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Abstract

Abstract

Incorrect system operation can, at worst, be life threatening or financially 
devastating. Software testing is a destructive process that aims to reveal software 
faults. Selection of good test data can be extremely difficult. To ease and assist test 

data selection, several test data generators have emerged that use a diverse range of 

approaches. Adaptive test data generators use existing test data to produce further 
effective test data. It has been observed that there is little empirical data on the 
adaptive approach.

This thesis presents the Heuristically Aided Testing System (HATS), which is an 
adaptive test data generator that uses several heuristics. A heuristic embodies a test 
data generation technique. Four heuristics have been developed. The first heuristic, 
Direct Assignment, generates test data for conditions involving an input variable and 
a constant. The Alternating Variable heuristic determines a promising direction to 

modify input variables, then takes ever increasing steps in this direction. The Linear 
Predictor heuristic performs linear extrapolations on input variables. The final 
heuristic, Boundary Follower, uses input domain boundaries as a guide to locate 
hard-to-find solutions. Several Ada procedures have been tested with HATS; a 
quadratic equation solver, a triangle classifier, a remainder calculator and a linear 

search. Collectively they present some common and rare test data generation 
problems.

The weakest testing criterion HATS has attempted to satisfy is all branches. 

Stronger, mutation-based criteria have been used on two of the procedures. HATS 
has achieved complete branch coverage on each procedure, except where there is a 
higher level of control flow complexity combined with non-linear input variables. 
Both branch and mutation testing criteria have enabled a better understanding of the 
test data generation problems and contributed to the evolution of heuristics and the 

development of new heuristics. 
This thesis contributes the following to knowledge :

  Empirical data on the adaptive heuristic approach to test data generation.

  How input domain boundaries can be used as guidance for a heuristic.
  An effective heuristic termination technique based on the heuristic's progress.
  A comparison of HATS with random testing. Properties of the test software that 

indicate when HATS will take less effort than random testing are identified.
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Glossary

The following list is of abbreviations are used throughout the thesis :

AV Alternating Variable heuristic
BF Boundary Follower heuristic

DA Direct Assignment heuristic
DIFCD Determine-initial-follow-and-cross-details (phase of BF)
DL Determine-linearity (phase of LP or sub-phase of OCP in BF)
FB Follow-boundary (phase of BF)

HATS Heuristically Aided Testing System
iter(s) iteration(s)
LP Linear Predictor heuristic
MA Mutation Analysis

OCP Obtain-a-close-point (phase of BF)
RBF Reorient-boundary-follower (phase of BF)

sib-trav sibling-traversal

The following list is of abbreviations are used in HATS run excerpt headings :

FB Follow-boundary

Pred Predicate

Trav Traversal

UP eff Unpromising effects

Var Variable
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The following list is of abbreviations are used in the body of HATS run excerpts :

+(var) Increase specified variable; e.g. +A
+ST Positive sibling-traversal
-(var) Decrease specified variable; e.g. -A

-Cr Decrease Cross variable

-ST Negative sibling-traversal

B BP modify considered variable Back toward Base Point
BP Base Point

C (val) Cross move, modify cross variable, according to cross rule, by value
C +(val) Cross move, increase cross variable by value; e.g. C +1
C -(val) Cross move, decrease cross variable by value; e.g. C -2
F Follow move

FB Follow-boundary phase

FB C Follow-boundary phase, make a Cross move

FB F Follow-boundary phase, make a Follow move

NT considered Node Traversal

O DL Obtain-a-close-point: Determine-linearity
O PP Obtain-a-close-point: Predicted-point
OF +C Opposite direction to Follow and increase Cross variable
PP Predicted Point

ST Sibling-traversal
SUCC Success - traversal of the considered node

TERM Terminate

TFV Try First Variable

TNV Try Next Variable

UD Upper-deviation
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1 Introduction

On the morning of the 15th March 1995 a new, ultra high-tech and therefore packed 

with software, Airbus A340 was on the final part of its approach to Gatwick airport. 

Both of the pilots screens had gone blank except for the message "Please wait....". 

Unnerved by this, the pilots requested that the plane turn left. The plane responded 

by turning right. Perhaps now a little concerned, they tried to get the plane to adopt a 

3 degree approach to the runway. The plane responded by adopting a 9 degree 

plummet. By now the passengers as well as the pilots, may well have been on the 

verge of panic and worried for their lives. Fortunately however, the pilots managed 

to gain manual control and land safely.

This example, taken from a BBC news report, illustrates the responsibility society 

places in systems and the potential for disaster when the unexpected occurs. Risks 

from systems (Neuman, 1995) span the whole spectrum of impact, both direct and, 

even harder to assess, indirect. Even systems which exactly meet their specification 

still present some risk to society.

We depend upon systems. Many wonderful things are possible with their assistance 

and would be impossible or very difficult without. As the information era progresses 

our dependence will increase. Our need for quality software will correspondingly 

increase. However, as technology has improved over the past 30 years, the quality of 

software has not improved at a similar rate.

Various techniques are used to improve the quality of software. Software testing has 

been used since the first program was written. Software testing aims to reveal faults, 

which cause incorrect or unspecified behaviour. Unfortunately, testing in general, 

cannot guarantee the absence of all faults. Test data are selected toward satisfying an 

adequacy criterion. This criterion states when testing can stop and at that point there 

should be few faults left in the software. This should have established an acceptable 

degree of confidence in the software.

Over the last 20 years methods have been developed (Pressman, 1994) which 

structure the process of software development. By using a method, more faults are 

removed at each stage of software development. Test data can be selected using the 

products generated from each of the method's stages. A complementary approach to 

software testing is software inspections (Pagan, 1976) and walk-throughs (Myers, 

1979). These reveal many faults without executing the test software. 

Software testing is not a panacea and has a number of problems. It consumes 

significant resources and time. Myers (1979) states "in a typical programming 

project, approximately 50% of the elapsed time and over 50% of the total cost are 

expended in testing the program or system being developed". Graham (1991) states
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"Testing typically takes 40% of development effort" and continues "Testing often 

uses far too much of the most expensive resource : people". A great deal of creativity 

must go into the selection of fault revealing test data. However, software testing is 

essentially a destructive and repetitive process, which can make it an unattractive 

activity.

These problems can be eased through automation of testing. Graham (1991) reports 

that quality improvements of 95 to 100% and productivity improvements of up to 

7500% can be achieved with computer aided software testing tools. It is generally 

accepted that the most difficult aspect of software testing is test data selection. Ince 

(1987) outlines several approaches. Of these approaches he describes adaptive 

testing as a "tantalising possibility" and states that "there is little data on heuristic 

search techniques". Adaptive testing uses existing test data to generate further 

effective test data. It is a dynamic feed-back approach which involves the execution 

of the test software and monitoring the test effectiveness to decide the next action. It 

is this approach that has been developed in this thesis.

Chapter two defines some fundamental concepts and terms that are used throughout 

the thesis. A review of test data generators outlines each approach and indicates 

strengths and weaknesses. Greater attention is paid to adaptive test data generators. 

Chapter three describes the Heuristically Aided Testing System (HATS) and two 

heuristics it uses; the Direct Assignment (DA) heuristic and Alternating Variable 

(AV) heuristic. Chapter four discusses the application of HATS to a quadratic 
equation solving procedure, identifying problems with the two heuristics. Chapter 

five describes two further heuristics to overcome these problems; the Linear Predictor 

(LP) heuristic and Boundary Follower (BF) heuristic. The performance of these new 

heuristics is discussed. Chapter six discusses the application of HATS to a more 

complex procedure which performs triangle classification. Chapter seven focuses on 

the testing of loops and arrays through the use of a procedure that calculates the 

remainder after a division and a procedure that performs a linear search. Chapter 

eight presents the conclusions and further work.
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2 Automatic Test Data Generation
2.1 Introduction

This chapter describes concepts that are used throughout this thesis, outlines testing 
methods and reviews automatic test data generators, concentrating mainly on 
adaptive generators.

2.2 Fundamental Concepts

Many of the concepts used in this section are from White and Cohen (1979). 
Variables in the test software are divided into three classes. If a variable accepts a 
value from the user or calling software, it is an input variable. If a variable provides 
a value to the user or calling software, it is an output variable. All other variables are 
termed program variables. When an element in the test software, i.e. a statement or a 
branch, is the focus of testing, it is described as being considered. The predicate 
associated with an element that is under consideration is termed the considered 
predicate.

Hecht (1977) describes a number of control flow models. The test software can be 
represented as a directed graph; the nodes represent a group of statements "such that 
no transfer occurs into a group except to the first statement in that group, and once 
the first statement is executed, all statements in the group are executed sequentially". 
The arcs represent transfers of control, or branches, between the nodes. Such a graph 
is termed a control flow graph. A restricted form of the control flow graph is the 
control flow tree.

White and Cohen (1979) highlight an important correspondence. "A program which 
has N input variables and produces M output variables computes a function which 
maps points in the N dimensional input space to points in the M dimensional output 
space". Focusing on the structure of the input space; "The input space is partitioned 
into a set of domains. Each domain corresponds to a particular executable path in the 
program and consists of the input data points which cause the path to be executed". 
More formally, they define an input space domain or simply input domain to be "... a 
set of input data points satisfying a path condition, consisting of a conjunction of 
predicates along the path". An input data point (a set of values; one for each input 

variable) may be referred to as a point.
Each input domain has a boundary which is "determined by the predicates in the path 
condition and consists of border segments, where each segment is the section of the 
boundary determined by a single simple predicate in the path condition".
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If the test software contains loops, sequential selections or a combination of these, 
then a branch that is traversed after one of these constructs is executed has more than 
one partial path to the branch. A partial path in a control flow graph or tree begins 
at the entry or root node and ends at a non terminal node. For each partial path to a 
branch there is an interpretation that describes the branch's predicate as a function of 

the input variables. Each border segment determined by a predicate exists only in the 
input variables (dimensions) present in the predicate's interpretation. This number of 
dimensions may be from one to the number of input variables. Input variables in the 

interpretation of a partial path to a considered predicate are described as having 
considered predicate influence. However, input variables not in the considered 
predicate's interpretation but in the interpretations of earlier predicates in the partial 
path to the considered predicate are described as having former predicate influence, 

i.e. their values contribute toward arrival of control at the considered predicate. Input 
variables may be influential in both the former predicates and the considered 
predicate.

2.3 Testing Methods

A testing method typically comprises a test data selection strategy and a test data 
adequacy criterion. The selection strategy describes how test data shall be chosen to 
satisfy the adequacy criterion (or just criterion), which defines when testing may 

terminate. Weyuker (1986) states "Such a criterion represents minimal standards for 
testing a program, and as such measures how well the testing process has been 
performed". Consequently, when a criterion is satisfied the tester should have some 

degree of confidence that the software functions "acceptably". Later in her paper, 

Weyuker discusses the relationship between an adequately tested program and a 
correct one. She states "An initial reaction might be that they should be intimately 
connected, perhaps even that an adequately tested program should be correct. But the 
purpose of testing is to uncover errors, not to certify correctness". 

Many testing methods have been developed and are well described in Roper (1994). 
The methods typically fall into two classes, functional and structural, however some 
methods may fall into both classes. Functional (black-box) methods are driven by 

the test software's specification. Structural (white-box) methods are driven by the test 

software's code. Such methods are used in this thesis and are now highlighted. 
Statement testing and branch testing aim to select test data that cause execution of 
every source language statement or every decision outcome at least once. Path 

testing aims to cover every path in the test software. Even for small programs 

containing loops, path testing is unrealistic (Myers, 1979), so some subset of paths is 
chosen. A subset of paths can be selected that collectively satisfy some other
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criterion e.g. branch or statement testing. Domain testing (White and Cohen, 1980) 
aims to select points on and next to the border segments of the test software's input 
domains. Mutation testing (Budd, 1981) produces many similar versions of the 

original test software by introducing a single, syntactically correct change. The new 
programs are called mutants and it is mutation testing's aim to select test data that 

cause a difference in outputs between the original and mutant programs. When there 
is a difference, the mutant is described as being revealed. A set of mutants can be 

created so that the test data required to reveal them is equivalent to other testing 
methods.

A subsumption ordering of structural testing methods exists (Ntafos, 1988). This 
illustrates the relative difficulty of selecting test data to satisfy the criteria. Statement 

testing is the easiest to satisfy with branch testing next. Path testing is the hardest to 
satisfy. Other methods exist between path and branch testing.

2.4 Test Data Selection

Myers (1979) defines testing as "the process of executing a program with the intent of 
finding errors" and goes on to say "This definition ... implies that testing is a 
destructive process, even a sadistic process, which explains why most people find it 
difficult", and later reinforces that "...program testing is inherently an extremely 

difficult task". Since it is easy to measure how well a set of test data has satisfied an 
adequacy criterion, the difficulty lies in test data selection. This is confirmed by 

Roper (1994) who states "Many of the [testing] techniques are not prescriptive in 

their selection of test data". Hence a considerable degree of creativity is required, 
generally without specific guidance, for an essentially destructive process. 
Myers (1979) argues "programmers cannot effectively test their own programs 
because they cannot bring themselves to form the necessary mental attitude : the 
attitude of wanting to expose errors". However, programmers typically conduct unit 

testing of their own code. Software testing is a repetitive task, which could be 
responsible for Graham (1991) stating "Many software developers seem to regard 

testing as boring". She indicates that a lot of tool support is required when software 

testing is regarded as deadly boring and states 90% of software developers have never 

been trained in testing methods.
Clearly, test data selection is hard and disliked. Further, it traditionally takes place 
late in the life cycle, when dead-lines may be stretched and delivery of the system 

being developed may be imminent. Clearly, automating test data selection should 

ease these problems.
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2.5 Automatic Test Data Generators

Many different test data generators have been developed. This section classifies 
generators according to the approach used and identifies strengths and weaknesses. 
Emphasis has been placed on adaptive generators as the system described in this 
thesis falls into this class. A static generator does not execute the test software, 
however a dynamic generator does.

2.5.1 Random Test Data Generation

It is simple and cheap to randomly generate test data. Further it is stressing to the test 
software as unusual points may be used. However it is inefficient, if not virtually 
impossible, with small solution domains (Moranda, 1978). Nevertheless, it is a 
useful approach (Duran and Ntafos, 1984) and is a base line for comparison with 
other generators.

2.5.2 Syntax Based Test Data Generation

The input to the test software is formally described by a grammar. Test data are then 
generated from the grammar. This approach can produce large quantities of diverse 
functional test data. However, if the grammar has to be developed for testing this can 
be costly and time consuming. Burgess (1993) provides more detail and Ince (1987), 
a review.

2.5.3 Specification Based Test Data Generation

Test data are generated from a formal specification of the test software. Different 
systems have been developed (McMullin and Gannon, 1983; Denney, 1991; 
Furukawa, et al, 1985; Richardson and Clarke, 1981). The oracle problem (Weyuker, 
1982) does not exist with specification based generators since the output from the test 
software can be compared against an executable version of the test software's formal 
specification. However, for a program of some size special skills and a considerable 
degree of effort is required to produce a formal specification.

2.5.4 Test Data Generation by Symbolic Execution and Solution of 
Produced Constraints

A path in the test software is specified then symbolically executed. Symbolic 
execution produces a set of constraints for the path, in terms of the input variables (an 
interpreted path condition). Linear or non-linear programming techniques attempt to
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solve the constraints. If successful, a point is produced for the path selected, 
otherwise the path is infeasible or the constraint-solver is not powerful enough. A 
number of path-based systems have been developed (Clarke, 1976; Howden, 1977; 
Ramamoorthy, et al, 1976; Voges, et al, 1980).
Offutt and Seaman (1990) describe an approach that symbolically executes the path 
to a mutated statement and produces further constraints that will reveal the mutation 
when test data that satisfy all the constraints are found.
Symbolic executors only require the program code to operate and can produce a 
minimal test data set to satisfy the specified criterion. However, there are several 
difficulties (Coward, 1988; Schmitz, et al, 1980). The number of times a loop 
iterates must be known and this is particularly difficult when this number of iterations 
is dependent upon input variables. Where subprograms are used in the test software 
further methods must be used to handle this. When an array is referenced by an input 
variable or is dependent upon at least one input variable, symbolic execution cannot 
proceed beyond this statement as the array element referenced cannot be identified 
uniquely. Many paths in software are infeasible (Hedley and Hennell, 1985), 
however the feasibility of a path will not be discovered until an attempt is made to 
solve the path condition. Since symbolic execution is a static approach focusing 
solely upon the test software, environmental faults may not be revealed that would 
be, perhaps coincidentally, with a dynamic approach.
Inamura (1989) has proposed a trial-and-error method as an alternative to linear and 
non-linear programming techniques. It analyses the path condition and uses 
constrained random test data generation and input variable backtracking to find a 
solution. A solution to array elements referenced by an input variable is proposed, 
but has limitations including being unable to operate upon conditions involving 
equality.

2.5.5 Adaptive Test Data Generation

Adaptive test data generators are feedback systems which use existing points to 
produce further points in an attempt satisfy some criterion. Searching and 
optimisation techniques are used to adapt the points.
Adaptive systems are typically dynamic; the test software is executed to produce 
feedback. Since the actual variable values are available, adaptive techniques do not 
suffer from the significant difficulties symbolic execution has. Software can be 
tested in its target environment, so that environmental faults may be revealed. Most 
adaptive systems know very little, if anything, about the function of the test software 
and assume very little about it. Consequently direct-search techniques (Gill and
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Murray, 1974) for numerical optimisation, where only function values are compared, 
are suitable.

Adaptive test data generators can be split into two broad classes according to the 
adequacy criterion they aim to satisfy. These classes are fault-based and path-based. 
A number of fault-based systems have been developed for use with Ballistic Missile 
Defence software. One of the earliest systems is due to Cooper (1976), who outlines 
the architecture of an adaptive testing tool and mentions the use of gradient, 
probabilistic and heuristic search techniques to bring about a maximal degradation in 

test software performance. This initial work is further developed by Andrews and 
Benson (1981) and Benson (1981). Both describe the use of Complex search (Box, 

1965) for test data adaptation and executable assertions for performance evaluation. 
The objective is to maximise the number of violated assertions. 
The path-based class is divided into two sub-classes. The first sub-class contains 
generators which have test paths selected before test data generation commences. 
The second, does not have paths preselected.

Miller and Spooner (1976) have developed one of the earliest systems, which 
preselects paths. Their system uses a variant of Rosenbroch's (1960) method to 
generate test data. The path consists of solely floating-point assignment statements 
interspersed with constraints that are derived from the predicates encountered on 
traversal of the path. More recently, Korel (1990a) has developed a system using 
numerical optimisation, dynamic data flow analysis and backtracking. The direct- 
search numerical optimisation technique, Alternating Variable (Glass and Cooper, 

1965), modifies a single input variable at a time to minimise a function associated 
with a branch. Dynamic data flow analysis enables variables that are influential in 
the branch to be identified and ranked for modification. Backtracking focuses on 

branches where control has deviated from the selected path. 
A system that converts test data generation into an unconstrained optimisation 
problem is presented by Gallagher and Narasimhan (1993). Instrumentation modifies 
the test software's conditions so that their outcomes can be controlled to force 
execution to take a specified path. Penalty functions (Adby and Dempster, 1974) are 
associated with each condition, so if control does not naturally take the required 
branch it has a large value corresponding to the distance it has "missed" the branch 

by. The objective function, which is the sum of the penalty functions, is optimised 

by a Quasi-Newton optimisation technique using the BFGS update (Minoux, 1986). 
This approach suffers, in that some of the test data generated will be forced down a 
non-natural path, so cannot be used to determine if a fault is present. 
The main strength in this sub-class is in overcoming the inherent difficulties symbolic 

executors have. However, path selection and determining path infeasibility remains a
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difficulty. Complete path conditions can be quite complex, hence locating a solution 
to such a path may be difficult.
A number of systems fall into the second sub-class where paths are not selected 
before test data generation commences. Path or partial path selection is conducted 
during test data generation or is not explicitly considered. Prather and Myers (1987) 
acknowledge preselected path infeasibility and have observed that there is an intrinsic 
interplay between path selection and test data generation which can be exploited. 
With this foundation Prather and Myers have developed the Path Prefix testing 
strategy for branch coverage. The shortest partial path (path prefix) and 
corresponding point that traversed the partial path to an untraversed branch, is 
selected. The point is modified so that the untraversed branch is traversed (the 
decision is reversed). Here the closeness phenomenon is observed where test data 
that have traversed a branch are "close" to traversing the alternative branch. A 
method of inversion using back substitution to produce a decision reversing point, is 
mentioned, and gradient techniques are suggested as a potential solution. Branches 
are covered either by directly being considered or as a consequence of a decision 
being reversed (collateral coverage).
Kundu (1979) developed the earliest system, SETAR. It first executes an arbitrary 
point and stores the path traversed. This path is then symbolically executed to 

determine the path condition. A point is then found that violates at least one 

constraint in each of the previously traversed paths' conditions. This point is then 

executed and the cycle is closed. A method to overcome arrays referenced by an 

input variable is described. It is unclear when test data generation would stop as 

there will be a great number of violable constraints in test software containing loops. 

Korel (1990b) describes a modification to his earlier system (Korel, 1990a) where 

preselection of paths has been eliminated and node coverage is attempted. The 
branches to a required node are classified; critical when branch traversal cannot lead 
to the required node, required when branch traversal leads closer to the required 

node, semicritical when branch traversal will need to iterate a loop once more to 

potentially take the alternative required branch and nonessential when branch 

traversal does not affect control leading to the required node. Execution is monitored 

so that if control deviates from the exact partial path to the required node then 

execution is terminated when the deviation occurs. The Alternating Variable search 

attempts to find a point that traverses the alternative branch at the deviation. 

Consequently, bringing control closer to the required node. Preservation of the exact 

partial path to the required node is later relaxed. If traversal of a nonessential branch 

is taken, execution continues. However, on traversal of a critical or semicritical 

branch, execution is terminated.



Chapter 2 Automatic Test Data Generation

Deason, et al (1991) present a system that uses test data generation rules gleaned 
from software testing experts (DeMillo, et al, 1978; Howden, 1987) to satisfy 
structural condition-based criteria. The ten rules generate test data randomly or 
through analysis of the condition under test and / or through the use of the two closest 
points to the condition's boundary. A related system is described in Cross, et al 

(1991). Here the Path Prefix testing strategy (Prather and Myers, 1987) has been 
utilised to achieve branch coverage. The ten rules of the previous system have been 

replaced by four heuristics. The first two heuristics use symbolic simplification to 
derive an input variable's value at a condition's boundary with all remaining input 
variables held constant. Only values for influential input variables are generated, 
although how a condition's influential input variables are determined is not discussed. 
If the best point cannot be improved upon and the branch remains untraversed then 
the third and fourth heuristics modify the non influential input variables by 10% and 
reapply the first two heuristics.

The systems in this subclass incorporate some element or are a variation of the Path 

Prefix testing strategy, hence have similar strengths and weaknesses. Path 
infeasibility still presents a difficulty, but not to the extent of systems with paths 
preselected. It is known, at least, that the partial path to a condition is feasible. 
However, relative infeasibility, may occur where an absolutely feasible branch is 
untraversable due to the constraint of satisfying a partial path to the branch. 
The system described in this thesis falls into this sub-class. The motivation for 
research in this area was provided by Ince (1987) who states "A number of questions 
about adaptive testing remain unresolved. There is still little data about its 
effectiveness. No work has been reported on using other measures of test 
effectiveness such as branch coverage, segment coverage or statement coverage.". 
He continues, "In particular there is little data on heuristic search techniques" and 
concludes, by describing adaptive testing as a "tantalising possibility". 
Prather and Myers (1987) mention an inversion process that satisfies a considered 
condition by inverting values for all program variables back through the program 
logic to produce a point that will cause the condition to be satisfied. Prather and 
Myers, describe the inverse problem as "inherently difficult" and little work on the 

approach has been published since. However, they identify the use of techniques that 
can exploit the closeness of one partial path to another and discuss the use of a 

gradient technique.

10
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3 The Heuristically Aided Testing System
3.1 Introduction

The Heuristically Aided Testing System (HATS) uses a library of adaptive heuristics 
in an attempt to satisfy a test criterion. A heuristic contains a rule or a series of rules 
that describe how test data should be adapted. The rules that a heuristic embodies, 
serves to distinguish it from other heuristics. A library of heuristics is proposed, so 
that the diverse functions and constraints present in software can be handled. HATS 
aims to achieve branch coverage of the software tested. Being a heuristic approach 
however, no coverage guarantee can be given.

HATS is a dynamic approach. The test software is executed and untraversed 
branches are selected for consideration during testing. Executing the test software 

enables the actual output to be obtained and may reveal failures. Dynamic branch 
selection overcomes the static branch selection problems, where paths must be chosen 
from a possible infinity and many paths are infeasible (Woodward, et al, 1980). A 
further benefit is that untraversed branches may be covered coincidentally by test 
data generated with the aim of traversing some other branch. 
A model of the test software stores the test data generated and used by HATS. This 
chapter first discusses some important concepts underlying HATS, then describes the 
complete system, focusing on the two most important components: the HATS 
harness and the heuristics.

3.2 Objectives of HATS

HATS has three objectives

  to generate test data which satisfy the chosen testing criterion
  to offer an environment to support a variety of experimental heuristics
  to promote understanding of the adaptive approach

3.3 The Closeness Phenomenon and its Exploitation

A decision in a program can be either true or false. Each of these outcomes causes 
control to traverse a branch in the program and the corresponding branch in the 
program's control flow model. Prather and Myers (1987) observe that a point which 
has traversed a branch is "close" to traversing the alternative branch. By altering this 
point in some fashion the alternative branch may be traversed. Prather and Myers 

(1987), quote Beizer (1983) and Deutsch (1982), who make a similar observations.

11
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By exploiting this closeness phenomenon, it is unnecessary to derive information on a 

partial path's function to generate test data. The partial path function is created by 

the assignment statements encountered on the partial path to the branch being tested, 

described in terms of the input variables. HATS treats each partial path function it 

encounters as a black-box. Only the input variable values and a value for the 
considered branch's predicate (section 3.5.5) are used.

3.4 HATS Architecture

HATS consists of three main components; the Modeller, Instrumentor and HATS 

harness. Figure 3.1 shows HATS's components and data flow. The test software is 

provided to the Modeller and Instrumentor. The Modeller generates a control flow 

tree. The Instrumentor (section 3.5.3) adds statements to the test software which 

record the control flow, program values and failure discoveries in the control flow 
tree.

Test
software

(instrumented)

Figure 3.1 - HATS Architecture

First some initial points must be selected and executed by the test software. There 

are no restrictions on how to select the initial points or how many points to select. 

Initial points are typically selected by hand or randomly.

After execution of the initial points, the HATS harness operates. The HATS harness 

consists of the heuristics, support functions for the heuristics and the test software. 

The HATS harness first searches the control flow tree for an untraversed node. 

When one is found the harness selects a heuristic to consider this node. 

The chosen heuristic generates a single point which is executed upon by the test 

software and updates the control flow tree. Then HATS harness takes control again 

and makes a number of decisions. If the considered node has been traversed then a 

further untraversed node is searched for. If the effort expended on a considered node 

exceeds a threshold, then it is deemed infeasible and a further untraversed node is

12
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searched for. Otherwise, the current heuristic is invoked again and its search 
continues.

The heuristic evaluates the data in the control flow tree toward generating a further 
point or terminating. If the heuristic generates a further point, the test software 
executes upon it. If the heuristic terminates the HATS harness chooses another 
heuristic to continue consideration of the node. If there are no more heuristics left 
then the node is deemed infeasible. This closes the cycle round the HATS harness, 
the heuristics and the test software.

3.5 Testing Criterion. Software Model and Instrumentation

3.5.1 Testing Criterion

Of the many testing criteria in existence, structural branch coverage (Roper, 1994) 
has been selected. This is the most commonly used structural criterion (Tai, 1990). 
The HATS harness attempts to generate test data that covers every branch left 
untraversed by the initial points, at least once.

3.5.2 Software Model

A software model (Hecht, 1977) is an abstraction of the test software and represents 
some aspect of the software, for example control flow or data flow. HATS uses a 
software model to store and retrieve data during the testing process. This data 
includes input values, output values, values of predicates, revealed failures and the 
flow of control taken through the test software. Each time the test software is 
executed this data is recorded in the model. The HATS harness uses the data in the 
model to select an untraversed branch for consideration by a heuristic and to gain 
feed-back on the progress of a heuristic. A heuristic uses data in the model to initiate 
testing of a branch and to gain feedback while a branch is being tested. 
A control flow binary tree (Booch, 1987) is to be used to model the test software. 
Figure 3.2 shows an example procedure and its control flow tree. 
The procedure TEST_ME has two integer input variables, A and B, and a string 
output variable, MSG. The procedure calculates A as a percentage of B and checks if 
the result is greater than or equal to 95%. If so, the message "OK" is returned, 
otherwise "NOT OK" or "B=0" is returned. The control flow tree clearly shows that 
there are three paths and four branches in the procedure.
Section 2.2 outlines the correspondence between the test software and its control flow 
model. For example the group of statements from line 10 to line 14 is represented by 
node 3. Note that the beginning of the "if statement (line 14) is the group's

13
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terminator. A group of statements are represented more than once in the control flow 

tree when there are different partial paths to the group. A node may consist of zero 

statements so that branch testing can be satisfied.

Control flow tree node number 
Line number

Ada statements

procedure TEST_ME (
in INTEGER; 

: out STRING ) is 
FLOAT; 
INTEGER;

A,B 
MSG 
C,D,E 
F

begin
if ( B = 0 ) then 
MSG:="B=0 "; 

else
C := FLOAT ( ABS ( A)); 
D := FLOAT ( ABS ( B )); 
E:=C/D;
F := INTEGER { E * 100.0); 
if(F>=95)then 
MSG:="OK "; 

else
MSG := "NOT OK"; 

end if; 
end if; 

end TESTJVfE;

Figure 3.2 - The TEST_ME procedure and its control flow tree

Each node in the control flow tree, except the root node, holds data on the incoming 

branches predicate, e.g. data for predicate (B=0) is held in node 2 (figure 3.2). A 

predicate can be of the form El <rel> E2, where El and E2 are simple expressions 

and <rel> is a relational operator. HATS has classified predicates and presently 

recognises two types. First, where El is an input variable and E2 is a constant, and 

second, where the predicate is some other form to the first. The predicate type is 

stored in the corresponding control flow tree node and helps the HATS harness to 

select suitable heuristics.

Each node in the control flow tree has a linked list attached to it which holds data on 

a point that has caused traversal of the incoming branch. An element in the root 

node's linked list holds the input point, output point, path taken and a failure code. 

An element in a non-root node's linked list holds the input point and the node's 

predicate value (section 3.5.5). When a node is traversed, instrumentation (section 

3.5.3) stores data in the corresponding node in the control flow tree. Figure 3.3 

shows the linked lists in the TEST_ME procedure's control flow tree after two points 

have executed. For the sake of clarity only the input points are shown in each linked

14
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list's element. This clearly illustrates how the nodes are updated as control 

propagates through the test software.

Figure 3.3 - TEST_ME's control flow tree showing each traversed nodes' linked list 

3.5.3 Instrumentation

Instrumentation (Huang, 1978) is placed in strategic locations in the test software, to 

record essential data in the control flow tree. Four types of instrumentation are used, 

pre-execution, branch, postexecution and failure. Pre-execution instrumentation is 

placed so that it operates before the test software does (between lines 6 and 7, figure 

3.4). It creates a new element in the root node's linked list, places the input point into 

the element and adds the root node identifier to a list of nodes traversed. Branch 

instrumentation is placed immediately after a branch in the test software (between 

lines 7 and 8, 9 and 10, etc., figure 3.4). As control propagates through the test 

software, branch instrumentation moves a pointer to the corresponding node in the 

control flow tree and creates a new element in the node's linked list which holds the 

input point and branch's predicate value (section 3.5.5). Further, the instrumentation 

adds the identifier of the node entered to a list of nodes traversed. 

Postexecution instrumentation is placed to operate after the test software has 

completed (between lines 19 and 20, figure 3.4). It updates the root node's linked list 

element created by the pre-execution instrumentation with the output point and the 

path taken (list of nodes traversed). Failure instrumentation may be placed in various 

test software locations. These locations depend upon the failure trapping features 

provided by the language being used. This instrumentation traps a failure, preventing 

its effect upon the test software propagating to the HATS harness, and updates the 

corresponding element in the root node's linked list with a failure code.
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1 procedure TEST ME (
2 A, B : in INTEGER;
3 MSG : out STRING ) is
4 C,D,E : FLOAT;
5 F : INTEGER;

PV2,PV3,PV4,PV5:INTEGER;PATH:PATH_TYPE;
6 begin

INSTR_before_exec(A,B,PATH,l);
7 if(B=0)then

PV2 := (B-0);INSTR_move_Ieft(A,B,PV2,PATH,2);
8 MSG:="B=0 ";
9 else

PV3 := (B-0);INSTR move_right(A,B,PV3,PATH,3);
10 C := FLOAT ( ABS ( A ));
11 D := FLOAT (ABS(B));
12 E:=C/D;
13 F := INTEGER ( E * 100.0 );
14 if(F>=95)then

PV4 := (F-95);INSTR_move_left(A,B,PV4,PATH,4);
15 MSG:="OK ";
16 else

PV5 := (F-95);INSTR_move_right(A,B,PVS,PATH,5);
17 MSG := "NOT OK";
18 end if;
19 end if;

INSTR_after_exec(MSG,PATH);
20 endTEST_ME;

Figure 3.4 - Procedure TEST_ME with instrumentation

3.5.4 Selecting Branches to Test

The order that branches are selected for consideration is important. A top-down 

breadth-first search for untraversed nodes (which correspond to branches) in the 

control flow tree is to be used. This search reduces the risk of control deviating from 

a partial path to the considered node by selecting untraversed nodes that are closest to 

the first statement executed in the test software. Control flow along the partial path 

to the considered node is altered when an input point satisfies an alternative predicate 

and is termed an upper-deviation. By considering nodes higher in the control flow 

tree first, there is greater potential for coincidental traversal, where an untraversed 

node that is not the considered node, is traversed. This may take place whether or not 

an upper-deviation has occurred. Prather and Myers (1987) make similar 

observations they describe as collateral coverage.

