
University of South Wales

2059777

A. t> t> e y
Bookbinding Co.,

Cardiff, South Wales

Tel:(01 222) 395882

Heuristic Generation of
Software Test Data

Stephen Terry Holmes

A thesis submitted in partial fulfilment of the requirements of the

University of Glamorgan for the degree of Doctor of Philosophy

September 1996

Department of Computer Studies

The University of Glamorgan

Pontypridd

Mid Glamorgan

CF37 1DL

Abstract

Abstract

Incorrect system operation can, at worst, be life threatening or financially
devastating. Software testing is a destructive process that aims to reveal software
faults. Selection of good test data can be extremely difficult. To ease and assist test

data selection, several test data generators have emerged that use a diverse range of

approaches. Adaptive test data generators use existing test data to produce further
effective test data. It has been observed that there is little empirical data on the
adaptive approach.

This thesis presents the Heuristically Aided Testing System (HATS), which is an
adaptive test data generator that uses several heuristics. A heuristic embodies a test
data generation technique. Four heuristics have been developed. The first heuristic,
Direct Assignment, generates test data for conditions involving an input variable and
a constant. The Alternating Variable heuristic determines a promising direction to

modify input variables, then takes ever increasing steps in this direction. The Linear
Predictor heuristic performs linear extrapolations on input variables. The final
heuristic, Boundary Follower, uses input domain boundaries as a guide to locate
hard-to-find solutions. Several Ada procedures have been tested with HATS; a
quadratic equation solver, a triangle classifier, a remainder calculator and a linear

search. Collectively they present some common and rare test data generation
problems.

The weakest testing criterion HATS has attempted to satisfy is all branches.

Stronger, mutation-based criteria have been used on two of the procedures. HATS
has achieved complete branch coverage on each procedure, except where there is a
higher level of control flow complexity combined with non-linear input variables.
Both branch and mutation testing criteria have enabled a better understanding of the
test data generation problems and contributed to the evolution of heuristics and the

development of new heuristics.
This thesis contributes the following to knowledge :

 Empirical data on the adaptive heuristic approach to test data generation.

 How input domain boundaries can be used as guidance for a heuristic.
 An effective heuristic termination technique based on the heuristic's progress.
 A comparison of HATS with random testing. Properties of the test software that

indicate when HATS will take less effort than random testing are identified.

Contents

Contents

Abstract. ...«

Contents.... ... m

List of Tables...., .. viii

List of Figures....... ..:«

Acknowledgements..........xiii

Glossary...... ... ;tiv

Certificate of Research.. xvi

Declaration... xvii

1 Introduction...!

2 Automatic Test Data Generation.. 3
2.1 Introduction...3

2.2 Fundamental Concepts..3

2.3 Testing Methods...4
2.4 Test Data Selection ..5

2.5 Automatic Test Data Generators ..6
2.5.1 Random Test Data Generation.. 6
2.5.2 Syntax Based Test Data Generation.. 6
2.5.3 Specification Based Test Data Generation.. 6
2.5.4 Test Data Generation by Symbolic Execution and Solution of
Produced Constraints...6
2.5.5 Adaptive Test Data Generation...?

3 The Heuristically Aided Testing System... 11

3.1 Introduction... 11

3.2 Objectives of HATS... 11

3.3 The Closeness Phenomenon and its Exploitation.............................. 11

3.4 HATS Architecture.. 12
3.5 Testing Criterion, Software Model and Instrumentation................. 13

3.5.1 Testing Criterion.. 13
3.5.2 Software Model... 13
3.5.3 Instrumentation.. 15
3.5.4 Selecting Branches to Test... 16
3.5.5 The Input Point Closeness Metric... 16
3.5.6 Adequacy Criterion Influence on the Software Model and
Instrumentation.. 17
3.5.7 Testing at Various Levels of Abstraction..18
3.5.8 Reuse of the Software Model and its Data.. 18

in

Contents

3.6 The HATS Harness.. 18

3.7 Heuristics...20

3.8 Selection of Initial Points... 21

3.9 The Direct Assignment Heuristic.. 21
3.9.1 Overview of the Direct Assignment Heuristic ...22
3.9.2 Components and Functions of the Direct Assignment Heuristic............... 22

3.10 The Alternating Variable Heuristic..23
3.10.1 Overview and Phases of the Alternating Variable Heuristic................... 23
3.10.2 Components and Function of the Alternating Variable25

3.11 Scope of Testable Software.. 28
3.11.1 Testable Subset of Ada... 28
3.11.2 Transformations...29

3.12 Automated and Manual Aspects of HATS...................................... 29

4 The Quadratic Equation Solver Problem... 30
4.1 Introduction...30

4.2 The Integer Quadratic Equation Solver Procedure..........................31
4.2.1 The QUADRATIC'S Input Space..31

4.3 Branch Testing of the QUADRATIC.. 33
4.3.1 HATS Experimental Set-up.. 33
4.3.2 Run Ql.. 33
4.3.3 Run Q2.. 37
4.3.4 Run Q3 .. 38
4.3.5 Run Q4.. 39
4.3.6 Branch Testing Discussion.. 39
4.3.7 Comparison of HATS with Random Testing... 40

4.4 Mutation Analysis.. 41
4.4.1 The Appeal of Mutation Analysis.. 41
4.4.2 Using Mutation Analysis with HATS..42
4.4.3 Mutants Produced..43

4.5 The First Round of Mutation Analysis.. 44
4.5.1 Experimental Set-up...44
4.5.2 Statement Analysis Results and Discussion...44
4.5.3 Predicate Analysis Results and Discussion..46
4.5.4 Mutation Analysis Summary... 47

4.6 Heuristic Discussion...48
4.6.1 DA Discussion... 48
4.6.2 AV Discussion...48

5 The New Heuristics and Improved Quadratic Results..................... 50
5.1 Introduction...50

5.2 The Linear Predictor Heuristic...50
5.2.1 Overview and Phases of the Linear Predictor.. 50
5.2.2 Components and Functions of the Linear Predictor.................................51

IV

Contents

5.3 The Boundary Follower Heuristic...59
5.3.1 Following Domain Boundaries in the Program Input Space..................... 60
5.3.2 Overview of the Boundary Follower... 60
5.3.3 The Follow Role... 61
5.3.4 The Cross Role ..61
5.3.5 Following a Boundary Using Follow and Cross Moves........................... 62
5.3.6 Establishing the Correct Cross Move Direction....................................... 63
5.3.7 Reorienting the Boundary Follower..64
5.3.8 Locating a Point to Commence Boundary Following From..................... 66
5.3.9 Initial Allocation of the Follow and Cross Roles..................................... 66
5.3.10 Phases of the Boundary Follower Heuristic...68
5.3.11 Components and Functions of the Boundary Follower.......................... 68
5.3.12 Known Limitations...72

5.4 Installing the LP and BF into the HATS Harness73
5.5 The Second Round of Mutation Analysis..73

5.5.1 Experimental Set-up...73
5.5.2 Statement Analysis Results...74
5.5.3 Predicate Analysis Results..75
5.5.4 Improving Upon the AV...75

5.6 The Third Round of Mutation Analysis.. 76
5.6.1 Experimental Set-up...76
5.6.2 Results...76

5.7 DA Improvements..77
5.8 Mutation Analysis Discussion and Conclusions................................ 77

6 The Triangle Classification Problem ... 78

6.1 Introduction...78

6.2 Experimental Conditions... 78
6.3 TRIANGLE Experiments..78

6.3.1 Run Tl... 80
6.3.2 Run T2... 81
6.3.3 Run T3...83
6.3.4 Comparison of HATS with Random Testing on the TRIANGLE
Procedure..86

6.4 TRIANGLE_2 Experiments.. 86
6.4.1 Run T4...88
6.4.2 Run T5...89
6.4.3 RunT6.............................-..-..........................89
6.4.4 Comparison of HATS with Random Testing on the TRIANGLE_2
Procedure.. 89

6.5 RIGHT ANGLE CHECK Experiments.. 90
6.5.1
6.5.2
6.5.3
6.5.4 Comparison of HATS with Random Testing on the
RIGHT_ANGLE_CHECK Procedure..96

Contents

6.6 TRIANGLE_COMPLETE Experiments..97
6.6.1 Run T10...100
6.6.2 Run Til...102
6.6.3 RunT12... 103
6.6.4 Comparison of HATS with Random Testing on the
TRIANGLE_COMPLETE Procedure.. 106

6.7 Overall Discussion... 107
6.7.1 Direct Assignment Heuristic... 108
6.7.2 Linear Predictor Heuristic... 108
6.7.3 Boundary Follower Heuristic.. 108

7 The Remainder and Linear Search Problems................................ 109
7.1 Introduction...109

7.2 The REMAINDER Procedure.. 109

7.3 Techniques for Testing Loops.. Ill

7.4 REMAINDER Branch Testing Experiments.................................. 113
7.4.1 HATS Experimental Set Up ... 113
7.4.2 Run Rl... 113
7.4.3 Run R2... 114
7.4.4 Run R3... 114
7.4.5 Run R4... 115
7.4.6 Run R5... 116
7.4.7 Overall Discussion for the HATS Branch Testing Runs 117
7.4.8 Comparison of HATS with Random Testing on the REMAINDER
Procedure.. 118

7.5 Mutation Analysis of the REMAINDER Procedure....................... 119
7.5.1 Mutation Experiments.. 119
7.5.2 Mutation Analysis Results and Discussion.. 121

7.6 The LINEAR SEARCH Procedure.. 122

7.7 Techniques for Testing Arrays.. 123

7.8 LINEAR_SEARCH Branch Testing Experiments......................... 124
7.8.1 HATS Experimental Set Up ...124
7.8.2 Run LSI... 124
7.8.3 Run LS2...125
7.8.4 Run LS3...125
7.8.5 RunLS4... 125
7.8.6 HATS Discussion...126
7.8.7 Comparison of HATS with Random Testing on the
LINEAR_SEARCH Procedure..126

8 Conclusions and Further Work ... 127

8.1 Introduction........."......".....""..-.........""."."."-."" 127

8.2 Conclusions................................"".....""......"""..... ". 127
8.2.1 HATS is an Improvement Over Random Testing.................................. 127
8.2.2 Domain Boundaries Can be Used as a Guide to Solution Points............ 128

VI

Contents

8.2.3 Control Deviations From Partial Paths to a Considered Node Have a
Detrimental Affect on Heuristic Performance ... 128
8.2.4 Termination Criteria Based on Promising Effects are Effective and
Efficient... 128
8.2.5 Coincidental Traversal Can be Considerable ... 128
8.2.6 The Initial Point Set Influences the Effort and Success of the Heuristics 129
8.2.7 Point Metrics Based on the Closeness Phenomenon have Limitations.... 129
8.2.8 Heuristic Based Test Data Generation is a Promising Approach............ 130

8.3 Further Work... 130
8.3.1 HATS .. 130
8.3.2 Heuristics... 132
8.3.3 Alternative Representations of the Test Software as a Test Data
Generation Problem ... 133
8.3.4 Metrics... 134
8.3.5 Scope of Testable Software.. 135
8.3.6 Input Space Study.. 135
8.3.7 New Tools ... 136

Appendix 1 HATS User Summary ... 737

Appendix 2 Quadratic Mutation Testing Initial Points.................... 139

Appendix 3 Heuristics' Pseudo Code ... 140

A3.1 Direct Assignment Heuristic.. 140
A3.1.1 First Iteration Set-up .. 140
A3. 1.2 Generator... 140
A3.1.3 Duplicate Data Handler .. 140
A3.1.4 Evaluator.. .. 140

A3.2 Alternating Variable Heuristic.. 141
A3.2.1 First Iteration Set-up .. 141
A3.2.2 Generator... 141
A3.2.3 Duplicate Data Handler .. 141
A3.2.4 Evaluator.. 142

A3.3 Linear Predictor Heuristic .. 143
A3.3.1 First Iteration Set-up .. 143
A3.3.2 Generator... 144
A3.3.3 Evaluator...144

A3.4 Boundary Follower Heuristic .. 147
A3.4.1 First Iteration Set-up .. 147
A3.4.2 Generator... 147
A3.4.3 Evaluator.. .. 148

153

VII

List of Tables

List of Tables

3.1 DA's generation instructions for the considered predicate's input variable,
defined by the considered predicate's relational operator................................ 23

3.2 Determining exploratory phase input point generation instructions................. 25
4.1 The QUADRATIC'S input domains... 32
4.2 Initial points for branch testing of the QUADRATIC..................................... 33
4.3 Run Ql traversal results.. 34
4.4 Run Ql's iteration summary for the nodes considered.................................... 34
4.5 Progression of the AV considering node 6... 36
4.6 Run Q2 traversal results.. 37
4.7 Progression of the AV considering node 6... 38
4.8 Run Q3 traversal results.. 38
4.9 Progression of the AV considering node 6... 38
4.10 Run Q4 traversal results..39
4.11 Progression of the AV considering node 6... 39
4.12 Relationship between the predicate value distance to an expected solution

and the number of iterations taken to locate the solution................................ 40
4.13 The number of iterations taken by HATS and random testing for each of the

QUADRATIC'S nodes... 41
4.14 QUADRATIC'S first round statement analysis mutants.................................. 43
4.15 QUADRATIC'S first round predicate analysis mutants...................................44
4.16 First round statement analysis mutants revealed by the initial point................ 45
4.17 First round statement analysis mutants revealed by a heuristic........................ 45
4.18 First round statement analysis mutants unrevealed by the initial point or

heuristics... 46
4.19 First round predicate analysis mutants revealed by the initial point................. 46
4.20 First round predicate analysis mutants revealed by a heuristic 47
4.21 First round predicate analysis mutants unrevealed by the initial point or

heuristics... 47
4.22 Overall mutation analysis results for the QUADRATIC................................. 48
5.1 HATS run excerpt: LP in the Determine-linearity phase considering node 5

of the QUADRATIC and modifying input variable A..................................... 52
5.2 HATS run excerpt: LP in the Predictor phase considering node 5 of the

QUADRATIC and modifying input variable A... 54
5.3 HATS run excerpt of the LP in the Determine-linearity phase considering

node 6 of the QUADRATIC, demonstrating the use of the unpromising
effects count to minimise unnecessary iterations .. 58

5.4 Events that cause the unpromising effects count to be incremented by one..... 59
5.5 Events that cause the unpromising effects count to be reset to zero 59
5.6 Follow and Cross role suitability when the Central point's predicate value is

greater than the boundary's predicate value.. 67
5.7 Follow and Cross role suitability when the Central point's predicate value is

less than the boundary's predicate value... 67
5.8 Progress to the final allocation of roles in the Determine-initial-follow-and-

cross-details phase with the QUADRATIC.. 70
5.9 HATS run excerpt: BF in the Follow-boundary phase considering node 6 of

the QUADRATIC and locating a solution point... 71
5.10 Second round statement analysis mutants revealed by the BF on node 6 74

VIII

List of Tables

5.11 Second round statement analysis mutants unrevealed by the BF on node 6 in
500 iterations.. 74

5.12 Second round predicate analysis mutants revealed by the BF on node 6......... 75
5.13 Second round predicate analysis mutants unrevealed by BF on node 6 in 500

iterations... 75
5.14 Iterations taken by the AV and BF on node 4 or 5 of the QUADRATIC........ 76
5.15 Third round statement analysis mutants revealed by the BF on node 6 77
6.1 TRIANGLE procedure's initial points.. 79
6.2 RunTl traversal results... 80
6.3 Run Tl excerpt: LP considering node 10 in the Determine-linearity phase 81
6.4 Run Tl excerpt: LP considering node 12 in the Determine-linearity phase.... 81
6.5 Run T2 traversal results... 81
6.6 Run T2 excerpt: LP considering node 10 in the Determine-linearity phase

modifying variable A... 82
6.7 Run T2 excerpt: LP considering node 10 in the Determine-linearity phase

identifying variable B as linear... 82
6.8 Run T2 excerpt: LP considering node 10 in the Predicted-point phase,

causing just sibling traversal then considered node traversal, modifying
variable B.. 82

6.9 Run T3 traversal results... 83
6.10 Run T3 excerpt: LP considering node 12 in the Determine-linearity phase

modifying variable A... 83
6.11 Run T3 excerpt: LP considering node 12 in the Predicted-point phase,

modifying variable A to locate a point that causes sibling-traversal after
predicting a point and producing an upper-deviation...................................... 84

6.12 Run T3 excerpt: LP considering node 12 in the Determine-linearity phase
having no success.. 84

6.13 Run T3 excerpt: BF considering node 12 in the Obtain-a-close-point phase,
having no success.. 85

6.14 Run T3 excerpt: BF considering node 12 in the Obtain-a-close-point phase
succeeding by modifying variable C...85

6.15 The number of iterations taken by HATS and random testing for each of
TRIANGLE'S nodes.. 86

6.16 TRIANGLE_2 procedure's initial points.. 88
6.17 Run T4 traversal results... 88
6.18 Run T5 traversal results...89
6.19 Run T6 traversal results... 89
6.20 The number of iterations taken by HATS and random testing for each of

TRIANGLE_2's nodes.. 90
6.21 RIGHT_ANGLE_CHECK procedure's initial points...................................... 91
6.22 RunT7 traversalresults...92
6.23 Run T7 excerpt: LP creeping to a solution point, modifying variable A, on

non-linear node 2 .. 92
6.24 Run T7 excerpt: BF finding a solution for non-linear node 6......................... 92
6.25 Run T8 traversal results... 93
6.26 Run T8 excerpt: BF's first reorientation considering node 6.......................... 94
6.27 Run T8 excerpt: BF's second reorientation considering node 6 95
6.28 Run T8 excerpt: BF's third reorientation considering node 6......................... 95
6.29 Run T9 traversal results... 96

IX

List of Tables

6.30 The number of iterations taken by HATS and random testing for each of
RIGHT_ANGLE_CHECK's nodes.. 96

6.31 TRIANGLE_COMPLETE procedure's initial points.................................... 100
6.32 Run T10 traversal results... 100
6.33 Run Til traversalresults... 102
6.34 Run T12 traversal results... 104
6.35 Run T12 excerpt: BF considering node 23 in the first Follow-boundary

phase... 104
6.36 The number of iterations taken by HATS and random testing for each of

TRIANGLE_COMPLETE's nodes.. 107
6.37 HATS branch coverage on the triangle related procedures........................... 107
7.1 The 6 cases handled in the REMAINDER procedure................................... 109
7.2 REMAINDER procedure's initial points.. 113
7.3 RunRl traversalresults.. 113
7.4 Run R2 traversal results .. 114
7.5 Run R3 traversalresults .. 114
7.6 Run R4 traversalresults .. 116
7.7 Run R5 traversal results.. 116
7.8 The number of iterations taken by HATS and random testing for each of

REMAINDER'S nodes.. 118
7.9 Mutants produced from the REMAINDER procedure using the mutation

operator, predicate alteration by a small amount.. 120
7.10 Results from mutation testing the REMAINDER procedure........................ 121
7.11 LINEAR_SEARCH's initial points and the order heuristics will consider

input variables... 124
7.12 Run LSI excerpt: LP considering node 3, modifying variable X; array A

stayed constant with elements 1 to 5 having values 1, 4, 3, 5 and 3
respectively... 124

7.13 Run LS4 excerpt: LP considering node 3, modifying variable A(5) in the
Determine-linearity phase; array A (1..4) and X stayed constant having
values -93, -21, 82, -43 and 27 respectively... 125

7.14 Run LS4 excerpt: LP considering node 3, modifying variable A(l); array A
(2..5) and X stayed constant having values -21, 82, -43, 41 and 27
respectively... 125

7.15 The number of iterations taken by HATS and random testing for each of
the LINEAR_SEARCH's nodes... 126

A2.1 Initial points for the first round of QUADRATIC mutation analysis............. 139

List of Figures

List of Figures

3.1 HATS Architecture... 12
3.2 The TEST_ME procedure and its control flow tree....................................... 14
3.3 TEST_ME's control flow tree showing each traversed nodes' linked list......... 15
3.4 Procedure TEST_ME with instrumentation... 16
3.5 Structure diagram of the HATS harness.. 19
3.6 Components and flow in a heuristic... 21
3.7 Partial input plane showing the AV operating.. 24
3.8 Partial input plane showing moves made by the AV considering node 4 of

the TEST_ME procedure.. 26
4.1 The Ada QUADRATIC procedure.. 30
4.2 Control flow tree of the QUADRATIC procedure... 31
4.3 Partial planes of the QUADRATIC'S input space... 32
4.4 Approximated partial plane of the QUADRATIC'S input space showing AV

heuristic moves on node 5... 35
4.5 Approximated partial plane of the QUADRATIC'S input space showing the

AV's moves on node 6... 35
4.6 Run Ql (A, B) partial input plane : AV considering node 6 36
4.7 Run Ql (B, C) partial input plane : AV considering node 6............................ 37
5.1 Operation of the Linear Predictor..51
5.2 (A, B) partial input plane : LP in the Determine-linearity phase considering

node 5 of the QUADRATIC.. 52
5.3 (A, B) partial input plane : LP in the Predictor phase considering node 5 of

the QUADRATIC... 54
5.4 (A, B) partial input plane : LP in the Determine-linearity and Creeper phases,

considering node 5 of the QUADRATIC... 56
5.5 (A, B) and (B, C) partial input planes : LP in the Determine-linearity phase,

considering node 6 of the QUADRATIC... 58
5.6 Operation of the Boundary Follower ...61
5.7 Partial input planes showing Follow and Cross moves, with the Follow role

allocated to variable A and Cross to B... 62
5.8 A domain boundary being followed... 63
5.9 Use of the Cross rule to determine the Cross direction................................... 64
5.10 A border change which renders the BF unable to cross the boundary with

Cross variable A, and Follow variable B .. 65
5.11 Reorienting the BF.. 65
5.12 Continuation of boundary following subsequent to reorientation with

Follow variable A, Cross variable B and Follow direction of increase............. 66
5.13 Modifications made to the QUADRATIC'S input variables during the

Determine-initial-follow-and-cross-details phase of the BF............................69
5.14 (A, B) partial input plane showing Follow-boundary phase moves to a

solution point for node 6 of the QUADRATIC.. 71
5.15 Partial input plane showing Follow-boundary phase moves, had variable A

been allocated Follow and B allocated Cross, to a solution point for node 6
of the QUADRATIC... 72

5.16 New heuristic selection order with the LP and BF heuristics added................ 73
6.1 The TRIANGLE procedure... 79
6.2 Control flow tree of the TRIANGLE procedure.. 80
6.3 RunT2 (A, B) partial input plane : LP considering node 10...........................83

XI

List of Figures

6.4 Run T3 (A, C) partial input plane : LP considering linear node 12 and failing. 84
6.5 Run T3 (B, C) partial input plane : BF considering node 12 and succeeding... 85
6.6 The TRIANGLE_2 procedure... 87
6.7 Control flow tree of the TRIANGLE_2 procedure .. 87
6.8 The RIGHT_ANGLE_CHECK procedure.. 91
6.9 Control flow tree of the RIGHT_ANGLE_CHECK procedure...................... 91
6.10 Run T7 (A, B) partial input plane : BF considering node 6............................. 93
6.11 Run T8 (B, C) partial input plane : BF considering node 6 and reorienting

three times..93
6.12 The TRIANGLE_COMPLETE procedure.. 98
6.13 Control flow tree of the TRIANGLE_COMPLETE procedure...................... 99
6.14 Run T10 (A, B) partial input plane : BF considering node 23 in the

Determine-initial-follow-and-cross-details phase.. 101
6.15 Run T10 (B, C) partial input plane : BF considering node 23 in the

Determine-initial-follow-and-cross-details phase.. 101
6.16 Run Til (A, B) partial input plane : LP considering node 17....................... 103
6.17 Run Til (B, C) partial input plane : LP considering node 17....................... 103
6.18 Run T12 (B, C) partial input plane : BF considering node 23; from the

heuristic's start point.. 105
6.19 Run T12 (B, C) partial input plane : BF considering node 23; showing part

of the boundary followed and a solution point... 106
7.1 The REMAINDER procedure... 110
7.2 Control flow tree of the REMAINDER procedure....................................... 111
7.3 The modelling and instrumentation of a loop ... 112
7.4 RunRl partial input space : LP considering node 15 113
7.5 Run R2 partial input space : LP considering node 19................................... 114
7.6 RunR3 partial input space : LP and BF considering node 13....................... 115
7.7 Run R3 partial input space : LP and BF considering node 17....................... 115
7.8 REMAINDER procedure's input space.. 117
7.9 The LINEAR_SEARCH procedure... 122
7.10 Control flow tree of the LINEAR_SEARCH procedure 122
7.11 Comparison of instrumentation for scalar variable and array variable

conditions... 123
Al.l Flow diagram showing the HATS testing process.. 137

XII

Acknowledgements

Acknowledgements

I am most grateful to both my supervisors, Mr. David Eyres and Professor Bryan

Jones, for the guidance and support they have provided. I would like to thank both

Professor Darrel Ince and Dr David Nibb for the perspective and polarisation they
gave. Both my fellow researchers, Dr. Harmen Sthamer and Ms. Xila Yang, deserve
thanks for the inspiration they provided.

