geomechs., Melbourne.**, Vol.1,pp246-253.

BRITISH STANDARDS INSTITUTION(1981) BS 5930 "Code of Practice for Site Investigations"

BRITISH STANDARDS INSTITUTION (1973) BS 1881:Part 121 "Determination of static modulus of elasticity of concrete"

BRITISH STANDARDS INSTITUTION(1986) BS 8004 "Code of practice for Foundations"

BRITISH STANDARDS INSTITUTION(1990) BS5950 "Structural Use of Steelwork in Buildings".,Part 1.

BRITISH STANDARDS INSTITUTION BS 8110 "Structural Use of concrete", Part 1., pp 2/3.

BURLAND, J.B. (1969) "Contribution To Discussion On "Comparison of Full Scale Performance with In-Situ and Laboratory Measurements"., **Proc. British Geotechnical Society Conference on In-Situ Investigations of Soils and Rocks.**, British Geotechnical Society., London., England., pp61.

BURLAND, J.B. (1973) "Shaft Friction of Piles in Clay - A simple fundamental approach". Ground Engineering, Vol.60, No.3, pp30-42.

BURLAND, J.B. & BURBRIDGE, M.C. (1985) "Settlement of Foundations on Sand and Gravel., **Proc., I.C.E.,** Part 1., Vol.85., Dec., pp1325-1381.

BURLAND, J.B., BUTLER, F.G., & DANICAN, P.(1966) "The Behaviour and Design of Large Diameter Bored Piles in Stiff Clay". **Proc. Symp. on Large Bored Piles**, Inst. Civil Engnrs., London, pp51-57.

BURLAND, J.B & COOKE, R.W(1974) "The Design of Bored Piles in Stiff Clays"., Ground Engineering., Vol.7., No.4., July.

BURLAND, J.B. and TWINE, D.(1988) "The shaft friction of bored piles in terms of effective strength". **Proc. 1st Int.Geot.Sem. on Deep Foundations on Bored and Auger Piles**, Ghent, pp411-420.

BUTTERFIELD, R & BANERJEE, P.K.(1970) "A Note on The Problem of a Pile reinforced Half-Space., Geotechnique., London., Vol.20., pp100-103.

BUTTERFIELD, R & BANERJEE, P.K.(1971) "The Elastic Analysis of Compressible Piles and Pile Groups"., Geotechnique., London., Vol.21., pp43-60..

CAMBERFORT, H & CHADEISSON, R. (1961) "Critere Pour l'Evaluation de la Force Portante d'un Pieu"., Proc. 5th Int. Conf. S.M. & F.E. Vol. 2, pp23-31.

CARRIER, W.D.(1993) "Discussion: Hyperbolic Method For Consolidation Analysis"., Jnl. Geotech. Eng. Div., A.S.C.E., Vol.119., No.1., Jan., pp186-190.

CARRUBBA, P.(1997) "Skin Friction of Large-Diameter Piles Socketed into Rock". Canadian Geotechnical Journal, Vol. 34, pp230-240.

CASTELLI, F., MAGUERI, M., & MOTTA, E.(1992) Anolisi non lineare del cedimento di un palo singolo. Rivista Italiana di Geotecnica, 26, pp115-135.

CHANDLER, R.J. (1966) Discussion to paper by Whitaker & Cooke. Proc. Symposium on Large Bored Piles. Pp95-97.

CHANDLER, R.J(1968) "The Shaft Friction of Piles in Cohesive Soils in Terms of Effective Stress". Civil Engineering Public Works Review, January, pp49-51

CHANDLER, R.J(1969) "The Effect of Weathering on the Shear Strength Properties of Keuper Marl" Geotechnique, Vol.21, pp321-334.

CHIN,T,K.(1970) "Estimation of the Ultimate Load of Piles From Tests Not Carried to Failure". Proc. 2nd South East Asian Conference on Soil Mechanics & Foundation Engineering, Singapore, pp81-92.

CHIN, T..K(1972) "The Inverse Slope as a Prediction of Ultimate Bearing Capacity of Piles". **Proc. 3rd SE Asian Conf.Soil Engng, Hong Kong,** pp83-91

CHIN,T..K & VAIL,A.J(1973) Proc. 8th Int. Conf. Soil Mech., Moscow, Vol.2, Part 1, pp47-52.

CHOW, Y.K.(1986) "Analysis of Vertically Loaded Pile Groups". Int. Journal Numerical Analysis Methods Geomechanics, Vol.10, No.1, pp59-72.

CHOW, F.C., JARDINE, R.J., NAUROY, J.F. & BRUCY, F. (1997) "Time-Related Increases in the Shaft Capacities of Driven Piles in Sand. Geotechnique. Vol.47, No.2, pp353-361.

CHRISTOULAS,S.G.(1988) "Dimensionnement De Pieux"., Quelques Experiences et Recherches en Grece., Bull. Laison Labs., P.et. Ch 154., pp 5-10.

CLAYTON, C.R. & MILITITSKY, J.(1983) "Installation Effects and the Performance of Bored Piles in Stiff Clay". Ground Engineering, Vol.116, No.2, pp17-32.

COLE,K.W & STROUD,M.A(1976) "Rock Socket Piles at Coventry Point, Market Way, Coventry". Geotechnique, Vol.26, No.9, pp47-62

COOKE, R.W & PRICE, G(1973) "Strains and Displacements Around Friction Piles". Proc. 8th Int. Conf. Soil Mech. and Found. Engng., Moscow

COOKE,R.W., PRICE,G. & TARR,K.(1979) "Jacked Piles in London Clay: A Study of Load Transfer and Settlement Under Working Conditions". Geotechnique, Vol.29, No.2, pp113-147.

COOKE, R.W. & WHITAKER, R. (1961) "Experiments with Model Piles with Enlarged Bases"., Geotechnique., Vol. 11., pp1-13.

COOP,M.R. & WROTH,C.P.(1989) "Field Studies of an Instrumented Model Pile in Clay." Geotechnique, Vol.4, pp 679-696.

COYLE,H.M & REESE,L.C.(1966) "Load Transfer of Axially Loaded Piles in Clay"., Jnl. Soil Mech. & Found. Division., A.S.C.E., Vol.92., SM2., March., pp1-26.

DASGUPTA,G.(1985) "Stochastic Finite Element Analysis of Soil-Structure Systems". Proc. 4th Int. Conf. on Structural Safety and Reliability., 2 Kobe, Japan, pp528-532.

DAUNCEY, P.C & WOODLAND, A.R (1984) "Bored Cast In-Situ Piled Foundations in Keuper Marl for the Birmingham International Arena" **Piling and Ground Treatment for Foundations**, Thomas Telford, London.

DAVIS, A.G(1967) "The Mineralogy and Phase Equilibrium of Keuper Marl". Journal of Engineering Geology, pp39-45.

DAVIS, A.G (1974) "Contribution to Discussion in Session IV, Rocks, Cambridge". Conf. Settlement of Structures., British Geotechnical Society., London., pp757-759.

DAVIS, A.G & CHANDLER, R.J (1973) "Further Work on the Engineering Properties of Keuper Marl". CIRIA Report 47, October.

DE BEER,E., LOUSBERG,E., DE JONGHE,A., WALLAYS,M. & CARPENTIER,R. (1979) "Prediction of the Bearing Capacity of Displacement Piles, Penetrating Into a Very Dense Sand Layer. **Proc. 7th European Conference on Soil Mechanics., London.**, Vol.3., pp51-59.

DECOURT,L.(1982) "Prediction of the Bearing Capacity of Piles Based Exclusively on the N Values of The S.P.T., **Proc. ESOPT2.,Amsterdam,**Vol.1,pp29-34.

DE MELLO, V.F. (1971) "The Standard Penetration Test"., 4th Pan American Conf. On S.M. & F.E. San Juan., Puerto Rico., Published by ASCE, Vol.1., pp1-86.

GERMAN STANDARDS DIN 4014(1990) Bored Piles: Construction Procedure; Design and Bearing Behaviour. Beuth Verlag, Berlin.

DOWNS, D.I & CHIEURZZI, R(1966) "Transmission Tower Foundations" Journal of Power Division., ASCE, Vol.92., PO2, pp91-114.

DUMBLETON, M.J (1967) "Origin and Mineralogy of African Red Clays and Keuper Marl". Journal of Engineering Geology, p39-45.

ENGLAND, M.(1993) "A Method of Analysis of Stress Induced Displacement in Soils With Respect to Time". Deep Foundations on Bored and Auger Piles. Van Impe (ed.) © Balkema, Rotterdam, ISBN 90 54103132, pp241-245.

ESRIG,M.1 and KIRBY,R.C.(1979) "Soil Capacity For Supporting Deep Foundations in Clay"., ASTM., STP No. 670, pp27-63.

EUROCODE(1992) "Design of Concrete Structures"., Eurocode 2., Part 1 (General Rules and Rules For Buildings)., ENV 1992-1-1., pp68.

FELLENIUS, B.H(1980) "The Analysis of Results From Routine Pile Tests"., Ground Engineering., Vol. 6., September., pp19-31.

FELLENIUS, B.H(1991) "Summary of Pile Capacity Predictions and Comparison With Observed Behaviour"., Journal of Geotechnical Division., A.S.C.E., Vol.117., No.1., pp192-195.

FELLENIUS, B.H & ALTAEE, A.A. (1995) "Critical Depth: How It Came Into Being And Why It Does Not Exist"., **Proceedings., I.C.E., London., Vol.113., April.**, pp107-111.

FELLENIUS, B.H. & SAMSON, I. (1976) "Testing of Drivability of Concrete Piles and Disturbance to Sensitive Clay"., Canadian Geotechnical Journal., Vol. 13., No.2., pp139-160.

FLAATE,K. & SELNES,P.(1977) "Side Friction of Piles in Clay"., Proc. 9th Int. Conf. S.M. & F.E., Vol.1., pp517-522.

FLEMING, W.G.K., WELTMAN, A.J., RANDOLPH, M.F., & ELSON, W.K. (1992) **Piling Engineering.**, 2nd Edition., Blackie (Glasgow and London), pp104.

FLEMING,W.G.K(1992) "A New Method for Single Pile Settlement Prediction and Analysis", Geotechnique, Vol.42, No.3

FLEMING, W.G.K. THORBURN,S.(1983) "Recent Piling Advances- State of The Art Report". In *Proc. Conf. on Advances in Piling and Ground Treatment for Foundations*, ICE, London.

FOLEY,G.P & DAVIS,A.G(1971) "Piling in Keuper marl at Leicester", Civil Engineering Public works Review, September

FORT, D.S & MARTIN, P.L (1989) "Installation, Instrumentation and Load Testing of a Large Diameter Bored Pile in Upper Chalk". Int. Chalk Symposium, Thomas Telford, London.

FOX,E.N.(1948) "The Mean Elastic Settlement of a Uniformly Loaded Area at Depth Below Ground Surface". Proc. 2nd Int. Conf. S.M.&F.E., London., England.

FRANK, R.(1974) "Etude Theorique du Comportement des Pieux sous Charge Verticale. Introduction de la Dilatance"., **Doctor-Engineer Thesis.**, University Paris (Pierre et Marie Curie University)., France., November. FRANK, R.(1975) "Etude Theorique du Comportement des Pieux sous Charge Verticale"., Rapport de recherche no.46., Laboratorie Central des Ponts et Chaussees., Paris., France.

FRANKLIN, J.A., BROCH, E.& WALTON, G. (1972) "Logging the Mechanical Character of Rock"., Trans. Inst. Min & Metall., A81, ppA43-A51. Also A80, ppA1-A9(1971).

GEOLOGICAL SOCIETY ENGINEERING GROUP(1970): Working Party Report., Vol.3., No.1., 1970.

GIBBS,H.J & HOLZ,W.T(1957) "Research on Determining the Density of Sand by Spoon Penetration Testing". **Proc. 4th Int. Conf. Soil Mech.and Found. Engng**, Vol. 1, pp35.

GUO, D.J., THAM, L.G. & CHEUNG, Y.K. (1987) "Infinite Layer for Analysis of Single Piles". Computers and Geotechnics, Vol.3, No.4, pp229-249.

HANNA,T.H & TAN,R.H.S(1973) "The Behaviour of Long Piles Under Compressive Loads in Sand"., Canadian Geotechnical Journal., Vol.10., No.2., pp311-340.

HIRAYAMA,H.(1990) "Load-Settlement Analysis For Bored Piles Using Hyperbolic Transfer Functions". Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, Vol.30, No.1, pp55-64, March.

HOBBS,N.B & HEALY,P.R(1979) "Piling in Chalk".,Construction Industry Research Information Association (C.I.R.I.A.) report PG6.

HOLEYMAN, A.(1985) "Dynamic Non-Linear Skin Friction of Piles"., Proc. Symp. On Penetrability, Drivability of Piles., 11th Int. Conf. S.M. & F.E., San Francisco.

HORVATH,R.G.(1978) "Field Load Test Data on Concrete-to-rock Bond Strength for Drilled Pier Foundations. Publication 78-07, Dept. of Civil Engineering, University of Toronto, Canada.

HORVATH, R.G & KENNEY, T.C.(1979) "Shaft Resistance of Rock-Socketed Drilled Piers". **Proc. ASCE, Symposium on Deep Foundations, Atlanta, Georgia**, October 25th, pp182-214.

HUNTER, A.H & DAVISSON, M.T (1969) "Measurement of Pile Load Transfer". **Performance of Deep Foundations, ASTM STP 444, ASTM**, pp 106-117.

INDRASURYA, B., MOCHTAR, & TURNER, B., EDIL(1988) "Shaft Resistance of Model Piles in Clay". Journal Geotech. Eng. Div., ASCE, Vol.114, No.11, November.

INSTITUTION OF CIVIL ENGINEERS(1988) Specification for Piling. ICE, London

INSTITUTION OF CIVIL ENGINEERS(1979) Recent Developments in the Design and Construction of Piles. ICE, London

IRELAND,H.O(1957) "Pulling Tests on Piles in Sand"., Proc. 4th Int. Conf. S.M.& F.E., Vol.2, pp43-54.

JEFFERS, E.(1995) "Steel H-bearing Piles Driven into Mercia Mudstone". Ground Engineering, June, pp33-37.

JOHNSTON, I.W. & HABERFIELD, C.M.(1993) "Side Resistance of Piles in Weak Rock". **Proc. International Symposium - Geotechnical Engineering of Hard Soils and Soft Rocks**. Balkema, Rotterdam, Vol.2, pp969-975. ISBN 90 5410 3442.

JONES, A.J. (1991) "Analysis of Shallow and Deep Foundations Using Soil-Structure Interaction Techniques"., **Ph.D Thesis, Polytechnic of Wales.**

JORDEN, E.E & DOBIE, M.(1977) "Tests on Piles in Keuper Marl for the Foundations of a Blast Furnace at Redcar, Teesside". Proc. Symp. Piles in Weak Rock., I.C.E., London., pp105-113.

KAY,W.F.(1980) "The Development of Shaft Friction in Semi-Full Scale Piles Passing Through Ganular Soils".,**Ph.D Thesis,Polytechnic of Wales.**

KERISEL, J. (1964) "Deep Foundations-Basic Experimental Facts". Proc. North American Conference on Deep Foundations, Mexico City, 1964.

KILBOURN, TREHARNE & ZARIFIAN(1988) "The use of Standard Penetration Test for the Design of Bored piles in Keuper Marl of Cardiff". Geotechnology Conference on Penetration Testing in U.K, University of Birmingham, July.

KLINK,S.A.(1985a) "Actual Elastic Modulus of Concrete" ., Technical Paper., A.C.I. Journal., 82-54, pp630-633.

KLINK,S.A.(1985b) "Actual Poisson Ratio of Concrete"., Technical Paper., A.C.I. Journal., 82-74, pp813-817.

KONDNER, R.L. (1963) "Hyperbolic Stress-Strain Response: Cohesive Soils". Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.89, SM 1, pp115-143.

KRAFT,L.M. (1981) "Friction Capacity of Piles Driven into Clay"., Jnl. Geotech. Eng. Div., ASCE., GT11., Nov., pp1521-1541.

KULHAWY,F.H.(1984) "Limiting Tip and Side Resistance: Fact or Fallacy?". Proc. Symposium on Analysis and Design of Piled Foundations. R.J. Meyer, Editor, San Francisco, ASCE, New York, pp80-89.

KULHAWY, F.H & GOODMAN, R.E. (1980) "Design Of Foundations On Discontinuous Rock"., **Proc. Int. Conf. On Structural Foundations On Rock.**, Sydney., Vol., pp209-220.

KULHAWY, F.H & GOODMAN, R.E. (1987) "Foundations In Rock"., Chapter 15., Reference Book., Ground Engineering., F.G Bell., Butterworth., London.

KULHAWY,F.H. & PHOON, K.K.(1993) "Drilled Shaft Side Resistance in Clay Soil to Rock." **Proc. On Conf. on Design and Performance of Deep Foundations: Piles and Piers in Soil and Soft Rock. Geotechnical Special Publication, No.38, ASCE**, pp172-183.

LAI,J.Y, & BOOKER, J.R.(1989) "Application of Discrete Fourier Series to the Finite Element Stress Analysis of Axi-symmetric Solids". **Research Report 605, University of Sydney**, Australia.

LAKE, G.C. (1986) "The Development of Shaft Friction and End Bearing Resistance for Dynamically Driven Model Piles"., **Ph.D Thesis, Polytechnic of Wales.**

LEACH,B.A, MEDLAND,J.W & SUTHERLAND,H.B(1976) "The Ultimate Bearing Capacity of Bored Piles in Weathered Keuper Marl". **Proc.6th European Conf. Soil Mech. & Founds**, Paper No.30,pp507-514,March

LEACH,B & MELLARD,D.J(1980) "The Design and Installation of Precast Concrete Piles in the Keuper Marl of The Severn Estuary., **Proc. Conf. Recent Developments in the Design and Construction of Piles.,I.C.E.,London.**,pp33-43.

LEE, C.Y. (1993) "Settlement of Pile Groups- Practical Approach". Journal of Geotechnical Engineering Division, ASCE, Vol.119, No.9, September, pp1449-1461.

LEE, C.Y. & SMALL, J.C. (1991) "Finite Layer Analysis of Axially Loaded Piles". Journal of Geotechnical Engineering Division, ASCE, Vol.117, No.11, November, pp1706-1721.

LEONARDS, G.A. & LOVELL, D.(1979) "Interpretation of Load Tests on High Capacity Driven Piles". ASTM STP No.670, pp388-415.

LIAO,S.S.& WHITMAN,R.V.(1986) "Overburden Correction Factors For Sand"., Jnl. Geotech. Eng. Div., ASCE., Vol.112, March., pp373-377.

LINGS, M.L. (1997) "Predicting The Shaft Resistance of Driven Pre-Formed Piles in Sand. **Proc. ICE, Geotechnical Engineering,** Vol.125, April, Paper 11001, pp71-84.

LORD, J.A. (1989) "Keynote Address: Design And Construction in Chalk"., Proc. Int. Chalk Symposium., Brighton., England.

MARSLAND, A.(1971) "Laboratory and In-Situ Measurements of the Deformation Moduli of London Clay"., Symposium on Interaction of Structures and Foundation., Midland Soil Mechanics Society., Birmingham University., Birmingham., England.

MAYNE, P.W. (1984) "K₀ - c_u /σ'_{VO} Trends for Overconsolidatad Clays"., Jnl. Gotech. Eng. Div., ASCE., Vol.110., No.10., October., pp1511-1516.

MAZURKIEWICZ, B.K. (1972) "The Loading of Piles According to Polish Regulations., Royal Swedish Academy of Engineering Sciences., Committee on Pile Research., Report No.35., Stockholm.

McCLELLAND,B(1974) "Design of Deep Penetration Piles For Ocean Structures"., Jnl.Geot.Eng.Div.,A.S.C.E.,Vol.100.,No.GT7., pp705-747.

MEIGH,A.C.(1987) "Cone Penetration Testing- Methods and Interpretation"., C.I.R.I.A., London., Butterworth.

MENARD,L(1965) "Regles pour le calcul de la force portante et du tessament des fondations en fonction des resultats pressiometriques",**Proc. 6th Int.Conf Soil Mech & Found. Engng**, **Montreal**,Vol.2,pp295-299.

MEYERHOF, G.G.(1992) Various authors. Proc. Conference on Recent Large-Scale Fully Instrumented Pile Tests in Clay. I.C.E., London

MEYERHOF,G.G(1976) "Bearing Capacity and Settlement of Pile Foundations". The 11th Terzaghi Lecture, 5 Nov 1975. Proc. ASCE., GT3, March., pp197-228.

MEYERHOF, G.G. & MURDOCK, L.J. (1953) "An investigation of the Bearing capacity of some Bored and Driven Piles in London Clay", **Goetechnique**, Vol.3, No.7, pp267-282.

MINDLIN, R.D. (1936) "Force at a Point in the Interior of a Semi-Infinite Solid"., Physics., May 1936.

MOHAN, D, JAIN, G.S. & JAIN, M.P. (1967) "A New Approach to Load Tests". Geotechnique, Vol. 17, pp274-283.

MOORE, J.F.A. & JONES, C.W.(1974) "In-situ Deformation of Bunter Sandstone". Cambridge Conference on Settlement of Structures, pp311-319, London, British Geotechnical Society.

MURAYAMA,S & SHIBATA,T(1960) "The Bearing Capacity of a Pile Driven into Soil and Its New Measuring Methods". Soils and Foundations., Japanese Society of Soil Mechanics and Foundation Engineering, Vol.1., No.2,pp2-11.

NORWEST HOLST SOIL ENGINEERING(1990) "Butetown Link : Interpretative report, Detailed Considerations, Recommendations and Conclusions for South Glamorgan County Council".

OMER, J.R. (1994) "Elastic Constants Assessment in a Short Concrete Column for the Analysis of Large Bored Piles in Keuper Marl"., **Engineering-South Wales**, Proc. South Wales Inst. of Engineers., Vol. 102., pp32-44., ISSN: 0969-6539.

OMER, J.R., DELPAK, R. & ROBINSON, R.B. (1995) "Elastic Analysis Of A Short Instrumented Composite Column For Use In The Design Of Large Bored Piles"., Proc. 4th Int. Conf. Modern Building Materials, Structures & Techniques., Vilnius., Lithuania., May., pp 230-236.

O'RIORDAN, N.J(1982) "The Mobilisation of Shaft Adhesion Down a Bored, Cast In-Situ Pile in the Woolwich and Reading Beds". **Ground Engineering**, April 1982, pp17-26.

ORRJE,O & BROMS, B. (1967) "Effects of Pile Driving on Pile Properties"., Jnl. Soil Mech. & Found. Div., A.S.C.E., Vol. 93., SM 5., Sept., Part 1., pp59-74.

OTTAVIANI, M.(1975) "Three Dimensional Finite Element Analysis of Vertically Loaded Pile Groups"., Geotechnique., London., England., Vol.25., pp238-241.

PALMER, D.J & HOLLAND, G.R (1966) "The Construction of Large Diameter Bored Piles With Particular Reference to London Clay"., Symp. On Large Bored Piles., I.C.E, London, pp105-120.

PANDEY, V.J(1967) "Some Experiences With Bored Piling"., J.S. M.F.D., A.S.C.E., Vol.93., SM5, pp75-87.

PATEL, D.C. (1992) "Interpretation of Results of Pile Tests in London Clay". Piling Europe. Thomas Telford, ICE, London.

PECK, R.B(1958) "A Study of The Comparative Behaviour of Friction Piles"., Highway Research Bulletin., Rep 36., U.S.A.

PELLS, P.J.N.& TURNER, R.M. (1980) "End-Bearing On Rock With Particular Reference To Sandstone"., Proc. Int. Conf. On Structural Foundations On Rock., Sydney., Vol.1., pp 181-190.

PERREN, F.J. (1978) "A Case History of Piling in the Glacial Material of South Wales"., M.Phil Thesis., Polytechnic of Wales.

PHOON,K.K, QUEK,S.T., CHOW, Y.K. & LEE, S.L.(1990) "Reliability Analysis of Pile Settlement". Journal of Geotechnical Engineering, ASCE, Vol.116, No.11, pp1717-1735.

POPOV, E.P(1976) Mechanics of materials, 2nd Edition, Prentice- Hall Inc., pp562.

POULOS,H.G.(1968) "Analysis of the Settlement of Pile Groups"., Geotechnique., London., Vol.18., pp449-471.

POULOS,H.G.(1987) "Analysis of Residual Stress Effects in Piles", J.Geotech. Engng, Am.Soc.Civ.Engs, Vol.113,No.3, pp216-229.

POULOS,H.G.(1989) "Pile Behaviour-Theory and Application", Goetechnique, Vol.39, No.3, pp365-415.

POULOS,H.G & DAVIS,E.H.(1980) "Pile Foundation Analysis and Design"., John Wiley & Sons., ISBN 0-471-09956-2.

POULOS, H.G & DAVIS, E.H. (1968) "The Settlement Behaviour of Single Axially Loaded Incompressible Piles and Piers", **Geotechnique**, London, Vol. 18, pp351-371.

PRICE,G. & WARDLE,I.F.(1982) "A Comparison Between Cone Penetration Test Results and the Performance of Small Diameter Instrumented Piles in Stiff Clay". Proc. 2nd European Symposium on Penetration Testing, Amsterdam, 24-27 May, pp775-780.

RANDOLPH, M.F. & MURPHY, B.S. (1985) "Shaft Capacity of Driven Piles in Clay". In **Proc.** 17th Offshore Technology Conference, Houston, Paper OTC 4883, pp371-378.

RANDOLPH, M.F & WROTH, C.P(1982) "Recent developments in understanding the axial capacity of piles in clay". Ground Engineering, Vol.15, No.7.

RANDOLPH, M.F & WROTH, C.P(1978) "Analysis of Deformation of Vertically Loaded Piles"., Jnl. Geotech. Engng. Div., ASCE., Dec 1978., GT12.

RANDOLPH, M.F. (1993) "Pile Capacity in Sand- The Critical Depth Myth". Australian Geomechanics Jounal., Vol.24, pp30-34.

REESE,L.C, HUDSON,B.S. & VIJAYVERGIJA,B.S.(1969) "An Investigation of the Interaction Between Bored Piles and Soil"., **Proc.** 7th Int. Conf. Soil Mech. & Found. Eng. Vol.2., pp211-215.

REESE, L, C., TOUMA, F.T. & O'NEILL, M.W. (1976) "Behaviour of Drilled Piers Under Axial Loading". Proc. Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, GT5.

ROBINSON, R.B. (1989) "Piles in Sand and in Sand Overlying Clay"., Ph.D Thesis, The Polytechnic of Wales.

ROWE, R.K & ARMITAGE, H.H. (1987) "A Design Method for Drilled Piers in Soft Rock". Canadian Geotechnical Journal, Vol. 24, pp126-142

SAN-SHYAN LIN(1997) "Use of Filamented Beam Elements for Bored Pile Analysis". Journal of Structural Engineering, ASCE, Vol.123, No. 9, September, pp1236-1244.

SCHMERTMANN, J.H. (1975) "The Measurement of In-situ Shear Strength"., 7th. Proc. Of Soil Mech. & Foundation Division., ASCE., Vol.2, pp57-138.

SCHMIDT,H.H & RUMPELT, T.K.(1993) "Pile Load Capacity in Pre-consolidated Keuper Marls of South West Germany: Design and Performance". Proceedings, International Symposium on Geotechnical Engineering of Hard Soils- Soft Rocks, Balkema, Rotterdam, Vol.2, pp1021-1027, ISBN 90 54103442.

SEIDEL, J.P. & HABERFIELD, C.M. (1995) "The Axial Capacity of Pile Sockets in Rocks and Hard Soils." Ground Engineering, March, 1995.

SEMPLE, R.M & RIGDEN, W.J (1984) "Shaft Capacity of Driven Pipe Piles in Clay"., Symposium on Analysis and Design of Pile Foundations., ASCE., San Fransisco., pp59-79.

SHARMAN, F.A. (1961) "The Anticipated and Observed Penetration Resistance of Some Friction Piles Entirely in Clay"., Proc. 5th Int. Conf. S.M.& F.E., Vol.2., pp135-141.

SHIOI,Y. and FUKUI,J.(1982) "Application of N-value to the Design of Foundations in Japan., Proc. ESOPT2, Amsterdam, Vol.1, pp159-164.

SKEMPTON, A.W(1951) "The Bearing Capacity of Clays", Building Research Congress, ICE, London, pp180-189.

SKEMPTON, A.W(1959) "Cast In-situ Bored Piles in London Clay", Goetechnique, Vol.9, No.4, pp153-173.

SKEMPTON, A.W(1961) "Horizontal Stresses in Overconsolidated Eocene Clay"., Proc. 5th Int. Conf. Soil Mech. & Found. Engng., pp35-357.

SKEMPTON, A.W(1966) "Summing up". Symposium on Large Bored Piles, London, pp 155.

SLADEN, J.A. (1992) "The Adhesion Factor: Applications and Limitations"., Canadian Geotechnical Journal., Vol.29., No.2., April., pp322-326.

SMALL,J.C & BOOKER,J.R.(1984) "Finite Layer Analysis of Layered Elastic Materials Using a Flexibility Approach-Part 1: Strip Loadings". International Journal of Numerical Methods in Engineering. Vol.20, pp1025-1037.

SMALL,J.C & BOOKER,J.R.(1986) "Finite Layer Analysis of Layered Elastic Materials Using a Flexibility Approach-Part 2: Circular and Rectangular Loadings". **International Journal of Numerical Methods in Engineering.** Vol.23, Vol.5, pp959-978.

SMOLTCZYK,U.(1985) "Axial Pile Loading Test-Part 1: Static Loading". Geotechnical Testing Journal, ISSMFE, pp79-90.

SOWA, V.A(1970) "Pulling Capacity of Cast in-situ Bored Piles"., Canadian Geotechnical Journal., Vol.7, pp482-493.

ST. JOHN, H.D., RANDOLPH,M.F., MCAVOY, R.P. & GALLAGHER,K.A. (1983) "The Design of Piles for Tethered Platforms". **Proceedings of the Conference on the Design and Construction of Offshore Structures.** Institution of Civil Engineers, London, pp53-64.

STROUD, M.A. (1989) "The Standard Penetration Test- Its Application And Interpretation"., In ICE conference: Penetration Testing., Birmingham. Thomas Telford., London., pp29-49.

TAN, T. et.al. (1991) "Hyperbolic Method For Consolidation Analysis"., Jnl. Geotech. Eng. Div., A.S.C.E., Vol.117., No.11., Nov., pp1723-1737.

TAVENAS, F.A. & AUDY, R.(1972) "Limitations of the Driving Formulae for Predicting the Bearing Capacity of Piles in Sand". Canadian Geotechnical Journal, Vol.9, No.1, February, pp47-62.

TAYLOR, P.T. (1966) "Age Effect on Shaft Resistance and Effect of Loading Rate on Load Distribution of Bored piles"., Ph.D Thesis, University of Sheffield., England.

TERZAGHI,K.(1942) "Discussion of The Progress Report of the Committee on Bearing Value of Pile Foundations". **Proc. ASCE., Vol.68**., pp311-323

TERZAGHI,K & PECK(1948) Soil Mechanics in Engineering Practice. John Wiley & Sons, New York and Toronto, pp125-169.

THORBURN,S. (1966) "Large Diameter Piles Founded in Bedrock". Proc. Symp. Large Bored Piles., I.C.E., London., pp121-129.

THORBURN, S. & MaC VICAR, R.S.L. (1971) "Pile Load Tests to Failure in the Clyde Alluvium". In *Proc. Conf. on Behaviour of Piles*, ICE, London, pp1-7; pp53-54.

TIMOSHENKO, S.P & GERE, J.M(1972) Mechanics of materials, D.Van Nostrand Co., pp19-20.

TIMOSHENKO, S.P. & GOODIER, J.N. (1970) "Theory of Elasticity. 3rd Edition McGraw-Hill Book Co. Inc. New York..N.Y.

TOMLINSON, M.J. (1957) "The Adhesion of Piles Driven in Clay Soils", **Proc.4th Int. Conf.** Soil Mech. & Found. Eng., Vol.2, pp66-71.

TOMLINSON, M.J. (1970) "The Adhesion of Piles in Stiff Clay". CIRIA. Research Report No. 26., London.

TOMLINSON, M.J. (1971) "Some Effects of Pile Driving on Skin Friction"., Proc. Conf. Behaviour of Piles., I.C.E., London., pp107-114.

TOMLINSON, M.J. (1994) Pile Design and Construction Practice., 4th edition, E&F.N. Spon, pp113-115.

TWINE,D.& GROSE, W.(1989) "Discussion on Foundation in Chalk., pp 147., London., Thomas Telford.

VAN WEELE, A.A.(1957) "A Method of Separating the Bearing Capacity of a Pile into Skin-Friction and Point Resistance". Proceedings, 4th International Conference on Soil Mechanics and Foundation Engineering, London, England, Vol.2, pp76-80.

VESIC, A.S(1963) "Bearing capacity of deep foundations in sand". National Academy of Sciences, National Research Council, Highway Research Record 39, pp112-153.

VESIC, A.S. (1964) "Investigations of Bearing Capacity of Piles in Sand". Proc. North American Conference on Deep Foundations, Mexico City, 1964.

VESIC, A.S(1967) "A Study of Bearing Capacity of Deep Foundations", Final report, Project B-189, Engineering Experiment Station, Georgia Institute of Technology, Atlanta.

VESIC, A.S(1969) "Load Transfer, Lateral Loads and Group Action of Deep Foundations". **Performance of deep foundations, ASTM STP 444, ASTM,** pp5-14.

VESIC, A.S. (1970) "Tests on Instrumented Piles. Ogeechee River Site. Journal of Soil Mechanics and Foundation Engineering Division. American Society of Civil Engineers. Vol.96, SM2, pp561-584.

VESIC, A.S. (1977) "Design Of Pile Foundations"., National Cooperative Highway Research Programme., Synthesis Practice No.42., Transportation Research Board., Washington, D.C., pp68.

VIJAYVERGIYA, V.N and FOCHT, J.R(1972) "A New Way to Predict Capacity of Piles in Clay"., OTC Paper 1178., 4th Offshore Technology Conf., Houston, Texas.

WARDLE, I.F., PRICE, G. & FREEMAN, T, J. (1992) "Effect of Time and Maintained Load on the Ultimate Capacity of Piles in Stiff Clay". Piling Europe., Thomas Telford, I.C.E., London, pp83-90.

WELTMAN, A.J and HEALY, P.R (1978) "Piling in Boulder Clay and other Glacial Tills"., Construction Industry Research and Information Association (CIRIA) Report PG5.

WERSCHING, S.N. (1987) "The Development of Shaft Friction and End Bearing of Piles in Homogeneous and layered Soils"., Ph.D Thesis, Polytechnic of Wales.

WHITAKER, T. (1957) "Experiments With Model Piles in Groups"., Geotechnique., Vol.7., pp147-167.

WHITAKER, T. (1963) "The Constant Rate of Penetration Test for the Determination of the Ultimate Bearing Capacity of a Pile". **Proc. ICE**., Vol.26., pp119-123.

WHITAKER, T. (1970) "The Design of Piled Foundations"., Oxford: Pergamon.

WHITAKER,T & COOKE,R.W(1961) "A new approach to pile testing".Proc.5th Int. conf. Soil Mech & Found. Engng., Vol.2, pp171-176.

WHITAKER,T & COOKE,R.W(1966) "An Investigation of the Shaft and Base Resistances of Large Bored Piles in London clay". **Proc., Symposium on large bored piles, ICE, London**, pp7-49.

WILLIAMS, A.F.(1980) "The Design and Performance of Piles Socketed into Weak Rock". **PhD Thesis, Monash University, Melbourne**, Australia.

WILSON,L.C(1977) "Tests on Bored and Driven Piles in Cretaceous Mudstone at Port Elizabeth, South Africa". Proc. Symp. Piles in Weak Rock., I.C.E., London, pp5-12.

WOODWARD,R & BOITANO,J.(1961) "Pile Loading Tests in Stiff Clays"., Proc. 5th Int.Conf. S.M.& F.E., Vol.2, pp177.

WYLLIE, D.C. (1991) "Foundations On Rock"., E & FN Spon, 1st Edition.

YAMAGATA,K(1963) "The Yield Capacity of Bearing Piles"., Proc. Int. Conf. S.M. & F.E., Budapest., pp325-342.

YAMASHITA,K.,TOMONO,M. and KAKURAI,M(1987) "A method for Estimating the Immediate Settlement of Piles and Pile Groups"., Soils and Foundations,Vol.27,No.1,pp61-76.

ZEITLEN, J.G & PAIKOWSKY, S. (1982) ""Discussion:, New Design Correlations For Piles In Sand"., Jnl. Geotech. Eng. Div., ASCE., GT11., Nov., pp1515-1518.

VOLUME 11-APPENDICES

BH No.	Description	Depth	Moisture	Moisture content %	Bulk	S.P.T	F.	Cu (from	Cu (from Point load tests)	ad tests)	U.C.S	Triaxial (undrained)	ndrained)	Triaxial (drained)	(drained)
		(m)	Natural	Natural Saturated	density	Sampler	N	Field	Lab	Laboratory	MN/m ²	ซิ	.	τυ	÷
					Mg/m ³			MN/m ²	Ax/Dia	MN/m ²		MN/m ²	(deg)	MN/m ²	(deg)
49	Red brown highly to completely weathered clayey	16.50				Split	58								
	fragmented to fine gravel sized sitty MUDSTONE very weak with weak lithorelicts (Zone IVa K.marl)	18.00				Split	61								
	Red brown and locally grey green intact to slightly	26.00							A	20.92					
	fractured fresh to slightly weathered silty	26.05							۷	21.21	:				
	MUDSTONE, moderately strong (Zone I-II)	26.10							٥	11.68	1				
		26.10							۷	17.39					
	A REAL PROPERTY AND A REAL	26.25			1			31.68						•	
		26.30		5.0	2.68						6.60				
		26.55						34.26						1	
		26.59						44.07				1	to make a manifold of the		
		26.62	1					43.44							
		26.64						44.56							
		26.68	1					25.16							
		26.70		4.1	2.68						11.70	1			
		26.95		3.8	2.72	1				1	13.20				
	Grev green slightly fractured fresh to slightly	27.15	1						A	40.53					
	weathered SII TSTONE strond (Zone I-II)	27.20							۷	25.42					
		27.25							A	14.97					1
	Grev areen moderately fractured fresh to slightly	29.45					1 1 1 1 1 1								
	weathered silty MUDSTONE, strong. (Zone I-II).	-													
50	Red brown, slightly to highly weathered, clayey	16.50				Split	75/150	- a part (a sense of car -							
	fragmented to fine to medium gravel sized silty MI IDSTONE Very weak with weak lithorelicts.	17.50				Split	50/75								
	(Zone III-IVa)														1
1	Red brown fragmented to fine medium gravel,	21.35	3.8						۲	20.39					
	moderately to highly weathered silty MUDSTONE, weak to moderately weak: (Zone II-III)														U .
	need boothy arow aroon alightly fractured	26.10						45.20	1			4			
	ked brown and locally grey green angring maximum shinthin weathered silty MUDSTONE moderately	26.25	2.5						A	28.80					

		neptu	Moisture	Moisture content %	Bulk	S.P.T	-	Cu (from	Cu (from Point load tests)	d tests)	-	I riaxial (undrained)	(naulein		fangua Ir
	•	(m)	Natural	Natural Saturated	density	Sampler	N.	Field	Labo	Laboratory	MN/m ²	ຮັ	φ	ΰ	÷
					Mg/m ³			MN/m ²	Ax/Dia	MN/m ²		MN/m ²	(deg)	MN/m ²	(deg)
50	weak and moderately strong with occassional	26.50	2.9		: ; ;			46.85	A	5.41			•		
	strong bands (Zone II)	26.57	1					38.62							
	Red brown and locally grey green slightly fractured	26.65			1			25.83							
	slightly weathered silty MUDSTONE moderately	26.71						38.10							
	weak and moderately strong with occassional	26.75		3.7	2.73			21.64			22.20				
	strong bands (Zone II)	26.95		3.2	2.71						32.30				
		27.10		3.9	2.66						5.10		-		
		74 70			i			4 89							
		27 64		-				24 46	-		A 44 1 50	-		:	
	slightly weathered slity MUUS I UNE, moderately	10.12	· · · · · · · ·					00.00	1				1		
	weak (Zone II-III)	27.55			-			10.05			î		-		
	and the second	27.60				1		19.90			1				
	and the second	27.70						23.46					-		
		27.90				1		5.48							
		27.92						21.31					-		
		27.94				1		8.39		1					
		27.98						5.84					1		
		28.12						9.36			1				
	one of the second se	28.17						8.87							
	the second	28.22						10.76						1	•
		28.25		3.9	2.61						7.40	1			
				and the second se											
	Red brown and locally grey green intact to slightly	28.37	2.7						4	24.73					
	fractured fresh to slightly weathered silty	28.40			1			17.63							
	MUDSTONE, moderately weak to moderately strong	28.43	- 101 -		-	1		23.03	1	1 A A A A A A A A A A A A A A A A A A A		1			
	(Zone II)	28.47				!		21.85		14 - 14 - 14		1			
		28.60						20.76							
		28.65						11.62							
	the providence of the second	28.70						19.37							
		28.75				,		11.02	,						
	and the second	29.05	2							1		1			
	a second a second second second second second a second sec	29.20		2.1	2.67				:		46.70				

										10000000000	0.0.0		Ingingini		
		(m)	Natural	Saturated	density	Sampler	N.	Field	Lab	Laboratory	MN/m ²	ů	φ	ъ	÷
-					Mg/m ³			MN/m ²	Ax/Dia	MN/m ²		MN/m ²	(deg)	MN/m ²	(deg)
50	Grey green intact to slightly fractured fresh to slightly	29.30							٥	36.07					
	weathered SILTSTONE, strong (Zone I)	29.30							4	55.33					
		29.30							۷	42.65					
		29.55						80.93							
		29.60						26.62							
	Red brown slightly fractured, moderately weathered	30.60	1						۵	5.30					
	silty MUDSTONE, moderately weak to moderately	30.60							A	13.95					
	strong (Zone I-II)	30.78							۷	15.85					
		30.78	2.3				1		٥	34.43					1
		30.78	2.3						۲	42.78					
		30.90		1				28.41				-			
	Red brown slightly fractured fresh to slightly	38.10		1	-			20.78							
	weathered silty MLIDSTONE moderately strong	38 19				i		23.24					;		
		AC BF			· · · · · · · · · · · · · · · · · · ·			24 62		ī					
		14.00				7 1 1		10.14							1
	Red brown moderately fractured, slightly weathered, silty MUDSTONE, moderately strong (Zone II-I)	40.00						31.90							
		00.01			1		00				-				
51	Red brown, nignly to completely weathered sury MUDSTONE, very weak clayey with fine gravel size	17.00		4 4		Split	28								l
														1	
	Red brown with grey green bands, fresh, slightly	28.00		3.0	2.64						31.00				
	fractured silty MUDSTONE, strong (Zone I)	28.27		4.1	2.58				٥	2.65	5.00			1	
		28.27							A	7.08				,	
		28.35								7.95					
		28.35					1		۷	14.45					
		28.40	3.6						۷	21.39					
		29.10	2.2					1	۷	52.05					
		29.20							A	0.80					

BH No.	Description	Depth	Moisture	Moisture content %	Bulk	S.P.T	T.	Cu (from	Cu (from Point load tests)	id tests)	U.C.S	Triaxial (undrained)	ndrained)	Triaxial	Triaxial (drained)
		(m)	Natural	Natural Saturated	density	Sampler	N.	Field	Labo	Laboratory	MN/m ²	ບັ	φ.	ΰ	÷
					Mg/m ³			MN/m ²	Ax/Dia	MN/m ²		MN/m ²	(deg)	MN/m ²	(deg)
51	Red brown slightly weathered silty MUDSTONE.	30.20	1						0	17.22					
	moderately strong (Zone II)	30.20							۲	23.11					
		30.25							۷	20.11					
		30.25							A	5.78					,
		30.30							۵	5.75					
		30.30							A	28.41					
		30.35	1						A	55.86					
		30.40	7.8		-				A	4.58					
		30.40							0	1.60					
	Red hrown slightly weathered silty MUDSTONE	30.45				T	ł		۷	2.46		1			
	moderately strong (Zone II)														
		00.00			101						10 50			-	
	Grey green, slightly weathered SILISIONE,	20.30		0.1	7.04						200			-	-
												1			
	Red brown fragmented to fine gravel moderately to	59.00					i.		٥	12.45					
	highly weathered silty MUDSTONE , fragments	59.00							A	18.83			,		
	weak to moderately weak (Zone III-II)							-							
52	Red brown,completely weathered silty MUDSTONE	17.30				Split	37								
_						1			1				1	-	1
						1	4		Y						
	Red brown fragmented to fine gravel, moderately to	25.75						39.03							2 - -
	highly weathered, silty MUDSTONE, strong (Zone I-II)									1 m 1 m		I.			1
	Red hrown highly fractured to fragmented to fine-	29.40							A	21.31					1
1	medium gravel moderately to highly weathered	29.45							۷	11.03					
	silty MUDSTONE fragments weak to moderately	29.50							۲	8.57					
	weak. (Zone II-III)														
									-			-		a contra a serie a serie a	
	Red brown and locally grey green intact to slightly	31.10	1.5						0	46.77					
	fractured, fresh to slightly weathered silty	31.10				10		000	A	61.29		-			
	MUDSTONE, moderately weak to moderately strong.	31.25						0.98	1						
_	(Zone I-II)	31.30						21.53							