3.5.5 The Input Point Closeness Metric

This metric indicates how close a point is to a boundary defined by the considered 

branch's predicate. The metric is termed a predicate value and is defined as (El - E2) 

which is derived from branch predicates of the form (El <rel> E2) (section 3.5.2). 

Figure 3.4 shows the predicate value expressions in the TEST_ME procedure.
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The predicate value is relative to the condition it was derived from. Only predicate 
values for the same condition can be compared. To compare predicate values from 
different conditions would be meaningless. If two predicate values for the same 
condition are compared, the point whose predicate value is closest to zero, is the 
closest of the two points to the input domain boundary defined by the condition. 
Input domain boundaries exist close to or directly upon points that have a predicate 
value of zero. However, if the predicate value is used as a guide this may cause some 
difficulties. An interfering predicate will cause an upper-deviation. Consequently, 
no predicate value will exist for the considered node for the point used. Hence, only 
an expected boundary location can be predicted using the predicate value. 
A heuristic can use this metric to exploit the closeness phenomenon. It allows a 
heuristic to determine which side of a boundary a point is on, from the polarity of the 
predicate value. This may be useful when considering an equality predicate, as it 
allows points either side of the boundary to be distinguished.
Authors of other test data generators have proposed similar metrics, which are based 
on closeness and enable the comparison of points. Deason, et al (1991) propose a 
metric which calculates the percentage difference between the left and right hand 
sub-expressions of a condition. Korel (1990a) transforms a branch's predicate to an 
equivalent predicate that is related to zero.

3.5.6 Adequacy Criterion Influence on the Software Model and 
Instrumentation

There is an important relationship between the adequacy criterion adopted, the 
software model and instrumentation used. The criterion defines the form of the 
software model. The software model must explicitly represent, in some way, each 
necessary sub-goal, which collectively satisfy the criterion. For example, with 
LCSAJ testing (Woodward, et al, 1980), each LCSAJ would need to be explicitly 
represented in the software model. Structural criteria are commonly used, however 
models for data flow and other non-structural criteria may be used (Furukawa and 
Ushijima, 1987; Infotech, 1979). Such models are statically generated. Storage for 
HATS's data must be incorporated into the model.
Traditionally, a criterion is expressed in terms of paths or subpaths in a control flow 
graph. Generally the test software's control flow graph, or some variation of it, 
would be used. The software model's form defines the instrumentation's function and 
location in the test software. Instrumentation must record essential data on the 
behaviour of the test software and necessary program values.
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3.5.7 Testing at Various Levels of Abstraction

HATS is not restricted to unit testing. This section describes how higher level testing 
is achieved. The all branches criterion tests software at a low level. The software 

modelling approach adopted enables software to be tested at other levels of 

abstraction. For example, in integration testing, it is important to check interfaces 

and code coverage across many procedures. If this criterion can be specified and 

explicitly represented within some model of the test software then HATS can test it. 

Presently, there is only the input point closeness metric available, however other 

metrics could be devised. A suitable model for integration testing may be the static 
procedure call hierarchy.

It is not a prerequisite that models are derived from the test software's code. If we 
consider the design as a model, then this could be used, together with some criterion 
to test the software produced from the design.

3.5.8 Reuse of the Software Model and its Data

Software evolves over its life time. Consequently, the software's test data must also 

evolve. The software modelling approach embodies this evolution. After the 

application of HATS, the model stores data on the behaviour of the test software. 
This data may be rationalised, so that only essential input points and associated data 
are stored. When the software is changed unit testing of the new parts and regression 

testing of the system would normally be conducted. The model must be updated to 

reflect the changes made and HATS applied. A regression testing system could be 

constructed which selects appropriate input points from the model and analyses its 

old and new behaviour of the test software from the model. Data from the model 

may also be used in other processes.

3.6 The HATS Harness

The HATS harness controls the heuristics and test software, and provides support 

functions for the heuristics. Figure 3.5 shows each component of the harness and its 

iterative nature.
Search for an untraversed node uses a top-down breadth-first search (section 3.5.4) 

of the control flow tree for an untraversed node. Select a heuristic uses a selection 

hierarchy to choose a heuristic to consider the untraversed node found. The heuristic 

selection hierarchy places an order on the application of available heuristics. At the 

top of the hierarchy are general heuristics and specific heuristics for immediately 

identifiable problems. Lower in the hierarchy are increasingly problem-specific
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heuristics. Select a heuristic starts at the top of the hierarchy and, as heuristics fail, 

chooses heuristics lower down. Apply a heuristic, initialises the heuristic and iterates 

it a number of times on the test software. An iteration involves one complete 

execution of the test software.

While there are untraversed 
nodes

While considered node untraversed 
& HATS not terminated node 

consideration

While considered node untraversed 
& HATS not terminated node

consideration 
& heuristic not terminated

Generator Duplicate data 
handler

Test 
software

Evaluator

Figure 3.5 - Structure diagram of the HATS harness

The generator exercises the heuristic's instructions to generate a point, termed the 

execute point, from another point, termed the generate point. The generated execute 

point may have already been executed upon the test software and be stored in the test 

software model. If required, the duplicate data handler will produce an execute point 

that has not been executed before in the current run. Not all heuristics require such 

an execute point. The test software has instrumentation included and executes upon 

the execute point.
The evaluator does three tasks. First it determines a traversal status from the path 

taken by the execute point. Traversal-status can either be upper-deviation, sibling- 

traversal or node-traversal. Sibling-traversal indicates that the execute point has 

traversed the sibling node to the considered node. Sibling-traversal can be further 

refined into positive-sibling-traversal, where the predicate value is positive, and 

negative-sibling-traversal, where the predicate value is negative. Node-traversal 

indicates that the considered node has been traversed.

The second evaluator task enables a heuristic to review its progress. The heuristic 

either produces instructions for the generation of the next execute point or elects to 

terminate. The final task is node termination evaluation. If a node has been 

considered for too long the node is deemed unreachable. The unreachable nodes
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component is called which adds the considered node and its descendants to a store. 
Search for an untraversed node will not consider any nodes in this store. The node 

iteration threshold, specifies the maximum number of iterations the HATS harness 

can make on any considered node.

3.7 Heuristics

This section discusses some important issues for heuristics and highlights their 

structure. The heuristics described in this thesis are deterministic, in that their 

behaviour will always be the same given the same point to start with and test software 
set up. There is no random influence once the heuristic commences operation. In 
addition the heuristics are direct search techniques (Murray, 1972), in that they are 

based on the comparison of predicate values. They require no prior knowledge about 

the partial path function they are operating with.

All the heuristics described in this thesis depend upon the test data available when 

they commence. Since the heuristics are deterministic it would appear to follow that 

the greater the number of points available the higher the chance of finding a solution. 
A heuristic may alter any of the input variables. The heuristics described in this 
thesis modify only one or two input variables at a time. The test software may have 

many input variables, hence some method of selecting the input variable(s) to modify 

and dynamically referencing them is necessary. The method adopted allocates each 

scalar (atomic) input variable with a run-time identifier. The allocation of run-time 

identifiers is based on the order that input variables appear in the test software's 

parameter list. Correspondingly, input variables are considered for modification in 

the same order; run-time identifier order.

A significant responsibility of a heuristic is to terminate (Gill and Murray, 1979) as 

soon as a heuristic recognises that it is unlikely to locate a solution. Determining 

when, is potentially a complex task. There is the chance that after terminating the 

heuristic would have located a solution given at least one more iteration. However, if 

little progress has been made then the risk of this occurring is minimal. Nevertheless, 

if a heuristic has been operating past its best termination point then there is the 

possibility that it has generated test data that another heuristic may use to success and 

coincidental coverage may have increased.
For a heuristic to be used in the HATS harness it must provide up to four 

components. These components are now described and the flow through a heuristic 

illustrated (figure 3.6).
The first iteration set-up component initialises the heuristic when the HATS harness 

chooses to use it. It sets all the heuristic's variables, selects the first generate point 

and specifies generation instructions for the heuristics first iteration.
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The generator component applies the instructions given by the first iteration set-up 

component or evaluator component to produce the execute point from the generate 

point.

Apply a heuristic

Heuristic's 
1st iteration 

set-up
->>

Generator

;
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Figure 3.6 - Components and flow in a heuristic

The duplicate data handler is an optional component and is only provided and used if 

the heuristic requires a unique execute point to be produced every iteration. The 

handler modifies the execute point in an attempt to produce a unique execute point 

that does not upset the heuristics approach.

The evaluator component reviews a heuristic's progress and either produces new 

generation instructions and selects a generate point, or terminates the heuristic. The 

actions a heuristic's evaluator takes are generally based on the traversal status of the 

execute point.

A time-consuming problem in software testing is determining if the output for an 

input point is correct with respect to the test software's specification. This is known 

as the oracle problem (Weyuker, 1982). It has been overcome in the HATS harness 

by incorporating postconditions in the test software. If the postconditions are 

violated then a failure is recorded in the software model.

3.8 Selection of Initial Points

Initial points can be selected in any way and in any quantity. There are no 

restrictions except that it must be executed upon the test software so that essential 

data is recorded in the software model. Normally however, only a small number of 

points will be selected, typically one. This places the emphasis of generating 

adequate test data upon HATS.

3.9 The Direct Assignment Heuristic

Test data generation for predicates that include input variables and constants is an 

obvious and simple task for a heuristic. However for a human, it may not be so
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obvious. The Direct Assignment (DA) heuristic exploits input variables that appear 

in such predicates.

3.9.1 Overview of the Direct Assignment Heuristic

For a predicate to qualify, the input variable appearing in the predicate must not be 

redefined on any path from the first statement executed in the test software to the 

predicate. The expressions in the predicate must be of a specific form. Using the 

predicate form defined in section 3.5.2, El must be an input variable and E2 a 

constant. Static analysis of the test software determines if a predicate qualifies. If so, 

the predicate's relational operator and constant value are stored in the control flow 

tree. When an untraversed node controlled by such a predicate is considered the DA 

determines a value for the input variable using the data stored in the control flow tree, 

that should cause traversal of the considered node. A point, with the determined 

value for the input variable appearing in the predicate, is executed and the result 

evaluated. If the considered node is not traversed then it and its descendants are 

deemed infeasible.

An example of the DA's application using the TEST_ME procedure follows. The 

single initial point (7, 20), where the first value defines input variable A (7) and the 

second B (20), traverses the path 1, 3, 5 in the control flow tree (figure 3.2). Node 2 

is the first untraversed node to be found by the top-down breadth-first search. The 

HATS harness selects the DA since it is suitable for node 2's predicate. The DA 

determines that a value of 0 for input variable B will cause traversal of node 2. A 

value of 7 for input variable A is gained from the first and only point to traverse node 

2's sibling, node 3. TESTJVIE is executed with the point (7, 0) and the path 1, 2 is 

traversed, satisfying the DA's goal.
The DA bears similarity to Howden's (1987) functional testing rules for conditional 

branching which have been automated by Deason, et al (1991).

3.9.2 Components and Functions of the Direct Assignment Heuristic

The DA's pseudo code can be found in appendix A3.1.

3.9.2.1 First Iteration Set-up, Generator and Duplicate Data Handler

Most of the DA's functionality operates before the first iteration since the heuristic 

takes only one iteration. The considered predicate's constant is assigned to the input 

variable appearing in the considered predicate. The input point generation
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instructions for the input variable involved are defined according to the considered 
predicate's relational operator, as shown in table 3.1.

Relational operator Instructions
< increase by 1 

>, /= decrease by 1 
=, <=, >=_____no change

Table 3.1 - DA's generation instructions for the considered predicate's input variable, 
defined by the considered predicate's relational operator

The remaining input variable values for the generate point are provided from the first 
point to traverse the considered node's sibling. The generator applies the input point 
generation instructions to the generate point to produce the execute point, which the 
test software will execute upon if it is unique. If the execute point exists in the 
control flow tree, the duplicate data handler records this and the HATS harness 
terminates.

3.9.2.2 Evaluator

If the DA causes traversal of the considered node then control returns to the HATS 
harness. Otherwise, if the node remains untraversed, the node and its descendants are 
deemed infeasible and added to a list of unreachable nodes. This takes place when an 
interfering predicate is encountered before the considered predicate, causing an 
upper-deviation.

3.10 The Alternating Variable Heuristic

When the considered predicate is some function of the input variables the Alternating 
Variable (AV) heuristic is applicable. The AV modifies an input variable in ever 
increasing steps in the most promising direction in an attempt to traverse the 

considered node.

3.10.1 Overview and Phases of the Alternating Variable Heuristic

Figure 3.7 is a partial input plane for an arbitrary program which illustrates the AV 
operating in an ideal situation. A partial input plane is a constrained two 
dimensional view of a program's input space. The program's input space may be any 
number of dimensions. If there are more than two input variables then the input 
variables not included in the plane must be held constant and their values shown. 
The arbitrary program has two input variables, X and Y, and a condition dependent 
upon both these variables. The condition defines the boundary which partitions the
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input space into two domains. Input points on the right side of the boundary cause 
considered node traversal. Whereas input points on the left side of the boundary and 
directly upon it, cause sibling-traversal. The AV's objective is to locate a point that 
causes considered node traversal (solution point) from the closest point causing 
sibling-traversal. The closest point is a previously executed input point which caused 
sibling-traversal and has a predicate value that is closer to the considered node's 
expected boundary than any other input point previously executed.
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Figure 3.7 - Partial input plane showing the AV operating

The AV first has an exploratory phase where the direction to modify the considered 
input variable is discovered. Comparing the value of variable X in the two executed 
points it is clear to see that increasing X is the most promising modification direction. 
An exploratory move increases X and the resultant point is closer to the boundary and 
solution domain.
Now that a modification direction has been established the exploratory phase 
prepares for the pattern phase. The pattern phase modifies the considered input 
variable in the direction established with ever increasing steps. Figure 3.7 shows that 
the first pattern move is made from the exploratory point and is twice the size of an 
exploratory move (2). The second pattern move is twice the size of the previous (4) 
and finally the third pattern move is twice the size of the second (8). The final move 
crosses the boundary to a solution point. When no improvement is made in the 
pattern phase the modification direction and step size may be adjusted or the 
exploratory phase may take over again. If it becomes evident during either of the 
phases that no progress is being made modifying an input variable then the 
exploratory phase takes over on the next input variable. 
The AV is a single-dimension version of Glass and Cooper's (1965) Sequential 
Search where the alternate routine has been omitted. The AV is a variation of Korel's 
(1990a) search procedure which is based on Sequential Search.

24



Chapter 3 The Heuristically Aided Testing System

3.10.2 Components and Function of the Alternating Variable

The AV's pseudo code can be found in appendix A3.2

3.10.2.1 First Iteration Set-up, Generator and Duplicate Data Handler

The first iteration set-up component specifies that the current phase is exploratory, 

that the first input variable shall be considered and establishes a modification 

direction to use. If the considered node has only one sibling-traversal point, a default 

modification direction of increase by one is used. However, when there are two or 

more sibling-traversal points, a modification direction can be determined. The 
considered input variable values for the two sibling-traversal points with the closest 
predicate values to the expected boundary are compared. A further check is made to 

see if the expected location of the solution point lies between the two closest points. 

Table 3.2 shows how the exploratory modification direction is chosen. The generate 

point is defined as the closest point to the expected boundary.

Relationship of input Solution point between Instructions given 
variable values_______closest points_____________

Closest < next closest No decrease by 1
" Yes increase by 1

Equal increase by 1
Closest > next closest No increase by 1

_______"______________Yes________decrease by 1

Table 3.2 - Determining exploratory phase input point generation instructions

The generator component produces the execute point by applying the input point 

generation instructions to the generate point. The execute point must be unique. If it 

is not, the duplicate data handler is used and its action is based on the modification 

direction. When increase, the considered input variable of the execute point is further 
increased by 1. When decrease, the considered input variable is further decreased by 
1. This continues until a unique execute point is produced which is executed upon by 

the test software.

3.10.2.2 Evaluator

The evaluator component first checks if the execute point has traversed the 
considered node. If so, control returns to the HATS harness, otherwise evaluation is 

performed dependent upon the traversal-effect of the execute point and, when a 

sibling-traversal took place, the closeness of the execute point to the expected 

boundary compared to the closest point stored.
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3.10.2.3 Sibling-traversal and Closer to the Expected Boundary

Entry to this evaluator indicates that the execute point has made progress toward the 

expected boundary location and possible locality of a solution point. The following 

example illustrates this evaluator and continues from the previous example in section 

3.9.1. The initial point (7, 20) traversed path 1, 3, 5 and the DA generated a point 

that traversed node 2, which leaves only node 4 (F >= 95) untraversed in the 

TEST_ME procedure. The HATS harness selects the AV to consider node 4. The 

exploratory phase is used first. Since there is only a single point to cause sibling- 
traversal (7, 20), this is stored as the closest point. The default direction of increase 
is used and, as it is the exploratory phase, the step size is one. The first input variable 
A is considered for modification.

Figure 3.8 illustrates the moves made by the AV in a partial input plane. When a 

point is used by a heuristic, the point's considered predicate value is shown close to it.
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Figure 3.8 - Partial input plane showing moves made by the AV considering node 4
of the TEST_ME procedure

The exploratory move from the closest point (7, 20), produces a point that is closer to 
the boundary and solution points, hence the exploratory phase prepares for the pattern 

phase. For the next three iterations, ever increasing steps are taken. The first two 

produce sibling-traversal points that are closer to the boundary and the third locates a 

solution point (22, 20) for node 4.
The actions taken by this evaluator are now summarised. If the AV is in the 

exploratory phase then the pattern phase is prepared for. This involves doubling the 

present step size of one to two. The modification direction is not changed. If the AV 
is in the pattern phase then a check is made to see if the expected location of the 

solution point is between the executed point and the former closest point stored. If 

so, the modification direction is reversed and the pattern step is considerably 

decreased, otherwise the pattern step is doubled.
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3.10.2.4 Sibling-traversal and Further from the Expected Boundary

Entry to this evaluator indicates that the execute point made no progress toward the 

expected boundary and possible locality of a solution point, hence suitable corrective 

action is taken. To prevent the AV from concentrating on one input variable when no 

progress can be made modifying it, the number of sibling-traversals further from the 

expected boundary for the considered variable are counted. If this exceeds a 

threshold then the considered variable is abandoned.

When the AV is in the exploratory phase a check is made to see if this is the first 

sibling-traversal further from the expected boundary for the considered variable. If 

so, the modification direction is reversed and the generate point is stored as the 

closest point. This check enables an exploratory move in the opposite direction. 

Searching in both directions may be expected if there was only one sibling-traversal 

point. There has to be at least two sibling-traversal points for a modification 

direction to be determined. If, in the exploratory phase, there are two sibling- 

traversals further from the expected boundary then the considered input variable is 

abandoned. Searching in both directions has not found a point closer than the closest 

point stored.

When the AV is in the pattern phase the last move has possibly overstepped a 

solution point. In an attempt to locate the solution, the modification direction is 

unchanged, the pattern step is considerably reduced and the generate point is stored as 

the closest point. Since it appears that a solution exists, it is anticipated that a 

solution will be found after a few iterations modifying the considered variable. 

However, should a solution not be found, then to prevent the AV from continuing to 

overstep the expected location of a solution, the number of further sibling-traversals 

produced by modifying the considered variable, whilst in the pattern phase, are 

counted. If this exceeds a threshold then the considered input variable is abandoned.

3.10.2.5 Upper-deviation

Entry to this evaluator indicates that a move by the AV, in either the exploratory or 

pattern phases, has overstepped an interfering predicate's boundary. This evaluator 

sets up the AV to "home in" on the interfering predicate's boundary where closer 

points and possibly a solution will be located.

When the AV is in the exploratory phase a check is made to see if this is the first 

upper-deviation on the considered variable. If so, the modification direction is 

reversed and the generate point is stored as the closest point. This enables an 

exploratory move in the opposite direction. If there are two upper-deviations in the 

exploratory phase, the considered input variable is abandoned. When the AV is in
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the pattern phase, the exploratory phase is prepared for, which will "home in" on the 

interfering predicate's boundary. The step size is reduced to one and the generate 
point is stored as the closest point.

To prevent the AV from concentrating on one input variable when no progress can be 

made, the number of upper-deviations produced for the considered variable are 
counted. If this exceeds a threshold then the considered variable is abandoned.

3.10.2.6 Abandoning Consideration of an Input Variable

The new considered input variable is the next in line to the old considered input 

variable. If the old considered input variable is the last then the new is the first in the 

list. The modification direction and generate point are determined in the same 
fashion as the first iteration set-up (section 3.10.2.1).

3.11 Scope of Testable Software

To test the test software, its object code must be linked with the HATS harness's 

object code. Provided, this is possible and the test software has been modelled and 
instrumented correctly then a subset of most third generation languages can be used. 

However, since Ada has been used to develop HATS, if the test software is written in 

Ada this will reduce the risk of integration problems.

3.11.1 Testable Subset of Ada

This subset represents a starting point that will enable experience using HATS to be 

gained. There are several parts outlined, these being statements, data types, 
conditions, subprograms, input / output and subpath / path expressions.
  Following Barnes' (1989) statement classification, testable simple sequential 

statements are null, assignment and procedure call, and the testable compound 

sequential statements are if and case.
  Any data type may exist in the test software. However, data types of conditions 

and input / output is limited.
  A condition may only be of the simple form outlined in section 3.5.2, where each 

subexpression is of integer data type.
  Function or procedure subprograms may be tested. They may be compounded.

  Input to a subprogram must come through its parameters and be integer. Output 

may be of any type and is not necessary for it to be passed through the 

subprograms parameters.
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  Subpath / path expressions are not restricted at all. They may be linear, nonlinear
or a combination. They may be of any complexity.

Although loop statements have been omitted from this list they are incorporated in 
chapter 7.

3.11.2 Transformations

To model and instrument the test software, it is necessary to transform some of the 
instances of the statements mentioned above into a similar but logically equivalent 
form. Transforming a program, or adding instrumentation, has the risk of altering its 
original behaviour. This would naturally make the testing process worthless. 
With "if statements, all variations must be represented in the "if then else" form. 
Case statements must be transformed into a series of "if then else" statements. "If 
statement conditions with logical connections, i.e. AND, OR, can be transformed to a 
number of "if statements with simple conditions.

3.12 Automated and Manual Aspects of HATS

Only the HATS harness has been automated. Generation of the software model, 
instrumentation and generation of the initial test data are performed manually. 
However, their automation is well understood (Infotech, 1979).
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4 The Quadratic Equation Solver Problem
4.1 Introduction

This chapter describes the application of HATS using the Direct Assignment (DA) 
and Alternating Variable (AV) heuristics to a quadratic equation solving procedure. 
Firstly, HATS generates test data for branch testing of the QUADRATIC procedure, 
secondly, HATS generates test data for Mutation Analysis (MA) of the procedure. 
Both branch testing and MA reveal the difficulty HATS has in generating a point that 
satisfies the only nonlinear equality predicate in the procedure, which has few points 
that do satisfy it. MA is harder to satisfy than the branch testing criterion and it 
extensively tests both the QUADRATIC and heuristics.

- Control flow tree node number 
i- Line number

i- Ada statements

Y I
1 procedure QUADRATIC ( A, B, C : in INTEGER;
2 XI, X2 : out COMPLEX;
3 QUAD_KIND : out QUAD_TYPE) is
4 D:INTEGER; REAL_PART:FLOAT; IMAG_PART: FLOAT;
5 begin
6 SET (Xl,0.0,0.0);
7 SET (X2,0.0,0.0);
8 if (A=0) then

2C 9 QUADJOND := NOT A QUADRATIC;
10 else

- 11 D:=(B*B)-(4*A*C);
. 12 if(D>0)then

13 QUAD KIND:=ROOTSARE_REAL_AND UNEQUAL;
14 REAL_PART:=(FLOAT(-B)+SQRT(FLOAT(D)))/FLOAT(2*A);
15 SET(X1,REAL PART,0.0);
16 REAL_PART:="(FLOAT(-B)-SQRT(FLOAT(D)))/FLOAT(2*A);

-17 SET(X2,REAL_PART,0.0);
18 else

5C 19 if(D=0)then
- 20 QUAD_KIND:=ROOTS_ARE_REAL_AND_EQUAL;

21 REAL_PART:=FLOAT(-B)/FLOAT(2~*A);
22 SET (X1,REAL_PART,0.0);

_ 23 SET(X2,REAL_PART,0.0);
24 else
25 QUAD KIND:=ROOTS_ARE COMPLEX;
26 REAL_PART:=FLOAT(-B)/FLOAT(2*A);
27 IMAG_PART:=SQRT(FLOAT((4*A*C)-(B*B)))/FLOAT(2*A);
28 SET(X1,REAL_PARTJMAG_PART);
29 IMAG_PART:=-IMAG_PART;

_ 30 SET (X2,REAL_PARTJMAG_PART);
31 end if;
32 end if;
33 end if;
34 end QUADRATIC;

Figure 4.1 - The Ada QUADRATIC procedure
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4.2 The Integer Quadratic Equation Solver Procedure

The QUADRATIC procedure (figure 4.1) has three integer input variables A, B and 

C, representing the coefficients of the quadratic equation. There are three output 
variables; XI and X2, of COMPLEX type, are the two roots of the given quadratic 
equation; QUAD_KIND, of QUADJTYPE, is an INTEGER subtype and is 

constrained to the range 1 to 4. Each value in this range corresponds to one of four 

QUAD_TYPE constants; NOT_A_QUADRATIC,

ROOTS_ARE_REAL_AND_UNEQUAL, ROOTS_ARE_REAL_AND_EQUAL or 

ROOTS_ARE_COMPLEX.

The procedure has three conditions. The first (A = 0), involves only an input variable 

and a constant. The other two conditions, (D > 0) and (D = 0), involve the result of a 
non-linear function of the input variables (D = B - 4AC) and a constant (0). 

Program variable D, is local to the procedure and is integer. 

Figure 4.2 shows that there are four distinct paths through the procedure and the 

longest path consists of four nodes. There are no iterations and the procedure has 

three branch nodes (1,3 and 5).

Figure 4.2 - Control flow tree of the QUADRATIC procedure 

4.2.1 The QUADRATIC'S Input Space

Table 4.1 illustrates the path conditions and the corresponding domain details.
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Path

1,2 
13,4 

1,34,6 
1,3,5,7

Path % of input space domain occupies Domain 
condition (range ±1000 for A, B & C) population

A=0 
A/=0 & D>0 
A/=0 & D=0 
A/=0 & D<0

0.05% 
62.6722% 
0.0002% 
37.2776%

Total

4,004,001 
5,021,301,640 

15,384 
2,986,684,976
8,012,006,001

Table 4.1 - The QUADRATIC'S input domains

Paths 1, 3, 4 and 1, 3, 5, 7 have the largest domain population. Consequently, input 
points have a higher probability of traversing these two paths than paths 1, 2 and 1, 3, 
5, 6. Path 1, 2, has a considerably smaller domain than paths 1, 3, 4 and 1, 3, 5, 7. 
Path 1, 3, 5, 6 has an even smaller domain than path 1, 2, which is sparsely located 
between the two largest domains. The form of these four domains is shown in figure 
4.3.
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Figure 4.3 - Partial planes of the QUADRATIC'S input space

If the data type of the QUADRATIC'S variables were real then the (D=0) predicate's 
border would be pseudo-continuous, where input points approximating to the border, 
are contiguous. Such a procedure's input space would have three borders.. A border

32



Chapter 4 The Quadratic Equation Solver Problem

where points make A=0; a border lying on, but not including, points where D=0 (for 
the D>0 condition); and finally a border lying on, and only including, points where 
D=0 (for the condition D=0).
However, the QUADRATIC'S variables are integer, and the (D=0) border consists of 
disjoint points that are rarely adjacent. A notional border I notional boundary lies in 
the place a border / boundary would be had real variables been used instead of 
integer. Therefore the integer QUADRATIC'S borders are different to the same 
procedure with real variables. There is a border where points make A=0; a notional 
border lying through, but not including, points where D=0 (for the condition D>0); 
and finally a notional border lying through, and only including, points where D = 0 
(for the condition D=0).

4.3 Branch Testing of the QUADRATIC 

4.3.1 HATS Experimental Set-up

A single, hand selected point is used to start each HATS harness run (table 4.2). The 
values chosen for each of the three input variables are in the arbitrarily chosen range 
of ±1000.

HATS
run
Ql 
Q2
Q3 
Q4

Input variable 
ABC

-200 
17 

257 
699

50 
27 
46 
103

9 
46 
-63 
675

Table 4.2 - Initial points for branch testing of the QUADRATIC

The node iteration threshold is 50 and the input variables are considered in the order 
A, B then C by the AV.

4.3.2 Run Ql

Six of the seven nodes were traversed. Table 4.3 shows the traversal results for this 
run. A traversal results table contains important information on a HATS run and can 
consist of up to four sections. The first section shows the path taken by the initial 
point. The second section, nodes considered and traversed, shows for each 
considered node traversed by a heuristic, the heuristic used, the number of iterations 
taken by the heuristic and nodes coincidentally traversed through the heuristic 
considering the node. The third section, nodes considered and untraversed, shows the 
same information as the previous section but for considered nodes that could not be
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traversed. The fourth section, nodes unconsidered (not shown in table 4.3), lists 
nodes that the HATS harness did not consider.

Initial point path 1,3,4
Nodes considered and traversed

Node Heuristic Itcrs Coincidental nodes
DA
AV

Nodes considered and untraversed
Node Heuristic Iters Coincidental nodes

AV 50

Table 4.3 - Run Ql traversal results

The DA took a single iteration on node 2. On node 5, the AV took 9 iterations and 
generated a point that coincidentally traversed node 7. No solution could be found in 
the maximum 50 iterations using the AV on node 6. Table 4.4 gives a more detailed 
breakdown of what occurred whilst a node was being considered by a heuristic.

Considered Heuristic 
node used

2 DA 
5 AV 
6 AV

Total 
iterations

1 
9 

50

Number of iterations :
Variable modified 
ABC
1 
9 
40

0 
0 
6

0 
0 
4

Upper - 
deviation

0 
0 
15

Duplicate 
data

0 
0 
10

Table 4.4 - Run Ql's iteration summary for the nodes considered

Nodes 2 and 5 were traversed by a heuristic modifying only input variable A. On 
node 6 all three input variables are modified as the A V changed from modifying one 
variable to another as it was not making progress. Of the three input variables, A was 
modified the most. Only on node 6 were upper-deviations produced and duplicate 
data generated as a domain boundary was encountered.
The operation of the heuristics on each node is now described. On node 2, the DA 
produced the execute point (0, 50, 9) (where A=0, B=50 and C=9) from the 
considered predicate (A=0) and the initial point. On node 5, the AV had only the 
initial point (which traversed node 4) to generate from. Figure 4.4 shows how the 
AV modified only variable A to locate a solution to node 5 at (311, 50, 9). The 
figure represents an approximation of a partial input plane and shows the large 
domains of nodes 4 and 5. On the penultimate iteration, a point close to the notional 
boundary was generated. Since the point is in a domain that causes node 4 to be 
traversed, the AV continued, taking another step twice the size of the previous, to 
locate a solution point.
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D=0

Execute point 

AV pattern move

Closest point 
to boundary s Notional 

boundary

Sibling-traversal 
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start point
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C=9 A

Figure 4.4 - Approximated partial plane of the QUADRATIC'S input space showing
AV heuristic moves on node 5

On node 6, the AV could not find a solution. The location and size of node 6's 
domain (section 4.2.1), makes it considerably harder to find a solution than node 4 or 
7. Figure 4.5 shows the AV operating on node 6. The heuristic start point is node 5's 
solution point. A heuristic start point is the first input point a heuristic uses to 
generate from. Modifying variable A, the AV was drawn to the notional boundary 
where many points were generated but no solution found. Figure 4.5 clearly shows 
the "homing-in" behaviour of the AV. When the AV generates a point that crosses 
the boundary from the (D>0) domain to the (D<0) domain, an upper-deviation is 
produced. In response, the AV starts an exploratory search from the sibling-traversal 
point it has found, which is closest to the boundary. This leads to a pattern search 
and the generation of a point that crosses the boundary, completing the cycle.
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Figure 4.5 - Approximated partial plane of the QUADRATIC'S input space showing
the AV's moves on node 6
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Iter 
range

1-10 
11-20 
21-30 
31-40 
41-50
Total

Number of iterations :
Variable modified 
ABC
10 
10 
10 
6
4
40

0
0 
0
2 
4
6

0 
0 
0
2
2
4

Improved 
sib trav

8 
9 
7 
2 
0
26

Degraded 
sib trav

1 
0 
0 
3 
5
9

Upper- 
deviation

1 
1 
3 
5
5
15

Duplicate 
data

0 
0 
0 
0 
10
10

Iteration 
producing 

closest point
10
20 
29 
33 
33

Table 4.5 - Progression of the AV considering node 6

Table 4.5 breaks down the AV's progress on node 6. In the first 30 iterations 
progress was good, despite overstepping the boundary 5 times and is shown by the 
high number of iterations that produced a closer point. A point close to the boundary 
was found (72, 50, 9), solely by modifying input variable A. In the next 10 iterations 
progress turned around. On iteration 33, the AV produced the closest point of the 50 
iterations. However, the AV cannot determine this, so continues. Indications that 
progress to a solution had ceased are shown in the last 20 iterations. The AV cycles 
around the three input variables, modifying each, without finding a closer point. 
Compared to the first 30 iterations, many more upper-deviations are produced. On 
each of the last 10 iterations, duplicate data was generated.
Viewing the QUADRATIC'S input space in the locality of a heuristic's search helps to 
explain why the heuristic behaved in a particular way. Figures 4.6 and 4.7 show 
predicate values for nodes 6 and 7 in the neighbourhood of the closest point found 
(70, 50, 9) in iteration 33. In the figures an asterisk (*) represents a point that causes 
an upper-deviation, in this case to node 5. The AV's objective is to locate values for 
variables A, B and C, where D=0. Modifying variable A locates the closest point the 
AV can find, although the AV is not aware of this. Exploratory searches, from this 
closest point, modifying variables B and C, produce no improvement. The AV then 
cycles around all three variables again fruitlessly, until the node iteration threshold is 
met.