Finally, to my wife and soul-mate Shima, thank you for all the encouragement and

support you have given me. It is good to know that you are always there.

XIII

Glossary

Glossary

The following list is of abbreviations are used throughout the thesis :

AV Alternating Variable heuristic
BF Boundary Follower heuristic

DA Direct Assignment heuristic
DIFCD Determine-initial-follow-and-cross-details (phase of BF)
DL Determine-linearity (phase of LP or sub-phase of OCP in BF)
FB Follow-boundary (phase of BF)

HATS Heuristically Aided Testing System
iter(s) iteration(s)
LP Linear Predictor heuristic
MA Mutation Analysis

OCP Obtain-a-close-point (phase of BF)
RBF Reorient-boundary-follower (phase of BF)

sib-trav sibling-traversal

The following list is of abbreviations are used in HATS run excerpt headings :

FB Follow-boundary

Pred Predicate

Trav Traversal

UP eff Unpromising effects

Var Variable

XIV

	Glossary

The following list is of abbreviations are used in the body of HATS run excerpts :

+(var) Increase specified variable; e.g. +A
+ST Positive sibling-traversal
-(var) Decrease specified variable; e.g. -A

-Cr Decrease Cross variable

-ST Negative sibling-traversal

B BP modify considered variable Back toward Base Point
BP Base Point

C (val) Cross move, modify cross variable, according to cross rule, by value
C +(val) Cross move, increase cross variable by value; e.g. C +1
C -(val) Cross move, decrease cross variable by value; e.g. C -2
F Follow move

FB Follow-boundary phase

FB C Follow-boundary phase, make a Cross move

FB F Follow-boundary phase, make a Follow move

NT considered Node Traversal

O DL Obtain-a-close-point: Determine-linearity
O PP Obtain-a-close-point: Predicted-point
OF +C Opposite direction to Follow and increase Cross variable
PP Predicted Point

ST Sibling-traversal
SUCC Success - traversal of the considered node

TERM Terminate

TFV Try First Variable

TNV Try Next Variable

UD Upper-deviation

XV

Certificate of Research

Certificate of Research

This is to certify that except where specific reference is made, the work presented in

this thesis is the result of the investigation undertaken by the candidate.

Candidate

Director of Studies

XVI

Declaration

Declaration

This is to certify that neither this thesis or any part of it has been presented or is being
currently submitted in candidature for any degree other than the degree of Doctor of
Philosophy at the University of Glamorgan.

f^ A-A tCandidate

XVII

Chapter 1 Introduction

1 Introduction

On the morning of the 15th March 1995 a new, ultra high-tech and therefore packed

with software, Airbus A340 was on the final part of its approach to Gatwick airport.

Both of the pilots screens had gone blank except for the message "Please wait....".

Unnerved by this, the pilots requested that the plane turn left. The plane responded

by turning right. Perhaps now a little concerned, they tried to get the plane to adopt a

3 degree approach to the runway. The plane responded by adopting a 9 degree

plummet. By now the passengers as well as the pilots, may well have been on the

verge of panic and worried for their lives. Fortunately however, the pilots managed

to gain manual control and land safely.

This example, taken from a BBC news report, illustrates the responsibility society

places in systems and the potential for disaster when the unexpected occurs. Risks

from systems (Neuman, 1995) span the whole spectrum of impact, both direct and,

even harder to assess, indirect. Even systems which exactly meet their specification

still present some risk to society.

We depend upon systems. Many wonderful things are possible with their assistance

and would be impossible or very difficult without. As the information era progresses

our dependence will increase. Our need for quality software will correspondingly

increase. However, as technology has improved over the past 30 years, the quality of

software has not improved at a similar rate.

Various techniques are used to improve the quality of software. Software testing has

been used since the first program was written. Software testing aims to reveal faults,

which cause incorrect or unspecified behaviour. Unfortunately, testing in general,

cannot guarantee the absence of all faults. Test data are selected toward satisfying an

adequacy criterion. This criterion states when testing can stop and at that point there

should be few faults left in the software. This should have established an acceptable

degree of confidence in the software.

Over the last 20 years methods have been developed (Pressman, 1994) which

structure the process of software development. By using a method, more faults are

removed at each stage of software development. Test data can be selected using the

products generated from each of the method's stages. A complementary approach to

software testing is software inspections (Pagan, 1976) and walk-throughs (Myers,

1979). These reveal many faults without executing the test software.

Software testing is not a panacea and has a number of problems. It consumes

significant resources and time. Myers (1979) states "in a typical programming

project, approximately 50% of the elapsed time and over 50% of the total cost are

expended in testing the program or system being developed". Graham (1991) states

Chapter 1 Introduction

"Testing typically takes 40% of development effort" and continues "Testing often

uses far too much of the most expensive resource : people". A great deal of creativity

must go into the selection of fault revealing test data. However, software testing is

essentially a destructive and repetitive process, which can make it an unattractive

activity.

These problems can be eased through automation of testing. Graham (1991) reports

that quality improvements of 95 to 100% and productivity improvements of up to

7500% can be achieved with computer aided software testing tools. It is generally

accepted that the most difficult aspect of software testing is test data selection. Ince

(1987) outlines several approaches. Of these approaches he describes adaptive

testing as a "tantalising possibility" and states that "there is little data on heuristic

search techniques". Adaptive testing uses existing test data to generate further

effective test data. It is a dynamic feed-back approach which involves the execution

of the test software and monitoring the test effectiveness to decide the next action. It

is this approach that has been developed in this thesis.

Chapter two defines some fundamental concepts and terms that are used throughout

the thesis. A review of test data generators outlines each approach and indicates

strengths and weaknesses. Greater attention is paid to adaptive test data generators.

Chapter three describes the Heuristically Aided Testing System (HATS) and two

heuristics it uses; the Direct Assignment (DA) heuristic and Alternating Variable

(AV) heuristic. Chapter four discusses the application of HATS to a quadratic
equation solving procedure, identifying problems with the two heuristics. Chapter

five describes two further heuristics to overcome these problems; the Linear Predictor

(LP) heuristic and Boundary Follower (BF) heuristic. The performance of these new

heuristics is discussed. Chapter six discusses the application of HATS to a more

complex procedure which performs triangle classification. Chapter seven focuses on

the testing of loops and arrays through the use of a procedure that calculates the

remainder after a division and a procedure that performs a linear search. Chapter

eight presents the conclusions and further work.

Chapter 2 Automatic Test Data Generation

2 Automatic Test Data Generation
2.1 Introduction

This chapter describes concepts that are used throughout this thesis, outlines testing
methods and reviews automatic test data generators, concentrating mainly on
adaptive generators.

2.2 Fundamental Concepts

Many of the concepts used in this section are from White and Cohen (1979).
Variables in the test software are divided into three classes. If a variable accepts a
value from the user or calling software, it is an input variable. If a variable provides
a value to the user or calling software, it is an output variable. All other variables are
termed program variables. When an element in the test software, i.e. a statement or a
branch, is the focus of testing, it is described as being considered. The predicate
associated with an element that is under consideration is termed the considered
predicate.

Hecht (1977) describes a number of control flow models. The test software can be
represented as a directed graph; the nodes represent a group of statements "such that
no transfer occurs into a group except to the first statement in that group, and once
the first statement is executed, all statements in the group are executed sequentially".
The arcs represent transfers of control, or branches, between the nodes. Such a graph
is termed a control flow graph. A restricted form of the control flow graph is the
control flow tree.

White and Cohen (1979) highlight an important correspondence. "A program which
has N input variables and produces M output variables computes a function which
maps points in the N dimensional input space to points in the M dimensional output
space". Focusing on the structure of the input space; "The input space is partitioned
into a set of domains. Each domain corresponds to a particular executable path in the
program and consists of the input data points which cause the path to be executed".
More formally, they define an input space domain or simply input domain to be "... a
set of input data points satisfying a path condition, consisting of a conjunction of
predicates along the path". An input data point (a set of values; one for each input

variable) may be referred to as a point.
Each input domain has a boundary which is "determined by the predicates in the path
condition and consists of border segments, where each segment is the section of the
boundary determined by a single simple predicate in the path condition".

Chapter 2 Automatic Test Data Generation

If the test software contains loops, sequential selections or a combination of these,
then a branch that is traversed after one of these constructs is executed has more than
one partial path to the branch. A partial path in a control flow graph or tree begins
at the entry or root node and ends at a non terminal node. For each partial path to a
branch there is an interpretation that describes the branch's predicate as a function of

the input variables. Each border segment determined by a predicate exists only in the
input variables (dimensions) present in the predicate's interpretation. This number of
dimensions may be from one to the number of input variables. Input variables in the

interpretation of a partial path to a considered predicate are described as having
considered predicate influence. However, input variables not in the considered
predicate's interpretation but in the interpretations of earlier predicates in the partial
path to the considered predicate are described as having former predicate influence,

i.e. their values contribute toward arrival of control at the considered predicate. Input
variables may be influential in both the former predicates and the considered
predicate.

2.3 Testing Methods

A testing method typically comprises a test data selection strategy and a test data
adequacy criterion. The selection strategy describes how test data shall be chosen to
satisfy the adequacy criterion (or just criterion), which defines when testing may

terminate. Weyuker (1986) states "Such a criterion represents minimal standards for
testing a program, and as such measures how well the testing process has been
performed". Consequently, when a criterion is satisfied the tester should have some

degree of confidence that the software functions "acceptably". Later in her paper,

Weyuker discusses the relationship between an adequately tested program and a
correct one. She states "An initial reaction might be that they should be intimately
connected, perhaps even that an adequately tested program should be correct. But the
purpose of testing is to uncover errors, not to certify correctness".

Many testing methods have been developed and are well described in Roper (1994).
The methods typically fall into two classes, functional and structural, however some
methods may fall into both classes. Functional (black-box) methods are driven by

the test software's specification. Structural (white-box) methods are driven by the test

software's code. Such methods are used in this thesis and are now highlighted.
Statement testing and branch testing aim to select test data that cause execution of
every source language statement or every decision outcome at least once. Path

testing aims to cover every path in the test software. Even for small programs

containing loops, path testing is unrealistic (Myers, 1979), so some subset of paths is
chosen. A subset of paths can be selected that collectively satisfy some other

Chapter 2 Automatic Test Data Generation

criterion e.g. branch or statement testing. Domain testing (White and Cohen, 1980)
aims to select points on and next to the border segments of the test software's input
domains. Mutation testing (Budd, 1981) produces many similar versions of the

original test software by introducing a single, syntactically correct change. The new
programs are called mutants and it is mutation testing's aim to select test data that

cause a difference in outputs between the original and mutant programs. When there
is a difference, the mutant is described as being revealed. A set of mutants can be

created so that the test data required to reveal them is equivalent to other testing
methods.

A subsumption ordering of structural testing methods exists (Ntafos, 1988). This
illustrates the relative difficulty of selecting test data to satisfy the criteria. Statement

testing is the easiest to satisfy with branch testing next. Path testing is the hardest to
satisfy. Other methods exist between path and branch testing.

2.4 Test Data Selection

Myers (1979) defines testing as "the process of executing a program with the intent of
finding errors" and goes on to say "This definition ... implies that testing is a
destructive process, even a sadistic process, which explains why most people find it
difficult", and later reinforces that "...program testing is inherently an extremely

difficult task". Since it is easy to measure how well a set of test data has satisfied an
adequacy criterion, the difficulty lies in test data selection. This is confirmed by

Roper (1994) who states "Many of the [testing] techniques are not prescriptive in

their selection of test data". Hence a considerable degree of creativity is required,
generally without specific guidance, for an essentially destructive process.
Myers (1979) argues "programmers cannot effectively test their own programs
because they cannot bring themselves to form the necessary mental attitude : the
attitude of wanting to expose errors". However, programmers typically conduct unit

testing of their own code. Software testing is a repetitive task, which could be
responsible for Graham (1991) stating "Many software developers seem to regard

testing as boring". She indicates that a lot of tool support is required when software

testing is regarded as deadly boring and states 90% of software developers have never

been trained in testing methods.
Clearly, test data selection is hard and disliked. Further, it traditionally takes place
late in the life cycle, when dead-lines may be stretched and delivery of the system

being developed may be imminent. Clearly, automating test data selection should

ease these problems.

Chapter 2 Automatic Test Data Generation

2.5 Automatic Test Data Generators

Many different test data generators have been developed. This section classifies
generators according to the approach used and identifies strengths and weaknesses.
Emphasis has been placed on adaptive generators as the system described in this
thesis falls into this class. A static generator does not execute the test software,
however a dynamic generator does.

2.5.1 Random Test Data Generation

It is simple and cheap to randomly generate test data. Further it is stressing to the test
software as unusual points may be used. However it is inefficient, if not virtually
impossible, with small solution domains (Moranda, 1978). Nevertheless, it is a
useful approach (Duran and Ntafos, 1984) and is a base line for comparison with
other generators.

2.5.2 Syntax Based Test Data Generation

The input to the test software is formally described by a grammar. Test data are then
generated from the grammar. This approach can produce large quantities of diverse
functional test data. However, if the grammar has to be developed for testing this can
be costly and time consuming. Burgess (1993) provides more detail and Ince (1987),
a review.

2.5.3 Specification Based Test Data Generation

Test data are generated from a formal specification of the test software. Different
systems have been developed (McMullin and Gannon, 1983; Denney, 1991;
Furukawa, et al, 1985; Richardson and Clarke, 1981). The oracle problem (Weyuker,
1982) does not exist with specification based generators since the output from the test
software can be compared against an executable version of the test software's formal
specification. However, for a program of some size special skills and a considerable
degree of effort is required to produce a formal specification.

2.5.4 Test Data Generation by Symbolic Execution and Solution of
Produced Constraints

A path in the test software is specified then symbolically executed. Symbolic
execution produces a set of constraints for the path, in terms of the input variables (an
interpreted path condition). Linear or non-linear programming techniques attempt to

Chapter 2 Automatic Test Data Generation

solve the constraints. If successful, a point is produced for the path selected,
otherwise the path is infeasible or the constraint-solver is not powerful enough. A
number of path-based systems have been developed (Clarke, 1976; Howden, 1977;
Ramamoorthy, et al, 1976; Voges, et al, 1980).
Offutt and Seaman (1990) describe an approach that symbolically executes the path
to a mutated statement and produces further constraints that will reveal the mutation
when test data that satisfy all the constraints are found.
Symbolic executors only require the program code to operate and can produce a
minimal test data set to satisfy the specified criterion. However, there are several
difficulties (Coward, 1988; Schmitz, et al, 1980). The number of times a loop
iterates must be known and this is particularly difficult when this number of iterations
is dependent upon input variables. Where subprograms are used in the test software
further methods must be used to handle this. When an array is referenced by an input
variable or is dependent upon at least one input variable, symbolic execution cannot
proceed beyond this statement as the array element referenced cannot be identified
uniquely. Many paths in software are infeasible (Hedley and Hennell, 1985),
however the feasibility of a path will not be discovered until an attempt is made to
solve the path condition. Since symbolic execution is a static approach focusing
solely upon the test software, environmental faults may not be revealed that would
be, perhaps coincidentally, with a dynamic approach.
Inamura (1989) has proposed a trial-and-error method as an alternative to linear and
non-linear programming techniques. It analyses the path condition and uses
constrained random test data generation and input variable backtracking to find a
solution. A solution to array elements referenced by an input variable is proposed,
but has limitations including being unable to operate upon conditions involving
equality.

2.5.5 Adaptive Test Data Generation

Adaptive test data generators are feedback systems which use existing points to
produce further points in an attempt satisfy some criterion. Searching and
optimisation techniques are used to adapt the points.
Adaptive systems are typically dynamic; the test software is executed to produce
feedback. Since the actual variable values are available, adaptive techniques do not
suffer from the significant difficulties symbolic execution has. Software can be
tested in its target environment, so that environmental faults may be revealed. Most
adaptive systems know very little, if anything, about the function of the test software
and assume very little about it. Consequently direct-search techniques (Gill and

Chapter 2 Automatic Test Data Generation

Murray, 1974) for numerical optimisation, where only function values are compared,
are suitable.

Adaptive test data generators can be split into two broad classes according to the
adequacy criterion they aim to satisfy. These classes are fault-based and path-based.
A number of fault-based systems have been developed for use with Ballistic Missile
Defence software. One of the earliest systems is due to Cooper (1976), who outlines
the architecture of an adaptive testing tool and mentions the use of gradient,
probabilistic and heuristic search techniques to bring about a maximal degradation in

test software performance. This initial work is further developed by Andrews and
Benson (1981) and Benson (1981). Both describe the use of Complex search (Box,

1965) for test data adaptation and executable assertions for performance evaluation.
The objective is to maximise the number of violated assertions.
The path-based class is divided into two sub-classes. The first sub-class contains
generators which have test paths selected before test data generation commences.
The second, does not have paths preselected.

Miller and Spooner (1976) have developed one of the earliest systems, which
preselects paths. Their system uses a variant of Rosenbroch's (1960) method to
generate test data. The path consists of solely floating-point assignment statements
interspersed with constraints that are derived from the predicates encountered on
traversal of the path. More recently, Korel (1990a) has developed a system using
numerical optimisation, dynamic data flow analysis and backtracking. The direct-
search numerical optimisation technique, Alternating Variable (Glass and Cooper,

1965), modifies a single input variable at a time to minimise a function associated
with a branch. Dynamic data flow analysis enables variables that are influential in
the branch to be identified and ranked for modification. Backtracking focuses on

branches where control has deviated from the selected path.
A system that converts test data generation into an unconstrained optimisation
problem is presented by Gallagher and Narasimhan (1993). Instrumentation modifies
the test software's conditions so that their outcomes can be controlled to force
execution to take a specified path. Penalty functions (Adby and Dempster, 1974) are
associated with each condition, so if control does not naturally take the required
branch it has a large value corresponding to the distance it has "missed" the branch

by. The objective function, which is the sum of the penalty functions, is optimised

by a Quasi-Newton optimisation technique using the BFGS update (Minoux, 1986).
This approach suffers, in that some of the test data generated will be forced down a
non-natural path, so cannot be used to determine if a fault is present.
The main strength in this sub-class is in overcoming the inherent difficulties symbolic

executors have. However, path selection and determining path infeasibility remains a

Chapter 2 Automatic Test Data Generation

difficulty. Complete path conditions can be quite complex, hence locating a solution
to such a path may be difficult.
A number of systems fall into the second sub-class where paths are not selected
before test data generation commences. Path or partial path selection is conducted
during test data generation or is not explicitly considered. Prather and Myers (1987)
acknowledge preselected path infeasibility and have observed that there is an intrinsic
interplay between path selection and test data generation which can be exploited.
With this foundation Prather and Myers have developed the Path Prefix testing
strategy for branch coverage. The shortest partial path (path prefix) and
corresponding point that traversed the partial path to an untraversed branch, is
selected. The point is modified so that the untraversed branch is traversed (the
decision is reversed). Here the closeness phenomenon is observed where test data
that have traversed a branch are "close" to traversing the alternative branch. A
method of inversion using back substitution to produce a decision reversing point, is
mentioned, and gradient techniques are suggested as a potential solution. Branches
are covered either by directly being considered or as a consequence of a decision
being reversed (collateral coverage).
Kundu (1979) developed the earliest system, SETAR. It first executes an arbitrary
point and stores the path traversed. This path is then symbolically executed to

determine the path condition. A point is then found that violates at least one

constraint in each of the previously traversed paths' conditions. This point is then

executed and the cycle is closed. A method to overcome arrays referenced by an

input variable is described. It is unclear when test data generation would stop as

there will be a great number of violable constraints in test software containing loops.

Korel (1990b) describes a modification to his earlier system (Korel, 1990a) where

preselection of paths has been eliminated and node coverage is attempted. The
branches to a required node are classified; critical when branch traversal cannot lead
to the required node, required when branch traversal leads closer to the required

node, semicritical when branch traversal will need to iterate a loop once more to

potentially take the alternative required branch and nonessential when branch

traversal does not affect control leading to the required node. Execution is monitored

so that if control deviates from the exact partial path to the required node then

execution is terminated when the deviation occurs. The Alternating Variable search

attempts to find a point that traverses the alternative branch at the deviation.