MMMm ^{13.87} A2Ula MMMm 13.87 10.92 10.64 7.14 11.21 34.25 29.88 29.88 29.88 29.88 29.88 29.88 29.88 29.88 29.88 29.89 11.82 11.8 11.8	BH No.	Description	Depth (m)	Moisture	Moisture content % Natural Saturated		S.P.T Sampler "N"	Cu (fron Field	C	U.C.S MN/m ²	Triaxial (undrained) c, b	drained) 	Triaxial (c'	Triaxial (drained) c' h' dool
lo slightly 41.50 1) 41.55 41.55 1/1 agments 41.50 1/1 agments 41.50 1/1 agments 41.50 1/1 agments 41.50 weathered 49.82 weathered 49.82 weathered 49.82 1/2 9.90 1/2	52	Red brown moderately fractured to fragmented, moderately weathered silty MUDSTONE,fragments moderately weak.(Zone II)	36.80			, m/gM		MN/m ⁴ 13.87	Ax/Dia MN/m ²		WN/W	(deg)	E NN	(6ap)
43.70 49.82 50.90 53.20 54.10 54.10 54.10		Red brown and locally grey green intact to slightly fractured fresh to slightly weathered slify MUDSTONE,moderately weak. (Zone II-I)	41.50 41.55 41.60 41.65					10.92 10.64 7.14 11.21						
49.82 50.90 53.20 53.40 53.40 54.10 54.10 54.30		Red brown fragmented to fine medium gravel, moderately weathered silty MUDSTONE,fragments moderately weak. (Zone II)	43.70					34.25						
50.90 53.20 53.40 54.10 54.30		Dark rey green slightly fractured, slightly weathered MUDSTONE, strong. (Zone I-II)	49.82					29.88						
53.20 53.40 54.10 54.10 54.30		Dark grey green moderately fractured fresh to slightly weathered MUDSTONE, moderately strong to strong. (Zone I-II with many joints infilled gypsum)	50.90					11.82						
53.40 54.10 54.30		Dark grey green slightly fractured fresh to slightly weathered MUDSTONE,moderately strong. (Zone I-II with many joints infilled with gypsum)	53.20					20.89						
54.10 54.30		Red brown slightly fractured,fresh to slightly weathered silty MUDSTONE,moderately strong (Zone I-II with many joints infilled with gypsum)	53.40					43.05						
		Red brown moderately fractured fissured fresh to slightly weathered silty MUDSTONE, moderately weak to moderately strong (Zone I-II with many joints infilled with gypsum)	54.10 54.30					24.77 14.29						

11.22 17.84 23.89 17.84 8.95 Split 77/150 Split 50/75 Split 22 Split 23.89 17.84 8.95 Split 7 49 Split 22 Split 23 Split 24 Split 27 Split 27 Split 27 Split 27 Split 50/75 Split 50/75	BH No	Description	Depth (m)	Moisture Natural	Moisture content % Natural Saturated	Bulk density Mg/m ³	S.P.T Sampler	I.	Cu (from Field MN/m ²	Cu (from Point load tests) Field Laboratory MN/m ² Ax/Dia MN/m ²	s) U.C.S / MN/m ²	 Triaxial (undrained) c., ϕ MN/m ² (deg)	Triaxial c' MN/m ²	Triaxial (drained) c' h' MN/m ² (deg)
Red brown intact to slightly fractured, fissured, fresh to slightly weathered silty MUDSTONE, moderately weak to moderately strong (Zone I-II with many pints infilled with gypsum) 56.40 56.40 12 Red brown moderately weathered silty MUDSTONE 15.60 Cone 12 Red brown moderately weathered silty MUDSTONE 15.60 Cone 12 Red brown moderately weathered silty MUDSTONE 15.60 Cone 12 Red brown completely weathered silty MUDSTONE 15.60 Cone 12 MUDSTONE_with occassional weak fine grave sized tithoreticts (Zone IVa) 17.00 Split 77/150 Red brown completely weathered silty MUDSTONE 16.00 Split 20/75 Grey fresh SILTSTONE_moderately strong (Zone II) 18.00 Split 22 Red brown completely weathered.clayey 21.00 Split 23 Red brown completely weathered.clayey 21.00 Split 21 Red brown completely weathered.silty MUDSTONE 20.00 Split 23 Red brown completely weathered.silty MUDSTONE 20.00 Split 21 Red brown completely weathered.silty MUDSTONE 23.00 Split	52	Red brown moderately fractured,fresh to slightly weathered silty MUDSTONE,moderately weak to moderately strong (Zone III-I with occassional joints infilled with gypsum	54.90						11.22					
Red brown moderately weathered silty MUDSTONE 15.60 Cone moderately weak (Zone II-III) Red brown completely weathered sardy 17.00 Split Red brown completely weathered sardy 17.00 Split Split MUDSTONE with occassional weak fine grave sized ithorelicts (Zone IVa) 18.00 Split Split Grey fresh SILTSTONE, moderately strong (Zone II) 18.00 19.00 Split Split Grey fresh SILTSTONE, moderately strong (Zone II) 18.00 20.00 Split Split Grey fresh SILTSTONE, moderately strong (Zone II) 18.00 20.00 Split Split MUDSTONE for IVa 20.00 20.00 20.00 Split Split MUDSTONE (stift clay). Zone III-IVa 23.00 23.00 Split Split Red brown completely weathered, silty MUDSTONE 23.00 Split Split Split Red brown completely weathered, silty WUDSTONE 24.00 Split Split Split		Red brown intact to slightly fractured fissured fresh to slightly weathered silty MUDSTONE, moderately weak to moderately strong (Zone I-II with many joints infilled with gypsum)	56.40 57.30 58.10						23.89 17.84 8.95					
17.00 Split 18.00 Split 19.00 Split 20.00 Split 21.00 Split 23.00 Split 24.00 Split	53	Red brown moderately weathered silty MUDSTONE moderately weak.(Zone II-III)	15.60				Cone	12						
18.00 Split 19.00 20.00 Split 21.00 23.00 Split 23.00 23.00 Split 24.00 Split		Red brown completely weathered sandy MUDSTONE,with occassional weak fine grave sized lithorelicts (Zone IVa)	17.00				Split	77/150				 		
19.00 7 20.00 20.00 21.00 Split 23.00 Split 23.00 Split 23.00 Split 24.00 Split		Grey fresh SILTSTONE, moderately strong (Zone II)	18.00				Split	50/75				 		
20.00 2010 Split 21.00 21.00 Split 22.00 23.00 Split 23.00 23.00 Split 0NE 24.00 Split		Grey fresht SILTSTONE, moderately strong (Zone II with red brown MUDSTONE bands).	19.00				6	49						
NE 22.00 Split 23.00 Split NE 24.00 Split		Red brown completely weathered clayey fragmented to fine to medium gravel sized silty MUDSTONE (stiff clay) :Zone III-IVa	20.00 21.00				Split Split	32 22						
NE 24.00 Split		Red brown completely weathered, silty MUDSTONE stiff clay (Zone IV)	22.00 23.00				Split Split	21 34						
		Red brown completely weathered, silty MUDSTONE stiff clay with occassional moderately weathered bands, moderately weak (IVa with bands of III)	24.00				Split	50/75						

53 Red frown and locally grey green intact to moderality fractured venation of the propertication sity MUDSTONE. moderality variable of sity MUDSTONE. moderality variable of sity MUDSTONE. moderality variable of sity MUDSTONE. moderality variable of sity MUDSTONE. moderality is a site of site of the province of the propertication of the propertication of site of the province of the propertication of the propertication of site of the province of the propertication of site of the propertication of the propertication of site of the propertication of the province of site of the propertication of the propertication of the propertication of the propertication of site of the propertication of the propertication of the propertication of site of the propertication of the propertication of the propertication of site of the propertication of the propertication of the propertication of the propertication of the propertication of the propertication of the propertication of the propertication of the propertication of the propertication of the propertication of the propertication of the propertication of the propertication of the propertication of the propertication of the propertication of the propertication of the properis of the propertication of		Id locally grey green intact to actured, fresh to slightly weathered DNE, moderately weak to moderately I-II with occassional small cavities). Ind locally grey green moderately to red, weathered silty MUDSTONE, weathered silty MUDSTONE, weathered silty MUDSTONE, with hin bands of fragmented zone II and onal small solution cavities). Ind locally grey green moderately to red, moderately to slightly weathered ONE, moderately strong to strong (Zone ssional thin shaley bands with m.		5 1 5				MN/m ² 10.17 22.89 10.92 8.95 8.95 20.89 26.15	Av/Dia MN/m ² D 12.99 A 79.26	 WN/Ju	(deg)	MN/m ²	(deg)
Red brown and locally grey green intact to sity MUDSTORE: moderately insulty weathered sity MUDSTORE: moderately weak to moderately to sity MUDSTORE: moderately weak to moderately to sity MUDSTORE: moderately used to completely to sity MUDSTORE: moderately weathered sity MUDSTORE: moderately weathered sity MUDSTORE: moderately weathered sity MUDSTORE: moderately weathered sity MUDSTORE: moderately to sity MUDSTORE: moderately weathered sity MUDSTORE: moderately to sity MUDSTORE: moderately to sity MUDSTORE: moderately to sity MUDSTORE: moderately weathered sity MUDSTORE: moderately wea		Ind locally grey green intact to actured,fresh to slightly weathered DNE,moderately weak to moderately I-II with occassional small cavities). Ind locally grey green moderately to red,weathered silty MUDSTONE, leak to moderately strong (Zone II with thin bands of fragmented zone III and oral small solution cavities). Ind locally grey green moderately to red,moderately to sightly weathered ONE,moderately strong to strong (Zone ssional thin shaley bands with m.	34.30 34.30 35.10 35.20 37.90 38.40 38.45	. . .				10.17 22.89 10.92 8.95 20.89 26.15					
moderablely fractured fresh to slightly weathered 34.30 1.3 A with MUGSTONE moderably weak to moderably by green moderably by green moderably bit strong. (Zone H with occassional small cavities). 35.10 1.3 10.17 22.89 sightly fractured weathered sity MUDSTONE. 35.30 35.30 35.30 22.89 10.92 sightly fractured weathered sity MUDSTONE. 35.30 35.30 35.30 22.89 10.92 moderably strong Core astional small solution cavities). 37.80 37.80 30.12 22.89 moderably fractured moderably strong Core 38.30 33.30 30.12 20.89 30.12 Red brown and locally grey green moderably to a sitificity wathered 38.40 38.40 30.12 20.89 Red brown and locally grey prestimuderably storag to storag thin storag to core storag thin storag to storag to storag to storag to storag to storag to core storag to storag to core storag to storag to core storag thin bands of moderably weathered to core storag thin to correstorag thin bands of moderably weathered to the core storag to storag to core storag t		actured, fresh to slightly weathered DNE, moderately weak to moderately I-II with occassional small cavities). Ind locally grey green moderately to red, weathered silty MUDSTONE, weak to moderately strong (Zone II with hin bands of fragmented zone III and onal small solution cavities). Ind locally grey green moderately to red, moderately to slightly weathered ONE, moderately strong to strong (Zone ssional thin shaley bands with m.	34.30 35.10 37.80 37.90 37.90 38.30 38.40 38.45	<u>e</u>				10.17 22.89 10.92 8.95 30.12 20.89 26.15					
sith MUDSTONE moderately weak to moderately storing. (Zone LI with occassional small cavities). Red brown and locally grey green moderately to signify fractured weathered sith MUDSTONE, moderately work to moderately too g (Zone II with occassional sith band's of fragmented zone II and with occassional small solution cavities). Red brown and locally grey green moderately to signify fractured weathered signify fractured weathered signify moderately to signify fractured moderately to signify fractured moderately to signify moderately to signify fractured fragmented zone II and SI and locally grey green moderately to a signify fractured fragmented zone in the shaley bands with occassional time angular mutilscore (II with occassional time and (II with wathered (II with occassional	• •	DNE, moderately weak to moderately I-II with occassional small cavities). Ind locally grey green moderately to red, weathered silty MUDSTONE, leak to moderately strong (Zone II with thin bands of fragmented zone III and onal small solution cavities). Ind locally grey green moderately to red, moderately to slightly weathered ONE, moderately strong to strong (Zone ssional thin shaley bands with m.	35.10 35.20 37.80 37.80 37.90 38.40 38.40 38.40					10.17 22.89 10.92 8.95 8.95 20.89 26.15					
strong (Zone LI with occassional small cavites), Red brown and locally grey green moderately to slightly fractured, weathered sith MUDSTONE. moderately used preen moderately to slightly fractured, moderately to moderately to with occassional thin bands of fragmented zone III and with occassional thin bands of fragmented zone III and with occassional thin bands of fragmented slightly fractured, moderately to slightly weathered slightly fractured or slightly weathered slightly fractured to tragmented zone (I with occassional thin shaley bands with some gypsum. Red brown dayey hightly to completely weathered slightly fractured to fragmented clayey. Red brown hightly cocmpletely weathered slightly fractured to fragmented clayey. Red brown hightly cocmpletely weak to weak (Zone III-IV with occassional thin bands of moderately weak to weak (Zone III-IV with coccassional thin bands of moderately weak to weak (Zone III-IV with occassional thin bands of moderately weak to moderately weak to weak (Zone III-IV with occassional thin bands of moderately weak to moderately weak to moderately with occassional thin bands of moderately weak to moderately weak to moderately with occassional thin bands of moderately weak to me III. Red brown highly occompletely weak to me III. Red brown dayer of moderately weak to moderately weak to me III. Red brown dayer of moderately weak to		I-II with occassional small cavities). Ind locally grey green moderately to red, weathered silty MUDSTONE, eeak to moderately strong (Zone II with thin bands of fragmented zone III and onal small solution cavities). Ind locally grey green moderately to red, moderately to slightly weathered ONE, moderately to slightly weathered Sional thin shaley bands with m.	35.10 35.20 37.80 37.90 38.40 38.40 38.40					10.17 22.89 10.92 8.95 30.12 20.89 26.15					
Red brown and locally grey green moderately to sightly fractured weathered sith MLDSTONE. 35.10 35.10 inderately weak to moderately stong (Zone II with occassional thin bands of fragmented zone II and with occassional small solution cavities). 37.80 35.10 Red brown and locally grey green moderately to slightly fractured, moderately to slightly weathered sith MLDSTONE. moderately to slightly weathered sith MLDSTONE. moderately strong to strong (Zone slightly fractured, moderately bands with some gypsun. 38.30 38.30 Red brown and locally grey green moderately variable with some gypsun. 38.45 20 Red brown clayey highly to completely weathered sith MLDSTONE, very weak to a stiff clay with coccassional thin shaley bands with some gypsun. 38.45 20 Red brown clayey highly to completely weathered sith MLDSTONE, very weak to weak (Va-III) 13.20 20 Red brown highly fractured to fragmented clayey. 14.50 Cone 15.50 50/35 Red brown highly to completely weak to weak. 15.50 Cone 15.50 50/35 Red brown highly to completely weak to weak. 17.00 7 13 Red brown highly to completely weak to weak. 17.00 7 13 Red brown highly to completely weak to weak. 17.00 7 13 Red brown highly to completely weathered still with some Vac dyay in thacture		nd locally grey green moderately to red, weathered silty MUDSTONE, eak to moderately strong (Zone II with hin bands of fragmented zone III and onal small solution cavities). Ind locally grey green moderately to red, moderately to slightly weathered ONE, moderately strong to strong (Zone ssional thin shaley bands with m.	35.10 35.20 37.80 37.90 38.40 38.40 38.40					10.17 22.89 10.92 8.95 30.12 20.89 26.15					
slightly fractured, weaktered slity MUDSTONE, moderately weak to moderately stong (Zone II with occassional thin bands of fragmented zone II and with occassional small solution cavities). Red brown and locally grey green moderately to slightly fractured moderately to slightly weathered slity MUDSTONE, moderately to slightly weathered slity MUDSTONE, moderately to slightly weathered slity MUDSTONE, moderately stong to strong (Zone (II with occassional thin shaley bands with some gypsum. Red brown clayer highly to completely weathered slity MUDSTONE, weak to a sliff clay with occassional fine angular mudstone gravel (Va-III) Red brown clayer highly tractured to fragmented clayery, highly fractured to fragmented clayery, highly fractured slity MUDSTONE, 15.50 fragments very weak to weak. (Zone III-IV with occassional thin bands of moderately weak to weak. Red brown highly fractured slity MUDSTONE, 15.50 fragments very weak to weak. (Zone III-IV with occassional thin bands of moderately weak zone II) Red brown clayery in parts with occassional thin bands of moderately weak to weak. Zone II with some Va. clayery in parts with occassional thin bands of moderately weak zone II-III Red brown clayery completely weathered slity a uncertoxic fram to clayery in parts with occassional thin bands of moderately weak zone II-III Red brown clayery completely weathered slity a uncertoxic fram to clayery in parts with occassional thin bands of moderately weak zone II-III 20.50 weathered slity AUDSTONE, weathered slity a uncertoxic fram to clayery in parts with occassional thin bands of moderately weak zone II-III 20.50 weathered slity AUDSTONE weathered slity a uncertoxic fram to clayery in parts with occassional thin bands of moderately weak zone II-III 20.50 weathered slity AUDSTONE weathered slity a uncertoxic fram to clayery in parts with occassional thin bands of moderately weak to weak.		red,weathered silty MUDSTONE, weak to moderately strong (Zone II with hin bands of fragmented zone III and onal small solution cavities). Ind locally grey green moderately to rred,moderately to slightly weathered ONE,moderately strong to strong (Zone ssional thin shaley bands with m.	35.20 37.80 37.90 38.30 38.40 38.45					22.89 10.92 8.95 20.89 26.15					
moderately weak to moderately strong (Zone III and with occassional small solution cavities). 37.80 37.90 Red brown and locally grey green moderately to slightly fractured/moderately to slightly weathered sity MUDSTONE, moderately strong to strong (Zone slightly fractured/moderately strong to strong (Zone slightly fractured/moderately strong to strong (Zone slightly fractured/moderately weathered sity MUDSTONE, moderately weathered sity MUDSTONE, were weak to a stiff clay with some gypsum. 38.45 Cone 50/35 Red brown clayey highly to completely weathered sity MUDSTONE, very weak to a stiff clay with scressional fine angular mudstone gravel (IVa-III)) 13.20 Cone 50/35 Red brown righly fractured to fragmented clayey, highly to completely weathered fragments very weak to weak. (Zone III-IV with occassional thin bands of moderately weak zone II) 14.50 Cone 120/25 Red brown highly fractured to fragmented clayey, highly to completely weak to weak. (Zone III-IV with occassional thin bands of moderately weak zone II) 14.50 Cone 120/25 Red brown highly fractured to fragmented clayey, highly to completely weak to weak. (Zone III-IV with occassional thin bands of moderately weak zone III 17.00 Cone 100 Red brown highly fractured silly MUDSTONE, very weak to weak. (Zone III with some Va.clayey in parts with occassional thin bands of moderately weak zone III 21.00 7 13		eak to moderately strong (Zone II with hin bands of fragmented zone III and onal small solution cavities). Ind locally grey green moderately to red, moderately to slightly weathered ONE, moderately strong to strong (Zone ssional thin shaley bands with m.	37.80 37.90 38.30 38.40 38.40 38.45					10.92 8.95 30.12 20.89 26.15					
occassional thin bands of fragmented zone III and with occassional small solution cavities). 37.90 38.30 37.90 Red brown and locally grey green moderately to slightly weathered sity MUDSTONE moderately to sitong (zone sity MUDSTONE moderately to sitong (zone sity MUDSTONE moderately to sitong (zone sity MUDSTONE moderately used sity MUDSTONE moderately used the source gypsum. 38.40 38.30 50/35 Red brown and locally grey preen moderately to sith wubstrown and locally grey preen moderately used sity MUDSTONE, were weak to a stift clay with occassional fine angular mudstone gravel (IVa-III) 38.40 38.40 50/35 Red brown righty fractured to fragmented clayey, highty to completely weathered silty MUDSTONE, highty to completely weathered silty MUDSTONE, fragments very weak to weak (zone III-IV with occassional thin bands of moderately weak zone II) 14.50 Cone 100 Red brown highty occassional thin bands of moderately weak zone II) 15.50 Cone 100 Red brown highty occassional thin bands of moderately weak zone III. 17.00 7 13 Red brown highty occassional thin bands of moderately weak zone III. 20.00 7 13 Red brown fighty occassional thin bands of moderately weak zone III. 20.00 7 13 Red brown highty occassional thin bands of moderately weak zone III. 20.00 7 13		hin bands of fragmented zone III and onal small solution cavities). Ind locally grey green moderately to ried, moderately to slightly weathered ONE, moderately strong to strong (Zone ssional thin shaley bands with n.	37.90 38.30 38.40 38.45					8.95 30.12 20.89 26.15					
with occassional small solution cavites). 38.30 38.30 38.30 Red brown and locally grey green moderately to slightly fractured, moderately to slightly weathered 38.40 38.40 38.40 slightly fractured, moderately to slightly weathered 38.40 38.40 50.35 50.35 slightly fractured, moderately strong to strong (Zone 38.40 38.40 50.35 50.35 silty MUDSTONE, were weak to a stiff clay with some gypsum. 38.40 13.20 Cone 50.35 Red brown rlayery lightly to completely weathered 13.20 Cone 100 50.35 silty MUDSTONE, very weak to a stiff clay with occassional fine angular mudstone gravel (IVa-III) 14.50 Cone 50.35 Red brown highty fractured to fragmented clayery, highty to completely weathered silty MUDSTONE, highty to completely weathered silty MUDSTONE, in the occassional thin bands of moderately weak zone II) 15.50 Cone 50/35 Red brown highty to completely weak zone II) 17.50 Cone 50/35 Red brown highty to completely weak zone II) 20.00 7 87/150 Red brown clayery completely weathered silty work to weak zone III 20.00 7 13 <td></td> <td>nal small solution cavities). Ind locally grey green moderately to rred, moderately to slightly weathered ONE, moderately strong to strong (Zone ssional thin shaley bands with n.</td> <td>38.30 38.40 38.45</td> <td></td> <td></td> <td></td> <td></td> <td>30.12 20.89 26.15</td> <td></td> <td></td> <td></td> <td></td> <td></td>		nal small solution cavities). Ind locally grey green moderately to rred, moderately to slightly weathered ONE, moderately strong to strong (Zone ssional thin shaley bands with n.	38.30 38.40 38.45					30.12 20.89 26.15					
Red brown and locally grey green moderately to slightly fractured, moderately to slightly weathered sity MUDSTONE, moderately strong to strong (Zone sity MUDSTONE, moderately strong to strong (Zone (II with occassional thin shaley bands with some gypsum. 38.45 38.45 Red brown clayey highly to completely weathered sity MUDSTONE, very weak to a stiff clay with occassional fine angular mudstone gravel (IVa-III) 13.20 Cone 50/35 Red brown highly fractured to fragments very weak to weak. (Zone III-IV with occassional thin bands of moderately weak zone II) 14.50 Cone 120/225 Red brown highly fractured silty MUDSTONE, very weak to weak. (Zone III-IV with occassional thin bands of moderately weak zone II) 15.50 Cone 50/35 Red brown highly occassionally completely weathered silty MUDSTONE, very weak to weak. 15.50 Cone 50/35 Red brown highly occassionally completely weathered silty MUDSTONE, very weak to weak. 17.00 Cone 50/35 Red brown highly occassionally completely weathered silty MUDSTONE, very weak to weak. 17.00 Cone 50/35 Red brown highly occassional thin bands of moderately weak zone II) 20.00 7 13 Red brown highly occassional thin bands of moderately weak zone III-II 20.00 7 66 Red brown highly occassional thin bands of moderately weak zone III-III 20.00 7 <		nd locally grey green moderately to rred,moderately to slightly weathered ONE,moderately strong to strong (Zone ssional thin shaley bands with n.	38.30 38.40 38.45		.] . 			30.12 20.89 26.15		 			
slightly fractured, moderately to slightly weathered 38.40 38.45 sity MUDSTONE_moderately strong to strong (Zone sity MUDSTONE_moderately strong to strong (Zone (II with occassional thin shaley bands with some gypsum. 38.45 50/35 Red brown clayey highly to completely weathered 13.20 Cone 50/35 50/35 Red brown clayey highly to completely weathered 13.20 Cone 100 50/35 Red brown highly fractured to fragmented clayey, highly to completely weathered stily MUDSTONE, very weak to weak (Zone III-IV with occassional thin bands of moderately weak zone II) 14.50 Cone 100 Red brown highly fractured to fragmented clayey, highly to completely weathered sily MUDSTONE, very weak to weak. (Zone III-IV with occassional thin bands of moderately weak zone II) 15.50 Cone 100 Red brown highly occassional thin bands of moderately weak zone II) 17.00 7 13 Red brown highly occassionally completely weak zone II) 20.00 7 13 Red brown highly occassional thin bands of moderately weak zone II) 20.00 7 13 Red brown highly occassional thin bands of moderately weak zone II) 20.00 7 13 Red brown highly occassional thin bands of moderately weak zone II-III 20.00 7 13 Red brown highly occassionally completely weak zone II		ired,moderately to slightly weathered ONE,moderately strong to strong (Zone ssional thin shaley bands with n.	38.40 38.45					20.89 26.15					
sity MUDSTONE, moderately strong to strong (Zone 38.45 38.45 1 (If with occassional thin shaley bands with some gypsum. 38.45 2 2 Red brown clayey highly to completely weathered 13.20 Cone 50/35 Red brown clayey highly to completely weathered 13.20 Cone 50/35 Red brown layer mudstone gravel (IVa-III) 14.50 Cone 120/225 Red brown highly fractured to fragmented clayey, highly to completely weathered silty MUDSTONE, highly to completely weathered silty MUDSTONE, its optimization occassional thin bands of moderately weak zone II) 15.50 Cone 50/35 Red brown highly tractured to fragmented clayey, highly to completely weak zone II) 15.50 Cone 50/35 Red brown highly tractured to fragmented clayey, highly to completely weak zone II) 15.50 Cone 50/35 Red brown highly to constronal thin bands of moderately weak zone II) 20.00 7 87/150 Red brown clayey completely weak zone III-II 20.00 7 13 Occassional thin bands of moderately weak zone III-II 20.00 7 13 Occassional thin bands of moderately weak zone III-II 20.00 7 13 Occassional thin bands of moderately weak zon		ONE,moderately strong to strong (Zone ssional thin shaley bands with m.	38.45					26.15					
(II with occassional thin shaley bands with some gypsum. (II with occassional thin shaley bands with some gypsum. III shaley bands with some gypsum. Red brown clayey highly to completely weathered silly MUDSTONE, very weak to a stiff clay with occassional fine angular mudstone gravel (IVa-III) 13.20 Cone Red brown highly fractured to fragmented clayey, highly to completely weathered silty MUDSTONE, fragments very weak to weak. (Zone III-IV with occassional thin bands of moderately weak zone II) 14.50 Cone Red brown highly to completely weathered silty MUDSTONE, highly to completely weak zone II) 15.50 Cone Red brown highly to completely weak zone II) 17.00 Cone Red brown highly to ccassionally completely weathered silty MUDSTONE, very weak to weak. 17.50 Cone Red brown highly occassionally completely weathered silty MUDSTONE, very weak to weak. 17.00 Cone Red brown clayey in parts with occassional thin bands of moderately weak zone II-III 20.50 7 Red brown clayey completely weathered silty 21.00 7 Red brown clayey completely weathered silty 21.00 7		ssional thin shaley bands with n.											
some gypsum. silty MUDSTONE, very weak to a stiff clay with occassional fine angular mudstone gravel (IVa-III) 13.20 Cone Red brown rlayey highly to completely weak to a stiff clay with occassional fine angular mudstone gravel (IVa-III) 14.50 Cone Red brown highly fractured to fragmented clayey, highly to completely weathered slity MUDSTONE, highly to completely weak to weak. (Zone III-IV with occassional thin bands of moderately weak zone II) 14.50 Cone Red brown highly to completely weak to weak. (Zone III-IV with occassional thin bands of moderately weak zone II) 15.50 Cone Red brown highly occassional thin bands of moderately weak zone II) 17.00 Cone 7 Red brown highly occassional thin bands of moderately weak zone II) 17.00 Cone 7 Red brown highly occassional thin bands of moderately weak zone III 20.00 7 7 Red brown highly occassional thin bands of moderately weak zone II-III 20.50 7 7 Red brown clayey completely weathered silty 21.00 7 7 Red brown clayey completely weathered silty 21.00 7 7 Red brown clayey completely weathered silty 21.00 7 7		H											
Red brown clayey highly to completely weathered 13.20 Cone silty MUDSTONE, very weak to a stiff clay with 13.20 Cone silty MUDSTONE, very weak to a stiff clay with 0ccassional fine angular mudstone gravel (IVa-III) Cone Red brown highly fractured to fragmented clayey, 14.50 Cone Cone highly to completely weathered silty MUDSTONE, 15.00 Cone Cone fragments very weak to weak. (Zone III-IV with 15.50 Cone Cone fragments very weak to weak. (Zone III) 17.00 Cone 7 Red brown highly occassional thin bands of moderately weak zone II) 17.50 Cone 7 Red brown highly occassionally completely 17.50 7 7 Red brown highly occassional thin bands of moderately weak zone II) 20.00 7 7 Red brown highly occassional thin bands of moderately weak zone III 20.00 7 7 Red brown clayey completely weathered silty 21.00 7 7 MUDSTONE from Vo.41 21.00 7 7 MUDSTONE from to sift clay veathered silty 21.00 7 7													
Red brown clayey highly to completely weathered 13.20 Cone sifty MUDSTONE, very weak to a stiff clay with occassional fine angular mudstone gravel (IVa-III) 13.20 Cone Red brown highly fractured to fragmented clayey, highly to completely weathered silty MUDSTONE, fragments very weak to weak. (Zone III-IV with occassional thin bands of moderately weak zone II) 14.50 Cone Red brown highly to completely weak to weak. (Zone III-IV with occassional thin bands of moderately weak zone II) 15.50 Cone Red brown highly occassionally completely weathered silty MUDSTONE, very weak zone II) 17.50 Cone Red brown highly occassionally completely weak zone III) 20.00 7 Red brown highly occassionally completely weak zone III) 20.00 7 Red brown clayey completely weak zone II-III 20.50 7 occassional thin bands of moderately weak zone II-III 20.50 7 MI UDSTONE, weak zone II-III 21.00 7			-										
14.50 Cone 15.00 15.00 15.50 Cone 17.00 Cone 17.00 20.00 20.00 2 21.00 7	silty MUDSTO occassional fin Red brown hig highly to comp fragments very occassional th Red brown hig weathered silt	layey highly to completely weathered	13.20			Cone	50/35						
14:50 Cone 15:00 Cone 15:00 Cone 15:50 Cone 17:00 Cone 17:50 ? 20:00 ? 21:00 ?	occassional fin Red brown hig highly to comp fragments very occassional th Red brown hig weathered silt	ONE, very weak to a stiff clay with											
14.50 Cone 15.00 Cone 15.00 Cone 15.50 Cone 17.00 Cone 20.00 2 21.00 2 21.00 7	Red brown hig highly to comp fragments ven occassional th Red brown hig weathered silt	fine angular mudstone gravel (IVa-III)								 			
14.50 Cone 15.00 Cone 15.50 Cone 17.00 Cone 20.00 ? 20.00 ? 21.00 ?	Red brown hig highly to comp fragments very occassional th Red brown hig weathered silt			-			i.						
15.00 Cone 15.50 Cone 17.00 Cone 17.50 7 20.00 7 21.00 21.00	highly to comp fragments very occassional th Red brown hig weathered silt	ighly fractured to fragmented clayey,	14.50			Cone	120/225					-	
15.50 Cone ne II) 17.00 Cone if: 17.00 Cone ik: 17.50 ? ik: 20.00 ? ne II-III 20.50 ? 21.00 ? ?	fragments very occassional thi Red brown hig weathered silt	npletely weathered silty MUDSTONE,	15.00			Cone	100			 			
17.00 Cone 17.50 7 17.50 7 20.00 7 21.00 21.00	occassional th Red brown hig weathered silt	ery weak to weak.(Zone III-IV with	15.50			Cone	50/35	an an Can in a summary and an annual is the					
ak. 17.00 Cone ak. 17.50 ? ? 20.00 20.00 ? ? one II-III 20.50 21.00 ?	Red brown hig weathered silt	thin bands of moderately weak zone II)										1 4	
ak. 17.50 ? 20.00 ? one II-II1 20.50 ? 21.00 ?	weathered silt	nighly occassionally completely	17.00			Cone	85/50		1				
20.00 7 one II-III 20.50 Cone 21.00 7		ilty MUDSTONE, very weak to weak.	17.50			2	87/150						
one II-III 20.50 Cone 21.00 ?	(Zone III with S	h some IVa, clayey in parts with	20.00			6	13						
21.00	occassional th	thin bands of moderately weak zone II-III	20.50			Cone	18						
21.00										(į		
All INCTONE firm to elift clav (Zone IVa)	Red brown cla	slayey completely weathered silty	21.00	-		~	99			 1	1		
MUDS LONG, IIIII 10 suit ciay, (contact y a)	MUDSTONE	Firm to stiff clay (Zone IVa)					*	and particular second second second			-		

BH NO.	Description	Depth	Moisture	Moisture content %	BUIK	S.P.T		Cu (Irom	Cu (from Point load tests)	O.C.S	Triaxial (undrained)	Idrained)	Triaxial (drained)	draineu,
		(m)	Natural	Natural Saturated	density	Sampler	N.	Field	Laboratory	MN/m ²	ບັ	. .	-υ	÷
					Mg/m ³			MN/m ²	Ax/Dia MN/m ²		MN/m ²	(deg)	MN/m ²	(deg)
55	Red brown highly weathered clayey, fragmented	14.80				Split	58			1				
	to fine to medium graver sized MODS LONE, very weak with weak lithorelicts. (Zone III-IVa becoming	10.01				linde	001/07			4 4 4				
	zone III with depth).	1 	0									ł		
	Red brown moderately weathered silty MUDSTONE, weak. (Zone III-II).	20.60				Cone	150/265							
	Red brown and locally grey green fragmented, weathered,silty MUDSTONE,fragments moderately weak. (Zone II).	23.00				Cone	131/200							
	Red brown fragmented highly to completely weathered,silty MUDSTONE,fragments weak, (Zone III with some IVa;clayey in parts).	32.50				Cone	131/200							
	Red brown and locally grey green highly fractured slightly to moderately weathered silty MUDSTONE, moderately weak to moderately strong fragments. (Zone II).	35.60				Cone	127/195							
	Red brown fragmented to fine to medium sized gravel,moderately to slightly weathered silty MUDSTONE,fragments weak to mederately weak. (Zone II).	42.60				Cone	121/180							
	Red brown and locally grey green intact to slightly fractured fresh to slightly weathered slifty MUDSTONE, moderately strong and strong. (Zone I-II)	48.75 49.05 49.60		4.6	2.57			39.04 53.88	A 9.13	3.20				
56	Red brown completely to highly weathered clayey fine medium graval sized sity MUDSTONE weak. (Zone III-IVa).	16.50				Split Split	75 50/75							

BH No.	Description	Depth	Moisture content %	Bulk	S.P.T	T	Cu (from	Cu (from Point load tests)	U.C.S	Triaxial (undrained)	idrained)	Triaxial (Triaxial (drained)
_		(m)	Natural Saturated	density	Sampler	N	Field	Laboratory	MN/m ²	ບັ	. .	-υ	÷
				Mg/m ³		• •	MN/m ²	Ax/Dia MN/m ²		MN/m ²	(deg)	MN/m ²	(deg)
56		22.60			Cone	67							
	weathered silty MUDSTONE-Fragments very weak to weak. (Zone III-IVa;clayey in parts with thin bands of zone II).											2 2	
	Red brown highly to completely weathered silty MUDSTONE,very weak. (Zone IVa-III).	35.80			Cone	89/245							
÷ ,	Red brown and locally grey green intact to slightly fractured, fresh to slightly weathered silty MUDSTONE, strong. (Zone I-II).	43.20 43.50 45.70	4.1 3.9	2.73			53.69		16.60				
	Grey green intact to slightly fractured fresh SILTSTONE, strong. (Zone I-II).	46.15					20.03						
	Red brown and locally grey green intact to slightly fractured,fresh to slightly weathered silty MUDSTONE,moderately strong. (Zone I-II)	46.90					21.41					-	
57	7 Red brown moderately weathered slightly clayey, completely fractured MUDSTONE, very weak. (Zone III and IVa)	16.50			Split Split	50 79/150							
	Band of very weak zone IVa-III in within a layer of red brown highly fractured to fragmented to fine- medium gravel,slightly weathered silty MUDSTONE	25.30			Cone	92/90							
	Red brown highly to completely weathered silty MUDSTONE,very weak. (Zone III with occassional bands of zone IVa).	32.50			Cone	92							
	Red brown fragmented to fine gravel,highly to completely weathered silty MUDSTONE,fragments very weak to weak (Zone III,clayey in parts).	39.50			Cone	100							

	Description	Depth	Moisture	Moisture content %	Bulk	S.P.T		Cu (from I	Cu (from Point load tests)			Triaxial (undrained)	(pauli	Triaxial (drained)	draineu)
- •		(m)	Natural	Saturated	density	Sampler		Field	Laboratory	y MN/m ²		ۍ ت	φ	τυ	÷
					Mg/m ³			MN/m ²	Ax/Dia MN/m ²	m²	W	MN/m ² ((deg)	MN/m ²	(deg)
57	Red brown highly fractured slightly weathered silty MUDSTONE, moderately weak. (Zone II).	43.70	i				•	34.35							
	Red brown and locally grey green intact to slightly	44.10						22.41							
	inacture, nesh to slightly weathered sling woods for the moderately strong and occassionally stong.	44.30						21.92	_						
	(Zone I-II).	44.40		3.8	2.69					22.	22.50				1
		44.60		3.1	2.63					14.90	06				
	the second	45.00	1.4					-	D 15.89 A 32.77	89	1		1	4	
		46.60		6.8	2.5					2.70	02		1	1	
58	Red brown moderately weathered clayey.	16.40				Split	27					-			
	fragmented to fine to medium gravel, silty MUDSTONE Moderately strong fragments. (Zone III).										1				
59	Red brown highly weathered,clayey,fragmented to fine gravel sized,silty MUDSTONE,weak with moderately strong lithorelicts. (Zone IVa-III).	17.10				Split	56								
63	Red brown and locally grey green,highly to	25.30				Cone 1	19/460					-			
	with bands of silty clay. (Zone III-IVa with thin													1	
	bands of zone II).			1					1					1	
	Red brown, slightly to moderately fractured, slightly weathered, slity MUDSTONE, moderately strong to strong. (Zone I-II).	37.30						9.38	1				· · · · · · · · · · · · · · · · · · ·		
	Red brown and locally grey green, slightly to moderately fractured, fissured, fresh to slightly	41.20						14.28							
	weathered silty MUDSTONE moderately weak to moderately strong. Locally strong. (Zone I-II).														
					1					•					

ON LIG	Description	Depth (m)	Moisture Natural	Moisture content % Natural Saturated	Bulk density Mg/m ³	S.P.T Sampler	N.	Cu (from Field MN/m ²	Cu (from Point load tests) Field Laboratory MN/m ² Ax/Dia MN/m ²	ls) U.C.S y MN/m ² m ²	.S Triaxial (undrained) n ² C, φ MN/m ² (deg)	ndrained) ^(deg)	Triaxial (drained) c' Å' MN/m ² (deg)	(drained) Å' (deg)
63	Red brown and grey green slightly to moderately fractured,fissured,fresh to slightly weathered,silty	43.20						10.92 31.45						
		43.55						22.97 22.97 16.90						
		44.30						20.66						
64	Red brown highly weathered, silty MUDSTONE, weak with moderately weak bands. (Zone IVa-III).	17.00				Cone	06							
	Red brown and locally grey green,moderately fractured,moderately weathered,silty MUDSTONE, modrately weak to moderately strong. (Zone II).	21.60 21.60							D 3.71 A 10.39	£ 6				4
	Red brown slightly fractured, slightly to moderately weathered, silty MUDSTONE, moderately strong. (Zone II-I).	31.40						12.37						
	Red brown moderately to slightly fractured, moderately to highly weathered, silty MUDSTONE, moderately strong. (Zone II).	34.00						37.69						
	Red brown and locally grey green,slightly fractured, fresh to slightly weathered,silty MUDSTONE, moderately strong to strong. (Zone I-II with occassional thin bands of grey green siltstone.)	39.40		3.7	2.67			59.51 55.94		6.50	0			
	Red brown slightly fractured, slightly weathered, silty MUDSTONE, moderately strong to strong. (Zone I-II).	42.80						55.72 9.34						
65	Red brown highly weathered,clayey,fragmented silty MUDSTONE,very weak to weak. (Zone III-IVa).	18.50		and a second second		Split	50/30							

		Depth	Moisture	Moisture content %	DUIK	0.1.1	_	Cu (from	Cu (from Point load tests)	U.C.S	I riaxial (undrained)	Inallieur	Triaxial (drained)	drained)
		(m)	Natural	Natural Saturated	density	Sampler	N.	Field	Laboratory	MN/m ²	5	φ	ΰ	÷
					Mg/m ³			MN/m ²	Ax/Dia MN/m ²		MN/m ²	(deg)	MN/m ²	(deg)
65	Red brown and locally grey green fractured, moderately to slightly weathered slity MUDSTONE, moderately weak to moderately strong. (Zone II).	21.60		•				13.66						
	Red brown highly to completely weathered MUDSTONE,very weak. (Zone IVa-III;clayey).	26.00				Split	30							
	Red brown fragmented highly weathered silty MUDSTONE. Fragments weak. (Zone II-III with thin bands of zone IVa).	29.30				Split	31							
	Red brown, slightly to moderately fractured, slightly to moderately weathered silty MUDSTONE, moderately weak to moderately strong. (Zone I-II).	35.00						20.92						
99	Red brown completely weathered,silty MUDSTONE, stiff clay with some moderately weak fine gravel sized lithorelictes. (Zone IVa).	19.55									24	0		
	Red brown,moderately weathered,fragmented to fine to coarse gravel sized silty MUDSTONE, moderately strong fragments. (Zone II).	20.55				Cone	92/100							
i 1	Strong band of Zone I Keuper marl within a main layer of red brown,moderately to highly fractured, moderately weathered,silly MUDSTONE,moderately weak to moderately strong.	23.35		3.8	2.67					22.50				
	Rred brown,moderately to highly fractured, moderately weathered,silty MUDSTONE,moderately weak to moderately strong with bands of weak friable mudstone.(Zone II with thin bands of zone III).	23.55						25.05						

-e	MN/m ²													-														
ۍ. ۲	, ²							-																	-			
MN/m ² C,				0.40				1.40	1	•				6.50										1 7 1 1				
Field Laboratory	Ax/Dia MN/m ²	D 7.74																					A 4.64					
Field			25.79		· · · · · · · · · · · · · · · · · · ·		-		26.33		23.67	29.88	36.11	27.24	18.61								26.68	23 23	69.09			
Sampler "N"							,									Cone 116	Cone 88/225	Cone 132/400		Cone 50/225	Cone 79/125	Cone 50/200						
density				2.59				2.50						2.57		t			1	1						-		
Natural Saturated				5.6				5.0			-	-		5.6														
Natural Saturated		2.0							;		- - - - - - 								-				3.1					
(m)		24.00	24.20	37.15				40.30	40.50		44.70	44.80	44.90	45.20	45.40	19.55	20.55	21.30		22.10	22.55	22.80	23.00	23.15	2.04			
		Red brown moderately fractured, moderately weathered silty MLIDSTONE moderately strong	(Zone II).	Band of moderately strong Zone I Keuper marl	within a layer of red brown, moderately to very highly fractured, moderately weathered silty	MUDSTONE (fragments moderately weak and	occassionally moderately strong).	Red brown and grey,moderately fractured,	moderately weathered, silty MUDSTONE, moderately	strong. (Zone II-I).	Red brown, slightly fractured, slightly to moderately	weathered, silty MUDSTONE, moderately strong to	strong. (Zone I-II).			Red brown completely weathered, fragmented to	fine to coarse gravel sized silty MUDSTONE, very	weak with some hard bands. (Zone III with bands	of II and IVa).	Red brown and locally grey green, slightly	fractured, fresh to slightly weathered, silty	MUDSTONE, moderartely strong. (Zone II locally to	zone I).	our strate of better workboard of board to		SIL I S I UNE, moderately strong.		
		66 Re	(2		3 2	2	0	Ľ	E	S	<u></u>	5	S			67 R	fi	5	0	<u> </u>	fi	2	N				-	-