52
B 51 

50 
49

*******
****** .27
* * * -20 -56 -92 -128

*11 -47 -83 -119 -155 -191 -227
67 68 69 70 

A
71 72 73

Figure 4.6 - Run Ql (A, B) partial input plane : AV considering node 6
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c
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-20
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*
*
*

51

-376
-96

*
*
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52

Figure 4.7 - Run Ql (B, C) partial input plane : AV considering node 6

Figures 4.6 and 4.7 show that no solution point (a predicate value of 0) exists in the 
nearest neighbourhood of the closest point (70, 50, 9) and there is no closer point. 
The nearest solution to where the AV was searching, exists at (64, 48, 9) and (81, 54, 
9), if C is held constant at 9. To locate these would require the AV to modify both A 
and B at the same time. This would be a two dimensional search rather than the 
present single dimension search.

4.3.3 RunQ2

Table 4.6 shows this run's traversal results. This run's initial point caused the 
traversal of an alternative initial path to run Ql. Accordingly, the HATS harness 
considers different nodes from run Ql. Six of the seven nodes were traversed. 
Table 4.7 breaks down the AV's progress on node 6. No positive progress was made 
in the last 40 iterations. This is indicated by no improved sibling-traversals, an equal 
number of degraded sibling-traversals and upper-deviations, and duplicate data 
generated on every iteration.

Initial point path 1,3,5,7
Nodes considered and traversed

Node
2 
4

Heuristic
DA 
AV

Iters Coincidental nodes
1
5

Nodes considered and untraversed
Node

6
Heuristic

AV
Iters Coincidental nodes
50

Table 4.6 - Run Q2 traversal results

The closest point the AV can find (4, 27, 46) is located on the fifth iteration. After 
this point has been located the AV cycles around the input variables making no 
positive progress. This can be seen from the number of iterations each variable was 
modified. This run demonstrates the AV's behaviour when the initial point is close to 
a notional boundary and no solution is found.
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Iter 
range

1-10 
11-20 
21-30 
31-40 
41-50
Total

Number of iterations :
Variable modified 
ABC
8 
4 
2 
4 
4
22

2 
2 
4 
4
2
14

0
4 
4 
2 
4
14

Improved 
sib trav

4 
0 
0 
0 
0
4

Degraded 
sib trav

2 
5 
5 
5 
5

22

Upper- 
deviation

4 
5 
5 
5 
5

24

Duplicate 
data

2 
10 
10 
10 
10
42

Iteration 
producing 

closest point
5

Table 4.7 - Progression of the AV considering node 6 

4.3.4 RunQ3

The traversal results for this run are shown in table 4.8. Only node 6 was 
untraversed.

Initial point path
Nodes considered

Node
2 
5

Heuristic
DA
AV

Iters
1 

10

13,4
and traversed

Coincidental nodes

7
Nodes considered and untraversed

Node
6

Heuristic
AV

Iters
50

Coincidental nodes

Table 4.8 - Run Q3 traversal results

On node 6, the AV makes positive progress modifying variable A in the first 40 
iterations (table 4.9). This is indicated by the high number of improved sibling- 
traversals. The few upper-deviations are due to the AV "homing-in" on the notional 
boundary and overstepping it, causing upper-deviations, as shown in figure 4.5. 
In the last 20 iterations progress turns around and is indicated by the high number of 
iterations where upper-deviations are produced and duplicate data is generated. The 
closest point the AV can find is located in iteration 41 and from here on the AV 
cycles around the input variables.

Iter 
range

1-10 
11-20 
21-30 
31-40 
41-50
Total

Number of iterations :
Variable modified 
ABC
10 
10 
10 
6
2

38

0 
0 
0
4 
2
6

0 
0 
0 
0 
6
6

Improved 
sib trav

9 
9
7 
3 
1

29

Degraded 
sib trav

0 
0 
0
2 
4
6

Upper- 
deviation

1 
1
3 
5 
5
15

Duplicate 
data

0
3 
0 
5 
5
13

Iteration 
producing 

closest point
10 
20 
29 
37 
41

Table 4.9 - Progression of the AV considering node 6
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4.3.5 Run Q4

The traversal results for this run are shown in table 4.10. Only node 6 was 
untraversed.

Initial point path
Nodes considered and traversed

Node Heuristic Iters Coincidental nodes
DA
AV

I
II

Nodes considered and untraversed
Node Heuristic Iters Coincidental nodes

6 AV 50

Table 4.10 - Run Q4 traversal results

On node 6, the AV makes positive progress in the first 40 iterations (table 4.11), 
locating the closest point it can find in iteration 41. Indications that positive progress 
had ceased are shown in the last 10 iterations.

Iter 
range

1-10
11-20
21-30
31-40
41-50
Total

Number of iterations :
Variable modified 
ABC
10
10
10
0
2

32

0
0
0
2
2
4

0
0
0
8
6
14

Improved 
sib trav

9
8
5
5
1

28

Degraded 
sib trav

0
0
1
2
4
7

Upper- 
deviation

1
2
4
3
5
15

Duplicate 
data

0
0
4
0
9
13

Iteration 
producing 

closest point
10
20
27
39
41

Table 4.11 - Progression of the AV considering node 6 

4.3.6 Branch Testing Discussion

Both DA and AV were used in four separate branch testing runs of the QUADRATIC 
procedure. The DA worked without fault in all occasions. However, there was little 
potential for any fault. There could not be any upper-deviation since nodes 2 and 3, 
which the DA is applicable to, are the immediate successors of the root node. 
The application of the AV was both good and bad. With nodes 4 and 5, a solution 
was found in every run, modifying only one input variable. There was no difficulty 
in locating a solution point, due to the large size of the nodes' domains (section
4.2.1).
An observation made whilst the AV considered nodes 4 and 5 is that the number of 
iterations required to locate a solution is related to the predicate value distance 
between the heuristic's start point and the solution domain's expected notional 
boundary. Predicate value distance is the difference between the predicate value of 
two input points. In this case the first input point is the heuristic start point and the
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second is an input point that produces a predicate value of 0, which may or may not 
exist in the test procedures input space.

Run Node

Q2 4 
Ql 5 
Q3 5 
Q4 4

Predicate value 
distance

4679 
38200 
77641 

210501

Iters

5 
9 
10 
11

Table 4.12 - Relationship between the predicate value distance to an expected 
solution and the number of iterations taken to locate the solution

Table 4.12 clearly shows that as the distance increases so does the number of 
iterations. The effect of the ever-increasing AV pattern search steps is shown. The 
number of iterations increase linearly as the predicate value distance increases 
exponentially.
With node 6, the AV did not locate a solution point in any of the runs. Once the AV 
had located the (D=0) notional boundary, the same behaviour was observed in all 
runs. Upper-deviations, degraded sibling-traversals and duplicate data generations all 
increase. The positive progress exhibited in runs Ql, Q3 and Q4, is the AV locating 
the notional boundary. The number of iterations positive progress takes place for is 
related to the predicate value distance from the heuristic's start point to the (D=0) 
notional boundary.

4.3.7 Comparison of HATS with Random Testing

It is desirable for any automated test data generator to compare favourably to random 
testing. To compare them it is necessary for both to be conducted under the same 
conditions. Both aim to satisfy the all branches criterion on the QUADRATIC 
procedure. The range of values HATS's initial point can be selected in and random 
testing can generate is constrained to ±1000 for each input variable. 
Each random testing run continues until all nodes are traversed. The number of 
iterations taken to traverse a node is recorded. This is conducted for 500 runs and the 
average for each node calculated.
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Node

1
2
3
4
5
6
7

HATS 
iterations

IPT
1

IPT
5-11
9-10
NNT

IPT/CT

Random 
iterations

1
2160

1
1.618
2.728

572941
2.728

Key:
IPT Initial point traversed
NNT Node not traversed
CT Coincidentally traversed

Table 4.13 - The number of iterations taken by HATS and random testing for each of
the QUADRATIC'S nodes

Table 4.13 shows the iterations taken by HATS and random testing for each node in 
the QUADRATIC. The results shown for HATS are varied. When a node is 
considered and traversed more than once, a minimum and maximum number of 
iterations is given. If a node is traversed by the initial point or coincidentally, this is 
stated as the node was not considered by the HATS harness. 
HATS took significantly less iterations than random on node 2, since an equality 
predicate was involved (A=0) and HATS was able to use the DA. Nodes 1, 3 and 7 
compare equally since they all have large satisfying input domains which are easy to 
hit. HATS is slightly worse than random on nodes 4 and 5. Both these nodes have 
large input domains which are easy to hit. However, the AV uses those iterations to 
move from one node's domain to the other. The number of iterations used depends 
on how far the heuristic start point is from the solution domain's boundary (predicate 
value distance). This would have applied to node 7 had HATS considered it. With 
node 6 HATS was unsuccessful, however, random took a significantly large number 
of iterations to find a solution.

4.4 Mutation Analysis

4.4.1 The Appeal of Mutation Analysis

Mutation Analysis (MA) (section 2.3; Budd, 1981) of the QUADRATIC provides a 
double benefit. First, MA provides several levels of analysis. Some of which are 
harder to satisfy than branch testing. Second, we can observe how the HATS 
harness, in particular the heuristics, react to MA, enabling further evaluation and 
improvement.
MA possesses a number of desirable features. The levels of MA equate to several 
structural testing criteria and do not require significant modification or further 
development of HATS. So far the AV has been unable to generate test data to 
traverse node 6. MA may shed further light on this problem and, possibly, other 

problems.
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4.4.2 Using Mutation Analysis with HATS

There are two main differences between the way MA is traditionally practised and the 
way it will be practised in the following experiments. Firstly, a mutant revealing 
point generated in one HATS run will not be carried forward and executed before 
subsequent HATS runs. A single point will start the HATS run making it the 
responsibility of HATS to locate a mutant revealing point. Secondly, rather than 
comparing output from the original and mutated procedures, output value checking 
postconditions have been incorporated into the mutated QUADRATIC. If the 
postconditions show that the input values and output values disagree then the execute 
point has revealed the mutant. This check is performed directly after the 
QUADRATIC has executed. Hence there is no need to execute the original 
QUADRATIC after every HATS iteration.
For each mutation the original QUADRATIC is changed and recompiled manually. 
The mutated QUADRATIC then executes upon a single, initial point. The HATS 
harness then attempts to cause every branch in the QUADRATIC to be traversed, as 
previously. The HATS harness has no knowledge of the QUADRATIC'S mutations. 
If the postconditions are violated, the HATS harness terminates and reports that the 
mutant has been revealed. Otherwise, the system continues until either all nodes are 
traversed or are deemed infeasible.
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Mutant

QM1
QM2
QM3
QM4
QMS
QM6
QM7
QMS
QM9
QM10
QM11
QM12
QM13
QM40
QM41
QM42
QM43
QM44
QM45
QM46
QM47
QM48
QM49
QM50
QM51
QM52
QM53
QM54

Mutation Line no 
operator
Stmt del 6

9
11
13

19- 31
20
25

Cond rep 8
8
12
12
19
19

Stmt del 7
8-33
12 - 32

14
15
16
17
21
22
23
26
27
28
29
30

Original Mutated 
condition condition

(A=0) (TRUE)
(FALSE)

(D>0) (TRUE)
(FALSE)

(D=0) (TRUE)
(FALSE)

Equivalent

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

Key:
Stmt del Statement

deletion 
Cond rep Condition

replacement

Table 4.14 - QUADRATIC'S first round statement analysis mutants 

4.4.3 Mutants Produced

The first two levels of MA, statement and predicate analysis, have been used. 
Predicate analysis is harder to satisfy than branch testing. Table 4.14 and 4.15 
contain the mutants produced for statement and predicate analysis respectively. In 
total there are 52 mutants produced, of which 49 are nonequivalent. Statement 
analysis produced 28 mutants, 22 from statement deletion and 6 from condition 
replacement. None are equivalent. Predicate analysis produced 24 mutants, 6 from 
predicate alteration by a small value, 3 from absolute operator insertion (2 
equivalent) and 15 from relational operator alteration (1 equivalent).
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Mutant Mutation Line no 
operator

QM14 Pred alt
QM15
QM16
QM17
QM18
QM19
QM20 Abs op ins
QM21
QM22 Rel op alt
QM23
QM24
QM25
QM26
QM27
QM28
QM29
QM30
QM31
QM32
QM33
QM34
QM35
QM36
QM60 Abs op ins

8
8
12
12
19
19
12
19
8
8
8
8
8
12
12
12
12
12
19
19
19
19
19
8

Original Mutated Equivalent 
condition condition

(A=0)
11

(D>0)
"

(D=0)"
(D>0)
(D=0)
(A=0)

"

11

if

"

(D>0)
"

"

"

11

(D~0)
M
"
>p
"

(A=0)

(A=l)
(A=-l)
(D>1)
(D>-1)
(D=l)
(D=-l)

(abs(D)>0)
(abs(D)=0)

(A/=0)
(A>0)

(A>=0)
(A<0)

(A<=0)
(D<=0)
(D<0)
(D/-0)
(D=0)
(D>=0)
(D/=0)
(D>0)

(D>=0)
(EXO)
(D<=0)

(abs(A)=0)

N
N
N
N
N
N
N
Y
N
N
N
N
N
N
N
N
N
N
N
N
Y
N
N
Y

Key 
Pred alt

Abs op 
ins

Rel op
alt

Predicate
alteration
Absolute
operator
insertion
Relational
operator
alteration

Table 4.15 - QUADRATIC'S first round predicate analysis mutants 

4.5 The First Round of Mutation Analysis 

4.5.1 Experimental Set-up

The initial point for each HATS run has been randomly generated, in the arbitrary 
range 0 to 1000, for each input variable. The node iteration threshold is 50. Only the 
49 nonequivalent mutants are the subjects of the HATS harness.

4.5.2 Statement Analysis Results and Discussion

All 28 nonequivalent mutants were used. Table 4.16 shows that 13 (46%) statement 
analysis mutants were revealed by the initial point. Mutant QM41 is revealed by any 
input value and mutants QM3, QMS and QM42 are revealed by any point that has a 
non zero value for A. The remaining mutants were revealed with a point from one of 
the two largest input domains, ((A<>0) & (D>0)) and ((A<>0) & (D<0)). In this 
case the initial point happened to be in the mutants revealing domain. However, 
some easy to reveal mutants will not be revealed if the initial point is not in the 

mutants revealing domain.
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Mutant

QM3
QM4
QM5
QM7
QM8

QM41
QM42
QM43
QM45
QM46
QM50
QM51
QM53

Initial point 
ABC

153
208
343
63

756
941
432
51
6

808
981
801
300

76
611
190
327
752
95
294
96

779
939
462
478
232

Number of mutants

478
352
561
889
654
979
753
905
98
202
293
544
903
13

Table 4.16 - First round statement analysis mutants revealed by the initial point

Table 4.17 shows that 10 (36%) statement analysis mutants were revealed by the DA 
and AV. DA revealed four mutants and AV, six. One would have expected the 
initial point to reveal QM1 and QM40, since they are in the linear statement sequence 
to the first branch and are executed every time. However, all paths, except path 1, 2 
define the variables XI and X2 which are initialised by the two deleted statements, so 
do not reveal the mutants. To reveal the mutants, path 1, 2 must be taken. 
The AV revealed mutants by modifying an initial point, which was in one of the two 
largest domains, to the other largest domain.

Mutant

QM1
QM2
QM9

QM10
QM11
QM12
QM40
QM44
QM52
QM54

Initial point 
ABC

227
253
458
143
761
80

249
602
187
5

262
798
154
845
291
873
763
663
919
760

Number of mutants

26
746
291
369
768
264
713
792
890
649
10

Heuristic Considerec 
node

DA
DA
DA
AV
AV
AV
DA
AV
AV
AV

2
2
2
5
4
5
2
4
5
5

No iters 
on node

1
1
1
9
11
10

1
10
6
8

Revealing point 
ABC
0
0
0

654
-262
1103

0
91
250
260

262
798
154
845
291
873
763
663
919
760

26
746
291
369
768
264
713
792
890
649

Table 4.17 - First round statement analysis mutants revealed by a heuristic

Nevertheless 5 (18%) statement analysis mutants were unrevealed (table 4.18). Each 
of these mutants required a point that made program variable D = 0. This further 
confirms previous observations (section 4.3).
With each of the unrevealed mutants, the AV was considering node 6 and the node 
iteration threshold was reached. The AV exhibited the same behaviour here to that of 
the branch experiments after locating the notional boundary and being unable to 
locate a solution.
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Mutant

QM6 
QM13 
QM47 
QM48 
QM49

Initial point 
ABC

561 
801 
337 
743
322

749 
319 
907 
884 
517

Number of mutants

414 
363 
168 
589 
102
5

Table 4.18 - First round statement analysis mutants unrevealed by the initial point or
heuristics

4.5.3 Predicate Analysis Results and Discussion

Of the 21 nonequivalent mutants, 9 (42%) were revealed by the initial point (table 
4.19). The revealing domains for all of these mutants is very large. QM22 is 
revealed with any non-zero value for variable A; QM23 and QM24 with variable A 
greater than zero; QM20, QM27, QM28, QM32, QM35 and QM36 with any point 
that gives variable D a value less than zero. The range 0 to 1000 for the generation 
of the initial points prevented QM25 and QM26 from potentially being revealed since 
the mutants require variable A to be less than zero.

Mutant

QM20
QM22
QM23
QM24
QM27
QM28
QM32
QM35
QM36

Initial point 
ABC

355
252
29
60

700
428
282
885
99

868
608
578
338
540
492
436
331
591

Number of mutants

992
493

3
573
706
476
265
257
888
9

Table 4.19 - First round predicate analysis mutants revealed by the initial point

Six (29%) predicate analysis mutants were revealed by the heuristics (table 4.20). 
The three mutants revealed by the DA required specific values of variable A. Of the 
three mutants AV revealed, QM29 and QM30 were revealed in the same manner as 
the AV revealed statement analysis mutants. However, QM31 requires D=0, to be 
revealed. The AV has located a point which makes D=0. The AV achieved this by 
first reducing variable A to one. No further improvement could be made modifying 
variable A so B was considered and an even number found where no further 
improvement could be made modifying B. Now modifying C with A=l and B even, 
gave the smallest possible change in predicate value; just 4. But much more 
importantly a solution lay in variable C's dimension, and was located.
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Mutant

QM14 
QM15 
QM25 
QM29 
QM30 
QM31

Initial point Heuristic Considered No iters 
ABC node on node

713 
105 
631 
88 

973 
322

111 
770 
325 
522 
979 
31

Number of mutants

70 
969 
997 
408 
361 
586

6 1

DA 
DA 
DA
AV 
AV 
AV

2 
2 
2 
5 
4 
6

1 
1 
1 
7 
10 
30

Revealing point 
ABC
1 

-1 
-1 

215
462

1

111 
770 
325 
522 
979 
48

70 
969 
997 
408 
361 
576

Table 4.20 - First round predicate analysis mutants revealed by a heuristic

Six (29%) predicate analysis mutants were unrevealed by the heuristics (table 4.21). 
To be revealed, QM26 requires a negative value for variable A. When the DA 
considered QM26 a value of 0 was generated for A since the predicate (A<= 0) 
involved an equality. Consequently, node 2 was traversed and the mutant unrevealed. 
The remaining unrevealed mutants require variable D to have specific values (-1, 0 or 
1) to be revealed. Experience has shown that locating a point to give D a value of 0 
is very difficult and rarely happens. It follows that locating a point to give D other 
single values is also difficult.

Mutant

QM16 
QM17 
QM18 
QM19 
QM26 
QM33

Initial point 
ABC

421 
104 
252 
654 
71 

427

821 
814 
469 
109 
781 
188

Number of mutants

334 
289 
652 
554 
920 
608

6

Table 4.21 - First round predicate analysis mutants unrevealed by the initial point or
heuristics

4.5.4 Mutation Analysis Summary

Table 4.22 shows that of the 49 mutants used, 38 (78%) were revealed, 22 (45%) by 
the initial test point and 16 (33%) by the DA and AV heuristics. Eleven mutants 
(22%) were unrevealed. Offutt (1992) states that creating a test data set which has a 
mutation score greater than 95%, is difficult, but effective at finding faults. 
Therefore we would wish to improve upon these results, in an attempt to achieve a 
score closer to 95% or better.
Many of the mutants have large revealing domains. To produce a revealing point 
was not difficult and many mutants (45%) were revealed by the initial point without 
the use of the HATS harness. All the mutants revealed by an initial point would be 
easily revealed by a heuristic. Mutants remain unrevealed because the heuristics did 
not produce points that caused specific values in variables.
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MA Level

Statement 
analysis

Predicate 
analysis

Mutation No of 
operator mutants 

used
Stmt del 22 
Cond rep 6 
Overall 28
Pred Alt 6 

Abs op ins 1 
Rel op alt 14 
Overall 21

MA overall 49

Number mutants revealed :
total by initial by 

test point heuristic
18 12 6 
5 1 4 
23 13 10
202 
1 1 0 

12 8 4 
15 9 6
38 22 16

No of 
mutants 

unrevealed
4 
1 
5
4 
0 
2 
6
11

Table 4.22 - Overall mutation analysis results for the QUADRATIC 

4.6 Heuristic Discussion

This section discusses the performance of the DA and AV for both branch testing and 
MA of the QUADRATIC.

4.6.1 DA Discussion

The DA caused traversal of every node it considered, and it significantly out 
performs random testing when an equality predicate is involved.

4.6.2 AV Discussion

The AV located solution points where there is a large solution domain for a node. In 
comparison with random, the AV is marginally worse. Further, the AV rarely 
located a solution when the solution domain is small and sparsely located. The 
QUADRATIC predicate (D = 0), or mutations of, revealed this. On virtually all the 
AV's considerations of this predicate, the notional boundary is located, but a solution 
is not. Once the notional boundary is located and all the input variables have been 
modified there is no further improvement of predicate value. Here the AV has 
effectively become stuck on the closest point it can find to the notional boundary. 
The single run where the AV located a point that made D=0 was enabled through the 
initial point. It was not due to any unusual operation of the AV. Had some other 
initial point been generated then the AV would have more than likely failed. 
The reasons that the AV is generally unable to locate a solution point for node 6 
appear to lie with the point closeness metric (section 3.5.5) and the nature of the AV. 
Ideally by minimising the predicate value for a node the AV will locate a point on the 
opposite side of a domain boundary or directly upon it. On doing so the considered 
node should be traversed. This is a belief also shared by Prather and Myers (1987). 
However in the QUADRATIC'S case, the point closeness metric leads the AV to a 
notional boundary where there is generally no solutions to node 6. The AV's
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deterministic, localised and single-dimension search nature do not help to overcome 
the misguidance of the point closeness metric.
Solutions to node 6 do exist. They are located along the notional boundary. A 
proposed solution to the above problem involves using the notional boundary as a 
guide to a solution point. This proposal is developed into a new heuristic in the next 
chapter (5). A further concern is of the AV's behaviour as it approaches a boundary 
where points on the opposite side of the boundary cause upper-deviations (figure 
4.5). This causes the AV to slow down its search and waste iterations. To reduce 
iterations the linear relationship between an input variable and a predicate variable 
can be exploited. Such a heuristic would perform linear extrapolation to exactly 
predict boundary value points and locate solution points.
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5 The New Heuristics and Improved Quadratic 
Results

5.1 Introduction

The previous chapter indicated that results from using the DA and AV on the 
QUADRATIC need to be improved. Specifically, the AV has difficulties locating a 
solution that lies upon a notional boundary and it unnecessarily uses iterations. In an 
attempt to overcome these problems two further heuristics are proposed and their 
results presented (Holmes, et al, 1993).

5.2 The Linear Predictor Heuristic

The Linear Predictor (LP) exploits a linear relationship that may exist between an 
input variable and a predicate variable by extrapolating a boundary located point then 
modifying it to cross the boundary and traverse the considered node. In this way 
fewer iterations will be used than the AV.
A program study has indicated that in production data processing applications most 
predicates are linear and involve a small number of variables. White and Cohen 
(1980) state, from a study conducted by Cohen (1978) on 50 COBOL programs 
consisting of 1225 predicates, that 77.1% of the predicates involved one variable and 
10.2% of the predicates involved two variables; 87.3% of the predicates were linear, 
only one predicate was nonlinear and the remaining 12.6% of the predicates were 
input-independent.
Considering 120 production PL/1 programs, Elshoff (1976) discovered that 98% of 
expressions had less than two operators and the occurrence of the arithmetic 
operators, +, -, *, /, in expressions were 68.7%, 16.2%, 8.9% and 2.8% respectively. 
In addition, Elshoff states "... plus one accounts for many of the operations". Knuth's 
(1971) study of FORTRAN programs also agrees, stating that 40% of additions are 
plus ones. He also states that 86% of assignment statements are of the form A = B, A 
= B + CorA = B-C. These studies indicate that many predicates will be simple and 
their interpretations will be linear, hence the LP has potentially a wide applicability.

5.2.1 Overview and Phases of the Linear Predictor

Figure 5.1 illustrates the LP operating in an ideal situation. The figure represents the 
partial input plane for an arbitrary procedure with two integer input variables, X and 
Y, and a condition dependent upon both these variables. Points directly upon the
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boundary and to the left of it cause sibling-traversal. Points to the right of the 
boundary cause considered node traversal.
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Figure 5.1 - Operation of the Linear Predictor

The LP has three phases. The first phase, Determine-linearity (DL) determines the
linearity of the considered input variable with respect to the considered predicate. A
base point is used to produce the increase and decrease points. Figure 5.1 shows that
variable X is modified to produce these two points, while Y remains constant. Using
the increase, decrease and base points the Determine-linearity phase can make a
decision on the linearity of the predicate.
If linear, a value is extrapolated for the considered input variable X, that should be
very near or directly on the expected boundary. Before this extrapolated point is
executed, it is modified slightly away from the expected boundary toward the base
point, so that later, boundary spanning points can be generated. This modified point
is termed the Predicted point. This forms the preparation for the next phase,
Predictor.
If the considered input variable is nonlinear with respect to the considered predicate
then preparation is made for the Creeper phase by setting the modification direction
according to the increase or decrease point that came closest to the expected
boundary.
The Predictor phase modifies the Predicted point to produce further points that cross
the boundary and cause the considered node to be traversed. Figure 5.1 shows the
Predictor phase modifying the Predicted point to a point directly on the boundary,
which causes sibling-traversal. This point is then modified to a point that causes
considered node traversal. Boundary located points have been generated.
The Creeper phase modifies the considered input variable by small steps in a
direction toward the expected boundary.

5.2.2 Components and Functions of the Linear Predictor

The LP's pseudo code is in Appendix A3.3.
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5.2.2.1 First Iteration Set-up, Generator and Evaluator

The first iteration set-up component specifies the current phase as Determine- 
linearity, sets the DL base point to a sibling-traversal point that has the closest 
predicate value to the expected boundary and specifies that the first input variable 
shall be considered and increased by one.
The generator component applies the input point generation instructions to the 
generate point producing the execute point which the test software will execute upon. 
The evaluator component is called after the test procedure has executed on the 
execute point. If the LP has been successful, control returns to the HATS harness. 
Otherwise, evaluation is performed dependent upon the LP's phase, traversal-effect of 
the execute point and, with the Predictor phase, the closeness of the execute point to 
the expected boundary.

5.2.2.2 Determine-linearity Phase

The Determine-linearity phase establishes the linearity of an input variable with 
respect to the considered predicate and prepares for either the Predictor or Creeper 
phases. The following example illustrates the DL phase in some detail.
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I
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-202 -201 -200 -199 -198 
C = 9 A

Figure 5.2 - (A, B) partial input plane : LP in the Determine-linearity phase 
considering node 5 of the QUADRATIC

Iter

BP
1 
2

Generate point 
ABC

-200 
-200

50 
50

9 
9

Execute point 
ABC

-200 
-199 
-201

50 
50 
50

9 
9 
9

Trav 
effect

ST 
ST
ST

Pred 
value
9700 
9664 
9736

Next 
action

+A 
-A 
PP

Table 5.1 - HATS run excerpt: LP in the Determine-linearity phase considering node 
5 of the QUADRATIC and modifying input variable A

In the previous chapter, the AV considered node 5 of run Ql. The example illustrates 
the LP on the same problem. As only the initial point (-200, 50, 9) has caused

52



Chapter 5 The New Heuristics and Improved Quadratic Results

sibling-traversal, it is selected as the DL base point. Using the DL base point, the 
first variable, A, is increased and decreased by 1, producing the DL increase and DL 
decrease points. Both these points are executed directly after they are generated. 
Figure 5.2 shows these moves and table 5.1, the LP's operation. 
The LP now decides if the considered predicate (D <= 0) is linear with respect to 
input variable A. The increase and decrease points are used to determine that a linear 
relationship does exist. Thus a value of 69.44 is extrapolated for A. The fraction is 
truncated, giving 69, since the target data type is integer. If the point (69, 50, 9) were 
executed, it should have a predicate value of zero or very close to zero. 
To ensure that boundary spanning points are generated, the Determine-linearity phase 
instructs the first generation of the next phase, Predictor, to modify input variable A 
back toward the DL base point, producing the Predicted point (68, 50, 9). This 
example continues in the next section (5.2.2.3).
The operation of the Determine-linearity phase is now described. Ideally sibling- 
traversal will result from execution of both the increase and decrease points so that 
the linearity of the considered input variable on the considered predicate can be 
established. If the considered input variable is influential then an attempt is made to 
determine its linearity, otherwise the next variable is considered. 
Determining if the considered predicate is linear with respect to the considered input 
variable, is achieved by comparing the difference between the DL base point's 
predicate value and the predicate values of the increase and decrease points. If they 
are the same then the considered predicate is deemed linear and the Predictor phase is 
prepared for, otherwise the predicate is deemed nonlinear and the Creeper phase is 
prepared for.
Preparation for the Predictor phase involves an extrapolation and modification. The 
extrapolation uses the considered input variable values and predicate values of the DL 
base and increase points. The predicate value of a point that lies directly on the 
expected boundary, normally zero, is used as the target. Modifying the extrapolated 
value back toward the DL base point's value by one, ensures that a point adjacent to 
the expected boundary, causing sibling-traversal is produced. The Predicted point is 
formed from the modified extrapolated value together with the remaining input 
variable values from the DL base point. Modifying this point across the boundary 
produces boundary spanning test data.
If an upper-deviation occurs in the Determine-linearity phase then the DL base point 
is close to a boundary with respect to the considered input variable. Abandoning the 
considered input variable and considering another, may locate a point even closer to 

the boundary or a solution.
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Preparation for the Creeper phase involves setting the modification direction from the 

DL increase or decrease point that came closest to the expected boundary.

5.2.2.3 Predictor Phase

The Predictor phase is active from the generation of the Predicted point onwards 
whilst considering the same input variable. The following example illustrates the 
Predictor phase in some detail and continues from the example given in the previous 
section (5.2.2.2).
This phase commences with the generation of the Predicted point (68, 50, 9). 
Executing the Predicted point ideally causes the sibling node (4) to be traversed and 

is close to the boundary. This takes place and is shown figure 5.3 and table 5.2.

52-1

B 50

Sibling-traversal domain 

51 - —DL predicted point-

\

Figure 5.3 - (A, B) partial input plane : LP in the Predictor phase considering node 5
of the QUADRATIC

The modification direction is now reversed so that the next point generated is closer 

to the boundary, on to it or over it. Thus for the fourth iteration the modification 
direction is reversed from decrease to increase, and variable A is modified by 1. 
Execution produces a sibling-traversal with a predicate value closer to zero than the 

Predicted point. This indicates progress is being made toward the boundary. Hence 

for iteration 5, the Predictor maintains the present direction of increase and step size 

of 1. The fifth iteration causes the considered node (5), to be traversed.