Consequently, bringing control closer to the required node. Preservation of the exact

partial path to the required node is later relaxed. If traversal of a nonessential branch

is taken, execution continues. However, on traversal of a critical or semicritical

branch, execution is terminated.

Chapter 2 Automatic Test Data Generation

Deason, et al (1991) present a system that uses test data generation rules gleaned
from software testing experts (DeMillo, et al, 1978; Howden, 1987) to satisfy
structural condition-based criteria. The ten rules generate test data randomly or
through analysis of the condition under test and / or through the use of the two closest
points to the condition's boundary. A related system is described in Cross, et al

(1991). Here the Path Prefix testing strategy (Prather and Myers, 1987) has been
utilised to achieve branch coverage. The ten rules of the previous system have been

replaced by four heuristics. The first two heuristics use symbolic simplification to
derive an input variable's value at a condition's boundary with all remaining input
variables held constant. Only values for influential input variables are generated,
although how a condition's influential input variables are determined is not discussed.
If the best point cannot be improved upon and the branch remains untraversed then
the third and fourth heuristics modify the non influential input variables by 10% and
reapply the first two heuristics.

The systems in this subclass incorporate some element or are a variation of the Path

Prefix testing strategy, hence have similar strengths and weaknesses. Path
infeasibility still presents a difficulty, but not to the extent of systems with paths
preselected. It is known, at least, that the partial path to a condition is feasible.
However, relative infeasibility, may occur where an absolutely feasible branch is
untraversable due to the constraint of satisfying a partial path to the branch.
The system described in this thesis falls into this sub-class. The motivation for
research in this area was provided by Ince (1987) who states "A number of questions
about adaptive testing remain unresolved. There is still little data about its
effectiveness. No work has been reported on using other measures of test
effectiveness such as branch coverage, segment coverage or statement coverage.".
He continues, "In particular there is little data on heuristic search techniques" and
concludes, by describing adaptive testing as a "tantalising possibility".
Prather and Myers (1987) mention an inversion process that satisfies a considered
condition by inverting values for all program variables back through the program
logic to produce a point that will cause the condition to be satisfied. Prather and
Myers, describe the inverse problem as "inherently difficult" and little work on the

approach has been published since. However, they identify the use of techniques that
can exploit the closeness of one partial path to another and discuss the use of a

gradient technique.

10

Chapter 3 The Heuristically Aided Testing System

3 The Heuristically Aided Testing System
3.1 Introduction

The Heuristically Aided Testing System (HATS) uses a library of adaptive heuristics
in an attempt to satisfy a test criterion. A heuristic contains a rule or a series of rules
that describe how test data should be adapted. The rules that a heuristic embodies,
serves to distinguish it from other heuristics. A library of heuristics is proposed, so
that the diverse functions and constraints present in software can be handled. HATS
aims to achieve branch coverage of the software tested. Being a heuristic approach
however, no coverage guarantee can be given.

HATS is a dynamic approach. The test software is executed and untraversed
branches are selected for consideration during testing. Executing the test software

enables the actual output to be obtained and may reveal failures. Dynamic branch
selection overcomes the static branch selection problems, where paths must be chosen
from a possible infinity and many paths are infeasible (Woodward, et al, 1980). A
further benefit is that untraversed branches may be covered coincidentally by test
data generated with the aim of traversing some other branch.
A model of the test software stores the test data generated and used by HATS. This
chapter first discusses some important concepts underlying HATS, then describes the
complete system, focusing on the two most important components: the HATS
harness and the heuristics.

3.2 Objectives of HATS

HATS has three objectives

 to generate test data which satisfy the chosen testing criterion
 to offer an environment to support a variety of experimental heuristics
 to promote understanding of the adaptive approach

3.3 The Closeness Phenomenon and its Exploitation

A decision in a program can be either true or false. Each of these outcomes causes
control to traverse a branch in the program and the corresponding branch in the
program's control flow model. Prather and Myers (1987) observe that a point which
has traversed a branch is "close" to traversing the alternative branch. By altering this
point in some fashion the alternative branch may be traversed. Prather and Myers

(1987), quote Beizer (1983) and Deutsch (1982), who make a similar observations.

11

Chapter 3 The Heuristically Aided Testing System

By exploiting this closeness phenomenon, it is unnecessary to derive information on a

partial path's function to generate test data. The partial path function is created by

the assignment statements encountered on the partial path to the branch being tested,

described in terms of the input variables. HATS treats each partial path function it

encounters as a black-box. Only the input variable values and a value for the
considered branch's predicate (section 3.5.5) are used.

3.4 HATS Architecture

HATS consists of three main components; the Modeller, Instrumentor and HATS

harness. Figure 3.1 shows HATS's components and data flow. The test software is

provided to the Modeller and Instrumentor. The Modeller generates a control flow

tree. The Instrumentor (section 3.5.3) adds statements to the test software which

record the control flow, program values and failure discoveries in the control flow
tree.

Test
software

(instrumented)

Figure 3.1 - HATS Architecture

First some initial points must be selected and executed by the test software. There

are no restrictions on how to select the initial points or how many points to select.

Initial points are typically selected by hand or randomly.

After execution of the initial points, the HATS harness operates. The HATS harness

consists of the heuristics, support functions for the heuristics and the test software.

The HATS harness first searches the control flow tree for an untraversed node.

When one is found the harness selects a heuristic to consider this node.

The chosen heuristic generates a single point which is executed upon by the test

software and updates the control flow tree. Then HATS harness takes control again

and makes a number of decisions. If the considered node has been traversed then a

further untraversed node is searched for. If the effort expended on a considered node

exceeds a threshold, then it is deemed infeasible and a further untraversed node is

12

Chapter 3 The Heuristically Aided Testing System

searched for. Otherwise, the current heuristic is invoked again and its search
continues.

The heuristic evaluates the data in the control flow tree toward generating a further
point or terminating. If the heuristic generates a further point, the test software
executes upon it. If the heuristic terminates the HATS harness chooses another
heuristic to continue consideration of the node. If there are no more heuristics left
then the node is deemed infeasible. This closes the cycle round the HATS harness,
the heuristics and the test software.

3.5 Testing Criterion. Software Model and Instrumentation

3.5.1 Testing Criterion

Of the many testing criteria in existence, structural branch coverage (Roper, 1994)
has been selected. This is the most commonly used structural criterion (Tai, 1990).
The HATS harness attempts to generate test data that covers every branch left
untraversed by the initial points, at least once.

3.5.2 Software Model

A software model (Hecht, 1977) is an abstraction of the test software and represents
some aspect of the software, for example control flow or data flow. HATS uses a
software model to store and retrieve data during the testing process. This data
includes input values, output values, values of predicates, revealed failures and the
flow of control taken through the test software. Each time the test software is
executed this data is recorded in the model. The HATS harness uses the data in the
model to select an untraversed branch for consideration by a heuristic and to gain
feed-back on the progress of a heuristic. A heuristic uses data in the model to initiate
testing of a branch and to gain feedback while a branch is being tested.
A control flow binary tree (Booch, 1987) is to be used to model the test software.
Figure 3.2 shows an example procedure and its control flow tree.
The procedure TEST_ME has two integer input variables, A and B, and a string
output variable, MSG. The procedure calculates A as a percentage of B and checks if
the result is greater than or equal to 95%. If so, the message "OK" is returned,
otherwise "NOT OK" or "B=0" is returned. The control flow tree clearly shows that
there are three paths and four branches in the procedure.
Section 2.2 outlines the correspondence between the test software and its control flow
model. For example the group of statements from line 10 to line 14 is represented by
node 3. Note that the beginning of the "if statement (line 14) is the group's

13

Chapter 3 The Heuristically Aided Testing System

terminator. A group of statements are represented more than once in the control flow

tree when there are different partial paths to the group. A node may consist of zero

statements so that branch testing can be satisfied.

Control flow tree node number
Line number

Ada statements

procedure TEST_ME (
in INTEGER;

: out STRING) is
FLOAT;
INTEGER;

A,B
MSG
C,D,E
F

begin
if (B = 0) then
MSG:="B=0 ";

else
C := FLOAT (ABS (A));
D := FLOAT (ABS (B));
E:=C/D;
F := INTEGER { E * 100.0);
if(F>=95)then
MSG:="OK ";

else
MSG := "NOT OK";

end if;
end if;

end TESTJVfE;

Figure 3.2 - The TEST_ME procedure and its control flow tree

Each node in the control flow tree, except the root node, holds data on the incoming

branches predicate, e.g. data for predicate (B=0) is held in node 2 (figure 3.2). A

predicate can be of the form El <rel> E2, where El and E2 are simple expressions

and <rel> is a relational operator. HATS has classified predicates and presently

recognises two types. First, where El is an input variable and E2 is a constant, and

second, where the predicate is some other form to the first. The predicate type is

stored in the corresponding control flow tree node and helps the HATS harness to

select suitable heuristics.

Each node in the control flow tree has a linked list attached to it which holds data on

a point that has caused traversal of the incoming branch. An element in the root

node's linked list holds the input point, output point, path taken and a failure code.

An element in a non-root node's linked list holds the input point and the node's

predicate value (section 3.5.5). When a node is traversed, instrumentation (section

3.5.3) stores data in the corresponding node in the control flow tree. Figure 3.3

shows the linked lists in the TEST_ME procedure's control flow tree after two points

have executed. For the sake of clarity only the input points are shown in each linked

14

Chapter 3 The Heuristically Aided Testing System

list's element. This clearly illustrates how the nodes are updated as control

propagates through the test software.

Figure 3.3 - TEST_ME's control flow tree showing each traversed nodes' linked list

3.5.3 Instrumentation

Instrumentation (Huang, 1978) is placed in strategic locations in the test software, to

record essential data in the control flow tree. Four types of instrumentation are used,

pre-execution, branch, postexecution and failure. Pre-execution instrumentation is

placed so that it operates before the test software does (between lines 6 and 7, figure

3.4). It creates a new element in the root node's linked list, places the input point into

the element and adds the root node identifier to a list of nodes traversed. Branch

instrumentation is placed immediately after a branch in the test software (between

lines 7 and 8, 9 and 10, etc., figure 3.4). As control propagates through the test

software, branch instrumentation moves a pointer to the corresponding node in the

control flow tree and creates a new element in the node's linked list which holds the

input point and branch's predicate value (section 3.5.5). Further, the instrumentation

adds the identifier of the node entered to a list of nodes traversed.

Postexecution instrumentation is placed to operate after the test software has

completed (between lines 19 and 20, figure 3.4). It updates the root node's linked list

element created by the pre-execution instrumentation with the output point and the

path taken (list of nodes traversed). Failure instrumentation may be placed in various

test software locations. These locations depend upon the failure trapping features

provided by the language being used. This instrumentation traps a failure, preventing

its effect upon the test software propagating to the HATS harness, and updates the

corresponding element in the root node's linked list with a failure code.

15

Chapter 3 The Heuristically Aided Testing System

1 procedure TEST ME (
2 A, B : in INTEGER;
3 MSG : out STRING) is
4 C,D,E : FLOAT;
5 F : INTEGER;

PV2,PV3,PV4,PV5:INTEGER;PATH:PATH_TYPE;
6 begin

INSTR_before_exec(A,B,PATH,l);
7 if(B=0)then

PV2 := (B-0);INSTR_move_Ieft(A,B,PV2,PATH,2);
8 MSG:="B=0 ";
9 else

PV3 := (B-0);INSTR move_right(A,B,PV3,PATH,3);
10 C := FLOAT (ABS (A));
11 D := FLOAT (ABS(B));
12 E:=C/D;
13 F := INTEGER (E * 100.0);
14 if(F>=95)then

PV4 := (F-95);INSTR_move_left(A,B,PV4,PATH,4);
15 MSG:="OK ";
16 else

PV5 := (F-95);INSTR_move_right(A,B,PVS,PATH,5);
17 MSG := "NOT OK";
18 end if;
19 end if;

INSTR_after_exec(MSG,PATH);
20 endTEST_ME;

Figure 3.4 - Procedure TEST_ME with instrumentation

3.5.4 Selecting Branches to Test

The order that branches are selected for consideration is important. A top-down

breadth-first search for untraversed nodes (which correspond to branches) in the

control flow tree is to be used. This search reduces the risk of control deviating from

a partial path to the considered node by selecting untraversed nodes that are closest to

the first statement executed in the test software. Control flow along the partial path

to the considered node is altered when an input point satisfies an alternative predicate

and is termed an upper-deviation. By considering nodes higher in the control flow

tree first, there is greater potential for coincidental traversal, where an untraversed

node that is not the considered node, is traversed. This may take place whether or not

an upper-deviation has occurred. Prather and Myers (1987) make similar

observations they describe as collateral coverage.

3.5.5 The Input Point Closeness Metric

This metric indicates how close a point is to a boundary defined by the considered

branch's predicate. The metric is termed a predicate value and is defined as (El - E2)

which is derived from branch predicates of the form (El <rel> E2) (section 3.5.2).

Figure 3.4 shows the predicate value expressions in the TEST_ME procedure.

16

Chapter 3 The Heuristically Aided Testing System

The predicate value is relative to the condition it was derived from. Only predicate
values for the same condition can be compared. To compare predicate values from
different conditions would be meaningless. If two predicate values for the same
condition are compared, the point whose predicate value is closest to zero, is the
closest of the two points to the input domain boundary defined by the condition.
Input domain boundaries exist close to or directly upon points that have a predicate
value of zero. However, if the predicate value is used as a guide this may cause some
difficulties. An interfering predicate will cause an upper-deviation. Consequently,
no predicate value will exist for the considered node for the point used. Hence, only
an expected boundary location can be predicted using the predicate value.
A heuristic can use this metric to exploit the closeness phenomenon. It allows a
heuristic to determine which side of a boundary a point is on, from the polarity of the
predicate value. This may be useful when considering an equality predicate, as it
allows points either side of the boundary to be distinguished.
Authors of other test data generators have proposed similar metrics, which are based
on closeness and enable the comparison of points. Deason, et al (1991) propose a
metric which calculates the percentage difference between the left and right hand
sub-expressions of a condition. Korel (1990a) transforms a branch's predicate to an
equivalent predicate that is related to zero.

3.5.6 Adequacy Criterion Influence on the Software Model and
Instrumentation

There is an important relationship between the adequacy criterion adopted, the
software model and instrumentation used. The criterion defines the form of the
software model. The software model must explicitly represent, in some way, each
necessary sub-goal, which collectively satisfy the criterion. For example, with
LCSAJ testing (Woodward, et al, 1980), each LCSAJ would need to be explicitly
represented in the software model. Structural criteria are commonly used, however
models for data flow and other non-structural criteria may be used (Furukawa and
Ushijima, 1987; Infotech, 1979). Such models are statically generated. Storage for
HATS's data must be incorporated into the model.
Traditionally, a criterion is expressed in terms of paths or subpaths in a control flow
graph. Generally the test software's control flow graph, or some variation of it,
would be used. The software model's form defines the instrumentation's function and
location in the test software. Instrumentation must record essential data on the
behaviour of the test software and necessary program values.

17

Chapter 3 The Heuristically Aided Testing System

3.5.7 Testing at Various Levels of Abstraction

HATS is not restricted to unit testing. This section describes how higher level testing
is achieved. The all branches criterion tests software at a low level. The software

modelling approach adopted enables software to be tested at other levels of

abstraction. For example, in integration testing, it is important to check interfaces

and code coverage across many procedures. If this criterion can be specified and

explicitly represented within some model of the test software then HATS can test it.

Presently, there is only the input point closeness metric available, however other

metrics could be devised. A suitable model for integration testing may be the static
procedure call hierarchy.

It is not a prerequisite that models are derived from the test software's code. If we
consider the design as a model, then this could be used, together with some criterion
to test the software produced from the design.

3.5.8 Reuse of the Software Model and its Data

Software evolves over its life time. Consequently, the software's test data must also

evolve. The software modelling approach embodies this evolution. After the

application of HATS, the model stores data on the behaviour of the test software.
This data may be rationalised, so that only essential input points and associated data
are stored. When the software is changed unit testing of the new parts and regression

testing of the system would normally be conducted. The model must be updated to

reflect the changes made and HATS applied. A regression testing system could be

constructed which selects appropriate input points from the model and analyses its

old and new behaviour of the test software from the model. Data from the model

may also be used in other processes.

3.6 The HATS Harness

The HATS harness controls the heuristics and test software, and provides support

functions for the heuristics. Figure 3.5 shows each component of the harness and its

iterative nature.
Search for an untraversed node uses a top-down breadth-first search (section 3.5.4)

of the control flow tree for an untraversed node. Select a heuristic uses a selection

hierarchy to choose a heuristic to consider the untraversed node found. The heuristic

selection hierarchy places an order on the application of available heuristics. At the

top of the hierarchy are general heuristics and specific heuristics for immediately

identifiable problems. Lower in the hierarchy are increasingly problem-specific

18

Chapter 3 The Heuristically Aided Testing System

heuristics. Select a heuristic starts at the top of the hierarchy and, as heuristics fail,

chooses heuristics lower down. Apply a heuristic, initialises the heuristic and iterates

it a number of times on the test software. An iteration involves one complete

execution of the test software.

While there are untraversed
nodes

While considered node untraversed
& HATS not terminated node

consideration

While considered node untraversed
& HATS not terminated node

consideration
& heuristic not terminated

Generator Duplicate data
handler

Test
software

Evaluator

Figure 3.5 - Structure diagram of the HATS harness

The generator exercises the heuristic's instructions to generate a point, termed the

execute point, from another point, termed the generate point. The generated execute

point may have already been executed upon the test software and be stored in the test

software model. If required, the duplicate data handler will produce an execute point

that has not been executed before in the current run. Not all heuristics require such

an execute point. The test software has instrumentation included and executes upon

the execute point.
The evaluator does three tasks. First it determines a traversal status from the path

taken by the execute point. Traversal-status can either be upper-deviation, sibling-

traversal or node-traversal. Sibling-traversal indicates that the execute point has

traversed the sibling node to the considered node. Sibling-traversal can be further

refined into positive-sibling-traversal, where the predicate value is positive, and

negative-sibling-traversal, where the predicate value is negative. Node-traversal

indicates that the considered node has been traversed.

The second evaluator task enables a heuristic to review its progress. The heuristic

either produces instructions for the generation of the next execute point or elects to

terminate. The final task is node termination evaluation. If a node has been

considered for too long the node is deemed unreachable. The unreachable nodes

19

Chapter 3 The Heuristically Aided Testing System

component is called which adds the considered node and its descendants to a store.
Search for an untraversed node will not consider any nodes in this store. The node

iteration threshold, specifies the maximum number of iterations the HATS harness

can make on any considered node.

3.7 Heuristics

This section discusses some important issues for heuristics and highlights their

structure. The heuristics described in this thesis are deterministic, in that their

behaviour will always be the same given the same point to start with and test software
set up. There is no random influence once the heuristic commences operation. In
addition the heuristics are direct search techniques (Murray, 1972), in that they are

based on the comparison of predicate values. They require no prior knowledge about

the partial path function they are operating with.

All the heuristics described in this thesis depend upon the test data available when

they commence. Since the heuristics are deterministic it would appear to follow that

the greater the number of points available the higher the chance of finding a solution.
A heuristic may alter any of the input variables. The heuristics described in this
thesis modify only one or two input variables at a time. The test software may have

many input variables, hence some method of selecting the input variable(s) to modify

and dynamically referencing them is necessary. The method adopted allocates each

scalar (atomic) input variable with a run-time identifier. The allocation of run-time

identifiers is based on the order that input variables appear in the test software's

parameter list. Correspondingly, input variables are considered for modification in

the same order; run-time identifier order.

A significant responsibility of a heuristic is to terminate (Gill and Murray, 1979) as

soon as a heuristic recognises that it is unlikely to locate a solution. Determining

when, is potentially a complex task. There is the chance that after terminating the

heuristic would have located a solution given at least one more iteration. However, if

little progress has been made then the risk of this occurring is minimal. Nevertheless,

if a heuristic has been operating past its best termination point then there is the

possibility that it has generated test data that another heuristic may use to success and

coincidental coverage may have increased.
For a heuristic to be used in the HATS harness it must provide up to four

components. These components are now described and the flow through a heuristic

illustrated (figure 3.6).
The first iteration set-up component initialises the heuristic when the HATS harness

chooses to use it. It sets all the heuristic's variables, selects the first generate point

and specifies generation instructions for the heuristics first iteration.

20

Chapter 3 The Heuristically Aided Testing System

The generator component applies the instructions given by the first iteration set-up

component or evaluator component to produce the execute point from the generate

point.

Apply a heuristic

Heuristic's
1st iteration

set-up
->>

Generator

;

Heuristic's
generator

k

•*-

Duplicate
data handler

Heuristic's
DDK

->

Test
software

1

->

Evaluator

ft

1
(.

reversal status

Heuristic's
evaluator

'emanation
valuator

Cor

Y

tinue
-»-
N

Figure 3.6 - Components and flow in a heuristic

The duplicate data handler is an optional component and is only provided and used if

the heuristic requires a unique execute point to be produced every iteration. The

handler modifies the execute point in an attempt to produce a unique execute point

that does not upset the heuristics approach.

The evaluator component reviews a heuristic's progress and either produces new

generation instructions and selects a generate point, or terminates the heuristic. The

actions a heuristic's evaluator takes are generally based on the traversal status of the

execute point.

A time-consuming problem in software testing is determining if the output for an

input point is correct with respect to the test software's specification. This is known

as the oracle problem (Weyuker, 1982). It has been overcome in the HATS harness

by incorporating postconditions in the test software. If the postconditions are

violated then a failure is recorded in the software model.

3.8 Selection of Initial Points

Initial points can be selected in any way and in any quantity. There are no

restrictions except that it must be executed upon the test software so that essential

data is recorded in the software model. Normally however, only a small number of

points will be selected, typically one. This places the emphasis of generating

adequate test data upon HATS.

3.9 The Direct Assignment Heuristic

Test data generation for predicates that include input variables and constants is an

obvious and simple task for a heuristic. However for a human, it may not be so

21

Chapter 3 The Heuristically Aided Testing System

obvious. The Direct Assignment (DA) heuristic exploits input variables that appear

in such predicates.