Natural Samulation Virtual Laboratory Mum ² C. A. C. A. <thc.< th=""> A. C.</thc.<>	BH No.	Description	Depth	Moisture	Moisture content %	Bulk	S.P.T		Cu (from Point load tests)	Point lo	ad tests)	U.C.S	Triaxial (undrained)	ndrained)	Triaxial	Triaxial (drained)
Red brown and locally gry green slighty recommend (rent) to algrithy wanthmed slifty fractured from 24 (0.2.4.5.0m, 22 430 15 23 40 Montini (recumend rent) to algrithy wanthmed slifty 22 430 16 23 430 Montini 22 431 Montinini Montinini Moni			(E)	Natural	Saturated	density	Sampler	.N.	Field	Lab	oratory	MN/m ²	ບ້	φ.,	ΰ	÷
Tractured from and locally gray green slipitly fractured from 24.10.2.450m, 200e 1). Highly fractured from 24.10.2.450m, 24.30 23.0 10 45.71 10 23.261 cone 1). Highly fractured from 24.10.2.450m, 200e 1). Highly fractured from 24.10.2.450m, 200e 1). Highly fractured from 24.10.2.450m, 200e 1). 24.30 26.80 45.71 10 23.21 Red brown and locally gray green.highly wathbeeds slip MUDSTONE: weak. (Zone II). 26.80 26.80 20.56 10 23.24 Red brown fragmented.highly weathbreed slip. 28.60 28.60 20.66 10 23.24 Red brown fragmented.highly weathbreed slip. 31.00 6.4 2.65 40.36 10.36 MUDSTONE: weak fragments 38.00 31.00 6.4 2.65 40.36 MUDSTONE weak fragments 28.00 38.30 20.35 20.35 40.36 MUDSTONE weak fragments 28.00 38.30 20.35 40.36 40.36 MUDSTONE weak fragments 38.00 38.00 38.00 20.35 40.36 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>Mg/m³</th> <th></th> <th></th> <th>MN/m²</th> <th>Ax/Dia</th> <th>MN/m²</th> <th></th> <th>MN/m²</th> <th>(deg)</th> <th>MN/m²</th> <th>(deg)</th>						Mg/m ³			MN/m ²	Ax/Dia	MN/m ²		MN/m ²	(deg)	MN/m ²	(deg)
Illocality to 23.40 23.40 24.20 A 45.71 33.61 A 45.71 33.60 0m. 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.21 24.21 24.10 26.90 24.20 27.75 27.75 27.75 e III). 26.90 26.60 26.66 26.66 26.77 JDSTONE: 28.60 28.60 24.20 27.75 27.75 e III). 26.90 26.6 26.66 26.6 26.66 Jashty 31.00 26.6 26.6 20.56 40.36 i (2 Cone II) 38.70 20.56 16.4 26.3 20.56 i (3 cone II). 38.70 20.56 16.4 26.3 20.56 i (3 cone II). 38.70 28.65 16.4 26.3 20.56 i (3 cone II). 38.70 38.65 16.6 16.94 11.1 i (3 cone II). 38.75 16.6 16.94 <td></td> <td>Red brown and locally grey green, slightly</td> <td>23.40</td> <td>1.6</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>0</td> <td>22.82</td> <td></td> <td></td> <td></td> <td></td> <td></td>		Red brown and locally grey green, slightly	23.40	1.6					1	0	22.82					
23.80 2.0 2.0 33.60 24.00 24.30 45.71 A 39.60 24.30 24.30 32.41 A 23.20 24.30 24.30 24.30 24.27 A 23.60 24.30 26.90 26.60 26.66 A 22.21 28.50 26.4 2.63 40.36 22.26 22.21 38.70 38.70 26.66 20.56 A 22.28 38.70 56.6 40.36 18.43 22.28 40.36 38.70 6.4 2.63 40.36 A 1.10 38.70 6.6 2.63 40.36 A 1.10 44.40 2.56 44.40 A 1.11 44.40 2.6 8.56 0 1.40 44.40 2.6 0 1.40 A 1.11 44.40 2.6 0 0 1.40 A 2.138 44.40 2		fractured, fresh to slightly weathered, silty	23.40							۲	45.16	111				
24.00 45.71 24.00 24.30 24.00 26.90 24.00 26.90 25.90 32.41 26.90 31.57 9 26.90 10. 26.50 11.1 26.66 11.1 26.66 11.1 26.66 11.1 26.66 11.1 20.56 11.1 20.56 11.1 20.56 11.1 20.56 11.1 20.56 11.1 20.56 11.1 20.56 11.1 20.56 11.1 20.56 11.1 22.28 11.1 22.28 11.1 22.28 11.1 22.28 11.1 22.28 11.1 22.28 11.1 22.28 11.1 22.28 11.1 22.28 11.1 22.28 11.1 22.28 11.1 22.28 11.1 22.28 11.1 22.28 11.1 22.28 11.1 22.65 11.1 20.10 11.1 20.10 <td< td=""><td></td><td>MUDSTONE, moderartely strong. (Zone II locally to</td><td>23.80</td><td>2.0</td><td>-</td><td></td><td></td><td></td><td></td><td>A</td><td>39.60</td><td></td><td></td><td>1</td><td></td><td></td></td<>		MUDSTONE, moderartely strong. (Zone II locally to	23.80	2.0	-					A	39.60			1		
24.20 32.41 24.30 22.30 28.90 31.57 28.90 31.57 28.90 31.57 28.90 31.57 28.90 31.57 28.90 31.57 28.90 31.57 28.90 28.60 28.90 28.60 31.00 28.66 31.00 20.56 31.00 20.56 31.00 20.56 31.00 20.56 31.00 20.56 31.00 20.56 31.00 20.56 31.00 20.56 110 20.56 31.00 20.56 111 20.56 111 20.56 111 20.56 111 22.28 111 22.28 111 22.28 111 22.28 111 22.28 111 22.28 111 22.28 111 22.28 1111 22.28<		zone I). Highly fractured from 24.10-24.50m.	24.00						45.71							
24.30 27.75 D 813 26.90 26.90 31.57 A 22.21 26.90 28.50 28.50 23.157 A 22.21 28.50 28.50 28.50 26.56 A 22.21 A 28.50 28.50 26.53 20.56 A 22.21 ally 31.00 28.50 6.4 2.63 40.36 A 1.40 ally 38.70 6.6 2.63 40.36 A 1.40 ally 38.76 6.6 2.63 40.36 A 1.40 ally 38.76 6.6 2.63 40.36 A 1.40 ally 38.76 6.6 2.63 40.36 A 1.40 ally 38.66 6.6 2.63 40.36 A 1.40 ally 44.00 6.6 5.6 A 1.40 ally 43.66 44.40 A 1.40 4.44.00 A 1.40 ald 44.40 2.6 A A <td></td> <td></td> <td>24.20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>32.41</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			24.20						32.41							
26 90 8 13 26 90 28 50 26 80 28 50 28 50 31 57 28 50 28 50 28 50 28 50 31 00 26 56 31 00 26 56 31 00 20 56 31 00 20 56 31 00 20 56 31 00 20 56 31 00 20 56 31 00 20 56 31 00 20 56 31 00 20 56 31 00 20 56 32 28 6.4 26.5 263 6.6 1843 110 22 28 111 22 28 111 22 28 111 22 28 111 140 111 140 111 140 111 140 111 140 111 140 111 140 111 1440			24.30						27.75				ĩ			
26.90 31.57 2		Red brown and locally grey green highly	26.90				1				8 13		1			
28.50 31.57 31.57 28.50 31.00 26.68 31.00 20.56 20.56 31.00 6.4 2.63 40.36 38.70 6.4 2.63 40.36 38.70 6.4 2.63 40.36 y 38.78 18.43 y 38.78 18.43 y 38.78 18.43 y 40.00 6.6 18.43 40.00 6.6 16.6 14.05 44.40 2.6 8.58 0 44.40 2.6 8.58 0 44.40 2.6 8.58 0 44.40 2.6 8.58 0 44.40 2.6 8.58 0 44.40 2.6 0 14.03 44.40 2.6 0 14.03 44.40 2.6 0 14.03 44.40 2.6 0 14.03 44.40 2.6 0 14.03 44.40 2.6 0 14.03 <		weathered silty MUDSTONE, weak. (Zone III).	26.90				1			> <	22.21	1				
:: 28.60 31.00 36.50 6.4 2.63 38.30 9 38.70 40.36 6.4 2.63 40.36 6.4 2.63 40.36 18.43 7.136 6.6 6.6 7.2228 16.94 4.40 7.111 7.138 7.138 7.138	1	Red brown and locally grey green, moderately	28.50						31.57		1. 		1			10
31.00 31.00 20.56 38.50 6.4 2.63 38.70 40.36 38.70 18.43 38.70 18.43 38.70 5.4 38.70 2.22.28 40.00 5.6 40.00 5.6 40.00 5.6 42.00 5.6 44.00 2.6 44.40 2.6 44.40 2.6 44.40 2.6 44.40 2.6		fractured, moderately weathered, silty MUDSTONE;	28.60					1	26.68			-				
31.00 31.00 20.56 36.50 6.4 2.63 38.70 18.43 38.70 18.43 38.78 2.228 38.78 2.228 40.00 6.6 40.00 6.6 40.00 6.6 40.00 6.6 41.00 16.94 42.00 16.94 43.65 14.05 44.40 2.6 44.40 2.6 44.40 2.6 44.40 2.6 44.40 2.6		fragments moderately weak to weak. (Zone II).														
36.50 6.4 2.63 40.36 38.30 6.4 2.63 40.36 38.70 18.43 18.43 38.70 5.6 22.28 40.00 6.6 16.94 40.00 6.6 14.0 41.40 2.6 14.05 44.40 2.6 14.05 44.40 2.6 14.05 44.40 2.6 14.05 44.40 2.6 14.05 44.40 2.6 14.05 44.40 2.6 14.05		Red brown,fragmented,highly weathered,silty	31.00			-			20.56			:.				
36.50 6.4 2.63 40.36 38.70 6.4 2.63 40.36 38.70 18.43 18.43 38.70 6.6 16.94 40.00 6.6 16.94 40.00 6.6 14.05 42.00 6.6 14.05 43.65 14.05 8.58 44.40 2.6 14.05 44.40 2.6 0 44.40 2.6 0	1	MUDSTONE (weak fragments). Zone III to locally														
36.50 6.4 2.63 40.36 38.70 6.4 2.63 40.36 38.78 22.28 18.43 38.78 22.28 16.94 38.78 6.6 16.94 40.00 6.6 16.94 42.00 42.00 11.11 42.00 2.6 14.05 44.40 2.6 14.05 44.40 2.6 14.05 44.40 2.6 0 44.40 2.6 0 44.40 2.6 0 44.40 2.6 0 44.40 2.6 0		zone II.					1									
38.30 38.30 40.36 38.78 18.43 38.78 22.28 38.85 6.6 40.00 6.6 42.00 6.6 42.00 8.6 42.00 8.58 42.00 8.58 44.00 2.6 44.40 2.6 44.40 2.6		Red brown and locally grey green, highly to	36.50		6.4	2.63						0.99				
38.70 18.43 38.78 22.28 38.95 6.6 40.00 6.6 42.00 6.6 42.00 6.6 42.00 8.6 11.05 12.6 114.05 44.40 2.6 44.40 2.6		moderately fractured, moderately weathered, silty	38.30		-				40.36				1	-		
38.78 22.28 38.85 16.94 38.85 6.6 40.00 6.6 42.00 6.6 42.00 6.6 42.00 8.58 114.05 8.58 44.40 2.6 44.40 2.6		MUDSTONE, weak to modderately weak. (Zone II	38.70						18.43							
38.85 6.6 40.00 6.6 40.00 6.6 42.00 6.6 42.00 8.6 43.65 14.05 44.40 2.6 44.40 2.6		with some III bands throughout). Becoming slightly	38.78						22.28							
40.00 6.6 42.00 42.00 43.65 43.65 43.65 14.05 44.40 2.6 44.40 2.6		fractured and moderately strong between	38.85						16.94							
42.00 42.00 43.65 44.00 44.40 44.40 2.6 8.58 8.58 8.58 8.58 8.44 44.40 2.6 7 7 7 8.58 8.58 8.58 8.58 8.58		36.00-37.00m; 38.60-38.80m; 39.30-39.60m.	40.00		6.6					4	1.40		J			
43.65 43.65 44.00 8.58 44.40 2.6 44.40 2.6		Red brown, locally grey green, slightly to moderately	42.00							۷	1.11			-		
tly 43.65 g and 44.00 2.6 8.58 44.40 2.6 D 44.40 2.6 A 44.40 A 44.40 A A A		fractured, slightly weathered, silty MUDSTONE,														
43.65 43.65 44.00 8.58 44.40 2.6 44.40 2.6	1	moderately weak. (Zone II).														
44.00 2.6 8.58 44.40 2.6 44.40 2.6 A A 44.40 A A A A A A A A A A A A A A A A A A A		Red areen and arev moderately fractured slightly	43.65				10		14.05						-	
44.40 2.6 D 44.40 A A 44.40 A A 44.40 A A A A A A A A A A A A A A A A A A A		weathered, silty MUDSTONE, moderately strong and	44.00	1				1	8.58							
44.40 A 44.40 A		locally strong. (Zone II).	44.40		2.6					٥	14.93					
A			44.40							A	32.63					
			44.40							4	71.38					

	Firm,reddish brow	occassional subro	(weathered marl).		Red brown, slightly	weathered, silty MI strong. (Zone I-II).		69 Red brown,compl	(stiff clay-Keuper	bands of zone III-IVa).		Red brown,fragm Fragments mode	Zone II).	Red brown,comp	Il with some hands of zone []			Grav graan slight	weathered SII TS		Red brown slight	weathered, silty N	strong. (Zone I-II).	Red brown, highly
Description	Firm,reddish brown,sandy silty CLAY with	occassional subrounded, fine to coarse gravel			Red brown, slightly fractured, fresh to slightly	weathered,silty MUDSTONE,moderately strong to strong. (Zone I-II).	 A second metal metal second sec	Red brown, completely weathered MUDSTONE,	(stiff clay-Keuper marl zone IVa with some weak	IVa).	· · · · · · · · · · · · · · · · · · ·	Red brown,fragmented,moderately silty MUDSTONE Fragments moderately weak to moderately strong.		Red brown,completely fractured,slightly weathered	the of zone I)			Grev green slightly fractured fresh to slightly	weathered SII TSTONE moderately strong. (Zone I-II)		Red brown slightly fractured fresh to slightly	weathered sitty MUDSTONE, moderately strong to).	Red brown, highly to completely weathered, silty
(m)	18.00	19.00	20.00	00.12	23.30	24.00		18.50	19.55	20.50	21.50	23.70		25.10	25.40	27 40	27.40	27.50	27.50	27.55	28.00	28.10		29.15
Moisture						2.8												2.3		2.3				
content % Saturated					4.1																			
Bulk density	Mg/m ³				2.67							1			-						;			
Samp	Cone	Split	Split	Cone				Cone	~	Cone	Cone				1	1				-			-	
S.P.T der "N"	71	74	59	061/08				78/150	94	96/150	50/75												(
Cu (from Field	MN/m ²	1								1				21.28	12.86						9.87	25.46		4 1 1 1 2
<u> </u>				_		<					-	٥		1	1	0	4	0	4	۷		i i		٩
it load tests) Laboratory	Ax/Dia MN/m ²					0.60				1		47.67	1	-		4.15	23.32	18.15	31.12	53.91	1		-	19.07
U.C.S MN/m ²		1	,	1	11.40								í		1							1		
Triaxial (undrained) c., b.,	MN/m ²														-	1	I .				4			
ndrained) 	(deg)								-															
Triaxial (drained) c' h'	MN/m ²																							
draine ^{h'}	(deg)																• 1							

3H No	Description	Depth (m)	Moisture Natural	Moisture content % Natural Saturated	Bulk density Mg/m ³	S.P.T Sampler	Z.	Cu (from Field MN/m ²	Cu (from Point load tests) Field Laboratory MN/m ² Ax/Dia MN/m ²	nt load tests) Laboratory Dia MN/m ²	U.C.S MN/m ²	Triaxial (undrained) c,	hdrained) ^d (deg)	Triaxial (drained) c' h' MN/m ² (deg)	(drained) Å' (deg)
69	Red brown,slightly to moderately fractured, moderately weathered,silty MUDSTONE,moderately weak to moderately strong. (Zone II with thin bands of very weak zone III).	36.20 36.30 36.40						24.93 25.46 26.15							
	Red brown, slightly fractured, slightly weathered, silty MUDSTONE, moderately strong. (Zone II with thin bands of very weak zone III and strong zone I).	37.15 37.15 39.60						15.31	D K	14.00 35.65					
	Red brown,highly fractured,moderately weathered silty MUDSTONE,moderately weak to moderately strong. (Zone II with very thin bands of very weak zone III).	44.00						16.39							
70	Red brown,completely weathered,fragmented to fine to coarse gravel sized,silty MUDSTONE,very weak with weak to hard bands. (Zone III with bands of II and IVa	19.20 20.30				Cone	63 89/150								
	Red brown highly to completely weathered silly MUDSTONE, very weak to hard. (Zone IVa and III with bands of very weak zone III from 22.50m to 22.60m and 23.20m to 23.30m.	22.00 22.80				Cone	83/112	5.38							
	Red brown and grey green, moderately to slightly	25.60							A	49.61					
	weathered, silty MUDS LONE, moderately weak to moderately strong. (Zone II). From 26.80m to 27.10m	25.70						41.89	A	33.30					
	moderately strong band.	26.80 27.50						67.82 15.05							
		27.50						18.82						,	
	Red brown moderately weathered, moderately	30.00						45.56				1		-	
	fractured highly silty MUDSTONE. (Zone II	31.00						58.09					· · · ·		
	moderately weak with moderately strong pands from 30.90-31.18m.														

亩

BH No.	Description	Depth	Moisture	Moisture content %	Bulk	S.P.T	L	Cu (from	Cu (from Point load tests)	U.C.S	Triaxial (undrained)	drained)	Triaxial	Triaxial (drained)
		(m)	Natural	Natural Saturated	density	Sampler	N	Field	Laboratory	MN/m ²	5	φ	ъ	÷
					Mg/m ³			MN/m ²	Ax/Dia MN/m ²		MN/m ²	(deg)	MN/m ²	(deg)
20	Red brown, highly weathered, fractured, silty	31.40						41.21						1
	MUDSTONE, completely weathered and clayey in	31.50		4.3	2.64	1				1.10	:			1
	parts. (Zone III, very weak to weak with fragmented bands of zone II													
	Red brown,silty MUDSTONE, moderately strong	34.90						1.32					1	
	(Zone II-I).	35.00						8.53						
	Red brown slightly fractured slightly weathered	38.00			-			19.99						
1	siltv MUDSTONE strong. (Zone I).	38.10				-		18.59	A 12.61					
		38.15		and the second s					A 18.86			1		
	Red brown highly fractured moderately to highly	41.00						19.62						
	weathered silty MUDSTONE moderately weak to	41.35		E and another store is a				12.28						
	weak. (Zone II-III with bands of zone II and bands	41.35						18.32						
	of completely weathered clayey zone IVa and III;					-								
	weak to very weak, notably between 40.50-40.90m.													
1	Red brown, highly weathered, fragmented silty	20.00				Split	50/40							
	MUDSTONE,weak to moderately weak. (Zone III-II).	21.00				Split	50/20							
	Grev green slightly fractured fresh to slightly	25.40	a de samelar) de la ser					41.25						
	weathered, SILTSTONE, moderately strong to strong.										0			
	(Zone I-II).											i. I		
	Red brown and locally grey green ,slightly fractured	25.90						17.60				: : :		
	fresh to slightly weathered, silty MUDSTONE,	25.95						19.02						
	moderately strong to strong. (Zone I-II).	26.00						21.85				1		3
		26.10		4.5	2.56					6.10				1
		26.35		7.3										
		26.55							A 36.66					1
÷		28.40						19.30						
		26.45	-	3.8	2.70					24.70			1	
		26.55	2.0	1		-								
		26.60							A 22.46					

12		Depth (m)	Moisture Natural	Moisture content % Natural Saturated	Bulk density Mg/m ³	S.P.T Sampler	r.	Cu (from Field MN/m ²	Cu (from Point load tests) Field Laboratory MN/m ² Ax/Dia MN/m ²	oint load tests) Laboratory Ax/Dia MN/m ²	U.C.S MN/m ²	Triaxial (undrained) c. & MN/m ² (deg)	drained) [¢] (deg)	Triaxial (drained) c' h' MN/m ² (deg)	(drained) Å' (deg)
-	Red brown and locally grey green , slightly fractured fresh to slightly weathered, silty MUDSTONE, moderately strong to strong. (Zone I-II).	28.65 28.75						16.39							
	Red brown and locally grey, intact to slightly to moderately fractured, slightly weathered, slity MUDSTONE, moderately strong with moderately weak bands. (Zone II with occassional thin bands of zone III).	30.05							< <	18.58 14.73					
1	Red brown, intact to moderately fractured, fresh to highly weathered, silty MUDSTONE, moderately weak to moderately strong. (Zone II-I).	40.90		3.6	2.63						12.70				
72	Red brown,highly to completely weathered silty MUDSTONE,stiff clay with some moderately weak fine gravel sized lithorelicts. (Zone IVa with bands of zone II-III).	19.00				Split	80					135	0		
	Red brown,locally grey green,highly to completely weathered,silty MUDSTONE,very weak,clayey in parts. (Zone III to IVa).	24.50				Cone	50/25								
	Red brown and grey green, slightly fractured, slightly weathered, slity MUDSTONE, moderately strong to	26.20 26.30						24.05 20.96							
	strong. (Zone II with bands of strong zone II-I).	26.55 28.20	2.4	4.3	2.60				۲	17.66	9.40				
1	Red brown,occassionally grey green,moderately fractured moderately weathered silty MUDSTONE.	28.55 28.80						26.01	۲	3.83					4 I
	moderately strong. (Zone II). Grey green strong band at 30.30m to 30.65m.	29.95 29.95	3.5						QA	6.22					
		30.25				-		20.58							

Red brown,highly to moderately frac moderately weathered, silty MUDSTC moderately weak to moderately stron strong from 36.30m to 37.00m. (Zon Vertical fracture from 35.40-35.90m. Red brown and locally grey green,m fractured, slightly to moderately weat MUDSTONE, moderately weak and strong bands. (Zone II with bands o 40.60m -40.90m and 41.00m-41.40. Red brown, slightly fractured, slightly fresh, silty MUDSTONE, moderately fresh, silty MUDSTONE, moderately (Zone II-I). Red brown, completely weathered si (stiff clay)- Keuper marl Zone IVa). Red brown with some grey green m weathered, moderately strong with some stong with some zone I). At 28.00-28.15n fine to coarse gravel sized. At 29.1	Red brown,highly to moderately fractured, slightly to moderately weathered, silty MUDSTONE, bands of moderately weathered, silty MUDSTONE, bands of strong from 36.30m to 37.00m. (Zone II). Vertical fracture from 35.40-35.90m. Red brown and locally grey green, moderately fractured, slightly to moderately weathered, silty MUDSTONE, moderately weak and moderately strong bands. (Zone II with bands of zone III from 40.60m -40.90m and 41.00m-41.40m.). Red brown, slightly fractured, slightly weathered to fresh, silty MUDSTONE, moderately strong to strong. (Zone II-I). Red brown, completely weathered silty MUDSTONE, fresh fractured in the local in the silty from to strong.	(m) 36.10 40.30 42.65 43.70	vaturated	ed density Mg/m ³	Sampler	z		Ax/Dia MN/m ²	- WN/W	MN/m ²	۰ (deg)	C. MANJum ²	e
Red brown,highly to moderately weakher moderately weak to strong from 36.30m Vertical fracture fror Red brown and loca fractured, slightly to MUDSTONE, model strong bands. (Zon 40.60m -40.90m an A0.60m -40.90m an Red brown, slightly fresh, slity MUDSTC (Zone II-I). Red brown, complei (stiff clay)- Keuper (stiff clay)- Keuper (stiff clay)- Keuper moderately strong with some zone I). fine to coarse grav	to moderately fractured, slightly to ered, silty MUDSTONE, bands of to moderately strong, becoming m to 37.00m. (Zone II). rom 35.40-35.90m. cally grey green, moderately cally grey green, moderately to moderately weathered, silty derately weak and moderately one II with bands of zone III from and 41.00m-41.40m.). y fractured, slightly weathered to TONE, moderately strong to strong. TONE, moderately strong to strong.	36.10 36.15 40.30 42.65 43.70					07 07		-				(deg)
moderately weather moderately weak to strong from 36.30m Vertical fracture fror Red brown and loca fractured, slightly to MUDSTONE, model strong bands. (Zon 40.60m -40.90m an Red brown, slightly t fresh, silty MUDSTC (Zone II-I). Red brown, complet (stiff clay)- Keuper (stiff clay)- Keuper Red brown with sor weathered, modera moderately strong with some zone I). fine to coarse grav	ered,silty MUDSTONE, bands of to moderately strong, becoming m to 37.00m. (Zone II). rom 35.40-35.90m. cally grey green, moderately derately weathered, silty derately weak and moderately one II with bands of zone III from and 41.00m-41.40m.). y fractured, slightly weathered to TONE, moderately strong to strong. TONE, moderately strong to strong.	36.15 40.30 42.65 43.70			_	-	18.49						
Moderately weak to strong from 36.30m Vertical fracture fron Red brown and loca fractured, slightly to MUDSTONE, model strong bands. (Zon 40.60m -40.90m an Red brown, slightly fresh, slity MUDSTC (Zone II-I). Red brown, complet (stiff clay)- Keuper (stiff clay)- Keuper (stiff clay)- Keuper moderately strong with some zone I). fine to coarse grav	to moderately strong, becoming m to 37.00m. (Zone II). fom 35.40-35.90m. cally grey green, moderately cally grey green, moderately for moderately weathered, silty derately weak and moderately one II with bands of zone III from and 41.00m-41.40m.). and 41.00m-41.40m.). gractured, slightly weathered to TONE, moderately strong to strong. TONE, moderately strong to strong. fetely weathered silty MUDSTONE, ar marl Zone IVa).	40.30 42.65 43.70					14.07				1		
Vertical fracture from Vertical fracture from Red brown and loca fractured, slightly to MUDSTONE, model strong bands. (Zon 40.60m -40.90m an Red brown, slightly f fresh, silty MUDSTC (Zone II-I). (Zone II-I). Red brown complet (stiff clay)- Keuper (stiff clay)- Keuper (stiff clay)- Keuper moderately strong with some zone I). fine to coarse grav	in to 37.00m. (Zone II). fom 35.40-35.90m. cally grey green, moderately to moderately weathered, silty derately weak and moderately one II with bands of zone III from and 41.00m-41.40m.). y fractured, slightly weathered to TONE, moderately strong to strong. TONE, moderately strong to strong. letely weathered silty MUDSTONE, er marl Zone IVa).	40.30 42.65 43.70											
Red brown and loca fractured, slightly to MUDSTONE, model strong bands. (Zon 40.60m -40.90m an Red brown, slightly f fresh, slity MUDSTC (Zone II-I). Red brown, complet (stiff clay)- Keuper (stiff clay)- Keuper (stiff clay)- Keuper moderately strong with some zone I). fine to coarse grav	cally grey green, moderately to moderately weathered, silty derately weak and moderately one II with bands of zone III from and 41.00m-41.40m.). y fractured, slightly weathered to TONE, moderately strong to strong. TONE, moderately strong to strong. letely weathered silty MUDSTONE, er marl Zone IVa).	40.30 42.65 43.70								- - - -			
fractured, slightly to MUDSTONE, moder strong bands. (Zon 40.60m -40.90m an Red brown, slightly i fresh, slity MUDSTC (Zone II-I). Red brown, complei (stiff clay)- Keuper (stiff clay)- Keuper moderately strong with some zone I). fine to coarse grav	to moderately weathered, silty derately weak and moderately one II with bands of zone III from and 41.00m-41.40m.). y fractured, slightly weathered to TONE, moderately strong to strong. TONE, moderately strong to strong. Ietely weathered silty MUDSTONE, er marl Zone IVa).	42.65					3.81						
MUDSTONE, moder strong bands. (Zon 40.60m -40.90m an Red brown, slightly f fresh, slity MUDSTC (Zone II-I). Red brown, complet (stiff clay)- Keuper (stiff clay)- Keuper (stiff clay)- Keuper moderately strong with some zone I). fine to coarse grav	derately weak and moderately one II with bands of zone III from and 41.00m-41.40m.). y fractured, slightly weathered to TONE, moderately strong to strong. TONE, moderately strong to strong.	43.70					9.15						
strong bands. (Zon 40.60m -40.90m an Red brown,slightly f fresh,slity MUDSTC (Zone II-I). (Zone II-I). Red brown,complet (stiff clay)- Keuper (stiff clay)-	one II with bands of zone III from and 41.00m-41.40m.). y fractured,slightly weathered to TONE,moderately strong to strong. Ietely weathered silty MUDSTONE, er marl Zone IVa).	43.70											
40.60m -40.90m an Red brown,slightly 1 fresh,silty MUDSTC (Zone II-I). (Zone II-I). (Zone II-I). Red brown complet (stiff clay)- Keuper (stiff clay)- Keuper	and 41.00m-41.40m.). I fractured, slightly weathered to TONE, moderately strong to strong. I etely weathered silty MUDSTONE, er marl Zone IVa).	43.70											
Red brown, slightly f fresh, silty MUDSTC (Zone II-I). Red brown complet (stiff clay)- Keuper (stiff clay)- Keuper med brown with sor weathered, moderal moderately strong with some zone I). fine to coarse grav	y fractured,slightly weathered to TONE,moderately strong to strong. letely weathered silty MUDSTONE, er marl Zone IVa).	43.70									1		
fresh, silty MUDSTC (Zone II-I). Red brown, complet (stiff clay)- Keuper I Red brown with sor weathered, moderal moderately strong with some zone I). fine to coarse grav	TONE, moderately strong to strong. letely weathered silty MUDSTONE, er marl Zone IVa).						20.07						
(Zone II-I). Red brown, complet (stiff clay)- Keuper Red brown with sor weathered, moderal moderately strong with some zone I). fine to coarse grav	letel <u>y</u> weathered silty MUDSTONE, er marl Zone IVa).												
Red brown, complet (stiff clay)- Keuper I Red brown with sor weathered, moderal moderately strong V with some zone I). fine to coarse grav	letely weathered silty MUDSTONE, er marl Zone IVa).									1			
(stiff clay)- Keuper I Red brown with sor weathered,moderal moderately strong with some zone I). fine to coarse grav	er marl Zone IVa).	19.00								51	0		
Red brown with sor weathered,moderal moderately strong with some zone I). fine to coarse grav													
weathered, moderat moderately strong v with some zone I). fine to coarse grav	Red brown with some grey green moderately	26.00			Cone	50/10							
moderately strong v with some zone I). fine to coarse grav	weathered, moderately fractured silty MUDSTONE,	28.25						D 26.42					
with some zone]). fine to coarse grav	moderately strong with some stong bands. (Zone II	28.25						A 25.85			-		
fine to coarse grav	with some zone I). At 28.00-28.15m: Fragmented to	29.15					54.79						
	fine to coarse gravel sized. At 29.15m:Grey band.	29.95	6.3			-							
		30.40						D 6.47					
		30.40	-	-				A 39.65	1				1 , ,
Red brown highly w	Red brown highly weathered completely fractured	32.00		-	Cone	108/225			1				
to medium to coars	to medium to coarse gravel size, silty MUDSTONE,	33.00			Cone	93/125							
moderately weak;c	moderately weak;clayey in parts. (Zone III).												
l interned brown clin	Light rad brown slightly weathered slightly	44.00			Cone	91/100						-	
fractured, silty MUD	fractured silty MUDSTONE, strong. (Zone II-I).		-		1								

BH No	Description	Depth (m)	Moisture	Moisture content % Natural Saturated	Bulk density Ma/m ³	Sampler	L.	Cu (from Field MN/m ²	Cu (from Point load tests) Field Laboratory MN/m ² Ax/Dial MN/m ²	l tests) atory MN/m ²	U.C.S MN/m ²	Triaxial (undrained) c, ^b MN/m ² (deq)	drained) ^(deq)	Triaxial (drained) c' h' MN/m ² (deg)	drained) Å' (deg)
74	Red brown,highly to completely weathered, completely fractured,silty MUDSTONE,very weak with weak fragments, clayey. (Zone III-IVa).	18.00			0	Split Split	91 104								
	Red brown and grey,highly weathered,silty MUDSTONE, Very weak. (Zone III with some IVa).	21.00				Split	50/300								
	Red brown and grey,moderately weathered,weak, silty MUDSTONE. (Zone III to II).	22.50				~	50/75						:		
	Red brown and locally grey green, intact to slightly	26.65	2.9						۲	1.28					
	fractured, slightly weathered, sifty MUDSTONE,	26.70	2.2	0	09 0		1		< <	42.34	17 00				1
	Moderately weak band at 27.40m-27.80m.	27.00		4.3	2.66				¢		5.20				1
	Becoming moderately to highly fractured below	27.25				1		19.08		100					
	27.40m depth.	27.35						13.98							
	Red brown, moderately fractured, slightly weathered	28.50	-				1		۷	27.38	i				
	silty MUDSTONE, moderately weak to moderately	28.55							۷.	62.74	1				
	strong. (Zone II).	29.30	2.7			i			۷	37.62	1			1	
	Grey green, slightly weathered SILTSTONE, strong. (Zone 1-1).	29.50	2.3												
	Red brown,moderately weathered,moderately fractured,silty MUDSTONE,moderately strong. (Zone II with some III).	44.50						22.43							
76	Red brown highly weathered clavey gravel sized	20.20				Split	52								
2	silty MUDSTONE, very weak (fragments moderately weak)Zone III.	21.70 23.20				Cone	52 99								
	Light grey SILTSTONE and red brown silty MUDSTONE, moderately weathered, fragmented to medium to coarse gravel sized. Mod weak. (III-II).	24.00				Cone	50/75								

BH No.	Description	Depth	Moisture	Moisture content %	Bulk	S.P.T	L.	Cu (from	Cu (from Point load tests)	-		Triaxial (undrained)	drained)	Triaxial (drained)	Iraineg
		(m)	Natural	Natural Saturated	density	Sampler	N.	Field	Laboratory		MN/m ²	ບັ	φ	-υ	÷
					Mg/m ³			MN/m ²	Ax/Dia MN/m ²			MN/m ²	(deg)	MN/m ²	(deg)
76	Grey, slightly weathered SILTSTONE, moderately strong. (Zone II).	29.25		3.3	2.57						35.20				
	Red brown, slightly weathered, moderately fractured	29.50							A 29	29.24					
	silty MUDSTONE, moderately strong with strong														
	At 29.45-34.20m: Joint 90 degrees with calcite infill.		1							1	t. L	1			
	At 30.30-32.25m: Thin, completely fractured bands.														
	At 31.90-32.05m:Grey band.												-	-	
	Red brown, slightly weathered, fragmented to	41.00			-			8.40							
	coarse gravel and cobble size silty MUDSTONE.										1				
	Moderately strong fragments. (Zone II-III). At level														
	41.80-41.85m:Void infilled with calcite.														
	Red brown,moderately weathered,silty MUDSTONE	43.90						20.35						1	
	moderately strong. (Zone II).	43.95						16.39							
	At 44.60-44.70m: Moderately weathered,	44.90						5.46							
	completely fractured to medium gravel size, weak	44.95						12.77			1				
	with moderately strong fragments. (Zone III).									-					
	At 43.50-45.50m:Moderately weathered,			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1											
	completely fractured to medium to coarse gravel								1						
	size,weak with moderately weak fragments.					1									
1	Red brown, moderately weathered, moderately	55.40						5.91							
	fractured, silty MUDSTONE, moderately strong and	55.80						5.91							
1	strong.(Zone II). At 55.20-55.50m:Solution cavities	55.90						8.01	1						
	present.	55.95						6.85							
	Red brown,moderately weathered,moderately	56.60						25.57							
	fractured, silty MUDSTONE, moderately strong with	57.30						12.68							
	bands of strong and moderately weak. (Zone II	57.34						17.34	4						
	with thin band of zone II-III). At 57.00-57.95m:Highly	57.45						16.82		Ì					
	fractured										_				

BH No.	No. Description	Depth	Moisture	Moisture content %	Bulk	S.F	S.P.T	Cu (from	Cu (from Point load tests)	-	U.C.S	Triaxial (undrained)	Irained)	Triaxial (drained)	drained)
		(m)	Natural	Natural Saturated	density	Sampler	N.	Field	Laboratory	-	-	ซื	.	τυ	÷
					Mg/m ³			MN/m ²	Ax/Dia MN/m ²			MN/m ²	(deg)	MN/m ²	(deg)
17	7 Red brown completely weathered silty MUDSTONE.	22.00	1			Cone	98			1					
		23.00				Cone	88/150		1		1				
	moderately weak zone II.)	24.00				Cone	91								
	Red brown, highly to completely weathered silty	28.60					1		0	79.65					
	MUDSTONE, very weak. Zone III-IVa with	28.70								38.53	-				
	occassional thin bands of zone II and with bands of														
	very weak zone IVa-III from 27.90-28.00m;28.35-														
	28.45m.			1										i.	
	Red brown and locally grey green, slightly fractured	29.10							A.	42.44					
	slightly weathered, silty MUDSTONE, moderately	29.40		4.4	2.74				1		3.00	1	1		
	strong to strong. (Zone I-II). Core length up to 0.4m.	29.70		3.8	2.68						20.80	* 			
		29.90		3.8	2.66						17.70				
	Red hrown moderately weathered highly to	30.70			-				0	07 23			1	,	
	moderately fractured silty MUDSTONE moderately					-			-		1	-	1		
	strong. (Zone II).														
1	Red brown and locally grey green,moderately	32.60		1	-	1	1	9.53							
	fractured, moderately weathered, silty MUDSTONE,	33.10		4.1	2.50						8.40				
	(fragments moderately weak to moderately strong) (Zone II).													1	
-															
	Red brown and grey, slightly weathered silty	33.40		4.0	2.65						20.00				
1	MUDSTONE, strong. (Zone I-II).										1				
	78 Red brown,completely weathered silty MUDSTONE	23.50				Cone	117/225								
	(stiff clay). Zone IVa with moderately weak bands	24.50				Cone	50/75								
1	of zone III-II.			and the second second second									1		
	Red brown and locally grey green, slightly fractured	27.35			1				A 12	12.96			-		
	slightly weathered, silty MUDSTONE, moderately	27.50	1					18.34							
	strong, locally strong. (Zone II with some I)	27.60						22.44							
		27.70					_	19.08	_	_		_			

0 7				MINISTALE CONTENT /0	VIIna	0.1.1		CU (ITOTH POINT IOAU TESIS)		loton r	0.0.0	Inalia Iniu Iniualia	100000000000000000000000000000000000000	Inivalli	Inalia In Interior
		(m)	Natural	Saturated	density	Sampler	N	Field	Labo	Laboratory	MN/m ²	ບັ	. .	-υ	÷
					Mg/m ³			MN/m ²	Ax/Dia	MN/m ²		MN/m ²	(deg)	MN/m ²	(deg)
	Red brown and locally grey green, slightly fractured	28.00						24.66	1			1	1		-
	slightly weathered, silty MUDSTONE, moderately	28.10		4.0	2.75		:				22.30	1		1	
	strong, locally strong. (Zone II with some I)	28.60		5.5	2.68			9.05	A	31.31	2.00	-			
		28.65							A	9.63					
	Red brown, slightly fractured, slightly weathered,	30.30	5.8	1		1								,	
	silty MUDSTONE, moderately weak to moderately	30.80	1 1 1		•	1		15.55			1	-			
	strong. (Zone II).	31.00						19.10							
	Red brown and locally grey green, slightly fractured,	31.65					1		٥	8.86			•		
	slightly weathered, silty MUDSTONE, moderately														
	strong to strong. (Zone I-II).														
	Red brown,fragmented,highly weathered,silty	36.85							۷	11.43				2	
	MUDSTONE, moderately weak with weak bands.														
	(Zone II with bands of very weak III-IVa).													r	
	Red brown,fragmented,highly weathered,silty	37.65							٥	9.53					
	MUDSTONE, very weak to weak. (Zone II-III with a														
	band of very weak zone III from 37.40-37.50m.		1												
	Red brown and locally grey green, moderately	38.90						8.50							
	fractured, moderately weathered, silty MUDSTONE,											_			
	moderately strong. (Zone II).														
	Red brown and locally grey green, moderately	41.90						20.01						i i	
	to highly fractured, moderately to slightly weathered														
	silty MUDSTONE, moderately strong with some														
	moderately weak bands. Zone II).					1									
	Red brown, slightly fractured, moderately to slightly	43.70							٥	7.26					
	weathered, silty MUDSTONE, moderately weak to	43.70							٨	37.31					
	moderately storng. (Zone II).										1		 K		-
									1	1					

BH No.	Description	Depth (m)	Moisture Natural	Moisture content % Natural Saturated	Bulk density Mg/m ³	S.P.T Sampler	I.	Cu (from Field MN/m ²	Cu (from Point load tests) Field Laboratory MN/m ² Ax/Dia MN/m ²	nt load tests) Laboratory /Dia MN/m ²	U.C.S MN/m ²	Triaxial (undrained) c., b., MN/m ² (deg)	drained) [¢] (deg)	Triaxial (drained) c' h' MN/m ² (deg)	drained) Å' (deg)
62	Red brown and grey green ,completely weathered, silty MUDSTONE,(stiff clay with moderately weak lithorelicts) (Zone IVa-III).	22.70 23.20				~ ~	88/400 50/400								
	Red brown,highly to completely weathered,silty MUDSTONE,very weak to hard. (Zone III with bands of IVa-II).	23.80 24.00				~ ~	50/200 86/150								
	Red brown and locally grey green,moderately to highly weathered,silty MUDSTONE,very weak to weak. (Zone III to locally zone II).	27.75						10.31							
	Red brown, locally grey green, slightly to moderately	28.30						39.10							
	fractured, slightly weathered, silty MUDSTONE, with vertical fractures, moderately strong, with moderately weak and strong bands. (Zone II with	28.80 30.30		4.3 5.4	2.66						4.70				
	some zone I).	31.15							۵	2.49					
		31.15							۲	27.45			1		
		31.20						14.64					1		
	Grey green, slightly weathered, calcerous SILTSTONE, strong. (Zone I-II).	31.45							۷	59.67					
	Red brown locally grey gren, moderately fractured,	31.75					1		۷	24.37					
	slightly to moderately weathered, silty MUDSTONE,	31.80							۷	24.41				1	
	moderately strong. (Zone II).	32.00							۵	49.78					
		32.00							۷	73.05					
		32.51	3.0						A	3.41					
		32.60							A	35.70			1		
	Red brown and locally grey green, highly to	38.20				1			A	10.92			1	-	
6 1	moderately fractured, moderately weathered, silty	40.50						8.57							
	MUDS I ONE, moderately weak with some moderately strong and weak bands. (Zone to locally III).									•					

BH No	Description	Depth (m)	Moisture Natural	Moisture content % Natural Saturated	Bulk density Ma/m ³	S.P.T Sampler	r F	Cu (from Field MN/m ²	Cu (from Point load tests) Field Laboratory MN/m ² Ax/Dial MN/m ²	Point load tests) Laboratory Ax/Dia MN/m ²	U.C.S MN/m ²	Triaxial (undrained) c., & MN/m ² (deo)	hdrained) \$\delta\$. (dea)	Triaxial c' MN/m ²	Triaxial (drained) c' h' NN/m ² (deg)
79	Red brown and grey, slightly to moderately weathered, moderately fractured, silty MUDSTONE, moderately weak to moderately strong. (Zone II).	43.60		3.2	2.54						12.00				
80	Red brown,highly weathered,clayey,fragmented, silty MUDSTONE,very weak to hard. (Zone IVa, becoming IVa-III and weak).	21.00 22.60				Split ?	132 50/75								
	Grey green, slightly fractured, fresh to slightly	28.90	1						٥	24.37					
	weathered,SILTSTONE,moderately strong to strong	28.90							۷	53.46					
	(Zone I-II).	29.00							A	44.74					
	And a second of the second sec	29.10		4.7				21.41							1
	Red brown, slightly fractured, slightly weathered,	29.15			1			12.45	1						
	silty MUDSTONE, moderately strong and strong. Core	29.30						13.69							
	length upto 0.4m. (Zone I-II).	29.40						14.28							
1		29.75		3.8	2.66						19.70				
		30.00		3.9	2.64						13.20				
		30.20		4.1	2.59						9.90	-		1	
	Red brown, slightly fractured, slightly weathered,	31.90	-				ļ		۷	0.91					
1	silty MUDSTONE, moderately strong to strong.	31.95							۷	3.94					
	(Zone I-II).	32.00							۲	6.46				1	
	Red brown and arev areen slightly fractured to	33.15		4.5	2.58		-		1		5.80	1			
	slinhtly weathered silty MUDSTONE moderately	33.50	4	1	1				٥	29.66					
1	strond with vertical fractures (Zone I-II)	33.50							A	46.44					
		33.60	1.9					-	٥	48.87					
		33.80									17.30			i i	- - -
	Red brown and locally arey green fragmented	36.50				6	50/20							-	1
	moderately weathered silty MUDSTONE fragments														1
	moderately strong. (Zone II).														