Iter

3 
4 
5

Generate point 
ABC
69 
68 
69

50 
50 
50

9 
9 
9

Execute point 
ABC
68 
69 
70

50 
50 
50

9 
9 
9

Trav 
effect

ST
ST
NT

Pred 
value

52 
16 

-20

Next 
action

+A 
+A

succ

Table 5.2 - HATS run excerpt: LP in the Predictor phase considering node 5 of the 
QUADRATIC and modifying input variable A
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Applying the AV to node 5 from the base point (-200, 50, 9) took 9 iterations to find
a solution point (section 4.3.2). However, the LP took only 5 iterations and
generated boundary located points.
The operation of the Predictor phase is now described. Following the execution of
the Predicted point and all subsequent points in the Predictor phase, evaluators are
invoked based on each point's traversal-effect and its closeness to the expected
boundary.
When the execute point causes sibling-traversal and is closer to the expected 
boundary than the closest point found two checks are made. The first is if all the 
points from the Predicted point onwards caused upper-deviations. This indicates that 
the Predicted point entered an interfering predicate's domain and its boundary has 
been passed through. The considered input variable is abandoned, with the view that 
a solution may be located from the closest point found modifying some other input 
variable. The second check is if the Predicted point has just executed. If so, the 
modification direction is reversed and the step size remains at one for the next 
generation. Otherwise, execution of the Predicted point has passed and progress is 
being made toward the boundary using a succession of small steps, so both the 
direction and step size are unchanged for the next generation. It is anticipated that, 
when there are no interfering predicates, the considered node should be traversed 
within two iterations from the execution of the Predicted point. 
When the execute point causes a sibling-traversal and is further from the expected 
boundary than the closest point found, the considered input variable is abandoned. 
Although progress toward the expected boundary may have been made, this has 
ceased and to continue modifying the considered input variable would more than 
likely be worthless. Modifying another input variable from the closest point found 
may locate a solution or closer point.
When the execute point causes an upper-deviation two checks are made. The first, 
checks if all the points from the Predicted point onwards have caused closer sibling- 
traversals. This situation indicates that an interfering predicate has just been 
encountered. The considered input variable is abandoned on the basis that a solution 
may be located modifying another input variable from the closest point found. 
The second, checks if an upper-deviation occurred on executing the Predicted point. 
If so, there is an interfering predicate. Rather than abandoning the considered 
variable, the Predicted point may be close to a solution point or point closer to the 
expected boundary. Instead of reversing the modification direction toward the 
expected boundary, the direction is left unchanged so that points generated move 
away from the expected boundary and out of the interfering predicates domain. If
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upper-deviations continue to occur after a small number of iterations then the 
considered input variable is abandoned.

5.2.2.4 Creeper Phase

The Creeper phase is active from the execution of the first creep point onwards whilst 
considering the same input variable. In the Determine-linearity phase example 
(section 5.2.2.2), input variable A was considered from the point (-200, 50, 9). The 
following example illustrates how the Creeper phase operates considering input 
variable B from the same point.
Each time a new input variable is considered the Determine-linearity phase is used 
first. From figure 5.4 we can calculate that the increase point has a difference in 
predicate value with the base point of 101 and the decrease point has a difference of 
99. Since the differences are not equal, variable B is deemed non-linear with respect 
to the considered predicate (D <= 0).
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Figure 5.4 - (A, B) partial input plane : LP in the Determine-linearity and Creeper 
phases, considering node 5 of the QUADRATIC

Now the Determine-linearity phase prepares for the Creeper phase. The generate 
point for the Creeper is the DL decrease point, as it is the closest point to the 
expected boundary, and the modification direction is decrease. The step size is set to 
one, since the Creeper takes small steps toward the expected boundary. 
Execution of the first Creeper phase point produces the predicate value 9504 which is 
closer to the expected boundary than the DL decrease point. The second and 
subsequent iterations continue to decrease input variable B by 1. If a point is 
generated that causes traversal of the considered node then the LP has succeeded. 
However, the considered variable is abandoned if the execute point is further away 
from the expected boundary or causes an upper-deviation.

56



Chapter 5 The New Heuristics and Improved Quadratic Results

Following the execution of a Creeper point, evaluators are invoked based on the 
traversal-effect of the execute point. When the execute point causes a sibling- 
traversal and is closer to the expected boundary than the closest point found, then 
progress is being made and the input point generation instructions are not changed. 
However, if the execute point is further from the expected boundary then progress 
has stopped and to continue further would more than likely be worthless. 
Nevertheless, a closer point may have been located and further progress may be made 
by considering another input variable from the closest point found. 
When the execute point encounters an upper-deviation this indicates that there is an 
interfering predicate and its boundary has just been crossed. To modify the 
considered variable further would more than likely be worthless, so the considered 
input variable is abandoned for another. Nevertheless, a point closer to the boundary 
has been located.

5.2.2.5 Abandoning Consideration of an Input Variable

When the considered input variable is abandoned the following takes place. If the 
termination criteria (section 5.2.2.6) are met, the LP terminates. Hence, the LP has 
been unable to locate a solution point.
If the termination criteria are not met, the Determine-linearity phase is prepared for 
on the next input variable. The new considered input variable is the next in-line to 
the old one or the first, if the old one was the last. The closest sibling-traversal point 
to the considered predicate's boundary is searched for and becomes the DL base 
point.

5.2.2.6 Terminator

In chapter 4 we saw how the AV cycled round the input variables trying to find a 
closer point or a solution. Generally, neither of these were found and many iterations 
were wasted. To overcome this the LP has adopted a "law of diminishing returns" by 
incorporating termination criteria based on a threshold of unpromising effects. 
Unpromising effects are anything that indicate a turn around in progress has occurred, 
i.e. an upper-deviation or an execute point further from the expected boundary than 
the closest point found. The LP keeps a count of unpromising effects. Should this 
count reach a threshold, equal to the number of input variables, then the LP 
terminates. In other words, termination takes place after modifying each input 
variable produced an unpromising effect. When a promising effect takes place the 
unpromising effects count is reset to zero. An example of a promising effect is 
locating a point closer to the expected boundary than the closest point found.
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The following example illustrates the LP's termination criteria by applying the 
heuristic to node 6 of the QUADRATIC. This closest sibling-traversal point (70, 50, 
9) was produced as a solution to node 5 in the Predictor phase example (section 
5.2.2.3). Let us assume this is the only point to traverse the path 1, 3, 5, 7. The 
unpromising effects threshold is 3, since there are three input variables. 
Table 5.3 is a HATS run excerpt which contains pre and post test software execution 
data for a range of iterations for a HATS run. An excerpt includes, from left to right, 
the iteration of the heuristic on the node, which is always shown. The pre-execution 
data can include the heuristic used, the heuristic's phase and the input variable being 
modified. The generate point and execute point are always shown. Postexecution 
data can include the execute point's traversal effect and predicate value if the execute 
point caused sibling-traversal. Also shown can be the next action the heuristic takes 
and other data. The abbreviations used in a HATS run excerpt are defined in the 
glossary. The moves contained in table 5.3 are shown in figure 5.5.

Iter

1 
2 
3 
4 
5

Var

A 
A 
B 
C 
C

Generate point 
ABC
70 
70 
70 
70 
70

50 
50 
50 
50 
50

9 
9 
9 
9 
9

Execute point 
ABC
71 
69 
70 
70 
70

50 
50 
51 
50 
50

9 
9 
9 
10 
8

Trav 
effect

ST 
UD 
UD 
ST 
UD

Pred Next 
value action
-56 -A 

TNV 
TNV 

-300 -A 
TERM

UPeff 
count

0
1 
2 
2 
3

Table 5.3 - HATS run excerpt of the LP in the Determine-linearity phase considering 
node 6 of the QUADRATIC, demonstrating the use of the unpromising effects count

to minimise unnecessary iterations
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Figure 5.5 - (A, B) and (B, C) partial input planes : LP in the Determine-linearity 
phase, considering node 6 of the QUADRATIC

Since the base point is adjacent to a notional boundary, modifying it in both 
directions in any dimension will encounter upper-deviations. Such modifications are 
essential to the Determine-linearity phase. Upper-deviations occur in iterations 2, 3 
and 5, causing the unpromising effects count to be incremented. When variable C is
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abandoned after iteration 5, the LP terminates since the unpromising effects count is 
equal to the number of input variables (3).
Table 5.4 shows the unpromising effects and table 5.5 the promising effects that the 
LP recognises. The threshold is reasonable since the heuristic will have cycled once 
round the input variables without improvement and to continue would more than 
likely be worthless.

Phase Unpromising Effect
Determine- Input variable non-linear and neither increase or decrease points came 

linearity closer to expected boundary
Upper-deviation encountered during execution of increase or decrease 
point

Predictor Execute point, from Predicted point onwards, has predicate value further 
from the expected boundary than the closest point found 
Execute point caused upper-deviation when points from Predicted point 
onwards caused sibling-traversal
Execute points, from the Predicted point onwards, caused upper-deviation 
and upper-deviation threshold has been reached 

Creeper Execute point has predicate value further from the expected boundary
than the closest point found 

___"____Execute point caused upper-deviation ___________________

Table 5.4 - Events that cause the unpromising effects count to be incremented by one

Phase Promising Effect
Determine- LP considers s new node 

linearity
Predictor Execute point caused sibling-traversal and is closer to expected boundary 

than closest point found and there has been no upper-deviations from the 
Predicted point onwards 

Creep Execute point caused sibling-traversal and is closer to the expected
boundary than the closest point found______________________

Table 5.5 - Events that cause the unpromising effects count to be reset to zero 

5.3 The Boundary Follower Heuristic

When generating test data for an equality predicate whose two sides (sub 
expressions) are of the integer data type and are some function of the input variables 
then this presents a problem known as the notional boundary located point problem . 
This problem has revealed its self through the AV's consideration of node 6 in the 
QUADRATIC.
The Boundary Follower (BF) uses a real or notional boundary as a guide in an 
attempt to locate solution points that lie on the boundary. While a boundary is being 
followed only boundary value test data (White and Cohen, 1980; Myers, 1979; 
Abbott, 1986) will be generated. This is a beneficial side-effect and such data has 
been shown to be better at revealing faults than data that does not explore the 
boundaries (i.e. branch coverage) (Myers, 1979; Basili and Selby, 1987).
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In the field of constrained numerical optimisation (Gill and Murray, 1974; Box, et al, 
1969), boundary or constraint following has been adopted by both gradient and direct 
search methods. Two gradient methods, Riding the Constraint and Hemstitching, due 
to Roberts and Lyvers (1961), use derivatives of the constraint function. Calculating 
derivatives for the test software is an additional overhead and may be very complex 
or not possible. Further, it would defeat the objective of not understanding the test 
software . The direct search method, Pattern Search (Hooke and Jeeves, 1961), has 
been extended to follow constraints (Klingman and Himmelblau, 1964; Glass and 
Cooper, 1965)
With nonlinear constraint functions, the above methods, may not accurately follow a 
constraint, only approximate to it. There is a possibility that some small parts of the 
constraint boundary may be missed through the method's normal operation or a speed 
up of the search. Normally, these methods would work with independent floating 
point variables, not integer variables.
Adby and Dempster (1974) state "If the minimum lies on the constraint boundary 
then even the techniques of constrained optimisation may not work". This confirms 
the difficulty of this problem with, I suspect, floating-point variables. How well the 
above methods would operate on integer variables is a subject of further study.

5.3.1 Following Domain Boundaries in the Program Input Space

The test software may have many input domains. To follow a domain's boundary 
involves selecting a series of points that are either on or just off the boundary. The 
order they are selected in gives rise to a movement along the boundary in some 
direction. Examining partial input planes of the QUADRATIC led to the hypothesis 
that, to be certain a boundary is being accurately followed it must be crossed 
regularly. Crossing a boundary regularly ensures that it is not deviated from. To 
help the BF locate a solution, sibling-traversals must be regularly produced. The BF 
is a direct search technique that first locates a boundary then follows it. The BF 
follows a boundary in two dimensions, although a boundary may exist in a higher 
number of dimensions.

5.3.2 Overview of the Boundary Follower

Figure 5.6 illustrates the BF operating in an ideal situation. The figure represents a 
partial input plane for an arbitrary procedure with two integer input variables, X and 
Y, and a nonlinear condition, dependent upon both these variables. In the partial 
input plane (figure 5.6) there is one solution point which causes considered node 
traversal and all other points cause sibling-traversal.
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The BF uses both variables X and Y to follow the boundary. To ensure that the 
heuristic is "sticking" to the boundary, modifying variable X must always cross the 
boundary. Modifying variable Y produces a point that stays on one side of the 
boundary. The modification of each variable alternates so that the boundary is 
"stitched". After crossing the boundary twice the solution point is located. 
When the BF locates a boundary, two input variables are selected on their suitability 
for the roles of Follow and Cross.
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Figure 5.6 - Operation of the Boundary Follower

5.3.3 The Follow Role

Modifying the input variable allocated the Follow role , the Follow variable, will 
ideally, produce a point parallel to the boundary being followed. This however, may 
rarely be the case since it requires the boundary to be aligned with the Follow 
variable's axis. A Follow move modifies only the Follow variable of a point. All 
other input variable values are held constant. It is not necessary for a Follow move to 
stay on one side of the boundary. A Follow move may cross the boundary. Figure 
5.7 shows a Follow move that stays on one side of a boundary and another that 
crosses it. The point a Follow move is made from is termed the Follow move start 
point. The point a Follow move is made to is termed the Follow move end point.

5.3.4 The Cross Role

Modifying the input variable allocated the Cross role , the Cross variable, must, after 
a few iterations, cross the boundary being followed. A Cross move modifies only the 
Cross variable of the Follow move end point. All other input variable values are held 
constant. It may be necessary to make a number of Cross moves before the boundary 
is crossed. If a Cross move does not cross the boundary then the Cross variable 
adjustment is increased using the Follow move end point value as a base. If this
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adjustment exceeds a threshold then a correctional phase is used and is discussed in 
section 5.3.7. Figure 5.7 shows Cross moves that cross the boundary with a step size 
of one and two.
The point a Cross move is made from (generate point) is termed the Cross move start 
point. The point a Cross move is made to (execute point) is termed the Cross move 
end point, which is normally the Follow move end point. A Cross move is termed a 
Successful Cross move if the start point and end point are on different sides of the 
boundary being followed. An Unsuccessful Cross move has start and end points on 
the same side of the boundary. The Cross step size stores the value the Cross variable 
is adjusted by, and is the difference between the Cross move start point and the Cross 
move end point. The Maximum Cross step size stores the maximum value the Cross 
step size can be.

5-i 

4- 

3-

1-

Follow 
may cr 

hour

x' il

moves 
oss the 
dary

^F"""~ '

7^- Be

—— Fo
> (

K
undary

How mo 
:nd poin

F : Follow move 
C : Cross move £f(

en
B o

t

Remaining 
input variables

r hollow move ' held constant " 
1 start point 345 

A

Success 
st

ss move 
dpohit

c)

/

ful cross 
ep size o

\ **>

XJ
^Crc

sia 
1 2

t

, move : 
f2

/|

f
,L^» Unsuccessful 
7 cross move

ss move 
it point ———— 1 

3 4 5 
^
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role allocated to variable A and Cross to B

5.3.5 Following a Boundary Using Follow and Cross Moves

To follow a boundary there is a cycle between Follow moves and Cross moves. First 
a Follow move is made. Second, one or more Cross moves are made until either the 
boundary is crossed or the maximum Cross step size is reached. On crossing the 
boundary, the cycle is closed and a further Follow move is made. If the maximum 
Cross step size is reached and the boundary has not been crossed then reorientation 
takes place. This involves a special search to relocate the boundary and preparation 
for the BF to continue (section 5.3.7). When following a boundary only the Follow 
variable or the Cross variable is modified at a time. The remaining input variables 
are held constant.
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F: Follow move 
C : Cross move 5

.Upper-deviation domain
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input variables 
held constant

Figure 5.8 - A domain boundary being followed

To illustrate the process of boundary following, let us consider an untraversed node 
in a test procedure. This node poses the notional boundary located point problem. 
Figure 5.8 shows an arbitrary, notional boundary dividing domains causing upper- 
deviation and sibling-traversal. The solution is at point (7, 3). Input variable A has 
been allocated the Follow role and B, the Cross role. The point (2, 4) is selected as 
the Follow move start point.
A Follow move increases the Follow variable by 1. A Cross move increases the 
Cross variable by 1 from the Follow move end point. This Cross move crosses the 
boundary, hence a second Follow move can be made, from the Cross move end point. 
The Cross move, from (4, 5) to (4, 4), does not cross the boundary, so the Cross step 
size is increased by 1 to 2. After a few more moves the solution point is located by a 
follow move to point (7, 3).

5.3.6 Establishing the Correct Cross Move Direction

The Cross variable modification direction is unknown after the first follow move, 
taking place either when a new node is considered or after reorientation. A 
bidirectional Cross search looks in both directions for the boundary, by first making 
an increase move, then decrease, then increasing the Cross step size by one and 
making an increase move and so on. Using a bidirectional cross search after the first 
Follow move helps to ensure that the boundary is crossed for the second Follow 
move.
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Figure 5.9 - Use of the Cross rule to determine the Cross direction

After the second Follow move a unidirectional Cross search is made, which uses a 
single direction to cross the boundary and is determined by the Cross rule. The Cross 
rule states that if the preceding Follow move does not cross the boundary then the 
new Cross direction is the opposite direction to the previous successful Cross move's. 
However, if the previous Follow move does cross the boundary then the new Cross 
direction is the same direction as the previous successful Cross move's. The Follow 
move start point's and end point's traversal-effects are used to determine if the Follow 
move has crossed the boundary. Figure 5.9 illustrates the Cross rule in action.

5.3.7 Reorienting the Boundary Follower

When the maximum Cross step size does not enable the boundary being followed to 
be crossed then, for the BF to continue, the boundary must be relocated and changes 
made to the role allocations. This process is called reorientation. Reasons for the BF 
being unable to cross the boundary are :
• another border has been encountered
• the nonlinear boundary being followed rapidly moved away from its previous

"course"
• the maximum cross step size is not large enough
Figure 5.10 shows a partial input plane where two notional borders intersect. The BF 
has been following the "vertical" border in a "northerly" direction, when the 
"horizontal" intersecting border is encountered. Using Cross variable A, the BF is 
unable to cross the boundary with the maximum Cross step size of three.
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Figure 5.10 - A border change which renders the BF unable to cross the boundary 
with Cross variable A, and Follow variable B

Reorientation requires the boundary to be crossed from the preceding Follow move's 
end point. This is achieved by a search pair along a central line. Figure 5.11 
illustrates each of these.
The central line is in the same axis as the Follow variable and runs through the 
preceding Follow move's end point, which is termed the base point. The search pair 
consist of an increase and a decrease point. The first search pair move from the base 
point by a step of size one in the reverse Follow direction and steps of size one in 
both directions for the Cross variable. If the boundary is not crossed by either of the 
search pair points then further search pairs are made further from the base point along 
the central line, by increasing the step in the reverse Follow direction by one and 
using the same Cross variable values as the first search pair.
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Figure 5.11 - Reorienting the BF

After execution of a search pair, their traversal-effects are analysed to determine if 
the boundary has been crossed. If so, reorientation can be completed and boundary 
following can recommence. To complete, the allocation of roles to input variables
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are swapped and a Follow direction is determined. If only one search pair point 
crossed the boundary then the Cross variable direction used is the new Follow 
direction. However, if both search pair points crossed the boundary then the Follow 
direction remains unchanged. To help ensure the boundary is crossed after the first 
Follow move the Cross search becomes bidirectional.
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Figure 5.12 - Continuation of boundary following subsequent to reorientation with 
Follow variable A, Cross variable B and Follow direction of increase

Figure 5.11 shows that the search pair's increase point crossed the boundary from 
upper-deviations to sibling-traversals. Thus the new Follow direction is increase and 
variable A is allocated the Follow role and B, Cross. Figure 5.12 shows the BF 
continuing along the newly encountered border.

5.3.8 Locating a Point to Commence Boundary Following From

Before boundary following can commence a point that causes sibling-traversal and is 
adjacent to the boundary to be followed, must be located. This point, termed the 
Central point, determines which border will be followed when there is more than one 
border. A modification of the LP heuristic is used for this purpose since it has shown 
to be effective and efficient at locating points adjacent to a boundary.

5.3.9 Initial Allocation of the Follow and Cross Roles

When the Central point has been located, the Follow and Cross roles must be 
allocated to input variables. Selecting which input variables to use, involves 
increasing and decreasing each of the input variables by 1 from the Central point. 
The number of points produced is equal to twice the number of input variables. Each 
point's traversal-effect is stored.
The two traversal-effects for each input variable are considered in turn from the first 
input variable to the last (the same order the input variables have just been modified
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in). The increase and decrease traversal-effects for each input variable are compared 
with the traversal-effect of the Central point to determine a suitable role. If 
modifications to an input variable cause no change in the predicate value to the 
Central point's predicate value (input variable does not have considered-predicate 
influence) then the variable is not suitable for either role. Input variables that are not 
influential in the considered predicate are avoided since the border segment adjacent 
to the Central point does not exist for that input variable. Otherwise suitability is 
determined according to table 5.6, if the Central point has a predicate value greater 
than the boundary's predicate value (normally 0) and table 5.7 if the Central point has 
a predicate value less than the boundaries.

Dec
point 

trav-eff

+ST
-ST
UD

Inc point trav-eff
+ST

F
C
C

-ST
C
F

UD
C

Table 5.6 - Follow and Cross role suitability when the Central point's predicate value 
is greater than the boundary's predicate value. F - Follow; C - Cross.

Dec 
point 

trav-eff

+ST
-ST
UD

Inc point trav-eff
+ST

F
C

-ST
C
F
C

UD

C

Table 5.7 - Follow and Cross role suitability when the Central point's predicate value 
is less than the boundary's predicate value. F - Follow; C - Cross.

If an input variable's traversal-effects are the same, this indicates that both points 
were on the same side of the boundary and that the input variable suits the Follow 
role. However, when there is two upper-deviations the input variable does not suit 
the Follow role, since it is not considered predicate influential. The Follow allocation 
is avoided since the upper-deviation domain may have other boundaries that are 
adjacent to the boundary located and these may interfere with the BF. If an input 
variable's traversal-effects are different, indicating the boundary was crossed, then the 
variable suits the Cross role.
Roles are allocated on a first suitable, first allocated basis. Once the allocation of a 
role to an input variable has taken place the role is not reallocated. Suspicion that the 
Follow role may be unallocated led to holding an input variable in reserve for the 
Follow role. After the Cross allocation has been made, should a further input 
variable suit the Cross role, it is held as the reserve for the Follow role. Should the 
Follow role be unallocated after all input variables have been considered then the 
variable held in reserve is allocated the Follow role. It is necessary for both roles to 
be allocated for the BF to follow a boundary, otherwise the BF terminates.
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5.3.10 Phases of the Boundary Follower Heuristic

The BF has four phases. The first, Obtain-a-close-point, (OCP) locates a point 
adjacent to the boundary to be followed, in preparation for the next phase. The 
second phase, Determine-initial-follow-and-cross-details, (DIFCD) selects two input 
variables to allocate the Follow and Cross roles, in preparation for the next phase. 
These two phases are used once, directly after the BF is applied to a node. 
The third phase, Folios-boundary, (FB) does so using the current role allocations. 
The fourth phase, Reorient-boundary'-follower, (RBF) relocates the lost boundary, 
swaps the roles and determines a new Follow direction for return to the FB phase.

5.3.11 Components and Functions of the Boundary Follower

The BF's pseudo code is in Appendix A3.4.

5.3.11.1 First Iteration Set-up, Generator and Evaluator

The first iteration set-up component specifies the current phase as Obtain-a-close- 
point and sub-phase as Determine-linearity. The OCP base point is set to a sibling- 
traversal point with the closest predicate value to the expected boundary. The first 
input variable shall be considered and increased by 1.
The generator component applies the input point generation instructions to the 
generate point producing the execute point that the test procedure will execute on. 
The evaluator component is called after the test procedure has executed on the 
execute point. If the BF has been successful, control returns to the HATS-harness, 
otherwise evaluation is performed dependent upon the BF's phase and, with the 
Obtain-a-close-point phase, its subphase.

5.3.11.2 Obtain-a-close-point Phase

This phase locates a point that causes sibling-traversal and is adjacent to a boundary.
This phase is a modification of the LP (section 5.2), and consists of three subphases;
Determine-linearity (DL), Predictor and Creeper.
Before any of the sub-phases are called, the BF evaluator checks if a boundary has
been crossed. If so, the closest point found is already adjacent to a boundary in at
least one dimension (input variable), hence the considered input variable is

abandoned.
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The Predictor sub-phase evaluation is used after the execution of the Predicted point 
and prepares for the Creeper subphase.
The Creeper subphase is used if the considered predicate is deemed to be nonlinear or 
after the Predictor phase. The Creeper makes small steps with the considered input 
variable in the specified direction if progress is being made toward the expected 
boundary. Otherwise, the considered input variable is abandoned. 
If the considered input variable is abandoned then a check is made to see if all the 
input variables have been considered and, if so, prepares for the Determine-initial- 
follow-and-cross-details phase, where the closest point found becomes the Central 
point. Alternatively, the Determine-linearity subphase is prepared for on the next 
input variable. Unlike the LP, there are no termination criteria based on unpromising 
effects in the Obtain-a-close-point phase.

5.3.11.3 Determine-initial-follow-and-cross-details Phase

This phase produces and analyses points surrounding the Central point to allocate the 
Follow and Cross roles, in preparation for the Foliow-boundary phase. In the LP's 
terminator description (section 5.2.2.6), we saw how the LP was applied to node 6 of 
the QUADRATIC from the point (70, 50, 9), without success. Over the remainder of 
this section, examples are presented on how the BF solves this problem. Figure 5.13 
shows the modifications made to the input variables from the Central Point (70, 50, 
9) by the Determine-initial-follow-and-cross-details phase. Each input variable is 
increased and decreased by 1 to obtain the traversal-effects necessary to allocate the 
roles.

Modifying Input Variables A and B

52 T Upper-deviation 
domain

51
Boundary

Modifying Input Variable C 
11 - -Sibling-traversal-

Boundary

Sibling-traversal Upper-deviation

C =

Figure 5.13 - Modifications made to the QUADRATIC'S input variables during the 
Determine-initial-follow-and-cross-details phase of the BF

Table 5.8 shows each input variables' traversal-effects, the role each variable suits 
defined by table 5.7 (Central point < boundary predicate value) and the preliminary 

and final role allocation.
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Var

A 
B 
C

Traversal-effect 
Decrease Increase

UD 
-ST 
UD

-ST 
UD 
-ST

Role 
suited
Cross 
Cross 
Cross

Role allocation 
Preliminary Final

Cross 
Res Follow

Cross 
Follow

Table 5.8 - Progress to the final allocation of roles in the Determine-initial-follow- 
and-cross-details phase with the QUADRATIC

Interestingly none of the input variables' traversal-effects immediately suit the Follow 
role. However, input variable B is held in reserve for Follow and is allocated the role 
finally. To complete preparation for the Follow-boundary phase, the Follow 
direction is set to increase and the Central point will be the first Follow move start 
point.

5.3.11.4 Follow-boundary Phase

This phase follows a boundary adjacent to the Central point or the Reorient- 
boundary-follower's base point. Continuing from the Obtain-a-close-point phase 
example (section 5.3.11.3), which specified that input variable A is Cross, B is 
Follow, Follow direction is increase, Cross search is bidirectional and a Follow move 
is to be made first. The Follow-boundary phase starts from the Central point (70, 50, 
9), which causes a negative sibling-traversal and has a predicate value of -20. Table 
5.9 and figure 5.14 show this phases operation.
First a Follow move is made from the Central point, by increasing the Follow 
variable, B, by 1. Since it is the first Follow move a bidirectional Cross search is 
used. The first Cross move increases the Cross variable, A, by 1 from the Follow 
move end point. This move does not cross the boundary, so a decrease move is made 
from the Follow move end point. This again does not cross the boundary, so the 
Cross step size is increased by 1 to 2, and the next increase move made. This move 
does not cross the boundary so a decrease move is made, then the Cross step size is 
increased again and an increase move made. This move does cross the boundary, so 
a Follow move can be made from the Cross move end point.
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FB 
Iter

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Var

B
A
A
A
A
A
B
A
A
A
B
A
A
A
B
A
A

Phase

FBF
FBC
FBC
FBC
FBC
FBC
FBF
FBC
FBC
FBC
FBF
FBC
FBC
FBC
FBF
FBC
FBC

Generate point 
ABC
70
70
70
70
70
70
73
73
73
73
76
76
76
76
79
79
79

50
51
51
51
51
51
51
52
52
52
52
53
53
53
53
54
54

9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

Execute point 
ABC
70
71
69
72
68
73
73
74
75
76
76
77
78
79
79
80
81

51
51
51
51
51
51
52
52
52
52
53
53
53
53
54
54
54

9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

Trav 
effect

UD
UD
UD
UD
UD
-ST
UD
UD
UD
-ST
UD
UD
UD
-ST
UD
UD
NT

Pred Next 
value action

C+l
C-l
C+2
C-2
C+3

-27 F
C+l
C+2
C+3

-32 F
C+l
C+2
C+3

-35 F
C+l
C+2

0 SUCC

Table 5.9 - HATS run excerpt: BF in the Follow-boundary phase considering node 6 
of the QUADRATIC and locating a solution point

F: Follow move 
C : Cross move

Negative sibling-traversal 
domain

50

49
k Follow Boundary start point ( Central point)

I -i——I——r-
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 

C = 9 A

Figure 5.14 - (A, B) partial input plane showing Follow-boundary phase moves to a 
solution point for node 6 of the QUADRATIC

The next Cross move is unidirectional since the Cross rule has determined that the 
direction of increase shall be used. From here on the BF follows the boundary and 
locates a solution (81, 54, 9) after 17 iterations and produces only boundary located

points.
The Cross moves after the first Follow move give a "mushroom" appearance, 
however, in subsequent Follow moves, there is only half a "mushroom", where the 
Cross rule has been applied. From the second Follow move onwards a distinct 
"pattern" of moves is established, which appears in this example as a Follow move 
then Cross moves' half "mushroom".
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It is interesting to consider what the BF's behaviour would be if the allocation of roles 
in this example were swapped. Figure 5.15 shows the same notional boundary 
followed to the same solution with role allocations of A, Follow and B, Cross. With 
the first role allocation (figure 5.14) there are 13 upper-deviations, three negative 
sibling-traversals and a total of 17 iterations in the trace to the solution point. With 
the second role allocation (figure 5.15) there are 10 upper-deviations, 12 negative 
sibling-traversals and a total of 23 iterations in the trace to the solution point. In the 
first allocation, upper-deviation points are predominant. Whereas in the second 
allocation, there is more or less an even balance of points on both sides of the 
boundary. The notional boundary is better covered, but at the expense of a further 
six iterations.

55 -,

B S7 -

51 -

50 -

do -

F : Follow move 
C : Cross move
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Figure 5.15 - Partial input plane showing Follow-boundary phase moves, had 
variable A been allocated Follow and B allocated Cross, to a solution point for node 6

of the QUADRATIC

5.3.11.5 Reorient-boundary-follower Phase

When the Follow-boundary phase cannot cross the boundary this phase relocates the 
boundary and prepares the Follow-boundary phase for continuation. The operation 
of this phase is described in section 5.3.7.

5.3.12 Known Limitations

The BF described has a number of limitations :
• If an input domain has more than one border segment, the choice of border 

segment to follow is determined by the point the OCP phase selects to start with.

72



Chapter 5 The New Heuristics and Improved Quadratic Results

• There are no heuristic termination criteria in the Follow-boundary or Reorient- 
boundary-follower phases.

• Once the two roles have been allocated, no other input variables are considered 
whilst on the considered node.

• The Follow direction is fixed on increase the first time the Follow-boundary 
phase is used.

• The orientation of the boundary with respect to the input space axes is not taken 
into consideration when the roles are allocated.

• A domain's boundary is followed in two dimensions, however a boundary may 
exist in many dimensions.

5.4 Installing the LP and BF into the HATS Harness

The LP and BF must be located in the heuristic selection order. The new order is 
shown in figure 5.16

Other than
An input variable, / \ an input variable, 
relational operator / N. relational operator 
and a constant / Considered \ and a constant 

node's predicate _ 
consists of:

Figure 5.16 - New heuristic selection order with the LP and BF heuristics added 

5.5 The Second Round of Mutation Analysis

5.5.1 Experimental Set-up

The unrevealed mutants from the first round are the subjects of this second round. 
The same initial points are used as in the first round. However, the node iteration 
threshold has increased, tenfold, to 500, as it is anticipated that the BF may require 

more than 50 iterations.
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Of the four heuristics only the DA and BF are used. The AV is not used since its 
termination criteria require improvement to prevent it from continuing needlessly. 
The LP is not used since it is virtually the same as the BF's Obtain-a-close-point 
phase. To aid identification, 100 has been added to the mutation identifier of the first 
round. Hence mutant QM01 becomes QM101.

5.5.2 Statement Analysis Results

The five unrevealed first round, statement analysis mutants are the subjects of this 
second round. The BF located points that revealed four of the five mutants and are 
shown in table 5.10. Table 5.11 has the unrevealed mutant.

Mutant

QM106 
QM113 
QM147 
QM149

Initial point 
ABC

561 
801 
337 
322

749 
319 
907 
517

Number of mutants

414 
363 
168 
102
4

No iters 
on node

171 
35 

400 
369

Central point 
ABC

339 
71 

1225 
656

749 
321 
907 
517

414 
363 
168 
102

Revealing 
A B

414 
75 

1512 
918

point 
C

828 414 
330 363 
1008 168 
612 102

Table 5.10 - Second round statement analysis mutants revealed by the BF on node 6

Mutant

QM148

Initial point No iters 
ABC on node

743 884
Number of mutants

589 500
1 1

Central point Last point 
A B C A B C

332 884 589 524 1111 589

Table 5.11- Second round statement analysis mutants unrevealed by the BF on node
6 in 500 iterations

Table 5.10 shows that the amount the Central point is adjusted by to produce the 
mutant revealing point increases as the number of iterations the BF takes to locate the 
revealing point increases. If the spatial distance is derived then the comparison can 
easily be made. Spatial distance is the distance from point to point in n-dimensional 
space. For example, the spatial distance from the Central point to the revealing point 
for QM113 is (4, 9, 0) as only A and B have changed.
However, this can be deceiving as it does not take the actual boundary followed into 
consideration and assumes it to be a straight line. Nevertheless, in the above second 
round mutants the notional boundary in the area of input space explored is virtually a
straight line.
With the single unrevealed mutant QM148 (table 5.11), the BF terminated after 
reaching the node iteration threshold without locating a solution. The BF had located 
the notional boundary and followed it accurately, however there were no solutions 
along the part of the notional boundary that could be followed in 500 iterations. An 
exhaustive search of the input space, with C constant at 589, found the next solution
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on the notional boundary followed at (589, 1178, 589). Clearly, the BF had not 
missed any solutions and given a higher node iteration threshold, should locate this 
solution. It is estimated that a further 140 to 160 iterations would be needed by the 
BF to locate this solution .