3.9.1 Overview of the Direct Assignment Heuristic

For a predicate to qualify, the input variable appearing in the predicate must not be

redefined on any path from the first statement executed in the test software to the

predicate. The expressions in the predicate must be of a specific form. Using the

predicate form defined in section 3.5.2, El must be an input variable and E2 a

constant. Static analysis of the test software determines if a predicate qualifies. If so,

the predicate's relational operator and constant value are stored in the control flow

tree. When an untraversed node controlled by such a predicate is considered the DA

determines a value for the input variable using the data stored in the control flow tree,

that should cause traversal of the considered node. A point, with the determined

value for the input variable appearing in the predicate, is executed and the result

evaluated. If the considered node is not traversed then it and its descendants are

deemed infeasible.

An example of the DA's application using the TEST_ME procedure follows. The

single initial point (7, 20), where the first value defines input variable A (7) and the

second B (20), traverses the path 1, 3, 5 in the control flow tree (figure 3.2). Node 2

is the first untraversed node to be found by the top-down breadth-first search. The

HATS harness selects the DA since it is suitable for node 2's predicate. The DA

determines that a value of 0 for input variable B will cause traversal of node 2. A

value of 7 for input variable A is gained from the first and only point to traverse node

2's sibling, node 3. TESTJVIE is executed with the point (7, 0) and the path 1, 2 is

traversed, satisfying the DA's goal.
The DA bears similarity to Howden's (1987) functional testing rules for conditional

branching which have been automated by Deason, et al (1991).

3.9.2 Components and Functions of the Direct Assignment Heuristic

The DA's pseudo code can be found in appendix A3.1.

3.9.2.1 First Iteration Set-up, Generator and Duplicate Data Handler

Most of the DA's functionality operates before the first iteration since the heuristic

takes only one iteration. The considered predicate's constant is assigned to the input

variable appearing in the considered predicate. The input point generation

22

Chapter 3 The Heuristically Aided Testing System

instructions for the input variable involved are defined according to the considered
predicate's relational operator, as shown in table 3.1.

Relational operator Instructions
< increase by 1

>, /= decrease by 1
=, <=, >=_____no change

Table 3.1 - DA's generation instructions for the considered predicate's input variable,
defined by the considered predicate's relational operator

The remaining input variable values for the generate point are provided from the first
point to traverse the considered node's sibling. The generator applies the input point
generation instructions to the generate point to produce the execute point, which the
test software will execute upon if it is unique. If the execute point exists in the
control flow tree, the duplicate data handler records this and the HATS harness
terminates.

3.9.2.2 Evaluator

If the DA causes traversal of the considered node then control returns to the HATS
harness. Otherwise, if the node remains untraversed, the node and its descendants are
deemed infeasible and added to a list of unreachable nodes. This takes place when an
interfering predicate is encountered before the considered predicate, causing an
upper-deviation.

3.10 The Alternating Variable Heuristic

When the considered predicate is some function of the input variables the Alternating
Variable (AV) heuristic is applicable. The AV modifies an input variable in ever
increasing steps in the most promising direction in an attempt to traverse the

considered node.

3.10.1 Overview and Phases of the Alternating Variable Heuristic

Figure 3.7 is a partial input plane for an arbitrary program which illustrates the AV
operating in an ideal situation. A partial input plane is a constrained two
dimensional view of a program's input space. The program's input space may be any
number of dimensions. If there are more than two input variables then the input
variables not included in the plane must be held constant and their values shown.
The arbitrary program has two input variables, X and Y, and a condition dependent
upon both these variables. The condition defines the boundary which partitions the

23

Chapter 3 The Heuristically Aided Testing System

input space into two domains. Input points on the right side of the boundary cause
considered node traversal. Whereas input points on the left side of the boundary and
directly upon it, cause sibling-traversal. The AV's objective is to locate a point that
causes considered node traversal (solution point) from the closest point causing
sibling-traversal. The closest point is a previously executed input point which caused
sibling-traversal and has a predicate value that is closer to the considered node's
expected boundary than any other input point previously executed.

 - Point used

1 1
 1 Exp

Closest
point

*-

\

-

lora
novt

t
*

tory

Points

* S

Sibl

S

ing-

1 1 1
Pattern

 ^ moves v

II

traversal dorr

1 1

\

ain

t

/
/

/

/
£ . Roundary .

T'Solu
K 1

Solution domain
i i i i

tion point
ocated

previously
executed

Figure 3.7 - Partial input plane showing the AV operating

The AV first has an exploratory phase where the direction to modify the considered
input variable is discovered. Comparing the value of variable X in the two executed
points it is clear to see that increasing X is the most promising modification direction.
An exploratory move increases X and the resultant point is closer to the boundary and
solution domain.
Now that a modification direction has been established the exploratory phase
prepares for the pattern phase. The pattern phase modifies the considered input
variable in the direction established with ever increasing steps. Figure 3.7 shows that
the first pattern move is made from the exploratory point and is twice the size of an
exploratory move (2). The second pattern move is twice the size of the previous (4)
and finally the third pattern move is twice the size of the second (8). The final move
crosses the boundary to a solution point. When no improvement is made in the
pattern phase the modification direction and step size may be adjusted or the
exploratory phase may take over again. If it becomes evident during either of the
phases that no progress is being made modifying an input variable then the
exploratory phase takes over on the next input variable.
The AV is a single-dimension version of Glass and Cooper's (1965) Sequential
Search where the alternate routine has been omitted. The AV is a variation of Korel's
(1990a) search procedure which is based on Sequential Search.

24

Chapter 3 The Heuristically Aided Testing System

3.10.2 Components and Function of the Alternating Variable

The AV's pseudo code can be found in appendix A3.2

3.10.2.1 First Iteration Set-up, Generator and Duplicate Data Handler

The first iteration set-up component specifies that the current phase is exploratory,

that the first input variable shall be considered and establishes a modification

direction to use. If the considered node has only one sibling-traversal point, a default

modification direction of increase by one is used. However, when there are two or

more sibling-traversal points, a modification direction can be determined. The
considered input variable values for the two sibling-traversal points with the closest
predicate values to the expected boundary are compared. A further check is made to

see if the expected location of the solution point lies between the two closest points.

Table 3.2 shows how the exploratory modification direction is chosen. The generate

point is defined as the closest point to the expected boundary.

Relationship of input Solution point between Instructions given
variable values_______closest points_____________

Closest < next closest No decrease by 1
" Yes increase by 1

Equal increase by 1
Closest > next closest No increase by 1

_______"______________Yes________decrease by 1

Table 3.2 - Determining exploratory phase input point generation instructions

The generator component produces the execute point by applying the input point

generation instructions to the generate point. The execute point must be unique. If it

is not, the duplicate data handler is used and its action is based on the modification

direction. When increase, the considered input variable of the execute point is further
increased by 1. When decrease, the considered input variable is further decreased by
1. This continues until a unique execute point is produced which is executed upon by

the test software.

3.10.2.2 Evaluator

The evaluator component first checks if the execute point has traversed the
considered node. If so, control returns to the HATS harness, otherwise evaluation is

performed dependent upon the traversal-effect of the execute point and, when a

sibling-traversal took place, the closeness of the execute point to the expected

boundary compared to the closest point stored.

25

Chapter 3 The Heuristically Aided Testing System

3.10.2.3 Sibling-traversal and Closer to the Expected Boundary

Entry to this evaluator indicates that the execute point has made progress toward the

expected boundary location and possible locality of a solution point. The following

example illustrates this evaluator and continues from the previous example in section

3.9.1. The initial point (7, 20) traversed path 1, 3, 5 and the DA generated a point

that traversed node 2, which leaves only node 4 (F >= 95) untraversed in the

TEST_ME procedure. The HATS harness selects the AV to consider node 4. The

exploratory phase is used first. Since there is only a single point to cause sibling-
traversal (7, 20), this is stored as the closest point. The default direction of increase
is used and, as it is the exploratory phase, the step size is one. The first input variable
A is considered for modification.

Figure 3.8 illustrates the moves made by the AV in a partial input plane. When a

point is used by a heuristic, the point's considered predicate value is shown close to it.

22 -,

21 -

?n -

19 -

18 -

Closf
poin

\

_Ex
:st i
t

^H
-60

plorat
ncrea
point

y
-55

arv
;e

>H
4f-~
-)5

- Sib

- -

ling-t
dom

I I

ravers
ain
I I

 -

->H

al

~**~

S
-25

Pattern
points
'

--*

/

 --^

/
X
Solu

A
 -^

lion d

-~_

^

omaii

Jounc

15

1

ary

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A

Figure 3.8 - Partial input plane showing moves made by the AV considering node 4
of the TEST_ME procedure

The exploratory move from the closest point (7, 20), produces a point that is closer to
the boundary and solution points, hence the exploratory phase prepares for the pattern

phase. For the next three iterations, ever increasing steps are taken. The first two

produce sibling-traversal points that are closer to the boundary and the third locates a

solution point (22, 20) for node 4.
The actions taken by this evaluator are now summarised. If the AV is in the

exploratory phase then the pattern phase is prepared for. This involves doubling the

present step size of one to two. The modification direction is not changed. If the AV
is in the pattern phase then a check is made to see if the expected location of the

solution point is between the executed point and the former closest point stored. If

so, the modification direction is reversed and the pattern step is considerably

decreased, otherwise the pattern step is doubled.

26

Chapter 3 The Heuristically Aided Testing System

3.10.2.4 Sibling-traversal and Further from the Expected Boundary

Entry to this evaluator indicates that the execute point made no progress toward the

expected boundary and possible locality of a solution point, hence suitable corrective

action is taken. To prevent the AV from concentrating on one input variable when no

progress can be made modifying it, the number of sibling-traversals further from the

expected boundary for the considered variable are counted. If this exceeds a

threshold then the considered variable is abandoned.

When the AV is in the exploratory phase a check is made to see if this is the first

sibling-traversal further from the expected boundary for the considered variable. If

so, the modification direction is reversed and the generate point is stored as the

closest point. This check enables an exploratory move in the opposite direction.

Searching in both directions may be expected if there was only one sibling-traversal

point. There has to be at least two sibling-traversal points for a modification

direction to be determined. If, in the exploratory phase, there are two sibling-

traversals further from the expected boundary then the considered input variable is

abandoned. Searching in both directions has not found a point closer than the closest

point stored.

When the AV is in the pattern phase the last move has possibly overstepped a

solution point. In an attempt to locate the solution, the modification direction is

unchanged, the pattern step is considerably reduced and the generate point is stored as

the closest point. Since it appears that a solution exists, it is anticipated that a

solution will be found after a few iterations modifying the considered variable.

However, should a solution not be found, then to prevent the AV from continuing to

overstep the expected location of a solution, the number of further sibling-traversals

produced by modifying the considered variable, whilst in the pattern phase, are

counted. If this exceeds a threshold then the considered input variable is abandoned.

3.10.2.5 Upper-deviation

Entry to this evaluator indicates that a move by the AV, in either the exploratory or

pattern phases, has overstepped an interfering predicate's boundary. This evaluator

sets up the AV to "home in" on the interfering predicate's boundary where closer

points and possibly a solution will be located.

When the AV is in the exploratory phase a check is made to see if this is the first

upper-deviation on the considered variable. If so, the modification direction is

reversed and the generate point is stored as the closest point. This enables an

exploratory move in the opposite direction. If there are two upper-deviations in the

exploratory phase, the considered input variable is abandoned. When the AV is in

27

Chapter 3 The Heuristically Aided Testing System

the pattern phase, the exploratory phase is prepared for, which will "home in" on the

interfering predicate's boundary. The step size is reduced to one and the generate
point is stored as the closest point.

To prevent the AV from concentrating on one input variable when no progress can be

made, the number of upper-deviations produced for the considered variable are
counted. If this exceeds a threshold then the considered variable is abandoned.

3.10.2.6 Abandoning Consideration of an Input Variable

The new considered input variable is the next in line to the old considered input

variable. If the old considered input variable is the last then the new is the first in the

list. The modification direction and generate point are determined in the same
fashion as the first iteration set-up (section 3.10.2.1).

3.11 Scope of Testable Software

To test the test software, its object code must be linked with the HATS harness's

object code. Provided, this is possible and the test software has been modelled and
instrumented correctly then a subset of most third generation languages can be used.

However, since Ada has been used to develop HATS, if the test software is written in

Ada this will reduce the risk of integration problems.

3.11.1 Testable Subset of Ada

This subset represents a starting point that will enable experience using HATS to be

gained. There are several parts outlined, these being statements, data types,
conditions, subprograms, input / output and subpath / path expressions.
 Following Barnes' (1989) statement classification, testable simple sequential

statements are null, assignment and procedure call, and the testable compound

sequential statements are if and case.
 Any data type may exist in the test software. However, data types of conditions

and input / output is limited.
 A condition may only be of the simple form outlined in section 3.5.2, where each

subexpression is of integer data type.
 Function or procedure subprograms may be tested. They may be compounded.

 Input to a subprogram must come through its parameters and be integer. Output

may be of any type and is not necessary for it to be passed through the

subprograms parameters.

28

Chapter 3 The HeuristieaHy Aided Testing System

 Subpath / path expressions are not restricted at all. They may be linear, nonlinear
or a combination. They may be of any complexity.

Although loop statements have been omitted from this list they are incorporated in
chapter 7.

3.11.2 Transformations

To model and instrument the test software, it is necessary to transform some of the
instances of the statements mentioned above into a similar but logically equivalent
form. Transforming a program, or adding instrumentation, has the risk of altering its
original behaviour. This would naturally make the testing process worthless.
With "if statements, all variations must be represented in the "if then else" form.
Case statements must be transformed into a series of "if then else" statements. "If
statement conditions with logical connections, i.e. AND, OR, can be transformed to a
number of "if statements with simple conditions.

3.12 Automated and Manual Aspects of HATS

Only the HATS harness has been automated. Generation of the software model,
instrumentation and generation of the initial test data are performed manually.
However, their automation is well understood (Infotech, 1979).

29

Chapter 4 The Quadratic Equation Solver Problem

4 The Quadratic Equation Solver Problem
4.1 Introduction

This chapter describes the application of HATS using the Direct Assignment (DA)
and Alternating Variable (AV) heuristics to a quadratic equation solving procedure.
Firstly, HATS generates test data for branch testing of the QUADRATIC procedure,
secondly, HATS generates test data for Mutation Analysis (MA) of the procedure.
Both branch testing and MA reveal the difficulty HATS has in generating a point that
satisfies the only nonlinear equality predicate in the procedure, which has few points
that do satisfy it. MA is harder to satisfy than the branch testing criterion and it
extensively tests both the QUADRATIC and heuristics.

- Control flow tree node number
i- Line number

i- Ada statements

Y I
1 procedure QUADRATIC (A, B, C : in INTEGER;
2 XI, X2 : out COMPLEX;
3 QUAD_KIND : out QUAD_TYPE) is
4 D:INTEGER; REAL_PART:FLOAT; IMAG_PART: FLOAT;
5 begin
6 SET (Xl,0.0,0.0);
7 SET (X2,0.0,0.0);
8 if (A=0) then

2C 9 QUADJOND := NOT A QUADRATIC;
10 else

- 11 D:=(B*B)-(4*A*C);
. 12 if(D>0)then

13 QUAD KIND:=ROOTSARE_REAL_AND UNEQUAL;
14 REAL_PART:=(FLOAT(-B)+SQRT(FLOAT(D)))/FLOAT(2*A);
15 SET(X1,REAL PART,0.0);
16 REAL_PART:="(FLOAT(-B)-SQRT(FLOAT(D)))/FLOAT(2*A);

-17 SET(X2,REAL_PART,0.0);
18 else

5C 19 if(D=0)then
- 20 QUAD_KIND:=ROOTS_ARE_REAL_AND_EQUAL;

21 REAL_PART:=FLOAT(-B)/FLOAT(2~*A);
22 SET (X1,REAL_PART,0.0);

_ 23 SET(X2,REAL_PART,0.0);
24 else
25 QUAD KIND:=ROOTS_ARE COMPLEX;
26 REAL_PART:=FLOAT(-B)/FLOAT(2*A);
27 IMAG_PART:=SQRT(FLOAT((4*A*C)-(B*B)))/FLOAT(2*A);
28 SET(X1,REAL_PARTJMAG_PART);
29 IMAG_PART:=-IMAG_PART;

_ 30 SET (X2,REAL_PARTJMAG_PART);
31 end if;
32 end if;
33 end if;
34 end QUADRATIC;

Figure 4.1 - The Ada QUADRATIC procedure

30

3

Chapter 4 The Quadratic Equation Solver Problem

4.2 The Integer Quadratic Equation Solver Procedure

The QUADRATIC procedure (figure 4.1) has three integer input variables A, B and

C, representing the coefficients of the quadratic equation. There are three output
variables; XI and X2, of COMPLEX type, are the two roots of the given quadratic
equation; QUAD_KIND, of QUADJTYPE, is an INTEGER subtype and is

constrained to the range 1 to 4. Each value in this range corresponds to one of four

QUAD_TYPE constants; NOT_A_QUADRATIC,

ROOTS_ARE_REAL_AND_UNEQUAL, ROOTS_ARE_REAL_AND_EQUAL or

ROOTS_ARE_COMPLEX.

The procedure has three conditions. The first (A = 0), involves only an input variable

and a constant. The other two conditions, (D > 0) and (D = 0), involve the result of a
non-linear function of the input variables (D = B - 4AC) and a constant (0).

Program variable D, is local to the procedure and is integer.

Figure 4.2 shows that there are four distinct paths through the procedure and the

longest path consists of four nodes. There are no iterations and the procedure has

three branch nodes (1,3 and 5).

Figure 4.2 - Control flow tree of the QUADRATIC procedure

4.2.1 The QUADRATIC'S Input Space

Table 4.1 illustrates the path conditions and the corresponding domain details.

31

Chapter 4 The Quadratic Equation Solver Problem

Path

1,2
13,4

1,34,6
1,3,5,7

Path % of input space domain occupies Domain
condition (range ±1000 for A, B & C) population

A=0
A/=0 & D>0
A/=0 & D=0
A/=0 & D<0

0.05%
62.6722%
0.0002%
37.2776%

Total

4,004,001
5,021,301,640

15,384
2,986,684,976
8,012,006,001

Table 4.1 - The QUADRATIC'S input domains

Paths 1, 3, 4 and 1, 3, 5, 7 have the largest domain population. Consequently, input
points have a higher probability of traversing these two paths than paths 1, 2 and 1, 3,
5, 6. Path 1, 2, has a considerably smaller domain than paths 1, 3, 4 and 1, 3, 5, 7.
Path 1, 3, 5, 6 has an even smaller domain than path 1, 2, which is sparsely located
between the two largest domains. The form of these four domains is shown in figure
4.3.

500 -

B 0-

-500 -

-1000 -
-1C

C= -

1000 -,

500 -

B 0-

-500 -

-1000 -
-10

r*

D>0

™ ———— •-

D>0

D>0 D>0

D>0

di*r*t><o
D>0

1 . . | . 1 ' 1 ' ' 1 '

XX) -500 0 500 1000 -1000 -500 0 500 10
12 A C=12 A

D>0

~"(l'' m.i-r1

D>0

D>0 D>0

D>0

cz — ""

D>0

00 -500 0 500 1000 -1000 -500 0 500 1C
A A r-4 A

- luuu

- 500

-OB

- -500

- -1000
00

• 1000

• 500

• 0 B

- -500

- -1000
100

• D = 0 •"" A = 0 •—• Line between D = 0 points and the outer edge of D = 0 points is the
partition between the D < 0 and D > 0 domains

Figure 4.3 - Partial planes of the QUADRATIC'S input space

If the data type of the QUADRATIC'S variables were real then the (D=0) predicate's
border would be pseudo-continuous, where input points approximating to the border,
are contiguous. Such a procedure's input space would have three borders.. A border

32

Chapter 4 The Quadratic Equation Solver Problem

where points make A=0; a border lying on, but not including, points where D=0 (for
the D>0 condition); and finally a border lying on, and only including, points where
D=0 (for the condition D=0).
However, the QUADRATIC'S variables are integer, and the (D=0) border consists of
disjoint points that are rarely adjacent. A notional border I notional boundary lies in
the place a border / boundary would be had real variables been used instead of
integer. Therefore the integer QUADRATIC'S borders are different to the same
procedure with real variables. There is a border where points make A=0; a notional
border lying through, but not including, points where D=0 (for the condition D>0);
and finally a notional border lying through, and only including, points where D = 0
(for the condition D=0).

4.3 Branch Testing of the QUADRATIC

4.3.1 HATS Experimental Set-up

A single, hand selected point is used to start each HATS harness run (table 4.2). The
values chosen for each of the three input variables are in the arbitrarily chosen range
of ±1000.

HATS
run
Ql
Q2
Q3
Q4

Input variable
ABC

-200
17

257
699

50
27
46
103

9
46
-63
675

Table 4.2 - Initial points for branch testing of the QUADRATIC

The node iteration threshold is 50 and the input variables are considered in the order
A, B then C by the AV.

4.3.2 Run Ql

Six of the seven nodes were traversed. Table 4.3 shows the traversal results for this
run. A traversal results table contains important information on a HATS run and can
consist of up to four sections. The first section shows the path taken by the initial
point. The second section, nodes considered and traversed, shows for each
considered node traversed by a heuristic, the heuristic used, the number of iterations
taken by the heuristic and nodes coincidentally traversed through the heuristic
considering the node. The third section, nodes considered and untraversed, shows the
same information as the previous section but for considered nodes that could not be

33

Chapter 4 The Quadratic Equation Solver Problem

traversed. The fourth section, nodes unconsidered (not shown in table 4.3), lists
nodes that the HATS harness did not consider.

Initial point path 1,3,4
Nodes considered and traversed

Node Heuristic Itcrs Coincidental nodes
DA
AV

Nodes considered and untraversed
Node Heuristic Iters Coincidental nodes

AV 50

Table 4.3 - Run Ql traversal results

The DA took a single iteration on node 2. On node 5, the AV took 9 iterations and
generated a point that coincidentally traversed node 7. No solution could be found in
the maximum 50 iterations using the AV on node 6. Table 4.4 gives a more detailed
breakdown of what occurred whilst a node was being considered by a heuristic.