	Description	(m)	Moisture	Moisture content %	density	Samuler Samuler	2	Cu (from Field	Cu (from Point load tests)		U.C.S T	Triaxial (undrained)	frained)	Triaxial (drained)	(drained
					Mg/m ³			MN/m ²	Ax/Dia MN/m ²			MN/m ²	(deg)	MN/m ²	(deg)
-	Red brown and locally grey green, intact to slightly	28.10						24.45			i		1		
	fractured fresh to slightly weathered silty	28.15						28.40							
-	MUDSTONE, moderately weak to moderately strong,	28.20						21.28							
	with occassional strong bands. (Zone I-II).	28.30							A 11.62	62					1
9		28.45						39.79							
		28.65						21.41							
		28.75						38.42							
		29.00						39.78							
		29.40						71.00			1				1
		29.60						42.77		_					
		29.70		5.3	2.60						6.60				
		30.15		3.6	2.60						10.90				
	Red brown,fragmented to fine-medium gravel,	30.60							D 5.15	5	4				
	slightly weathered, silty MUDSTONE, (fragments												;	-	
	moderately weak). (Zone II with a band of very									-					
	weak zone IVa-III from 31.30-31.40m.)														
	Red brown, highly fractured, slightly weathered,	36.50						15.69			1				
	silty MUDSTONE, moderately weak. (Zone II with												-		
	bands of moderately weak to moderately strong			-											
	zone I-II from 36.60-36.70m.														
	cavities.														
	Red brown, intact to moderately fractured, fresh to	40.40					1	21.41							
	slightly weathered, silty MUDSTONE, moderately	40.44						38.79		_					
	weak, with occassional moderately strong bands.	40.60						20.33							
	(Zone II-I).	40.70						33.65							
		40.73					1	27.65			i.		х. Г.		
		40.76					1	36.40					-		
		40.84						25.43							
		40.87						10.41							a a la con
										-					

	Depth (m)	Moisture Natural	Moisture content % Natural Saturated	Bulk density Mg/m^3	S.P.T Sampler	L.	Cu (from Field MN/m^2	Cu (from Point load tests) Field Laboratory MN/m^2 Ax/Dia MN/m^2	l tests) atory MN/m^2	U.C.S MN/m^2	Triaxial (undrained) Cu φ " MN/m^2 (deg)	drained) ϕ " (deg)	Triaxial (drained) Cu / / (deg)	(drained)
Red brown,highly fractured,fresh to slightly weathered,silty MUDSTONE,moderately weak to moderately strong. (Zone II-I,with occassional solution cavities.)	43.00						24.42							
Red brown with grey green bands highly	21.00				Split	88								
weathered, fragmented to fine and occassionally	22.50				Split	88/150								
(Zone III to IVa).														
Red brown,moderately weathered,clayey,silty	23.50			-	Split	79/150				-				
MUDSTONE,very weak. (Zone III).														
Red brown and locally grey green to slightly	29.40			1			27.91		1			1		
fractured, slightly weathered, silty MUDSTONE,	29.50						27.71							4 1 1
moderately strong occassionally strong (Zone	29.75						23.87							
II-I).	29.90						22.10							1
	29.95						30.75							1
Red brown and locally grey green, moderately to	30.00		3.6	2.56				٥	12.45	19.40				
slightly fractured, moderately to slightly weathered,	30.05						15.64							
silty MUDSTONE,moderately weak to moderately strong. (Zone II).										1 (A)				
Grey green,intact to slightly fractured,fresh to	32.30								28.88	-				
slightly weathered, SILTSTONE, strong. (Zone I-II).	32.45							٥	33.81					
	32.45								11.39	1				
	32.52					-	45.84						* *	
Red brown,moderately fractured,moderately to	33.90						20.10							
slightly weathered, silty MUDSTONE, moderately	34.00						21.44							
weak to moderately strong. (Zone II with										i	-			
occassional shalv areas.														

	Description	Depth	Moisture content %	CONTENT 70	Vina	S.P.1	-		CU (ITOM POINT IOAD TESTS)	-	0.0.0	Triaxial (undrained)	Irained)	Triaxial (drained)	Inalligin
		(m)	Natural	Saturated	density	Sampler	N	Field	Laboratory		MN/m^2	Cu	φ	Cu	
					Mg/m^3			MN/m^2	Ax/Dia MN/m^2	m^2		MN/m^2	(deg)	MN/m^2	(deg)
85C	Red brown and locally grey green, slightly	31.75		4.2	2.55						6.80				
	fractured, slightly weathered, silty MUDSTONE,	31.90		5.7	2.55		1		-		1.80	1	1		
	moderately strong to strong. (Zone II-I).	32.10		4.4	2.62					1	5.70				
87	Bed brown hinkly weathered clavey fragmented to	21 30				Cone	02		+	+	t	t	T	T	
5	fine gravel sited silv MUDSTONE very weak	20.17					2		-	-					
	(Zone IV) with some III and thin grav sillstone									-			1	1	
	Aborde moderately strong	-			1					1	1				
1	Bindis (issued)						-					1			
	Red brown,moderately to highly fractured,slightly	26.45		3.7	2.71				1		16.30				
	weathered, silty MUDSTONE, moderately strong.	28.35		5.1	2.53		1				3.70				
	(Zone II).						1								
	25.80-26.30m Fragmented to coarse gravel and			2		1			-	 				1	
	cobble size.	-										i i f			
	26.30-27.55m Slightly fractured.		1												
	27.55-28.00mHighly fractured.														
	28.00-28.20m. Fragmented to fine to coarse gravel														
	size.														
	28.20-28.40m Fragmented to coarse gravel and														
	cobble size fragments.	-													
	Dod krown olightly woothered elightly fractured	28.60								8 70	-	1			
	red blown, singling weathered, signing mactured,	28.70			14					11 40					
	Silly MOUSTONE, model ately surving to surving. (zone	28.75							+	7 36					
		29.00		4.4			-			12.20			-		
		29.00	·			-			<u>+</u>	8.13					
		29.00								31.52					
		29.15							D 7.	7.11	-				
		29.15							A 22.	22.55					
		30.05		4.1	2.64		1				10.00				
88	Red brown,moderately to highly weathered,	23.00				Cone	81/150			1					
	fragmented to fine to medium gravel size, silty			i							1		1		
	MUDSTONE, moderately weak, clayey. (Zone II-III).														

BH No.	Description	Depth	Moisture	Moisture content %	Bulk	S.P.T	L.	Cu (from	Cu (from Point load tests)	s) U.C.S	Triaxial (undrained)	undrained)	Triaxial (drained)	drained
1	· · · · · · · · · · · · · · · · · · ·	(m)	Natural	Natural Saturated	density	Sampler	ł	Field	Laboratory	/ MN/m^2		1	Cu	
					Mg/m^3			MN/m^2	Ax/Dia MN/m^2	2~1	MN/m^2	(deg)	MN/m^2	(deg)
88	Red brown, moderately to highly weathered,	24.00				Cone	50/75						,	
	fragemented to fine to medium gravel size, silty	25.00				Cone	81/150							
1	MUDSTONE, clayey, weak. (Zone III to II with thin	26.00				Cone	50/75							
1	bands of zone II).													1
1	Red brown and locally grey green slightly fractured	30.80		1				30.97		1				
	slightly weathered, silty MUDSTONE, moderately	31.70				Split	50/25							
	strong,occassionally strong. (Zone II-I). Vertical													
	fracture at 30.70-31.20m.						-							
1	Red brown and locally grey green slightly fractured,	33.60		4.2	2.65					7.90				
	fresh to slightly weathered, silty MUDSTONE,	33.75	1.7						D 30.41	-				
	moderately strong and strong. (Zone I-II).	33.75		-					A 63.59	6				
		33.80		3.5	2.75									
	Red brown,fragmented,moderately weathered,silty	37.20				Cone	127/260							
	MUDSTONE. Fragments moderately weak to		1				the formation of the second second							
	moderately strong.(Zone II).													i
	Red brown, slightly fractured, fresh to slightly	40.90						15.27						
	weathered, silty MUDSTONE, moderately strong,	41.00						17.66						
	slightly vuggy in parts, occassionally strong. (Zone	41.10						17.48						
	II-I with a moderately weak band of zone III from													
	39.50-39.60m.									-				
89A	-	19.00				Split	50/75							
	gravel sized, silty MUDSTONE, very weak; lithorelicts													
	weak to moderately weak. (Zone III).									· · · · · · · · · · · ·				
	Red brown, highly to completely weathered,	21.00				Split	50/75							
1	fragmented to coarse sand to medium gravel sized,	22.00				Cone	88/150							
	silty MUDSTONE, weak to very weak. (Zone II with													
	some IVa).					ĺ								

BH No.	o. Description	Depth	Moisture	Moisture content %	Bulk	S.P.T	T	Cu (from	Cu (from Point load tests)	ad tests)	U.C.S	Triaxial (undrained)	drained)	Triaxial (Triaxial (drained)
		(m)	Natural	Natural Saturated	density	Sampler	N.	Field	l ah	I aboratory	CVM/NW	-0	-	10	
				Calulated	Mg/m^3		2	MN/m^2	Ax/Dia	Ax/Dia MN/m^2	7	MN/m^2	(deg)	MN/m^2	(deg)
89A	Red brown and locally grey green, slightly	26.55						38.75			1				
	fractured, slightly weathered, silty MUDSTONE,	26.60		3.8	2.68		1		۷	37.14	9.90				
	moderately strong to strong. (Zone II with some	26.70	1.3						D	46.23					
	zone I).	26.70							۷	62.52					
		26.75	4.4												
		26.80							٥	19.71					
		26.80				i			A	30.16					
		27.90							۷	27.46					
		28.00	2.3		-				٥	6.22				*	
		28.80		6.3	2.66			ļ			4.10			1	
1		29.40			-			36.70				-			
		29.60						34.22							
	Red brown, fragmented, highly to completely	33.50				Cone	81/225								
	weathered silty MUDSTONE. Fragments very weak														
3	to weak. (Zone III-IVa;clayey in parts.)														
							1								
60	Red brown, completely weathered silty	18.00				Split	54								
	MUDSTONE, hard, very weak. (Zone IVa-III).	19.50				Split	59								
1		21.00	-			Split	50/75				1			- (
		-							1				-		•
	Grey green, slightly fractured, highly weathered SILTSTONE, strong. (Zone I-II).	26.10	_					61.06							
	Red brown and locally grey green.moderately to	27.80	2.3						۲	73.79					
	slightly fractured slightly weathered slifty	28.40						16.18						к	
1	MUDSTONE.moderately strong occassionally	29.00	4.8							1					
	strong. (Zone II-I).	29.80							٥	46.53					
		29.80						i	A	34.98		-			
8 1		29.95							×	75.55					
1		00.00						0.50							
1	Red brown and locally grey green, moderately to	30.20						20.6		01.00					
	slightly fractured, slightly weathered, slity	30.30		-					A ·	50./9					
1	MUDSTONE, moderately strong; occassionally strong	30.75		at some at some					•	13.94			4 		
	(Zone II-I with bands of III).	30.80						25.83							

06	Description Red brown fragmented, moderately weathered, silty MUDSTONE. fragments moderately weak and	Depth (m) 32.00	Moisture Natural	Moisture content % Natural Saturated 5.2	Bulk density Mg/m^3	Sampler	L.	Cu (from Field MN/m^2	Ax	it load tests) Laboratory Dia∣ MN/m^2	U.C.S MN/m^2	Triaxial (u Cu MN/m^2	5	Triaxial (undrained) Cu φ " MN/m^2 (deg)	undrained) Triaxial (drained) $\phi_{m}^{(deg)}$ Cu $\phi_{m}^{(deg)}$ (deg)
	moderately strong. (Zone II). Red brown,fragmented,moderately weathered,silty MUDSTONE,fragments moderately strong. (Zone II with bands of very weak zone III from 34.20-34.30m 34.50-34.60m. A band of zone II-1 at 36.00-36.10m	35.10				Cone	88/105								
91	Red brown,highly to completely weathered clayey, fragmented silty MUDSTONE,weak. (Zone IVa-III).	18.00				Split Split	80 106						1		
	Red brown and locally grey green,highly to moderately fractured,moderately weathered,silty MUDSTONE,weak with bands of moderately strong. Zone III with bands of II and IVa).	25.00				Split	164/275								
	Red brown and grey green, moderately fractured,	27.75							٥	2.05				1	
	moderately weathered, silty MUDSTONE, moderately strong (Zone III)	27.85	-			~	81/101		A	8.24					
i.	Red brown,moderately fractured to fragmented	30.00							< <	52.02					
	moderately strong. (Zone II). Moderately strong to								:						1
	strong bands of grey green SILTSTONE from														1
	30.60-30.70m and 30.90-31.10m.														
	Red brown, highly fractured, highly weathered, silty	33.00				Split	98/95								
	MUDSTONE,weak to moderately weak. (Zone III with														
	a band of strong SILTSTONE from 32.90-33.10m.						1			9				1	1
1	Red brown,moderately weathered,highly fractured	35.70				Split	127								
	silty MUDSTONE, fragments moderately strong.			1											
	(Zone II, fragmented from 36.80-37.20m and 38.20-														
	38.60m.														

92 11 K								no lineir	on (inoin r oint iogu tests)	1.	0.0.0	(nailiainin) laivaili	Inningin		וומעומו (הומווו
		(m)	Natural	Natural Saturated	dancity	Campler		Field	I ahoratony	aton	CVUNINN	-0	÷	10	
		()		Caluated	Ma/m/3	Campie	2	MN/m^2	Ax	AN/m^2		MN/m^2	(dea)	MN/m^2	(deg)
	Red brown, completely weathered, fragmented to	19.30				Split	53						5		
5	fine gravel sized silty MUDSTONE very weak to	20.50				. ~	50/40			-					
	weak with somr moderately strong fragments	21.55				Cone	50/75								
	77 one IV/a with thin hands of zone II)	22 60				Cono	76/105								
		22.55	Ţ			Cone	86								:
														1	1
	Red brown, highly weathered, fine to coarse gravel	23.55				2	50/75		+						
	sized, silty MUDSTONE, weak with moderately														
	strong lithorelicts. (Zone II-III).														
	Red brown, slightly weathered, moderately	30.35						28.53						,	-
-	fractured, slity MUDSTONE, moderately strong and	31.25							٥	35.79					
	strong, with vertical fractures. (Zone II).	31.25	1.8						۷	64.35					;
	At 27.45-30.10m: Joint 90 degrees.														
-	At 30.55-30.70: Grey band.														
-	At 31.90-32.00: Weak clay band.														
-	At 32.00-32.20m: Fragmented to medium to coarse														
	gravel and cobble sized														
-	Red brown, moderately weathered, fragmented to	35.00				Cone	127/235								
	coarse gravel and cobble size, silty MUDSTONE,	36.00				Cone	92/90						1		
	moderately strong with some strong bands. (Zone II).	37.20						21.71							
63	Red brown moderately fractured slightly weathered	29.05						8.19		T					
1	silty MUDSTONE.moderately strong. (Zone II with	29.10						9.19							
	a band of moderately strong zone I from 29.20 to	29.15						9.78							
	29.30m and 29.50-29.60m.														
	Red brown and slightly grey green, slightly	30.85		5.2	2.60						4.70				
	fractured, slightly weathered, silty MUDSTONE,	31.60		3.6	2.58						9.10				
	moderately strong to strong, with strong bands.		1	1											
	(Zone I-II).										-		1		
										-					

BH No.	Description	Depth	Moisture	Moisture content %	Bulk	S.P.T		Cu (from	Cu (from Point load tests)		Triaxial (undrained)	Irained)	Triaxial (drained)	drained)
		Ē	Natural	Natural Saturated	density Mg/m^3	Sampler	Ż	Field MN/m^2	Laboratory Ax/Dia MN/m^2	2 MN/m^2	Cu MN/m^2	φ " (dea)	Cu MN/m^2	(dea)
94	Red brown, highly weathered, clayey, completely	17.30	1		>	Split	67					10		6
		18.50			0	Split	91	1		1				
	(Zone III).	20.10				Split	77/150							
	Red brown and locally grey green, highly to	23.00	1			Cone	121/185			-				
	completely weathered, silty, friable MUDSTONE, weak	24.00				Cone	134/155							
	to moderately weak. (Zone III with some IVa).	25.00			1.	Cone	125/165							
		26.00				Cone	98/80						i i i · · ·	
	Red brown and locally grey green, slightly to	27.50						15.64		-				
	moderately fractured, slightly weathered, silty	27.55						13.82		T				
	MUDSTONE, moderately strong; occassionally	27.64						22.05						
	strong. (Zone II with thin bands of moderately weak	27.70			1		1	27.12			1			1 1
	zone II and occassional strong bands of zone I with	27.90	and an oral of the second s	 A she was a second secon				58.12				;		
	a thin band of siltstone from 29.50-29.55m.	28.00						42.34						
		28.05						37.67						
		28.12						37.08						
		28.20							D 19.98					
		29.20						12.32						
		29.30						10.27						
		29.38						5.20						
		29.42						5.94						
		29.60							D 8.82					
i		29.80						6.41						
		29.85						13.42						
		29.90						24.98						
		30.00							A 13.77					
1		30.20							D 2.07					
		30.20							A 13.54					
		30.70							A 20.48		, ; ;			
	Red brown and locally grey green, slightly fractured	31.10			ĺ			20.22			1			1
	slightly weathered, silty MUDSTONE, moderately	31.20	6.2						A 4.85				-	
	strong. (Zone I-II).	31.30	2.8			1			D 1.47					
1		31.30							A 26.25					

	Description	(m)	Moisture	Moisture content % Natural Saturated	Bulk density	S.P.T Sampler	N.	Cu (from Field	Cu (from Point load tests) Field Laboratory	It load tests) Laboratory	U.C.S MN/m^2	Triaxial (undrained) Cu ϕ	drained)	Triaxial (drained) Cu	(dra
					Mg/m^3			MN/m^2	Ax/Dia MN/m^2	MN/m^2		MN/m^2	(deg)	MN/m^2	(deg)
	Red brown and locally grey green, slightly fractured	31.40	5.0						٥	2.80					
	slightly weathered, silty MUDSTONE, moderately	31.40							۷	11.29					
	strong. (Zone I-II).	31.45							A	13.26					
		31.50						26.56							
	Red brown and locally grey green, highly weathered	33.00				Cone	131/55		-						
	silty MUDSTONE, very weak to weak and friable.	34.00				Cone	90/95								
	(Zone III with bands of moderately weak to weak	35.00				Cone	50/50								
	zone III-II from 34.00-34.10m and with occassional	36.00				Cone	97/85		-		1	1			
	thin bands of moderately weak zone II).														1
1	Red brown,moderately fractured,moderately	37.00				Cone	76/40			-		1		-	
	weathered, silty MUDSTONE, moderately weak.					T					, ,		1		:
	(Zone II with occassional small solution cavities).														
	Red brown and locally grey green, moderately	39.10							A	27.98				1	1
	fractured, slightly weathered, silty MUDSTONE,											-			
	moderately weak to moderately strong. (Zone II with														
	thin bands of fragmented zone II).														Ĩ.
	Red brown, completely weathered, silty MUDSTONE,	18.00				Split	88								
	very weak;clayey. (Zone IVa).							i I		1					
	Red brown, highly weathered, silty MUDSTONE, weak	19.50				Split	50/75							-	
	(Zone IZa-III).														
	Red brown, highly weathered, silty MUDSTONE,	25.50						34.94	A	4.02	1				
	moderately weak. (Zone III with some II).	25.60						48.92	A	6.58					
		25.65			i			58.12							
	Red brown, slightly to moderately fractured, fresh to	26.65				1			A	3.04			1		
	slightly weathered, silty MUDSTONE, moderately														
	weak to moderately strong. (Zone I-II).		i		,		-1								

BH No.	o. Description	Depth (m)	Moisture content % Natural Saturated	6 Bulk density Ma/m^3	Sampler	N.	Cu (from Field MN/m^2	Cu (from Point load tests) Field Laboratory MN/m^2 Ax/Dial MN/m^2	U.C.S MN/m^2	Triaxial (undrained) Cu $\phi_{,,}$ MN/m^2 (ded)	drained) φ " (dea)	Triaxial (drained) Cu MN/m^2 (deo)	drained)
95	Red brown,slightly to moderately fractured,slightly weathered,silty MUDSTONE,moderately strong. (Zone I-II).	28.50 28.70) D			9.62					1.	
96	Red brown,completely weathered, silty MUDSTONE weak to very weak;clayey,(Zone III-IVa).	18.00			Split	64							
	Red brown,completely to highly weathered,silty MUDSTONE,weak with thin clay bands. (Zone III-IVa).	19.50			~	50/75							
	Red brown, slightly weathered, moderately fractured silty MUDSTONE, moderately strong. (Zone II).	26.10					12.89						
	Red brown,slightly to moderately weathered,silty MUDSTONE,moderately strong with thin grey bands and patches. (Zone II). Becoming highly fractured and moderately weak from 30.80m.	29.90 30.15 30.20 30.42	6.0				9.54		5.00				
	Red brown,highly weathered,clayey.completely fractured,to fine to medium gravel sized,silty MUDSTONE,weak. (Zone II-III).	35.00			Cone	84/150							
97	 Red brown,completely weathered,silty MUDSTONE, stiff caly with some fine gravel sized lithorelicts. (Zone IVa). 	17.20			Split	76							16.00
1.1.1	Red brown,completely weathered,clayey, fragmented to fine gravel sized silty MUDSTONE, moderately weak fragments. (Zone III-IVa).	18.20			Split	99							
	Red brown,completeley weathered,fragmented to fine to medium gravel sized silty MUDSTONE, moderately weak fragments. (Zone III-II).	19.00			Split	76							

BH No.	Description	Depth	MOISTURE	Moisture content %	Alla	S.P.		Cu (Irom	Cu (from Point load tests)	U.C.S	I riaxial (undrained)	drained)	I riaxial	Triaxial (drained)
		(m)	Natural	Natural Saturated	density	Sampler	z	Field	Laboratory	MN/m^2	Cu	ф "	Cu	
97	Red brown,completely weathered,siity MUDSTONE, hard clay with weak fine gravel sized lithorelicts. (Zone IVa-III).	20.00			Mg/m^3	Split	88/150	MN/m^2	AX/Dia MN/m^2		MN/MM	(deg)	2. m/NW	(deg)
	Red brown,highly weathered,fragmented to fine to medium and occassionally coarse gravel sized silty MUDSTONE. Moderately weak fragments. Clayey in parts. (Zone II-III).	21.00				Split	86							
	Red brown,highly weathered,fragmented to fine to coarse gravel sized silty MUDSTONE, moderately weak fragments. (Zone II-III).	22.00				Cone	78/150						1	
	Red brown,highly weathered,clayey,fragmented to fine to medium gravel sized silty MUDSTONE,very weak with moderately weak bands. (Zone III with bands of II-III).	23.00				Split	88							
	Red brown and grey green,highly weathered,silty MUDSTONE,moderately weak. (Zone II).	24.00				Cone	115/150							
	Red brown, highly weathered, clayey, fragmented to fine to medium gravel sized silty MUDSTONE, very weak with moderately weak bands. (Zone III with bands of zone II-III).	25.00				Split	10							
	Red brown,completely weathered,silty MUDSTONE hard with some weak lithorelicts. (Zone IVa-III).	26.00				Cone	E							
	Red brown,highly weathered,clayey,fragmented to fine to coarse gravel sized slity MUDSTONE, moderately weak fragments. (Zone III-II). 27.80-28.00m:thin weak clay bands.	27.00 27.10 28.00		4.1		Cone	91/150		A 9.38					

67	Grav moderately weethered CII TCTONE moderately	E S	Natural	Natural Saturated	density Mg/m^3	Sampler	ż	Cu (from Point load tests) Field Laboratory MN/m^2 Ax/Dia MN/m^		^o oint load tests) Laboratory Ax/Dia MN/m^2	U.C.S MN/m^2	Triaxial (undrained) Cu ϕ , MN/m^2 (deg)	drained) ϕ " (deg)	Triaxial (drained) Cu / / (deg)	drained)
	weak to moderately strong. (Zone II , LONE, moderately weak to moderately strong. (Zone II , becoming red brown and locally grey green, moderately weathered, silty MUDSTONE, moderately weak. (Zone II).	29.00				Cone	50/75								6
	Red brown and locally grey green intact to slightly	30.05	4.3		2.79		1			1	11.03				
,	tractured, tresh to slightly weathered, silty	30.20		3.5	2.60						19.70				
	MUDSTONE, moderately strong. (Zone I-II).	30.70							۷	17.76					
		30.72							٥	14.07					
		30.72							A	54.84					
	Red brown, locally grey green, intact to slightly	34.00		4.0	2.62	1	1				10 90				
	fractured, fresh to slightly weathered , silty					1	-				00.01		-		
	MUDSTONE, moderately strong with occassional		1			-							-		
	thin strong bands. (Zone I-II).					-					· · · · ·				
98	Red brown completely to highly weathered silty	19.00				Cone	97		T		T	1	T	1	
	MUDSTONE very weak to weak (Zone IVa -III)	20.00			-	1.	04/460								
		22.00		· · · · · · · · · · · · · · · · · · ·		1	121								
	Red brown,highly weathered,silty MUDSTONE,weak	23.00				~	87/150								
	becoming moderately weak. (Zone III with some IVa	24.00				Cone	50/75			-					
	and then II bands from 23.70m ownwards).														
	Grey, slightly weathered, fine grained SILTSTONE,	28.75	1			1			<	73.38					
	moderately strong. (Zone II).	28.78	2.2		<u></u>						;		<u> </u>		
	Red brown, slightly weathered, silty MUDSTONE,	29.65		3.7	2.61			î î			20.55				
	moderately strong and strong with occassional	30.10			1			1	A	22 19	00.04				
	thin grey bands. (Zone II-I).	30.20				1		31.70		2		- 1 			
		30.24						15.17							
	and the second														
					i ,	-									

ON LIG	Description	Depth	Moisture content %	Bulk	S.P.T	L.	Cu (from Point load tests)	Point loa	id tests)	U.C.S	Triaxial (undrained)	drained)	Triaxial (drained)	drained)
		(L	Natural Saturated	density	Sampler	"Z	Field	Labo	Laboratory	MN/m^2	Cu	φ	Cu	
100	Bed hrown completely weethered claves	17 00		Mg/m^3		of 100E	MN/m^2	Ax/Dia	Ax/Dia MN/m^2		MN/m^2	(deg)	MN/m^2	(deg)
	Lea nowil, completely weathered, clayey,	00.71			Inde	G77/16								
	fragmented to fine gravel sized silty MUDSTONE,	18.00			Split	116/225								
	very weak with weak lithorelicts. (Zone III-IVa).	19.00			Split	116/225								
	Lithorelicts moderately strong below 17.80m.	20.00			Split	112/225								
		21.00		1	Cone	101								
	Dod brown kickly workboard foremonial to find to	00 00			elle O	041460			1					
		00.22			Illide	1001/46				1	1			
	medium gravel sized,silty MUDSTONE, fragments moderately weak. (Zone III).	23.00			Split	49/75								
	Red brown and locally grey green, moderately	29.25					7.34		-			i		
1	fractured, slightly weathered silty MUDSTONE,	29.30					7.14							
	moderately strong with vertical fractures. (Zone II	29.35					7.34			1		1		
	with some I).													
	Red brown fragmented, moderately weathered silly	31.85						٥	51.91		_	1		
	MUDSTONE, moderately strong. (Zone II).	31.85						A	37.44			ī		
		31.85	1.1					A	46.98					
	Red brown,intact to slightly fractured,fresh to	31.90						۲	50.96			1		
	slightly weathered, silty MUDSTONE, moderately	32.00						٨	17.88					
	weak to moderately strong. (Zone I-II).	32.00					11.82							
	Red brown, slightly fractured, slightly weathered,	39.60	_			-	7.76							
	silty MUDSTONE,moderately strong. (Zone II-I).	39.70					9.62							
101	Red brown.completely weathered,silty MUDSTONE	16.50			Split	36			T	T	T			
	(stiff clay), with occassional weak, fine gravel sized	18.00			Cone	34						1		
	lithorelicts. (Zone IVa).													
ļ	Red brown, highly weathered, clayey, fragmented to	19.50			Cone	54			1			1		,
	fine to medium gravel sized, silty MUDSTONE, weak.											Î		
	(Zone III-IVa).			-				i.						

101 R R			Noticela							-					
		(m)	INatural	Saturated	density	Sampler	N.	Field	Laboratory	-	Cvm/NM	10	4	5	
					Mg/m^3		:	MN/m^2	Ax/Dia MN/m^2	-	1	MN/m^2	(dea)	MN/m^2	(dea)
EE	Red brown, highly fractured to fragmented, slightly to	21.00				~	50/75			1			(Boo)		(Root)
E	moderately weathered, silty MUDSTONE, (fragments								1	-	:	ï.	-	-	1
	moderately weak). Zone II.											2			
	Red brown,highly weathered,clayey,fragmented to	23.00				~	95/100			1					
- 49	fine gravel sized, silly MUDSTONE, weak with														
-	moderately weak lithorelicts. (Zone III with some IVa						,			1		:	I.		
	Red brown with some grey green, slightly	26.65	1.8						D 11.	11.93				-	
2	weathered, slightly fractured, silty MUDSTONE,	26.65					1		-	41.06					1
-	moderately strong to strong with vertical joints at											1			
•4	26.80-27.30m. (Zone II).	-					-			-					
·	27.45-27.60m:Fragmented to medium to coarse													1	
	gravel sized.													1	
	27.85-27.95m:Fragmented to medium to coarse												1		
	gravel sized.														
	Grey, slightly weathered SILTSTONE, moderately	29.65						6.69		-1					
	strong. (Zone II).														
	Red brown,some grey green,slightly weathered,	30.25		3.8	2.67		1				12.06	ŀ	-		
	moderately to slightly fractured, strong, silty					1									
	MUDSTONE. (Zone II-I).											1			
	Red brown, highly fractured to fragmented,	37.55							D 12.18	18					
	moderately weathered, silty MUDSTONE.	37.55							A 21.70	70					
	Fragments moderately strong. (Zone II).					1									
	Red brown,completely weathered,silty MUDSTONE,	42.50				Cone	75/150			1					
	hard clay. (Zone IVa).														
102	Red brown,completely weathered,silty MUDSTONE,	16.60				Cone	16			+	1			-	
	(soft to hard clay). Keuper marl zone IVa						-					1			
	a manual second s											-			

BH No.	Description	Depth	MOISTURE	Moisture content %	NING	0.1.	-	Cu (Irom	PUILIT IO	Cu (from Point load tests)	0.0.0	Triaxial (undrained)	Inaulent	I riaxiai (drained)	חומוובחל
		ົພ	Natural	Natural Saturated	density	Sampler	z	Field		Laboratory	MN/m^2	Cu	φ "	Cu MN/m^2	(ded)
102	Red brown,higlhy weathered,clayey,fragmented, silty MUDSTONE,weak. (Zone III-IVa).	18.00				Split Split	56 73	7		7		7	(fien)		(Ron)
	Red brown,moderately weathered,silty MUDSTONE moderately weak. (Zone II).	22.50				Cone	50/75								
	Red brown,moderately weathered,moderately	31.10	2.4						۲	83.97					
	fractured silty MUDSTONE, moderately strong.	31.65	1.4			i.				24.38					
1	(Zone II with thin highly fractured bands and	31.65					1 1 1 1			74.14					
	27.45-27.50m:Clavev weak band (Zone II).	32.55								34.61					-
-	28.80-28.90m:Clayey weak band (Zone III).					-					1		1		
	28.90-29.85m:Completely fractured (Zone II-III).														
	31.00-31.20m:Strong grey band							-							
	31.20-31.40m:Weak,clayey band (Zone II-III).					1									
	31.50-31.60m:Weak clayey band (Zone II-III), with														
	some grey green areas below 31.20m														
	Red brown,moderately to highly weathered,silty	37.00				Split	67/50				1				
	MUDSTONE, moderately weak. (Zone II-III).													1	1
1	Red brown,moderately weathered,highly fractured	40.00				Split	50/30		r						
	slity MUDS I DNE, moderately weak to moderately strong, clayey in parts. (Zone II).														
103	Red brown, completely weathered, clayey,	16.50				Cone	21								
	1	18.00				Cone	43								
	III-IVa).	19.50				Cone	71								
•	Red brown, highly weathered, fragmented to fine to	21.00				2	88/150								
	medium gravel sized silty MUDSTONE, weak														
	fragments. (Zone III).													1	
						-		-			-				
							· · · ·								

BH No.	Description	Depth	Moisture content %	ontent %	Bulk	S.P.T	T	Cu (from	Cu (from Point load tests)	ad tests)	U.C.S	Triaxial (undrained)	idrained)	Triaxial (drained)	(drained)
		(m)	Natural Saturated	Saturated	density	Sampler	N	Field	Labo	Laboratory	Cvm/NW	Cu	P	Cu	
					Mg/m^3		:	MN/m^2	Ax/Dia	Ax/Dia MN/m^2	1	MN/m^2	(deg)	MN/m^2	(deg)
103	Red brown, slightly fractured, slightly weathered,	27.50					1	17.44					1		,
	silty MUDSTONE, moderately strong and strong	27.60						16.44							
	with grey green bands throughout. (Zone I-II).	28.20						38.11							
		29.00						7.82					1		
		30.70							0	25.42					
		30.70							۷	44.70					
		30.80						24.68							
104	Red brown highly weathered clavey fragmented to	18.50	Ť			Cone	56								
											-				
	fragments. (Zone III with IVa).									1	1		1		
-									-	4 					
	Red brown, highly weathered, silty MUDSTONE, with	20.00				2	123		1						
	arev areen SII TSTONE bands clavev fragmented to									e.					
4	fine to coarse gravel sized weak some moderately		-	1										1	
I				1											
1	strong tragments. (zone III with thin bands of Iva).												1		
	Red brown.completely weathered.silty MUDSTONE.	26.10				-			A	8.79					
	moderately strong (Zone II). At 25.70-25.95m:									1.					
	fragmented to coarse gravel sized.														
-	Red brown with grey green bands, slighty	21.95			-			G6./1				4	t		
	weathered, silty MUDSTONE, moderately strong;	28.00						22.30		1					
	occassionally strong. (Zone II).	28.04				2		19.08							
	28.15-28.25m:moderately weak,completely	28.08		1				15.05							
	fractured clayey band.	28.15						15.61							
	29.30-29.50m:moderately weak,completely	28.28						28.04						1	
i 1	fractured clayey band.	28.40	1.6						٥	53.06					
1		28.40	-						A	64.45					
		28.90						13.45							
1		29.20						23.45							
1		29.55		a second a				8.01							
1		29.70						14.21					1		
1		29.75						12.33							
														1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

NON HA	Description	Indan	Moisture content %	content %	Bulk	S.P.T		Cu (from Point load tests)	Point loa	id tests)		Triaxial (undrained)	ndrained)	Triaxial	Triaxial (drained)
		Ē	Natural	Natural Saturated	density Ma/m^3	Sampler	ż	Field MN/m^2	Ax/Dia	Laboratory Ax/Dia MN/m^2	MN/m^2	Cu MN/m^2	φ (dea)	Cu MN/m^2	(dea)
104	Red brown, slightly weathered, silty MUDSTONE,	31.40		4.0	2.61			1	D	39.12			(Rop)		R
	strong. (Zone II-I).	31.40							<	50.02					
		32.40							٥	10.16					
		32.40					i		۲	2.68	1		1		
	Red brown and locally grey green highly fractured	36.00						19 12							
	moderately weathered silty MUDSTONE moderately			-	i	-							-		
	strong. (Zone II with thin bands of weak zone II-III).														
	Red brown, highly fractured, moderately weathered	40.40					-	26.82							
	silty MUDSTONE, moderately weak to moderately	41.70						14.38	1						
	strong. (Zone II, with a band of weak zone II-III from	42.00						17.34							
(1. I. I. I.	42.30-42.40m.	42.40							٥	50.85					
		42.40							A	11.06					
		42.50			1				A	18.78		1			
		43.00						30.68							
	Red brown,moderately to slightly fractured,slightly	51.10		A second s				4.24	-						
	weathered, silty MUDSTONE, moderately weak to	51.40						10.33							
	moderately strong, with occassional thin bands of	51.80		6.6							i i i				
	fractured zone II . (Zone II with some I).												-		
	Red brown and locally grey green, moderately	59.20						18.61							
	fractured, slightly weathered, silty MUDSTONE,	59.40						18.31							
	moderately weak to moderately strong. (Zone II with														
	some zone I).														
= LO	105 Red brown, highly weathered, clayey, fragmented,	13.80										26	0		
1.1.1															
1	Red brown, completely weathered with occassional	16.80				Cone	45		-					1	
	fine gravel size lithorelicts, silty MUDSTONE, stiff.	18.30				Cone	92								
	(Zone IVa).	19.80				Cone	94								
		2130				Cone	111								

	nescription	Depth	Moisture	Moisture content %	Bulk	S.P.T	L.	Cu (from	Cu (from Point load tests)	s) U.C.S	Triaxial (undrained)	idrained)	Triaxial	Triaxial (drained)
		£	Natural	Natural Saturated	density	Sampler	z	Field	Laboratory	MN/m^2	Cu	φ	Cu	
					Mg/m^3			MN/m^2	Ax/Dia MN/m^2	^2	MN/m^2	(deg)	MN/m^2	(deg)
105	Red brown and grey, highly weathered, fragmented to fine to medium gravel sized, silty MUDSTONE,	22.80				Cone	48/225							
	weak to moderately weak. (Zone II-III).	1			1									
	Red brown, slightly weathered, moderately to	27.80							D 12.45	2			4	
	slightly fractured silty MUDSTONE, moderately	27.80							A 35.77	2				
	strong. (Zone II).	27.85							A 40.14	4				
	31.20-32.10:Fragmented.	28.00							A 4.94					
		28.45	2.0						D 31.30	0				
		28.45							A 64.51	-				
		28.65							D 18.29	6				
		28.65							A 40.74	**				
	· · · · · · · · · · · · · · · · · · ·	29.50							A 4.32					
		29.80							D 11.69	6				
		29.80							A 28.43					
		29.85							A 13.98					
		29.90							D 12.18					
		29.90							A 39.31					
		29.95							D 6.36					
		29.95							A 40.60	0				
		30.05			and a second sec			16.90						
		30.15						20.76						
		30.65						26.21						
		30.80						32.86				1		1
		30.90	2.3						D 16.77		I		4	
		30.90							A 40.57					
106A	106A Red brown,highly weathered,clayey with fine to	18.50				Split	66							
	medium gravel sized lithorelicts, silty MUDSTONE,													1
	very weak with moderately weak lithorelicts.(III-IVa).													
	Red brown highly weathered clayey with fine to	19.55				Split	100							
	medium gravel and occassionally coarse gravel and													
	cobble size lithorelicts, silty MUDSTONE Moderately										1			

	nearthun	neptu	Moisture	Moisture content %	Bulk	S.P.I		Cu (Irom	Cu (from Point load tests)	s) U.C.S	I riaxial (undrained)	(paulained)	Iriaxial (drained)	(nailien)
		(m)	Natural	Natural Saturated	density	Sampler	N	Field	Laboratory	MN/m^2	2 Cu	÷	Cu	
					Mg/m^3			MN/m^2	Ax/Dia MN/m^2		Σ		MN/m^2	(deg)
106A	106A Red brown, highly weathered, clayey with fine to	20.55				Split	42							
	medium gravel and occassionally coarse gravel to	-		, , ,										
	lithorelicts. (Zone III).													
	Red brown,highly to moderately weathered silty	21.55	T			Split	91/150							
	MUDSTONE and grey SILTSTONE, moderately weak	22.55				Split	106							
	to moderately strong with occassional bands of	23.55				Split	50/75							
	highly weathered,clayey silty weak MUDSTONE. (Zone II with bands of III-IVa).	25.50				Split	50/75				a i t t			
107	Red brown,completely to highly weathered,clayey,	17.70				Split	70							:
	completely fractured to fine to medium gravel sized	18.50				Split	68							
	silty MUDSTONE, very weak with moderately weak lithorelicts. (Zone III).													
							001100					1		
	Red brown, moderately weathered, slightly clayey, commistely fractured to fine to coarse dravel sized	00.81				linde	001/00		-			-		
	silty MUDSTONE moderately weak fragments.					_				-			1	
	(Zone II-III).													
-	Red brown and locally grey green, highly to	22.45	2.4						A 16.90	0				
	silty MUDSTONE, weak to moderately strong.													
	(Bands of zone III and II).						1					1		
108		18.00				c	66							
	fractured to fine to medium gravel sized, silty											1		
	MUDSTONE, very weak with weak lithorelicts.					-								
	(Zone III-IVa with clay bands).													i I
	Red brown, highly to completely weathered, clayey	19.00		1		Split	50/75							
	fragmented to fine gravel sized, silty MUDSTONE,											1	ł	
	very weak. (Zone IVa).					1	1							

BH No.	Description	(m)	Moisture Natural	Moisture content % Natural Saturated	Bulk density Mo/m^3	S.P.T Sampler	N.	Cu (from Field	Cu (from Point load tests) Field Laboratory MN/m^2 Av/Dial MN/m^2	ts) U.C.S MN/m^2		Triaxial (undrained) Cu ϕ "	2	Cu / / / / / / / / / / / / / / / / / / /
108	Red brown,highly to completely weathered,clayey fragmented to fine and occassionally medium gravel sized,silty MUDSTONE,very weak with weak lithorelicts. (Zone III-IVa).	20.00) D	Split	152/225			N E		·····		
	Red brown completely weathered silty MUDSTONE with some fine gravel sized lithorelicts, very weak (Zone IVa).	21.00				Split	106							
	Red brown,highly weathered,clayey,fragmented to fine gravel sized,silty MUDSTONE,weak. (Zone III).	22.00				Split	118							
	Red brown highly weathered clayey fragmented to fine gravel sized silty MUDSTONE,very weak. (Zone IVa).	23.00				Split	118/225				-			
	Red brown,completely weathered,clayey, fragmented to fine gravel sized,silty MUDSTONE, very weak. (Zone IVa).	24.00				Split	92							
	Red brown,highly weathered,clayey,fragmented to fine to medium gravel sized,silty MUDSTONE,weak with some moderately strong lithorelicts. (Zone III).	25.00				~	06							
	Red brown,highly weathered,clayey,fragmented to fine and occassionally medium gravel sized,silty MUDSTONE,weak. (Zone III).	26.00				Split Split	87/150 128							
	Red brown,moderately weathered,fractured to fine to coarse gravel and cobble sized,silty MUDSTONE, moderately weak with some moderately strong lithorelicts. (Zone II).	28.00				Split Split	50/75							

108 Gr We fre				-			-						Itallien		Iriaxial (grained)
		(E)	Natural	Natural Saturated	density Ma/m^3	Sampler	ż	Field MN/m^2	Laboratory Ax/Dia MN/m^2		MN/m^2	Cu MN/m^2	φ " (den)	Cu MN/m^2	(dea)
R F	Grey green,moderately fractured,fresh to slightly weathered,SILTSTONE,moderately strong. (Zone II).	29.60			2			36.07		7		7	(Ban)		(Roo)
fr	Red brown and locally grey green, intact to slightly	29.76						46.49							
	fractured, fresh to slightly weathered, silty	29.90		3.6	2.75		1		1 5 5 1 1		22.34				
Z	MUDSTONE, moderately strong with bands of	30.10							-	22.35					
E	moderately weak and strong. (Zone I-II).	30.10							A 7	71.50					
	30.40-31.10m:Highly fractured.	30.15								28.49			1		
		31.20					1	24.42							
	And a second	31.30						18.81							
		31.50						23.24							
		31.60		4.0						8.18					
		31.65							A	2.02					
		31.80						14.42							
		32.70						20.76		•			1		1
		32.75						35.44							
		32.80								8.34					
		32.85			1				A 2	2.00					
	and a local and personnel and the second	32.90		3.5	2.66						12.06				
		33.00						9.78							
		33.10						14.92							
		33.20						26.48							
		33.30						29.07							
		33.50						33.20							
		33.60						30.42			1				i i
Ľ.	Red brown, highly to completely weathered, silty	33.90		1				29.50				1		1	
2	MUDSTONE,very weak. (Zone III-IVa).	35.00				Cone	50/5								
109 F	Red brown,completely to highly weathered, clayey,	17.55				Split	39			T				Γ	
-	fragmented to medium to coarse gravel and														
0	occassionally cobble sized, silty MUDSTONE, very														
5	weak. (Zone III-IVa).										Ţ				
	a ser a s				1						-				