5.5.3 Predicate Analysis Results

The six unrevealed first round predicate analysis mutants are the subjects of this 
second round. Mutant QM26 was not considered since the modifications to the DA 
necessary to reveal the mutant are made later (section 5.7). Two of the five mutants 
were revealed by the BF (table 5.12). However, the remaining three mutants were 
not revealed (table 5.13) by the BF before the node iteration threshold was met. 
Nevertheless, the boundary was followed accurately and no solutions were 
overlooked.

Mutant

QM116 
QM117

Initial point 
ABC

421 
104

821 
814

Number of mutants

334 
289

2 I

No iters 
on node

436 
15

Central point 
ABC

505
574

821 
814

334 
289

Revealing point 
ABC

750 
576

1001 
816

334 
289

Table 5.12 - Second round predicate analysis mutants revealed by the BF on node 6

Mutant

QM118 
QM119 
QM133

Initial point 
ABC

252 
654 
427

469 
109 
188

Number of mutants

652 
554 
608

3

Central point 
ABC
95 
6 
15

497 
115 
190

651 
552 
602

Last point 
ABC

190 
53
73

703 
342 
420

651 
552 
602

Next solution 
ABC

651 
138 
602

1302
552 
1204

651 
552 
602

Table 5.13 - Second round predicate analysis mutants unrevealed by BF on node 6 in
500 iterations

An exhaustive search of the input space located where the next solutions are on the 
notional boundary followed (table 5.13). Thus, had the node iteration threshold been 
higher, the BF should reveal all five mutants.

5.5.4 Improving Upon the AV

When considering a linear node the LP should take fewer iterations to locate a 
solution than the AV. A comparison is made between the AV and BF's Obtain-a- 
close-point phase, which is the same as the LP, with the exception that it does not 
have the LP's termination criteria.
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Mutant
QM6/106
QM13/113
QM16/116
QM17/117
QM18/118
QM19/119
QM33/133
QM47/147
QM48/148
QM49/149

Average

AV iters
9
11
7
9
9
11
10
9
10
9

9.4

BF's OCP iters
5
4
4
5
4
4
4
5
5
4

4.4

Table 5.14 - Iterations taken by the AV and BF on node 4 or 5 of the QUADRATIC

Table 5.14 shows the iterations taken by the AV in round one and by the BF in round 
two, considering either node 4 or 5 of the QUADRATIC. The BF consistently took 
less iterations than the AV. On average the BF took approximately half the iterations 
oftheAV.

5.6 The Third Round of Mutation Analysis

5.6.1 Experimental Set-up

To reveal the four remaining mutants we are faced with a choice, either to increase 
the node iteration threshold or to try a different initial point. The BF's ability to 
accurately follow a boundary has been established, so the alternative is considered. 
In this round new initial points are generated, in the range 0 to 9 for input variables 
A, B and C (table 5.15). The node iteration threshold remains at 500 and only the 
DA and BF are used. To identify third round mutants, 100 has been added to the 
identifier used in the second round.

5.6.2 Results

All four mutants were revealed by the BF (table 5.15). The new initial points did not 
reveal any mutant. With mutants QM219 and QM233, a revealing point was located 
in the BF's Obtain-a-close-point phase. The remaining mutants were revealed while 
the BF was following a notional boundary.
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Mutant

QM218 
QM219 
QM233 
QM248

Initial point No iters 
ABC on node
8 
1 
6
7

0 
7 
3 
9

Number of mutants

3 
9 
9 
4
4 I

19
7 
5 
17

Central point Revealing point 
A B C A B C
1333 

2 
1 

6949

6 
8 
6
12

3 
8 
9
4

Table 5.15 - Third round statement analysis mutants revealed by the BF on node 6

5.7 DA Improvements

Mutant QM26 was not revealed because the DA did not generate a negative value for 
input variable A. The DA has been modified to generate three points rather than one. 
The considered input variable takes, for separate iterations, the value of the predicate 
constant minus 1, the constant, and the constant plus 1. The remaining input 
variables are constant. This is boundary value test data. Now the DA is not 
concerned about the considered predicate's relational operator and has thus simplified 
the heuristic. The improved DA revealed QM26 with the point (-1, 781, 920).

5.8 Mutation Analysis Discussion and Conclusions

The BF has demonstrated that it can accurately follow a boundary in two dimensions, 
in the QUADRATIC'S input space and locate points that the AV is unable to. The 
static node iteration threshold of 500 limits the distance the BF can follow a 
boundary. If the threshold is reached before a solution then the HATS-harness will 
deem the node infeasible when there may be a solution lying on the boundary. 
However, the BF is unable to determine if a solution does lie on the boundary or do 
some analysis to determine if it is heading in a promising direction. 
Once the BF is following a boundary, only boundary located points are generated. 
The BF's Obtain-a-close-point phase, which is virtually the same as the LP, uses less 
iterations than the AV and generates boundary located points. The remaining first 
round mutant has been revealed by an improved DA that generates boundary located 
points.
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6 The Triangle Classification Problem
6.1 Introduction

Triangle classification programs have become a common "benchmark" for test data 
generators (Deason, et al, 1991; Inamura, 1989; DeMillo and Offutt, 1991; 
Ramamoorthy, et al, 1976; Duran and Ntafos, 1984). Unfortunately, there is 
considerable variation in the coding of the triangle classifiers, which make 
comparison difficult.
This chapter presents the branch testing of a nested Ada classification procedure and 
its components, by HATS and random test data generation. HATS uses the DA, LP 
and BF heuristics. The AV is not included since its termination criteria require 
improvement.
The triangle classification procedures present different problems to the 
QUADRATIC. These include a significantly increased number of paths (and their 
corresponding domains), nested procedures and different path functions.

6.2 Experimental Conditions

The main procedure, TRIANGLE_COMPLETE, consists of three procedures; 
TRIANGLE, TRIANGLE_2 and RIGHT_ANGLE_CHECK. These four procedures 
are the subjects of HATS. Each procedure's function is described later in this 
chapter.
Each procedure has three integer input variables A, B and C which are the lengths of 
each side of a triangle. A single, hand selected point, in the range ±100 for each of 
the three input variables, is used to start each HATS harness run. Should the HATS 
harness be consistently unable to find a branch's solution point, hand selection would 
enable traversal of the branch and consideration of the branches deemed infeasible. 
The node iteration threshold is 500 and the LP and BF consider input variables in the 
order A first, B second and C third.

6.3 TRIANGLE Experiments

The TRIANGLE procedure (figure 6.1) checks that the given side lengths are of a 
legal triangle. Lines 4 to 6 check that each side's length is greater than zero. If these 
checks are passed, lines 8 to 10 check that twice each side's length is less than the 
perimeter size. If all these checks are passed, the triangle is legal and the next 
procedure, TRIANGLE_2, is called. To facilitate unit testing this call (line 11) has 
been commented out.
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- Control flow tree node number 
Line number

Ada statements

10- 
8-

procedure TRIANGLE 
( A, B, C in INTEGER; TRI KIND out TRIJTYPE) is

2 P: INTEGER;
3 begin

C 4 if(A>0)then 
31 5 if(B>0)then 
51 6 if(C>0)then

7 P:=(A + B + C);
8 if((2*A)<P)then 

91 9 if((2*B)<P)then 
1C 10 if((2*C)<P)lhen 
13C 11- TRIANGLE_2(A,B,C,TRI_KIND);

12 else 
12C 13 TRIJOND := NOT_A TRIANGLE;

14 end if;
15 end if;
16 end if;
17 else 

C 18 TRI_KIND := NOT_A_TRIANGLE;
19 end if;
20 else 

C 21 TRI_KIND := NOT_A_TRIANGLE;
22 end if;
23 else 

31 24 TRI_KTND:=NOT_A TRIANGLE;
25 end if;
26 end TRIANGLE;

Figure 6.1- The TRIANGLE procedure

The DA and LP should satisfy branch adequacy without the BF being used, since the 
conditions in lines 4 to 6 involve only an input variable and a constant and the 
conditions in lines 8 to 10 have a linear relationship with the input variables.

The TRIANGLE procedure's control flow tree (figure 6.2) has 12 branches and 13 
nodes. The longest path consists of 7 nodes. Table 6.1 contains the initial points for 
the three HATS harness runs.

HATS
run
Tl 
T2 
T3

Input variable 
ABC

-17 
57 
7

44 
24 
9

-39 
43 
6

Table 6.1 - TRIANGLE procedure's initial points
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Figure 6.2 - Control flow tree of the TRIANGLE procedure 

6.3.1 RunTl

Table 6.2 contains the traversal results for this run.

Initial point path 1,2
Nodes considered and traversed

Node Heuristic
3 DA 
5 DA 
7 DA 
8 LP 
10 LP 
12 LP

Iters Coincidental nodes
3 4 
3 6 
3 9,11,13 
1
2 
3

Table 6.2 - Run Tl traversal results

The DA generated boundary value test data for nodes 3, 5 and 7. The points for node 
3 were : (-1, -14, -39), (0, -14, -39) and (1, -14, -39); node 5 (1, -1, -39), (1, 0, -39) 
and (1, 1, -39); node 7 (1, 1, -1), (1, 1, 0) and (1, 1, 1). 
On nodes 8, 10 and 12 the LP chose the node start point (1, 1, 1) which was 
generated by the DA on node 7. On node 8, in the Determine-linearity phase, the LP 
increased variable A by 1 producing the point (2, 1, 1), which traversed node 8. The 
first iteration on node 10 produced an upper-deviation, (table 6.3) which caused the
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LP to abandon input variable A. The second iteration modified variable B and 
produced a solution point.

Iter

1
2

Var Generate point Execute point Trav 
A B C A B C effect

A 1 
B 1

1121 
1112

1 UD
1 NT

Pied Next 
value action

TNV 
0 SUCC

Table 6.3 - Run Tl excerpt: LP considering node 10 in the Determine-linearity phase

The first two iterations on node 12 (table 6.4) produced upper-deviations, taking 
control to nodes 8 and 10. The third iteration located a solution point modifying 
variable C.

Iter

1
2 
3

Var Generate point Execute point 
A B C A B C

A 1 
B 1 
C 1

1 1 2 
1 1 1 
1 1 1

1
2 
1

1
1 
2

Trav 
effect

UD 
UD 
NT

Pred Next 
value action

TNV 
TNV 

0 SUCC

Table 6.4 - Run Tl excerpt: LP considering node 12 in the Determine-linearity phase

This run demonstrates that if the node start point is immediately adjacent to a solution 
point then a simple search, where each input variable is increased and decreased, 
should find the solution. The LP's Determine-linearity phase can do this.

6.3.2 Run T2

Table 6.5 contains the traversal results for this run.

Initial point path
Nodes considered

Node
2 
4 
6 
10

Heuristic
DA 
DA 
DA 
LP

Iters
3 
3 
3 
8

1.3,5,7,9,11,13
and traversed

Coincidental nodes
12 
8

Table 6.5 - Run T2 traversal results

On node 10 the LP chose the node start point (1, 24, 43) which is a product of the DA 
on the initial point. On iteration 2 (table 6.6), the LP causes an upper-deviation 
modifying variable A, and so considers the next variable.
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Iter

1
2

Generate point 
ABC
1 24 
1 24

43 
43

Execute point 
ABC
2 
0

24 
24

43 
43

Trav
effect

ST
UD

Pred Next 
value action

-21 -A 
TNV

Table 6.6 - Run T2 excerpt: LP considering node 10 in the Determine-linearity phase
modifying variable A

Using variable B is much more successful as the linearity of node 10's predicate is 
identified following iterations 3 to 6 (table 6.7). Variable B is increased by 1 then 
decreased by 1, then increased by 2 and 3. The predicate values show there is a 
corresponding linear change, indicating that node 10's predicate is linear with respect 
to the input variable modified, B.

Iter

3 
4 
5 
6

Generate point 
ABC
1 24 
1 24 
1 24 
1 24

43 
43 
43 
43

Execute point 
ABC
1 25 
1 23 
1 26
1 27

43 
43 
43 
43

Trav 
effect

ST 
ST 
ST 
ST

Pred 
value
-19
-21 
-18 
-17

Next 
action

-B 
+B 
+B 
PP

Table 6.7 - Run T2 excerpt: LP considering node 10 in the Determine-linearity phase
identifying variable B as linear

A point close to the expected boundary that should cause sibling-traversal is predicted 
and used in iteration 7 (table 6.8). LP now modifies the predicted point in iteration 8, 
crossing an input domain boundary, to a solution point.

Iter

7 
8

Generate point 
ABC
1 44 
1 43

43 
43

Execute point 
ABC
1 43 
1 44

43 
43

Trav 
effect

ST 
NT

Pred 
value

-1 
0

Next 
action

PP
succ

Table 6.8 - Run T2 excerpt: LP considering node 10 in the Predicted-point phase, 
causing just sibling traversal then considered node traversal, modifying variable B

If you consider tables 6.6 to 6.8 and figure 6.3, you can see how the LP operated next 
to a boundary defined by upper-deviations, progressing to a solution point that has a 
predicate value of 0. The consideration of node 10 demonstrates a successful non- 
problematic application of the LP.
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45
44
43
42

28
27
26
25
24
23
22

* *
* *
* *
* *

* *
* *
* *
* *
* *
* *
* *
-1 0

1
0
-1
-2

-16
-17
-18
-19
-20
-21
-22
1
A

0
-1
-2
-3

-17
-18
-19
-20
-21
-22
-23
2

C=43

Figure 6.3 - Run T2 (A, B) partial input plane : LP considering node 10 

6.3.3 Run T3

Table 6.9 contains the traversal results for this run. Unexpectedly the LP failed on 
node 12, enabling the BF to find a solution point. For node 12 the LP chose a start 
point of (7, 9, 6) and made this the current base point. The Determine-linearity phase 
establishes that variable A is linear with respect to node 12 (table 6.10). Iteration 2 
produces a point that is closer than the current base point. However, the base point is 
not updated during the DL phase as this would upset the phase.

Initial point path 1,3,5,7,9,11,13
Nodes considered and traversed

Node Heuristic
2 DA 
4 DA 
6 DA 

12 LP 
BF

Iters
3 
3 
3 

16 
14

Coincidental nodes
10
8

Table 6.9 - Run T3 traversal results

Iter

BP
1
2 
3 
4

Generate point 
ABC

7 
7 
7 
7

9 
9 
9 
9

6 
6 
6 
6

Execute point 
ABC
7 
8 
6 
9 
10

9 
9 
9 
9 
9

6 
6 
6 
6 
6

Trav 
effect

ST 
ST 
ST 
ST 
ST

Pred 
value
-10 
-11 
-9 

-12 
-13

Next 
action

-A 
+A 
+A 
PP

Table 6.10 - Run T3 excerpt: LP considering node 12 in the Determine-linearity
phase modifying variable A

With the linearity of variable A established, a point close to the expected boundary is 
predicted (table 6.11 : iteration 5 and figure 6.4). However, an upper-deviation is 
produced. In an attempt to locate the boundary, the LP progressively moves from the 
predicted point back to the current base point (table 6.11 : iterations 6 to 10).
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Iteration 11 produces a sibling-traversal, not a solution, crossing the same boundary 
crossed by the predicted point (iteration 5). The LP now abandons variable A.

Iter

5
6
7
8
9
10
11

Generate point 
ABC
-3
-2
-1
0
1
2
3

9
9
9
9
9
9
9

6
6
6
6
6
6
6

Execute point 
ABC
-2
-1
0
1
2
3
4

9
9
9
9
9
9
9

6
6
6
6
6
6
6

Trav 
effect

UD
UD
UD
UD
UD
UD
ST

Pred Next 
value action

BBP
BBP
BBP
BBP
BBP
BBP

-7 TNV

Table 6.11 - Run T3 excerpt: LP considering node 12 in the Predicted-point phase, 
modifying variable A to locate a point that causes sibling-traversal after predicting a

point and producing an upper-deviation

8
7
6
5

*
* 
*
*
-4

*
* 
*
*
-3

*
*
* 
*
-2

*
*

*
-1

*
*

*
0

*
*

*

1

-3
*

*
2
A

-4
-5

*
3

-5
-6
-7 
*
4

-6
-7
-8 
-9
5

-7
-8
-9 

-10
6

-8
-9

-10 
-11
7

-9
-10
-11
-12

8

Figure 6.4 - Run T3 (A, C) partial input plane : LP considering linear node 12 and
failing

On setting up for variable B, the LP updates the base point and closest point stored, 
as modifying variable A produced the point (4, 9, 6) which is closer than the previous 
base point (7, 9, 6). From this new base point the LP went on to consider variables 
B, C and A again (table 6.12). Once again, in iteration 13, a point is produced that is 
closer to the expected boundary than the current LP base point. Having no success 
on all three input variables, the LP terminated, allowing the BF to be used.

Iter

BP
12 
13 
14 
15 
16

Var

B
C
c
A 
A

Generate point 
ABC

4 
4 
4 
4 
4

9 
9 
9 
9 
9

6 
6 
6 
6 
6

Execute point 
ABC
4 
4 
4 
4 
5 
3

9 
10 
9 
9 
9 
9

6 
6
7 
5 
6 
6

Trav 
effect

ST 
UD 
ST 
UD 
ST 
UD

Pred Next 
value action

-7 
TNV 

-6 -C 
TFV 

-8 -A 
TERM

Table 6.12 - Run T3 excerpt: LP considering node 12 in the Determine-linearity
phase having no success

The BF chose the start point (4, 9, 7). The DL subphase of the OCP phase, which is 
virtually the same as the LP, established that variable A is linear with respect to node 
13 (table 6.13 : iterations 17 to 20 and figure 6.4). The prediction (iteration 21) 
produced an upper-deviation, resulting in the BF abandoning variable A. On variable 
B (table 6.13 : iterations 22 to 24 and figure 6.5) an upper-deviation is produced 
again resulting in variable B being abandoned.
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Iter

BP
17
18
19
20
21
22
23
24

Var

A
A
A
A
A
B
B
B

Phase

DDL
ODL
ODL
ODL
OPP
ODL
ODL
ODL

Generate point 
ABC

4
4
4
4
-2
4
4
4

9
9
9
9
9
9
9
9

7
7
7
7
7
7
7
7

Execute point 
ABC
4
5
3
6
7
-1
4
4
4

9
9
9
9
9
9
10
8
11

7
7
7
7
7
7
7
7
7

Trav 
effect

ST
ST
ST
ST
ST
UD
ST
ST
UD

Pred 
value

-6
-7
-5
-8
-9

-7
-5

Next 
action

-A
+A
+A
PP

TNV
-B
+B

TNV

Table 6.13 - Run T3 excerpt: BF considering node 12 in the Obtain-a-close-point
phase, having no success

On variable C, the BF makes a prediction (table 6.14 : iterations 25 to 30 and figure 
6.5) without producing upper-deviations.
To explain why the BF found a solution when the LP should have, stems back to 
iteration 13. On this iteration the LP's Determine-linearity phase located a point that 
was closer to the expected boundary than the base point at the time. Iteration 14 
produced an upper-deviation which resulted in the LP abandoning variable C. 
Eventually, after considering other variables, the LP terminated. The BF found a 
solution using variable C from the point produced in iteration 13. Had the LP 
returned to variable C using point (4, 9, 7) as a base, it would have located the 
solution.

Iter

BP
25
26
27
28
29
30

Phase

ODL
ODL
ODL
ODL
OPP
OPP

Generate point 
ABC

4
4
4
4
4
4

9
9
9
9
9
9

7
7
7
7
13
12

Execute point 
ABC
4
4
4
4
4
4
4

9
9
9
9
9
9
9

7
8
6
9
10
12
13

Trav 
effect

ST
ST
ST
ST
ST
ST
NT

Pred 
value

-6
-5
-7
-4
.3
-1
0

Next 
action

-C
+c
+c
PP
PP

succ

Table 6.14 - Run T3 excerpt: BF considering node 12 in the Obtain-a-close-point 
phase succeeding by modifying variable C

14
13
12
11
10
9
8
7
6

2
1
0
-1
-2
-3
-4
-5
-6
8

1
0
-1
-2
-3
-4
-5
-6
-7
9

0
-1
-2
-3
-4
-5
-6
-7
*
10
B

-1
-2
-3
-4
-5
-6
-7
*
*
11

-2
-3
-4
-5
-6
-7
*
*
*
12

Figure 6.5 - Run T3 (B, C) partial input plane : BF considering node 12 and
succeeding
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6.3.4 Comparison of HATS with Random Testing on the TRIANGLE 
Procedure

The random testing range for each input variable is ± 100, which is the same as 
HATS's initial point selection range. Each random testing run continues till all nodes 
are traversed. The number of iterations taken to traverse each node is recorded. The 
average iterations per node, over 500 runs, is calculated and used. Results for HATS 
are taken from runs Tl to T3.

Node

1
2
3
4
5
6
7
8
9
10
11
12
13

HATS 
iterations

IPT
3
3
3
3
3
3
1

IPT/CT
2-8

IPT/CT
3-30

IPT/CT

Random 
iterations

1
2.002
1.966
4.12

4.004
8.178
8.012
48.22
9.336
51.896
11.278
45.74
15.826

Key:
IPT Initial point traversed
CT Coincidentally traversed

Table 6.15 - The number of iterations taken by HATS and random testing for each of
TRIANGLE'S nodes

Table 6.15 shows that nodes 2 to 5 are comparable. On nodes 6 and 7, HATS took 
approximately half the iterations of random. While, the iterations for HATS on 
nodes 2 to 7 remained constant, on nodes 6 and 7 random took approximately twice 
the iterations of node 2 to 5. This is because the satisfying domain for nodes 6 and 7 
is half the size of nodes 2 to 5. With nodes 8 to 13, HATS takes less iterations than 
random. Nodes 9, 11 and 13, which have a larger satisfying domain than nodes 8, 10 
and 12, are all covered by HATS with the initial point or through coincidental 
traversal. The HATS solution to node 8 took only 1 iteration as HATS started on a 
point next to the solution found. Generally, HATS improves on random and at worst 
is equal to random.

6.4 TRIANGLE 2 Experiments

TRJANGLE_2 (figure 6.6) decides if the given side lengths represent an equilateral 
or isosceles triangle. If the lengths represent neither of these then normally 
RIGHT_ANGLE_CHECK would be called. However, to enable unit testing, this call 
has been commented out and TRIANGLE_2 is used independently of TRIANGLE,
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which would normally invoke it. A value representing the triangle type is returned 
after identification.

- Control flow tree node number 
i- Line number

i- Ada statements

Y Y
1 procedure TRIANGLE_2

( A, B, C in INTEGER; TRIJUND out TRI TYPE) is
2 begin

1C 3 if(A = B)then 
2C 4 if(B = C)then 
4C 5 TRIJOND := EQUILATERAL;

6 else 
5C 7 TRI_KIND := ISOSCELES;

8 end if;
9 else

3C 10 if(A = C)then 
6C 11 TRI_KIND := ISOSCELES;

12 else
7C 13 if(B = C)then 
8C 14 TRIJUND := ISOSCELES;

15 else 
9C 16-- RIGHT_ANGLE_CHECK ( A, B, C, TRI KIND );

17 end if;
18 end if;
19 end if;
20 end TRIANGLE_2;

Figure 6.6 - The TRIANGLE_2 procedure

Figure 6.7 - Control flow tree of the TRIANGLE_2 procedure

TRIANGLE_2's control flow tree (figure 6.7) has 8 branches, 9 nodes and the longest 
path consists of 4 nodes. All conditions have a linear relationship with the input 
variables. Table 6.16 contains the initial points for three HATS harness runs.
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HATS Input variable 
run A B C
T4 -27 -42 -77
T5 29 47 93
T6 1 4 3

Table 6.16 - TRIANGLE_2 procedure's initial points

6.4.1 RunT4

Table 6.17 contains the traversal results for this run.

Initial point path 1,3,7,9
Nodes considered and traversed

Node
2 
6 
4

Heuristic
LP 
LP 
LP

Iters
6 
9 
8

Coincidental nodes
5 
8

Table 6.17 - Run T4 traversal results

The LP considered nodes 2, 6, and 4 in that order. The DA is not suitable for any of 
TRIANGLE_2's conditions. On node 2, the LP used variable A to determine that the 
node is linear and predict a solution point. On node 6, the LP selected a base point 
that had been generated through node 2's consideration. Modifying variables A and 
B produced upper-deviations, however modifying variable C located a solution point. 
On node 4, the LP again selected a base point that had been generated through node 
2's consideration. Again modifying variables A and B produced upper-deviations, 
but modifying variable C located a solution point.
This run presents a common obstacle for heuristics to manage. Heuristics attempt to 
generate points that are close to a domain boundary. When lower nodes in the 
control flow tree are considered a heuristic may choose one of these points close to a 
boundary higher in the control flow tree, as a base point. As the heuristic progresses 
the high nodes (interfering predicates) boundary may be crossed resulting in an 
upper-deviation. This may prevent any further progression with the current variable 
since there is no predicate value for the considered node's sibling, resulting in the 
current variable being abandoned.
The solution point for the lower node may not be located due to the upper-deviations 
affecting the active heuristic. The lower a node is in the control flow tree, the harder 
it is to locate a solution point, since there is a greater number of branches that can 
take control away from the considered node or its sibling, interrupting the active 
heuristic.
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6.4.2 RunTS

Table 6.18 contains the traversal results for this run.

Initial point path 1,3,7,9
Nodes considered and traversed

Node
2 
6 
4

Heuristic
LP 
LP 
LP

Itcrs
6 
9 
8

Coincidental nodes
5 
8

Table 6.18 - Run T5 traversal results

This run presents a similar situation to run T4, in that the LP selected start points for 
nodes 4 and 6 that are close to a boundary which, if crossed, will cause an upper- 
deviation. However, the LP is able to perform linearity determination and predict a 
successful point by modifying one of the variables without producing upper- 
deviations.

6.4.3 RunT6

Table 6.19 contains the traversal results for this run.

Initial point path 1,3,7,9
Nodes considered and traversed

Node
2 
4 
8

Heuristic
LP 
LP 
LP

Iters
4 
3 
6

Coincidental nodes
6,5

Table 6.19 - Run T6 traversal results

Again LP chose start points for nodes 4 and 8 that are close to an upper boundary and 
solution points for the considered nodes. All the solutions were found during the 
LP's Determine-linearity phase.

6.4.4 Comparison of HATS with Random Testing on the 
TRIANGLE 2 Procedure

The random testing range for each input variable is ± 100, which is the same as 
HATS's initial point selection range. Each random testing run continues till all nodes 
are traversed. The number of iterations taken to traverse each node is recorded. The 
average iterations per node, over 500 runs, is calculated and used. Results for HATS 
are taken from runs T4 to T6.
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Node

1
2
3
4
5
6
7
8
9

HATS 
iterations

IPT
4-6

IPT/CT
3-8

IPT/CT
9

IPT/CT
6

IPT/CT

Random 
iterations

1
192.534

1.006
42652.4
193.314
203.542

1.01
196.224

1.012

Key:
IPT Initial point traversed
CT Coincidentally traversed

Table 6.20 - The number of iterations taken by HATS and random testing for each of
TRIANGLE_2's nodes

Table 6.20 indicates that nodes 3,7 and 9 have a large solution domain and 
consequently are easy to traverse. However, nodes 2, 4, 5, 6 and 8 are not as easy 
and random takes a higher number of iterations, especially on node 4. Nodes 2, 5, 6 
and 8 have an equality predicate in the partial path to them. Node 4 has two equality 
predicates in the partial path to it. Each equality predicate in the partial path to a 
node reduces the dimensionality of the solution domain by one (White and Cohen, 
1980). Consequently, random test data generation takes an increasing number of 
iterations for each equality predicate in the partial path to a considered node. HATS 
has taken significantly fewer iterations than random. There has not been any 
noticeable increase in iterations considering node 4 to nodes 2, 6 or 8, unlike random.

6.5 RIGHT ANGLE CHECK Experiments

This procedure (figure 6.8) checks the given side lengths to see if they represent a 
right angled scalene triangle or a non right angled scalene triangle. TRIANGLE_2 
would normally call RIGHT_ANGLE_CHECK, however for unit testing 
RIGHT_ANGLE_CHECK is tested independently. All conditions have a non-linear 
relationship with the input variables.
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Control flow tree node number 
Line number

Ada statements

procedure RIGHT_ANGLE_CHECK ( A, B, C in INTEGER;
TRI_KIND out TRI_TYPE ) is 

begin
if(((A*A) + (B*B)) = (C*C)) then 
TRIJUND := RIGHT_ANGLED_SCALENE; 

else
if(((B*B) + (C*C))=(A*A)) then 
TRI_KIND :=RIGHT_ANGLED_SCALENE; 

else
if(((A*A) + (C*C) = (B*B)) then 

TRI_KIND := RIGHT_ANGLED SCALENE; 
else

TRI KIND := NON RIGHT_ANGLED_SCALENE; 
end if; 

end if; 
end if; 

end RIGHT_ANGLE_CHECK;

Figure 6.8 - The RIGHT_ANGLE_CHECK procedure

Figure 6.9 - Control flow tree of the RIGHT_ANGLE_CHECK procedure

The control flow tree (figure 6.9) has 6 branches, 7 nodes and the longest path 
consists of 4 nodes. Table 6.21 contains the initial points for three HATS harness 

runs.

HATS
run
T7 
T8 
T9

Input variable 
ABC
5 
10 
-27

3 
20 
-63

3 
30 
-97

Table 6.21 - RIGHT_ANGLE_CHECK procedure s initial points
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6.5.1 RunT7

Table 6.22 contains the traversal results for this run.

Initial point path
Nodes considered

Node Heuristic
2 LP 
4 LP 
6 LP 

BF

Iters
8 
6
12 
17

1,3,5,7
and traversed

Coincidental nodes

Table 6.22 - Run T7 traversal results

On node 2, the LP used variable A to determine that the node is non-linear (table 6.23 
: iterations 1 to 4). Consequently the heuristic creeps to a solution point (table 6.23 : 
iterations 5 to 8).

Iter

1
2
3
4
5
6
7
8

Phase

DL
DL
DL
DL
CR
CR
CR
CR

Generate point 
ABC
5
5
5
5
4
3
2
1

3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3

Execute point 
ABC
6
4
7
8
3
2
1
0

3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3

Trav 
effect

ST
ST
ST
ST
ST
ST
ST
NT

Pred 
value

36
16
49
64
9
4
1
0

Next 
action

-A
+A
+A
-A
-A
-A
-A

SUCC

LP base point 
A B C Val
5
5
5
5
4
3
2
1

3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3

25
25
25
25
16
9
4
1

Table 6.23 - Run T7 excerpt: LP creeping to a solution point, modifying variable A,
on non-linear node 2

On node 4, the LP operated similarly to node 2, On node 6, the LP failed, but the BF 
succeeded. BF selected variable A for the Cross role and B for the Follow role. 
Figure 6.10 and table 6.24 illustrate the operation of the BF in the Follow-boundary 
phase, to the location of a solution point.

Iter

24 
25 
26 
27 
28 
29

Var

B
A 
A 
A 
B 
A

Phase

FBF 
FBC 
FBC 
FBC 
FBF 
FBC

Generate point 
ABC
1 
1 
1 
1 
3 
3

3 
4 
4 
4 
4 
5

3 
3 
3 
3 
3 
3

Execute point 
ABC
1
2
0 
3 
3 
4

4 
4 
4 
4 
5 
5

3 
3 
3 
3 
3 
3

Trav 
effect
-ST 
-ST 
-ST
+ST 
-ST 
NT

Pred 
value

-6 
-3
-7 
2 
-7 
0

Next 
action
Cl 
Cl 
C2 

F 
Cl 

SUCC

Table 6.24 - Run T7 excerpt: BF finding a solution for non-linear node 6
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6
5
4
3
2

-26
-15
-6
1
6
-1

-27
-16
-7
*
5
0

-26
-15
-6
1
6
1

-23
-12
-3
4
9
2
A

-18
-7
2
9
14
3

-11
0
9
16
21
4

-2
9
*

25
30
5

C=3

Figure 6.10 - Run T7 (A, B) partial input plane : BF considering node 6

Interestingly, the LP located solution points for the non-linear node 2 and 4. This 
occurred because the heuristic's start points are very close to the solution points 
located.

6.5.2 Run T8

Table 6.25 contains the traversal results for this run.

Initial point path 1,3,5,7
Nodes considered and traversed

Node
2 

4 

6

Heuristic
LP 
BF 
LP 
BF 
LP 
BF

Iters
26 
19 
42 
270 
33 
67

Coincidental nodes

Table 6.25 - Run T8 traversal results

The LP identified nodes 2,4 and 6 as non-linear and crept to the closest point to the 
expected boundary it could locate for each node, then terminated. The BF took over 
and found solution points for each of these nodes.
The BF behaved as expected on nodes 2 and 4, but unusually on node 6, which 
deserves further investigation. Just after the initial allocation of the Follow and Cross 
roles the Reorient-boundary-follower phase was invoked three times. This appeared 
unusual since there are no "corners" (where two border segments meet) to navigate in 
this part of the sibling-traversal domain (figure 6.11).