Considered Heuristic
node used

2 DA
5 AV
6 AV

Total
iterations

1
9

50

Number of iterations :
Variable modified
ABC
1
9
40

0
0
6

0
0
4

Upper -
deviation

0
0
15

Duplicate
data

0
0
10

Table 4.4 - Run Ql's iteration summary for the nodes considered

Nodes 2 and 5 were traversed by a heuristic modifying only input variable A. On
node 6 all three input variables are modified as the A V changed from modifying one
variable to another as it was not making progress. Of the three input variables, A was
modified the most. Only on node 6 were upper-deviations produced and duplicate
data generated as a domain boundary was encountered.
The operation of the heuristics on each node is now described. On node 2, the DA
produced the execute point (0, 50, 9) (where A=0, B=50 and C=9) from the
considered predicate (A=0) and the initial point. On node 5, the AV had only the
initial point (which traversed node 4) to generate from. Figure 4.4 shows how the
AV modified only variable A to locate a solution to node 5 at (311, 50, 9). The
figure represents an approximation of a partial input plane and shows the large
domains of nodes 4 and 5. On the penultimate iteration, a point close to the notional
boundary was generated. Since the point is in a domain that causes node 4 to be
traversed, the AV continued, taking another step twice the size of the previous, to
locate a solution point.

34

Chapter 4 The Quadratic Equation Solver Problem

D=0

Execute point

AV pattern move

Closest point
to boundary s Notional

boundary

Sibling-traversal
Heuristic domain
start point

120-,

100-

80-

60-

40-

20-

-250 -200 -150 -100 -50 0 50 100 150 200 250 300 350
C=9 A

Figure 4.4 - Approximated partial plane of the QUADRATIC'S input space showing
AV heuristic moves on node 5

On node 6, the AV could not find a solution. The location and size of node 6's
domain (section 4.2.1), makes it considerably harder to find a solution than node 4 or
7. Figure 4.5 shows the AV operating on node 6. The heuristic start point is node 5's
solution point. A heuristic start point is the first input point a heuristic uses to
generate from. Modifying variable A, the AV was drawn to the notional boundary
where many points were generated but no solution found. Figure 4.5 clearly shows
the "homing-in" behaviour of the AV. When the AV generates a point that crosses
the boundary from the (D>0) domain to the (D<0) domain, an upper-deviation is
produced. In response, the AV starts an exploratory search from the sibling-traversal
point it has found, which is closest to the boundary. This leads to a pattern search
and the generation of a point that crosses the boundary, completing the cycle.

120-

100-

B 80-

60-

40

D=0

Execute point
AV pattern move
Exploratory search
start point

Notional
boundary

Upper-deviation
domain
(D>0)

Sibling-traversal
domain
(D<0)

Heuristic
start point

• Closest points to D = 0 generated
T T

40 60

-«—I—'—T
80 100 120 140 160 180 200 220 240 260 280

—1—'—I

300 320

C=9

Figure 4.5 - Approximated partial plane of the QUADRATIC'S input space showing
the AV's moves on node 6

35

Chapter 4 The Quadratic Equation Solver Problem

Iter
range

1-10
11-20
21-30
31-40
41-50
Total

Number of iterations :
Variable modified
ABC
10
10
10
6
4
40

0
0
0
2
4
6

0
0
0
2
2
4

Improved
sib trav

8
9
7
2
0
26

Degraded
sib trav

1
0
0
3
5
9

Upper-
deviation

1
1
3
5
5
15

Duplicate
data

0
0
0
0
10
10

Iteration
producing

closest point
10
20
29
33
33

Table 4.5 - Progression of the AV considering node 6

Table 4.5 breaks down the AV's progress on node 6. In the first 30 iterations
progress was good, despite overstepping the boundary 5 times and is shown by the
high number of iterations that produced a closer point. A point close to the boundary
was found (72, 50, 9), solely by modifying input variable A. In the next 10 iterations
progress turned around. On iteration 33, the AV produced the closest point of the 50
iterations. However, the AV cannot determine this, so continues. Indications that
progress to a solution had ceased are shown in the last 20 iterations. The AV cycles
around the three input variables, modifying each, without finding a closer point.
Compared to the first 30 iterations, many more upper-deviations are produced. On
each of the last 10 iterations, duplicate data was generated.
Viewing the QUADRATIC'S input space in the locality of a heuristic's search helps to
explain why the heuristic behaved in a particular way. Figures 4.6 and 4.7 show
predicate values for nodes 6 and 7 in the neighbourhood of the closest point found
(70, 50, 9) in iteration 33. In the figures an asterisk (*) represents a point that causes
an upper-deviation, in this case to node 5. The AV's objective is to locate values for
variables A, B and C, where D=0. Modifying variable A locates the closest point the
AV can find, although the AV is not aware of this. Exploratory searches, from this
closest point, modifying variables B and C, produce no improvement. The AV then
cycles around all three variables again fruitlessly, until the node iteration threshold is
met.

52
B 51

50
49

****** .27
* * * -20 -56 -92 -128

*11 -47 -83 -119 -155 -191 -227
67 68 69 70

A
71 72 73

Figure 4.6 - Run Ql (A, B) partial input plane : AV considering node 6

36

Chapter 4 The Quadratic Equation Solver Problem

c

0

11
10
9
8
7

-679
-399
-119

*
*

49

-580
-300
-20

*
*

50
B

-479
-199

*
*
*

51

-376
-96

*
*
*

52

Figure 4.7 - Run Ql (B, C) partial input plane : AV considering node 6

Figures 4.6 and 4.7 show that no solution point (a predicate value of 0) exists in the
nearest neighbourhood of the closest point (70, 50, 9) and there is no closer point.
The nearest solution to where the AV was searching, exists at (64, 48, 9) and (81, 54,
9), if C is held constant at 9. To locate these would require the AV to modify both A
and B at the same time. This would be a two dimensional search rather than the
present single dimension search.

4.3.3 RunQ2

Table 4.6 shows this run's traversal results. This run's initial point caused the
traversal of an alternative initial path to run Ql. Accordingly, the HATS harness
considers different nodes from run Ql. Six of the seven nodes were traversed.
Table 4.7 breaks down the AV's progress on node 6. No positive progress was made
in the last 40 iterations. This is indicated by no improved sibling-traversals, an equal
number of degraded sibling-traversals and upper-deviations, and duplicate data
generated on every iteration.

Initial point path 1,3,5,7
Nodes considered and traversed

Node
2
4

Heuristic
DA
AV

Iters Coincidental nodes
1
5

Nodes considered and untraversed
Node

6
Heuristic

AV
Iters Coincidental nodes
50

Table 4.6 - Run Q2 traversal results

The closest point the AV can find (4, 27, 46) is located on the fifth iteration. After
this point has been located the AV cycles around the input variables making no
positive progress. This can be seen from the number of iterations each variable was
modified. This run demonstrates the AV's behaviour when the initial point is close to
a notional boundary and no solution is found.

37

Chapter 4 The Quadratic Equation Solver Problem

Iter
range

1-10
11-20
21-30
31-40
41-50
Total

Number of iterations :
Variable modified
ABC
8
4
2
4
4
22

2
2
4
4
2
14

0
4
4
2
4
14

Improved
sib trav

4
0
0
0
0
4

Degraded
sib trav

2
5
5
5
5

22

Upper-
deviation

4
5
5
5
5

24

Duplicate
data

2
10
10
10
10
42

Iteration
producing

closest point
5

Table 4.7 - Progression of the AV considering node 6

4.3.4 RunQ3

The traversal results for this run are shown in table 4.8. Only node 6 was
untraversed.

Initial point path
Nodes considered

Node
2
5

Heuristic
DA
AV

Iters
1

10

13,4
and traversed

Coincidental nodes

7
Nodes considered and untraversed

Node
6

Heuristic
AV

Iters
50

Coincidental nodes

Table 4.8 - Run Q3 traversal results

On node 6, the AV makes positive progress modifying variable A in the first 40
iterations (table 4.9). This is indicated by the high number of improved sibling-
traversals. The few upper-deviations are due to the AV "homing-in" on the notional
boundary and overstepping it, causing upper-deviations, as shown in figure 4.5.
In the last 20 iterations progress turns around and is indicated by the high number of
iterations where upper-deviations are produced and duplicate data is generated. The
closest point the AV can find is located in iteration 41 and from here on the AV
cycles around the input variables.

Iter
range

1-10
11-20
21-30
31-40
41-50
Total

Number of iterations :
Variable modified
ABC
10
10
10
6
2

38

0
0
0
4
2
6

0
0
0
0
6
6

Improved
sib trav

9
9
7
3
1

29

Degraded
sib trav

0
0
0
2
4
6

Upper-
deviation

1
1
3
5
5
15

Duplicate
data

0
3
0
5
5
13

Iteration
producing

closest point
10
20
29
37
41

Table 4.9 - Progression of the AV considering node 6

38

Chapter 4 The Quadratic Equation Solver Problem

4.3.5 Run Q4

The traversal results for this run are shown in table 4.10. Only node 6 was
untraversed.

Initial point path
Nodes considered and traversed

Node Heuristic Iters Coincidental nodes
DA
AV

I
II

Nodes considered and untraversed
Node Heuristic Iters Coincidental nodes

6 AV 50

Table 4.10 - Run Q4 traversal results

On node 6, the AV makes positive progress in the first 40 iterations (table 4.11),
locating the closest point it can find in iteration 41. Indications that positive progress
had ceased are shown in the last 10 iterations.

Iter
range

1-10
11-20
21-30
31-40
41-50
Total

Number of iterations :
Variable modified
ABC
10
10
10
0
2

32

0
0
0
2
2
4

0
0
0
8
6
14

Improved
sib trav

9
8
5
5
1

28

Degraded
sib trav

0
0
1
2
4
7

Upper-
deviation

1
2
4
3
5
15

Duplicate
data

0
0
4
0
9
13

Iteration
producing

closest point
10
20
27
39
41

Table 4.11 - Progression of the AV considering node 6

4.3.6 Branch Testing Discussion

Both DA and AV were used in four separate branch testing runs of the QUADRATIC
procedure. The DA worked without fault in all occasions. However, there was little
potential for any fault. There could not be any upper-deviation since nodes 2 and 3,
which the DA is applicable to, are the immediate successors of the root node.
The application of the AV was both good and bad. With nodes 4 and 5, a solution
was found in every run, modifying only one input variable. There was no difficulty
in locating a solution point, due to the large size of the nodes' domains (section
4.2.1).
An observation made whilst the AV considered nodes 4 and 5 is that the number of
iterations required to locate a solution is related to the predicate value distance
between the heuristic's start point and the solution domain's expected notional
boundary. Predicate value distance is the difference between the predicate value of
two input points. In this case the first input point is the heuristic start point and the

39

Chapter 4 The Quadratic Equation Solver Problem

second is an input point that produces a predicate value of 0, which may or may not
exist in the test procedures input space.

Run Node

Q2 4
Ql 5
Q3 5
Q4 4

Predicate value
distance

4679
38200
77641

210501

Iters

5
9
10
11

Table 4.12 - Relationship between the predicate value distance to an expected
solution and the number of iterations taken to locate the solution

Table 4.12 clearly shows that as the distance increases so does the number of
iterations. The effect of the ever-increasing AV pattern search steps is shown. The
number of iterations increase linearly as the predicate value distance increases
exponentially.
With node 6, the AV did not locate a solution point in any of the runs. Once the AV
had located the (D=0) notional boundary, the same behaviour was observed in all
runs. Upper-deviations, degraded sibling-traversals and duplicate data generations all
increase. The positive progress exhibited in runs Ql, Q3 and Q4, is the AV locating
the notional boundary. The number of iterations positive progress takes place for is
related to the predicate value distance from the heuristic's start point to the (D=0)
notional boundary.

4.3.7 Comparison of HATS with Random Testing

It is desirable for any automated test data generator to compare favourably to random
testing. To compare them it is necessary for both to be conducted under the same
conditions. Both aim to satisfy the all branches criterion on the QUADRATIC
procedure. The range of values HATS's initial point can be selected in and random
testing can generate is constrained to ±1000 for each input variable.
Each random testing run continues until all nodes are traversed. The number of
iterations taken to traverse a node is recorded. This is conducted for 500 runs and the
average for each node calculated.

40

Chapter 4 The Quadratic Equation Solver Problem

Node

1
2
3
4
5
6
7

HATS
iterations

IPT
1

IPT
5-11
9-10
NNT

IPT/CT

Random
iterations

1
2160

1
1.618
2.728

572941
2.728

Key:
IPT Initial point traversed
NNT Node not traversed
CT Coincidentally traversed

Table 4.13 - The number of iterations taken by HATS and random testing for each of
the QUADRATIC'S nodes

Table 4.13 shows the iterations taken by HATS and random testing for each node in
the QUADRATIC. The results shown for HATS are varied. When a node is
considered and traversed more than once, a minimum and maximum number of
iterations is given. If a node is traversed by the initial point or coincidentally, this is
stated as the node was not considered by the HATS harness.
HATS took significantly less iterations than random on node 2, since an equality
predicate was involved (A=0) and HATS was able to use the DA. Nodes 1, 3 and 7
compare equally since they all have large satisfying input domains which are easy to
hit. HATS is slightly worse than random on nodes 4 and 5. Both these nodes have
large input domains which are easy to hit. However, the AV uses those iterations to
move from one node's domain to the other. The number of iterations used depends
on how far the heuristic start point is from the solution domain's boundary (predicate
value distance). This would have applied to node 7 had HATS considered it. With
node 6 HATS was unsuccessful, however, random took a significantly large number
of iterations to find a solution.

4.4 Mutation Analysis

4.4.1 The Appeal of Mutation Analysis

Mutation Analysis (MA) (section 2.3; Budd, 1981) of the QUADRATIC provides a
double benefit. First, MA provides several levels of analysis. Some of which are
harder to satisfy than branch testing. Second, we can observe how the HATS
harness, in particular the heuristics, react to MA, enabling further evaluation and
improvement.
MA possesses a number of desirable features. The levels of MA equate to several
structural testing criteria and do not require significant modification or further
development of HATS. So far the AV has been unable to generate test data to
traverse node 6. MA may shed further light on this problem and, possibly, other

problems.

41

Chapter 4 The Quadratic Equation Solver Problem

4.4.2 Using Mutation Analysis with HATS

There are two main differences between the way MA is traditionally practised and the
way it will be practised in the following experiments. Firstly, a mutant revealing
point generated in one HATS run will not be carried forward and executed before
subsequent HATS runs. A single point will start the HATS run making it the
responsibility of HATS to locate a mutant revealing point. Secondly, rather than
comparing output from the original and mutated procedures, output value checking
postconditions have been incorporated into the mutated QUADRATIC. If the
postconditions show that the input values and output values disagree then the execute
point has revealed the mutant. This check is performed directly after the
QUADRATIC has executed. Hence there is no need to execute the original
QUADRATIC after every HATS iteration.
For each mutation the original QUADRATIC is changed and recompiled manually.
The mutated QUADRATIC then executes upon a single, initial point. The HATS
harness then attempts to cause every branch in the QUADRATIC to be traversed, as
previously. The HATS harness has no knowledge of the QUADRATIC'S mutations.
If the postconditions are violated, the HATS harness terminates and reports that the
mutant has been revealed. Otherwise, the system continues until either all nodes are
traversed or are deemed infeasible.

42

Chapter 4 The Quadratic Equation Solver Problem

Mutant

QM1
QM2
QM3
QM4
QMS
QM6
QM7
QMS
QM9
QM10
QM11
QM12
QM13
QM40
QM41
QM42
QM43
QM44
QM45
QM46
QM47
QM48
QM49
QM50
QM51
QM52
QM53
QM54

Mutation Line no
operator
Stmt del 6

9
11
13

19- 31
20
25

Cond rep 8
8
12
12
19
19

Stmt del 7
8-33
12 - 32

14
15
16
17
21
22
23
26
27
28
29
30

Original Mutated
condition condition

(A=0) (TRUE)
(FALSE)

(D>0) (TRUE)
(FALSE)

(D=0) (TRUE)
(FALSE)

Equivalent

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

Key:
Stmt del Statement

deletion
Cond rep Condition

replacement

Table 4.14 - QUADRATIC'S first round statement analysis mutants

4.4.3 Mutants Produced

The first two levels of MA, statement and predicate analysis, have been used.
Predicate analysis is harder to satisfy than branch testing. Table 4.14 and 4.15
contain the mutants produced for statement and predicate analysis respectively. In
total there are 52 mutants produced, of which 49 are nonequivalent. Statement
analysis produced 28 mutants, 22 from statement deletion and 6 from condition
replacement. None are equivalent. Predicate analysis produced 24 mutants, 6 from
predicate alteration by a small value, 3 from absolute operator insertion (2
equivalent) and 15 from relational operator alteration (1 equivalent).

43

Chapter 4 The Quadratic Equation Solver Problem

Mutant Mutation Line no
operator

QM14 Pred alt
QM15
QM16
QM17
QM18
QM19
QM20 Abs op ins
QM21
QM22 Rel op alt
QM23
QM24
QM25
QM26
QM27
QM28
QM29
QM30
QM31
QM32
QM33
QM34
QM35
QM36
QM60 Abs op ins

8
8
12
12
19
19
12
19
8
8
8
8
8
12
12
12
12
12
19
19
19
19
19
8

Original Mutated Equivalent
condition condition

(A=0)
11

(D>0)
"

(D=0)"
(D>0)
(D=0)
(A=0)

"

11

if

"

(D>0)
"

"

"

11

(D~0)
M
"
>p
"

(A=0)

(A=l)
(A=-l)
(D>1)
(D>-1)
(D=l)
(D=-l)

(abs(D)>0)
(abs(D)=0)

(A/=0)
(A>0)

(A>=0)
(A<0)

(A<=0)
(D<=0)
(D<0)
(D/-0)
(D=0)
(D>=0)
(D/=0)
(D>0)

(D>=0)
(EXO)
(D<=0)

(abs(A)=0)

N
N
N
N
N
N
N
Y
N
N
N
N
N
N
N
N
N
N
N
N
Y
N
N
Y

Key
Pred alt

Abs op
ins

Rel op
alt

Predicate
alteration
Absolute
operator
insertion
Relational
operator
alteration

Table 4.15 - QUADRATIC'S first round predicate analysis mutants

4.5 The First Round of Mutation Analysis

4.5.1 Experimental Set-up

The initial point for each HATS run has been randomly generated, in the arbitrary
range 0 to 1000, for each input variable. The node iteration threshold is 50. Only the
49 nonequivalent mutants are the subjects of the HATS harness.

4.5.2 Statement Analysis Results and Discussion

All 28 nonequivalent mutants were used. Table 4.16 shows that 13 (46%) statement
analysis mutants were revealed by the initial point. Mutant QM41 is revealed by any
input value and mutants QM3, QMS and QM42 are revealed by any point that has a
non zero value for A. The remaining mutants were revealed with a point from one of
the two largest input domains, ((A<>0) & (D>0)) and ((A<>0) & (D<0)). In this
case the initial point happened to be in the mutants revealing domain. However,
some easy to reveal mutants will not be revealed if the initial point is not in the

mutants revealing domain.

44

Chapter 4 The Quadratic Equation Solver Problem

Mutant

QM3
QM4
QM5
QM7
QM8

QM41
QM42
QM43
QM45
QM46
QM50
QM51
QM53

Initial point
ABC

153
208
343
63

756
941
432
51
6

808
981
801
300

76
611
190
327
752
95
294
96

779
939
462
478
232

Number of mutants

478
352
561
889
654
979
753
905
98
202
293
544
903
13

Table 4.16 - First round statement analysis mutants revealed by the initial point

Table 4.17 shows that 10 (36%) statement analysis mutants were revealed by the DA
and AV. DA revealed four mutants and AV, six. One would have expected the
initial point to reveal QM1 and QM40, since they are in the linear statement sequence
to the first branch and are executed every time. However, all paths, except path 1, 2
define the variables XI and X2 which are initialised by the two deleted statements, so
do not reveal the mutants. To reveal the mutants, path 1, 2 must be taken.
The AV revealed mutants by modifying an initial point, which was in one of the two
largest domains, to the other largest domain.

Mutant

QM1
QM2
QM9

QM10
QM11
QM12
QM40
QM44
QM52
QM54

Initial point
ABC

227
253
458
143
761
80

249
602
187
5

262
798
154
845
291
873
763
663
919
760

Number of mutants

26
746
291
369
768
264
713
792
890
649
10

Heuristic Considerec
node

DA
DA
DA
AV
AV
AV
DA
AV
AV
AV

2
2
2
5
4
5
2
4
5
5

No iters
on node

1
1
1
9
11
10

1
10
6
8

Revealing point
ABC
0
0
0

654
-262
1103

0
91
250
260

262
798
154
845
291
873
763
663
919
760

26
746
291
369
768
264
713
792
890
649

Table 4.17 - First round statement analysis mutants revealed by a heuristic

Nevertheless 5 (18%) statement analysis mutants were unrevealed (table 4.18). Each
of these mutants required a point that made program variable D = 0. This further
confirms previous observations (section 4.3).
With each of the unrevealed mutants, the AV was considering node 6 and the node
iteration threshold was reached. The AV exhibited the same behaviour here to that of
the branch experiments after locating the notional boundary and being unable to
locate a solution.

45

Chapter 4 The Quadratic Equation Solver Problem

Mutant

QM6
QM13
QM47
QM48
QM49

Initial point
ABC

561
801
337
743
322

749
319
907
884
517

Number of mutants

414
363
168
589
102
5

Table 4.18 - First round statement analysis mutants unrevealed by the initial point or
heuristics

4.5.3 Predicate Analysis Results and Discussion

Of the 21 nonequivalent mutants, 9 (42%) were revealed by the initial point (table
4.19). The revealing domains for all of these mutants is very large. QM22 is
revealed with any non-zero value for variable A; QM23 and QM24 with variable A
greater than zero; QM20, QM27, QM28, QM32, QM35 and QM36 with any point
that gives variable D a value less than zero. The range 0 to 1000 for the generation
of the initial points prevented QM25 and QM26 from potentially being revealed since
the mutants require variable A to be less than zero.

Mutant

QM20
QM22
QM23
QM24
QM27
QM28
QM32
QM35
QM36

Initial point
ABC

355
252
29
60

700
428
282
885
99

868
608
578
338
540
492
436
331
591

Number of mutants

992
493

3
573
706
476
265
257
888
9

Table 4.19 - First round predicate analysis mutants revealed by the initial point

Six (29%) predicate analysis mutants were revealed by the heuristics (table 4.20).
The three mutants revealed by the DA required specific values of variable A. Of the
three mutants AV revealed, QM29 and QM30 were revealed in the same manner as
the AV revealed statement analysis mutants. However, QM31 requires D=0, to be
revealed. The AV has located a point which makes D=0. The AV achieved this by
first reducing variable A to one. No further improvement could be made modifying
variable A so B was considered and an even number found where no further
improvement could be made modifying B. Now modifying C with A=l and B even,
gave the smallest possible change in predicate value; just 4. But much more
importantly a solution lay in variable C's dimension, and was located.