Oto Red from momblely waithered (Jayys, illy MIDS: TONE, and fragments) (m) Natural Montact (Zone Vol) The image (integration or any integration) Montact (Montact (Zone Vol) Montact (Montact (Zone Vol) Montact (Montact (Zone Vol) Montact (Montact (Zone Vol) Montact (Montact (Zone Vol) Montact (Montact (Zone Vol) Montact (Montact (Montact (Zone Vol) Montact (Montact (Zone Vol) Montact (Montact (Montact (Zone Vol) Montact (Montact (Zone Vol) Montact (Zone Vol) Montact (ZoneVol) Montact (Zo	BH No.	Description	Depth	Moisture	Moisture content %	Bulk	S.P.T	D.T	Cu (from	Cu (from Point load tests)	U.C.S	Triaxial (undrained)	idrained)	Triaxial (Triaxial (drained)
Red bown completly wathered clayes silty MUDSTONE: saft for way stift with wat tragments. 16 55 Mpm/m Saft 43 Mmm/m Autom Core Core IV(a). Core IV(a). Core IV(a) 135 Saft 132 Autom Core Autom Core Mmm/m Autom Core Mmm/m Autom Core Mmm/m Autom Mmm/m Autom Mmm/m Autom Mmm/m Mmm/m <th></th> <th></th> <th>(m)</th> <th>Natural</th> <th>Saturated</th> <th>density</th> <th>Sampler</th> <th>-</th> <th>Field</th> <th>Laboratory</th> <th>MN/m^2</th> <th>Cu</th> <th>•</th> <th>Cu</th> <th></th>			(m)	Natural	Saturated	density	Sampler	-	Field	Laboratory	MN/m^2	Cu	•	Cu	
Red brown, completely weathered, clayey, silty MUOSTONE, stiff to very stiff with weak fragments. 18.55 Split (Zone IVa). Ted brown, highly to moderately weathered, clayey, fragmented to coarse gravel and cobble sized, (Zone III). 19.55 Split Red brown, highly to moderately weathered, clayey, fragmented to coarse gravel and cobble sized, (Zone III). 21.55 Split Stiff, red brown, silty CLAY with some fine to medium gravel sized librorielids (Zone IVa) with occassional thin bands of moderately weathered silty MUDSTONE. (Zone III). 21.55 Split Stiff, red brown, night y completely weathered silty MUDSTONE. (Zone III). 23.55 Split MUDSTONE. (Zone IVa) with some III). 26.55 Split MUDSTONE. (Zone IVa) with some III). 26.55 Split MUDSTONE. (Zone IVI). 27.55 Split MUDSTONE. (Zone IVI). 26.55 Split MUDSTONE. (Sone IVI). 27.55						Mg/m^3	•	s - 1	MN/m^2	-		MN/m^2	(deg)	MN/m^2	(deg)
19.55 Split 20.55 20.55 20.55 Split 20.55 Split 21.55 Split 23.55 Split 31.55 Split 32.55 Split 32.55 Split	-		18.55				Split	43	-	-					
rey, 19.55 Split 20.55 20.55 Split clum 21.55 Split onal 21.55 Split 21.55 Split Split conal 22.55 Split 21.55 Split Split conal 22.55 Split 23.55 23.55 Split 23.55 23.55 Split 21.55 30.55 Split 21.55 30.55 Split 21.55 31.55 Split CONE, 31.55 Split 21.55 Split Split Store 31.55 Split Store 32.55 Split Store 32.55 Split Store Split Split		(Zone IVa).													
20.55 Split clum 21.55 Split clum 21.55 Split conal 22.55 Split 23.55 23.55 Split 23.55 23.55 Split 23.55 23.55 Split 23.55 23.55 Split 23.55 28.55 Split 26.55 28.55 Split 28.55 30.55 Split 28.55 30.55 Split 28.55 31.55 Split Stately 31.55 Split Stately 31.55 Split		Red brown highly to moderately weathered clayey,	19.55				Split	132		-					
to medium 21.55 Split ccassional 22.55 Split ccassional 22.55 Split lty 22.55 Split lty 23.55 Split lty 23.55 Split lty 23.55 Split lty 24.55 Split lty 24.55 Split lty 26.55 Split lty 26.55 Split lty 26.55 Split lty 26.55 Split lty 27.55 Split lty 28.55 Split lty 30.55 Split lty 30.55 Split lty 31.55 Split lty 31.55 Split lty 32.55 Split ltwith 32.55 Split		fragmented to coarse gravel and cobble sized, silty MUDSTONE,weak,becoming very weak.	20.55				Split	56							
to medium 21.55 Split ccassional 22.55 Split ccassional 22.55 Split CLAY 23.55 Split Ily 25.55 Split 27.55 24.55 Split Ily 25.55 Split Indisity 30.55 Split Indisity 30.55 Split Indisity 30.55 Split Indisity 31.55 Split Indit 31.55 Split Invith 32.55 Split		(Zone III).													
ccassional 22.55 Split CLAY 23.55 Split Ity 25.55 Split 26.55 28.55 Split 27.55 29.55 Split 28.55 29.55 Split Ity 30.55 Split Ity 30.55 Split Ity 30.55 Split Ity 31.55 Split Itwith 32.55 Split Itwith Stely Split		Stiff,red brown,silty CLAY,with some fine to medium	21.55			1	Split	52			1				i
CLAY 23.55 Split Ity 24.55 Split ne III). 25.55 Split 24.55 Split Split ne III). 25.55 Split 25.55 27.55 Split 27.55 28.55 Split 27.55 29.55 Split 29.55 30.55 Split moderately 30.55 Split indecately 31.55 Split ized 31.55 Split ized 32.55 Split intely It with Split		gravel sized lithorelicts (Zone IVa) with occassional	22.55				Split	17				1			
23.55 Split 24.55 Split 24.55 Split 25.55 Split 26.55 Split 27.55 Split 28.55 Split 29.55 Split 20.55		thin bands of moderately weathered silty MUDSTONE. (Zone III).													
24.55 Split 25.55 Split 25.55 Split 27.55 Split 27.55 Split 29.55 Split 29.55 Split 21.55 Split 23.55 Split 23.55 Split 1 31.55 20.6 Split 1 Split		Stiff,red brown and grey green,very silty CLAY	23.55				Split	89/150							
25.55 Split 26.55 Split 26.55 Split 27.55 Split 28.55 Split 29.55 Split ately 30.55 ately 31.55 Store Split AE, 32.55		with some fine to medium gravel sized, silty	24.55				Split	37		_		4	-	-	
26.55 Split 27.55 Split 27.55 Split 28.55 Split 29.55 Split 30.55 Split ately 30.55 ately 31.55 sto 32.55 tc. Split		mudstone lithorelicts. (Zone IVa with some III).	25.55				Split	173							
27.55 Split 28.55 Split 28.55 Split 29.55 Split ately 30.55 Split oNE, 31.55 Split eto 32.55 Split eto 32.55 Split			26.55				Split	76					1	1	
28.55 Split 29.55 Split 29.55 Split 29.55 Split ately 30.55 Split oNE, 31.55 Split eto 32.55 Split vtc. 32.55 Split			27.55				Split	48							
29.55 Split rately 30.55 Split ately 31.55 Split ONE, 31.55 Split tube 32.55 Split tube 4E, Split			28.55				Split	45							
rately 30.55 Split ately 31.55 Split to 31.55 Split to 32.55 Split to 46.			29.55				Split	67							
rately contact and a split split split split split store a scheme start a split store a scheme start a split dE, split store a scheme start a scheme scheme start a scheme start a scheme start a scheme sc		Red brown, highly to completely weathered, silty	30.55				Split	91/150			-	1		-	
ONE, 31.55 Split to 32.55 Split tc. Split		MUDSTONE, weak with fine gravel sized, moderately													
ONE, 31.55 Split to 32.55 Split dE, Split		weathered lithorelicts. (Zone III).													
e to 32.55 Split		Red brown, completely weathered, silty MUDSTONE,	31.55				Split	64			1				
α to 32.55 ΔΕ,		(hard clay) with occassional fine gravel sized													
e to 32.55 Split VE,		lithorelicts. (Zone IVa).								-					
coarse gravel and cobble sized silty MUDSTONE, weak fragments with thin bands of moderately weathered grey green mudstone. (Zone III with		Red brown, highly weathered, fragmented to fine to	32.55				Split	74			-	- 		1 1 1	
weak fragments with thin bands of moderately weathered.grey green mudstone. (Zone III with		coarse gravel and cobble sized silty MUDSTONE,												; ; ;	
weathered, grey green mudstone. (Zone III with		weak fragments with thin bands of moderately													
hands of II and IVa)		weathered grey green mudstone. (Zone III with													

ON LO	Description	Depth	Moisture	Moisture content %	Bulk	S.P.I	F.	Cu (from	Cu (from Point load tests)	U.C.S	Triaxial (undrained)	idrained)	Triaxial (drained)	drained)
		(m)	Natural	Saturated	density	Sampler	N.	Field	Laboratory	MN/m^2	Cu	φ.	Cu	
					Mg/m^3		1	MN/m^2	Ax/Dial MN/m^2		MN/m^2	(deg)	MN/m^2	(dea)
109	Red brown, highly weathered, clayey, fragmented to	33.55			, , ,	Split	82		-			10		10
:	fine gravel sized silty MUDSTONE,very weak with moderately weak lithorelicts. (Zone III).	34.55				Split	104/225				1			
1														
	Red brown, moderately weathered, fragmented to	35.55				Split	99/75							
	fine to coarse gravel and cobble sized silty MUDSTONE moderately weak to moderately strong	36.55				Split	50/75		:					
	(Zone II with some III).													
110	Grey, highly weathered SILTSTONE, moderately	19.50				Split	68/150							
	Red brown completely weathered clavey silty	21.50				Split	19	-						
-	MI IDSTONE weathered to a silty shalv clav with	22 50				Colit	76/160							
	very weak and weak mudstone bands (Zone IV	23.50				Solit	22			-				
	with bands of III and then occassional 0.05-0.10m	24.75				Split	74/150				-			
	bands of zone II).													
117	Red brown and locally green, highly to completely	13.30				~	8/150							
-	weathered silty MUDSTONE, moderately strong.	13.80				0	87/150							
	(Zone IVa with some III).													
	Red brown and locally green grey, slightly	15.00				2	50/75							
	weathered, silty MUDSTONE, moderately strong to	16.70							D 60.97					
	strong. (Zone II with occassional weak bands of	16.70							A 55.08					
	zone III).												1	
	At 17.50m:Band of green grey sandy SILTSTONE.													
	Red brown slightly fractured fresh to slightly	17.70							D 7.26					
-	weathered, silty MUDSTONE, moderately strong.	17.70							A 4.42		; ;			
l	(Zone I-II).	17.80		and the second s					D 5.19		1			
		17.80							A 4.25				1	
						1								
							-				-			

BH NO.	Description	Deptu	Moisture	Moisture content %	Bulk	S.P.T	E	Cu (from	Cu (from Point load tests)	ts) U.C.S		Triaxial (undrained)	Triaxial	Triaxial (drained)
		Ê)	Natural	Saturated	density Ma/m^3	Sampler		Field	Laboratory	y MN/m^2	2 Cu	φ	CU	
8	118 Red brown,moderately weathered,silty MUDSTONE, moderately strong fragments. (Zone III).	13.20			2	Cone	81/150	7		7				(fian)
	Green grey,moderately weathered,silty SANDSTONE,moderately strong with bands of weak silty mudstone. (Zone II with some III).	15.20				Cone	77/150							
	Red brown, highly to moderately weathered, silty	16.20	-	-		Cone	91/150							
	MUDSTONE,weak to moderately weak. (Zone III).	17.20				Cone	93/150							
1	Red brown, slightly to moderately weathered, slity	20.95							D 4.98	8			1	
	MUDSTONE, moderately strong. (Zone II).	20.95							A 28.02	02				
-	Red brown,moderately to slightly weathered,	27.05							D 77.80	80	-	-		
	moderately fractured, silty MUDSTONE with 10-20mm	27.05		1				1	A 50.46	46	-			i i
	solution cavities in parts, moderately strong, (Zone II													1
	with thin bands of zone III).	-												
	24.75-25.05m:fragmented band.													
	26.50-26.80m:fragmented band. 26.95-27.15m:fragmented band.													
	Red brown, slightly weathered, slightly fractured,	27.80							D 1.00	0				
	silty MUDSTONE, moderately strong to strong.	27.80							A 21.03	33				
	(Zone II-I).	27.85						-	D 8.46	9				
		27.85							A 12.56	99			, , , ,	
	Red brown, moderately weathered, fragmented,	33.10							A 20.39	6				
	silty MUDSTONE,moderately weak. (Zone II-III).													
	Red brown,silty MUDSTONE, with bands of grey	38.20							D 8.96	6				
	green SILTSTONE, slightly to moderately weathered,	38.20							A 17.02	12				
	moderately strong to strong. (Zone II).													
	38.30-38.75m:Fragmented to fine to medium													
	aravel sized	-												

Red brown calcerous SILTSTONE,with numerous angular gravel sized lithorelics upto 50mm (IVa-III) At 18.75-18.83m:Grey green band.	Red brown and grey green, mottled and streaked, slightly calcerous SILT, with some to numerous sand and gravel angular siltstone lithorelics, firm to stiff (Zone IVa).	Red brown,closely fractured,very thinly bedded slightly calcerous,slightly sandy SILTSTONE,weak to moderately weak,with sub-horizontal and sub-	vertical fractures,rough planar and curved,with silt coating. (Zone II-III).	Grey green,moderately fractured,slightly calcerous, slightly sandy SILTSTONE,strong with sub-horizontal and sub-vertical fractures,rough,planar. (Zone I-II).	Red brown,closely fractured,slightly calcerous SILTSTONE,moderately weak.,with sub-horizontal fractures,rough,planar with black stain. (Zone II)	Locally with some silty matrix. 26.20-26.58:Medium fractured.	Red brown with occassional grey green spots,	slightly fractured,slightly calcerous slightly sandy SILTSTONE, moderately weak, becoming moderately	strong. (Zone II).	planar and irregular with black stained calcite	coating. With occassional frequently calcite lined vugs up	to 5 mm.	Red brown with occassional grey green spots,	medium fractured,slightly calcerous slightly sandy SII TSTONE moderately weak to moderately strong
17.50 17.50	19.02 19.55 20.05 20.05	15.80 16.95		17.40	26.38		28.05	28.30	29.90				30.05	
				3.9	4.9									
				4.3	3.7			2.7						
				2.36	2.59			2.50						
	Split Split						-	1						
	39 55 11		•											
□ <		DA					A	۷	4				A	
66.03		32.23 10.78					7.13	25.14	6.30				10.90	
d)				17.50	7.80			8.40						
	41											1		
· · ·	0										-	1 		1
					· · ·									

BH No.	Description	Depth	Moisture (Moisture content %	Bulk	S.P.T	-	Cu (from	Cu (from Point load tests)	s) U.C.S		Triaxial (undrained)	Triaxial (drained)	(drained)
		(m)	Natural	Natural Saturated	density	Sampler		Field	Laboratory	MN/m^2	2 Cu	φ.	Cu	
					Ma/m^3			WN/mv2	Ax/Dial MN/m^2	-	Σ		MN/m^2	(dea)
127A	(Zone II)				D		-			1				6
	With sub-horizontal and 45 den fractures rough								-		4	-	1	
-	internet and internular with black stained calcite				-									1
						-							-	
	coating.													1
	With occassional frequently calcite lined vugs up													
	to 5 mm.													
	Red brown with grey green spots,,moderately	43.45							A 15.09	6				
	fractured, slightly calcerous, SILTSTONE, moderately						, ,							
	weak to moderately strong. (Zone II).						1							
1	With sub-horizontal and sub-vertical fractures,													
į	rough planar with black speckling and calcite coating													
i c	Occassional frequently calcite lined vugs up to													
	3 mm.						,							
]								-			1			
128	Red brown with grey green streaks and bands,	15.40							-	3				
	medium fractured, slightly calcerous, slightly sandy	15.50								5				
	SANDSTONE, moderately strong.	15.50							A 36.14	4				
	With sub-horizontal fractures, rough, planar with	15.50						and the second second	A 56.06	9				
	silt coating. (Zone II).										-			
	15.90-16.00m:Prominent grey green band.													
	Red brown, closely fractured, thinly bedded, slightly	16.85							A 1.69		-			
	calcerous, slightly sandySILTSTONE, moderately	17.10							D 4.31					
	weak. (Zone II).	17.10							A 14.77	2				
	With sub-horizontal and 70 deg fractures, rough,	18.30								3				
	planar, some black stain, occasional calcite coating.	18.30							A 57.76	9				
	Closely fractured at 16.30-16.60m,16.95-17.05m									-				
	and 17.24-17.30m.													•
	Red brown with occassional grey green spots,	19.45									·			
	closely to very closely fractured, indistinctly	19.50							D 14.08	80				
	laminated calcerous, slightly sandy SILTSTONE,	19.50							A 13.88	8			1	
	With 45 deg to 70 deg fractures, slightly rough,							and some and an and an and					-	
	alanar some delamination on surfaces up to 1 mm													

BH No.	Description	(m)	Moisture content % Natural Saturated	density	S.P.T Sampler	ż	Cu (from Field	Field Laboratory	U.C.S MN/m^2	Triaxial (undrained) Cu ϕ "	drained) φ "	Cu C	drained)
128	calcite and silt coating. (Zone II). 18.76-18.97m:Hard silt (Zone IVb) 19.44-19.58m:Moderately strong 19.58-19.66m:stiff silt. (Zone IVb).			б. Ш. С. Ш. С. Ш. С. Ш. С. Ш. С. Ш. С. Ш. С. М. С. М. С. М. С. С. С. С. С. С. С. С. С. С. С. С. С.					2		(deg)	7. LUNW	(geg)
128A	128A Red brown with grey green spots and bands, medium fractured,slightly calcerous,sandy	16.52 16.52					29.59 70.09	Ω¥					
	SILTSTONE, moderately weak to moderately strong. Zone II).			1									
	Sub-horizontal to horizontal fractures, very rough,		Americana and a second se			_							
	planar, occassionally calcite coated and thin silt infill.			1					;				
	Also medium to closely spaced 70 deg fractures,												
	rough, planar, and occassionally calcite coated.									-			
	Red brown with occassional grey green spots	33.00					2.47	٨					
	moderately fractured, calcerous, muddy SILTSTONE											;	1
	moderately weak to weak. (Zone II-III).										1		
	Sub-horizontal 20 and 70 deg fractures, rough,											1	
	planar, occassionally black stained and calcite coated.												
	with closely spaced calcite filled vug horizons.												
	33.50-33.70m:Closely fractured zone recovered								,			1	
	as gravel.				-								
	Grey green closely fractured slightly calcereous,	40.99					9.91	A					
1	slightly silty MUDSTONE, moderately strong.						1						-
	Sub-horizontal fractures, rough, irregular, black												
	stained and calcite coated. (Zone II).												
	Red brown with some grey green, medium fractured	42.90					8.61	٥	1	1		1	
	calcerous silty MUDSTONE, moderately strong to	42.90					24.85	A					
	strong.(Zone II).	42.90					31.77	۷			1		
	Sub-horizontal fractures, slightly rough, planar with												
	thin silt coating. Also randon fractures, slightly rough												
	irregular calcite coated and grey stained with							•					
	occassional calcite coated vugs before 41.90m.	_				-							

	BH No.	Description	Depth	Moisture	Moisture content %	Bulk	S.P.T	T	Cu (from	Cu (from Point load tests)	d tests)	U.C.S	Triaxial (undrained)	drained)	Triaxial (drained)	drained
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			(m)	Natural	Saturated	density	Sampler	"N	Field	Labo	ratory	MN/m^2	Cu	φ"	Cu	
43.90 43.90 15,48 A 45,47 925 A 93 B 94 B 93 B 94 B 95 B 96 B 98 B 99 B 98 B 99 B 99 B 99 B 9130 B 9130 B 9130 B 9130 B						Mg/m^3			MN/m^2	Ax/Dia	MN/m^2		MN/m^2	(deg)	MN/m^2	(deg)
us clayey SILTSTONE, 45.47 9.25 A regular with thin calcite 1 9.25 A regular with thin calcite 1 1 1 regular with thin calcites, 1 1 1	1	Red brown with occassional thin grey green spots	43.90						15.48	A						
regular with thin calcite egular with thin calcite could with the calcite coated vugs at a fractures, rough, on al calcite coated vugs ith depth indepth is depth is		and bands, fractured, calcerous clayey SILTSTONE,	45.47	I					9.25	A						1
s uus m m s 47.40 3.2 49.81 49.81 49.81 49.81 49.81 1.72 8 1.72 8 1.72 8 1.72 8 22.37 8 22.37 8		moderately strong.(Zone II).														
s us m g s 47.40 3.2 49.81 49.81 49.81 49.81 1.72 A 1.72 A 22.37 A 22.37 A		random fractured,rough,irregular with thin calcite									i .					
vugs vugs cerous cerous andom 3.2 andom 3.2 andom 3.2 strong. 49.81 ugh 49.81 up to 51.30 es, 22.37		coating.														
vugs vugs cerous cerous andom 3.2 andom 3.2 tiches 47.40 49.81 3.2 ugh 49.81 up to 51.30 es, 22.37		also incipient sub-hirizontal fractures, rough,														
Incerous		stepped, planar and occassional calcite coated vugs														
Indom Indom <th< td=""><td></td><td>becoming gypsum infilled with depth</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		becoming gypsum infilled with depth														
andom andom 3.2 2.36 18.09 A 17.20 A 17.2 A 5.4 5.4 5.5 51.30 22.37 A 5.5 51.30 5		44.95-45.15m:Extremely closely fractured calcerous														
tches 47.40 3.2 2.36 18.09 A 18.09 A 1.72 A	-	silty MUDSTONE, weak, recovered as gravel. random														
hick grey green bands and patches 47.40 3.2 2.36 18.09 A 1.800 A 1.20 deg fractures, slightly rough 49.81 1.72 A 1		fractures, rough, irregular, black stained and silt														
47.40 3.2 2.36 18.09 A 49.81 1.72 A 49.81 1.72 A 51.30 22.37 A		infilled (Zone III).									I		1			
49.81 18.09 49.81 1.72 51.30 22.37		Red brown with thick grey green bands and patches	47.40		3.2	2.36						5.80				
49.81 1.72 51.30 22.37		medium fractured, calcerous silty MUDSTONE, strong.	49.81						18.09	A						
51.30 22.37		Sub-horizontal to 20 deg fractures, slightly rough	49.81						1.72	A						
20mmalso incipient random random fractures, roudh irregular and clean. (Zone II-I).		stepped planar with white fibrous gypsum infill up to	51.30						22.37	A						
rough irregular and clean. (Zone II-I).		20mmalso incipient random random fractures,														
		rough, irregular and clean. (Zone II-I).														1

	Viodec	Vioded toe test				μ	Id-bearing t	End-bearing test (M.L. test)	()		End bea	End bearing test
Load cycle 1	Load	Load cycle 2	Load c	Load cycle 3	Load cycle 1	cycle 1	Load cycle 2	ycle 2	Load cycle 3	ycle 3	(C.R.P.)	(C.R.P.) -Cycle 4
P _h Δ _h	۴.	Δh	٩,	Δh	٩	Δh	ፈ	Δh	ط	۵,	ፈ	۵h
(kN) (mm)	(kN)	(mm)	(kN)	(mm)	(kN)	(mm)	(kN)	(mm)	(KN)	(mm)	(kN)	(mm)
	200	1	800	39.57	800	0.15	16	0.78	22	3.76	16	20.25
	1000		1600	40.45	1600	0.81	1600	1.71	4000	8.58	1600	21.89
1000 0.20	1500		2400	41.43	2400	1.64	3200	3.70	8000	14.75	3200	24.23
00 0.73	2000	-	3200	42.65	3200	2.69	4800	5.61	12000	30.00	4800	26.71
	250(0 12.31	4000	43.87	4000	3.70	5600	6.74			6400	29.36
	3000	0 12.94	4800	45.10	4800	4.86	6400	7.72			8000	32.15
	350(•	5600	46.65	5600	5.98	7200	8.79			9600	37.57
-	4000	0 15.44	6400	49.52	6400	7.05	8000	9.98			10600	42.62
4000 14.22	4200		7200	55.84	7200	8.17	8800	11.14			10850	45.62
	4400		8000	68.20	8000	9.69	0096	12.70			11010	48.62
	4600		8800	85.38			10400	14.47		_	11170	52.62
	4800		9600	97.60			11200	17.31			11350	56.62
	5100						12000	19.97			11630	60.62
	580										11690	64.62
	6400	0 39.14										
	100	0 47.28										
000 13.59	6000	0 46.82	0	87.00	2000	9.19	8000	16.63	10600	34.84	10890	64.28
2000 12.26					6000	8.22	4000	11.56	10000	34.81	5000	59.58
					5000	7.19	0	4.87	8000	32.88	110	53.01
16 10.27		0 43.84			4000	6.08			6000	30.72	28	52.59
	200	0 42.65			3000	4.95			4000	28.17		
	1000			<u></u>	2000	3.78			2000	24.93		
	0	39.70			1000	2.37			80	20.84		
				_	0	1.27						

Table A.2: Pile head load and pile head displacement readings-TP1

P _b (kN)									•								
	E		0.2	0.0	1.4	1.3	7.4	63.6	0.0			8.	1.7	9.8	1.2	25.3	.5
	LEVEL 26.450 m	AVG	0	en en				52 63								15 25	
	EVEL		0	Ē				56 5								18 1	
		2															
(STIN			1	m	=	4	0	83	<u> </u>		-		æ	7	ۍ ا	42	æ
AT LEVELS (MICRO UNITS)	950 m	AVG	0	4.0	19.2	40.1	61.5	84.0	103.1		C.401	94.4	78.2	59.8	40.8	22.6	11.5
LEVELS	LEVEL 21.950 m	m	0	4	20	42	64	87	107		113	97	81	62	42	23	11
SS AT 1	LEV	2	0	4	21	43	67	92	113		121	105	88	69	48	28	17
READINGS		-	0	4	17	35	54	73	68		- - - -	80	99	49	32	16	9
STRAIN GAUGE I	50 m	AVG	0	7.6	30.1	62.2	95.8	129.9	161.1		1.001	139.3	110.3	79.2	47.5	17.6	6.0
	LEVEL 17.450 m	÷	0	6		63	95	128	160		100	138	109	LL	46	16	-2
NG WIRE	LEVE	2	0	80	34	73	113	154	190	00,	۲YY	167	135	101	66	32	6
VIBRATING		1	0	9	24	51	79	108	134		0 fs T	113	87	59	31	5	-4
>	50 m	AVG	0	13.5	45.5	74.5	104.5	133.5	161.0		0.001	137.0	109.0	83.0	57.0	32.0	4.5
	LEVEL 1.650 m	m	7		10	38	66	96	122		67T	91	66	42	21	0	D
	LEVI	2	2	17	58	87	118	148	176	101	TOT	154	124	96	69	44	S
		-	- -	10	33	62	16	119	146		149	120	94	70	45	20	4
(mm)			0	0.22	0.93	2.05	3.48	5.09	6.07							3.22	
Ph (KN)			0	1000	2000	3000	4000	5000	6000	0000	6000	5000	4000	3000	2000	1032	29

Table A.3(i):Strain gauge readings-TP2 (load cycle 1)

P _b (kn)																
	450 m	AVG	17.3	31.8	57.0	84.4	99.4	116.6	139.2		129.3	118.3	106.3	79.4	50.7	21.8
	LEVEL 26.450 m		6	22	44	68	80	92	105		96	86	75 .	50	26	-
	LEVE	2	11	25	48	73	84	8 6	117		108	97	86	61	35	8
(S)		1	32	49	79	113	134	160	196		184	172	158	127	92	53
(MICRO UNIT	950 m	AVG	11.0	34.4	72.4	111.8	134.0	158.1	187.7		170.6	155.3	137.2	97.8	56.2	14.0
LEVELS	LEVEL 21.950 m	e	11	36	75	115	138	162	191		175	157	138	86	55	12
S AT 1	LEV	2	16	41	82	125	150	178	214		193	180	160	118	73	26
EADING			9	27	60	95	114	134	158		144	128	113	78	41	4
AATING WIRE STRAIN GAUGE READINGS AT LEVELS (MICRO UNITS)	LEVEL 17.450 m	AVG	0.4	41.9	105.0	168.6	203.0	240.1	283.1		254.5	225.5	194.2	129.7	64.4	3.8
IRE ST	VEL 17	m	€-	41	103	165	200	237	279		252	224	193	128	63	2
M SNI	LE	2	6	54	127	201	241	287	347		315	284	250	180	107	24
VIBRAT			5	30	84	140	168	196	224		196	169	140	81	23	-15
	50 m	AVG	4.0	52.0	106.0	164.0	193.0	223.0	260.0		233.0	204.0	176.0	123.0	71.0	11.0
	LEVEL 1.650 m	m	-	19	99	121	127	138	150		114	89	99	25	-11	1
	LEV	2	S	64	120	178	207	236	272		249	218	188	133	81	9
			4	40	92	149	179	209	247	_	217	190	164	112	60	13
(mm)			2.56	3.75	5.56	7.09	8.48	10.31	14.27		13.90	13.53	13.11	11.85	10.03	7.47
Ph (KN)			28	2000	4000	6000	7000	8000	9000		8000	2000	6000	4028	2050	33

Table A.3(ii):Strain gauge readings-TP2 (load cycle 2)

Note:Due to unacceptable amount of scatter,the readings of strain gauge No.3 have been excluded when computing average strains at level 1.650 m.

P _b (kN)										-					
	450 m	AVG	21.5	39.3	66.7	96.4	127.2	143.7	161.6	178.2	157 2	132.1	102.8	72.2	22.4
	LEVEL 26.450	e	4	20	42	68	94	106	117	127	90 L	82	59	33	ŝ
	LEVE	2	8	25	50	78	106	120	135	149	001	106	78	50	9
(S)		-	52	73	107	143	182	205	233	258	450	205	171	134	66
VELS (MICRO UNI)	LEVEL 21.950 m	3 AVG	11 13.8	43 43.4				195 191.2		240 236.0			125 124.7		
DINGS AT LEV	LEVEL	1 2	1 26		66 102								96 154		
VIBRATING WIRE STRAIN GAUGE READINGS AT LEVELS (MICRO UNITS)	LEVEL 17.450 m	1 2 3 AVG	25 2	84 53	75 159 117 117.0	235 181	92 310 246	351 280	53 397 315	79 438	500 OTE	312 228	102 238 162 167.3	164 96	4
	LEVEL 1.650 m	1 2 3 AVG	13 10 -9 12.0	50 70 8 60.0	37	175 73	233 121	244 265 144 255.0	294 162	318	111 CEC	517 717 500		105 0	27 -11
ч⊽ (шш)	L	-	.48	01.0	11.07				_	_	12 00	22.01	18.46	16.61	11.94
P _h (kN)			ŀ	-	_	_	_			10896 2			5000		

Table A.3(iii):Strain gauge readings-TP2 (load cycle 3)

P _b (kN)	r															
	150 m	AVG	42.0	69.6	99.7	131.2	148.0	164.8	183.2	202.4	225.9	237.7	193.8	149.8	103.2	36.1
	LEVEL 26.450 m	m	13	35	61	88	102	116	129	142	157	165	124	85	46	ŝ
	LEVE	2	25	50	78	107	123	138	155	172	195	206	164	122	78	16
TS)		1	06	124	161	198	219	240	265	293	326	343	293	242	186	97
AT LEVELS (MICRO UNITS)	950 m	AVG	44.3	85.5	127.7	170.5	192.3	214.0	236.9	260.6	287.2	299.7	236.3	174.6	111.2	22.5
EVELS	LEVEL 21.950	m	43	85	128	172	195	217	240	264	292	304	239	174	109	18
	LEVI	5	63	108	155	202	226	250	275	302	332	346	279	212	142	42
EADING			27	63	100	137	156	175	195	216	238	248	191	137	82	2
WIRE STRAIN GAUGE READINGS	LEVEL 17.450 m	3 AVG			173 185.1										134 148.1	
RATING WI	LEV	2	56	122	190	260	297	334	374	413	455	475	361	257	157	26
VIBRAT		-1	63	127	192	258	291	326	362	398	437	455	348	250	154	27
	650 m	AVG	62.0	104.0	155.0	207.0	236.0	267.0	301.0	333.0	363.0	378.0	275.0	193.0	115.0	30.0
	LEVEL 1.650 m	m	7	32	57	96	120	146	173	195	218	227	123	56	6	- 4
	LE	2	75	120	174	228	258	290	326	357	387	402	300	211	128	25
			48	87	135	185	213	243	276	308	339	353	249	174	101	34
لي سي سي			13.70	15.80	18.03	20.17	21.47	22.89	25.24	27.94	32.09	33.96	31.66	29.12	26.35	21.42
P _h (kN)			2000	4000	6000	8000	9006	10000	11000	12000	13000	13500	1000	17000	4033	45

Table A.3(iv):Strain gauge readings-TP2 (load cycle 4)

Note:Due to unacceptable amount of scatter,the readings of strain gauge No.3 have been excluded when computing average strains at level 1.650 m.

<u> </u>		<u> </u>											
r (mn)	LEVEL 5 0-24 m	0.126 1.063	2.235	4.021	4.661	5.438	4.992	4.468	3.932	2.812	1.646	0.169	
EXTENSOMETER MOVEMENT (mm)	LEVEL 4 0-19 m	0.129 0.288	1.441	3.239	3.910	4.616	4.056	3.519	2.953	1.773	0.575	0.106	
EXTENS	LEVEL 3 0-13 m	-0.054 0.399	1.214	2.483	2.939	3.398	2.982	2.601	2.199	1.395	0.587	-0.114	
(mm)		2.56 3.75	5.56	8.48	10.31	14.27	13.90	13.53	13.11	11.85	10.03	7.47	
Ph (kN)		28 2000	4000	1000	8000	0006	8000	7000	6000	4028	2050	33	
VT (mm)	LEVEL 5 0-24 m	0.000 0.226	0.756	2.015	2.664	3.238	3.371	2.882	2.346	1.787	1.206	0.656	0.130
EXTENSOMETER MOVEMEN	LEVEL 4 0-19 m	0.000	0.058	1.285	1.910	2.485	2.603	2.080	1.547	0.973	0.376	0.121	0.130
EXTEN	LEVEL 3 0-13 m	0.000 0.085	0.282	1.118	1.556	1.946	2.042	1.636	1.248	0.844	0.429	0.043	-0.050
Δn (mm)		0 0.22	0.93	3.48	5.09	6.07	6.81	6.45	5.87	5.04	4.20	3.22	2.55
P _h (kn)		1000	000	000	000	000	6000	000	000	0000	0003	1000	25

Table A.3(v):Extensometer readings-TP2 (cycle 1)

Table A.3(vi):Extensometer readings-TP2 (cycle 2)

(kN)	(mm)	ua 1 va	EXIENSUMETER MUVEMENT	(unut) TA	(KN)	(메일)			(11011) T N 5
		LEVEL 3 0-13 m	LEVEL 4 0-19 m	LEVEL 5 0-24 m			LEVEL 3 0-13 m	LEVEL 4 0-19 m	LEVEL 5 0-24 m
2	7.48	-0.112	0.109	0.169	2000	13.70	1.098	2.684	2.746
000	9.10	0.470	0.369	1.303	4000	15.80	1.768	2.835	3.101
000	11.07	1.302	1.563	2.473	6000	18.03	2.573	3.226	3.719
000	12.59	2.144	2.776	3.663	8000	20.17	3.457	4.500	4.863
000	14.18	2.979	3.997	4.824	0006	21.47	3.918	5.173	5.449
000	15.56	3.406	4.650	5.435	10000	22.89	4.380	5.483	6.033
10000	18.49	3.821	5.270	6.071	11000	25.24	5.475	5.988	7.072
0896	21.20	4.199	5.859	6.639	12000	27.94	5.375	7.264	7.303
					13000	32.09	5.898	7.963	8.014
000	20.57	3.401	4.738	5.754	13500	33.96	6.146	8.308	8.364
000	19.72	2.630	3.587	4.633					
5000	18.46	1.775	2.345	3.509	10000	31.66	4.591	6.213	6.577
000	16.61	0.944	1.108	2.326	7000	29.12	3.309	4.368	4.893
222	11.94		0.295	0.934	4033	26.35	2.037	2.516	3.184
					45	21.42	0.212	0.086	0.676

P _h (kn)		LOAD START			LOAD END		CUMULATIVE TIME (HOURS)	
	DATE	TIME	\тт) Дн (ттт)	DATE	TIME	Δı, (mm)	START	END
0 1000 2000 3000 4000 5000 6000	27-6-91	12:41:01 15:01:05 15:34:52 16:41:10 17:30:31 18:19:42 19:10:17	0 0.23 0.87 1.90 3.09 4.50 6.00	27-6-91	12:42:39 15:30:41 16:35:57 17:26:29 18:16:33 19:06:47 22:41:31	0 0.22 0.93 2.05 3.48 6.81	0 2.33 4.00 5.64 6.49	0.03 2.83 3.92 4.76 5.59 6.43 10.01
5000 4000 3000 2000 25 25	28-6-91	22:44:21 23:04:48 23:20:25 23:50:25 23:50:28 23:50:28 00:12:32	6.46 5.88 5.08 4.23 3.27 2.57	28-6-91	23:02:25 23:16:41 23:33:29 23:47:32 00:06:39 09:04:35	6.45 5.84 5.04 4.20 3.22 2.55	10.06 10.40 10.65 10.95 11.15 11.52	10.36 10.60 10.88 11.11 11.43 20.40

Table A.3(ix):Load-Displacement-Time record for TP2 (load cycle 1)

P _h (kn)		LOAD START			LOAD END		CUMULATIVE TIME (HOURS)	
	DATE	TIME	(սոս) ԿV	DATE	TIME	(աա)	START	END
28 2000 4000	28-6-91	09:26:52 09:36:05 10:43:08	2.57 3.74 5.50	28-6-91	09:28:47 10:37:54 11:46:02	2.56 3.75 5.56	20.76 20.92 22.04	20.79 21.94 23.08
0000 80000 80000		11:52:25 12:58:58 14:07:10 15:14:24	6.93 7.83 9.34 12.14		12:54:13 14:01:37 15:08:06 19:01:40	7.09 8.48 10.31 14.27	23.19 24.30 25.44 26.56	24.21 25.34 26.45 30.34
8000 7000 6000 2000 60	······································	19:08:26 19:28:38 19:48:01 20:08:16 20:28:26 20:53:45	13.90 13.54 13.13 11.90 10.10 7.67		19:24:35 19:44:20 20:03:12 20:23:29 20:44:12 20:54:53	13.90 13.53 13.11 13.11 11.85 10.03 7.68	30.46 30.79 31.12 31.45 31.79 32.21	30.72 31.05 31.36 31.70 32.23
33	29-6-91	08:38:27	7.47	29-6-91	08:40:58	7.47	43.96	43.99

Table A.3(x):Load-Displacement-Time record for TP2 (load cycle 2)

T.M.F.
Qh (mm)
7.48
õ
5
5
ŝ
16.63
~

Table A.3(xi):Load-Displacement-Time record for TP2 (load cycle 3)

· · · ·	_		_					-	_			_					
	END	69.40 70.31	71.89	72.75	73.62	74.71	75.83	76.77	77.06	77.31	77.57	77.69	77.86	86.77	78.14	78.28	78.47
CUMULATIVE TIME (HOURS)	START	69.13 69.56	71.38	72.00	72.86	73.71	75 00	76.62	77.04	77.29	77.55	77.68	77.84	77.97	78.13	78.27	78.45
	(шш) Ф ^и (шш)	13.70 15.80	18.03 20.17	21.47	22.89	23.93	25.24	27.94	29.00	30.07	31.35	32.09	33.96	31.66	29.12	26.35	21.42
LOAD END	TIME	10:05:15 10:59:50	12:34:54	13:26:24	14:18:13	15:23:48	16:30:55	17:27:24	17:44:42	17:59:42	18:15:20	18:22:37	18:32:38	18:40:06	18:49:36	18:58:03	19:09:17
	DATE	30-6-91		-													
	Δh (mm)	13.68 15.61	• •		•	•	•		•	•	•	•	•	•	•	26.36	•
LOAD START	TIME	09:48:55 10:14:43	11:0/:54	12:40:51	13:32:57	14:23:46	15:31:31	17:18:07	17:43:40	17:58:37	18:14:14	18:21:39	18:31:38	18:39:03	18:48:41	18:57:06	19:08:16
	DATE	30-6-91	<i>.</i>														
P _h (kn)	L	2000 4000	6000 8000	0006	10000	10500	11000	00001	12300	12500	12800	13000	13500	10000	7000	4000	46

Table A.3(xii):Load-Displacement-Time record for TP2 (load cycle 4) '

P _b (kN)			1.3 2.7 14.8 30.2 42.3 52.5 67.8	55.1 39.1 21.1 10.2 0		P _b (KN)			1.8 6.5 6.5 30.8 72.2 91.8 112.6 112.6 1129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.6 129.7 129.6 129.7 12
	735 m	AVG	3.7 5.6 19.4 39.6 60.3 81.0 101.3	99.8 64.5 67.8 57.4 27.4 18.4			735 m	AVG	22.6 25.1 41.1 76.5 110.7 76.5 1128.9 1149.1 171.6 171.6 171.6 164.3 171.6 156.6 156.6 156.6 156.3 37.3
	28.	m	3 5 41 62 83 104	103 87 70 51 27 18			28.	m	22 24 42 42 114 114 118 118 118 114 114 114 110 114 10
	LEVEL	2	4 6 42 63 63 82 102	98 66 15 15 15			LEVEL	2	19 21 38 38 38 107 1107 1133 1139 1133 1133 117 117 117 117
		-	4 6 56 93 93 93	99 50 22 22 22					27 27 27 111 111 111 1154 1154 1169 1169 1153 73
(35 m	AVG	4.4 7.0 55.9 87.0 119.6 151.2	147.9 123.0 96.2 68.1 35.1 21.1			235 m	AVG	26.1 36.1 109.6 1165.7 1165.7 1165.7 262.2 262.2 262.2 237.4 237.4 2311.7 154.7 154.7 153.5 233.5
UNITS	L 26.2	~	5 26 57 87 119 149	145 122 96 36 22	2	UNITS	26.	e	28 32 56 109 162 162 254 253 253 253 253 253 253 253 588 588
(MICRO	LEVEL	2	4 7 56 88 121 154	151 125 97 69 35 21	1)	(MICRO	LEVEL	2	25 30 55 115 169 199 234 271 245 245 245 245 218 160 160
LEVELS			5 7 55 120 151	148 123 95 67 34 21		LEVELS			25 25 25 25 263 263 263 263 263 263 263 263 263 263
AT	35 m	AVG	4.0 7.5 57.9 88.5 121.1 152.0	144.7 118.2 90.4 61.3 27.2 13.3	load	AT	35 m	AVG	19.4 23.66 49.9 105.7 164.2 164.2 164.2 260.2 260.2 260.2 260.2 260.2 260.2 260.2 260.2 260.2 260.2 260.2 260.2 260.2 260.2 260.2 201.5 201.5 201.5 201.5 201.5 201.5 201.5 201.5 201.5 201.5 201.5 201.6 201.7 201.6 201.7 201.6 201.7 201.6 201.7 201.6 201.5 200.5 200.5 200.5 200.5 200.5 200.5 20
READINGS	23.7	3	4 8 60 93 1127 1127	154 127 183 33 18	ings-TP3	READINGS	L 23.7	3	223 1055 110555 110555 110555 110555 1105555 1105555 1105555 11055555 11055555
GAUGE	LEVEL	2	4 8 54 82 82 111 111	131 106 54 11		I GAUGE	LEVEL	2	17 17 46 46 150 177 206 236 236 178 178 178 178 35
STRAIN		-	4 7 28 60 91 157	149 121 92 61 25 11	n gauge	STRAIN		1	22 22 169 169 233 268 263 263 263 263 263 263 263 263 263 263
ING WIRE	25 m	AVG	4.0 7.5 31.2 65.3 100.4 137.8	161.2 97.4 64.6 26.2 10.3	Strai	ING WIRE	225 m	AVG	16.8 52.9 52.9 1192.2 1196.0 186.0 2559.3 259.3 259.3 259.3 255.2 255.2 255.2 256.3 256.3
VIBRATING	1.22	3	5 33 106 184	170 135 101 65 23 26	A.4(j	VIBRATIN	EL 21.2	3	11 11 123 195 195 195 195 162 162 162 162 162 162 162
	LEVEL	2	4 35 71 147 185	174 111 77 29 21	Table		LEVE	2	28 28 33 33 15 199 199 235 235 235 235 242 274 274 274 274 274 274 274 274 274
			4 6 56 87 151 154	140 81 51 4					112 112 1164 1103 1103 1135 1135 1135 1135 1135 1135
	50 m	AVG	5.3 9.6 35.4 72.3 109.4 186.6	167.1 131.2 96.4 63.0 25.4 10.8			50 m	AVG	15.1 15.1 20.0 195.4 195.4 195.4 233.1 233.1 233.1 233.1 233.1 255.0 255.0 255.0 155.0 155.0 155.0
	1.5	e	4 32 71 109 150 188	173 137 102 67 25 9			EL 1.55	m	18 192 192 192 192 192 192 157 192 157 157 157 157 157 157 157 157 157 157
	LEVEL	2	4 7 60 96 134 170	154 119 51 15 6			LEVE	2	5 39 103 181 181 218 257 257 256 256 256 148 148 148
		1	8 50 86 123 163 201	174 137 103 72 36 17	-	ļ			23 23 60 1285 207 207 285 329 302 302 302 302 302 101 101
տր Ծր			0.00 0.16 0.89 2.11 3.33 6.16	6.53 5.65 4.72 3.8 2.6 1.90		dh Mm (mm)			1.99 2.03 2.03 3.01 5.21 5.21 5.21 5.68 10.53 12.68 11.68 12.68 12.68 12.68 12.70 11.80 11.80
Р _л (ки)			0 500 2000 4000 5000 6000	5000 3000 2000 500 25		Ph (kN)			29 500 1000 2000 6000 9000 9000 8000 6000 6000

Table A.4(ii): Strain gauge readings-TP3 (load cycle 2)

			[-							-			 			_				_
(kn)	F	r		-2.7	-1.6	-0.8	16.7	53.1	118.4	157.1	171.6	200.2	286.0	 263.4	232.8	176.8	102.0	44.9	8.3	-0.2	-5.4
	E S	AVG		22.8	29.7	49.2	88.8	127.9	164.5	157.1	207.8	228.3	260.5	252.9	238.9	206.2	168.1	123.7	72.2	45.1	22.7
	LEVEL 28.735 m	m		27	34	55	97	137	176	198	225	248	282	276	261	228	189	144	90	61	36
	LEVEL	2		4	11	29	68	105	139	156	174	190	215	207	193	162	126	83	35	თ	-11
		1		38	44	63	101	141	179	199	225	247	284	277	262	229	190	144	92	65	44
- - 	35 m	AVG		31.9	42.4	71.7	130.7	191.7	251.6	282.9	318.8	350.0	400.6	388.3	365.1	311.9	253.3	187.9	113.7	74.2	41.4
(STINU	LEVEL 26.235	e		32	42	70	128	186	243	273	307	337	386	375	353	302	247	184	112	73	41
AICRO 1	LEVEI	2		33	44	74	135	199	260	292	329	362	412	398	374	319	258	191	115	75	40
ELS (N		1		31	41	69	129	191	252	284	320	352	404	392	369	314	255	189	114	75	44
READINGS AT LEVELS (MICRO UNITS)	35 m	AVG		22.9	34.5	64.4	124.8	185.6	245.6	276.9	312.1	342.9	388.8	374.1	349.4	294.9	236.5	172.6	100.4	61.4	28.6
	LEVEL 23.735	m		30	42	74	137	200	263	295	334	367	419	406	381	325	264	197	121	78	41
GAUGE	LEVE	2		17	28	56	111	167	222	250	281	307	344	326	303	252	199	141	76	42	13
STRAIN		1		22	33	64	126	189	252	285	322	355	404	 390	365	308	246	180	104	65	31
VIBRATING WIRE	25 m	AVG		21.7	35.5	69.6	138.7	208.8	278.2	314.9	356.3	393.2	445.6	426.6	395.4	330.8	264.8	194.2	113.0	68.3	29.8
/IBRAT)	LEVEL 21.225 m	e		14	29	68	141	216	290	329	373	413	468	448	414	345	274	200	113	64	22
	LEVEI	2		35	49	83	154	226	296	334	379	417	471	452	421	356	290	216	131	85	44
		1		16	28	58	121	185	249	282	317	350	398	 380	352	291	230	166	95	56	23
	шO	AVG		28.1	40.8	70.4	138.4	212.9	289.4	330.2	375.0	413.0	468.3	440.1	403.6	331.0	260.1	191.4	121.6	82.1	47.3
	LEVEL 1.550 m	m		24	34	67	140	217	294	334	378	416	470	443	408	335	264	191	114	74	38
	LEVE	2		20	31	60	127	200	274	312	355	394	450	432	397	326	256	184	110	11	46
		_		40	58	85	147	221	301	345	392	429	485	445	406	331	261	199	141	101	58
Δ ^h (mm)			-	-	5.30	_	_	_	_	_	_		24.84	25	24	22	20	11	15	13	
Ph (kN)			0	500	1000	2000	4000	6000	8000	9006	10000	11000	12000	11000	10000	8000	6000	4000	2000	970	25