B

C=30

32
31
30
29
28
27

-115 -120 -123 -124 -123 -120 -115
-52 -57 -60 -61 -60 -57 -52 
941*149 
68 63 60 59 60 63 68 
125 120 117 116 117 120 125 
180 175 172 171 172 175 180
-3 -2 -1 0 

A
1

Figure 6.11 - Run T8 (B, C) partial input plane : BF considering node 6 and
reorienting three times
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Figure 6.11 shows the boundary to be followed and an upper-deviation point (0, 30, 
30). It is this upper-deviation point which caused the BF to behave unusually. In the 
BF's Determine-initial-follow-and-cross-details phase each input variable is increased 
then decreased by 1 from the central point (-1, 30, 30). Modifying variable A 
produced an upper-deviation and a positive-sibling-traversal, and modifying variable 
B produced a negative-sibling-traversal and a positive-sibling-traversal. Ideally 
variable B would be allocated Cross and variable A, Follow (figure 6.11). However, 
in the Determine-initial-follow-and-cross-details phase, variable A is modified before 
B, and produces two different traversal-effects. Therefore, variable A is allocated the 
Cross role and variable B the Follow role. With this allocation, modifying variable A 
will not locate a point on the other side of the notional boundary that may lead the BF 
to a solution point. The point causing upper-deviation has adversely affected the 
initial allocation of the Follow and Cross roles.
This is confirmed as the Follow-boundary phase is unable to cross the notional 
boundary (table 6.26 : iterations 51 to 54 and figure 6.11), as only negative-sibling- 
traversals were produced. Consequently the Reorient-boundary-follower phase is 
invoked and boundary crossing points located (table 6.26 : iterations 55 to 56), so 
that the roles could be reallocated. The Follow role is allocated to variable A and 
Cross to variable B. The Point (-1, 31, 30) is selected to start the Follow-boundary 
phase.

Iter

51 
52 
53 
54 
55 
56

Var

B 
A 
A 
A 

A,B 
A

Phase

FBF 
FBC 
FBC 
FBC 
RBF 
RBF

Generate point 
ABC
-1 
-1 
-1 
-1 
-1 
-1

30 
31 
31 
31 
31 
30

30 
30 
30 
30 
30 
30

Execute point 
ABC
-1 
0 
-2 
1 
0 
-2

31 
31 
31 
31 
30 
30

30 
30 
30 
30 
30 
30

Trav 
effect
-ST 
-ST 
-ST 
-ST 
UD 
+ST

Pred 
value
-60 
-61 
-57 
-60

4

Next 
action
Cl 
Cl 
C2 

OF+C 
-C 
FB

Table 6.26 - Run T8 excerpt: BF's first reorientation considering node 6

In the Follow-boundary phase, iteration 59 and 60 (table 6.27) crossed the notional 
boundary from the negative-sibling-traversal domain into an upper-deviation domain, 
then crossed the notional boundary again, coming out in the positive-sibling-traversal 
domain. Since the Follow move (iteration 60) crossed a boundary the Cross-rule 
determined that the Cross direction should be the same as the last direction to cross 
the notional boundary (decrease). Consequently, the BF could not cross back into the 
negative-sibling-traversal domain (iterations 61 and 62). This reorientation occurred 
as the Cross-rule had not taken the upper-deviation domain into consideration when it 
determined the Cross direction to use for iteration 61.

94



Chapter 6 The Triangle Classification Problem

Iter

57
58
59
60
61
62
63
64

Var

A
B
B
A
B
B

A,B
B

Phase

FBF
FBC
FBC
FBF
FBC
FBC
RBF
RBF

Generate point 
ABC
-1
0
0
0
1
1
1
0

31
31
31
30
30
30
30
30

30
30
30
30
30
30
30
30

Execute point 
ABC
0
0
0
1
1
1
0
0

31
32
30
30
29
28
31
29

30
30
30
30
30
30
30
30

Trav 
effect
-ST
-ST
UD
+ST
+ST
+ST
-ST
+ST

Pred 
value
-61

-124

1
60
117
-61
59

Next 
action
Cl
Cl

F
Cl
C2

OF+C
-C
FB

Table 6.27 - Run T8 excerpt: BF's second reorientation considering node 6

The allocation of roles from the second reorientation rendered crossing the notional 
boundary very difficult (table 6.28 : iterations 66 and 67). A further reorientation 
took place, allocating the roles, Follow to variable A and Cross to B. With the best 
role allocation and the upper-deviation point out of the way the Follow-boundary 
phase continued (table 6.28 : iterations 70 to 73) without further interruptions and 
eventually located a solution point.

Iter

65
66
67
68
69
70
71
72
73

Var

B
A
A

A,B
A
A
B
A
B

Phase

FBF
FBC
FBC
RBF
RBF
FBF
FBC
FBF
FBC

Generate point 
ABC
1
1
1
1
1
1
2
2
3

30
31
31
31
30
31
31
30
30

30
30
30
30
30
30
30
30
30

Execute point 
ABC
1
0
-1
2
0
2
2
3
3

31
31
31
30
30
31
30
30
31

30
30
30
30
30
30
30
30
30

Trav 
effect
-ST
-ST
-ST
-fST
UD
-ST
+ST
+ST
-ST

Pred 
value
-60
-61
-60
4

-57
4
9

-52

Next 
action
Cl
C2

OF+C
-Cr
FB
Cl
F

Cl
F

Table 6.28 - Run T8 excerpt: BF's third reorientation considering node 6

In run T7, there are upper-deviation points dividing the notional boundary being 
followed (figure 6.10). Since the upper-deviation points were not used, the problem 
observed in this run did not occur. However, if they were used then there would be 
less of a problem as the notional boundary is on a diagonal, so it is possible to cross 
with both variables.

6.5.3 Run T9

Table 6.29 contains the node traversal results for this run.

95



Chapter 6 The Triangle Classification Problem

Initial point path 1,3,5,7
Nodes considered and traversed

Node Heuristic Iters Coincidental nodes
LP 
BF

59
148

Nodes considered and untraversed
Node Heuristic Iters Coincidental nodes

LP 
BF

9
491

Nodes unconsidered
Considered node Nodes unconsidered

Table 6.29 - Run T9 traversal results

The LP identified node 2 as non-linear and crept to the point closest to the expected 
boundary, then terminated. The BF found a solution without difficulty. The LP 
identified node 4 as non-linear, crept then terminated. The BF followed a boundary 
without difficulty till the node iteration threshold was reached, then terminated. 
Hence no solution was found. Node 6 was not considered as HATS terminated after 
considering node 4.
Node 4's consideration raises an important concern on choosing a value for the node 
iteration threshold. This was previously raised in section 5.5.3. In this case the area 
around the boundary followed and further along the boundary was searched for 
solutions, and none existed.

6.5.4 Comparison of HATS with Random Testing on the 
RIGHT ANGLE CHECK Procedure

The random testing range for each input variable is ± 100, which is the same as 
HATS's initial point selection range. Each random testing run continues till all nodes 
are traversed. The number of iterations taken to traverse each node is recorded. The 
average iterations per node, over 500 runs, is calculated and used. Results for HATS 
are taken from runs T7 to T9.

Node

1
2
3
4
5
6
7

HATS
iterations

IPT
8-207

IPT/CT
6-312

IPT/CT
29-100
IPT/CT

Random 
iterations

1
5442.05

1
6738.34

1
9676.02

1

Key:
IPT Initial point traversed
CT Coincidentally traversed

Table 6 30 - The number of iterations taken by HATS and random testing for each of
RIGHT_ANGLE_CHECK's nodes
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Table 6.30 indicates that nodes 3, 5 and 7 have a large solution domain and 
consequently are easy to traverse. However, nodes 2, 4 and 6 are much harder, which 
can be seen by the increased number of iterations taken by both HATS and random 
testing compared to the iterations taken for TRIANGLE and TRIANGLE_2. HATS 
takes significantly fewer iterations than random testing. The large difference in 
HATS iteration range is due to the proximity of the initial point to the located 
solution point.

6.6 TRIANGLE COMPLETE Experiments

The TRIANGLE_COMPLETE procedure (figure 6.12) is composed of the three 
procedures previously covered. The conditions in the procedure have a linear 
relationship with the input variables till the RIGHT_ANGLE_CHECK procedure. 
From there on, there is a non-linear relationship between the input variables and the 
conditions. The control flow tree (figure 6.13) has 26 branches, 27 nodes and the 
longest path consists of 13 nodes. Where the control flow tree node number is 
prefixed by the letter P, this indicates that the statement is a procedure call and the 
node specified is the first executed. TRIANGLE_COMPLETE has a considerably 
higher control flow complexity than any of the previous procedures tested. Further, 
the RIGHT_ANGLE_CHECK procedure, which has the hardest predicates to satisfy, 
is the last for control to encounter. Consequently, for a point to reach this procedure 
it must satisfy 9 predicates, or in other words, not deviate from 9 branches.
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_ Control flow tree node number 
Line number

I _ Ada statements

T T
1 procedure TRIANGLE_COMPLETE ( A3,C in INTEGER; TRI KIND oul TRI TYPE ) is
2 P: INTEGER;
3 procedure TRIANGLE_2 ( A3,C in INTEGER; TRIJUND out TRIJTYPE) is
4 procedure RIGHT ANGLE_CHECK ( A3,C in INTEGER; TRIJCIND out TRI TYPE ) is
5 begin

20C 6 ir(((A*A) + (B*B)) = (C*C))then
23 C 7 TRIJCIND := RIGHT_ANGLED_SCALENE;

8 else
22C 9 if(((B*B)+(C*C)) = (A»A))then
25 C 10 TRI_KIND := RIGHT_ANGLED_SCALENE;

II else
24C 12 if((( A*A) + (C»C) = (B*B))then
27 C 13 TRI KIND := RIGHT ANGLED SCALENE;

14 else
26 C IS TRIJCIND := NON_RIGHT ANGLED_SCALENE;

16 end if;
17 end if;
18 end if;
19 end RIGHT_ANGLE_CHECK;
20 begin

13 C 21 if( A = B Mhcn
15C 22 lf(B = C)then
19 C 23 TRI KIND := EQUILATERAL;

24 else
18 C 25 TRIJCIND := ISOSCELES;

26 end if;
27 else

14C28 if(A = C)then
17 C 29 THIJCIND := ISOSCELES;

30 else
16C 31 if(B = C)then
21 C 32 TRI KIND := ISOSCELES;

33 else
P20 C 34 RIGHT_ANGLE_CHECK ( A, B, C, TRIJUND );

35 end if;
36 end if;
37 end If:
38 end TRIANGLE 2;
39 begin

1 C 40 if(A>0)then
3C 41 if ( It > 0 I then
5C 42 if(C>0)then
7 T 43 P := ( A + B H- C );

L 44 if((2*A)<P)then
9C45 ir((2»B)<P)then

11C 46 ir«2*C)<P)lhen
PI 3 C 47 TRIANGLE_2 ( A, B, C, TRI_KIND );

48 else
12 C 49 TRI KIND := NOT^A TRIANGLE;

50 endifT
10 51 end if;
8 ~ 52 end if;

53 else
6 C 54 TR1_KIND := NOT_A_TRIANGLE;

55 end if;
56 else

4 C 57 THIJKIND := NOT_A_TRIANGLE;
58 end if;
59 else

2 C 60 TRI_KIND := NOT_A_TRIANGLE;
61 end if;
62 end TRIANGLE_COMPLETE;

	Figure 6.12 - The TRIANGLE_COMPLETE procedure
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Figure 6.13 - Control flow tree of the TRIANGLE_COMPLETE procedure

Table 6.31 contains the initial points for the three HATS harness runs. The initial 
points for runs T10 and Tl 1 were specifically selected to traverse the significant 
partial path to RIGHT_ANGLE_CHECK so that the heuristics would consider other
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nodes in RIGHT_ANGLE_CHECK without the possibility of the HATS harness 
deeming this part of the control flow tree infeasible.

HATS 
run
T10 
Til 
T12

Input variable 
ABC
3 
3 

56

5
4 
23

4 
5 
19

Table 6.31 -TRIANGLE_COMPLETE procedure's initial points

6.6.1 RunTIO

Table 6.32 contains the traversal results for this run.

Initial point path 1,34,7,9,11,13,14,16,20,22,24,2 
7

Nodes considered and traversed
Node Heuristic

2 DA 
4 DA 
6 DA 
8 LP 
15 LP 
19 LP 
21 LP

Iters Coincidental nodes
3 10 
3 12 
3 
3 17 
3 26,18 
3 
3

Nodes considered and untraversed
Node Heuristic

23 LP 
BF

Iters Coincidental nodes
4 
10

Nodes unconsidered
Considered node

23
Nodes unconsidered

25

Table 6.32 - Run T10 traversal results

With nodes 8, 15, 19 and 21 the LP chose a start point that is very close to the 
solution point located. On node 23, the LP terminated since upper-deviations were 
produced after modifying each input variable. BF then took over and failed after 
only 10 iterations since it could not allocate the Follow role to any of the input 
variables. This was considered unusual since the BF is the most suitable heuristic, 
and deserves further investigation.
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B

y
8
7
6
5
4 
3
2
1

*****
*****

* * * * 13

* * * * _3

-2-1012
A

*

29 
18

*
-3

3

*
*

*

*

4

73
58
45
*

18
13

5

101 
84
69

45

29

6
C = 4

Figure 6.14 - Run T10 (A, B) partial input plane : BF considering node 23 in the 
Determine-initial-follow-and-cross-details phase

The BF commences the Determine-initial-follow-and-cross-details phase with a 
central point of (2, 5, 4). Variable A is allocated the Cross role since its modification 
produced a positive-sibling-traversal (3, 5, 4) and an upper-deviation (1, 5, 4) (figure 
6.14).
However, BF could not allocate the Follow role since modifying the remaining two 
input variables B ((2, 6,4) and (2, 4, 4)) and C (2, 5, 5) and (2, 5, 3)) produced only 
upper-deviations (figure 6.15). BF requires that at least one of the modifications to 
an input variable, produces a sibling-traversal for the Follow role to be allocated to 
the variable.

8
7
6
5
4
3
2
1
0

*
*
*
*
*
*
*
*
*
1

*
*
*
*
*
*
*
Hi

*
2

*
*
*
*
-3
*
*
*
*
3

*
*
*
-5
*
11
*
*
*
4

*
*
-7
*
13
*
*
*
*
5
B

*
-9
*
15
*
*
*
*
*
6

-11
*
17
*
*
*
*
*
*
7

*
19
*
*
*
*
*
*
*
8

21
*
*
*
*
*
*
*
*
9

A = 2

Figure 6.15 - Run T10 (B, C) partial input plane : BF considering node 23 in the 
Determine-initial-follow-and-cross-details phase

Figures 6.14 and 6.15 show a much more partitioned sibling-traversal domain to that 
seen previously. This is due to the branches above node 23.
Let us consider the three 2 dimensional planes around the central point (2, 5, 4), these 
being (A, B) (figure 6.14), (A, C) and (B, C) (figure 6.15). When the BF allocates 
the Follow and Cross roles to two variables, it is committed to follow a boundary in 
the corresponding plane. Both the (A, B) (figure 6.14) and (A, C) planes have 
isolated sibling-traversal domains around the central point with no solutions present. 
Had the BF followed a boundary in one of these planes then it may end up circling 
the same sibling-traversal domain. In the (B, C) plane (figure 6.15) there are two 
sibling-traversal domains, the left-most starting at point (2, 3, 4) and the other at
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point (2, 4, 3). An exhaustive search further along these sibling-traversal domains, 
revealed that no solutions were present, hence following the boundary surrounding 
them would be pointless. There is a possibility that this could be inferred since the 
predicate values shown in figure 6.15 progress away from 0. 
To establish if a solution point does exist and where, a three dimensional exhaustive 
search was conducted around the central point. This spanned the range (-2, 1, 0) to 
(6, 9, 8). Two solutions were found at points (3, 4, 5) and (4, 3, 5), which are very 
close to the central point. In its present form, the BF could not locate either of these 
points since it can only move in the same two dimensions. Further, the central point 
chosen determines which boundaries the BF may follow. Hence, this also influences 
the success of the BF.

6.6.2 Run Til

Table 6.33 contains the traversal results for this run.

Initial point path 1,3,5,7,9,11,13,14,16,20,23
Nodes considered and traversed

Node Heuristic
2 DA 
4 DA 
6 DA 
8 LP 
17 LP 

BF

Iters Coincidental nodes
3 12 
3 
3 10 
3 15,18 
6 21,22,24,26 
5 19

Nodes considered and untraversed
Node Heuristic

25 LP 
BF

Iters Coincidental nodes
4 

496
Nodes unconsidcred

Considered node
25

Nodes unconsidered
27

Table 6.33 - Run Til traversal results

The LP failed on linear node 17 when there are solutions surrounding the start point 
of (3, 4, 5). Both figures 6.16 and 6.17 show that the start point is partially 
surrounded by upper-deviations, which cause the LP to terminate. The BF succeeds 
during its Obtain-a-close-point phase, since it used a different but closer start point to 
the expected boundary, which was generated during the LP's attempt.
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7
6
5
4
3
2
1

*
*
-4
*
*
*
*
1

*
-3
-3
-3
*
*
*
2

-2
-2
-2
-2
*
*
*
3

-1
-1
-1
*
-1
-1
*
4
A

0
0
*
0
0
0
0
5

1
*
1
1
1
1
*
6

*

2
2
2
2
*
*
7

Figure 6.16 - Run Til (A, B) partial input plane : LP considering node 17

7
6
5
4
3
2
1

*
*
*
*
0
*
*
1

*
*
*
-1
0
1
*

2

*
*
*
*
*
*
*
3

*
-3
-2
-1
0
1
*
4
B

-4
-3
-2
-1
0
*
*
5

-4
-3
-2
-1
*
*
*
6

-4
-3
_2
*
*
*
*
7

Figure 6.17 - Run Til (B, C) partial input plane : LP considering node 17

On node 25, the BF selected the central point (3, 5, 4) and allocated the Follow role 
to variable B and Cross to A. After following the boundary for a little way the 
Reorient-boundary-follower phase was invoked and the initial allocations swapped. 
The BF continued till the node iteration threshold was reached and terminated. No 
solution was found and deserves further investigation.
The area around the boundary followed (in the range 0 to 500 for A and B, with C 
constant at 4) was exhaustively searched. Only one solution was found at point (5, 3, 
4), which is very close to the central point. Had the boundary been followed in the 
opposite direction then this solution point would have been found. 
A larger, exhaustive, three dimensional search in the range 0 to 500 for each input 
variable (total of 501 3 points) was conducted and 772 solutions to node 25 were 
found. Yet there is only one solution when C is held constant at 4. Clearly, 
restricting the BF to operate in only two dimensions can severely limit the number of 
potential solutions. However, increasing the dimensionality of the search also 
increases the number of non-solution points.

6.6.3 Run T12

Table 6.34 contains the traversal results for this run.
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Initial point path 1,3,5,7,8
Nodes considered and traversed

Node Heuristic Iters Coincidental nodes
2
4
6
11
12
15
17

DA 
DA 
DA 
LP 
LP 
LP 
LP

3
3
3
9
4
6
5

9,10

13,14,16.21

19
20,22,24,26

Nodes considered and untraversed
Node Heuristic Iters Coincidental nodes

23 LP 
BF

4
496

18

Nodes unconsidered
Considered node Nodes unconsidered

23 25,27

Table 6.34 - Run T12 traversal results

On node 23 the BF chose a start point of (18, 19, 20) which has a predicate value of 
285. Using the central point (18, 19, 26), variable C was allocated the Follow role 
and variable B, Cross. Table 6.35 shows the operations from the commencement of 
the Follow-boundary phase. Notice that the boundary located was followed by 
mainly increasing variable C. Figure 6.18 shows the domain operated in by the BF in 
table 6.35. Notice that the predicate values decrease and continue to decrease as 
variable C increases.
Iterations 23, 27, 28, 31 and 32 show the predicate value decreasing as the boundary 
located is followed. This continues right up to the last point causing sibling-traversal 
(iteration 492 of 496) before the node iteration threshold is reached.

Iter

23
24
25
26
27
28
29
30
31
32

Var

C
B
B
C
B
C
B
C
B
C

Phase

FBF
FBC
FBC
FBF
FBC
FBF
FBC
FBF
FBC
FBF

Generate point 
ABC
18
18
18
18
18
18
18
18
18
18

19
19
19
18
18
19
19
18
18
19

26
27
27
27
28
28
29
29
30
30

Execute point 
ABC
18
18
18
18
18
18
18
18
18
18

19
20
18
18
19
19
18
18
19
19

27
27
27
28
28
29
29
30
30
31

Trav 
effect
-ST
-ST
UD
UD
-ST
-ST
UD
UD
-ST
-ST

Pred
value
-44
-5

-99
-156

-215
-276

Next 
action
Cl
Cl
F

Cl
F

Cl
F

Cl
F

Cl

Table 6.35 - Run T12 excerpt: BF considering node 23 in the first Follow-boundary
phase
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35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19

*
*

-509
-444
-381
-320
-261
-204
-149
-96
-45
4
51
96
139
180
219
16

*
-543
-476
-411
-348
-287
-228
-171
-116
-63
-12
37
84
129
172
213
252
17

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
18
B

-540
-471
-404
-339
-276
-215
-156
-99
-44
9
60
109
156
201
244
285
*
19

-501
-432
-365
-300
-237
-176
-117
-60
-5
48
99
148
195
240
283
*

363
20

A=18

Figure 6.18 - Run T12 (B, C) partial input plane : BF considering node 23; from the
heuristic's start point

The BF has followed a boundary but it does not take into consideration that the 
predicate value is ever decreasing. A predicate value moving in mainly one direction 
away from 0, indicates that there is a progressively reducing chance of finding a 
solution. Ideally, as the boundary is followed there would be a healthy alternation 
between positive and negative predicate values or upper-deviations and small 
predicate values. However, solutions can still be found in less than ideal situations. 
Table 6.35 and figure 6.18 illustrate that the BF has followed the boundary defined 
by upper-deviations and negative-sibling-traversals from the central point upwards in 
figure 6.18. An exhaustive search of the input space, in the range 0 to 500 for 
variables B and C with A constant at 18, revealed two solution points (18, 24, 30) and 
(18, 80, 82). The first solution is close to the central point. However, the BF did not 
locate it as it was following a different boundary. Figure 6.19 shows the domain 
surrounding the central point and the first solution point. There are two boundaries 
in this partial input plane, the first is the vertical line of upper-deviation points. The 
second is the notional boundary which exists between the positive and negative 
predicate values and surrounds the solution point. Notice that the notional boundary 
emanates from the real boundary.
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31
30
29
28
27
26

-348
-287
-228
-171
-116
-63
17

*

*
*
*
*
*
18

-276
-215
-156
-99
-44
9
19

-237
-176
-117
-60
-5
48
20

-196
-135
-76
-19
36
89
21
B

-153
-92
-33
24
79
132
22

-108
-47
12
69
124
177
23

-61
0
59
116
171
224
24

-12
49
108
165
220
273
25

A=18

Figure 6.19 - Run T12 (B, C) partial input plane : BF considering node 23; showing 
part of the boundary followed and a solution point

The central point lies close to two boundaries. The BF is unable to determine when 
this is the case and so make a decision over which boundary to follow.

6.6.4 Comparison of HATS with Random Testing on the 
TRIANGLE COMPLETE Procedure

The random testing range for each input variable is ± 100, which is the same as 
HATS's initial point selection range. Each random testing run continues till all nodes 
are traversed. The number of iterations taken to traverse each node is recorded. The 
average iterations per node, over 500 runs, is calculated and used. Results for HATS 
are taken from runs T10 to T12.
The results for nodes 2 to 13 (table 6.36) have little difference to the isolated 
TRIANGLE procedure's (section 6.3.4). On nodes 14 to 21, HATS performance is 
considerably better than random and has little difference to that on the isolated 
TRIANGLE_2 procedure (section 6.4.4). However, random takes between two and 
five times more iterations to those in section 6.4.4. This is due to the TRIANGLE 
procedure reducing the solution domain size and increasing the potential for control 
deviation. The difference between HATS and random on node 19 is particularly 
notable; 3 : 83699.1.
Nodes 22, 24 and 26 are easy nodes, which HATS covers in less iterations than 
random. On nodes 23, 25 and 27, HATS is unable to locate a solution. However, 
complete coverage is normally achieved when the RIGHT_ANGLE_CHECK is 
considered in isolation. This illustrates the impact of increased control and partial 
path function complexity to the considered node. Random testing effort is 
considerably increased from section 6.5.4.
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Node

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

HATS
iterations

IPT
3

IPT/CT
3

IPT/CT
3

IPT/CT
3

IPT/CT
IPT/CT

9
4

IPT/CT
IPT/CT

3-6
IPT/CT

5-11
IPT/CT

3
IPT/CT

3
IPT/CT
NNT

IPT/CT
NNT

IPT/CT
NNT

Random 
iterations

1
1.98

2.034
3.852
4.42
8.458
8.62

47.768
10.318
50.964
12.376
47.176
16.278
16.446

1072.03
16.554

1119.62
1080.77
83699.1
16.752
1037.8
16.752

84072.5
16.752

80568.2
16.752

79940.3

Key:
IPT Initial point traversed
NNT Node not traversed
CT Coincidentally traversed

Table 6.36 - The number of iterations taken by HATS and random testing for each of
TRIANGLE_COMPLETE's nodes

6.7 Overall Discussion

Table 6.37 shows the overall branch coverage for each procedure and all procedures.

Procedure

TRIANGLE 
TRIANGLE_2 

RIGHT_ANGLE_CHECK 
TRIANGLE_COMPLETE

All procedures

Branches 
in procedure

12 
8 
6 
26
52

Branches covered out 
of total for all runs

36/36 
24/24 
16/18 
71/78 

147/156

Branch 
coverage %

100 
100 
89 
91 
94

Table 6.37 - HATS branch coverage on the triangle related procedures

With RIGHT_ANGLE_CHECK 100% coverage was not achieved as the BF pursued 
a boundary not knowing that no solutions exist upon it. With 
TRIANGLE_COMPLETE, full coverage was not achieved as the BF was adversely 
affected by upper-deviations and the BF pursued boundaries not knowing that no 
solutions exist upon it or in the direction being followed. Clearly, increasing the 
number of branches and non-linear predicates, especially involving equality, 
increases the number of iterations required. HATS finds it particularly difficult when
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non-linear equality predicates are in the lower region of a procedure's significant 
control flow tree. The performance of each heuristic is now discussed.

6.7.1 Direct Assignment Heuristic

The DA worked well without any problems and generated some useful points which 
were used by the LP and BF.

6.7.2 Linear Predictor Heuristic

Generally the LP worked well. However when upper-deviations were produced, this 
caused some difficulty, resulting in additional iterations being used and may even 
cause the LP to terminate. More careful management of the closest point to the 
expected boundary is required. The LP's termination criteria worked well, operating 
at the earliest time and not while there was potential for a solution to be found. The 
LP has made efficient use of iterations due to its direct nature of solution location and 
effective termination criteria. However, better handling of upper-deviations is 
required.

6.7.3 Boundary Follower Heuristic

When possible the BF has accurately followed a boundary. However, the 
RIGHT_ANGLE_CHECK and TRIANGLE_COMPLETE procedures have raised a 
number of concerns. The BF can follow a boundary in the opposite direction to a 
solution or where no solution exists. This indicates two areas for improvement. 
First, determining a direction to follow a boundary. Second, introducing termination 
criteria to ensure that boundary following continues only when there is a good chance 
of a solution existing. Related to this second point is the ability to prevent such a 
boundary from being followed. It should not be the responsibility of the node 
iteration threshold to play a dual role and operate as a secondary heuristic termination 
criterion as well as an upper iteration limit.
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7 The Remainder and Linear Search Problems

7.1 Introduction

This chapter introduces two new testing problems to HATS; loops and the composite 
data type, arrays. Two procedures are used as vehicles. The first, a remainder 
procedure, has a number of loops and the second, a linear search procedure, combines 
both a loop and an integer array. These new problems and the enhancements to 
HATS in order to test them are described. The DA, LP and BF heuristics are applied 
to both the procedures. Results and discussion are presented for branch and mutation 
testing of the remainder procedure and branch testing of the linear search procedure.

7.2 The REMAINDER Procedure

The REMAINDER procedure (figure 7.1) calculates the remainder after an integer 
division. REMAINDER has two integer input variables; A, the dividend, and B, the 
divisor. The single output variable, REM, is integer and is the remainder after A has 
been divided by B. All conditions within the procedure have a linear relationship 
with the input variables. There are 18 branches in the procedure and the control flow 
tree (figure 7.2) has 19 nodes, with the longest path consisting of 6 nodes. The 
changes to the control flow tree necessary to represent loops are described in the next 
section.
Table 7.1 shows the six cases handled in the procedure. Cases 3 to 6 are handled by 
the four loops in the procedure, where the remainder is computed. Case 2, division 
by zero, has been simplified to ease the management of exceptions.

Case
1
2
3
4
5
6

Value of A Value of B
0

/=o
-ve
-ve
+ve
+ve

any value
0

-ve
+ve
-ve
+ve

Valid
yes
no
yes
yes
yes
yes

Value of REM Handled by node(s)
0
0

remainder
remainder
remainder
remainder

3
5

12,13
14,15
16,17
18,19

Table 7.1 - The 6 cases handled in the REMAINDER procedure

109



Chapter 7 The Remainder and Linear Search Problems

- Control flow tree node number 
r- Line number
I r- Ada statements

Y Y
1 procedure REMAINDER ( A, B in INTEGER; REM out INTEGER) is
2 N,R : INTEGER;
3 begin

l[-4 R:=0;
5 N:=0;

L 6 if ( A = 0 ) then
3C 7 REM:=0;

8 else
2C 9 if (B = 0) then
5C 10 REM:=0;

II else
4C 12 if ( A > 0 ) then
7C 13 if(B>0)then

14 R:=A;
15 whUe (( A - N ) >= B ) loop
16 N:=N + B;
17 R:=A-N;
18 end loop;
19 else

r 20 R:=A;
L 21 whUe ((A + N) >= abs (B )) loop

22 N:=N + B;
23 R := A + N;
24 end loop;
25 end if;
26 else

6C 27 if ( B > 0 ) then
28 R:=A;
29 while (abs ( A + N ) >= B) loop
30 N := N + B;
31 R:=A+N;
32 end loop;
33 else

If 34 R:=A;
L 35 while (( A - N) <= B) loop

C 36 N := N + B;
37 R:=A-N;
38 end loop;
39 end if;
40 end if;
41 end if;
42 end if;
43 REM := R;
44 end REMAINDER;

Figure 7.1 - The REMAINDER procedure
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Key to nodes 12 -19

C1:((A-N)<=B) 
C2 : ( abs ( A + N ) >= B ) 
C3 : ((A + N ) >= abs ( B )) 
C4 : ((A - N ) >= B )

: True
: False
: Loop entry
: Loop non-entry

Figure 7.2 - Control flow tree of the REMAINDER procedure

7.3 Techniques for Testing LOOPS

Several issues must be considered before loops can be tested in HATS. Exactly what 
constitutes branch testing of loops must be established. A loop has two branches; one 
where control enters the loop and iterates the loop one or more times, and the other 
where control does not enter the loop, hence the loop iterates zero times. Therefore, 
to satisfy branch testing, a point should cause the loop's condition to be true upon its 
first evaluation, and a further point should cause the condition to be false upon its 
first evaluation. The order of entry and non-entry to a loop does not matter. 
Although the present program model, a control flow (binary) tree, does not allow any 
cycles, it is possible to represent a loop's branches as nodes (figure 7.2). A circular 
node represents entry to the loop and the sequence of non-control flow affecting 
statements the loop contains. Statements within the loop are shown as nodes 
emanating from the loop's circular node. A square node represents non-entry to the 
loop. This node's number is not shown in the procedure text (figure 7.1) since the 
jump it corresponds to is not explicitly shown in the procedure text. 
Instrumenting loops presents two distinct concerns. Firstly, if data were recorded on 
every iteration of a loop then this would result in significantly more data being stored 
in the program model. However, this is unnecessary as the heuristics only require 
data to be recorded when control first encounters the loop. The second concern is 
recording non-entry to the loop. Unlike an "if statement without an "else" where the 
"else" can be inserted for instrumentation purposes to record the false branch, this is
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not possible with a loop. The solution to these two concerns is to control when the 
instrumentation works. The instrumentation will only "fire" if a Boolean variable, or 
instrumentation switch, is true. Figure 7.3 shows how one of the while loops in the 
REMAINDER procedure is instrumented.

REMAINDER code
- Control flow tree node number 

Line number
Ada statements

Code modelled

i- .Line iu
34 R := A;
35 while((A-N)<=B)loop

8 [
12|~36 N:=N + B;

L 37 R := A - N;
38 end loop;

Code instrumented

Loop entry 
instrumentation

Loop non-entry 
instrumentation

-JO-f

..INST12, INST13,..: BOOLEAN := TRUE; 
begin

34 R := A;
35 while (( A - N ) <= B ) loop 

iflNSTllthen 
UPDATE_LEFT_NODE (..); 
INST12 := FALSE; EMST13 := FALSE; 

end if; 
N:=N+B; 
R:=A-N; 

38 end loop;
ifINST13then

UPDATE RIGHT NODE (..); 
end if;

Figure 7.3 - The modelling and instrumentation of a loop

All instrumentation switches are initialised to true. The instrumentation to record 
entry to the loop is placed as the first statements inside the loop. If control enters the 
loop, the instrumentation (INST12) will fire which updates the control flow tree and 
sets the switches for this instrumentation (INST12) and the instrumentation for non- 
entry to the loop (INST13), to false. This ensures that the control flow tree is 
updated once when the loop is entered and is not updated by the loop non-entry 
instrumentation when the loop stops iterating. The instrumentation for non-entry to 
the loop does not affect any instrumentation switches.
The program model proposed above could be considered as a simplification of the 
exemplar-path tree model for structural testing (Cimittle and Carlini, 1991).
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7.4 REMAINDER Branch Testing Experiments 

7.4.1 HATS Experimental Set Up

Five initial points have been hand selected in the range ± 20 for both input variables 
(table 7.2).