46

Chapter 4 The Quadratic Equation Solver Problem

Mutant

QM14
QM15
QM25
QM29
QM30
QM31

Initial point Heuristic Considered No iters
ABC node on node

713
105
631
88

973
322

111
770
325
522
979
31

Number of mutants

70
969
997
408
361
586

6 1

DA
DA
DA
AV
AV
AV

2
2
2
5
4
6

1
1
1
7
10
30

Revealing point
ABC
1

-1
-1

215
462

1

111
770
325
522
979
48

70
969
997
408
361
576

Table 4.20 - First round predicate analysis mutants revealed by a heuristic

Six (29%) predicate analysis mutants were unrevealed by the heuristics (table 4.21).
To be revealed, QM26 requires a negative value for variable A. When the DA
considered QM26 a value of 0 was generated for A since the predicate (A<= 0)
involved an equality. Consequently, node 2 was traversed and the mutant unrevealed.
The remaining unrevealed mutants require variable D to have specific values (-1, 0 or
1) to be revealed. Experience has shown that locating a point to give D a value of 0
is very difficult and rarely happens. It follows that locating a point to give D other
single values is also difficult.

Mutant

QM16
QM17
QM18
QM19
QM26
QM33

Initial point
ABC

421
104
252
654
71

427

821
814
469
109
781
188

Number of mutants

334
289
652
554
920
608

6

Table 4.21 - First round predicate analysis mutants unrevealed by the initial point or
heuristics

4.5.4 Mutation Analysis Summary

Table 4.22 shows that of the 49 mutants used, 38 (78%) were revealed, 22 (45%) by
the initial test point and 16 (33%) by the DA and AV heuristics. Eleven mutants
(22%) were unrevealed. Offutt (1992) states that creating a test data set which has a
mutation score greater than 95%, is difficult, but effective at finding faults.
Therefore we would wish to improve upon these results, in an attempt to achieve a
score closer to 95% or better.
Many of the mutants have large revealing domains. To produce a revealing point
was not difficult and many mutants (45%) were revealed by the initial point without
the use of the HATS harness. All the mutants revealed by an initial point would be
easily revealed by a heuristic. Mutants remain unrevealed because the heuristics did
not produce points that caused specific values in variables.

47

Chapter 4 The Quadratic Equation Solver Problem

MA Level

Statement
analysis

Predicate
analysis

Mutation No of
operator mutants

used
Stmt del 22
Cond rep 6
Overall 28
Pred Alt 6

Abs op ins 1
Rel op alt 14
Overall 21

MA overall 49

Number mutants revealed :
total by initial by

test point heuristic
18 12 6
5 1 4
23 13 10
202
1 1 0

12 8 4
15 9 6
38 22 16

No of
mutants

unrevealed
4
1
5
4
0
2
6
11

Table 4.22 - Overall mutation analysis results for the QUADRATIC

4.6 Heuristic Discussion

This section discusses the performance of the DA and AV for both branch testing and
MA of the QUADRATIC.

4.6.1 DA Discussion

The DA caused traversal of every node it considered, and it significantly out
performs random testing when an equality predicate is involved.

4.6.2 AV Discussion

The AV located solution points where there is a large solution domain for a node. In
comparison with random, the AV is marginally worse. Further, the AV rarely
located a solution when the solution domain is small and sparsely located. The
QUADRATIC predicate (D = 0), or mutations of, revealed this. On virtually all the
AV's considerations of this predicate, the notional boundary is located, but a solution
is not. Once the notional boundary is located and all the input variables have been
modified there is no further improvement of predicate value. Here the AV has
effectively become stuck on the closest point it can find to the notional boundary.
The single run where the AV located a point that made D=0 was enabled through the
initial point. It was not due to any unusual operation of the AV. Had some other
initial point been generated then the AV would have more than likely failed.
The reasons that the AV is generally unable to locate a solution point for node 6
appear to lie with the point closeness metric (section 3.5.5) and the nature of the AV.
Ideally by minimising the predicate value for a node the AV will locate a point on the
opposite side of a domain boundary or directly upon it. On doing so the considered
node should be traversed. This is a belief also shared by Prather and Myers (1987).
However in the QUADRATIC'S case, the point closeness metric leads the AV to a
notional boundary where there is generally no solutions to node 6. The AV's

48

Chapter 4 The Quadratic Equation Solver Problem

deterministic, localised and single-dimension search nature do not help to overcome
the misguidance of the point closeness metric.
Solutions to node 6 do exist. They are located along the notional boundary. A
proposed solution to the above problem involves using the notional boundary as a
guide to a solution point. This proposal is developed into a new heuristic in the next
chapter (5). A further concern is of the AV's behaviour as it approaches a boundary
where points on the opposite side of the boundary cause upper-deviations (figure
4.5). This causes the AV to slow down its search and waste iterations. To reduce
iterations the linear relationship between an input variable and a predicate variable
can be exploited. Such a heuristic would perform linear extrapolation to exactly
predict boundary value points and locate solution points.

49

Chapter 5 The New Heuristics and Improved Quadratic Results

5 The New Heuristics and Improved Quadratic
Results

5.1 Introduction

The previous chapter indicated that results from using the DA and AV on the
QUADRATIC need to be improved. Specifically, the AV has difficulties locating a
solution that lies upon a notional boundary and it unnecessarily uses iterations. In an
attempt to overcome these problems two further heuristics are proposed and their
results presented (Holmes, et al, 1993).

5.2 The Linear Predictor Heuristic

The Linear Predictor (LP) exploits a linear relationship that may exist between an
input variable and a predicate variable by extrapolating a boundary located point then
modifying it to cross the boundary and traverse the considered node. In this way
fewer iterations will be used than the AV.
A program study has indicated that in production data processing applications most
predicates are linear and involve a small number of variables. White and Cohen
(1980) state, from a study conducted by Cohen (1978) on 50 COBOL programs
consisting of 1225 predicates, that 77.1% of the predicates involved one variable and
10.2% of the predicates involved two variables; 87.3% of the predicates were linear,
only one predicate was nonlinear and the remaining 12.6% of the predicates were
input-independent.
Considering 120 production PL/1 programs, Elshoff (1976) discovered that 98% of
expressions had less than two operators and the occurrence of the arithmetic
operators, +, -, *, /, in expressions were 68.7%, 16.2%, 8.9% and 2.8% respectively.
In addition, Elshoff states "... plus one accounts for many of the operations". Knuth's
(1971) study of FORTRAN programs also agrees, stating that 40% of additions are
plus ones. He also states that 86% of assignment statements are of the form A = B, A
= B + CorA = B-C. These studies indicate that many predicates will be simple and
their interpretations will be linear, hence the LP has potentially a wide applicability.

5.2.1 Overview and Phases of the Linear Predictor

Figure 5.1 illustrates the LP operating in an ideal situation. The figure represents the
partial input plane for an arbitrary procedure with two integer input variables, X and
Y, and a condition dependent upon both these variables. Points directly upon the

50

Chapter 5 The New Heuristics and Improved Quadratic Results

boundary and to the left of it cause sibling-traversal. Points to the right of the
boundary cause considered node traversal.

- Linear Predictor move
- Point used1

Decreast
Y

rJ
; poi

"I
nt
"*

iase

^

poin

^J

t
Li'- creasep<sint I

Sibling-traversal domain

'redicted
r\

\r
>

/

poir

7
it

4,
/
4~

/*

^Sc

Solutio

^Rr

-1
)lutic

)uncw
jnp<

ary-

sint

n domain

ocated

X

Figure 5.1 - Operation of the Linear Predictor

The LP has three phases. The first phase, Determine-linearity (DL) determines the
linearity of the considered input variable with respect to the considered predicate. A
base point is used to produce the increase and decrease points. Figure 5.1 shows that
variable X is modified to produce these two points, while Y remains constant. Using
the increase, decrease and base points the Determine-linearity phase can make a
decision on the linearity of the predicate.
If linear, a value is extrapolated for the considered input variable X, that should be
very near or directly on the expected boundary. Before this extrapolated point is
executed, it is modified slightly away from the expected boundary toward the base
point, so that later, boundary spanning points can be generated. This modified point
is termed the Predicted point. This forms the preparation for the next phase,
Predictor.
If the considered input variable is nonlinear with respect to the considered predicate
then preparation is made for the Creeper phase by setting the modification direction
according to the increase or decrease point that came closest to the expected
boundary.
The Predictor phase modifies the Predicted point to produce further points that cross
the boundary and cause the considered node to be traversed. Figure 5.1 shows the
Predictor phase modifying the Predicted point to a point directly on the boundary,
which causes sibling-traversal. This point is then modified to a point that causes
considered node traversal. Boundary located points have been generated.
The Creeper phase modifies the considered input variable by small steps in a
direction toward the expected boundary.

5.2.2 Components and Functions of the Linear Predictor

The LP's pseudo code is in Appendix A3.3.

51

Chapter 5 The New Heuristics and Improved Quadratic Results

5.2.2.1 First Iteration Set-up, Generator and Evaluator

The first iteration set-up component specifies the current phase as Determine-
linearity, sets the DL base point to a sibling-traversal point that has the closest
predicate value to the expected boundary and specifies that the first input variable
shall be considered and increased by one.
The generator component applies the input point generation instructions to the
generate point producing the execute point which the test software will execute upon.
The evaluator component is called after the test procedure has executed on the
execute point. If the LP has been successful, control returns to the HATS harness.
Otherwise, evaluation is performed dependent upon the LP's phase, traversal-effect of
the execute point and, with the Predictor phase, the closeness of the execute point to
the expected boundary.

5.2.2.2 Determine-linearity Phase

The Determine-linearity phase establishes the linearity of an input variable with
respect to the considered predicate and prepares for either the Predictor or Creeper
phases. The following example illustrates the DL phase in some detail.

51 -

49-

^18 -

Sibling

DLde

-traversa

DLba

^^Dcc^

1 domain
se point

flnc^.

9736 \WOO
crease point

I
~DLin

%64

crease point

-202 -201 -200 -199 -198
C = 9 A

Figure 5.2 - (A, B) partial input plane : LP in the Determine-linearity phase
considering node 5 of the QUADRATIC

Iter

BP
1
2

Generate point
ABC

-200
-200

50
50

9
9

Execute point
ABC

-200
-199
-201

50
50
50

9
9
9

Trav
effect

ST
ST
ST

Pred
value
9700
9664
9736

Next
action

+A
-A
PP

Table 5.1 - HATS run excerpt: LP in the Determine-linearity phase considering node
5 of the QUADRATIC and modifying input variable A

In the previous chapter, the AV considered node 5 of run Ql. The example illustrates
the LP on the same problem. As only the initial point (-200, 50, 9) has caused

52

Chapter 5 The New Heuristics and Improved Quadratic Results

sibling-traversal, it is selected as the DL base point. Using the DL base point, the
first variable, A, is increased and decreased by 1, producing the DL increase and DL
decrease points. Both these points are executed directly after they are generated.
Figure 5.2 shows these moves and table 5.1, the LP's operation.
The LP now decides if the considered predicate (D <= 0) is linear with respect to
input variable A. The increase and decrease points are used to determine that a linear
relationship does exist. Thus a value of 69.44 is extrapolated for A. The fraction is
truncated, giving 69, since the target data type is integer. If the point (69, 50, 9) were
executed, it should have a predicate value of zero or very close to zero.
To ensure that boundary spanning points are generated, the Determine-linearity phase
instructs the first generation of the next phase, Predictor, to modify input variable A
back toward the DL base point, producing the Predicted point (68, 50, 9). This
example continues in the next section (5.2.2.3).
The operation of the Determine-linearity phase is now described. Ideally sibling-
traversal will result from execution of both the increase and decrease points so that
the linearity of the considered input variable on the considered predicate can be
established. If the considered input variable is influential then an attempt is made to
determine its linearity, otherwise the next variable is considered.
Determining if the considered predicate is linear with respect to the considered input
variable, is achieved by comparing the difference between the DL base point's
predicate value and the predicate values of the increase and decrease points. If they
are the same then the considered predicate is deemed linear and the Predictor phase is
prepared for, otherwise the predicate is deemed nonlinear and the Creeper phase is
prepared for.
Preparation for the Predictor phase involves an extrapolation and modification. The
extrapolation uses the considered input variable values and predicate values of the DL
base and increase points. The predicate value of a point that lies directly on the
expected boundary, normally zero, is used as the target. Modifying the extrapolated
value back toward the DL base point's value by one, ensures that a point adjacent to
the expected boundary, causing sibling-traversal is produced. The Predicted point is
formed from the modified extrapolated value together with the remaining input
variable values from the DL base point. Modifying this point across the boundary
produces boundary spanning test data.
If an upper-deviation occurs in the Determine-linearity phase then the DL base point
is close to a boundary with respect to the considered input variable. Abandoning the
considered input variable and considering another, may locate a point even closer to

the boundary or a solution.

53

Chapter 5 The New Heuristics and Improved Quadratic Results

Preparation for the Creeper phase involves setting the modification direction from the

DL increase or decrease point that came closest to the expected boundary.

5.2.2.3 Predictor Phase

The Predictor phase is active from the generation of the Predicted point onwards
whilst considering the same input variable. The following example illustrates the
Predictor phase in some detail and continues from the example given in the previous
section (5.2.2.2).
This phase commences with the generation of the Predicted point (68, 50, 9).
Executing the Predicted point ideally causes the sibling node (4) to be traversed and

is close to the boundary. This takes place and is shown figure 5.3 and table 5.2.

52-1

B 50

Sibling-traversal domain

51 - —DL predicted point-

\

Figure 5.3 - (A, B) partial input plane : LP in the Predictor phase considering node 5
of the QUADRATIC

The modification direction is now reversed so that the next point generated is closer

to the boundary, on to it or over it. Thus for the fourth iteration the modification
direction is reversed from decrease to increase, and variable A is modified by 1.
Execution produces a sibling-traversal with a predicate value closer to zero than the

Predicted point. This indicates progress is being made toward the boundary. Hence

for iteration 5, the Predictor maintains the present direction of increase and step size

of 1. The fifth iteration causes the considered node (5), to be traversed.

Iter

3
4
5

Generate point
ABC
69
68
69

50
50
50

9
9
9

Execute point
ABC
68
69
70

50
50
50

9
9
9

Trav
effect

ST
ST
NT

Pred
value

52
16

-20

Next
action

+A
+A

succ

Table 5.2 - HATS run excerpt: LP in the Predictor phase considering node 5 of the
QUADRATIC and modifying input variable A

54

Chapter 5 The New Heuristics and Improved Quadratic Results

Applying the AV to node 5 from the base point (-200, 50, 9) took 9 iterations to find
a solution point (section 4.3.2). However, the LP took only 5 iterations and
generated boundary located points.
The operation of the Predictor phase is now described. Following the execution of
the Predicted point and all subsequent points in the Predictor phase, evaluators are
invoked based on each point's traversal-effect and its closeness to the expected
boundary.
When the execute point causes sibling-traversal and is closer to the expected
boundary than the closest point found two checks are made. The first is if all the
points from the Predicted point onwards caused upper-deviations. This indicates that
the Predicted point entered an interfering predicate's domain and its boundary has
been passed through. The considered input variable is abandoned, with the view that
a solution may be located from the closest point found modifying some other input
variable. The second check is if the Predicted point has just executed. If so, the
modification direction is reversed and the step size remains at one for the next
generation. Otherwise, execution of the Predicted point has passed and progress is
being made toward the boundary using a succession of small steps, so both the
direction and step size are unchanged for the next generation. It is anticipated that,
when there are no interfering predicates, the considered node should be traversed
within two iterations from the execution of the Predicted point.
When the execute point causes a sibling-traversal and is further from the expected
boundary than the closest point found, the considered input variable is abandoned.
Although progress toward the expected boundary may have been made, this has
ceased and to continue modifying the considered input variable would more than
likely be worthless. Modifying another input variable from the closest point found
may locate a solution or closer point.
When the execute point causes an upper-deviation two checks are made. The first,
checks if all the points from the Predicted point onwards have caused closer sibling-
traversals. This situation indicates that an interfering predicate has just been
encountered. The considered input variable is abandoned on the basis that a solution
may be located modifying another input variable from the closest point found.
The second, checks if an upper-deviation occurred on executing the Predicted point.
If so, there is an interfering predicate. Rather than abandoning the considered
variable, the Predicted point may be close to a solution point or point closer to the
expected boundary. Instead of reversing the modification direction toward the
expected boundary, the direction is left unchanged so that points generated move
away from the expected boundary and out of the interfering predicates domain. If

55

Chapter 5 The New Heuristics and Improved Quadratic Results

upper-deviations continue to occur after a small number of iterations then the
considered input variable is abandoned.

5.2.2.4 Creeper Phase

The Creeper phase is active from the execution of the first creep point onwards whilst
considering the same input variable. In the Determine-linearity phase example
(section 5.2.2.2), input variable A was considered from the point (-200, 50, 9). The
following example illustrates how the Creeper phase operates considering input
variable B from the same point.
Each time a new input variable is considered the Determine-linearity phase is used
first. From figure 5.4 we can calculate that the increase point has a difference in
predicate value with the base point of 101 and the decrease point has a difference of
99. Since the differences are not equal, variable B is deemed non-linear with respect
to the considered predicate (D <= 0).

51

50

B 49

48

47

'Sibling

c
de

-travers

^

D.c>

oJ

J

ontinucs ^
creasing

il domain ——— 1
^»-DL increase point
980i

V^-DL
9700

4^-DL
9601

^•Fir
9504

f
^Sec
9409

base po

decrease

st Creep

ond Cre

nt

: point

point

;p point

-202 -201 -200 -199 -198
C = 9 A

Figure 5.4 - (A, B) partial input plane : LP in the Determine-linearity and Creeper
phases, considering node 5 of the QUADRATIC

Now the Determine-linearity phase prepares for the Creeper phase. The generate
point for the Creeper is the DL decrease point, as it is the closest point to the
expected boundary, and the modification direction is decrease. The step size is set to
one, since the Creeper takes small steps toward the expected boundary.
Execution of the first Creeper phase point produces the predicate value 9504 which is
closer to the expected boundary than the DL decrease point. The second and
subsequent iterations continue to decrease input variable B by 1. If a point is
generated that causes traversal of the considered node then the LP has succeeded.
However, the considered variable is abandoned if the execute point is further away
from the expected boundary or causes an upper-deviation.

56

Chapter 5 The New Heuristics and Improved Quadratic Results

Following the execution of a Creeper point, evaluators are invoked based on the
traversal-effect of the execute point. When the execute point causes a sibling-
traversal and is closer to the expected boundary than the closest point found, then
progress is being made and the input point generation instructions are not changed.
However, if the execute point is further from the expected boundary then progress
has stopped and to continue further would more than likely be worthless.
Nevertheless, a closer point may have been located and further progress may be made
by considering another input variable from the closest point found.
When the execute point encounters an upper-deviation this indicates that there is an
interfering predicate and its boundary has just been crossed. To modify the
considered variable further would more than likely be worthless, so the considered
input variable is abandoned for another. Nevertheless, a point closer to the boundary
has been located.

5.2.2.5 Abandoning Consideration of an Input Variable

When the considered input variable is abandoned the following takes place. If the
termination criteria (section 5.2.2.6) are met, the LP terminates. Hence, the LP has
been unable to locate a solution point.
If the termination criteria are not met, the Determine-linearity phase is prepared for
on the next input variable. The new considered input variable is the next in-line to
the old one or the first, if the old one was the last. The closest sibling-traversal point
to the considered predicate's boundary is searched for and becomes the DL base
point.

5.2.2.6 Terminator

In chapter 4 we saw how the AV cycled round the input variables trying to find a
closer point or a solution. Generally, neither of these were found and many iterations
were wasted. To overcome this the LP has adopted a "law of diminishing returns" by
incorporating termination criteria based on a threshold of unpromising effects.
Unpromising effects are anything that indicate a turn around in progress has occurred,
i.e. an upper-deviation or an execute point further from the expected boundary than
the closest point found. The LP keeps a count of unpromising effects. Should this
count reach a threshold, equal to the number of input variables, then the LP
terminates. In other words, termination takes place after modifying each input
variable produced an unpromising effect. When a promising effect takes place the
unpromising effects count is reset to zero. An example of a promising effect is
locating a point closer to the expected boundary than the closest point found.

57

Chapter 5 The New Heuristics and Improved Quadratic Results

The following example illustrates the LP's termination criteria by applying the
heuristic to node 6 of the QUADRATIC. This closest sibling-traversal point (70, 50,
9) was produced as a solution to node 5 in the Predictor phase example (section
5.2.2.3). Let us assume this is the only point to traverse the path 1, 3, 5, 7. The
unpromising effects threshold is 3, since there are three input variables.
Table 5.3 is a HATS run excerpt which contains pre and post test software execution
data for a range of iterations for a HATS run. An excerpt includes, from left to right,
the iteration of the heuristic on the node, which is always shown. The pre-execution
data can include the heuristic used, the heuristic's phase and the input variable being
modified. The generate point and execute point are always shown. Postexecution
data can include the execute point's traversal effect and predicate value if the execute
point caused sibling-traversal. Also shown can be the next action the heuristic takes
and other data. The abbreviations used in a HATS run excerpt are defined in the
glossary. The moves contained in table 5.3 are shown in figure 5.5.

Iter

1
2
3
4
5

Var

A
A
B
C
C

Generate point
ABC
70
70
70
70
70

50
50
50
50
50

9
9
9
9
9

Execute point
ABC
71
69
70
70
70

50
50
51
50
50

9
9
9
10
8

Trav
effect

ST
UD
UD
ST
UD

Pred Next
value action
-56 -A

TNV
TNV

-300 -A
TERM

UPeff
count

0
1
2
2
3

Table 5.3 - HATS run excerpt of the LP in the Determine-linearity phase considering
node 6 of the QUADRATIC, demonstrating the use of the unpromising effects count

to minimise unnecessary iterations

Upper-deviation
52 -f domain .DL increase point

Boundary

qDL increase
-56 P°int

11 -r

10

C 9 - - point

Sibling-traversal

Sibling-traversal
domain TJL increase point

>• Boundary

-20
^ '/'DL decrease point

~ Upper-deviation
domain -i———I

UD

48 49
A = 70

50
B

51 52

Figure 5.5 - (A, B) and (B, C) partial input planes : LP in the Determine-linearity
phase, considering node 6 of the QUADRATIC

Since the base point is adjacent to a notional boundary, modifying it in both
directions in any dimension will encounter upper-deviations. Such modifications are
essential to the Determine-linearity phase. Upper-deviations occur in iterations 2, 3
and 5, causing the unpromising effects count to be incremented. When variable C is

58

Chapter 5 The New Heuristics and Improved Quadratic Results

abandoned after iteration 5, the LP terminates since the unpromising effects count is
equal to the number of input variables (3).
Table 5.4 shows the unpromising effects and table 5.5 the promising effects that the
LP recognises. The threshold is reasonable since the heuristic will have cycled once
round the input variables without improvement and to continue would more than
likely be worthless.