Table A.4(iii): Strain gauge readings-TP3 (load cycle 3)

		Т	<u></u>			_	_	_				_									_		_	
P _b (kn)	 -		-3.2	-0.6	12.6	51.5	119.5	247.6	344.6	367.6	423.9	521.5	811.7	1355.3		* * * *								
	E	AVG			100.5											350.2	315.9	276.7	232.4	184.9	131.4	74.3	24.3	
	LEVEL 28.735	س ا			118											311								
	LEVEL	5	1	21	63	104	144	180	220	243	270	304	347	374		340	306	268	224	178	124	6 6	11	
			57	77	121	167	211	254	296	317	339	360	391	428		399	364	323	276	226	171	112	64	
	E S	AVG	58.5	88.1	152.1	217.9	283.7	349.0	415.6	448.8	485.3	527.0	567.4	601.0		544.7	490.3	430.6	363.9	294.4	219.3	138.8	65.5	
(STINC	26.235	- -	58	88	149	212	275	337	401	433	471	516	566	604		552	500	443	379	312	238	157	81	
AICRO (LEVEL	2	58	68	156	224	291	358	426	459	491	526	553	576		513	458	399	332	261	187	108	34	
/ELS ()			59	87	151	218	285	352	420	455	493	539	584	623)))	568	512	450	381	310	233	152	81	
STRAIN GAUGE READINGS AT LEVELS (MICRO UNITS	5 m	AVG	49.0	9.9	143.5	208.2	272.1	336.1	402.8	435.4	470.8	510.1	553.0	586.7		526.8	470.9	410.9	345.3	278.4	205.3	127.4	54.2	
READIN	23.735	e	61	94	161	229	297	364	436	472	513	559	613	656		598	539	476	407	336	258	172	68	
GAUGE	LEVEL	2	34	63	121	180	238	296	355	381	408	434	456	5 L V		414	365	311	253	194	128	61	ŝ	
TRAIN			52	83	148	215	281	348	417	453	492	538	589		100	569	509	445	376	306	230	149	76	
VIBRATING WIRE S	E S	AVG	51.6	88.0	160.0	234.5	308.7	382.6	460.4	499.4	542.0	589.0	637 0	668 1	1.000	592.7	528.7	462.8	391.4	317.1	235.4	144.1	60.6	
IBRATI	LEVEL 21.225	m	47	86	163	242	320	399	483	524	571	623	613		601	630	561	490	414	335	245	147	55	
Ν	LEVEI	2	63	102	175	253	329	405	485	525	566	612			600	608	544	478	407	331	247	157	12	
ļ		-	45	22	142	209	277	344	413	448	488	5.3.2	581		270	540	481	420	353	286	214	128	56	
	E	AVG	66.4	94.6	161.2	235.1	314.0	394.2	478.5	520.0	567.2	6 2 2 9	676 6	0.010	7.711	621-2	547.7	473.7	197.0	7.4.5	255 B	182.5	105.5) - - -
	LEVEL 1.550 m	m	56	87	160	239	318	197	482	523	569	623	200			625	5.5	481	404	130	250	169	98) 1
	LEVE	2	56	84	150	223	301	378	458	499	545				TFO	604	1925	464	390		010	155	6	2
 		-	87	113	174	243	323	407	496	538	200	600			55			_					126	
4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_	11.44	13.45	16.24	18.90	21 27	10 00	20.25	33.25	36.05			00.19	90.8/									61.01
Ph (kN)			0	2000	4000	6000	8000	10000	12000	13000				0000T	ILESUU	1 4000								20

**** Load cell malfunction

Table A.4(iv): Strain gauge readings-TP3 (load cycle 4)

P _b (kn)																					
	5 m	AVG		46.7	94.2	144.3	194.3	242.5	292.6	346.8	376.1	406.4	440.8	483.8	431.0	343.0	293.3	240.4	177.2	114.2	
	LEVEL 28.735	-		21	68	116	165	212	261	311	334	353	381	414	358	274	227	176	119	62	
	LEVEL	2		EE	81	133	182	232	285	340	369	399	429	469	417	331	283	231	168	104	
				86	133	184	235	283	332	389	425	467	513	568	518	423	371	313	245	176	
	35 m	AVG		97.7	164.2	234.9	306.4	378.2	448.8	521.8	564.6	607.5	651.6	703.9	615.3	486.4	418.7	346.5	263.0	180.0	
UNITS)	LEVEL 26.235	m		114	179	248	319	388	457	529	572	615	658	711	628	505	439	370	287	203	
(MICRO UNITS	LEVEI	2		11	138	208	278	350	419	489	530	568	610	657	562	430	364	292	210	127	
LEVELS (1				108	175	249	322	396	470	547	592	640	687	744	656	524	453	377	292	210	-
STRAIN GAUGE READINGS AT LEV	15 m	AVG		96.7	163.9	232.4	301.2	368.7	436.7	507.3	548.2	587.7	626.7	669.8	569.2	440.9	376.5	306.8	227.6	149.3	
READIN	LEVEL 23.735	m		132	205	279	352	424	496	572	617	661	705	753	652	517	447	373	288	202	
GAUGE	LEVEI	2		43	103	164	227	287	348	410	444	475	505	540	446	330	274	211	141	71	
TRAIN				115	183	253	324	395	466	541	584	627	670	716	610	476	408	337	254	175	
WIRE	25 m	AVG		105.5	180.4	257.9	336.2	413.3	490.7	570.0	614.7	656.1	697.1	741.2	625.2	488.3	420.0	343.8	256.7	166.9	
VIBRATING	LEVEL 21.225	9	ł	107	187	271	354	437	521	606	655	701	746	796	674	527	451	368	272	175	
Λ	LEVEL	2		114	185	264	344	424	503	585	630	672	712	756	642	505	436	360	273	183	
				96	169	239	310	379	448	518	560	595	633	671	561	433	373	303	226	144	
	E	AVG		138.2	201.5	274.2	353.2	433.6	516.8	601.3	647.5	692.9	734.0	784.1	648.3	495.7	423.6	354.3	285.9	215.0	
	LEVEL 1.550 m	m		126	198	277	356	436	517	600	645	687	726	773	644	498	427	354	273	194	
	LEVEL	2		123	191	265	343	421	502	584	628	672	714	763	636	490	420	350	272	196	
		-1		_		-		_		620		-	-		_	499	_	_	_	-	
Δh (mm)			61.48	64.03	66.93	00.01	72.95	75.74	78.92	84.37	90.20	98.23	106.32	116.41	118.18	113.58	110.99	108.23	104.95	101.54	99.49
P _h (KN)				2000	4000	6000	8000	10000	12000	14000	15000	16000	17000	18000	14000	10000	8000	6000	4000	2000	0

Table A.4(v): Strain gauge readings-TP3 (load cycle 5)

											-	_						
NT (mm)	LEVEL 5 0-29 m	****					4.970	5.916	6.967	8.058		7.834	6.968	6.104	5.675	****		
EXTENSOMETER MOVEMENT (mm)	LEVEL 4 0-26 m	****					4.913	5.754	6.748	7.784		****						
EXTENS	LEVEL 3 0-24 m	****					4.303	5.109	6.015	6.937		****						
(mm)		1.99	2.03	2.07	3.01	5.21	7.42	8.63	10.53	12.68		13.65	12.70	11.80	9.68	7.27	5.85	4.77
Pn (kN)	•	29	500	1000	2000	4000	6000	7000	8000	0006		8000	7000	6000	4000	2000	1000	0
	[]																	
	ு ங																	
(nm) TN:	LEVEL 5 0-29 m		0	0		1.539					****							
	LEVEL 4 LEVEL 5 0-26 m 0-29 m				0			<u> </u>	4		**** ***							
EXTENSOMETER MOVEMENT (mm)				0.006	0.596 0.		2.499 2.	3.516 3.	4.494 4.		*							
	LEVEL 4 0-26 m	0.00	0 0	0.052 0.006	0.579 0.596 0.	1.523 1.	2.252 2.499 2.	3.130 3.516 3.	3.989 4.494 4.		* ***	5.65	4.72	3.80	2.60	2.01	1.90	

Table A.4(vii): Extensometer readings-TP3 (load cycle 2)

Table A.4(vi): Extensometer readings-TP3 (load cycle 1)

Ph (kN)	עף ששו)	EXTENS	EXTENSOMETER MOVEMENT	T (mm)	Ph (kN)		(mm)	EXTENS	EXTENSOMETER MOVEMENT (mm)	Т (тт)
		LEVEL 3 0-24 m	LEVEL 4 0-26 m	LEVEL 5 0-29 m				LEVEL 3 0-24 m	LEVEL 4 0-26 m	LEVEL 5 0-29 m
	1 76	•	***	***	c	=	14	***	***	
201	C/ - F	L L E	L L L		1000	-1				1 215
500	4.64				1000					C12.1
1000	5.30				2000	-	CH.			5.203
2000	6.50				4000		16.24			4.262
4000	10.6				6000		. 90			6.330
6000	11.50			5.644	8000		.27	7.947		8.340
8000	13.95	7.310		7.549	10000		24.91	8.783		10.336
0000	15.14	7.313	8.246	8.532	12000		.25	10.487		12.361
10000	17.40	8.273	9.277	9.662	13000		.25	11.340		13.356
11000	19.48	9.112	10.206	10.646	14000		.95	12.320		14.481
12000	24.84	10.292	11.732	12.078	12000		. 89	13.427		15.765
22221					16000		60.79	14.654		17.142
11000	25.69	9.940	****	11.586	16500		.56	15.389		18.010
10000	24.78	9.228		10.759						
8000	22.68	7.926		9.019	14000		82.51	13.695		16.042
6000	20.46	***		7.193	12000		.39	12.196		14.320
4000	17.93			5.233	10000		.13	10.682		12.571
2000	15.03			2.936	8000		.62	9.051		10.618
970	13.28			1.678	6000		.01	8.221		8.615
25	11 56			0.603	4000		.10	****		6.394
C*					2000		. 65			3.897
					80		.89			1.468
					20		.01			
		ibeer voten	The second s	ucle 31	[def	Aliv)	· Evtens	Table D 4/ix): Extensometer readings-TP3 (load cycle 4)	-TP3 (load cvc	16 4)

Table A.4(viii): Extensometer readings-TP3 (load cycle 3)

.

ς. 'n EXTENSO A.4(IX): Table

Δh (mm)	EXTENS	EXTENSOMETER MOVEMENT (mm)	(T (mm)
	LEVEL 3 0-24 m	LEVEL 4 0-26 m	LEVEL 5 0-29 m

	****		2.709
			4.864
			7.026
	9.493	-	1 3.119 1 1 195
	11.207		202 21
			15.276
	13.994		16.445
	14.983		17.592
	15.933		18.696
	16.929		19.901
	14.414		16,981
	11.196		13.253
	***		11.399
			9.373
			7.014
			4.556

Table A.4(x): Extensometer readings-TP3 (load cycle 5)

Ph (kn)		LOAD START			LOAD END		CUMULATIVE TIME (HOURS)	
	DATE	TIME	Δh (mm)	DATE	TIME	Δh (mm)	START	END
0	13-8-91	12:39:07	0.00	13-8-91				
500		12:42:09	0.06		12:57:44	0.07	0.00	0.26
1000		13:01:23	0.16		13:13:04	0.19	0.32	0.52
1500		13:15:21	0.36		13:32:24	0.40	0.55	0.84
2000		13:35:19	0.89		14:03:11	0.97	0.88	1.35
3000		14:09:16	2.11		14:46:59	2.23	1.45	2.08
4000		14:50:54	3.33		14:50:35	3.50	2.14	3.14
5000		15:58:18	4.72		16:57:01	4.93	3.27	4.25
6000		17:01:45	6.16	14-8-91	08:41:37	7.33	4.33	19.99
					- - - -	(
5000	14-8-91	08:45:55	6.53		06:00:60	6.0	20.02	20.40
4000		09:09:26	5.65		09:27:16	5.65	20.46	20.75
3000		09:32:33	4.72		09:48:23	4.75	20.85	21.10
2000		09:52:42	3.80		10:11:58	3.76	21.18	21.50
1500		10:17:46	3.17		10:35:25	3.18	21.60	21.89
1000		10:39:50	2.60		10:55:38	2.56	21.97	22.23
500		10:59:49	2.01		11:16:05	1.99	22.30	22.57
25	_	11:30:06	1.90		12:35:36	1.75	22.81	23.89

Table A.4(xi): Load-Displacement-Time record for TP3 (load cycle 1)

	END	25.86 26.20 26.20 25.49 25.91 29.16 29.16 44.31 44.31 44.80 45.16 45.16 45.95 46.40
CUMULATIVE TIME (HOURS)	START	24.93 25.90 26.24 26.59 27.02 29.25 30.38 31.58 44.02 44.02 44.02 45.38 45.38 45.39 45.39 46.38
	Δh (mm)	1.94 1.97 2.05 3.02 5.24 7.55 9.00 14.40 11.03 11.79 9.65 11.79 12.70 11.79 5.82 5.82 5.82
LOAD END	TIME	14:32:36 14:52:54 15:10:40 15:33:14 15:33:14 17:50:18 18:57:02 18:57:02 18:57:02 18:57:02 08:33:04 09:01:06 09:29:44 09:51:11 10:35:22 10:55:22 10:55:22
Ah (mm) DATE Δh (mm) DATE Δh (mm) DATE 1.99 14-8-91 2.03 14-8-91 2.03 14-8-91 5.21 5.21 7.42 14-8-91 10.53 15-8-91 13.65 15-8-91 11.79 9.68 7.27 5.85		
	Δh (mm) DATE TIM Δh (mm) DATE TIM 1.99 14-8-91 14: 2.03 14-8-91 14: 2.03 14-8-91 14: 3.01 14: 14: 1.053 16-8-91 16: 1.12.68 15-8-91 08: 12.68 15-8-91 08: 12.70 09: 10: 9.68 15-8-91 09: 11.79 15-8-91 09: 12.68 15-8-91 09: 12.70 09: 10: 9.68 10: 10:	
ART Δh (mm) 1.99 2.03 3.01 5.21 7.22 10.53 10.53 10.53 11.79 11.79 11.79 5.85 7.27 5.85		
	DATE	14-8-91 15-8-91
Ph (kN)	I	29 500 2000 2000 2000 2000 8000 8000 8000

Table A.4(xii): Load-Displacement-Time record for TP3 (load cycle 2)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(kn) P _h		LOAD START			LOAD END		CUMULATIVE TIME (HOURS)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		DATE	TIME		DATE	TIME	(unu) ч∇	START	END
12:30:40 5.30 12:47:06 5.30 12:54:24 6.50 13:11:47 6.54 47.06 13:254:24 9.01 13:11:47 6.54 47.06 13:254:24 9.01 13:11:47 6.54 48.22 13:254:24 9.01 13:11:47 6.54 48.22 13:45:25 19:05:19 11:55 49.13 14:11:46 15:14 14:51:47 6.54 48.22 15:14 15:14 13:05:19 11:55 49.13 15:16 15:14 14:51:47 50.28 49.23 17:02:25 19:46 16-9-91 19:06:40 20.76 51.36 16-8-91 01:45:59 24.48 16-9-55 49:25 51.03 17:02:25 19:16:41 22.68 66:26 61.26 62.33 09:07:07 25.69 08:25:56 24.79 68.71 68.71 09:07:03 24.78 10:955 26.44 22.63 69.46 09:07:03 24.78 09:26:44 27.06 68.72 09:07:05	0	15-8-91	12:01:17	4.75	15-8-91	12:02:38	4.75	47.33	47.35
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1000		12:30:40	4.84 5.30		12:26:28 12:47:08	4.86 5.33	47.82 47.82	48.09
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2000		12:54:24	6.50		13:11:47	6.54	48.22	48.50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4000		13:21:40	9.01		13:39:26	9.07	48.67	48.96
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6000		13:49:22	11.50		14:05:19	11.55	49.13	49.39
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8000		14:13:44	13.95		14:51:44	14.05	49.54	50.17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0006		14:58:33	15.14		15:30:38	15.30	50.28	50.82
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10000		15:43:30	16.93		16:45:27	17.40	51.03	52.06
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11000		17:02:25	19.48		19:06:40	20.76	52.35	54.42
16-8-91 $01:45:59$ 24.84 $08:25:58$ 26.29 61.08 $08:39:30$ 26.09 67.96 68.22 67.96 $08:55:07$ 25.69 $08:56:44$ 25.60 67.96 $09:07:03$ 24.71 $09:24:19$ 22.68 68.22 $09:07:03$ 24.78 $09:24:19$ 22.68 68.71 $09:24:19$ 22.68 $09:24:19$ 22.68 68.71 $09:09:14$ 17.93 $09:20:26$ 69.08 $10:09:14$ 17.93 $10:28:31$ 17.82 69.46 $10:09:14$ 17.93 $10:28:31$ 17.82 69.46 $10:55:06$ 13.28 $10:26:19$ 11.782 69.46 $11:17:12$ 11.56 11.56 70.59	11500		19:16:17	21.46	16-8-91	00:43:44	24.32	54.58	60.04
08:39:30 26.08 08:40:55 26.09 67.96 09:55:07 25.69 08:56:44 25.66 68.22 09:07:03 24.78 68.47 26.09 68.22 09:24:19 22.68 09:21:22 24.71 68.42 09:46:44 20.46 09:30:34 22.63 68.71 09:46:44 20.46 17.93 09:30:26 69.08 10:09:14 17.93 10:02:04 11.82 69.46 10:09:19 15.03 11:09:19 11.98 70.29 11:17:12 11.56 11:18:34 11.55 70.59	12000	16-8-91	01:45:59	24.84		08:25:58	26.29	61.08	67.74
08:55:07 25.69 08:56:44 25.68 68.22 09:07:03 24.78 09:21:22 24.71 68.42 09:24:19 22.68 09:21:22 24.71 68.42 09:46:44 20.46 09:21:22 24.71 68.71 09:46:44 27.63 68.71 68.71 09:46:44 27.63 69.08 10:34:29 17.93 10:22:04 59.46 10:34:29 15.03 10:28:19 14.98 69.46 10:55:06 13.28 11:09:14 13.21 70.22 11:17:12 11.56 11:18:34 11.55 70.59	11500		08:39:30			08:40:55	26.09	67.96	67.99
09:07:03 24.78 09:21:22 24.71 68.42 09:24:19 22.68 09:40:34 22.63 68.71 09:46:44 20.46 10:02:04 22.63 68.71 10:39:14 17.93 10:28:31 17.82 69.08 10:34:29 17.93 10:58:19 14.98 69.46 10:55:06 13.28 10:99:14 13.21 70.22 11:17:12 11.56 11:18:34 11.55 70.59	11000		08:55:07			08:56:44	25.68	68.22	68.25
09:24:19 22.68 09:40:34 22.63 68.71 09:46:44 20.46 17.93 10:02:04 69.08 10:09:14 17.93 10:28:31 17.82 69.46 10:34:29 15.03 10:50:19 14.98 69.46 10:35:06 13.28 11:17:12 11.56 11:18:34 70.22	10000		09:07:03			09:21:22	24.71	68.42	68.66
09:46:44 20.46 10:02:04 20.26 69.08 10:09:14 17.93 17.93 17.82 69.46 10:59:16 15.03 10:50:19 17.82 69.46 10:55:06 13.28 11:109:14 13.21 70.22 11:17:12 11.56 11.56 70.59 70.59	8000		09:24:19			09:40:34	22.63	68.71	68.98
10:09:14 17.93 10:28:31 17.82 69.46 10:34:29 15.03 10:50:19 14.98 69.88 10:55:06 13.28 11:09:14 13.21 70.22 11:17:12 11.56 11.56 11.55 70.59	6000		09:46:44			10:02:04	20.26	69.08	69.34
10:34:29 15.03 10:50:19 14.98 69.88 10:55:06 13.28 11:09:14 13.21 70.22 11:17:12 11.56 11.56 70.59	4000		10:09:14			10:28:31	17.82	69.46	69.78
10:55:06 13.28 11:09:14 13.21 70.22 11:17:12 11.56 11:18:34 11.55 70.59	2000		10:34:29			10:50:19	14.98	69.88	70.14
11:17:12 11.56 11:18:34 11.55 70.59	1000		10:55:06			11:09:14	13.21	70.22	70.46
-	30		11:17:12	ш.)		11:18:34	11.55	70.59	70.62

Table A.4(xiii): Load-Displacement-Time record for TP3 (load cycle 3)

DATE TIME 0 16-8-91 12:51:19 1000 16-8-91 14:56:12 2000 14:56:12 14:56:12 4000 17-8-91 15:40:31 6000 17-8-91 12:13:04 11000 17-8-91 12:13:04 12000 17-8-91 12:13:04 12000 17-8-91 12:13:04 13000 17-8-91 12:13:04 15:15:29 15:26:53 15000 17:37:13 15000 17:37:13				DOAD ENU		(HOURS)	(HOURS)
16-8-91 17-8-91	<u> </u>	Δh (mm)	DATE	TIME	Δh (mm)	START	END
17-8-91	:51:19	11.44	16-8-91	14:02:49	11.43	72.16	73.35
17-8-91	:20:51	12.28		14:49:29	12.24	73.65	74.13
17-8-91	:56:12	13.45		15:29:22	13.56	74.24	74.79
17-8-91	:40:31	16.24		16:12:01	16.27	74.98	75.50
17-8-91	:22:02	18.90	17-8-91	08:50:47	18.95	75.67	92.12
	:01:40	21.27		12:03:28	22.22	92.33	95.36
	:13:04	24.91		12:45:23	25.36	95.52	96.06
	:48:41	26.55		13:19:52	27.26	96.12	96.64
	:02:31	29.25		14:34:07	29.86	97.35	97.87
	:15:29	33.25		15:47:47	33.50	98.56	99.10
	:26:53	36.95		16:58:07	39.18	99.75	100.27
	:37:13	44.89		18:07:04	48.96	100.93	101.42
	:46:36	60.79		20:26:04	76.34	102.08	103.74
	: 31:02	78.56		20:38:28	81.66	103.82	103.94
	:53:52	82.51		20:55:41	82.49	104.20	109.23
	:00:13	80.39		21:01:48	80.39	104.31	104.33
	:05:01	78.13		21:06:29	78.12	104.39	104.41
	:11:40	75.62		21:13:15	75.61	104.50	104.52
	19:44	73.01		21:30:07	72.90	104.63	104.81
	33:44	70.10		21:41:13	68.98	104.87	104.99
	45.54	66.65		21:56:04	66.44	105.07	105.24
	22.03.08	62.89		22:04:42	62.79	105.36	105.38
20 19-8-91 10:42	10:42:21	61.01	19-8-91	10:44:31	61.48	142.01	142.05

Table A.4(xiv): Load-Displacement-Time record for TP3 (load cycle 4)

P _h (kn)		LOAD START			LOAD END		CUMULATIVE TIME (HOURS)	
	DATE	TIME	Δ ^h (rrun)	DATE	TIME	(ատ) ԿԾ	START	END
	19-8-91	13:57:02	61.48 61.03	19-8-91	13:58:29	61.48	145.25	145.27
000		14:27:20	64.03		14:19:33	67.15	145.76	146.26
000		15:06:06	70.00		15:32:20	70.11	146.40	146.84
3000		15:41:14	72.95		16:13:03	73.12	146.99	147.52
10000		16:24:47	75.74	-	16:56:50	75.98	147.71	148.25
12000		17:09:07	78.92		17:42:27	79.73	148.45	149.01
14000		17:56:46	84.37		18:29:42	86.38	149.25	149.79
14500		10.05.33	27.18		20:20:61	67.01 67.05	150 20	
12000		27:C0:61	90.20		51:12:5T		20.121	151 55
00001		19:44:00	34.22		67:CT:DZ		151 53	15 21
16000		20:00 00	98.23		14:40:02	20.101		15.21
16500		21:00:28	102.84		21:16:23	100 27	16.201	10,201
17500		91.10.12			21.50.53	114 62	152.99	153.28
18000		22:04:10	116.41		22:37:05	122.08	153.37	153.91
							00	16 4 16
14000		22:41:35		10 0 00	16:12:22	60.8TT	15 A 31	165 03
10000	10 0 00	1C:4C:72		16-0-02	10.27.21	110 76	165 21	165 75
6000		10:33:40	108.23		11:07:04	108.04	165.86	166.41
4000		11:14:21			11:47:35	104.88	166.53	167.09
2000		11:55:12			12:25:52	101.37	167.22	167.73
0		12:35:58			13:37:19	97.03	167.89	168.92

Table A.4(xv): Load-Displacement-Time record for TP3 (load cycle 5)

EXTENSOMETER READINGS (mm)	LEVEL 5	(0-24m)	0.321	0.749	1.245	1.776	2.332	2.895	3.482		3.673	3.676*	3.673*	3.681*	3.677*	3.681*
AETER RE	LEVEL 4	(0-21m)	0.129	0.574	1.088	1.649	2.220	2.798	3.387		3.4/8	3.472*	3.459*	3.456*	3.452*	3.450*
XTENSON	LEVEL 3	(m61-0)	0.087	0.382	0.698	1.026	1.355	1.686	2.028	102.0	2.132*	2.152*	2.152*	2.152*	2.152*	2.152*
ш	Pb	(kN)	0.1	0.0	7.7	13.3	14.2	17.1	19.0		14.2	11.3	7.6	2.9	-0.9	-2.7
	m	Mean	0.2	1.1	2.0	2.3	3.0	4.2	5.1	10	0.3	4.6	3.7	3.0	1.8	0.7
(7	4.250	e S	0	-	-	-	1	-	2		7	-	1	0	-	-
FRAIN	/EL 2	5	0	-	3	4	2	2	8		7	80	2	9	4	2
RO S1	LEV	_	-	5	3	3	3	2	9		0	5	4	3	5	-
DOWN PILE SHAFT (MICRO STRAIN)	E	Mean	2.1	4.3	8.4	12.5	18.0	24.3	30.2		0.05	25.8	21.2	16.2	12.0	5.9
SHAF	1.500 m	3	4	9	8	Ξ	16	23	27		67	23	19	14	11	5
PILE	LEVEL 21	2	-	4	6	14	21	27	34		00	30	26	20	15	6
NMO	LEV	_	-	e	8	12	17	23	29	00	07	24	19	14	10	4
ELS DC	E	Mean	2.5	8.5	18.0	29.5	41.5	54.5	67.0	100	0.00	55.5	46.0	35.0	23.5	11.5
LEV	18.750 m	3	0	0	0	0	0	0	0		0	0	0	0	0	0
DINGS AT LEVELS	/EL 1	5	3	6	20	31	44	58	11	1	1	19	51	39	28	15
	LEV	_	5	8	16	28	39	51	63	07	20	50	41	31	19	8
VIBRATING WIRE STRAIN GAUGE REA	E	Mean	4.6	14.2	28.0	41.6	55.9	70.7	85.9	V VO	04.4	73.8	63.0	48.9	32.9	15.4
I GAL	LEVEL 17.950 m	е С	5	16	28	42	56	11	86	10	04	16	64	51	36	20
RAIN	/EL 1	2	4	13	28	40	55	69	84	6	70	13	09	46	31	12
RE S1	LEV	_	2	14	28	43	57	72	87	10	0	13	65	50	32	14
ING WI	E	Mean	12	27	43.5	60.5	77.5	94.5	111.5	103		87.5	72	54	36.5	20.5
BRAT	.250 m	~ ~	5	0	15	27	40	50	59	10		36	25	14	7	-12
VIE	LEVELI	5	4	20	33	48	19	76	60	0		67	54	39	23	8
	LE.		20	34	54	13	94	113	133	125	C71	108	60	69	50	33
,	(mm)		0.17	0.56	1.41	2.38	3.57	4.82	6.3	13		6.91	6.5	5.99	5.43	4.84
	Ph (kN) Dh (mm)		540	1000	1500	2000	2500	3000	3500	1000		2500	2000	1500	1000	480

Note Strain gauge No.3 at levels 1.250m and Level 18.750m excluded when computing average strains

Table A.5(i):Strain gauge,Extensometer and Base load cell readings-TP4 (load cycle 1)

	Ph (kN) Dh (mm)		I.EVEL 1 250 m	1.250	E	LE	I.EVEL 17.950 m	7 950	I. 1.250 m I.EVEL 17.950 m		VEL 1	LEVEL 18 750 m	I.EVEL 18 750 m 1 EVEL 21 500 m 1 EVEL 24	I FV	I FVFI 21 500 m	500 m	1	IFV	FL 24	I FVFI 24 250 m		ph 1	EVEL 3	I EVEL A	I EVEL 3 I EVEL A I EVEL C
-		-	1		Mean	-	0		3 Mean		6	3 Mean	lean			1 Mean	uce			NA S	-	-	10 10 10		(0 24-0)
		•	4				4	2		-	1			-			Call		4	M	-		(111/21-0)	(11117-0)	(111+7-0)
500	1	31	9	-14	18.5	13	10	16	12.9	8	14	0	II	2	10	9	6.8	2	1	0	6.0	-2.8	2.151*	3.435*	3.692*
1000	5.03		20	-2	32.5	25	22	29	25.6	16	23	0	19.5	6	13	10	10.5	5	2	0	1.2	-0.1	2.152*	3.432*	3.699*
2000		46	21	-2	33.5	54	51	54	53	36	44	0	40	18	22		20.1	3	4	-	2.5	-1.9	2.149*	3.427*	3.690*
3000			78	46	96	81	17	64	62	56	65	0	60.5	27	32	27	28.8	5	7	1	4.2	13.2	2.151*	3.426	3.689
4000		157	108	68	132.5	107	103	103	104.3	78	60	0	84	37	44		39.1	8	12	2	7.1	23.6	2.447	3.945	4.211
5000		193	134	81	163.5	135	130	129	131.3	102	117	0 1	09.5	47	58		52.6	11	18	5 1	1.3	33	3.046	5.114	5.392
5250	14.64	207	143	87	175	144	140	138	140.6	110	127	0 1	18.5	50	65	1	59	13	22	7 1	14.1	36.8	3.299	5.506	5.834
5000	16.28	208	142	85	175	145	138	136	139.7	111	127	0	119	50	67	65 (6.05	14	23	10 1	5.5	32.2	3.362*	5.571	5.926
4000	15.55	172	114	61	143	131	118	122	123.7	93	109	0	101	41	57		51.7	11	21	6 1	12.9	25.5	3.371*	5.563*	5.917*
3000	14.64	134	86	40	110	106	98	66	101.1	73	88	0	80.5	31	46	45 4	10.7	80	18	4 1	0.2	6.7	3.370*	5.557*	5.916*
2000	-	94	57	19	75.5	74	68	11	70.9	51	63	0	57	20	34	34 2	29.3	5	13	3	6.9	6.5	3.373*	5.556*	5.917*
1000	12.25	59	29	÷	44	40	36	41	38.7	26	37	0	31.5	6	22	23	18.2	3	80	1	4.1	-1.9	3.368*	5.554*	5.921*
500	_	42		-15	28.5	22	19	25	22	15	24	0	19.5	3	16		2.4	3	5	1	2.8	-1.9	3.371*	5.554*	5.920*

Note Strain gauge No.3 at levels 1.250m and Level 18.750m excluded when computing average strains

Table A.5(ii):Strain gauge, Extensometer and Base load cell readings-TP4 (load cycle 2)

LEVEL 3 LEVEL 4 LEVEL 5	(0-24m)	5.925*	5.918*	5.917*	5.915*	5.919*	5.923	6.286	6.930	7.567	7.990	8.378	8 448*	8.449*	8.441*	8.445*	8.443*	8.448*	8.446*
LEVEL 4	(0-21m)	5.543*	5.536*	5.534*	5.532*	5.531*	5.527	5.874	6.472	7.093	7.499	7.836	7 977	7.920*	7.919*	7.921*	7.917*	7.915*	7.911*
LEVEL 3	(m61-0)	3.366*	3.362*	3.368*	3.364*	3.366*	3.362	3.552	3.888	4.224	4.437	4.623	4 663	4.662*	4.662*	4.662*	4.662*	4.662*	4.662*
	(kN)	-4.7	-3.7	1.0	7.5	19.9	36.0	43.4	52.9	62.3	71.7	80.2	6 99	51.8	38.5	24.5	9.3	0.8	-
E	Mean	1.9	2.1	3.9	6.2	6.6	14.8	18.5	22.2	27.9	34	38.5	36.6	31.5	26.3	20.3	14.6	8.9	6.7
LEVEL 24.250 m	3	-	-	1	5	2	8	11	14	21	29	34	37	25	19	14	6	4	3
VEL	5	4	4	L	1	16	22	28	32	39	46	51	15	47	42	35	28	19	16
LE	-	1	2	3	5	6	14	17	20	24	27	30	10	23	18	12	1	3	2
LEVEL 18.750 m LEVEL 21.500 m LEVEL 24.	Mean	10.2	15.2	26.5	38.3	50.1	60.7	66.7	74.8	82.8	89.2	95	863	75.7	64.3	51.9	38.3	23.9	18.1
SHAF I	e	15	21	31	42	55	99	11	81	92	100	106	98	87	76	63	50	35	29
VN PILE S	5	14	18	30	42	55	65	72	80	89	96	102	04	83	70	58	43	28	22
LE	-	2	1	19	30	41	51	57	62	68	72	17	68	57	46	34	22	00	3
m	Mean	14	24.5	48	72	95	118	131.5	144	157.5	166.5	174	158	137.5	115.5	93	99	37	25
18.750 m	ر	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LEVEL 1	5	17	28	53	78	102	126	140	154	168	177	185	169	148	125	102	74	43	30
LE	-	11	21	43	99	88	110	123	134	147	156	163	147	127	106	84	58	31	20
E E	Mean	17.7	31.2	61.1	89.5	116	138.6	152.9	166.5	180.2	188.7	196.2	1837	165.3	139.1	110.1	76.4	43.5	27.6
7.950	3	21	34	62	88	114	136	149	162	174	182	189	177	158	134	107	76	45	30
LEVEL 17.950 m	5	15	27	58	86	113	134	151	165	179	188	196	183	164	137	109	74	40	24
LE	-	18	32	63	94	121	145	159	173	187	196	204	197	174	146	115	61	45	29
LEVEL 1250 m LEVEL 17.950 m	Mean	24.5	38.5	68	100	133.5	167.5	186	203	219	229	238	209	177.5	144.5	112.5	62	50	35
1.250	e	-12	-	22	40	59	81	92	101	107	111	116	06	20	51	34	15	-	-10
LEVEL 1.250 m	5	12	25	53	82	110	137	152	166	180	189	197	177	145	118	16	62	35	20
LE	_	37	52	83	118	157	198	220	240	258	269	279	746	210	171	134	96	65	50
Ph (kN) Dh (mm)		10.95	11.44	12.6	13.87	15.16	16.69	18.02	20.16	22.81	26.6	28.99	30.27	29.31	28.37	27.3	25.99	24.41	23.67
(kN)D		500	1000	2000	3000	4000	5000	5500	6000	6500	6750	7000	6000	5000	4000	3000	2000	1000	500

Note Strain gauge No.3 at levels 1.250m and Level 18.750m excluded when computing average strains

Table A.5(iii):Strain gauge,Extensometer and Base load cell readings-TP4 (load cycle 3)

LEVEL 3 LEVEL 4 LEVEL 5	(0-24m)	8 455*	8 453*	8 449*	8.453*	8.454*	8.457*	8.463*	8.469	9.003	9.664	10.362	11.062	12.530	13.914	14.252		14.359	14.358*	14.357*	14.356*	14.356*
LEVEL 4	(0-21m)	7 899*	7 899*	7.890*	7.887*	7.883*	7.877*	7.874*	7.872	8.374	9.005	9.684	10.395	11.941	13.581	14.068		12.926	12.915	12.909*	12.903*	12.899*
LEVEL 3	(0-19m)	4.662*	4 662*	4.660*	4.661*	4.658*	4.656*	4.655*	4.652	4.902	5.231	5.581	5.943	6.664	7.352	7.543		7.618*	7.615*	7.607*	7.606*	7.605*
Pb	(kN)	-19	61	9.4	20.8	37.7	59.4	76.4	94.2	109.2	127.0	153.1	191.2	322.0	582.9	699.4		662.0	577.8	453.4	320.4	184.8
m	Mean	5.6	1.8	11.3	16.0	21.4	29.3	35.4	42.4	50.0	58.4	70.2	86.5	150.8	267.1	337.2		342.0	324.5	296.5	264.2	224.6
LEVEL 24.250 m	3	2	4	9	6	14	22	29	37	46	58	75	100	176	297	356		369	344	304	260	210
LEVEL 18.750 m LEVEL 21.500 m LEVEL 24.	2	13	16	21	27	33	42	48	56	64	72	84	66	145	234	278		311	301	285	265	233
LE	-	2	5	1	12	17	24	29	34	40	45	52	61	132	270	378		346	328	300	268	230
E	Mean	22.2	33.8	46.5	59.7	72.0	84.3	90.9	97.3	104.2	111.8	120.8	130.1	149.5	166.2	169.9		152.8	134.8	107.3	77.1	44.3
1.500	3	33	44	56	70	81	94	101	108	116	125	134	144	164	186	192		178	161	132	102	69
LEVEL 21.500 m	2	26	38	51	65	78	60	97	104	III	119	129	139	160	171	172		151	132	104	72	37
LE	-	2	19	32	45	57	68	74	80	85	92	66	107	124	141	146		130	112	86	57	26
m	Mean	31.5	53.5	79.0	103.5	128.0	152.0	164.5	177.0	189.0	201.5	214.5	227.0	253.5	277.0	280.0		245.0	214.5	170.5	120.0	63.0
8.750	~ ~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i	0	0	0	0	0
LEVEL 18.750 m	5	37	09	86	112	138	163	176	188	201	214	227	240	266	290	293	1	260	229	184	131	72
LE	-	26	47	72	95	118	141	153	166	177	189	202	214	241	264	267		230	200	157	109	54
E	Mean	36.4	65.0	94.6	123.9	150.6	175.9	188.0	199.8	213.1	225.7	239.6	253.8	6	309.7	315.8		-	264.4	216.4	153.4	86.8
7.950	3	38	65	63	120	146	170	182			217		-		299	305	-	-	257	-	152	90
LEVEL 17.950 m	2	34	62	93	122	149	175	187	200	213	225	239	253	281	309	315		289	264	214	152	86
LE	-	38	68	98	129	157	183	195	207	221	234	249	263	293	321	327		298	273	224	156	85
E	Mean	44.0	71.0	99.5	131.5	164.5	198.5	216.0	233.5	249.5	264.5	281.0	297.0	330.0	362.5	370.5		322.5	274.5	211.5	153.0	98.5
.250 1	3	9	23	37				102	1	-			-			176		-		1	39	17
LEVEL 1.250 m	7	29	54	81	108	135	163	177	161	205	216	229	242	267	290	295		253	215	164	116	69
LE.		59	88	118	155	194	234	255	276	294	313	333	352	393	435	446		392	334	259	190	128
(mm) u		22.85	23.96	25.31	26.68										82.95	90.37		93.56	96.74	94.81	92.47	89.58
Ph (kN) Dh (mm)	;	1000	2000	3000	4000	2000	0009	6500	2000	7500	8000	8600	0006	0000	1000	11250		9500	8000	0009	4000	2000

Table A.5(iv):Strain gauge,Extensometer and Base load cell readings-TP4 (load cycle 4)

			>	DVA	VIDRATING WINE STRAIN DADUE NEADINGS AT LEVELS DOWN FILE SHAFT (MICKU STRAIN)	AINE	WWI C	50 11	N TOO	EVE	5000	I PP	V ELLO	MOA		C OIL	IL I (IM	ICNO	NIC	(NIN)			EXIENDO	EXTENSOMETER READINGS (mm)	AUINGS (m)
Ph (kN)	Ph (kN) Dh (mm)		LEVEL 1.250 m	1.250	Е	LL	LEVEL 17.950 m	17.950	m	LE	LEVEL 18.750 m	18.75(m (L	LEVEL 21.500 m	21.50	0 m		EVEL	LEVEL 24.250 m	0 m	Pb	LEVEL 3	LEVEL 3 LEVEL 4	LEVEL 5
		-	5	e	3 Mean	-	2	3	3 Mean	-	2	3	3 Mean	-	2	ß	3 Mean	-	2	3	3 Mean	(kN)	(0-19m)	(0-21m)	(0-24m)
3000	89.11	144	89		38 116.5	103	103	107	107 104.2	67	84	0	75.5	38	47	78	54.0		194	169	182.0			12.874*	14.356*
6000	93.27		160	75	198.5	196	191	192	193.2	145	167	0	156.0	84	98	123	-	262	227	200	214.0		7.599*	12.871*	14.360*
0006	-			129	295.0	281		270	274.3	221	244	0	232.5	129	139	167	-	145	326	309	318.0			12.858	14.358*
10000	110.72			152	331.5			295	299.1	243	267	0	255.0	144	153	182	-	373	359	425	392.0			13.383	14.357
11000				173	366.0	328	321	319	322.4	260	286	0	273.0	161	159	203	174.2		420	566	493.0			14.822	14.359
12000	155.60	476	321	188	398.5	348 3	343	345	345.4	273	297	0	285.0	181	163	240	194.9	173	529	1101	815.0	1452	8.301	16.553	14.458
11500	156.56	461	306	174	174 383.5	339	333	341	333 341 337.6	256	280	0	268.0	178	154	246	192.7	253	632	1731	1182.0	1552	8.372*	16.547	15.536
8000	155.45	334		103	272.0	272	270	279	273.7		207	0	196.5	133	108	200	146.8	173		1669	606 1669 1138.0		8.371*	13.106	15.541
5000		228		56	185.5	180	180	199	186.6	115	135	0	125.0	87	62	153	100.8	82	578	1567	1073.0		8.371*	11.326	15.537