HATS 
run
Rl
R2
R3
R4
R5

Input variable 
A B
-6
19

-18
10
3

-3
.4
5
3
10

Table 7.2 - REMAINDER procedure's initial points

The points were selected so that each loop is covered by at least one point. This 
enables the heuristics to consider all the loops over the five runs. The node iteration 
threshold is 500 and the LP and BF consider input variables in the order A first then 
B,second.

7.4.2 Run Rl

Table 7.3 contains the traversal results for this run.

Initial point path 1,2,4,6,8,12
Nodes considered and traversed

Node Heuristic
3 DA
5 DA
11 DA
15 LP
19 LP

Iters
3
3
3
8
3

Coincidental nodes
13,7,10,17

9,14
16,18

Table 7.3 - Run Rl traversal results

3
2
1
0
-1

5
6
7
*
*
-8

4
5
6
*
*
-7

3
4
5
*
*
-6

2
3
4
*
*
-5

1
2
3
*
*
-4
A

0
1
2
*
*
-3

-1
0
1
*
*
-2

-2
-1
0
*

*

-1

*
*
*
*
*
0

*
*
*
*
*

1

Figure 7.4 - Run Rl partial input space : LP considering node 15

On node 15, the LP starts from point (-6, 1), generated by the DA on node 5, and was 
unable to locate a solution increasing variable A (figure 7.4). The closest point the 
LP located (-1, 1), is the corner point of the domain satisfying node 9 (node 15's 
parent). From this point, B is increased to locate the solution point (-1, 2).

113



Chapter 7 The Remainder and Linear Search Problems

On node 19, the LP takes three iterations over finding a solution point in the 
Determine-linearity phase.

7.4.3 RunR2

Table 7.4 contains the traversal results for this run.

Initial point path 1,2,4,7,10,16
Nodes considered and traversed

Node Heuristic
3 DA 
5 DA 
9 DA 
15 LP 
19 LP

Iters
3 
3 
3 
2 
8

Coincidental nodes
6,8,13,17 

11,18 
12,9,14

Table 7.4 - Run R2 traversal results

Node 15's solution point was found during the LP's Determine-linearity phase. On 
node 19, the LP starts from point (19, 1), generated by the DA on node 5, and was 
unable to locate a solution decreasing variable A (figure 7.5). The closest point the 
LP located (1, 1) is the corner point of the domain satisfying node 11 (node 19's 
parent). From this point, B is increased to locate the solution point (1,2).

3
2
1
0
-1

*
*
*
*
*
-1

*
*
*
*
*
0

-2
-1
0
*
*
1
A

-1
0
1
*
*
2

0
1
2
*
*
3

Figure 7.5 - Run R2 partial input space : LP considering node 19 

7.4.4 Run R3 

Table 7.5 contains the traversal results for this run.

Initial point path
Nodes considered

Node
3
5
10
13
"
17"

Heuristic
DA
DA
DA
LP
BF
LP
BF

Iters
3
3
3
8
6
3
6

1,2,4,6,9,14
and traversed

Coincidental nodes
15,7,11,19

12,8
16,18

Table 7.5 - Run R3 traversal results
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On two nodes the LP was unsuccessful, resulting in the application of the BF. This 
was unexpected as the REMAINDER has only linear nodes. On node 13, the LP 
starts from point (-18, -1), generated by the DA on node 5, and was unable to locate a 
solution increasing variable A (figure 7.6) since an upper-deviation is produced. The 
closest point the LP located (-1, -1) is the corner point of the domain satisfying node 
8 (node 13's parent). From this point, variable B is increased producing an upper- 
deviation which causes the LP to terminate.
BF starts from the point (-1, -1) and is unable to locate a closer point in the Obtain-a- 
close-point phase since two upper-deviations were produced. During the Determine- 
initial-follow-and-cross-details phase a solution is located at (-1, -2).

B
1
0-1
-2

*
*
-2
-1
-3

*
*
-1
0
-2

*
*
0
1

-1
A

*
*
*
*
0

*
*
*
*
1

Figure 7.6 - Run R3 partial input space : LP and BF considering node 13

On node 17, the LP starts from point (1, -1), generated by the DA on node 10, and 
terminates after producing upper-deviations modifying both input variables. The 
closest point located by the LP is (1, -1) (figure 7.7). The BF is unable to locate a 
closer point and locates a solution point (1, -2) during the Determine-initial-follow- 
and-cross-details phase.

B
1
0-1
-2
-3

*
*
*
*
*
-1

*
*
*
*
*
0

*
*
0-1
-2
1
A

*
*
1
0
-1
2

*
*
2
1
0
3

Figure 7.7 - Run R3 partial input space : LP and BF considering node 17 

7.4.5 RunR4 

Table 7.6 contains the traversal results for this run.
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Initial point path
Nodes considered

Node
3
5
8
13
"

17
M

Heuristic
DA
DA
DA
LP
BF
LP
BF

Iters
3
3
3
2
6
8
6

1,2,4,7,11,18
and traversed

Coincidental nodes
6,9,15,19

10,16
12,14

Table 7.6 - Run R4 traversal results

On node 13, the LP starts from point (-1, -1), and produces upper-deviations 
modifying both input variables, then terminates. The BF takes over, starting from 
point (-!,-!) and finds a solution point at (-1, -2).
On node 17, the LP starts from point (10, -1), generated by the DA on node 5, and 
terminates after producing upper-deviations modifying both input variables. The 
closest point the LP could locate is (1, -1). The BF does not locate a closer point to 
start from and goes on to locate a solution point at (1, 2).

7.4.6 RunR5

Table 7.7 contains the traversal results for this run.

Initial point path
Nodes considered

Node
3
5
8
13

11
17
"

Heuristic
DA
DA
DA
LP
BF
LP
BF

Iters
3
3
3
2
6
8
6

1,2,4,7,11,19
and traversed

Coincidental nodes
6,9,15

10,16,18
12,14

Table 7.7 - Run R5 traversal results

The consideration of node 13 follows exactly the same operational pattern as the 
same node in the previous run (R4). The LP starts from point (-!,-!) and the BF 
locates a solution point at (1, 2).
On node 17, the LP starts from point (3, 1) and terminates after producing upper- 
deviations on both input variables. The closest point the LP could locate is (1, -1). 
The BF is unable to locate a closer point to start from and locates a solution point (1, 
-2) during the Determine-initial-follow-and-cross-details phase. The BF's operational 
pattern is exactly the same as in runs R3 and R4.
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7.4.7 Overall Discussion for the HATS Branch Testing Runs

Two phenomena have been observed in the HATS branch testing runs. Firstly, 
repeated heuristic operation patterns and secondly, the LP's inability to locate a 
solution, despite being close to one.
The REMAINDER'S input space is divided into 10 partitions (figure 7.8). The first 
two partitions correspond to the first two cases outlined in table 7.1. Cases 3 to 6 are 
defined by the REMAINDER'S four while loops and are shown in figure 7.8 as 
quadrants. Each while loop's condition divides each quadrant into two. One half for 
entry to the corresponding while loop and one for non-entry, making the remaining 8 
input space partitions. In other words, each partition corresponds to the path to each 
leaf node in the control flow tree (figure 7.2).

1.
B 0'-1'

-n

\
Case 4

\

Case 3

Case 6

\
Case 5

\
-101 +n 

A

Figure 7.8 - REMAINDER procedure's input space

When the DA is applied to nodes 2, 3, 4 or 5, values of -1, 0, and 1 are produced for 
variable A or B. The execute point traverses the considered node and is just inside 
one of the quadrants where control arrives at a while loop. If one of the loop's nodes 
is untraversed then this node is considered by the LP. The LP converges on the 
corner point since it modifies one input variable at a time. Figures 7.4 to 7.7 show 
that the corner point has a predicate value of 0. When the LP has located a quadrant's 
corner point and the considered node remains untraversed, Linearity-determination 
may either locate a solution point or cause an upper-deviation. The outcome is 
dependent upon which node is considered (the quadrant currently in) and which input 
variable is about to be increased by 1. A solution point was located in run Rl, node 
15 and run R2, node 19. However, in other runs, i.e. run R3, nodes 13 and 17, an 
upper-deviation was produced resulting in the LP's termination. The BF takes over 
and does not find solution points in the Obtain-a-close-point phase, but does in the 
Determine-initial-follow-and-cross-details phase. This is because the corner point
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was used as the central point and the phase increases and decreases each input
variable.
Repeated heuristic operation patterns have been observed due to the heuristics using
the same points in different runs. Because the heuristics are deterministic the same
actions will be taken and points generated.
The two phenomena identified are due to the REMAINDER'S input space and the
points produced by the DA.

7.4.8 Comparison of HATS with Random Testing on the 
REMAINDER Procedure

The random testing range for each input variable is ± 20, which is the same as 
HATS's initial point selection range. Each random testing run continues until all 
nodes are traversed. The number of iterations taken to traverse each node is 
recorded. The average iterations per node, over 500 runs, is calculated and used. 
Results for HATS are taken from runs Rl to R5.

Node

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

HATS
iterations

IPT
IPT/CT

3
IPT/CT

3
IPT/CT
IPT/CT

3
3
3
3

IPT/CT
8-14

IPT/CT
2-8

IPT/CT
9-14

IPT/CT
3-8

Random 
iterations

1
1.03

43.666
1.058
42.20
2.096
2.272
4.316
4.308
4.404
4.21
7.88

8.842
7.762
9.314
8.18
9.402
7.906
8.652

Key:
IPT Initial point traversed
NNT Node not traversed
CT Coincidentally traversed

Table 7.8 - The number of iterations taken by HATS and random testing for each of
REMAINDER'S nodes

Table 7.8 shows that nodes 2, 4, 6 and 7 have the largest solution domain and are 
consequently the easiest to traverse. Nodes 3 and 5 have the smallest solution 
domains in the REMAINDER procedure. On these nodes, HATS takes 3 iterations to 
random's 43 iterations (approximately). On nodes 8 to 11 the iterations taken by both 
HATS and random are similar. Nodes 12 to 19 have similar domain sizes. With 
HATS the nodes with the slightly larger solution domains (entry to loop) are covered
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by the initial point or by coincidental traversal. Again, the iterations taken by both is 
similar.

7.5 Mutation Analysis of the REMAINDER Procedure

Budd (1981) outlines four levels of mutation analysis; statement, predicate, domain 
and coincidental correctness; levels 1 to 4 respectively. Levels 1 and 2 were applied 
to the QUADRATIC procedure (chapter 4). However, it is unnecessary to produce 
level 1 (statement analysis) mutants as this is achieved by HATS's branch testing 
criterion.
Predicate analysis consists of three mutation operators; absolute operator insertion, 
relational operator alteration and predicate alteration by a small amount. To further 
reduce the number of mutants, only predicate alteration by a small amount will be 
used. This mutation operator produces mutants that are the hardest of the three to 
reveal since it causes only a small change in the location of input space boundaries. 
The other two mutation operators generally have a more substantial effect on the 
input space, which is easier to detect.

7.5.1 Mutation Experiments

Applying the mutation operator, predicate alteration by a small amount, to the 
REMAINDER procedure produces 38 mutants (table 7.9).
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Mutant

RM1
RM2
RM3
RM4
RM5
RM6
RM7
RM8
RM9

RM10
RM11
RM12
RM13
RM14
RM15
RM16
RM17
RM18
RM19
RM20
RM21
RM22
RM23
RM24
RM25
RM26
RM27
RM28
RM29
RM30
RM31
RM32
RM33
RM34
RM35
RM36
RM37
RM38

Line no

6
6
9
9
12
12
13
13
15
15
15
15
15
15
21
21
21
21
21
21
21
21
27
27
29
29
29
29
29
29
29
29
35
35
35
35
35
35

Original 
condition

(A=0)
"

(B=0)
"

(AX))
"

(B>0)
"

((A-N)>=B)11
"
"
"
11

((A+N)>=abs(B)11
"
M
M

"

"

"

(B>0)
"

(abs(A+N)>=B)
11

"

11

"

"

"

"

((A-N)<=B)"
"
11
"
"

Mutated Simplified 
condition mutation
(A-l)=0 (A=l)
(A+l)=0 (A=-l)
(B-l)=0 (B=l)
(B+l)=0 (B=-l)
(A-l)>0 (A>1)
(A+l)>0 (A>-1)
(B-l)>0 (B>1)
(B+l)>0 (B>-1)

((A-1)-N)>=B
((A+1)-N)>=B
(A-(N-1))>=B
(A-(N+1))>=B
(A-N)>=(B-1)
(A-N)>=(B+1)

((A-l)+N)>=abs(B)
((A+l)+N)>=abs(B)
(A+(N-l))>=abs(B)
(A+(N+l))>=abs(B)
(A+N)>=abs(B-l)
(A+N)>=abs(B+l)
(A+N)>=(abs(B)-l)
(A+N)>=(abs(B)+l)

(B-l)>0 (B>1)
(B+l)>0 (B>-1)

abs((A-l)+N)>=B
abs((A+l)+N)>=B
abs(A+(N-l))>=B
abs(A+(N+l))>=B
(abs(A+N)-l)>=B
(abs(A+N)+l)>=B
abs(A+N)>=(B-l)
abs(A+N)>=(B+l)

((A-1)-N)<=B
((A+1)-N)<=B
(A-(N-1))<=B
(A-(N+1))<=B
(A-N)<=(B-1)
(A-N)<=(B+1)

Identical 
to

Original

Original
RM12, RM14
RM11.RM13
RM10.RM13
RM9,RM14

RM10,RM11
RM9.RM12
RM17.RM22
RM18.RM21
RM15.RM22
RM16.RM21

RM16.RM18
RM15.RM17

Original
RM27
RM28
RM25
RM26
RM32
RM31
RM30
RM29

RM36, RM38
RM35, RM37
RM34, RM37
RM33, RM38
RM34, RM35
RM33, RM36

Used

Y
Y
Y
Y
Y
N
Y
N
Y
Y
N
N
N
N
Y
Y
N
N
Y
Y
N
N
Y
N
Y
Y
N
N
Y
Y
N
N
Y
Y
N
N
N
N

Table 7.9 - Mutants produced from the REMAINDER procedure using the mutation 
operator, predicate alteration by a small amount

Of these 38 mutants, 29 are classified as identical. Of the 29 identical mutants, 26 
are identical with some other mutant produced and 3 are identical (or equivalent) 
with the original REMAINDER procedure. Mutants 6, 8 and 24 are equivalent since 
the values of A and B required to reveal them would not take control to the mutated 
statement. Control is deviated above the mutation, hence the necessary output values 
cannot be produced. Of the 38 mutants produced, 19 are to be used for mutation 
analysis of the REMAINDER.
For each of the 19 runs, a single, randomly generated initial point is used. The 
random values are generated in the range ± 100 for each input variable. The node 
iteration threshold is 500 and the input variables are considered in the order A first, 

then B.

120



Chapter 7 The Remainder and Linear Search Problems

To speed up and simplify the mutation testing process, output from a mutant is not 
compared with output from the original procedure. A substitute for the original is 
used; the intrinsic Ada "rem", remainder function. When the mutant's output is 
produced the Ada "rem" function is called with the same point used on the mutant. 
The mutant's output and the Ada "rem" function's output is compared. If there is a 
difference, it is reported.

7.5.2 Mutation Analysis Results and Discussion

Table 7.10 shows the results obtained.

Mutant

RM1
RM2
RM3
RM4
RM5
RM7
RM9
RM10
RM15
RM16
RM19
RM20
RM23
RM25
RM26
RM29
RM30
RM33
RM34

Initial point 
A B

-31
91
9

-77
88
69
-29
-49
80
82
76
-85
-61
-79
-36
-37
-52
-31
72

93
21
-98
-14
-68
-34
18
-59
52
84
4
72
61
-57
100
-81
67
-52
-10

Result

Difference
Difference

Stuck in loop
Stuck in loop
Stuck in loop
Stuck in loop

Difference
Difference
Difference
Difference
Difference
Difference

Stuck in loop
Difference
Difference
Difference

Stuck in loop
Difference
Difference

If Revealed:
Heuristic used

DA
DA
DA
DA
LP
DA
DA
DA
DA
DA
DA
DA
DA
DA
DA
DA
DA
DA
DA

Revealing point 
A B
1

-1
9

-77
1

69
1
1

80
82
76

1
-61
-79
-36
-37
-52
-31
-1

93
21
0
0
1
1
1
1

-1
-1
-1
-1
1
1
1
1
1

-1
-1

Table 7.10 - Results from mutation testing the REMAINDER procedure

In 6 of the runs, control became stuck in one of the REMAINDER'S four loops. 
Consequently, there is no output and nothing to compare with the Ada intrinsic 
remainder function. However, we can assume, and this is supported by Abbot 
(1986), that if a mutant does not terminate, it can be considered revealed. 
One hundred percent mutation adequacy is achieved using one HATS run for each 
initial point. The DA revealed 18 of the 19 mutants (95%). The DA achieves this 
through generating boundary located points for some of the 10 predicates it can be 
applied to. These predicates control nodes 2 to 10 in figure 7.2. Boundary located 
points reveal mutants produced by the mutation operator, predicate alteration by a

small amount.
Considering the original condition controlling nodes 6 and 7 (A > 0) and its mutation 
(A > 1), it is apparent that variable A requires a value of 1 for the mutant to be 
revealed. In mutant RM5's run, the DA generated the point (1, -68) on node 3, but no
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difference in output was reported. Instrumentation in the mutant revealed that an 
incorrect path had been taken but the correct output was produced. Later, on node 
19, the LP generated the point (1,1) which revealed mutant RM5.

7.6 The LINEAR SEARCH Procedure

The LINEAR_SEARCH (figure 7.9) performs a sequential search for a given integer 
value on a list of integer values. If the given value is located, its location in the list is 
returned, otherwise, the value 0 is returned. The procedure's control flow tree is 
shown in figure 7.10.

- Control flow tree node number

{ Line number 
p Ada statements 

Y
1 procedure LINEAR_SEARCH

( A in INTARRAY; X in INTEGER; Y out INTEGER ) is
2 I: POSITIVE;
3 begin 

IP 4 I:=l;
L S while (I <= A'LAST) and then (A(I)/= X ) loop 

2C 6 I:=I + 1;
7 end loop;
8 if (I <= A'LAST) then
9 Y:=I;
10 else
11 Y:=0;
12 end if;
13 end LINEAR_SEARCH;

Figure 7.9 - The LINEAR_SEARCH procedure

Figure 7.10 - Control flow tree of the LINEAR_SEARCH procedure

The LINEAR_SEARCH procedure has 2 input variables. Variable A, is a five 
element integer array and contains the values to be searched. Integer variable X 
contains the value to be searched for. The only output variable is integer variable Y 
which stores the index of X where Y is located, or 0 otherwise. 
The Ada code (figure 7.9) has two conditional statements, however, only one 
conditional statement is modelled in the control flow tree (figure 7.10). This is due 
to the "if statement condition at line 8 having no direct data flow influence from the 
input variables. Hence, the branches it controls cannot be affected by a heuristic.
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These branches are controlled by the number of iterations the while loop takes, which 
is affected by a heuristic. Consequently, this "if statement is not represented in the 
control flow tree.

7.7 Techniques for Testing Arrays

The techniques used are the same as those used on scalar variables. Each element is 
treat the same as a scalar variable. Since HATS is a dynamic testing system it does 
not suffer from the array reference difficulties that symbolic execution has (Coward, 
1988). Instrumentation has access to actual variable values. By monitoring a 
predicate value, a heuristic can determine which element of an array influences the 
considered predicate. The instrumentation for a scalar variable condition and an 
array variable condition are compared in figure 7.1 1.

if(A=B)then if ( A(I)=B ) then
PV = (A-B); PV = (A(I)-B);
UPDATE_LEFT_NODE (..,PV,..); UPDATE_LEFT_NODE (..,PV,..);

CISC

PV = ( A-B )• PV =
UPDATE_RIGHT_NODE (..,PV,..); UPDATE_RIGHT_NODE (..,PV,..);

end i'f; end If5

Where A and B are integer input variables Where A is an integer array input variable
and, B and I are integer input variables

Instrumentation for a Condition Instrumentation for a Condition 
Involving Integer Variables Involving an Integer Array and an

Integer Variable

Figure 7.11- Comparison of instrumentation for scalar variable and array variable
conditions

The LINEAR_SEARCH has a loop that is controlled by an equality operator between 
an array variable, A, and a scalar variable, X. To satisfy a loop's branches, control 
must enter the loop on one run and on another run, must not enter the loop. This 
corresponds to 1 or more loop iterations and 0 loop iterations. Therefore branch 
satisfaction is achieved through the values stored in the first element of array A and 
variable X. The remaining elements in the array have no influence over branch 
coverage for the loop concerned. However, they could affect additional statements 
placed inside the loop and statements before and after the loop.
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7.8 LINEAR SEARCH Branch Testing Experiments

7.8.1 HATS Experimental Set Up

Five initial points have been hand selected in the range ±100 for each input variable. 
A concern with automatic test data generation is its management of arrays, since 
effort may be wasted on non-influential input variables. To illustrate how HATS 
fairs, the order input variables are considered in has been modified. The initial points 
and the order input variables are to be considered in is shown in table 7.11. The 
previous section (7.7) pinpointed the influential variables X and A(l).

Run

LSI
point
LS2
point
LS3
point
LS4 
point

Input variables and values
Considered first

X
12
X
41

A(l) 
41

A(5) 
41

A(l) 
1

A(l) 
-53

A(2) 
-53

A(4) 
-43

A(2) 
4

A(2) 
-35

A(3) 
-35

A(3)
82

A(3) 
3

A(3) 
-37

A(4) 
-37

A(2) 
-21

Considered last
A(4) 

5
A(4) 
91

A(5) 
91

A(l) 
-93

A(5) 
3

A(5) 
92
X
92
X
27

Table 7.11- LINEAR_SEARCH's initial points and the order heuristics will consider
input variables

The two influential variables will be the first two considered by heuristics in runs 
LSI and LS2. In run LS3, A(l) will be considered first and X, last. In run LS4, the 
two variables will be considered last. The node iteration threshold is 500.

7.8.2 Run LSI

The initial point traversed the path 1, 2 (figure 7.10) and had a node 2 predicate value 
of -11. On node 3, the LP found a solution point after 6 iterations (table 7.12). 
There were no problems over identifying which input variables were influential. 
Only variable X was modified, all other input variables remained constant.

Iter

1
2
3
4
5
6

Phase

DL
DL
DL
DL
PP
PP

Generate 
value X

12
12
12
12
1
2

Execute 
value X

13
11
14
15
2
1

Trav 
effect

ST
ST
ST
ST
ST
NT

Pred 
value
-12
-10
-13
-14
-1
0

Next 
action

-X
+x
+x
PP
PP

succ

Table 7.12 - Run LSI excerpt: LP considering node 3, modifying variable X; array 
A stayed constant with elements 1 to 5 having values 1, 4, 3, 5 and 3 respectively
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7.8.3 RunLS2

The order input variables were considered is the same as the previous run, LSI. The 
initial point traversed the path 1,2. On node 3, the LP modified the first variable X. 
A solution point was located at (-53, -53, -35, -37, 91, 92) for variables X and A(1..5) 
respectively. The LP took 6 iterations.

7.8.4 Run LS3

Although the same point is used as run LS2, the allocation of values to variables has 
changed and so has the order variables are considered in. The initial point traversed 
the path 1,2. On node 3, the LP modified the first element of array A. A solution 
point was located at (92, -53, -35, -37, 91, 92), for variables A (1..5) and X 
respectively, after 6 iterations.

7.8.5 Run LS4

This run considers the hardest scenario for HATS, where the influential variables, 
A(l) and X, are not considered until last. The initial point traversed the path 1, 2, 
producing a predicate value of -120. On node 3, the LP first considered variable 
A(5). Table 7.13 shows there is no change in the predicate value. This enables the 
LP to detect a non-influential input variable. The same occurred with the next three 
variables considered, A(4), A(3) and A(2).

Iter

1
2 
3 
4

Generate 
value

41 
41 
41 
41

Execute 
value

42 
40 
43 
44

Trav 
effect

ST 
ST 
ST 
ST

Pred 
value
-120 
-120 
-120 
-120

Next 
action
-A(5) 
+A(5) 
+A(5) 
TNV

Table 7.13 - Run LS4 excerpt: LP considering node 3, modifying variable A(5) in 
the Determine-linearity phase; array A (1..4) and X stayed constant having values -

93, -21, 82, -43 and 27 respectively

Iter

17
18
19
20
21
22

Phase Generate 
value A( 1 )

DL
DL
DL
DL
PP
PP

-93
-93
-93
-93
27
26

Execute 
value A(l)

-92
-94
-91
-90
26
27

Trav 
effect

ST
ST
ST
ST
ST
NT

Pred 
value
-119
-121
-118
-117

-1
0

Next 
action
-A(l)
+A(1)
+A(1)

PP
PP

succ

Table 7.14 - Run LS4 excerpt: LP considering node 3, modifying variable A(l); 
array A (2..5) and X stayed constant having values -21, 82, -43, 41 and 27

respectively
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After 16 iterations the LP considered the first influential variable A(l). Modifying 
this variable, the LP located a solution point at (27, 27, -21, 82, -43, 41) for variables 
X, A (1..5) respectively, after 22 iterations (table 7.14).

7.8.6 HATS Discussion

The LP ensured that complete branch coverage was achieved in every run. There 
was no impact from upper-deviations since they could not occur. A concern with 
arrays as input variables is the ability to identify which elements are influential in the 
considered predicate. The LP took only 4 iterations over a non-influential input 
variable and concentrated on influential input variables when they were located.

7.8.7 Comparison of HATS with Random Testing on the 
LINEAR SEARCH Procedure

The random testing range for each input variable is ± 100, which is the same as 
HATS's initial point selection range. Each random testing run continues until all 
nodes are traversed. The number of iterations taken to traverse each node is 
recorded. The average iterations per node, over 500 runs, is calculated and used. 
Results for HATS are taken from runs LS1 to LS4.

Node

1
2 
3

HATS 
iterations

IPT 
IPT
6-22

Random 
iterations

1 
1.002 

210.776

Key:
IPT Initial point traversed
CT Coincidentally traversed

Table 7.15 - The number of iterations taken by HATS and random testing for each of
the LINEAR_SEARCH's nodes

Node 2 has a very large solution domain. This is shown in table 7.15 by the number 
of iterations random testing takes. On node 3, HATS makes a good improvement 
over random.
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8 Conclusions and Further Work

8.1 Introduction

This chapter draws conclusions from the research presented in this thesis. The 
limitations of the approach presented are discussed, and some suggestions on how 
they may be overcome and how the approach may be extended are given.

8.2 Conclusions

8.2.1 HATS is an Improvement Over Random Testing

The random test data generation effort ( number of points generated) required to 
traverse a node is dependent upon the size and form of the node's solution domain. 
The effort HATS must expend to traverse a node is dependent upon the size and form 
of the node's solution domain, the form of the partial path function to the node and 
the number of branches in the partial path to the node.
The following properties have been identified to be present when HATS takes less 
effort than random testing.
• When a considered node's domain occupies, on average, 9% or less of the test 

software's input space.
• When the considered node's partial path function is linear.
• When the value to satisfy the considered node's predicate can be determined.
• When a node's domain is very small and has frequently located points along a 

single boundary.
• When a solution point is local to the current search and can be located in a co 

ordinate direction.
The above list requires explanation. The considered node's domain size as a 
percentage of the test software's input space, where HATS will typically take less 
iterations then random testing, is calculated as follows. From all non-mutation runs, 
the size of the considered nodes' domains, as a percentage of input space, where 
HATS took less iterations than random to traverse, is averaged. On some nodes the 
difference in effort can be marginal and others, considerable. In practice, the node's 
domain size can be much larger; up to 48%. This is due to initial point traversal or 
coincidental traversal of the node. Also in practice, the node's domain size can be 
considerably smaller than 9%. This has only occurred when the node's domain is 
located on a notional boundary and HATS has failed to locate a solution before the 
node iteration threshold is reached. Random generation is able to locate a solution, 
but using a very large number of iterations.
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Due to the nature of software, the items in the above list cannot be regarded in 
isolation; there is a relationship between them. Determining when HATS should be 
an improvement over random could involve one or more of the items. These 
observations have been made through the use of the four heuristics, DA, AV, LP and 
BF. Should other heuristics be used then the properties that help HATS to improve 
on random testing may change.

8.2.2 Domain Boundaries Can be Used as a Guide to Solution Points

When solution points to the considered node are sparsely located on a domain 
boundary, the boundary can be used as a guide to them. The Boundary Follower 
heuristic has demonstrated this. A spin-off from boundary following is that only 
boundary located points are generated (boundary value test data).

8.2.3 Control Deviations From Partial Paths to a Considered Node 
Have a Detrimental Affect on Heuristic Performance

When a heuristic's operation depends on the comparison of predicate values, control 
deviations from the one or more partial paths to a considered node have a detrimental 
affect on the heuristic's performance. This affect is not to be under-estimated; it can 
be significant and cause a heuristic to fail; in occasional cases, even when a solution 
point is very close. When a control deviation from the partial path to the considered 
node occurs the heuristic is aware of this but there is no predicate value to compare 
with previous predicate values. Hence, the heuristic must take some appropriate 
action to cause control to resume execution through the considered node's parent 
node and produce a predicate value. This action upsets the normal flow of the 
heuristic and uses iterations.
The potential for upper-deviations is related to the number of branches above the 
considered node and the partial paths' function.

8.2.4 Termination Criteria Based on Promising Effects are Effective 
and Efficient

It is important that a heuristic's termination criteria are effective otherwise many 
iterations can be wasted or a search cut short before a solution is found. The Linear 
Predictor's termination criteria, which are based on promising effects, have been 
shown to be effective and efficient.

8.2.5 Coincidental Traversal Can be Considerable
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Coincidental traversal occurs in two cases. First, when control is following a path 
already traversed and deviates at some branch, traversing a previously untraversed 
node. If the considered node has successor nodes that are untraversed, control may 
traverse these. Second, when a considered node is traversed and control continues to 
traverse previously untraversed nodes that are successors of the considered node. 
The two cases are related through the traversal of previously untraversed successor 
nodes.
Coincidentally traversed nodes tend to be the nodes that would only require a small 
amount of heuristic effort to traverse; these are easy nodes. The number of 
coincidentally traversed nodes in a run is dependent on the path taken by the initial 
point. If this leaves a number of easy nodes then there is a higher chance of 
coincidental traversal taking place.
The number of coincidentally traversed nodes can be considerable. The maximum 
achieved in the runs presented in this thesis was 47% in run R2. The average 
coincidental coverage from all non-mutant runs is 29%. TRIANGLE_COMPLETE 
and REMAINDER had a higher coincidental coverage than the other procedures, due 
to them having more nodes than the other procedures tested. 
Generally, on runs where the initial point differed but the same initial path was 
traversed, the same nodes are coincidentally traversed, since generally the same nodes 
are considered.

8.2.6 The Initial Point Set Influences the Effort and Success of the 
Heuristics

Since the heuristics are localised searches the initial point(s) for a run influence the 
number of iterations a heuristic takes and its success. This influence may be direct 
when a heuristic is using an initial point or indirect when a heuristic is using a point 
descended from an initial point. It is particularly evident when a considered node's 
solution domain is small or there is a high potential for upper-deviation.

8.2.7 Point Metrics Based on the Closeness Phenomenon have 
Limitations

The point closeness metric has led heuristics to a location in the input space where 
the metric indicated a solution would be, however, a solution is not always there. 
When the solution domain is small and sparsely located, this increases the chance of a 
heuristic being mis-led. The point closeness metric often leads a heuristic to a 
notional boundary where there is no solution. The responsibility of identifying and
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managing this situation lies with the heuristic. Presently, this responsibility is not 
executed very well due to the localised, non-random nature of the heuristics. 
Cross, et al, (1991) refer to the closeness phenomenon as "goodness". However, the 
closest point will not necessarily take a heuristic to a solution point, since the metric 
does not take into consideration the structure of the input space the heuristic is 
moving into, particularly where domain boundaries may be crossed before a solution 
is found. Nevertheless, the metric is good for many of the predicates considered.

8.2.8 Heuristic Based Test Data Generation is a Promising Approach

Software is composed of many diverse functions. To find specific points that cause a 
required effect in the software is more-than-likely beyond the capability of a single 
algorithm. HATS has addressed this through the ability to contain a number of 
diverse heuristics that are selected from a hierarchy for the current problem. 
HATS is an improvement over random testing and does not suffer from the intrinsic 
problems other approaches do. However, the present heuristic approach has 
limitations, which are outlined with potential remedies in section 8.3. 
The heuristic approach benefits from coincidental traversal and the fortuitous co 
operation of heuristics, where points generated by one heuristic are used to success by 
another heuristic.

8.3 Further Work 

8.3.1 HATS

8.3.1.1 Automation of Processes the HATS Harness Depends on

Only test data generation has been automated in HATS. Processes such as the 
generation of the test software model and the instrumentation of the test software are 
undertaken manually. However, their automation is well understood (Yau and 
Grabow, 1981; Cimittle and Carlini, 1991) and could be implemented in future. 
Once in place they would speed up the whole testing process and aid the use of 
different test criteria and software models.