Phase Unpromising Effect
Determine- Input variable non-linear and neither increase or decrease points came

linearity closer to expected boundary
Upper-deviation encountered during execution of increase or decrease
point

Predictor Execute point, from Predicted point onwards, has predicate value further
from the expected boundary than the closest point found
Execute point caused upper-deviation when points from Predicted point
onwards caused sibling-traversal
Execute points, from the Predicted point onwards, caused upper-deviation
and upper-deviation threshold has been reached

Creeper Execute point has predicate value further from the expected boundary
than the closest point found

___"____Execute point caused upper-deviation ___________________

Table 5.4 - Events that cause the unpromising effects count to be incremented by one

Phase Promising Effect
Determine- LP considers s new node

linearity
Predictor Execute point caused sibling-traversal and is closer to expected boundary

than closest point found and there has been no upper-deviations from the
Predicted point onwards

Creep Execute point caused sibling-traversal and is closer to the expected
boundary than the closest point found______________________

Table 5.5 - Events that cause the unpromising effects count to be reset to zero

5.3 The Boundary Follower Heuristic

When generating test data for an equality predicate whose two sides (sub
expressions) are of the integer data type and are some function of the input variables
then this presents a problem known as the notional boundary located point problem .
This problem has revealed its self through the AV's consideration of node 6 in the
QUADRATIC.
The Boundary Follower (BF) uses a real or notional boundary as a guide in an
attempt to locate solution points that lie on the boundary. While a boundary is being
followed only boundary value test data (White and Cohen, 1980; Myers, 1979;
Abbott, 1986) will be generated. This is a beneficial side-effect and such data has
been shown to be better at revealing faults than data that does not explore the
boundaries (i.e. branch coverage) (Myers, 1979; Basili and Selby, 1987).

59

Chapter 5 The New Heuristics and Improved Quadratic Results

In the field of constrained numerical optimisation (Gill and Murray, 1974; Box, et al,
1969), boundary or constraint following has been adopted by both gradient and direct
search methods. Two gradient methods, Riding the Constraint and Hemstitching, due
to Roberts and Lyvers (1961), use derivatives of the constraint function. Calculating
derivatives for the test software is an additional overhead and may be very complex
or not possible. Further, it would defeat the objective of not understanding the test
software . The direct search method, Pattern Search (Hooke and Jeeves, 1961), has
been extended to follow constraints (Klingman and Himmelblau, 1964; Glass and
Cooper, 1965)
With nonlinear constraint functions, the above methods, may not accurately follow a
constraint, only approximate to it. There is a possibility that some small parts of the
constraint boundary may be missed through the method's normal operation or a speed
up of the search. Normally, these methods would work with independent floating
point variables, not integer variables.
Adby and Dempster (1974) state "If the minimum lies on the constraint boundary
then even the techniques of constrained optimisation may not work". This confirms
the difficulty of this problem with, I suspect, floating-point variables. How well the
above methods would operate on integer variables is a subject of further study.

5.3.1 Following Domain Boundaries in the Program Input Space

The test software may have many input domains. To follow a domain's boundary
involves selecting a series of points that are either on or just off the boundary. The
order they are selected in gives rise to a movement along the boundary in some
direction. Examining partial input planes of the QUADRATIC led to the hypothesis
that, to be certain a boundary is being accurately followed it must be crossed
regularly. Crossing a boundary regularly ensures that it is not deviated from. To
help the BF locate a solution, sibling-traversals must be regularly produced. The BF
is a direct search technique that first locates a boundary then follows it. The BF
follows a boundary in two dimensions, although a boundary may exist in a higher
number of dimensions.

5.3.2 Overview of the Boundary Follower

Figure 5.6 illustrates the BF operating in an ideal situation. The figure represents a
partial input plane for an arbitrary procedure with two integer input variables, X and
Y, and a nonlinear condition, dependent upon both these variables. In the partial
input plane (figure 5.6) there is one solution point which causes considered node
traversal and all other points cause sibling-traversal.

60

Chapter 5 The New Heuristics and Improved Quadratic Results

The BF uses both variables X and Y to follow the boundary. To ensure that the
heuristic is "sticking" to the boundary, modifying variable X must always cross the
boundary. Modifying variable Y produces a point that stays on one side of the
boundary. The modification of each variable alternates so that the boundary is
"stitched". After crossing the boundary twice the solution point is located.
When the BF locates a boundary, two input variables are selected on their suitability
for the roles of Follow and Cross.

-^- - Boundary Follower move
• - Point used

Noti
hour

Y

anal *
dar

.So
b

y-
[utio
aun(

X

nor
ary

\
\

*

1

A
§JL1

Solu

k
r

k

tion

"Mr
\

X Move cross
boundary

found

ve crosses
wundary

es

Figure 5.6 - Operation of the Boundary Follower

5.3.3 The Follow Role

Modifying the input variable allocated the Follow role , the Follow variable, will
ideally, produce a point parallel to the boundary being followed. This however, may
rarely be the case since it requires the boundary to be aligned with the Follow
variable's axis. A Follow move modifies only the Follow variable of a point. All
other input variable values are held constant. It is not necessary for a Follow move to
stay on one side of the boundary. A Follow move may cross the boundary. Figure
5.7 shows a Follow move that stays on one side of a boundary and another that
crosses it. The point a Follow move is made from is termed the Follow move start
point. The point a Follow move is made to is termed the Follow move end point.

5.3.4 The Cross Role

Modifying the input variable allocated the Cross role , the Cross variable, must, after
a few iterations, cross the boundary being followed. A Cross move modifies only the
Cross variable of the Follow move end point. All other input variable values are held
constant. It may be necessary to make a number of Cross moves before the boundary
is crossed. If a Cross move does not cross the boundary then the Cross variable
adjustment is increased using the Follow move end point value as a base. If this

61

Chapter 5 The New Heuristics and Improved Quadratic Results

adjustment exceeds a threshold then a correctional phase is used and is discussed in
section 5.3.7. Figure 5.7 shows Cross moves that cross the boundary with a step size
of one and two.
The point a Cross move is made from (generate point) is termed the Cross move start
point. The point a Cross move is made to (execute point) is termed the Cross move
end point, which is normally the Follow move end point. A Cross move is termed a
Successful Cross move if the start point and end point are on different sides of the
boundary being followed. An Unsuccessful Cross move has start and end points on
the same side of the boundary. The Cross step size stores the value the Cross variable
is adjusted by, and is the difference between the Cross move start point and the Cross
move end point. The Maximum Cross step size stores the maximum value the Cross
step size can be.

5-i

4-

3-

1-

Follow
may cr

hour

x' il

moves
oss the
dary

^F"""~ '

7^- Be

—— Fo
> (

K
undary

How mo
:nd poin

F : Follow move
C : Cross move £f(

en
B o

t

Remaining
input variables

r hollow move ' held constant "
1 start point 345

A

Success
st

ss move
dpohit

c)

/

ful cross
ep size o

\ **>

XJ
^Crc

sia
1 2

t

, move :
f2

/|

f
,L^» Unsuccessful
7 cross move

ss move
it point ———— 1

3 4 5
^

Figure 5.7 - Partial input planes showing Follow and Cross moves, with the Follow
role allocated to variable A and Cross to B

5.3.5 Following a Boundary Using Follow and Cross Moves

To follow a boundary there is a cycle between Follow moves and Cross moves. First
a Follow move is made. Second, one or more Cross moves are made until either the
boundary is crossed or the maximum Cross step size is reached. On crossing the
boundary, the cycle is closed and a further Follow move is made. If the maximum
Cross step size is reached and the boundary has not been crossed then reorientation
takes place. This involves a special search to relocate the boundary and preparation
for the BF to continue (section 5.3.7). When following a boundary only the Follow
variable or the Cross variable is modified at a time. The remaining input variables
are held constant.

62

Chapter 5 The New Heuristics and Improved Quadratic Results

F: Follow move
C : Cross move 5

.Upper-deviation domain

Boundary
Remaining 3 - .Start Point,

input variables
held constant

Figure 5.8 - A domain boundary being followed

To illustrate the process of boundary following, let us consider an untraversed node
in a test procedure. This node poses the notional boundary located point problem.
Figure 5.8 shows an arbitrary, notional boundary dividing domains causing upper-
deviation and sibling-traversal. The solution is at point (7, 3). Input variable A has
been allocated the Follow role and B, the Cross role. The point (2, 4) is selected as
the Follow move start point.
A Follow move increases the Follow variable by 1. A Cross move increases the
Cross variable by 1 from the Follow move end point. This Cross move crosses the
boundary, hence a second Follow move can be made, from the Cross move end point.
The Cross move, from (4, 5) to (4, 4), does not cross the boundary, so the Cross step
size is increased by 1 to 2. After a few more moves the solution point is located by a
follow move to point (7, 3).

5.3.6 Establishing the Correct Cross Move Direction

The Cross variable modification direction is unknown after the first follow move,
taking place either when a new node is considered or after reorientation. A
bidirectional Cross search looks in both directions for the boundary, by first making
an increase move, then decrease, then increasing the Cross step size by one and
making an increase move and so on. Using a bidirectional cross search after the first
Follow move helps to ensure that the boundary is crossed for the second Follow
move.

63

Chapter 5 The New Heuristics and Improved Quadratic Results

Follow move does not

F : Follow move
C : Cross move 5 H

4 -
B

3 -

Remaining _
input variables
held constant

c

<^

— CTOS
1SO[

— P

TOSS bou

J
IL

5 directic
jposite o
evious

ndary

Nc 0

f
Foil

crosse

^V^
uross dire

is same as p
t frAP ————

fi\
IV F^l:

ow mov
s bound

I W
" IVB

ction
revious

Boundary not crossed
th step size of 1 so size

increased by 1

oundary1 - ———— , ———— , ———— , ———— , ———— ̂ ^ —— , ———— ,
1234567

A
3

Figure 5.9 - Use of the Cross rule to determine the Cross direction

After the second Follow move a unidirectional Cross search is made, which uses a
single direction to cross the boundary and is determined by the Cross rule. The Cross
rule states that if the preceding Follow move does not cross the boundary then the
new Cross direction is the opposite direction to the previous successful Cross move's.
However, if the previous Follow move does cross the boundary then the new Cross
direction is the same direction as the previous successful Cross move's. The Follow
move start point's and end point's traversal-effects are used to determine if the Follow
move has crossed the boundary. Figure 5.9 illustrates the Cross rule in action.

5.3.7 Reorienting the Boundary Follower

When the maximum Cross step size does not enable the boundary being followed to
be crossed then, for the BF to continue, the boundary must be relocated and changes
made to the role allocations. This process is called reorientation. Reasons for the BF
being unable to cross the boundary are :
• another border has been encountered
• the nonlinear boundary being followed rapidly moved away from its previous

"course"
• the maximum cross step size is not large enough
Figure 5.10 shows a partial input plane where two notional borders intersect. The BF
has been following the "vertical" border in a "northerly" direction, when the
"horizontal" intersecting border is encountered. Using Cross variable A, the BF is
unable to cross the boundary with the maximum Cross step size of three.

64

Chapter 5 The New Heuristics and Improved Quadratic Results

F: Follow move
C : Cross move

Remaining
input variables
held constant 1

5

4-

3

? .

1 -

ieviatior

if

P-

domain

f^^
c

•<
C

I

1

;
c

;

Unable to cross

^5c^

^F

— Sibli
V

* >*
C^

ng-travei

/ boundary using
variable A

*
\
Bot

saldom

ndary

ain

3 4 5
A

Figure 5.10 - A border change which renders the BF unable to cross the boundary
with Cross variable A, and Follow variable B

Reorientation requires the boundary to be crossed from the preceding Follow move's
end point. This is achieved by a search pair along a central line. Figure 5.11
illustrates each of these.
The central line is in the same axis as the Follow variable and runs through the
preceding Follow move's end point, which is termed the base point. The search pair
consist of an increase and a decrease point. The first search pair move from the base
point by a step of size one in the reverse Follow direction and steps of size one in
both directions for the Cross variable. If the boundary is not crossed by either of the
search pair points then further search pairs are made further from the base point along
the central line, by increasing the step in the reverse Follow direction by one and
using the same Cross variable values as the first search pair.

Decrease p

4 -
B

3 -

Remaining 2 -
input variables
held constant j . ———— l ———— { r ,

Central

oint —

t

Searc

line^__
^

Dec/^

£____

h pair

^(
X.

^

be

^

last foil

Upper

I ————

\\
Increas

crosses t

—————Sibling

Basepo
ow move

-deviatio

e point
wundary

mt
end point)

n domain

^

Boundary

-traversal domaii
1

i

1234567
A

Figure 5.11 - Reorienting the BF

After execution of a search pair, their traversal-effects are analysed to determine if
the boundary has been crossed. If so, reorientation can be completed and boundary
following can recommence. To complete, the allocation of roles to input variables

65

Chapter 5 The New Heuristics and Improved Quadratic Results

are swapped and a Follow direction is determined. If only one search pair point
crossed the boundary then the Cross variable direction used is the new Follow
direction. However, if both search pair points crossed the boundary then the Follow
direction remains unchanged. To help ensure the boundary is crossed after the first
Follow move the Cross search becomes bidirectional.

T- T* 11 ft UrjoerF : Follow move °
C : Cross move

5 -

4 -
B

3 -

Remaining 2 -
input variables
held constant \ .

dc

:
—— 1 ——— , —— , ——— , ——— , —— ,

-deviatio
>main

n

c'
\ v^

X
4

Boundary
1

\

k

C J
r c
^-T>

Sibling-

ĉl

traversal

r
-F*"

domain

123456'
A

Figure 5.12 - Continuation of boundary following subsequent to reorientation with
Follow variable A, Cross variable B and Follow direction of increase

Figure 5.11 shows that the search pair's increase point crossed the boundary from
upper-deviations to sibling-traversals. Thus the new Follow direction is increase and
variable A is allocated the Follow role and B, Cross. Figure 5.12 shows the BF
continuing along the newly encountered border.

5.3.8 Locating a Point to Commence Boundary Following From

Before boundary following can commence a point that causes sibling-traversal and is
adjacent to the boundary to be followed, must be located. This point, termed the
Central point, determines which border will be followed when there is more than one
border. A modification of the LP heuristic is used for this purpose since it has shown
to be effective and efficient at locating points adjacent to a boundary.

5.3.9 Initial Allocation of the Follow and Cross Roles

When the Central point has been located, the Follow and Cross roles must be
allocated to input variables. Selecting which input variables to use, involves
increasing and decreasing each of the input variables by 1 from the Central point.
The number of points produced is equal to twice the number of input variables. Each
point's traversal-effect is stored.
The two traversal-effects for each input variable are considered in turn from the first
input variable to the last (the same order the input variables have just been modified

66

Chapter 5 The New Heuristics and Improved Quadratic Results

in). The increase and decrease traversal-effects for each input variable are compared
with the traversal-effect of the Central point to determine a suitable role. If
modifications to an input variable cause no change in the predicate value to the
Central point's predicate value (input variable does not have considered-predicate
influence) then the variable is not suitable for either role. Input variables that are not
influential in the considered predicate are avoided since the border segment adjacent
to the Central point does not exist for that input variable. Otherwise suitability is
determined according to table 5.6, if the Central point has a predicate value greater
than the boundary's predicate value (normally 0) and table 5.7 if the Central point has
a predicate value less than the boundaries.

Dec
point

trav-eff

+ST
-ST
UD

Inc point trav-eff
+ST

F
C
C

-ST
C
F

UD
C

Table 5.6 - Follow and Cross role suitability when the Central point's predicate value
is greater than the boundary's predicate value. F - Follow; C - Cross.

Dec
point

trav-eff

+ST
-ST
UD

Inc point trav-eff
+ST

F
C

-ST
C
F
C

UD

C

Table 5.7 - Follow and Cross role suitability when the Central point's predicate value
is less than the boundary's predicate value. F - Follow; C - Cross.

If an input variable's traversal-effects are the same, this indicates that both points
were on the same side of the boundary and that the input variable suits the Follow
role. However, when there is two upper-deviations the input variable does not suit
the Follow role, since it is not considered predicate influential. The Follow allocation
is avoided since the upper-deviation domain may have other boundaries that are
adjacent to the boundary located and these may interfere with the BF. If an input
variable's traversal-effects are different, indicating the boundary was crossed, then the
variable suits the Cross role.
Roles are allocated on a first suitable, first allocated basis. Once the allocation of a
role to an input variable has taken place the role is not reallocated. Suspicion that the
Follow role may be unallocated led to holding an input variable in reserve for the
Follow role. After the Cross allocation has been made, should a further input
variable suit the Cross role, it is held as the reserve for the Follow role. Should the
Follow role be unallocated after all input variables have been considered then the
variable held in reserve is allocated the Follow role. It is necessary for both roles to
be allocated for the BF to follow a boundary, otherwise the BF terminates.

67

Chapter 5 The New Heuristics and Improved Quadratic Results

5.3.10 Phases of the Boundary Follower Heuristic

The BF has four phases. The first, Obtain-a-close-point, (OCP) locates a point
adjacent to the boundary to be followed, in preparation for the next phase. The
second phase, Determine-initial-follow-and-cross-details, (DIFCD) selects two input
variables to allocate the Follow and Cross roles, in preparation for the next phase.
These two phases are used once, directly after the BF is applied to a node.
The third phase, Folios-boundary, (FB) does so using the current role allocations.
The fourth phase, Reorient-boundary'-follower, (RBF) relocates the lost boundary,
swaps the roles and determines a new Follow direction for return to the FB phase.

5.3.11 Components and Functions of the Boundary Follower

The BF's pseudo code is in Appendix A3.4.

5.3.11.1 First Iteration Set-up, Generator and Evaluator

The first iteration set-up component specifies the current phase as Obtain-a-close-
point and sub-phase as Determine-linearity. The OCP base point is set to a sibling-
traversal point with the closest predicate value to the expected boundary. The first
input variable shall be considered and increased by 1.
The generator component applies the input point generation instructions to the
generate point producing the execute point that the test procedure will execute on.
The evaluator component is called after the test procedure has executed on the
execute point. If the BF has been successful, control returns to the HATS-harness,
otherwise evaluation is performed dependent upon the BF's phase and, with the
Obtain-a-close-point phase, its subphase.

5.3.11.2 Obtain-a-close-point Phase

This phase locates a point that causes sibling-traversal and is adjacent to a boundary.
This phase is a modification of the LP (section 5.2), and consists of three subphases;
Determine-linearity (DL), Predictor and Creeper.
Before any of the sub-phases are called, the BF evaluator checks if a boundary has
been crossed. If so, the closest point found is already adjacent to a boundary in at
least one dimension (input variable), hence the considered input variable is

abandoned.

68

Chapter 5 The New Heuristics and Improved Quadratic Results

The Predictor sub-phase evaluation is used after the execution of the Predicted point
and prepares for the Creeper subphase.
The Creeper subphase is used if the considered predicate is deemed to be nonlinear or
after the Predictor phase. The Creeper makes small steps with the considered input
variable in the specified direction if progress is being made toward the expected
boundary. Otherwise, the considered input variable is abandoned.
If the considered input variable is abandoned then a check is made to see if all the
input variables have been considered and, if so, prepares for the Determine-initial-
follow-and-cross-details phase, where the closest point found becomes the Central
point. Alternatively, the Determine-linearity subphase is prepared for on the next
input variable. Unlike the LP, there are no termination criteria based on unpromising
effects in the Obtain-a-close-point phase.

5.3.11.3 Determine-initial-follow-and-cross-details Phase

This phase produces and analyses points surrounding the Central point to allocate the
Follow and Cross roles, in preparation for the Foliow-boundary phase. In the LP's
terminator description (section 5.2.2.6), we saw how the LP was applied to node 6 of
the QUADRATIC from the point (70, 50, 9), without success. Over the remainder of
this section, examples are presented on how the BF solves this problem. Figure 5.13
shows the modifications made to the input variables from the Central Point (70, 50,
9) by the Determine-initial-follow-and-cross-details phase. Each input variable is
increased and decreased by 1 to obtain the traversal-effects necessary to allocate the
roles.

Modifying Input Variables A and B

52 T Upper-deviation
domain

51
Boundary

Modifying Input Variable C
11 - -Sibling-traversal-

Boundary

Sibling-traversal Upper-deviation

C =

Figure 5.13 - Modifications made to the QUADRATIC'S input variables during the
Determine-initial-follow-and-cross-details phase of the BF

Table 5.8 shows each input variables' traversal-effects, the role each variable suits
defined by table 5.7 (Central point < boundary predicate value) and the preliminary

and final role allocation.

69

Chapter 5 The New Heuristics and Improved Quadratic Results

Var

A
B
C

Traversal-effect
Decrease Increase

UD
-ST
UD

-ST
UD
-ST

Role
suited
Cross
Cross
Cross

Role allocation
Preliminary Final

Cross
Res Follow

Cross
Follow

Table 5.8 - Progress to the final allocation of roles in the Determine-initial-follow-
and-cross-details phase with the QUADRATIC

Interestingly none of the input variables' traversal-effects immediately suit the Follow
role. However, input variable B is held in reserve for Follow and is allocated the role
finally. To complete preparation for the Follow-boundary phase, the Follow
direction is set to increase and the Central point will be the first Follow move start
point.

5.3.11.4 Follow-boundary Phase

This phase follows a boundary adjacent to the Central point or the Reorient-
boundary-follower's base point. Continuing from the Obtain-a-close-point phase
example (section 5.3.11.3), which specified that input variable A is Cross, B is
Follow, Follow direction is increase, Cross search is bidirectional and a Follow move
is to be made first. The Follow-boundary phase starts from the Central point (70, 50,
9), which causes a negative sibling-traversal and has a predicate value of -20. Table
5.9 and figure 5.14 show this phases operation.
First a Follow move is made from the Central point, by increasing the Follow
variable, B, by 1. Since it is the first Follow move a bidirectional Cross search is
used. The first Cross move increases the Cross variable, A, by 1 from the Follow
move end point. This move does not cross the boundary, so a decrease move is made
from the Follow move end point. This again does not cross the boundary, so the
Cross step size is increased by 1 to 2, and the next increase move made. This move
does not cross the boundary so a decrease move is made, then the Cross step size is
increased again and an increase move made. This move does cross the boundary, so
a Follow move can be made from the Cross move end point.