Table A.5(v):Strain gauge,Extensometer and Base load cell readings-TP4 (load cycle 5)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ph (kN)		LOAD START			LOAD END		CUMULATIVE TIME (HOURS)	
2-9-91 0 2-9-91 0 <th0< th=""> <th0< th=""> 0 0</th0<></th0<>		DATE	TIME	<u>ձ</u> ե (mm)	DATE	TIME	<u> Ճ</u> հ (mm)	START	END
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	2-9-91		0	16-6-2		0		
17-1023 0.56 17-40:14 0.71 0.35 17-43:21 1.41 18.14:32 1.63 0.90 17-43:21 1.41 1.8.14:32 1.63 0.90 17-43:21 1.41 1.8.14:32 1.63 0.90 18.17:04 2.38 1.8.14:32 1.63 0.90 18.73:31 3.57 2.03 3.57 2.07 19-45:12 4.82 3.57 2.07 1.46 19-45:12 4.82 3.57 2.07 2.93 2035:47 6.30 3-9-91 09:26:47 7.58 1.76 2035:47 6.30 3-9-91 09:26:47 7.58 3.78 2035:47 6.30 3-9-91 09:26:47 7.58 3.78 2035:48 6.50 10:12:50 6.89 17.11 10:15:18 6.50 10:12:50 6.89 17.73 10:16:54:51 5.43 10:35:55 5.42 18.39 11:12:24 4.38	540		16:49:14	0.17		17:04:39	0.18	0	0.26
1743.21 141 18:14.32 1.63 0.90 18:17:04 2.38 18:4.32 1.63 0.90 18:17:04 2.38 18:53.31 3.57 2.07 18:53.31 3.57 2.08 1.46 18:53.31 3.57 2.07 2.07 19:45:12 4.82 3.57 2.07 20:35:47 6.30 3-9-91 09:2647 7.58 1.46 20:35:47 6.30 3-9-91 09:2647 7.58 3.78 20:35:47 6.30 3-9-91 09:2647 7.58 3.78 20:35:47 6.30 3-9-91 09:2647 7.58 3.78 20:35:47 6.30 3-9-91 09:2647 7.58 1.74 09:55:42 6.91 10:12:50 6.89 17.11 10:15:18 6.50 10:12:50 6.89 17.13 10:15:18 6.59 10:12:50 6.89 17.13 10:15:18 5.99 10:12:50 6.89 17.43 10:15:18 5.99 10:12:50 6.89 17.13 10:15:18 5.99 10:12:50 6.89 17.43 10:15:18 5.99 11:28:20 4.83	1000		17:10:23	0.56		17:40:14	0.71	0.35	0.85
18.17.04 2.38 18.49.59 2.68 1.46 18.53.31 3.57 4.82 3.57 2.07 19.45.12 4.82 3.57 2.07 3.57 2.07 19.45.12 4.82 3.57 2.07 3.57 2.07 19.45.12 4.82 3.57 2.03 3.57 2.07 19.45.12 4.82 3.991 092.647 7.58 2.07 20.33.26 7.30 092.647 7.58 3.78 0.933.26 7.30 092.647 7.58 3.78 10.15.18 6.50 10.12.50 6.89 17.11 10.15.18 6.50 10.12.50 6.89 17.11 10.35.03 5.99 10.12.50 6.89 17.11 10.51.36 5.98 11.08.35 5.42 18.09 11.12.34 4.84 11.282.00 4.89 18.39 11.128.50 4.39 12.2816 4.39 18.83	1500		17:43:21	1.41		18:14:32	1.63	0.90	1.42
18.53.31 3.57 18.53.31 3.57 2.07 19.45.12 4.82 3.9-91 092.647 7.58 2.07 20.35.47 6.30 3-9-91 092.647 7.58 3.78 20.35.47 6.30 3-9-91 092.647 7.58 3.78 20.35.47 6.30 3-9-91 092.647 7.58 3.78 20.35.47 6.30 3-9-91 092.647 7.58 3.78 20.35.42 6.91 092.647 7.29 16.74 095.542 6.91 10.12.50 6.89 17.11 10.15.18 6.50 10.12.50 6.89 17.71 10.35.03 5.99 10.12.50 6.89 17.78 10.35.136 5.99 10.51.36 5.98 17.78 11.12.34 4.84 11.282.00 4.83 18.89 11.128.35 5.42 18.09 11.128.36 5.42 18.83	2000		18:17:04	2.38		18:49:59	2.68	1.46	2.01
1945:12 4.82 20:31:42 5.31 2.93 20:35:47 6.30 3-9-91 09:26:47 7.58 3.78 20:35:47 6.30 3-9-91 09:26:47 7.58 3.78 3-9-91 09:26:47 7.58 3.78 3.78 0:33:26 7.30 09:26:47 7.29 16.74 0:55:42 6.91 10:12:50 6.89 17.11 10:15:18 6.50 10:12:50 6.89 17.11 10:35:136 5.99 10:12:50 6.89 17.13 10:35:136 5.99 10:12:56 5.98 17.78 11:12:34 4.84 11:08:35 5.42 18.09 11:12:34 4.84 11:28:20 4.83 18.39	2500		18:53:31	3.57		18:53:31	3.57	2.07	2.07
20.35.47 6.30 3-9-91 0926.47 7.58 3.78 3-9-91 0933.26 7.30 3-9-91 095.647 7.58 3.78 3-9-91 0955.42 6.91 10.12.50 6.89 17.11 10.15.18 6.50 10.12.50 6.89 17.11 10.35.02 5.99 10.15.136 5.98 17.78 10.35.136 5.43 10.51.36 5.98 17.78 11.12.34 4.84 11.2820 4.83 18.39 11.12.34 11.2820 4.83 18.83	3000		19:45:12	4.82		20:31:42	5.31	2.93	3.71
3-91 09:33:26 7.30 09:50:10 7.29 16.74 09:55:42 6.91 10:12:50 6.89 17.11 09:55:42 6.91 10:12:50 6.89 17.11 10:15:18 6.50 10:12:50 6.89 17.11 10:15:18 6.50 10:12:50 6.89 17.13 10:16:13 6.50 10:32:04 6.47 17.43 10:51:36 5.98 17.78 17.78 10:51:34 4.84 11:08:35 5.42 18.09 11:12:34 4.84 11:28:20 4.83 18.39	3500		20:35:47	6.30	16-6-£	09:26:47	7.58	3.78	16.63
09:55:42 6.91 10:12:50 6.89 17.11 09:55:42 6.91 10:12:50 6.89 17.11 10:15:18 6.50 10:12:50 6.89 17.11 10:15:18 6.50 10:12:50 6.89 17.11 10:15:18 6.50 10:21:36 5.98 17.78 10:51:34 4.84 11:08:35 5.42 18.09 11:28:34 4.84 11:08:35 5.42 18.39 11:1:90:09 4.37 12:28:16 4.39 18.83	1000	10-01	96.11.00	1 30		01-05-00	7 70	16 74	20 21
10:15:18 6.50 10:32:04 6.47 17.43 10:36:02 5.99 10:51:36 5.98 17.78 10:51:34 5.43 11:08:35 5.42 18.09 11:12:34 4.84 11:28:20 4.83 18.39 11:30:09 4.37 12:28:16 4.39 18.83	2500		09:55:42	6.91		10:12:50	6.89	17.11	17.39
10:36:02 5.99 10:51:36 5.98 17.78 10:54:51 5.43 11:08:35 5.42 18.09 11:12:34 4.84 11:28:20 4.83 18.39 11:30:09 4.37 12:28:16 4.39 18.83	2000		10:15:18	6.50		10:32:04	6.47	17.43	17.71
10:54:51 5.43 5.42 18.09 11:12:34 4.84 11:28:20 4.83 18.39 11:13:00 4.37 12:28:16 4.39 18.83	1500		10:36:02	5.99		10:51:36	5.98	17.78	18.04
11:12:34 4.84 11:28:20 4.83 18.39 11:30:09 4.37 12:28:16 4.39 18.83	1000		10:54:51	5.43		11:08:35	5.42	18.09	18.32
11:39:09 4.37 12:28:16 4.39 18.83	500		11:12:34	4.84		11:28:20	4.83	18.39	18.65
	0		11:39:09	4.37		12:28:16	4.39	18.83	19.65

Table A.5(vi): Load-Displacement-Time record for TP4 (load cycle 1)

[1]	END	20.06	20.40	20.78	21.41	22.57	24.99	29.12	 40.07	40.40	40.77	41.10	41.47	41.84	42.93
CUMULATIVE TIME (HOURS)	START	19.73	20.13	20.52	20.85	21.55	22.72	25.10	36.69	40.13	40.48	40.82	41.19	41.56	42.08
	Δh (mm)	4.65	5.03	6.02	7.18	9.33	14.26	15.96	16.23	15.53	14.61	13.53	12.19	11.48	10.54
LOAD END	TIME	12:52:35	13:13:02	13:35:48	14:13:49	15:23:11	17:48:41	21:56:30	08.53.31	09:13:27	09:35:30	09:55:29	09:17:33	10:39:39	11:44:48
	DATE	3-9-91							4-9-91						
	Ճ հ (mm)	4.64	5.03	5.98	7.08	8.75	12.19	14.64	16.28	15.55	14.64	13.56	12.25	11.52	10.59
LOAD START	TIME	12:33:11	12:57:02	13:20:16	13:40:23	14:22:06	15:32:36	17:54:59	 08.30:48	08:57:14	09:17:48	09:38:39	10:00:48	10:22:57	10:54:14
	DATE	16-6-6							 4-9-91						
Ph (KN)		500	0001	2000	3000	4000	5000	5250	5000	4000	3000	2000	1000	200	30

Table A.5(vii): Load-Displacement-Time record for TP4 (load cycle 2)

A-74

Ph (kN)		LOAD START			LOAD END		CUMULATIVE TIME (HOURS)	
	DATE	TIME	Δ _h (mm)	DATE	TIME	Δh (mm)	START	END
500	4-9-91	11:52:14	10.95	4-9-91	12:08:03	10.95	43.05	43.32
1000		12:14:36	11.44		12:31:53	11.46	43.42	43.71
2000		12:37:53	12.60		12:55:35	12.65	43.81	44.11
3000		13:04:14	13.87		13:23:05	13.92	44.25	44.57
4000		13:31:17	15.16		14:02:55	15.28	44.70	45.23
5000	_	14:10:02	16.69		15:10:54	17.12	45.35	46.37
5500		15:19:44	18.02		17:08:48	19.08	46.51	48.33
6000		17:17:11	20.16		19:49:05	21.89	48.47	51.00
6500		19:53:58	22.81	5-9-91	00:56:15	26.21	51.08	56.12
6750	16-6-5	01:05:24	26.60		05:36:16	28.54	56.27	60.79
2000		05:43:26	28.99		09:13:54	30.83	60.90	64.42
6000		09:22:55	30.27		09.38.48	30.25	64.56	64 83
5000		09:50:10	29.31		10:06:38	29.31	65.02	65.29
4000		10:11:21	28.37		10.28.44	28.32	65.37	65.66
3000		10:32:47	27.30		10:48:28	27.23	65.73	65.99
2000		10:54:35	25.99		11:09:45	25.95	60:09	66.35
1000		11:18:10	24.41		11:36:30	24.34	66.48	66.79
500		11.42.17	23.67		11:59:11	23.61	66.88	67.17
40		12:10:21	22.83		12:20:58	22.77	67.35	67.53

Table A.5(viii): Load-Displacement-Time record for TP4 (load cycle 3)

Ph (KN)		LOAD START			LOAD END		CUMULATIVE TIME (HOURS)	
	DATE	TIME	Δ _h (mm)	DATE	TIME	Δ _h (mm)	START	END
75	16-6-5	14:45:59	22.00	16-6-3	14:45:59	22.00	69.95	69.95
1000		14:51:06	22.85		15:22:01	22.89	70.03	70.55
2000		15:26:23	23.96		15:59:25	24.13	70.62	71.17
3000	-	16:04:15	25.31		16:37:43	25.42	71.25	71.81
4000		16:44:09	26.68		17:03:03	26.77	71.92	72.23
5000		17:09:58	28.08		17:43:09	28.22	72.35	72.90
6000		17:50:38	29.66		18:20:46	29.90	73.02	73.53
6500		18:26:16	30.68		18:57:40	31.18	73.62	74.14
7000		19:01:13	32.02		19:32:41	33.01	74.20	74.73
7500		19:37:16	34.30		20:07:55	35.90	74.80	75.32
8000		20:12:22	37.53		20:44:45	40.04	75.39	75.93
8500		20:49:10	41.94		21:21:41	45.78	76.00	76.54
0006		21:26:01	47.62		21:57:55	52.65	76.61	77.15
9500		22:02:41	54.55		22:34:38	60.69	77.22	77.76
10000		22:39:48	63.39		23:11:32	70.81	77.84	78.38
10250		23:14:13	71.71		23:14:51	71.98	78.42	78.43
10500		23:16:55	73.47		23:17:46	74.12	78.46	78.48
10750		23:20:15	77.61		23:20:57	77.61	78.52	78.53
11000	_	23:24:50	82.95		23:25:32	83.87	78.59	78.61
11250		23:30:05	90.37		23:30:49	91.38	78.68	78.70
11000		80.22.26	07 76		11-36-66	07 84	78 74	78 77
0500	6 0 01	00.07.34	01 56	10-019	00.00.00	01 55	88 30	88.33
0006	16-6-0		0C.CC		20.00.00	CC.CC	00.00	10 00
8000		09.24.09	90./4		07.04.60	71.04	00.00	00.91
6000		09:48:13	94.81	-	10:03:14	94.11	88.98	89.24
4000		10:07:02	92.47		10:23:27	92.35	89.30	89.57
2000		10:26:38	89.58		10:44:01	89.43	89.62	89.92
60		10:53:22	85.87		10:54:49	85.81	90.07	90.10

Table A.5(ix): Load-Displacement-Time record for TP4 (load cycle 4)

Ph (kN)		LOAD START			LOAD END		CUMULATIVE TIME (HOURS)	_
	DATE	TIME	Ճհ (mm)	DATE	TIME	Δh (mm)	START	END
0	16-6-9	12:26:26	86.00	16-6-9	12:27:42	86.00	91.62	91.64
3000		12:34:04	89.11		13:06:06	89.22	91.75	92.28
6000		13:14:31	93.27		13:47:26	93.48	92.42	92.97
0006		13:59:33	100.16		14:30:15	101.68	93.17	93.68
10000		14:37:09	106.85		14:58:48	110.72	93.80	94.16
11000		15:05:07	118.31		15:18:02	127.08	94.27	94.48
12000		15:25:40	143.20		15:38:14	155.60	94.61	94.82
11500		15:50:37	156.56		16:04:30	156.76	95.02	95.25
8000		16:08:13	155.45		16:14:08	155.43	95.32	95.42
5000		16:17:46	153.00		16:25:32	152.86	95.48	95.61
0		16:35:13	145.26		16:37:00	145.20	95.77	95.80

Table A.5(x): Load-Displacement-Time record for TP4 (load cycle 5)

				-	_	_		-	-						-			
P _b (kN)	[]		и -		13.7	24.7	34.1	46.2	63.4	85.1	67.9	43.6	20.8	2.0	-7.2	-16.4	-24.6	-25.7
	00 m	AVG	¢	F.O.	1.5	2.0	3.4	5.1	6.5	8.7	6.0	2.9	-0.2	-2.9	-3.8	-4.9	-6.0	-6.0
	LEVEL 29.700 m	3	-			2	4	ъ	7	œ	ŝ	1	÷	9	۲-	8-	-10	-10
	LEVEI	2	-	- 0	> ~	2	m	ഹ	7	6	٢	4	7	-1	-2	ĥ	4-	6-
		-1	-		- ~ ~	2	e	4	9	6	7	m		-2	-2	۳ ۱	-4	- 4
	ш 0	AVG	, ,	0.2		18.7	40.8	62.7	85.9	109.7	97.8	77.7	56.4	33.7	21.5	10.1	-2.8	-5.1
UNITS	LEVEL 25.700 m	m	,	2	- σ	18	40	61	82	103	06	70	48	26	14	m	-10	-13
MICRO	LEVEL	2	,	~	r 0	19	42	64	88	113	102	82	61	39	27	16	m	-
ELS (-	,	N <	r 0	19	41	63	88	113	102	81	60	36	24	12	7	<u>~</u>
STRAIN GAUGE READINGS AT LEVELS (MICRO UNITS)	m 0(AVG		0.0	0.0 13.0	27.2	59.9	92.8	128.1	165.2	146.7	116.3	85.4	53.1	36.4	19.3	1.9	2.2
READIN	LEVEL 21.700 m	m		2 1		51				166	150	120	68	58	42	25	80	6
SAUGE 1	LEVEL	2		2	- -	56	. G	6	126	163	144	114	83	51	35	18	1	
RAIN (2 1	20	28	36	96	131	167	146	115	83	50	33	14	4-	۳-
IRE	ш О	AVG		1.5	, . t	26.8	56.7	86.7	118.0	151.5	131.5	101.0	71.0	41.6	26.5	11.4	-4.1	-7.3
VIBRATING W	LEVEL 20.200	m		2 4	0 F		49	66	134	175	156	124	92	59	42	24	9	7
VIB	LEVEL	2		2 4		10	- - 	10	107	137	115	85	56	30	17	4	8-	L-
					* -	11	5	62	113	143	123	94	65	36	21	9	-10	8-
	E	AVG		1.75	 	21.7		90.00	135 4	172.7	147.2	114.1	81.1	48.0	30.8	13.6	-4.3	-1.1
	LEVEL 3.340 m	е		н (157	134	104	73	42	5.	σ	5	-12
	LEVEL	2	.	~ ~						168	143	110	76	64	26.	2	- œ	n i
				21						193	164	129	46	60	41	104		, II
Ч Ч ШШ)			1							10.86	11 69	10.69	9.65	8.50	88.2	7.25	6 48	6.61
Ph (kn)			0	500			3000			6000	5000	4000	3000	2000	1500	1000	2005	200

Table A.6(i): Strain gauge readings-TP5 (load cycle 1)

		T				•		_					_	
(kn) (kn)	·		-21.5	-19.0	-8.7	32.0	95.6	136.7	171.0	162.5	88.1	21.8	-5.6	-25.63
	щ	AVG	-5.2	-4.9	-3.1	1.5	8.0	11.3	13.8	11.0	3.4	-3.2	-6.3	-8.0
	LEVEL 29.700 m	m	6 1	8-	ŝ	-	7	6	10	4	- 4	-11	-14	-16
	LEVEL	2	- 4	-4	-2	7	ი	13	16	14	٢	٦	ŗ	-2
		1	٣	ň	-2	2	80	12	16	14	7	1	-2	۳.
	ш (AVG	-1.5	1.9	21.0	65.1	110.3	132.6	145.8	127.5	83.9	37.1		-11.0
(STINU	LEVEL 25.700 m	~	6-	9-	13	57	101	123	135	115	71	25	-	-21
(MICRO UNITS	LEVEL	2	4	L	26	69	114	136	150	132	68	43	19	4-
				4	23	69	116	139	153	136	16	43	17	8-
SS AT LEVELS	щO	AVG	5.9	11.0	40.9	104.6	170.0	204.2	224.8	198.8	135.9	69.8	33.7	-1.0
READINGS	LEVEL 21.700 m	m	12	17	46	108	172	207	228	205	144	80	45	12
GAUGE 1	LEVEL	2	ъ	10	40	103	168	202	223	197	135	69	33	5
STRAIN (9	37	103	170	204	223	194	129	69	23	-10
WIRE	E O	AVG	0.5	4.0	32.5	92.2	155.2	188.7	209.5			60.7		-2.0
VIBRATING	LEVEL 20.200 п	m	10	16	40	112	180	219	243	215	151	84	17	10
VIB	LEVEL	2	۳ ۲	. –	25.	61	141	171	191	161	1001	49	22	۲. ۲
		1	- 6	, - -	1 2 7		145	176	194	165	101	48	:	-11
	E O	AVG	2 E	9.9 7	40.04	9.05	175 0	1010	231.0	106 5		1 19		-5.0
	LEVEL 3.340 m	m	ט ו	, c	، ب	70			208	170		11	50	5,1
	LEVEL	2		, u	- r		1604	200	227	201		121		-9 -
			1 2				100		257	010			2	-141
ų V	(11011)		6.61	20.02				67.21	19.64		6T.22	10.07		14.54
Ph (kN)			0			0007			7500		0000	4000		0001

Table A.6(ii): Strain gauge readings-TP5 (load cycle 2)

A-78

			Т			~	-	-		-				-					٦
Pb (kN)		- <u>r</u>		0	52.3	139.7	204.6	240.1	283.1	363.2	554.7	726.7		821.1	663.4	491.1	308.3	108.9	
	E O	AVG		-3.6	1.5	6.9	13.5	16.0	19.3	23.3	32.8	40.7		42.1	31.5	20.6	6.6	-1.4	
	LEVEL 29.700	9		-10	4-4	4	80	10	12	13	16	20		13	٦	-11	-20	-26	
	LEVE	2		7	4	11	16	19	22	27	38	46	6 1	ŊĊ	40	29	18	5	
				0	4	12	16	19	23	29	44	57	ţ	ç	54	43	32	17	
	E C	AVG		23.4	61.9	116.1	139.3	150.6	162.4	175.6	192.4	206.1	0.00	184.2	140.7	92.3	42.4	-10.3	
UNITS)	LEVEL 25.700	m		11	55	103	126	137	149	161	177	189		69 T	120	72	24	-25	
IICRO 1	LEVEL	2		õ	73	120	143	154	166	179	195	208		191	144	76	49	-4	
ELS (P		-		29	76	126	149	160	173	187	205	221	000	202	157	107	55	-2	
READINGS AT LEVELS (MICRO UNITS)	ш 00	AVG		54.4	119.5	186.5	219.8	237.5	255.9	276.6	301.7	321.5		6.082	223.5	156.6	87.9	10.6	
READIN	LEVEL 21.700	m		63	126	192	225	242	261	282	309	329	200	167	236	172	105	30	
	LEVEI	2		54	119	185	218	236	255	276	300	318		707	220	153	85	6	
STRAIN GAUGE		-		46	113	183	217	234	252	272	297	317		2 1 2	214	145	73	-1	
WIRE	m 00	AVG		46.8	105.8	168.6	201.3	218.8	236.7	257.1	282.2	301.4	1 636	1.002	203.3	142.8	83.3	12.0	
VIBRATING	LEVEL 20.200	m	:	64	131	200	235	254	274	296	323	345	000	200	247	181	112	26	
AIV	LEVEL	2		95	60	150	183	200	218	236	259	275		101	175	119	69	8	
		-	, ,	ЭЧ Э	96	156	186	203	218	240	264	284	246	0.07	188	129	69	2	
	m (AVG		0.55	119.6	187.0	221.9	240.6	260.3	280.1	303.9	321.8	5 366	0.019	212.3	145.9	79.1	4.0	
	LEVEL 3.340 m	m		0 1 0	109	172	203	220	238	256	277	294	25.4		195	133	69	-3	
	LEVEI	2	0 4	D • •	114	183	220	239	259	280	306	325	780		617	145	77	-1	
		1	CE CE		1.55	206	243	263	284	304	328	346	205		977	160	16	16	
¢. ∭¢			14.70		18.08	21.25	22.85	24.17	27.11	30.98	39.41	44.75	50 99		49.12	46.96	44.49	40.58	
(kN)	_		0		4000	6000	2000	7500	8000	8500	0006	9500	0008		0009	4000	2000	0	

3)
cycle
(load
readings-TP5
gauge
Strain
A.6(iii):
'able

			Γ														
(kN)	r-	т	120.0	290.3	593.8	929.0	1187.5	1575.0	1962.7	2354.9	2905.5	2910.0	2894.7	2609.3	2249.6	1777.3	1156.0
	E O	AVG	-13.4	7.0	21.6	36.3	46.8	63.3	79.3	96.1	120.6	121.2	120.7	105.9	84.4	62.0	38.1
	LEVEL 29.700	m	-27	-16	,	12	19	23	28	36	53	54	54	39	17	ະ ເ	-26
	LEVEL	2	m	13	28	42	53	72	88	104	127	128	127	112	92	72	48
			14	24	38	54	68	96	122	148	182	183	12	166	144	120	93
	E	AVG	-3.4	38.3	105.7	157.5	180.8	208.1	230.6	246.1	270.1	268.9	267.2	228.7	159.4	85.2	13.5
NITS)	5.700	m	-35	19	87	137	160	183	201	208	219		215				
ICRO UI	LEVEL 25.700	2	-12	44	111	160	183	209	230	244	265	264	263	225	158	87	17
M) SIE		1	-10	52	120	175	199	232	262	287	326	326	324	284	211	131	51
STRAIN GAUGE READINGS AT LEVELS (MICRO UNITS)	E	AVG	-5.0	81.5	180.0	247.9	282.0	317.8	343.3	354.5	360.3	355.3	352.6	298.9	204.7	105.1	6.0
EADING	LEVEL 21.700 m	e	0	0	0	0	0	0	0	0	0	0	0	0		0	
AUGE R	LEVEL	2		88	185	251	285	322	351	367	374	370	367	313	219	120	22
RAIN G		1	Ι.			245							338				
RE	E	AVG	-3.4	79.4	166.2	230.2	262.3	295.3	319.0	329.3	335.6	330.8	328.5	277.0	190.3	106.3	18.9
VIBRATING WI	LEVEL 20.200	e									392						
VIBR	LEVEL	2	-1	65	142	203	235	267	289	299	304	299	297	244	159	88	16
		1	9-	69	154	215	245	276	297	304	311	306	304	255	172	86	e
	æ	AVG	-3.4	85.8	81.0	:47.2	180.7	314.8	139.3	149.8	357.0	351.5	148.9	89.4	96.3	02.6	10.4
	LEVEL 3.340 m	m									320 3		313 3				
	LEVEL	2	-8	85	183	251	286	322	348	360	369	363	360	299	202	105	0
			ŀ			269 2							374 3				
(mm.) ∆h		.	 _	_					_		115.07	118.06	_	_	-		
Ph (kN)											11189		-	_	_		

Table A.6(iv): Strain gauge readings-TP5 (load cycle 4)

	_		—				_					
P _b (kN)	r .—	-	1109.4	1711.7	3277.1	3287.9	3380.3	3572.5	3653.3	3619.5	2928.8	1585.5
	E O	AVG	36.0	64.7	136.2	136.9	142.8	151.1	156.5	154.8	112.8	54.7
	LEVEL 29.700 m	m	-27	7	72	73	77	86	63	91	46	-12
	LEVEL	2	45	72	138	139	144	151	153	151	112	58
		-	06	115	198	199	207	216	224	222	181	118
	E	AVG	7.7					296.3	301.6	298.2	175.4	17.3
UNITS)	LEVEL 25.700 m	m	-33	71	217	218	223	235		233		
AICRO (LEVEL	2	11	118	367	269	274	286	288	285	167	15
ELS (N			45	166	338	339	350	368	380	377	248	74
VIBRATING WIRE STRAIN GAUGE READINGS AT LEVELS (MICRO UNITS)	00 m	AVG	-1.5	160.0	336.5	337.6	340.7	353.0	348.0	343.8	181.8	-5.3
LEADI	21.7	m	0	0	0	0	0	0	0	0	0	0
SAUGE F	LEVEL 21.700 m	2	14	175	350	351	355	368	365	361	198	10
NIN O			-17	145	323	324	327	338	331	327	166	-26
WIRE STI	E	AVG	11.0	148.6	311.3	312.5	315.8	328.2	324.1	320.3	170.3	3.7
RATING	LEVEL 20.200	e	27	188	365	366	369	383		375		
VIBI	LEVEL	2	6	126	280	281	284	296	291	288	142	4
		-1	с -	132	289	290	294	306	302	299	152	-12
	٤	AVG	2.3	160.1	331.6	332.8	335.6	348.8	344.4	340.5	174.2	-2.7
	LEVEL 3.340 m	m	- 9	143	301	302	304	317	312	309	158	6-
	LEVEI	2	-2	162	343	345	348	362	358	354	183	81
		1	15	175		352		_	363	359	182	6
ųΩ Ωh			105.56	110.93	142.70	143.23	150.56	160.20	177.21	177.41 359	173.42	165.11
Ph (kN)			0	_	10040		_	_	10500	10350	5017	0

d cycle 5)
(loa
readings-TP5
gauge
Strain
A.6(v):
Table

P _b (kn)			1954.0	2505.1	3181.6	3544.8	4005.6	3691.1	3344.1	2840.2	2144.0
	E	AVG	Γ				177.1			109.2	
	LEVEL 29.700 m	e	12	43	79	95	117			42	
	LEVEL	2	75	96	127	144	166	146	127	103	77
		1	135	156	187	211	248	228	206	182	153
	ε	AVG	84.3	167.6	234.3	268.6	313.4	259.6	194.9	124.0	50.7
VITS)	5.700	e	1				241			53	
ICRO UI	LEVEL 25.700 m	2	80	158	222	253	286	234	173	107	38
(W) STE	1	1	.147	237	308	347	414	358	289	211	129
VIBRATING WIRE STRAIN GAUGE READINGS AT LEVELS (MICRO UNITS)	m 0(AVG	87.1	192.8	264.4	298.3	333.1	261.4	179.4	92.4	0
READIN	LEVEL 21.700 m	e	0	0	0	0	0	0	0	0	c
SAUGE	LEVEL	2	106	211	281	316	355	283	200	113	20
RAIN (-	69	174	247	281	311	240	159	72	5
WIRE ST	E O	AVG	84.4	176.9	242.5	274.8	311.3	242.7	168.0	93.8	1.5 B
RATING	LEVEL 20.200	m	114	221	293	326	365	294	214	128	20
VIB	LEVEL	5	72	152	214	245	279	211	141	81	16
		-1	67	158	221	253	290	223	149	72	ñ
	ш ()	AVG	90.7	191.5	259.7	293.7	332.4	253.5	173.2	90.9	0 1
	LEVEL 3.340 m	e	19	173	236	267	301	231	157	79	-
	LEVEI	2	89	194	265	302	345	263	180	93	~
		-	104				351	266	183	100	20
4⊽ (mu)			168.19	172.21	177.62	188.27	238.57	236.98	234.21	231.00	30 LCC
Ph (KN)			3000	5000	3000	9964	10000	7528	5050	2555	

Table A.6(vi): Strain gauge readings-TP5 (load cycle 6)

Ph (kN)	Δ ^h (mm)	EXTENSO	EXTENSOMETER MOVEMENT (mm)	AT (mm)
		LEVEL 3 0-21.7m	LEVEL 4 0-25.7m	LEVEL 5 0-29.7m
0	6.61			
500	6.62	0.135	0.025	0.102
1000	6.65	•	0.189	0.280
2000	7.35		0.991	1.199
4000	9.64	2.677	2.657	3.073
6000	12.29	•	4.456	4.997
7000	15.37	•	5.465	6.002
7500	18.64		6.059	6.578
6000	~ ~	5.083	6.376	5.813
4000	20.07	3.438	6.373	3.975
2000	~	1.740	6.373	2.047
1000	S.	0.827	6.367	1.002
0	14.54	0.137	6.370	-0.045

لم (سس)	EXTENSC	EXTENSOMETER MOVEMENT (mm)	NT (mm)
	LEVEL 3 0-21.7m	LEVEL 4 0-25,7m	LEVEL 5 0-29 7m
1			
0.03		0.052	04
	0.140	0.158	0.173
	•	0.396	48
		0.770	92
		1.602	87
	•	2.480	84
	•	3.426	87
.86	•	4.448	93
	•	3.959	4.442
	3.041	3.089	3.531
		2.254	2.615
	•	1.412	1.672
	•	0.998	1.201
		0.586	0.717
	•	0.149	0.197
. 61	•	-0.004	-0.038

Table A.6(vii): Extensometer readings-TP5 (load cycle 1)

Table A.6(viii): Extensometer readings-TP5 (load cycle 2)

•

(kN)	Δ ^h (mm)	EXTENSO	EXTENSOMETER MOVEMENT (mm)	4T (mm)
		LEVEL 3 0-21.7m	LEVEL 4 0-25.7m	LEVEL 5 0-29.7m
0 3000	41.42 42.81	$0.164 \\ 2.006$		-0.045 2.335
6000 8000	46.59 49.90	4.482 6.153		5.129 7.032
9000 10000	52.95 62.02	6.962 7.792		7.978 9.010
10726 11000	71.98 86.76	8.403 8.649	9.131 9.390	9.780 10.151
11189	115.07	8.861	-	10.503
11116		8.820 8.783	•	10.482
0006		7.420	• •	8.846
6000 3000	114.63 112.04	2.737	9.569	6.23/ 3.446
136	•	0.362	•	0.628

Table A.6(x): Extensometer readings-TP5 (load cycle 4)

VT (mm)	LEVEL 5 0-29.7m	2.945	5.970	8.028	9.083	10.234	8.260	5.939	3.448	0.850	
EXTENSOMETER MOVEMENT (mm)	LEVEL 4 0-25.7m	9.585	9.585	9.585	9.584	9.585	9.585	9.584	9.585	9.584	
EXTENSO	LEVEL 3 0-21.7m	2.267	4.899	6.637	7.476	8.342	6.656	4.635	2.471	0.310	
ሳካ (mm)		168.19	172.21	177.62	188.27	238.57	236.98	234.21	231.00	227.05	
Ph (kN)		3000	6000	8000	0006	10000	7528	5050	2555	81	

(9
cycle
(load
readings-TP5
Extensometer
A.6(xii):
Table

P _h (kN)	Δ ^h (mm)	EXTENSC	EXTENSOMETER MOVEMENT (mm)	4L (mm)
		LEVEL 3 0-21.7m	LEVEL 4 0-25.7m	LEVEL 5 0-29.7m
0	14.70			
2000	6.3	1.268	.37	•
4000	8.6	2.946	.35	•
6000	1.2	4.674	.35	•
2000	2.8	5.550	.37	•
7500	4.1	6.003	.37	•
8000	7.1	6.464	.85	
8500	6.0	6.949	.42	•
0006	39.41	7.504	8.079	8.563
9500	4.7	7.945	. 60	•
8000	0.9	•	8.704	.11
6000	49.12	5.509	8.704	6.340
4000	6.9	٠	•	.42
2000	4.4	•	٠	.46
0	0.5	•	•	.24

Table A.6(ix): Extensometer readings-TP5 (load cycle 3)

Ph (KN)	(umu)	EXTENSC	EXTENSOMETER MOVEMENT (mm)	VT (mm)
		LEVEL 3 0-21.7m	LEVEL 4 0-25.7m	LEVEL 5 0-29.7m
0	105.56	0.137	9.570	0.385
5000	110.93	4.041	9.570	4.842
10040	142.70	8.301	9.572	9.941
10083	143.23	8.330	9.574	9.970
10340	150.56	8.503	9.572	10.234
10500	160.20	8.707	9.570	10.478
10500	177.21	8.716	9.570	10.556
10350	177.41	8.629	9.570	10.470
5017	173.42	4.629	9.568	5.784
0	165.11	0.304	9.568	0.715

Ph (kN)		LOAD START		:	LOAD END		CUMULATIVE TIME (HOURS)	ИE
	DATE	TIME	Δh (mm)	DATE	TIME	Δh (rrun)	START	END
0	19-11-91	12:06:15	0.00					
500		12:09:25	0.03	19-11-91	12:40:38	0.01	0.00	0.520
1000		12:44:28	0.09		13:15:39	0.07	0.584	1.104
1500		13:18:34	0.30		13:50:14	0.35	1.153	1.680
2000		13:52:52	0.94		14:25:42	1.08	1.724	2.271
3000		14:34:21	2.75		15:02:31	2.92	2.416	2.885
4000		15:10:16	4.78		16:11:10	5.26	3.014	4.029
5000		16:17:56	7.30		18:18:22	8.49	4.142	6.149
6000		18:27:01	10.86		22:26:50	12.53	6.293	10.290
5000		22:32:22	11.69		22:49:49	11.65	10.383	10.6/3
4000		22:53:07	10.69	_	23:09:07	10.63	10.728	10.995
3000		23:12:50	9.65	_	23:40:20	9.57	11.057	11.515
2000		23:45:01	8.50		23:59:12	8.44	11.593	11.830
1500	20-11-91	00:04:07	7.88	20-11-91	00:19:00	7.82	11.912	12.160
1000		00:23:05	7.25	-	00:54:24	7.10	12.228	12.750
500		01:00:27	6.48		01:16:28	6.41	12.851	13.118
200		01:24:29	6.29		09:27:10	6.61	13.251	21.296

Table A.6(xiii): Load-Displacement-Time record for TP5 (load cycle 1)

Ph (kN)		LOAD START			LOAD END		CUMULATIVE TIME (HOURS)	E
	DATE	TIME	Δh (mm)	DATE	TIME	Δh (mm)	START	END
	20-11-91	10:55:26	6.61				22.767	
		10:59:03	6.62	20-11-91	11:13:30	6.62	22.827	23.068
		11:16:29	6.65		11:33:13	6.66	23.118	23.397
_		11:41:36	7.35		12:12:06	7.45	23.536	24.045
_		12:20:22	9.64		13:21:37	9.64	24.183	25.203
_		13:28:04	12.29		14:29:30	12.82	25.311	26.335
_		14:51:47	15.37		17:11:15	17.56	26.706	29.031
7500		17:18:04	18.64	21-11-91	10:36:21	23.41	29.144	46.449
6000	21-11-91	10:45:38			11:03:25	22.09	46.604	46.900
_		11:09:31	20.07		11:27:39	20.00	47.002	47.304
		11:31:57			12:03:02	17.52	47.376	47.894
		12:08:28			12:40:50	16.10	47.984	48.524
		12:51:59			13:56:00	14.49	48.709	49.776

Table A.6(xiv): Load-Displacement-Time record for TP5 (load cycle 2)

A-84

Ph Ph		LOAD START			LOAD END		CUMULATIVE TIME (HOURS)	ИЕ
	DATE	TIME	Δh (mm)	DATE	TIME	Δh (mm)	START	END
0 2000	21-11-91	14:43:06 14:49:17		21-11-91	15:04:45	16.32	50.561 50.664	50.922
4000		15:10:23 15:35:49		····	15:28:55 16:06:17	18.72 21.39	51.016 51.440	51.325 51.948
7500		16:11:52 17:18:24			17:13:28 20:04:42	23.41	52.041 53.150	53.068 55.921
8000	22-11-91	20:17:28		22-11-91	00:51:06	30.19	56.134 60.899	60.695 73.480
9500	4	13:46:42	39.41		17:04:30	43.31 52.17	73.621	76.918 79.610
8000 6000		19:50:29 20:09:43 20:27:55	50.99 49.12		20:06:11 20:25:14 20:45:33	50.98 49.10 46.80	79.684 80.005 80.308	79.946 80.264 80.602
2000		20:49:04 22:13:21	44.49		20:51:52 22:14:44	44.46 40.58	80.661 82.066	80.708 82.089

Table A.6(xv): Load-Displacement-Time record for TP5 (load cycle 3)

	_	
ME	END	95.049 95.542 95.960 97.430 98.333 99.663 99.660 99.947 100.137 100.534
CUMULATIVE TIME (HOURS)	START	94.362 95.231 95.689 96.145 96.902 98.776 98.770 99.365 99.365 99.932 100.122 100.518 101.063
	Δh (mm)	39.86 42.81 46.59 49.90 52.95 62.02 71.98 86.76 115.07 115.07 115.07 115.07 115.07 115.07 112.04 107.96
LOAD END	TIME	11:12:22 11:41:56 12:07:02 12:51:16 13:35:14 14:29:26 14:29:26 14:29:26 14:29:26 15:50:14 15:50:14 15:50:14 15:55:08 16:17:41 16:28:50 16:41:29
	DATE	23-11-91
	Δh (mm)	41.42 42.76 46.49 46.49 49.47 52.06 57.84 67.84 76.05 99.41 118.06 117.12 114.63 112.04 107.97 105.56
LOAD START	TIME	10:31:08 11:23:17 11:50:44 12:18:06 13:03:33 13:43:58 14:55:36 15:31:19 15:31:19 15:54:22 16:05:22 16:16:44 16:16:44 16:28:04 16:28:04 16:28:04 17:13:15
	DATE	23-11-91
Ph (KN)		0 3000 6000 9000 10725 11200 11200 11200 11200 11200 11200 1137 000 1370

Table A.6(xvi): Load-Displacement-Time record for TP5 (load cycle 4)

Ph (kn)		LOAD START			LOAD END		CUMULATIVE TIME (HOURS)	B
	DATE	TIME	Δh (mm)	DATE	TIME	Δh (mm)	START	END
0	23-11-91	17:18:18	105.56	23-11-91	17:19:05	105.56	101.148	101.161
5007		17:30:22	110.81		17:40:57	110.93	101.349	101.525
10040		18:08:16	133.58		18:19:49	142.70	101.981	102.173
10083	-	18:20:40	143.23		18:20:40	143.23	102.187	102.187
10340		18:26:30	150.25		18:27:27	150.56	102.285	102.300
10500	_	18:39:31	158.76		18:40:19	160.20	102.502	102.515
10320		18:50:53	166.35		18:50:53	166.35	102.691	102.691
10263		18:51:46	166.83		18:51:46	166.83	102.706	102.706
10500		19:05:32	177.21		19:05:32	177.21	102.950	102.935
10350		19:06:30	177.41		19:06:30	177.41	102.966	102.952
5017		19:15:21	174.68		19:16:14	173.42	103.114	103.114
0		19:27:23	166.09	24-11-91	10:49:08	165.11	103.314	118.662

Table A.6(xvii): Load-Displacement-Time record for TP5 (load cycle 5)

Table A.6(xviii): Load-Displacement-Time record for TP5 (load cycle 6)

101	LEVEL 5	(0-30m)	-0.004	0.048	0.278	0.712	1.168	1.663	2.135	2.648		2.324	1.549	0.705	0.245	0.136
5	LEVEL 4	(0-26m)	-0.029	0.072	0.239	0.622	0.996	1.389	1.784	2.211		1.899	1.237	0.501	0.128	0.021
EXTENSO	LEVEL 3	(0-23m)	-0.046	0.036	0.267	0.590	0.930	1.299	1.638	2.000		1.733	1.195	0.574	0.223	0.098
	Pb	(kN)	-3.0	-1.2	4.8	13.8	27.1	42.2	53.4	52.8		45.5	33.5	17.9	9.6	5.8
	m	Mean	-1.3	-0.7	1.0	4.0	7.3	9.7	11.3	11.7		9.7	7.0	3.3	1.7	0.7
] [30.260	e	-	-	1	5	6	11	13	12	-	10	7	3	1	0
STRAIN	EVEL	2	-	0	-	2	4	9	2	6		2	9	3	2	1
RO ST	LE	-	-5	-	1	S	6	12	14	14		12	~	4	2	-
T (MIC	E	Mean	-2.7	-1.0	6.7	16.3	26.7	38.0	48.7	59.0		52.0	39.7	23.3	13.3	10.0
SHAF	25.880	3	÷	-	2	18	30	42	54	99		59	46	28	17	13
PILE	LEVEL	2	-5	-	2	16	26	37	47	56		49	37	21	II	8
NMO	LE	-	-3	-	9	15	24	35	45	55		48	36	21	12	6
AT LEVELS DOWN PILE SHAFT	m	Mean	-1.0	2.7	11.7	24.0	37.3	51.3	64.7	79.0		68.0	44.7	18.7	5.0	0.3
AT LE	20.38	~	-	3	13	26	41	57	72	88		76	51	23	~	3
	EVEL	7	7	3	12	24	36	49	62	75		65	43	18	5	-
READ	L	-	7	5	10	22	35	48	60	74		63	40	15	7	÷
AUGE I	0 m	Mean	0.3	4.3	14.0	27.3	41.3	55.7	70.0	85.0		71.7	46.0	19.0	4.0	-1.7
AIN G	LEVEL 10.980 m	3	0	4	13	27	41	56	11	87		74	49	23	8	3
STR	EVEL	2	-	5	14	29	44	60	16	92		78	50	20	4	-5
WIRE			0	4	15	26	39	51	63	16		63	39	14	0	9-
VIBRATING WIRE STRAIN GAUGE REAL	E	Mean	-0.3	4.7	16.0	31.7	47.0	63.7	7.67	1.76		82.3	54.0	23.3	6.0	0.3
VIBR	1.69(3	-	4	14	29	44	61	16	92		61	53	25	10	9
	EVEL 1.690 m	2	7	2	2	24	40	58	75	95	-	78	47	13	-5	-5
		-	-	~	27	42	57	12	88	106		60	62	32	13	0
	(mm) ur		0.00	0.06	0.28	0.69	1.17	1.71	2.25	2.89		2.59	1.93	1.16	0.74	0.56
	Ph (KN) Dh (mm		0	514	1006	1500	2000	2507	3000	3500		2980	2000	1005	505	17

Table A.7(i): Strain gauge, Extensometer and Base load cell readings-TP6 (load cycle 1)

h (kN)	Ph (kN) Dh (mm)	L	LEVEL 1.690 m	1.690	E	L	LEVEL 10.980 m	10.98	0 m	LI	EVEL	20.380 m	m	LI	LEVEL	25.880 m	0 m	L	LEVEL 30.260 m	30.26	m	Pb	LEVEL 3	LEVEL 4	LEVEL 5
		1	2	3	Mean	1	2	3	Mean	-	2	3	Mean	-	2	3	Mean	1	2	3	Mean	(kN)	(0-23m)	(0-26m)	(0-30m)
12	0.48	-	-5	4	-0.7	-9	-2	2	-2.0	e.	-	_	-1.0	2	9	12	8.3	-	5	0	1.0	6.5	0.083	-0.030	0.120
506	0.59	II	-4	6	5.3	-	3	2	3.0	-	4	9	3.7	10	6	14	11.0	5	5	1	1.7	8.9	0.181	0.075	0.175
866	0.93	29	10	20	19.7	12	16	19	15.7	Ξ	15	19	15.0	16	17	22	18.3	4	3	3	3.3	13.0	0.456	0.371	0.509
1998	1.76	59	44	49	50.7	37	47	46	43.3	37	40	47	41.3	32	32	40	34.7	00	S	2	6.7	29.3	1.089	1.114	1.381
3000	2.58	60	79	78	82.3	63	77	75	71.7	62	64	76	67.3	48	49	59	52.0	13	00	11	10.7	47.3	1.721	1.842	2.263
4000	3.60	122	114	109	115.0	90	109	103	100.7	88	90	105	94.3	67	68	82	72.3	17	12	14	14.3	70.8	2.381	2.572	3.168
5000	5.02	154	150	139	147.7	114	142	132	129.3	113	117	136	122.0	86	88	106	93.3	18	17	14	16.3	90.06	3.062	3.347	4.120
5506	5.90	172	170	156	166.0	128	160	149	145.7	128	132	155	138.3	26	98	121	105.3	19	19	14	17.3	97.0	3.435	3.770	4.629
								.																	
5000	5.55	158	153	144	151.7	115	145	137	132.3	118	121	144	127.7	92	93	114	7.66	17	18	Π	15.3	89.3	3.202	3.608	4.318
4005	4.81	128	120	115	121.0	89	116	110	105.0	94	98	117	103.0	61	79	100	86.0	13	15	~	12.0	73.0	2.635	3.596	3.549
2996	4.05	98	87	86	90.3	64	87	82	7.77	69	73	89	77.0	64	63	83	70.0	8	12	4	8.0	55.5	2.014	3.610	2.701
2009	3.26	69	53	57	59.7	40	57	55	50.7	43	48	61	50.7	48	47	64	53.0	4	10	-	4.3	35.5	1.388	3.606	1.848
1002	2.37	36	17	29	27.3	13	24	27	21.3	16	22	31	23.0	29	27	42	32.7	-	2	-5	0.3	17.0	0.711	3.600	0.922
502	1.92	18	-2	14	10.0	-	7	12	6.0	3	8	15	8.7	19	17	30	22.0	÷	9	L-	-1.3	5.6	0.339	3.603	0.443
36	1 64	~	5	1	10	0	-1	V	-20	V-	0	2	10	13	10	VC	157	V	8	0	2 5	1 5	0 122	101 0	0000

Table A.7(ii): Strain gauge, Extensometer and Base load cell readings-TP6 (load cycle 2)