8.3.1.2 Heuristic Selection and Termination

Heuristic selection aims to choose a good heuristic first. A static hierarchy favours 
the general heuristics rather than the more specific heuristic, which if required to 
solve the problem, will not be used until some effort has been expended. Each of the 
heuristics should be described to HATS in terms of exploitable test software
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characteristics it can use to influence control toward the consid the consi< 
element (i.e. branch). This description can be used to determin) determi 
suitable. HATS could determine test software characteristics fi :teristics: 
HATS would then produce a selection hierarchy from comparii i compar 
descriptions against the determinable characteristics of the test )f the tesl 
hierarchy may be updated as further data is produced from the from the 
To ensure that a heuristic does not get stuck or take overly lon£ verly Ion 
software element, a threshold is required. A static threshold (n reshold (i 
be sufficiently large to ensure that a feasible considered softwa ed softw; 
traversed at the cost of wasting iterations on an infeasible or to< >ible or tc 
Furthermore, a promising heuristic can be left short of iteration if iteratio 
used on unsuccessful heuristics. As an alternative to static, test static, tes 
based thresholds (i.e. node iteration) a threshold for each heurij ach heuri 
determined from the characteristics used in heuristic selection, selection, 
heuristic a chance. A limit on the number of heuristics that coi :s that co 
considered software element would need to be determined. lined.

8.3.1.3 Determining Influential Input Variables

Modifying only input variables that are influential in the consid the consi 
is an important issue. When there are many input variables, mi iables, m 
wasted modifying non-influential input variables. Korel (1990; >rel (199( 
dynamic data flow analysis to rank input variables according to cording t« 
equal to the number of predicates in the partial path to the cons D the con; 
element, where the input variable influences control flow on th< low on tl 
different approach revealed through the experiments conducted :onducte< 
predicate value analysis. Each input variable of a point that cai nt that ca 
traversal to the considered element is modified by an equal-smt equal-sm 
in the considered elements predicate value would determine wh ymine w 
considered predicate influence and to what extent. A comparisi compari: 
approaches would be beneficial, particularly to determine dynarnine dym 
dependence on the partial path used and predicate value analysi;ue analys 
point used.

8.3.1.4 Guiding Control to the Considered Software Elemeire Elenu

HATS does not manage upper-deviations where they occur. A occur. A 
remedy the problem from the considered node. Consequently, tequently, 
localising the search. Korel (1992) suggests that the search nee.search ne
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with critical branches that do not allow execution of a specific software element. 

Hence, the search would be focused on interfering predicates. However, this could 

adversely affect boundary exploiting heuristics. A comparison between these two 

techniques and others would be valuable. In general, the form of the input space 
surrounding the point causing the upper-deviation may determine the most suitable 
technique.

8.3.2 Heuristics

8.3.2.1 Limitations of the Existing Heuristics

In general the existing heuristics are limited through being a localised, co-ordinate- 

direction search. Improvements for the existing heuristics are outlined, however, I 

believe that the most promising results may be gained from exploring heuristics from 

classes other than localised, co-ordinate-direction search.

8.3.2.2 Improvements to Existing Heuristics

Direct Assignment

To handle more complex predicate expressions, further rules could be implemented. 

Rules proposed by Howden (1987) could be used as a basis. Deason, et al's, (1991) 

system is based on Howden's rules. Clearly this would involve further static analysis 

of the test software and storage of the results.

Alternating Variable and Linear Predictor

These two heuristics are similar in the way they modify input variables. However, 

they are complementary; the AV is effective with non-linear partial path functions 

and conversely, the LP is effective with linear partial path functions. Hence, for 

improvement these two heuristics could be merged into one. The new heuristic 

would use an updated form of the LP's termination criteria which would support the 

AV's method.

Boundary Follower

The BF has several limitations; it is constrained to operate in two dimensions, it only 

follows a boundary in one direction, it has no termination criteria and it has difficulty 

when there is more than one boundary. Addressing the dimensionality of the search 

and operating in the presence of many boundaries, a moving window in input space
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should be investigated. Presently, the BF has only a single point to view the input 
space with and make operational decisions from. The window, formed of the 
predicate values over a range of values for the input variables being modified, would 
give the BF an improved input space view. The window may be formed of the 
perimeter points or be solid, and may change size and dimension. A modified form 
of Nelder and Mead's (1965) Simplex Search may be suitable. 
Addressing boundary movement direction, a possibility is to use a metric that 
indicates the potential success of the present search along a boundary in one 
direction. This would be combined with a backtracking technique that would 
reposition the heuristic at some other input space point, should the present search 
prove to be fruitless. Addressing termination criteria, a further metric could be based 
on the heuristic's backtracking, or more simply, a threshold.

8.3.2.3 The Search for Better Heuristics

The heuristic approach relies on many varied heuristics which can tackle the many 
problems that test data generation presents. Developing or locating, and evaluating 
heuristics should be an on-going process. There is a wealth of existing, modern 
optimisation techniques which have not been applied to test data generation (Conn, et 
al, 1994). Many of the first generation optimisation techniques have yet to be applied 
(Murray, 1972; Gill and Murray, 1974). Although these references span several 
classes of techniques, direct search still appears to be the most suitable, because it 
makes few assumptions about the optimised function. Deason, et al, (1991) have 
concentrated on simpler heuristic techniques which could be built upon. 
Some recently developed global optimisation techniques which can operate in the 
presence of constraints show particular promise (Goldberg, 1989; Rabinowitz, 1995). 
Regardless of which heuristics are used, there is a need to clearly understand the 
characteristics of software from an adaptive test data generation point of view. This 
would help in many ways; test software could be better defined as an optimisation 
problem and suitable optimisation techniques could be selected; optimisation 
techniques could be adapted to perform better on the test software.

8.3.3 Alternative Representations of the Test Software as a Test Data 
Generation Problem

The test software may be represented or viewed in different ways as a test data 
generation problem for the heuristics to solve. The representation potentially 
involves several aspects; some of which follow.
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Software Model

The choice of software model may have significant implications. HATS presently 
uses a control flow tree to focus testing attention and store data at suitable locations. 
Other models may offer greater versatility (Cimittle and Carlini, 1991; Yau and 
Grabow, 1981).
Influencing control flow to the considered element in the test software has been 
identified as a difficulty. The structural path-prefix approach depends on control 
flow passing close to the considered test software element. A number of approaches 
exist to manage this. The traversal of a unique partial path can be required (Korel, 
1992) with back tracking to manage control deviations. HATS adopts a more relaxed 
approach where any partial path to the considered element may be traversed. Control 
deviations are explicitly recognised and the heuristics attempt to influence control 
flow back to a partial path bringing control flow close to the considered element. 
Korel (1992) later outlines a modification where the traversal of a unique partial path 
is relaxed and any partial path that leads to the considered element is acceptable. 
Alternative test point metrics may remove the need for a heuristic to explicitly 
manage the control deviation problem. New metrics could be based on penalty 
functions (Gill and Murray, 1974) which transform the constrained optimisation 
problem, which test software is, into an unconstrained problem. This new metric 
would be combined with a variable partial path to the considered software element. 
Gallagher and Narasimhan (1993) have used penalty functions.

Test Criteria

There are alternative ways the test criteria could be managed toward its satisfaction. 
Many approaches, including HATS, consider each software element in turn. Other 
approaches (Roper, et al, 1995) consider the overall test criterion satisfaction level.

A few representations and alternatives have been outlined above. Further research 
may reveal other representations. Better understanding software as a test data 
generation problem is vital so that the most suitable test software representation can 
be used for the required testing criteria. Clearly, comparing the above representations 
with various test software and test criteria would be a valuable exercise.

8.3.4 Metrics

Metrics play an important part in adaptive test data generation. Most metrics used in 
adaptive test data generators are based on the closeness phenomenon. However, this 
has been shown to have limited ability. Clearly, more accurate metrics could have
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significant beneficial impact on a heuristic's success. The development of metrics to 
help heuristics in other ways is an interesting area. Two areas that could benefit are 
determining a heuristic's suitability to solve a given problem and determining the 
potential success or failure of a heuristic subsequent to it running for some time.

8.3.5 Scope of Testable Software

Automatic test data generators still have some way to go before they can be used 
productively on industrial software without some effort to help them. Increasing the 
diversity and complexity of software that useful test data can be generated for, is 
important. This includes testing further statements, data types and other features, 
such as a languages support for objects. Increasing the complexity of software that 
can be tested is also important.
Testing further data types presents a problem with respect to the point metrics and the 
heuristics. Both must be aware of the data type and handle them accordingly. This 
places an additional level of complexity on both. The closeness phenomenon does 
not exist for some data types such as pointers. Genetic Algorithms (Goldberg, 1989) 
overcome this issue by manipulating data types as a bit stream rather than through the 
operations each data type allows.
Increasing the complexity of testable conditions, to compound conditions, involves 
the point metric. One approach is to assign weights to each simple condition so that 
when the compound condition is true it has a value that is produced from each of the 
simple condition's values and is above some threshold. This would only support 
branch testing. To support multiple-condition testing, a truth table, representing each 
simple condition, could be associated with the compound condition. The heuristic's 
objective would be to complete the truth table to some degree.

8.3.6 Input Space Study

The input space for software of only a few lines with loops, can be quite complex. 
Larger software with many input variables has more-than-likely a very complex input 
space. Nevertheless, the heuristics must navigate through the input space in search of 
a solution point. Studying the input space of a large sample of software would reveal 
useful information that would help in many ways. It would help the development and 
improvement of heuristics and metrics. It would aid a comparison with numerical 
optimisation problems and help in the selection of suitable optimisation techniques. 
White and Cohen (1980) have conducted significant research in this area.
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Chapter 8 Conclusions and Further Work

8.3.7 New Tools

During the course of this research, tools that would help researchers of automatic test 
data generation and possibly other areas, have become apparent.

8.3.7.1 Input Space Navigator

This would enable the operator to view a 2 dimensional window of predicate values, 
or some other metric's values, for some location in the test software's input space. 
The window is produced by executing the points from a range of values for two of 
the input variables. Controls would enable the input space window to be moved, the 
non-displayed dimensions to be adjusted and the displayed dimensions to be 
exchanged with the non-displayed dimensions. This tool automates the partial input 
planes seen in this thesis. The tool would be particularly helpful when analysing the 
points selected by a heuristic and looking at areas of the input space where the 
heuristic is having difficulty. It would be possible to link HATS to this tool so that 
heuristic's input space navigation may be shown in real time. Alternatively the tool 
could retrieve test data from storage and replay the heuristics navigation after the 
heuristic has executed.

8.3.7.2 Path-based Variable Mapping Viewer

This tool graphically displays the mappings between the values (or ranges of values) 
of variables for the path taken by some point. Each variable's range would be shown 
as a line representing all the possible values the variable could assume. When a 
variable's value is used in the definition of another variable, a line would be drawn 
from the used variable's value, in its range, to the defined variable's new value, in its 
range. Of course, there can be many variables used in the definition of another 
variable. The input variables'ranges would be shown first and their values could be 
adjusted. The length of the mapping network would be proportional to the length of 
the data flow path. Should some point cause the same data flow path to be taken as 
the previous point then only a slight change in mappings should be observed. Should 
some point cause a different data flow path to be taken to the previous point then the 
variables and their order in the mapping network would change. This tool would be 
useful to see if, and to what extent, an input variable influences other variables.
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Appendix 1 HATS User Summary

The steps involved in using the Heuristically Aided Testing System (HATS) are 
outlined in figure ALL

Produce control
flow tree table
and execution
results table

I
Imstrument 

test software

i
Produce startup

program and
HATS for test

software

Key for re-entering the testing process

A : New run on the test software 
B : Add test data to an existing run 
C : Continue an existing run

Clear execution 
results table

Execute startup 
program

i

Figure Al.l - Flow diagram showing the HATS testing process

The first step in the HATS testing process is to produce two tables in an Oracle 
database. The control flow tree table, which must be produced manually, stores a 
representation of the test software's control flow tree. Each record holds information 
on each node in the tree. The execution results table is where data generated from the 
startup program and HATS are stored. A record in this table represents the execution 
of a node in the control flow tree. The second step in the HATS testing process is to 
instrument the test software and this must be done by hand. Instrumentation is placed 
at the following places in the test software: the beginning, after each branch and at

the end.
The next step is to produce the startup program and HATS for the test software being 
used. The startup program enables test points to be entered and the test software to 
be executed upon them. This step is achieved by specifying the data types and
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number of input variables, then compiling the startup program and HATS with the 
instrumented version of the test software.
The next step, clearing the execution results table is only necessary if the testing 
process is being re-entered. On the first time through the table will already be clear 
as it has just been created. Clearing this table is achieved by deleting all the rows 
from the execution results table. Re-entering the HATS testing process at this point 
enables new runs on the test software to be made and is denoted by label A in figure 
ALL A test software run consists of one or more iterations where the execution 
results table is not cleared. An iteration is the execution of a single test point on the 
test software.
The next step is to execute the startup program. It is necessary to run this program 
before HATS since it executes the test software and provides a starting point for 
HATS to work from. Each time the startup program is run it accepts a test point and 
then executes the in-built test software. The startup program can be run any number 
of times. Re-entering the HATS testing process at this point, depicted as label B in 
figure A 1.1, enables the user to add further test points to an existing HATS run. 
The final step in the HATS testing process is to execute HATS. HATS attempts to 
consider each untraversed node in the control flow tree. Its objective is to generate 
new test points from existing test points in the control flow tree that will traverse the, 
as yet, untraversed node, under consideration. It may not be possible to consider all 
untraversed nodes as some may be infeasible and others too difficult for the heuristics 
to solve. Re-entering the HATS testing process at this point, shown by label C in 
figure A 1.1, enables a run to be continued after a break in execution.
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Appendix 2 Quadratic Mutation Testing Initial
Points

Table A2.1 contains the initial points chosen for the first round of mutation analysis 
on the QUADRATIC procedure. Each mutant run has an identifier, which is 
designated by the letters QM followed by a unique number, eg QM1.

Mutant

QM1
QM2
QMS
QM4
QMS
QM6
QM7
QM8
QM9

QM10
QM11
QM12
QM13
QM14
QM15
QM16
QM17
QM18
QM19
QM20
QM22
QM23
QM24
QM25
QM26

Initial point 
ABC

227
253
153
208
343
561
63
756
458
143
761
80

801
713
105
421
104
252
654
355
252
29
60

631
71

262
798
76
611
190
749
327
752
154
845
291
873
319
111
770
821
814
469
109
868
608
578
338
325
781

26
746
478
352
561
414
889
654
291
369
768
264
363
70

969
334
289
652
554
992
493

3
573
997
920

Mutant

QM27
QM28
QM29
QM30
QM31
QM32
QM33
QM35
QM36
QM40
QM41
QM42
QM43
QM44
QM45
QM46
QM47
QM48
QM49
QM50
QM51
QM52
QMS 3
QM54

Initial point 
ABC

700
428
88

973
322
282
427
885
99
249
941
432
51
602

6
808
337
743
322
981
801
187
300

5

540
492
522
979
31

436
188
331
591
763
95
294
96
663
779
939
907
884
517
462
478
919
232
760

706
476
408
361
586
265
608
257
888
713
979
753
905
792
98
202
168
589
102
293
544
890
903
649

Table A2.1 - Initial points for the first round of QUADRATIC mutation analysis
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Appendix 3 Heuristics' Pseudo Code

A3.1 Direct Assignment Heuristic 

A3.1.1 First Iteration Set-up

DA_setup
consid_inp_var := input variable in considered predicate 
case ( considered predicate's relational operator ) is 
when '<' =>

instructions := decrease by 1 
when '>' =>

instructions := increase by 1 
when '/-' =>

instructions := increase by 1 
when '=' | '<=' ] «>='=>

instructions := no change 
end case 
generate_point := first point to traverse sibling node

with considered predicate's constant for consid_inp_var 
end DA_setup

A3.1.2 Generator

DA_generator
case ( modification direction of instructions ) is 
when increase =>

execute_point := add instructions value to consid_inp_var of
generate_point 

when decrease =>
execute_point := subtract instructions value from

consid_inp_var of generate_point 
when no change =>

execute_point := generate_point 
end case 

end DA_generator

A3.1.3 Duplicate Data Handler
DA_duplicate_data_handler 

terminate HATS harness 
end DA_duplicate__data_handler

A3.1.4 Evaluator

DA_evaluator
if ( considered node traversed ) then 

heuristic is successful
else

add considered node and subtree to unreachable nodes list
heuristic has failed 

end if 
end DA_evaluator
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A3.2 Alternating Variable Heuristic 

A3.2.1 First Iteration Set-up

AV_exploratory_phase_setup
phase := exploratory
consid_inp_var := first input variable
determine_exploratory_instructions 

end AV_exploratory_phase_setup

determine_exploratory_instructions
if ( only 1 point has traversed the sibling node ) then 

instructions := increase by 1 
generate_point := first sibling point 

else
case ( comparison of the considered input variable of the

two closest sibling_traversal points ) is 
when closest point var less than the next closest test

point var =>
if ( required predicate value is inbetween the two 

closest predicate values ) then 
instructions := increase by 1 

else
instructions := decrease by 1 

end if 
when closest point var equal to next closest point

var =>
instructions := increase by 1 

when closest point var greater than the next closest
point var =>

if ( required predicate value is inbetween the two 
closest predicate values ) then 
instructions := decrease by 1 

else
instructions := increase by 1 

end if 
end case
generate_point := the closest sibling_traversal point 

end if 
end determine_exploratory_instructions

A3.2.2 Generator

AV_generator
case ( modification direction of instructions ) is 
when increase =>

execute_point := add instructions value to consid_inp_var of
generate_point 

when decrease =>
execute_point := subtract instructions value from

consid_inp_var of generate_point 
end case 

end AV_generator

A3.2.3 Duplicate Data Handler

AV_duplicate_data_handler
case ( modification direction of instructions ) is 
when increase =>

add 1 to consid_inp_var of generate_point 
when decrease =>

subtract 1 from consid_inp_var of generate_point
end case 

end AV_duplicate_data_handler
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A3.2.4 Evaluator

AV_evaluator
case ( traversal effect of execute_point) is 
when node_traversal =>

heuristic is successful 
when sibling_traversal =>

case ( closeness of execute_point to expected boundary
compared to closest point stored ) is 

when closer to expected boundary ->
closer_sibling_traversal_evaluator 

when further from expected boundary => 
further_sibling_traversal_evaluator 

end case 
when upper_deviation =>

upper_deviation_evaluator 
end case 

end AV_evaluator

closer_sibling_traversal_evaluator 
case ( phase ) is 
when exploratory => 

phase := pattern 
increase_pattern_step 

when pattern =>
if ( required predicate value is in between the two closest

predicate values ) then 
reverse_modification_direction 
much_reduce_pattern_step 

else
increase_pattern_step 

end if 
end case
generate_point := execute_point 

end closer_sibling_traversal_evaluator

further_sibling_traversal_evaluator
if ( further sibling traversal threshold exceeded ) then

try_next_var 
else

case ( phase ) is 
when exploratory =>

if ( this is the first further sibling_traversal on the
considered input variable ) then 

reverse_modification_direction 
generate_point := the closest point stored 

else
try_next_var 

end if 
when pattern =>

if ( pattern further sibling_traversal in succession
threshold exceeded ) then 

try_next_var
else

much_reduce_pattern_step
generate_point := the closest point stored 

end if 
end case

end if 
end further_sibling_traversal_evaluator
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upper_deviat ion_evaluator
if ( upper_deviation threshold exceeded ) then

t ry_next_var 
else

case ( phase ) is 
when exploratory =>

if ( this is the first upper_deviation on the considered
input variable ) then 

reverse_modification_direction 
generate_point := the closest point stored 

else
try_next_var 

end if 
when pattern =>

phase := exploratory 
instructions value := 1
generate_point := the closest point stored 

end case 
end if 

end upper_deviation_evaluator

increase_pattern_step
instructions value := instructions value * 2 

end increase_pattern_step

reverse_modification_direction
case ( modification direction in instructions ) is 
when increase =>

instructions direction := decrease 
when decrease =>

instructions direction := increase 
end reverse_modification_direction

much_reduce_patt ern_s tep
instructions value := instructions value / 5;
if ( instructions value < 1 ) then 

instructions value := 1;
end if 

end much_reduce_pattern_step

A3.2.4.1 Abandoning Consideration of an Input Variable

t ry_next_var
if (on last input variable ) then

consid_inp_var := the first input variable 
else

consid_inp_var := the next input variable 
end if
phase := exploratory 
determine_exploratory_instructions 

end try_next_var

A3.3 T.inear Predictor Heuristic

A3.3.1 First Iteration Set-up

LP_DL_phase_setup 
phase := DL
consid_inp_var := first input variable 
DL_base_point := closest point stored 
instructions := increase by 1 
generate_point :- DL_base_point

end LP_DL_phase_setup
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A3.3.2 Generator

LP_generator
case ( modification direction of instructions ) is 
when increase =>

execute_point := add instructions value to consid_inp_var of
generate_point 

when decrease =>
execute_point := subtract instructions value from

consid_inp_var of generate_point 
end case 

end LP_generator

A3.3.3 Evaluator

LP_evaluator
if ( considered node traversed ) then

heuristic is successful 
else

case ( phase ) is 
when DL =>

case ( traversal_effect of execute_point ) is 
when sibling_traversal =>

DL_sibling_traversal_evaluator 
when upper_deviation =>

DL_upper_deviation_evaluator 
end case 

when predictor =>
case ( traversal_effect of execute_point and

closeness to expected boundary of execute_point 
compared to closest point found ) is 

when sibling_traversal and closer =>
predictor_closer_sibling_traversal_evaluator 

when sibling_traversal and further =>
predictor_further_sibling_traversal_evaluator 

when upper_deviation =>
predictor_upper_deviation_evaluator 

end case 
when creeper =>

case ( traversal_effect of execute_point } is 
when sibling_traversal =>

creeper_sibling_traversal_evaluator 
when upper_deviation =>

creeper_upper_deviation_evaluator 
end case 

end case 
end if 

end LP_evaluator
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A3.3.3.1 Determine-linearity Phase

DL_sibling_traversal_evaluator
if ( just executed increase point ) then 

DL_increase_point := execute_point 
instructions := decrease by 1 
generate_point := DL_base_point 

elsif ( just executed decrease point ) then 
DL_decrease_point := execute_point 
if ( consid_inp_var influential on considered predicate )

then
attempt_to_predict_a_point 

else
t ry_next_var 

end if 
end if 

end DL_sibling_traversal_evaluator

atternpt_to_predict_a_point
if ( variations in input var value and predicate value linear )

then
predict_a_point_to_cause_just_sibling_traversal 

else
creeper_setup 

end if 
end attempt_to_predict_a_point

predict_a_point_to_cause_just_sibling_traversal
{ Predict a point that will be close to the expected boundary

and will cause sibling_traversal } 
{ Firstly predict ( extrapolate ) value } 
phase := predictor 
predicted_input_value := extrapolation using DL_base_point

and DL_increase_point 
generate_point := execute_point with predicted_input_value for

consid_inp_var
{ Then modify value for just sibling_traversal } 
case ( predicted_input_value compared to consid_inp_var

value of DL_base_point ) is 
when predicted less than base => 

instructions := increase by 1 
when predicted greater than base =>

instructions := decrease by 1 
when predicted equal to base =>

try_next_var 
end case 

end predict_a_point_to_cause_just_sibling_traversal

DL_upper_deviat ion_evaluator
try_next_var 

end DL_upper_deviation_evaluator

creeper_setup
{ Creep to the expected boundary }
phase := creeper
case ( DL direction to come closer to the expected boundary )

is 
when increase =>

instructions := increase by 1
generate_point := DL_increase_point 

when decrease =>
instructions := decrease by 1
generate_point := DL_decrease_point 

when neither =>
try_next_var 

end case 
end creeper_setup
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A3.3.3.2 Predictor Phase

predictor_closer_sibling_traversal_evaluator
if ( there has been an upper_deviation from the execution of

the predicted point onwards ) then 
t ry_next_var 

else
if ( the predicted point has just been executed ) then

reverse the modification direction 
else

{ Continue with the present modification direction} 
end if 

end if 
end predictor_closer_sibling_traversal_evaluator

predictor_further_sibling_traversal_evaluator
t ry_next_var 

end predictor_further_sibling_traversal_evaluator

predictor_upper_deviation_evaluator
if ( there has been sibling_traversals from the execution of

the predicted point onwards ) then 
t ry_next_var 

else
if ( reached upper_deviation limit for one input variable )

then
try_next_var 

else
{ Continue modification in direction away from expected

boundary } 
end if 

end if 
end predictor_upper_deviation_evaluator

A3.3.3.3 Creeper Phase

creeper_sibling_traversal_evaluator
if ( execute_point closer to expected boundary than closest

point found) then
{ Continue with present modification direction } 

else
t ry_next_var 

end if 
end creeper_sibling_traversal_evaluator

creeper_upper_deviation_evaluator
try_next_var 

end creeper_upper_deviation_evaluator
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A3.3.3.4 Abandoning Consideration of an Input Variable

try_next_var
if ( heuristic failure criteria met ) then

terminate operation of heuristic 
else

if (on last input variable ) then
consid_inp_var := first input variable 

else
consid_inp_var := next input variable 

end if
DL_base_point := closest point found 
instructions :- increase by 1 
phase := DL
generate_point := DL_base_point 

end if 
end try_next_var

A3.4 Boundary Follower Heuristic 

A3.4.1 First Iteration Set-up

BF_OC P_phas e_s etup
consid_inp_var : = first input variable
OCP_DL_base_point := closest point found
instructions := increase by 1
phase := OCP.DL
generate_point := OCP_DL_base_point 

end BF_OCP_phase_setup

A3.4.2 Generator

BF_generator
case ( instructions ) is 
when increase =>

execute_point := add instructions value to consid_inp_var of
generate_point 

when decrease =>
execute_point := subtract instructions value from

consid_inp_var of generate_point
when opposite direction to follow and increase cross => 

case ( follow direction ) is 
when decrease =>

FB_follow_var of execute_point := add instructions value
to FB_follow_var of generate_point 

when increase =>
FB_follow_var of execute_point := subtract instructions

value from FB_follow_var of generate_point 
end case 
FB_cross_var of execute_point := add instructions value to

FB_cross_var of generate_point 
end case 

end BF_generation
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A3.4.3 Evaluator

BF_evaluator
if ( considered node traversed ) then

heuristic is successful 
else

case ( phase ) is 
when OCP =>

if ( execute_point crossed boundary ) then
OCP_try_next_var 

else
case ( OCP subphase ) is 
when DL =>

OC P_DL_evaluat or 
when predictor =>

OCP_predictor_evaluator 
when creeper =>

OCP_creeper_evaluator 
end case 

end if 
when DIFCD =>

DIFCD_evaluator 
when FB =>

FB_evaluator 
when RBF =>

RBF_evaluator 
end case 

end if 
end BF_evaluator

A3.4.3.1 Obtain-a-close-point Phase

OCP_DL_evaluator
if ( just executed increase point ) then 

OCP_DL_increase_point := execute_point 
instructions := decrease by 1 
generate_point := DL_base_point 

elsif ( just executed decrease point ) then 
OCP_DL_decrease_point := execute_point 
attempt_to_predict_a_point 

end if 
end OCP_DL_evaluator

The procedure attempt_to_predict_a_point and the two procedures it calls, 
predict_a_point_to_cause_just_sibling_traversal and creeper_setup, are shown in 
appendix A3.3.3.1. In the LP's code however, a phase change should be read as a BF 
Obtain-a-close-point subphase change and a call to the procedure try_next_var, refers 
to the procedure OCP_try_next_var.

OCP_predictor_evaluator
{ Creep to and over the boundary located }
case ( predicted value compared to consid_inp_var value of

DL_base_point ) is 
when predicted less than base => 

instructions := decrease by 1 
when predicted greater than base => 

instructions := increase by 1
end case 

end OCP_predictor_evaluator
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OCP_creeper_evaluator
if ( execute_point closer to expected boundary than closest

point stored ) then
{ Continue with present modification direction } 

else
OCP_try_next_var 

end if 
end OCP_creeper_evaluator

OC P_t ry_next_var
if ( all input variables considered ) then

{ Setup for DIFCD phase }
phase := DIFCD
DIFCD_central_point := closest point stored
generate_point := DlFCD_central_point 

else
{ Setup for DL subphase on next var }
phase := OCP.DL
consid_inp_var := next input variable
DL_base_point := closest point stored
generate_point := DL_base_point
instructions :- increase by 1 

end if 
end OCP_try_next_var

A3.4.3.2 Determine-initial-follow-and-cross-details Phase

DIFCD_evaluator
if ( done all DIFCD test procedure executions) then

DIFCD_evaluate_and_allocate_roles_for_FB_phase 
else

{ Continue DIFCD test procedure executions }
if ( completed test procedure executions on one input

variable ) then
consid_inp_var := next input variable 
instructions := increase by 1 

else
instructions := decrease by 1 

end if
generate_point := DIFCD_central_point 

end if 
end DIFCD_evaluator

DIFCD_evaluate_and_allocate_roles_for_FB_phase 
DIFCD_evaluate_and_allocate_roles 
if ( both roles have been allocated ) then

{ Setup for FB phase }
phase := FB
FB_follow_var := DIFCD_follow_allocation
FB_cross_var := DIFCD_cross_allocation
FB_move_kind := follow
instructions := increase by 1
generate_point := DIFCD_central_point
consid_inp_var := FB_follow_yar 

else
terminate operation of heuristic

end if 
end DIFCD_evaluate_and_allocate_roles_for_FB_phase
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DIFCD_evaluate_and_allocate_roles
for var := first input var to last input var loop 

DIFCD_evaluate_and_allocate_roles_for_each_var 
end for
{ Try to allocate follow role if not allocated } 
if ( follow role not allocated ) then 

if ( reserve follow allocated ) then 
DIFCD_follow_allocation :=

DIFCD_reserve_follow_allocation 
end if 

end if 
end DIFCD_evaluate_and_allocate_roles

DIFCD_evaluate_and_allocate_roles_for_each_var
{ Evaluate each var traversal_effects and try to allocate roles

} 
if ( increase and decrease point for var caused no change in

the considered predicate value } then 
{ no allocation } 

elsif ( increase and decrease point for var caused upper_
deviation ) then 

( no allocation } 
else

case ( DIFCD_central_point predicate value compared to
expected boundary predicate value ) is 

when greater than =>
case ( var's traversal_effeet suitability) is 
when cross role =>

t ry_t o_a11ocat e_cros s_ro1e 
when follow role =>

try_to_allocate_follow_role 
end case 

when less than =>
case ( var's traversal_effeet suitability) is 
when cross role =>

try_to_allocate_cross_role 
when follow role =>

try_to_allocate_follow_role 
end case 

end case 
end if 

end DIFCD_evaluate_and_allocate_roles_for_each_var

try_to_allocate_cross_role
if ( cross not allocated ) then

DIFCD_cross_allocation := var 
elsif ( reserve follow not allocated ) then

DIFCD_reserve_follow_allocation :- var 
end if 

end try_to_allocate_cross_role

try_to_allocate_follow_role
if ( follow not allocated ) then 

DIFCD_follow_allocation := var
end if 

end try_to_allocate_follow_role

A3.4.3.3 Follow-boundary Phase

FB_evaluator
case ( FB_move_kind ) is 
when follow =>

FB_follow_evaluator
when cross =>

FB_cross_evaluator
end case 

end FB_evaluator
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FB_follow_evaluator
{ Change over to cross from follow move end point }
FB_move_kind := cross
consid_inp_var := FB_cross_var
define_cross_direction
generate_point := execute_point 

end FB_follow_evaluator

define_cross_direction
if ( a cross move has crossed the boundary during the present

FB phase ) then 
if ( last follow move crossed the boundary ) then

{ Direction remains the same as the last cross move } 
else

{ Direction is the opposite of the last cross move } 
case ( last cross move direction ) is 
when increase =>

instructions := decrease by 1 
when decrease =>

instructions := increase by 1 
end case 

end if 
else

{ Boundary not crossed yet - direction is increase } 
instructions := increase by I 

end if 
end define_cross_direction

FB_cross_evaluator
if ( execute_point crossed the boundary ) then 

{ Changeover to follow from execute_point } 
FB_move_kind := follow 
consid_inp_var := FB_follow_var 
instructions := follow direction by 1 

elsif ( maximum cross step length reached ) then 
{ Setup for RBF } 
phase := RBF 
instructions := opposite direction to follow and increase

cross by 1
generate_point := last follow move end point 

else
if (a cross move has crossed the boundary during the

present FB phase ) then
{ Continue with a unidirectional cross search } 
instructions := same direction as last cross with

increased step size
generate_point := last follow move end point 

else
{ Continue with a bidirectional cross search } 
case ( cross direction ) is 
when increase =>

instructions := decrease by same step size 
when decrease =>

instructions := increase with increased step size 
end case 
generate_point := last follow move end point

end if 
end if 

end FB_cross_evaluator
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Appendix 3 Heuristics' Pseudo Code

A3.4.3.4 Reorient-boundary-follower Phase

RBF_evaluator
if ( a search pair has been executed ) then

search_pair_analysis 
else

{ setup for the decrease point from the central line }
instructions := decrease by I
generate_point := cross variable value on central line with

remaining input variables held constant 
end if 

end RBF_evaluator

RBF_evaluator
if ( a search pair has been executed ) then

search_pair_analysis 
else

{ setup for the decrease point from the central line }
instructions := decrease by 1
generate_point := cross variable value on central line with

remaining input variables held constant 
end if 

end RBF_evaluator

setup_for_FB_phase
phase := FB
FB_move_kind := follow
temp_var := FB_follow_var
FB_follow_var := FB_cross_var
FB_cross_var := temp_var
if ( both search points on other side of the boundary ) then 

{ follow direction remains unchanged }
else

follow direction is the same as the direction used to 
generate the point that crossed the boundary

end if
instructions := follow direction by 1
generate_point := last follow move end point 

end setup_for_FB_phase
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