	LE	LEVEL 1.690 m	690 m	3	LE.	VEL 10	m 086.		LEVE	L 20.380 m	80 m		LEVEL	25.880 m	0 m	L	LEVEL	. 30.260 m	0 m	Pb	LEVEL 3 LEVEL 4 LEVEL 5	LEVEL 4	LEVEL 5
- : *		2 3	W	Mean		5	1 2 3 Mean 1 2	n l	2	3	Mean	-	7	3	Mean	-	2	3	Mean	(kN)	(0-23m)	(0-26m)	(0-30m)
		10 4		-	-10	e.	2 -3.7	-9	-2	4	-1.3	12	01	22	14.7	-3	9	1-	-1.3	3.2	0.057	3.595	0.126
	2	-5	9	- 1	÷	S	3.3	7)	2	Ξ	5.0	16	13	26	18.3	-2	9	-9	-0.7	6.3	0.208	3.587	0.236
	32	12 2	3 22		10	20 2	2 17.3	3 12	11	25	18.0	23	21	36	26.7	0	2	-4	1.0	12.9	0.524	3.603	0.658
					37	51 5	0 46.0) 38	43	54	45.0	39	39	54	44.0	5	6	0	4.7	26.6	1.173	3.603	1.544
				_	62	82 7	8 74.0) 64	68	83	71.7	56	57	74	62.3	8	Ξ	4	7.7	42.3	1.820	3.612	2.441
-					88	14 10	07 103.	06 0	94	-	98.7	73	74	93	80.0	13	13	00	11.3	64.0	2.481	3.609	3.347
			-		15	46 1.	37 132.	7 11.	7 120	143	126.7	16	93	114	99.3	16	16	Ξ	14.3	86.3	3.146	3.605	4.260
_	1 061	187 171			142	177 14	166 161.	7 143	3 148	175	155.3	109	111	135	118.3	19	21	14	18.0	118.1	3.812	4.204	5.132
141					68	211 19	95 191.3	3 17.	2 176		-	128	130	159	139.0	22	26	15	21.0	149.5	4.540	4.954	6.066
< N					193 2	-	-	-	_	242	221.3	148	148	181	159.0	26	31	15	24.0	195.5	5.302	5.620	7.016
1.14				286.0 2	220 2	+						170	168	205	181.0	31	37	17	28.3	262.4	6.104	6.362	7.891
1423									-	285	260.3	176	174	210	186.7	33	37	17	29.0	255.4	6 3 0 9	6 487	8 211
11.1			-	-	1	-	237 230.7	+	-		÷	164	163	198	175.0	29	35	14	26.0	239.5	5.753	6.501	7.555
114	237 2	241 21	218 23	232.0 1	171	227 20	-	3 193	3 209		211.3	152	150	185	162.3	27	33	=	23.7	227.0	5.143	6.495	6.782
14						-	-		-			137	134	168	146.3	22	30	9	19.3	204.1	4.475	6.484	5.981
				_	118	-	53 146.0		_	174	-	120	117	150	129.0	16	27	5	15.0	176.7	3.821	6.507	5.169
				-			-	-	-		-	103	66	130	110.7	12	24	÷	11.0	149.7	3.171	6.509	4.329
						- :	96 89.3	-				84	81	110	61.7	2	21	~	6.7	119.7	2.522	6.529	3.449
			-	_	-	-		-		84	73.7	65	61	88	71.3	5	18	-13	2.3	89.8	1.834	6.499	2.519
			-	-	-	-	-	-	_	54	45.7	45	40	64	49.7	÷	15	-17	-1.7	58.8	1.112	6.532	1.563
			9 8	_	-	-	-	-		21	16.0	21	14	36	23.7	°,	13	-21	-5.3	27.9	0.310	6.559	0.491

Table A.7(iii): Strain gauge, Extensometer and Base load cell readings-TP6 (load cycle 3)

(kN)IC	Ph (kN) Dh (mm)	LE	VEL	LEVEL 1.690 m	E	L	LEVEL 10.980 m	10.980	0 m	LI	EVEL	20.380	Е		1	25.880 m	m	LI	1	30.260 m	E	Pb	LEVEL 3	LEVEL 4	LEVEL 3 LEVEL 4 LEVEL 5
		-	5	1	Mean	-	5	з	Mean	-	2	3	3 Mean 1	-	2	3	Mean	-	2	3	Mean	(kN)	(0-23m)	(0-26m)	(0-30m)
22	6.00	17	÷	6	7.7	-12	3	9	-1.0	~	18	21	15.7	20	14	36	23.3	°,	12	-21	-5.7	28.5	0.297	6.544	0.460
_	6.30	32	11	21	21.3	-	16	19	11.3	19	29	32	26.7	27	21	42	30.0	9	13	-19	-4.0	33.2	0.566	6.527	0.807
	6.71	48	30	33	37.0	14	33	33	26.7	32	41	47	40.0	35	30	52	39.0	-4	15	-17	-2.0	41.7	0.895	6.516	1.255
	7.58	77	64	60	67.0	40	64	09	54.7	58	68	76	67.3	52	48	72	57.3	-	17	-12	2.0	57.1	1.592	6.504	2.152
	8.49	108	98	89	98.3	65	95	89	83.0	82	94	105	93.7	70	99	92	76.0	9	18	°,	5.3	78.1	2.223	6.516	3.070
-	9.42	138	133	118	129.7	16	127	117	111.7	107	120	134	120.3	88	86	113	95.7	11	21	4-	9.3	102.6	2.885	6.527	3.966
-	10.39		168	147	161.3	116	159	146	140.3	133	147	165	148.3	106	104	133	114.3	15	23	-	13.0	132.1	3.556	6.525	4.858
5997	11.40		212	185	202.0	147	197	180	174.7	161	178		179.3	125	124	155	134.7	19	26	2	16.7	166.9	4.417	6.532	5.897
-	12.45				227.0	168	222	203	197.7	185	-	225	203.7	142	141	173	152.0	23	29	6	20.3	188.4	4.943	6.523	6.576
-	13.64		-	239	260.3	196	254	233	227.7	211	229	-	232.0	160	161	193	171.3	28	33	14	25.0	247.9	5.639	6.523	7.395
9004	15.27		-	270	294.0	225	285	263	257.7	239			262.0	178	178	213	189.7	36	39	18	31.0	319.8	6.311	6.538	8.234
10008	18.26		350	304	332.3	254	321	297	290.7	269		327	296.7	199	200		213.0	46	46		37.3	402.1	7.151	7.244	9.199
10495	19.41	362	366	320	349.3	268	336	312	305.3	283	-		312.0	209	-		223.7	53	50	23	42.0	476.9	7.534	7.543	9.605
	20.85		385	335	365.7	282	353	327	320.7	297	326	361	328.0	219	220	-	235.0	60	53	-	46.3	557.1	7.854	7.792	9.994
	22.58	-	404	350	382.0	293	371	342	335.3	311	-		344.0	231	231	282	248.0	71	58	_	53.3	658.2	8.281	8.098	10.473
1999	24.70	412	426	368	402.0	308	389	358	351.7	324	360	398	360.7	243	245	300	262.7	83	63	38	61.3	789.0	8.673	8.383	10.923
12495	26.62	429	448	384	420.3	322	407	374	367.7	339	377	417	377.7	256	257	316	276.3	94	68	45	0.69	909.4	9.064	8.672	11.365
100			0,0					LOC	-	000	111	-						0							
1866	74.01	-	205	31/	342.1	107	332	30/	1.067	8/7		-	313./	777	177	-	240.1	78	60	-	0.80	879.4	1.696	8.045	9.763
8008	22.99	285	295	256	278.7	197	272	250	239.7	226		289	259.3	189	185	-	205.3	69	51	22	-	746.5	6.398	8.042	8.258
6005	21.18		226	195	214.3	145	209	193	182.3	174	-		204.0	153	148	197	166.0	56	44		-	649.5	5.035	8.070	6.644
4009	19.37	-	158	138	152.3	95	147	137	126.3	123		169	149.0	115	109	159	127.7	43	37			541.5	3.685	8.044	4.973
2009	17.29	66	88	80	89.0	44	81	79	68.0	72	66	108	93.0	73	99	111	83.3	28	31		-	415.0	2.245	8.081	3.105
1010	16.21	68	52	53	57.7	16	48	51	38.3	47	70	78	65.0	52	44	87	61.0	21	28	-22	9.0	348.6	1.517	8.185	2.156
10	14 99	36	19	23	26.0	6-	15	22	9.3	22	42	46	367	30	00	60	367	1A	PC	-	-	5920	0 737	8 177	1 120

Table A.7(iv): Strain gauge, Extensometer and Base load cell readings-TP6 (load cycle 4)

A-89

DATE		LOAD START			LOAD END		CUMULATIVE TIME (HOURS)	E
		TIME	Δh (mm)	DATE	TIME	Δι. (mm)	START	END
0 500	-92	10:55:50	0	18-2-92	11.18.56	0.06	c	0.311
1000		11:24:37	0.27		11:43:53	0.28	0.405	0.726
1500		11:51:01	0.67		12:09:17	0.69	0.845	1.150
2500		12:42:35	1.14		13:47:14	1.71	1.705	2.782
3000		13:52:11	2.16		14:55:33	2.25	2.865	3.921
3500		15:01:10	2.71		19:02:05	2.89	4.014	8.030
3000		19:08:11	2.59		19:28:18	2.59	8.131	8.467
2000	-	19:34:16	1.93		19:54:09	1.93	8.566	8.898
1000		20:00:42	1.16		20:19:13	1.15	9.007	9.315
500		20:25:11	0.75		20:44:04	0.74	9.415	9.729
20	k	20:55:47	0.57		20:57:41	0.56	9.925	9.956

(load cycle 1)
TP6
d for
record
Load-Displacement-Time record
Table A.7(v):

										_			-	_
ME	END	23.515	24.300	24.743	25.900	26.997	31.180	31.569	31.976	32.358	32.721	33.108	33.499	33.695
CUMULATIVE TIME (HOURS)	START	23.195	24.017	24.418	24.857	26.038	27.098	31.274	31.677	32.065	32.440	32.821	33.200	33.638
	Δh (mm)	0.59	1.76	2.58	3.60	5.02	5.91	5.55	4.81	4.05	3.26	2.37	1.92	1.64
LOAD END	TIME	10:31:11	11:18:17	11:44:51	12:54:18	14:00:06	18:11:06	18:34:26	18:58:51	19:21:47	19:43:34	20:06:45	20:30:16	20:41:58
	DATE	19-2-92												
	Δh (mm)	0.48	0.93 1.75	2.56	3.49	4.78	5.57	•	٠	•	3.27		•	•
LOAD START	TIME	10:06:51 10:12:01	10:35:36 11:01:19	11:25:22	11:51:44	13:02:35	14:06:09	18:16:44	18:40:55	19:04:12	19:26:42	19:49:33	20:12:18	20:38:34
	DATE	19-2-92												
Ph . (kN)	·	0 500	1000	3000	4000	5000	5500	5000	4000	3000		1000		50

Table A.7(vi): Load-Displacement-Time record for TP6 (load cycle 2)

P _h (kN)		LOAD START			LOAD END		CUMULATIVE TIME (HOURS)	Æ
	DATE	TIME	(ատ) ԿԾ	DATE	TIME	Δh (mm)	START	END
20	20-2-92	10:18:55	1.53	20-2-92	12:28:30	1.56	47.311	49.471
500		12:32:26	1.73		13:02:45	1.80	49.536	50.041
1000		13:07:24	2.19		13:41:34	2.24	50.119	50.688
2000		13:46:03	3.05		14:02:49	3.06	50.763	51.042
3000		14:07:00	3.87		14:26:56	3.88	51.112	51.444
4000		14:31:53	4.71		14:52:41	4.70	51.526	51.873
5000		ς.	5.55		16:00:25	5.64	51.965	53.002
6000		••	6.70		17:12:06	6.92	53.124	54.197
1000		:19:	8.24		18:23:01	8.71	54.320	55.379
8000		:29:5	10.79		19:58:31	10.92	56.493	56.970
0006		20:09:36	12.60	21-2-92	10:57:42	14.47	57.155	71.957
8000	21-2-02	11.02.40			10.00.11	06 61		
	1 1 1		•				12.040	795.21
			•		60:C0:E1	12.91	12.441	74.081
6000		13:09:21			13:28:35	12.05	74.151	74.471
5000		•••	٠		13:51:49	11.19	74.559	74.859
4000		13:56:21	10.32		14:14:13	10.29	74.934	75.232
3000		:19:	4		14:41:35	9.35	75.321	75.688
2000		••	4		15:07:09	8.38	75.782	76.114
1000		:12:1	7.37		15:32:18	7.32	76.200	76.533
20		16:16:30	6.11		17:01:28	6.09	77.270	78.019

Table A.7(vii): Load-Displacement-Time record for TP6 (load cycle 3)

Ph (kn)		LOAD START			LOAD END		CUMULATIVE TIME (HOURS)	1E
	DATE	TIME	Δ ^h (mm)	DATE	TIME	Δh (mm)	START	END
20 500	21-2-92	18:05:47 18:17:18	6.00 6.30	21-2-92	:10: :36:	•••	9.2	1
1000 2000		:42:1	6.71 7.57		:04:	• •	9.6	0.4.
4000 4000		19:34:50 19:58:58 20.22.21	8.46 9.40 10.34		16:53:35 20:17:19 20.42.12	8.49 9.42 10 30	6/5.08 776.08 775 18	80.888 81.284 81 698
6000 7000		48:4 32:2	11.32		23 06	2010	2.9	
0006		15:5	13.47 14.93	22-2-92	10: 28:	2.0	0.4	~ ~
10000	22-2-92	:42:5 :39:3	16.83 18.80		:30:	9.4	5.7	5.0
11000		:25:3	20.06 21.61		:14:	2.5	9.4	.231
12000 12500		:19:4 :32:3	23.22 25.34		: 22 :	4.7 6.6	01.	• •
10000 8000		21:40:43 22:06:08	24.71 23.01		4::	24.68 22.99	106.673 107.097	107.003 107.036
6000 4000		6 6	•••		.47 :11	1.18 9.37	107.487 107.879	107.788 108.187
2000		515	• •	23-2-92	.10 .10	7.29 6.21	108.261 108.899	108.810 109.178
50 28	23-2-92	23 35			.27 38	5.07 4.99	109.386 109.578	109.452 109.635

~
4
e
cycl
J.
σ
оа
Ľ
0
TP(
-
оr
44
гq
ecor
record
ime
Ë
늡
ч
Ĕ
ဗီ
la
sp
Disp
- 1
oad
Ч
••
i)
ij
Σ
7
A.
Ð
[b]
[a]

LEVEL 5	(0-30m)	0.000	-0.305	-0.861	-1.403	-1.916	-3.047	-7.135		-1.149	-6.387	-5.227	-3.807	-1.869
LEVEL 4	(0-26m)	0.000	0.020	0.037	0.012	-2.489	-3.912	-8.717	0.00	-8./62	-7.797	-6.473	-4.854	-2.480
LEVEL 3 LE	(0-23m)	0.000	-0.203	-0.554	-0.934	-1.304	-2.138	-4.891		-4.893	-4.351	-3.539	-2.547	-1.219
Pb	(kN)	326.0	321.0	284.0	243.0	202.0	117.0	39.0		43.0	47.0	57.0	71.0	93.0
0 m	Mean	0.7	-0.7	-2.3	-4.0	-5.7	-9.0	-12.0		0.11-	-10.0	-7.3	-5.0	-1.0
30.260 m	3	-30	-32	-34	-36	-37	-40	-41		-40	-38	-35	-32	-27
LEVEL	2	22	22	21	20	18	16	13		4	14	16	17	19
T	-	10	8	9	4	5	÷	°,			9-	÷	0	S
m	Mean	22.7	18.3	9.0	-0.3	-9.3	-29.7	-51.0		-49.3	-42.3	-31.7	-18.7	-2.0
EVEL 20.380 m LEVEL 25.880 m	3	46	41	32	21	Ξ	-12	-36		-30	-22	-10	3	22
EVEL	2	9	5	8-	-17	-26	-46	-66	Ţ	10-	-60	-49	-35	-19
Ξ	-	16	12	3	-5	-13	-31	-51	i		-45	-36	-24	6-
m	Mean	22.3	17.0	6.7	-4.0	-14.7	-37.7	-64.3		0.00-	-53.3	-37.0	-19.0	2.0
20.380 m	3	29	23	II	7	-13	-41	-67	ţ	10-	-56	-37	-16	8
EVEL	2	27	22	Ξ	7	-12	-35	-67	0,	-00	-56	-41	-23	-2
_	-	Π	9	-5	-10	-19	-37	-59		00-	-48	-33	-18	0
E	Mean	1.7-	-14.0	-25.0	-35.0	-45.0	-64.0	-82.7		1.70-	-68.7	-51.0	-33.3	-10.7
0.980	3	S	-4	-16	-28	-39	-58	-71		- /0	-56	-36	-18	3
LEVEL 10.980 m	5	-	6-	-23	-34	-45	-67	-93	-	-		-59		
LE	-	-25	-29	-36	-43	-51	-67	-84	96	C0-	-72	-58	-43	-24
1.690 m LEVEL 10.980 m	Mean	7.0	0.3	-10.7	-21.7	-31.7	-37.0	-175.0	CYLI	C.4/1-	-151.3	-124.0	-91.7	-53.7
1.690	3	9	-	-1	-21	-30	-44	-31				-2		
LEVEL 1.690 m	2	÷	-10	-22	-34	-44	-49	-126				-83		_
LE	-	18						-368 -	076	- 400-	-335	-287	-221	-149
(mm)		0.00	0.18					5.97		-		4.72		
Ph (kN) Dh (mm)		0	250	502	752	1005	1499	2000	2001	1940	1507	1004	503	10

Table A.8(i) Strain gauge, Extensometer and Base load cell readings-TP6:Pull-out test (load cycle 1)

				VIBR	VIBRATING WIRE STRAIN GAUGE READI	WIRE	STRA	N GA	UGE RE		CS A	LEV	ELS DC	I NMC	JILE S	HAFT	NGS AT LEVELS DOWN PILE SHAFT (MICRO STRAIN)	O STF	(NIV)				EXTENSC	METER RE.	XTENSOMETER READINGS (mm
h (kN) I	Ph (kN) Dh (mm)	Ľ	LEVEL	. 1.690 m	ε	L	LEVEL 10.980 m	10.980	E	LE	EVEL 3	20.380 m	E	LI	1	25.880 m	Е	LI	EVEL	30.260 m	m (Pb	LEVEL 3	LEVEL 4	LEVEL 5
		-	2	3	Mean	1	2	s	Mean	-	5	3	Mean	1	2	3	Mean	-	5	3	Mean	(kN)	(0-23m)	(0-26m)	(0-30m)
11	2.64	-143	-29	18	-51.3	-24	-11-	m	-10.7	-	-	~	2.7	6-	-19	22	-2.0	S	18	-27	-1.3	89.0	-1.215	-2.475	-1.857
249	2.91	-155	-39	10	-61.3	-32	-21	9-	-19.7	1-	-10	-	-6.0	-13	-24	17	-6.7	ŝ	18	-28	-2.3	85.0	-1.505	-3.020	-2.267
499	3.33	-185	-47	4	-76.0	-40	-33	-17	-30.0	-15	-19	-11	-15.0	-19	-31	10	-13.3	5	16	-30	-4.0	76.0	-1.986	-3.895	-2.974
1002	4.27	-268	-68	-9	-114.0	-55	-54	-36	-48.3	-31	-37	-31	-33.0	-32	-43	÷	-26.0	-5	15	-34	-7.0	59.0	-3.073	-5.774	-4.574
1505	5.18	-327	-93	-18		-70	-74	-54	-66.0	-45	-53	-51	-49.7	-43	-56	-16	-38.3	9	14	-37	-9.7	46.0	-4.057	-7.358	-5.795
2000	6.07	-407	-121	-30		-86	-94	-72	-84.0	-61	69-	-69	-66.3	-54	-70	1	-51.0	6-	13	-41	-12.3	31.0	-4.997	-8.841	-7.299
3000	19.27	-802	-154		-340.7	-1407	-1259	-67	-911.0	-62	-80	11-	-	-102	266-	-40	-379.7	-16	4	-21	-11.0	-38.0	-11.324	-15.952	-13.850
3500	24.39	-860 -173	-173	-87	-373.3 -1597 -1297	-1597	-1297	-84	-992.7	-68	-85	-79	-77.3	-101 -	-1128	0	-411.7	-19	3	-21	-12.3	-37.0	-13.041	-16.284	-16.624
										1															
2952	23.93	-809		-61	-333.7 -1514 -1219	-1514	-1219	-80	-937.7	-59	-76	-69	-68.0	-100 -	-1101	0	-400.3	-18	4	-19	-11.0	-37.0	-13.089	-16.338	-15.989
2002	21.93	-712	-87	-32	-277.0 -	-1298	-1041	-59	-799.3	-42	-56	-47	-48.3	-80	-988	0	-356.0	-13	5	-16	-8.0	-35.0	-11.434	-16.078	-13.708
1003	18.92	-653	-58	-14	-241.7	-954	-757	-36	-582.3	-22	-34	-21	-		-811	0	-291.3	°,	2	-12	-5.0	-35.0	-8.259	-13.222	-10.077
517	17.04	-527	-527 -51		-194.7	-735	-570	-28	-444.3	6-	-23	-9	-12.7	-53	-685	0	-246.0	-5	5	°,	-2.7	-35.0	-6.192	-10.756	-7.628
16	14 67	226	22	13	- 253	-511	376	0-	7 800-	10	4	11	-	36	101	0	172 2	-	v	v	0.3	36.0	LLLC	UNU L	002 1

Table A.8(ii) Strain gauge, Extensometer and Base load cell readings-TP6:Pull-out test (load cycle 2)

EXTENSOMETER READINGS (mm)	LEVEL 4 LEVEL 5	(0-26m) (0-30m)			1.729 -3.323			-14.588 -9.927			_		-26.826 -21.371	-26.857 -23.417	-26.811 -21.764	-25.707 -18.872	-21.945 -14.840	-15.736 -10.113	1 407 A 504	+40.4-104.1-
XTENSOME	LEVEL 3 LE	(0-23m) (0	-	1	-2.427 -4	-	-	-7.543 -1	-		-	-15.264 -2				-15.731 -2	-	-8.201 -1	-3 777 E-	
·E	Pb	(kN)	-34.5	-34.5	-35.3	-35.3	-34.5	-34.5	-36.0	-36.9	-36.1	-37.0	-34.5	-42.4	-35.4	-34.5	-35.3	-34.5	-35.3	
	0 m	Mean	-0.3	-2.3	-4.0	-6.3	-8.0	-9.7	-11.3	-12.7	-13.7	-15.7	-17.0	-18.3	-16.3	-13.7	-11.0	-7.0	-3.7	
-	. 30.260 m	3	-5	2-	-10	-12	-15	-17	-19	-20	-20	-22	-23	-23	-21	-18	-15	-10	9-	
RAIN	LEVEL	2	S	4	4	3	3	2	2	5	2	2	2	5	e	4	4	S	5	
O STI	L	-	-	-4	9	-10	-12	-14	-17	-20	-23	-27	-30	-34	-31		-22	-16	-10	
MICR.	0 m	Mean	-172.3	-182.7	-209.7	-249.3	-297.0	-343.7	-390.0	-426.3	-461.0	-498.0		-594.3	-572.0	-526.0	-477.7	-414.0	-282.0	
HAFT	. 25.880 m	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ILE S.	LEVEL :	2	-481	-500	-569	-619-	-814	-942	-1069	-1172	-1270	-1377	-1508	-1660	-1601	-1474	-1344	-1171	-799	
WN P	LE				_	_	_	-89			-113 -	-117 -	-121 -	-123 -	-115 -		-		-	i
NGS AT LEVELS DOWN PILE SHAFT (MICRO STRAIN)	E					-	-	-64.7	-		-	-164.0 -	•	-248.0 -	-226.0 -	-		-129.0	-78.3	
LEVE	20.380 m	3	15	÷	-			-62				-	-166	-202 -	-181 -	-153 -	-	-	-50	
JS AT	EVEL 2	2	9-	-24	_	_		-75	_			276 -		-460 -	-427 -	- 377 -		-280		
NDINC	LE	-	10	8		-		-57				-	-		- 20	-		-19		
JGE RE/	ш	Mean	-296.7	.333.0				-757.0								-992.7	-	-	-330.7	
IGAL	086.0	3	6	35	45	53	64	75	86	96	105	115	-127	-145	-126	+		-		4
STRAIN	LEVEL 10.980 m	2	-373	-417	-541	-686	-830	-961	-1080	-1179		-1806 -1331 -		-1402 -				-661	-385	-
VIRE	П	-	-508	-547	-668	-868	-1060	-1235	-1395	-1541	-1681	-1806	-1957	-2148	-1993	-1728	-1366	-962	-572	
VIBRATING WIRE STRAIN GAUGE READIN	m	Mean	-83.7	-108.7	-129.7	-150.7	-194.7	-39 -240.7 -1235 -961 -	-288.3	-332.7 -1541 -1179	-352.0 -1681 -1263		-325.7 -1957 -1367	-284.7 -2148 -1402	-248.3 -1993 -1295	-213.0 -1728 -1148	-115.7		-4.0	
VIBRA	LEVEL 1.690 m	3	13	-5	-12	-19	-28	-39	-54	-72	-80	-72		-43	-22	8-	9	28	49	
-	VEL	5	-32	-48		-58	-76	-98	-124	-153	-168	-172	-149	-95	-64	-52	-41	-15	24	
	LE	-	232	273				-			-808	-800		-716		-579	1	1		1
	h (mm)		-		16.85 -	-		21.61			28.69	32.12			-	35.84				
	Ph (kN) Dh (mm)		10	501	1001	1495							÷	5442	4508	3501	2502	1506	503	

Table A.8(iii) Strain gauge, Extensometer and Base load cell readings-TP6:Pull-out test (load cycle 3)

(kN)	Ph (kN) Dh (mm)		EVEL	LEVEL 1.690 m	E	L	LEVEL 10.980 m	10.20	m	Ļ	EVEL 20.380 m	20.02	n m		LEVEL 23.000 m	00.02	20 m		LEVEL 30.260 m	12.06	m nc	LD	LEVEL3	LEVEL 3 LEVEL 4	LEVEL D
		1	5	3	Mean	1	2	3	Mean	-	5	3	Mean	-	2	3	Mean	-	2	3	Mean	(kN)	(0-23m)	(0-26m)	(0-30m).
19	21.98	-66	47	57	12.7	-473	-303	-10	-262	32	-135	-20	-41.0	-28	-582	0	-203.3	-5	S	÷	-1.0	-34.0	-1.435	-2.695	-1.622
505	22.82	-90	24	34	-10.7	-501	-335	-35	-290	13	-157	-40	-61.3	-41	-600	0	-213.7	-0	4	-5	-3.0	-35.0	-2.291	-4.462	-2.847
002	24.36	-118	4	14	-33.3	-589	-413	-58	-353	-10	-186	-57	-84.3	-55	-654	0	-236.3	=-	3	~	-5.3	-35.0	-3.810	-7.501	-5.036
2003	28.20	-208	-22	2-	-79.0	-988	-663	-72	-574	-38	-250	-92	-126.7	-74	-857	0	-310.3	-17	2	-12	-9.0	-34.0	-7.820	-15.075	-10.092
3000	31.95	-271	-31	-13	-105.0 -1350	-1350	-885	-88	-774	-57	-319	-126	-167.3	-89	-1136	0	-408.3	1 -22	-	-15	-12.0	-34.0	-11.887	-21.602	-14.911
003	35.51	-349	-43	-16	-136.0 -1676 -1082	-1676	-1082	-109	-956	-74	-402	-161	-212.3	-105	-1402	0	-502.3	1 -27	-	-18	-14.7	-44.0	-15.701	-25.644	-19.018
166	39.45	-450	-66	-28	-181.3	-1953 -1259 -130	-1259	-130		-86	-507	-194	-262.3	-119	-1632	0	-583.7	-32	1	-21	-17.3	-37.0	-19.238	-26.758	-22.335
5989	45.47	-434	-58	-27		-2097	-2097 -1375	-137		-84	-599	-264	-315.7	-127	-1790	0	-639.0	-38	0	-23	-20.3	-37.0	-19.638	-26.821	-24.630
471	48.78	-425	-52	-24	-167.0 -2171 -1420 -140	-2171	-1420	-140		-82	-603	-275	-320.0	-131	-1856	0		-41	-	-24	-22.0	-36.0	-19.667	-26.749	-24.520
6961	53.11	-416	-49	-22	-162.3 -2256 -1460 -141	-2256	-1460	-141		-79	-584	-264	-309.0	-132	-1921	0	-684.3	9 -45	-7	-25	-24.0	-35.0	-19.667	-26.779	-24.537
7466	58.41	-411	-47	-21	-159.7	-2354 -1505 -143	-1505	-143		LL-	-562	-250	-296.3	-134	-1976	0	-703.3		ç	-25	-26.0	-36.0	-19.660	-26.818	-24.433
7947	63.62	-406	-44	-19	-156.3	-2459 -1547 -143	-1547	-143		-76	-541	-237	-284.7	-134	-2017	0	-717.0	-55	÷	-25	-27.7	-35.0	-19.640	-26.785	-24.552
8500	70.79	-404	-42	-18	-154.7 -2507 -1585 -146	-2507	-1585	-146		-75	-527	-227	-276.3	-132	-2030	0	-720.7	-61	-5	-26	-30.7	-35.0	-19.603	-26.873	-24.572
6000	65.00									1										1					
4000	58.40						3									1	1								
0000	51.30							,								4			_						

Depth					Applie	Applied pile head load	l load					_,
	IMN	2MN	3MN	4MN	5MN	6MN	5MN	4MN	3MN	2MN	IMN	
1.65m	606	2001	1662	4015	5004	5943	5014	3963	2987	2011	1072	
17.45m	926	1569	2485	3445	4419	5310	4867	3901	2864	1808	811	
21.95m	487	918	1512	2120	2759	3302	2895	2379	1794	1189	610	Load cycle 1
26.45m	458	782	1262	1720	2180	2561	2176	1854	1476	1074	969	
28.806m	405	622	935	1206	1492	1693	1429	1320	1156	961	776	
Depth					Applie	Applied pile head load	l load					
L	2MN	4MN	6MN	7MN	8MN	9MN	8MN	7MN	6MN	4MN	2MN	
1.65m	2117	3950	5919	6903	7921	1116	8061	6992	5960	4007	2090	
17.45m	1710	3787	5881	7013	8234	9650	7479	6576	5602	3594	1560	
21.95m	1264	2336	3448	4075	4775	5590	4867	4391	3287	2601	1305	Load cycle 2
26.45m	1190	1902	2675	3098	3584	4222	3581	3239	2865	2028	1134	
28.806m	1076	1422	1834	2077	2370	2807	2213	2091	1931	1508	1000	
Depth					Applie	Applied pile head load	l load					
. (m	2MN	4MN	6MN	8MN	NW6	10.9MN	NIM6	7MN	5MN	3MN		
1.65m	2184	3937	5829	7862	6106	10982	9095	6864	4999	3061		
17.45m	1626	3500	5430	7378	8433	10457	8907	6933	4844	2758		Load cycle 3
21.95m	1341	2541	3776	5013	5678	0669	5989	4822	3529	2193		
26.45m	1221	2025	2896	3799	4283	5295	4532	3758	2854	0161		
28.806m	1074	1524	2029	2558	2835	3480	3004	2650	2160	1616		<u></u>
Depth					Applie	Applied pile head load	d load					
. @	4MN	6MN	6MN	10MN	12MN	13.5MN	10MN	7MN	4MN			
1.65m	3997	5809	7656	9787	12132	13730	10012	6957	4050		. –	
17.45m	3810	5771	7742	9842	12057	13758	10665	7542	4473			Load cycle 4
21.95m	2802	4060	5336	6632	8021	9186	7255	5309	3309		_	
26.45m	2329	3226	4165	5166	6287	7339	5914	4526	3059		_	
78 806m	1802	2332	2904	3484	4172	4943						

				Load cycle 1								Load cycle 2							Load cycle 3								Load cycle 4								Load cycle 5				
																									2MN	2046	667	427	674	-720	74		4MN	4054	3243	1933	2715	820	177
																									4MN	4049	3492	2111	2413	514	131		6MN	5957	5665	3683	4560	2216	240
																	2MN	2035	1792	1145	1445	509	8		6MN	5932	5724	3690	4036	1670	185		8MN	7884	7784	5222	6155	3384	293
																	4MN	4009	4088	2774	3119	1671	45		8MN	7908	7755	5136	5538	2696	232		10MN	9889	9683	6645	7650	4482	343
																	6MN	5951	6084	4216	4594	2673	102		10MN	10004	9206	6554	6269	3654	277		14MN	14132	13490	9479	10498	6426	431
									2MN	2030	2007	1462	1684	1043	7		8MN	7956	7950	5533	5916	3532	177		12MN	12026	11507	7850	8269	4501	316		18MN	18322	17272	00611	12540	8407	484
									4MN	3973	4059	2927	3172	2018	36		10MN	10009	7779	6762	7116	4270	233		14MN	14034	13256	9058	9445	5242	350		17MN	17095	16192	11090	11558	7600	441
Applied pile head load	2MN	2018	2065	1579	1736	1318	10	head load	6MN	5976	5939	4244	4477	2852	82	head load	IIMN	11041	10659	7319	7640	4585	263	head load	16.5MN	17371	16308	10943	11207	7246	1355	Applied pile head load	16MN	16089	15187	10358	10730	6954	406
plied pile	3MN	2981	3009	2250	2384	1729	21	Applied pile head load	7MN	6869	6840	4860	5066	3216	103	Applied pile head load	12MN	12336	11762	7993	8224	5477	286	Applied pile head load	16MN	16512	15558	10324	10588	6922	812	pplied pile	15MN	14977	14173	9616	9924	6385	376
Ap	4MN	3983	3925	2892	3003	2114	39	Ap	8MN	8036	7764	5450	5634	3559	130	AF	IIMN	10936	10434	7093	7232	4845	200	A	14MN	13874	13267	8811	9078	5796	423		14MN	13845	13078	8848	9121	5835	347
	5MN	5017	4847	3504	3578	2467	55		NM6	1606	8673	6007	6063	4160	142		10MN	679	9500	6488	6620	4443	172		12MN	11376	11299	7560	7796	5132	345		12MN	11776	11136	7523	7750	4817	293
	6MN	6007	5680	3990	3973	2942	68		8MN	1990	7638	5305	5332	3701	113		NW6	8839	8451	5798	5916	3976	157		10MN	9703	9423	6333	6751	4343	248		10MN	9738	9240	6246	6424	3876	243
	5MN	5012	4719	3351	3320	2523	53		7MN	6944	6616	4600	4645	3282	92		8MN	7805	7522	5184	5302	3594	118		8MN	7769	7641	5156	5369	3598	120		8MN	7768	7352	4979	5076	1792	194
	4MN	3970	3733	2678	2647	2095	42		6MN	5946	5698	4015	4046	2904	72		6MN	5868	5764	4008	4127	2876	55		6MN	5866	5852	3980	4159	2814	52		6MN	5833	5434	3686	3734	2032	144
	3MN	1662	2807	2045	2004	1667	30		4MN	3943	3929	2800	2881	2194	31		4MN	3981	3988	2815	2931	2109	17		4MN	4084	4055	2790	2948	6661	8		4MN	4052	3536	2401	2406	1092	94
	2MN	2018	1907	1419	1386	1250	15		2MN	2084	2174	1642	1742	1460	7		2MN	2258	2238	1631	1762	1333	۱-		2MN	2478	2319	1620	1771	1192	0		2MN	2502	1701	1139	1158	200	47
Depth		1.550	21.225	23.735	26.235	28.735	Load Cell	Depth	(E)	1.550	21.225	23.735	26.235	28.735	Load Cell	Depth	- (Ê	1.550	21.225	23.735	26.235	28.735	Load Cell	Depth	- (E)	1.550	21.225	23.735	26.235	28.735	Load Cell	Depth	. (E)	1.550	21.225	23.735	26.235	28.735	Load Cell

				I load cycle 1								Load cycle 2							Load cycle 3								Load cycle 4							, , ,	Load cycle 5				
																									2MN	2113	1723	769	252		185								
																	2MN	1985	1905	1290	596	Ē	6						<u>م</u>		320								
																	3MN	3016	2942	1967	637	145	25		6MN	5884	6048	3742	1994	*	453								
																	4MN	4000	3834	2531	1248	296	39		8MN	7896	7649	4959	2755	*	578								
																	5MN	5016	464)	3082	1533	426	52		9.5MN	9588	8474	5802	3253	•	662								
1																	6MN	5985	5207	3593	1799	554	67	. 1	11.25MIN	11250	9577	8482	5113	•	669	-0							
Applied pile head load								Applied pile head load								Applied pile head load	7MN	7032	5806	4150	2285	156	80	Applied pile head load	10MN	11001	8540	7671	4489	*	322	Applied pile head load	SMN	5060	5096	2541	1886	* 00	983
pplied pile								Applied pil	2MN	1861	1843	1153	476	-71	1	Applied pil	6.75MN	6768	5586	3973	2148	845	72	Applied pil	NW6	9002	7680	6860	3896	2562	161	Applied pil		7894	7950	4475	3130	F (1278
	2MN	2000	1709	955	297	-168	×		3MN	3022	2753	1728	755	6	7	1	6.5MN	6475	5337	1926	1997	101	62		8MN	8007	6820	6080	3336	1703	127		11.5MN	11547	10043	6408	4372	* .	1552
	2.5MN	2500	2058	1207	419	-144	11		4MN	4017	3435	2229	1024	75	26		6MN	9009	4935	3442	1808	566	53		1MN	7059	6028	5331	2893	1213	94		12MN	12105	10428	6978	4649	*	1452
	3MN	3000	2400	1473	544	-125	14		SMN	4982	3918	2669	1249	139	32		S.SMIN	5507	4536	3147	1617	479	43		6MN	5988	5297	4566	2495	812	59		I I MIN	11079	9702	6668	4114	# (986
	3.5MN	3500	2747	1765	894	299	61		5.25MN	5278	4280	2922	1534	488	37		SMN	4965	4117	2828	1475	391	36		SMN	4948	4523	3832	2119	571	38		10MN	0666	8967	6203	3761	*	769
	3MN	3000	2300	1469	754	278	17		SMN	4944	4010	2712	1385	422	33		4MN	4026	3454	2285	1225	276	20		4MN	3939	3706	3082	1742	405	21		NW6	8837	8184	5621	3359	•	339
	2.5MN	2500	1865	1161	605	249	14		4MN	4045	3226	2117	101	324	24		3MN	2985	2677	1742	946	188	8		3MN	2960	2810	2333	1338	262	6		6MN	5791	5624	3643	2240	*	282
	2MN	2000	1444	877	474	233	13		BMRN	2985	2491	1569	830	257	13		2MN	2046	1844	1175	668	134			2MN	2088	1904	1553	950	164			3MN	3203	2814	1563	1001		1 143
Depth	(m)	1.250	17.950	18.750	21.500	24.250	Load Cell	Depth	. (E	1.250	17.950	18.750	21.500	24.250	Load Cell	Depth	. (m)	1.250	17.950	18.750	21.500	24.250	Load Cell	Depth	(m)	1.250	17.950	18.750	21.500	24.250	Load Cell	Depth	(m)	1.250	17.950	18.750	21.500	24.250	Load Cell

Table A.11: Variation of pile axial forces (kN) with depth below pile head-TP4

			Load cycle 1								Load cycle 2			-			_	Load cycle 3				-		Load cycle 4								Load cycle 5						Load cycle 6				
															2MN	1982	2109	1826	703	86-	308	3.01MN	1862	3108	2524	1661	1369	1772														
															4MN	4012	3918	3521	1935	165	491	6MN	6028	5833	5194	3979	6961	2250														
	1MN	960	893	918	692	324	0								6MN	6030	5756	5172	3129	434	663	NM6	9055	8652	7117	5836	2545	2609														
	1.5MN	1480	1350	1338	972	351	0								8MN	7975	7574	6712	4202	711	821	10.99MN	10989	10326	9156	6868	2942	2895														
head load	2MN	2000	1807	1747	1271	516	7								9.5MN	9705	9129	7733	5134	1409	727	11.12MN	11074	10401	9228	6913	2955	2910								0.087MN	10	251	-84	1072	1790	2144
Applied pile head load	3MN	3002	2696	2540	1828	440	21	2MN	1995	1892	1757	956	-11	22	NM9	9200	8587	7287	4826	1230	555	11.19MN	11254	10608	9203	9669	3339	2906	5.02MN	5017	4892	4323	4154	2505	2929	2.56MN	2548	2636	2109	2894	2526	2840
	4MN	4000	3604	3298	2351	516	44	4MN	4010	3669	3376	2102	131	88	8.5MN	8527	7878	6722	4447	994	363	IIMN	11036	10418	1906	6409	2739	2355	10.5MN	10476	9825	8703	7480	3656	3653	5.05MN	5064	4905	4272	4657	3158	VVLL
	SMN	5001	4526	4043	2844	592	68	6MN	5995	5502	4917	3170	317	163	8MN	7968	7302	6256	4150	927	283	10.73MN	10720	10107	8787	6030	2238	1963	10.35MN	10350	9703	8592	1967	3612	3620	7.53MN	7520	1190	6310	6265	3710	1691
	6MN	6035	5433	4651	1688	1099	85	7.5MN	7574	6951	5937	4097	1024	171	7.5MN	7412	6796	5841	3884	852	240	10MN	0866	9392	8163	5479	1937	1575	10.5MN	10582	9974	8633	7283	3823	3573	10MN	10066	9452	8105	7644	4457	4006
	SMN	4976	4481	3809	2851	1049	63	7MN	6968	6348	5457	3790	996	137	7MN	6884	6302	5443	3630	796	205	NW6	8951	8396	7287	4811	1533	1188	10.34MN	10192	9608	8340	6957	3628	3380	8.96MN	8946	8390	1291	6597	3823	3645
	4MN	3964	3592	3008	2325	1018	46	6MN	5950	5376	4661	3271	889	96	6MN	5898	5378	4693	3107	702	140	8MN	7940	7427	6453	4241	1276	929	10.08MN	10110	9510	8266	6783	3487	3288	8MN	7951	7450	6498	5795	3379	
	3MN	2993	2740	2261	1828	616	34	4MN	3975	3547	3138	2218	738	32	4MN	3995	3605	3184	2021	526	52	6MN	5942	5495	4792	2974	917	594	10.04MN	10074	9475	8240	6750	3471	3277	6MN	5966	5541	4824	4235	2631	2606
	2MN	2030	1681	1519	1326	947	25	2MN	2035	1818	1655	1192	631	0	2MN	2114	1939	1717	1019	411	0	3MN	3068	2876	2382	1325	560	290	SMN	5010	4670	4037	3047	1768	1712	3MN	3033	2850	2353	2287	2047	
Depth	(E)	3.340	20.200	21.700	25.700	29.700	Load Cell	Depth(m)	3.340	20.200	21.700	25.700	29.700	Load Cell	Depth(m)	3.340	20.200	21.700	25.700	29.700	Load Cell	Depth(m)	3.340	20.200	21.700	25.700	29.700	Load Cell	Depth(m)	3.340	20.200	21.700	25.700	29.700	Load Cell	Denth(m)	3.340	20.200	21.700	25.700	29.700	N-01-

				Load cycle 1								Load cycle 2							Load cycle 3						_		Load cycle 4				
																									1.01MN	1019		1254		-432	348.6
									IMN	06	26,	858	961	110	17		1.03MN	1028	681	1125	1017	-296	58.8		4MN 2MN		3197 1343			7 -289	541.7 415
head load								head load		2023 9			1496 9	204	35.5	head load	2.03MN 1.0	2030 10					89.8 51	nead load		5986 4(290	649.5 54
Applied pile head load								Applied pile head load	3MN	3007	2610	2584	1939	310	55.5	Applied pile head load	4.01MN	4006	3398	3571	2606	24	149.7	Applied pile head load	I 0MN	10048	8587	9129	5578	843	829
	IMN	966	847	860	832	276	17.9	A	4MN	3992	3489	3415	2363	415	73	A	6MN	5992	5172	5475	3514	240	204	A	12.5MN	12643	11070	11372	6754	1749	909.4
	2MN	2018	1752	1716	1283	385	33.5		5.5MN	5580	4963	4728	3024	795	67		8MN	8012	6956	7142	4260	410	239.5		11.49MN	11509	10107	10369	6064	1365	658.2
	3MN	2970	2605	2479	1624	457	45.5		5MN	5010	4449	4220	2721	775	6		NW6	9113	8100	8152	4251	931	262.2		IIMN	11017	9665	9898	5756	1206	557.1
	3.5MN	3561	3171	2984	1922	714	52.8		4MN	3993	3563	3358	2183	717	70.8		8MN	8036	7160	7154	3766	834	195.5		10MN	10023	8779	8961	5220	989	402.1
	3MN	3009	2700	2528	1659	706	53.4		3MN	2986	2658	2531	1672	626	47.3		6MN	5989	5346	5149	2885	707	118.1		8MN	7875	6902	7024	4219	693	247.9
	2MN	1985	1794	1676	1099	599	7.1		2MN	2010	1787	1719	1237	535	29.3		4MN	3978	3554	3441	2059	562	64		6MN	6132	5312	5458	3336	490	166.9
	IMN	1014	942	864	581	443	4.8		IMN	1043	929	903	823	441	13		2MN	2043	1828	1804	1270	414	26.6		4MN	3975	3432	3703	2388	309	102.6
Depth	(E)	1.690	10.980	20.380	25.880	30.260	Load Cell	Depth	(u)	1.690	10.980	20.380	25.880	30.260	Load Cell	Depth	(E	1.690	10.980	20.380	25.880	30.260	Load Cell	Depth	(L	1.690	10.980	20.380	25.880	30.260	Load Cell

below pile head-TP6
with depth
forces (kN)
on of pile axial forces
: Variation
Table A.13