70

Chapter 5 The New Heuristics and Improved Quadratic Results

FB
Iter

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Var

B
A
A
A
A
A
B
A
A
A
B
A
A
A
B
A
A

Phase

FBF
FBC
FBC
FBC
FBC
FBC
FBF
FBC
FBC
FBC
FBF
FBC
FBC
FBC
FBF
FBC
FBC

Generate point
ABC
70
70
70
70
70
70
73
73
73
73
76
76
76
76
79
79
79

50
51
51
51
51
51
51
52
52
52
52
53
53
53
53
54
54

9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

Execute point
ABC
70
71
69
72
68
73
73
74
75
76
76
77
78
79
79
80
81

51
51
51
51
51
51
52
52
52
52
53
53
53
53
54
54
54

9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

Trav
effect

UD
UD
UD
UD
UD
-ST
UD
UD
UD
-ST
UD
UD
UD
-ST
UD
UD
NT

Pred Next
value action

C+l
C-l
C+2
C-2
C+3

-27 F
C+l
C+2
C+3

-32 F
C+l
C+2
C+3

-35 F
C+l
C+2

0 SUCC

Table 5.9 - HATS run excerpt: BF in the Follow-boundary phase considering node 6
of the QUADRATIC and locating a solution point

F: Follow move
C : Cross move

Negative sibling-traversal
domain

50

49
k Follow Boundary start point (Central point)

I -i——I——r-
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

C = 9 A

Figure 5.14 - (A, B) partial input plane showing Follow-boundary phase moves to a
solution point for node 6 of the QUADRATIC

The next Cross move is unidirectional since the Cross rule has determined that the
direction of increase shall be used. From here on the BF follows the boundary and
locates a solution (81, 54, 9) after 17 iterations and produces only boundary located

points.
The Cross moves after the first Follow move give a "mushroom" appearance,
however, in subsequent Follow moves, there is only half a "mushroom", where the
Cross rule has been applied. From the second Follow move onwards a distinct
"pattern" of moves is established, which appears in this example as a Follow move
then Cross moves' half "mushroom".

71

Chapter 5 The New Heuristics and Improved Quadratic Results

It is interesting to consider what the BF's behaviour would be if the allocation of roles
in this example were swapped. Figure 5.15 shows the same notional boundary
followed to the same solution with role allocations of A, Follow and B, Cross. With
the first role allocation (figure 5.14) there are 13 upper-deviations, three negative
sibling-traversals and a total of 17 iterations in the trace to the solution point. With
the second role allocation (figure 5.15) there are 10 upper-deviations, 12 negative
sibling-traversals and a total of 23 iterations in the trace to the solution point. In the
first allocation, upper-deviation points are predominant. Whereas in the second
allocation, there is more or less an even balance of points on both sides of the
boundary. The notional boundary is better covered, but at the expense of a further
six iterations.

55 -,

B S7 -

51 -

50 -

do -

F : Follow move
C : Cross move

**-*

Uppe
d

-2(

r-devia
omain

Foil

tion

•56

sw Boi

c>
^^^'**

indary

¥/
-128

start pt

r-3
-63^

y'mt (C

f c>

k

-99

:entral

B

F

>^i

-32

point)

oundat

r*^
-68

N

y

k
-10i

;g alive

So

^
-35

sibling
domair

lution

X
rt
-71^

-travel
i

point"

0
k

-107

sal

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
C = 9 A

Figure 5.15 - Partial input plane showing Follow-boundary phase moves, had
variable A been allocated Follow and B allocated Cross, to a solution point for node 6

of the QUADRATIC

5.3.11.5 Reorient-boundary-follower Phase

When the Follow-boundary phase cannot cross the boundary this phase relocates the
boundary and prepares the Follow-boundary phase for continuation. The operation
of this phase is described in section 5.3.7.

5.3.12 Known Limitations

The BF described has a number of limitations :
• If an input domain has more than one border segment, the choice of border

segment to follow is determined by the point the OCP phase selects to start with.

72

Chapter 5 The New Heuristics and Improved Quadratic Results

• There are no heuristic termination criteria in the Follow-boundary or Reorient-
boundary-follower phases.

• Once the two roles have been allocated, no other input variables are considered
whilst on the considered node.

• The Follow direction is fixed on increase the first time the Follow-boundary
phase is used.

• The orientation of the boundary with respect to the input space axes is not taken
into consideration when the roles are allocated.

• A domain's boundary is followed in two dimensions, however a boundary may
exist in many dimensions.

5.4 Installing the LP and BF into the HATS Harness

The LP and BF must be located in the heuristic selection order. The new order is
shown in figure 5.16

Other than
An input variable, / \ an input variable,
relational operator / N. relational operator
and a constant / Considered \ and a constant

node's predicate _
consists of:

Figure 5.16 - New heuristic selection order with the LP and BF heuristics added

5.5 The Second Round of Mutation Analysis

5.5.1 Experimental Set-up

The unrevealed mutants from the first round are the subjects of this second round.
The same initial points are used as in the first round. However, the node iteration
threshold has increased, tenfold, to 500, as it is anticipated that the BF may require

more than 50 iterations.

73

Chapter 5 The New Heuristics and Improved Quadratic Results

Of the four heuristics only the DA and BF are used. The AV is not used since its
termination criteria require improvement to prevent it from continuing needlessly.
The LP is not used since it is virtually the same as the BF's Obtain-a-close-point
phase. To aid identification, 100 has been added to the mutation identifier of the first
round. Hence mutant QM01 becomes QM101.

5.5.2 Statement Analysis Results

The five unrevealed first round, statement analysis mutants are the subjects of this
second round. The BF located points that revealed four of the five mutants and are
shown in table 5.10. Table 5.11 has the unrevealed mutant.

Mutant

QM106
QM113
QM147
QM149

Initial point
ABC

561
801
337
322

749
319
907
517

Number of mutants

414
363
168
102
4

No iters
on node

171
35

400
369

Central point
ABC

339
71

1225
656

749
321
907
517

414
363
168
102

Revealing
A B

414
75

1512
918

point
C

828 414
330 363
1008 168
612 102

Table 5.10 - Second round statement analysis mutants revealed by the BF on node 6

Mutant

QM148

Initial point No iters
ABC on node

743 884
Number of mutants

589 500
1 1

Central point Last point
A B C A B C

332 884 589 524 1111 589

Table 5.11- Second round statement analysis mutants unrevealed by the BF on node
6 in 500 iterations

Table 5.10 shows that the amount the Central point is adjusted by to produce the
mutant revealing point increases as the number of iterations the BF takes to locate the
revealing point increases. If the spatial distance is derived then the comparison can
easily be made. Spatial distance is the distance from point to point in n-dimensional
space. For example, the spatial distance from the Central point to the revealing point
for QM113 is (4, 9, 0) as only A and B have changed.
However, this can be deceiving as it does not take the actual boundary followed into
consideration and assumes it to be a straight line. Nevertheless, in the above second
round mutants the notional boundary in the area of input space explored is virtually a
straight line.
With the single unrevealed mutant QM148 (table 5.11), the BF terminated after
reaching the node iteration threshold without locating a solution. The BF had located
the notional boundary and followed it accurately, however there were no solutions
along the part of the notional boundary that could be followed in 500 iterations. An
exhaustive search of the input space, with C constant at 589, found the next solution

74

Chapter 5 The New Heuristics and Improved Quadratic Results

on the notional boundary followed at (589, 1178, 589). Clearly, the BF had not
missed any solutions and given a higher node iteration threshold, should locate this
solution. It is estimated that a further 140 to 160 iterations would be needed by the
BF to locate this solution .

5.5.3 Predicate Analysis Results

The six unrevealed first round predicate analysis mutants are the subjects of this
second round. Mutant QM26 was not considered since the modifications to the DA
necessary to reveal the mutant are made later (section 5.7). Two of the five mutants
were revealed by the BF (table 5.12). However, the remaining three mutants were
not revealed (table 5.13) by the BF before the node iteration threshold was met.
Nevertheless, the boundary was followed accurately and no solutions were
overlooked.

Mutant

QM116
QM117

Initial point
ABC

421
104

821
814

Number of mutants

334
289

2 I

No iters
on node

436
15

Central point
ABC

505
574

821
814

334
289

Revealing point
ABC

750
576

1001
816

334
289

Table 5.12 - Second round predicate analysis mutants revealed by the BF on node 6

Mutant

QM118
QM119
QM133

Initial point
ABC

252
654
427

469
109
188

Number of mutants

652
554
608

3

Central point
ABC
95
6
15

497
115
190

651
552
602

Last point
ABC

190
53
73

703
342
420

651
552
602

Next solution
ABC

651
138
602

1302
552
1204

651
552
602

Table 5.13 - Second round predicate analysis mutants unrevealed by BF on node 6 in
500 iterations

An exhaustive search of the input space located where the next solutions are on the
notional boundary followed (table 5.13). Thus, had the node iteration threshold been
higher, the BF should reveal all five mutants.

5.5.4 Improving Upon the AV

When considering a linear node the LP should take fewer iterations to locate a
solution than the AV. A comparison is made between the AV and BF's Obtain-a-
close-point phase, which is the same as the LP, with the exception that it does not
have the LP's termination criteria.

75

Chapter 5 The New Heuristics and Improved Quadratic Results

Mutant
QM6/106
QM13/113
QM16/116
QM17/117
QM18/118
QM19/119
QM33/133
QM47/147
QM48/148
QM49/149

Average

AV iters
9
11
7
9
9
11
10
9
10
9

9.4

BF's OCP iters
5
4
4
5
4
4
4
5
5
4

4.4

Table 5.14 - Iterations taken by the AV and BF on node 4 or 5 of the QUADRATIC

Table 5.14 shows the iterations taken by the AV in round one and by the BF in round
two, considering either node 4 or 5 of the QUADRATIC. The BF consistently took
less iterations than the AV. On average the BF took approximately half the iterations
oftheAV.

5.6 The Third Round of Mutation Analysis

5.6.1 Experimental Set-up

To reveal the four remaining mutants we are faced with a choice, either to increase
the node iteration threshold or to try a different initial point. The BF's ability to
accurately follow a boundary has been established, so the alternative is considered.
In this round new initial points are generated, in the range 0 to 9 for input variables
A, B and C (table 5.15). The node iteration threshold remains at 500 and only the
DA and BF are used. To identify third round mutants, 100 has been added to the
identifier used in the second round.

5.6.2 Results

All four mutants were revealed by the BF (table 5.15). The new initial points did not
reveal any mutant. With mutants QM219 and QM233, a revealing point was located
in the BF's Obtain-a-close-point phase. The remaining mutants were revealed while
the BF was following a notional boundary.

76

Chapter 5 The New Heuristics and Improved Quadratic Results

Mutant

QM218
QM219
QM233
QM248

Initial point No iters
ABC on node
8
1
6
7

0
7
3
9

Number of mutants

3
9
9
4
4 I

19
7
5
17

Central point Revealing point
A B C A B C
1333

2
1

6949

6
8
6
12

3
8
9
4

Table 5.15 - Third round statement analysis mutants revealed by the BF on node 6

5.7 DA Improvements

Mutant QM26 was not revealed because the DA did not generate a negative value for
input variable A. The DA has been modified to generate three points rather than one.
The considered input variable takes, for separate iterations, the value of the predicate
constant minus 1, the constant, and the constant plus 1. The remaining input
variables are constant. This is boundary value test data. Now the DA is not
concerned about the considered predicate's relational operator and has thus simplified
the heuristic. The improved DA revealed QM26 with the point (-1, 781, 920).

5.8 Mutation Analysis Discussion and Conclusions

The BF has demonstrated that it can accurately follow a boundary in two dimensions,
in the QUADRATIC'S input space and locate points that the AV is unable to. The
static node iteration threshold of 500 limits the distance the BF can follow a
boundary. If the threshold is reached before a solution then the HATS-harness will
deem the node infeasible when there may be a solution lying on the boundary.
However, the BF is unable to determine if a solution does lie on the boundary or do
some analysis to determine if it is heading in a promising direction.
Once the BF is following a boundary, only boundary located points are generated.
The BF's Obtain-a-close-point phase, which is virtually the same as the LP, uses less
iterations than the AV and generates boundary located points. The remaining first
round mutant has been revealed by an improved DA that generates boundary located
points.

77

Chapter 6 The Triangle Classification Problem

6 The Triangle Classification Problem
6.1 Introduction

Triangle classification programs have become a common "benchmark" for test data
generators (Deason, et al, 1991; Inamura, 1989; DeMillo and Offutt, 1991;
Ramamoorthy, et al, 1976; Duran and Ntafos, 1984). Unfortunately, there is
considerable variation in the coding of the triangle classifiers, which make
comparison difficult.
This chapter presents the branch testing of a nested Ada classification procedure and
its components, by HATS and random test data generation. HATS uses the DA, LP
and BF heuristics. The AV is not included since its termination criteria require
improvement.
The triangle classification procedures present different problems to the
QUADRATIC. These include a significantly increased number of paths (and their
corresponding domains), nested procedures and different path functions.

6.2 Experimental Conditions

The main procedure, TRIANGLE_COMPLETE, consists of three procedures;
TRIANGLE, TRIANGLE_2 and RIGHT_ANGLE_CHECK. These four procedures
are the subjects of HATS. Each procedure's function is described later in this
chapter.
Each procedure has three integer input variables A, B and C which are the lengths of
each side of a triangle. A single, hand selected point, in the range ±100 for each of
the three input variables, is used to start each HATS harness run. Should the HATS
harness be consistently unable to find a branch's solution point, hand selection would
enable traversal of the branch and consideration of the branches deemed infeasible.
The node iteration threshold is 500 and the LP and BF consider input variables in the
order A first, B second and C third.

6.3 TRIANGLE Experiments

The TRIANGLE procedure (figure 6.1) checks that the given side lengths are of a
legal triangle. Lines 4 to 6 check that each side's length is greater than zero. If these
checks are passed, lines 8 to 10 check that twice each side's length is less than the
perimeter size. If all these checks are passed, the triangle is legal and the next
procedure, TRIANGLE_2, is called. To facilitate unit testing this call (line 11) has
been commented out.

78

Chapter 6 The Triangle Classification Problem

- Control flow tree node number
Line number

Ada statements

10-
8-

procedure TRIANGLE
(A, B, C in INTEGER; TRI KIND out TRIJTYPE) is

2 P: INTEGER;
3 begin

C 4 if(A>0)then
31 5 if(B>0)then
51 6 if(C>0)then

7 P:=(A + B + C);
8 if((2*A)<P)then

91 9 if((2*B)<P)then
1C 10 if((2*C)<P)lhen
13C 11- TRIANGLE_2(A,B,C,TRI_KIND);

12 else
12C 13 TRIJOND := NOT_A TRIANGLE;

14 end if;
15 end if;
16 end if;
17 else

C 18 TRI_KIND := NOT_A_TRIANGLE;
19 end if;
20 else

C 21 TRI_KIND := NOT_A_TRIANGLE;
22 end if;
23 else

31 24 TRI_KTND:=NOT_A TRIANGLE;
25 end if;
26 end TRIANGLE;

Figure 6.1- The TRIANGLE procedure

The DA and LP should satisfy branch adequacy without the BF being used, since the
conditions in lines 4 to 6 involve only an input variable and a constant and the
conditions in lines 8 to 10 have a linear relationship with the input variables.

The TRIANGLE procedure's control flow tree (figure 6.2) has 12 branches and 13
nodes. The longest path consists of 7 nodes. Table 6.1 contains the initial points for
the three HATS harness runs.

HATS
run
Tl
T2
T3

Input variable
ABC

-17
57
7

44
24
9

-39
43
6

Table 6.1 - TRIANGLE procedure's initial points

79

Chapter 6 The Triangle Classification Problem

Figure 6.2 - Control flow tree of the TRIANGLE procedure

6.3.1 RunTl

Table 6.2 contains the traversal results for this run.

Initial point path 1,2
Nodes considered and traversed

Node Heuristic
3 DA
5 DA
7 DA
8 LP
10 LP
12 LP

Iters Coincidental nodes
3 4
3 6
3 9,11,13
1
2
3

Table 6.2 - Run Tl traversal results

The DA generated boundary value test data for nodes 3, 5 and 7. The points for node
3 were : (-1, -14, -39), (0, -14, -39) and (1, -14, -39); node 5 (1, -1, -39), (1, 0, -39)
and (1, 1, -39); node 7 (1, 1, -1), (1, 1, 0) and (1, 1, 1).
On nodes 8, 10 and 12 the LP chose the node start point (1, 1, 1) which was
generated by the DA on node 7. On node 8, in the Determine-linearity phase, the LP
increased variable A by 1 producing the point (2, 1, 1), which traversed node 8. The
first iteration on node 10 produced an upper-deviation, (table 6.3) which caused the

80

Chapter 6 The Triangle Classification Problem

LP to abandon input variable A. The second iteration modified variable B and
produced a solution point.

Iter

1
2

Var Generate point Execute point Trav
A B C A B C effect

A 1
B 1

1121
1112

1 UD
1 NT

Pied Next
value action

TNV
0 SUCC

Table 6.3 - Run Tl excerpt: LP considering node 10 in the Determine-linearity phase

The first two iterations on node 12 (table 6.4) produced upper-deviations, taking
control to nodes 8 and 10. The third iteration located a solution point modifying
variable C.

Iter

1
2
3

Var Generate point Execute point
A B C A B C

A 1
B 1
C 1

1 1 2
1 1 1
1 1 1

1
2
1

1
1
2

Trav
effect

UD
UD
NT

Pred Next
value action

TNV
TNV

0 SUCC

Table 6.4 - Run Tl excerpt: LP considering node 12 in the Determine-linearity phase

This run demonstrates that if the node start point is immediately adjacent to a solution
point then a simple search, where each input variable is increased and decreased,
should find the solution. The LP's Determine-linearity phase can do this.

6.3.2 Run T2

Table 6.5 contains the traversal results for this run.

Initial point path
Nodes considered

Node
2
4
6
10

Heuristic
DA
DA
DA
LP

Iters
3
3
3
8

1.3,5,7,9,11,13
and traversed

Coincidental nodes
12
8

Table 6.5 - Run T2 traversal results

On node 10 the LP chose the node start point (1, 24, 43) which is a product of the DA
on the initial point. On iteration 2 (table 6.6), the LP causes an upper-deviation
modifying variable A, and so considers the next variable.

Chapter 6 The Triangle Classification Problem

Iter

1
2

Generate point
ABC
1 24
1 24

43
43

Execute point
ABC
2
0

24
24

43
43

Trav
effect

ST
UD

Pred Next
value action

-21 -A
TNV

Table 6.6 - Run T2 excerpt: LP considering node 10 in the Determine-linearity phase
modifying variable A

Using variable B is much more successful as the linearity of node 10's predicate is
identified following iterations 3 to 6 (table 6.7). Variable B is increased by 1 then
decreased by 1, then increased by 2 and 3. The predicate values show there is a
corresponding linear change, indicating that node 10's predicate is linear with respect
to the input variable modified, B.

Iter

3
4
5
6

Generate point
ABC
1 24
1 24
1 24
1 24

43
43
43
43

Execute point
ABC
1 25
1 23
1 26
1 27

43
43
43
43

Trav
effect

ST
ST
ST
ST

Pred
value
-19
-21
-18
-17

Next
action

-B
+B
+B
PP

Table 6.7 - Run T2 excerpt: LP considering node 10 in the Determine-linearity phase
identifying variable B as linear

A point close to the expected boundary that should cause sibling-traversal is predicted
and used in iteration 7 (table 6.8). LP now modifies the predicted point in iteration 8,
crossing an input domain boundary, to a solution point.

Iter

7
8

Generate point
ABC
1 44
1 43

43
43

Execute point
ABC
1 43
1 44

43
43

Trav
effect

ST
NT

Pred
value

-1
0

Next
action

PP
succ

Table 6.8 - Run T2 excerpt: LP considering node 10 in the Predicted-point phase,
causing just sibling traversal then considered node traversal, modifying variable B

If you consider tables 6.6 to 6.8 and figure 6.3, you can see how the LP operated next
to a boundary defined by upper-deviations, progressing to a solution point that has a
predicate value of 0. The consideration of node 10 demonstrates a successful non-
problematic application of the LP.

82

Chapter 6 The Triangle Classification Problem

45
44
43
42

28
27
26
25
24
23
22

* *
* *
* *
* *

* *
* *
* *
* *
* *
* *
* *
-1 0

1
0
-1
-2

-16
-17
-18
-19
-20
-21
-22
1
A

0
-1
-2
-3

-17
-18
-19
-20
-21
-22
-23
2

C=43

Figure 6.3 - Run T2 (A, B) partial input plane : LP considering node 10

6.3.3 Run T3

Table 6.9 contains the traversal results for this run. Unexpectedly the LP failed on
node 12, enabling the BF to find a solution point. For node 12 the LP chose a start
point of (7, 9, 6) and made this the current base point. The Determine-linearity phase
establishes that variable A is linear with respect to node 12 (table 6.10). Iteration 2
produces a point that is closer than the current base point. However, the base point is
not updated during the DL phase as this would upset the phase.

Initial point path 1,3,5,7,9,11,13
Nodes considered and traversed

Node Heuristic
2 DA
4 DA
6 DA

12 LP
BF

Iters
3
3
3

16
14

Coincidental nodes
10
8

Table 6.9 - Run T3 traversal results

Iter

BP
1
2
3
4

Generate point
ABC

7
7
7
7

9
9
9
9

6
6
6
6

Execute point
ABC
7
8
6
9
10

9
9
9
9
9

6
6
6
6
6

Trav
effect

ST
ST
ST
ST
ST

Pred
value
-10
-11
-9

-12
-13

Next
action

-A
+A
+A
PP

Table 6.10 - Run T3 excerpt: LP considering node 12 in the Determine-linearity
phase modifying variable A

With the linearity of variable A established, a point close to the expected boundary is
predicted (table 6.11 : iteration 5 and figure 6.4). However, an upper-deviation is
produced. In an attempt to locate the boundary, the LP progressively moves from the
predicted point back to the current base point (table 6.11 : iterations 6 to 10).

83

Chapter 6 The Triangle Classification Problem

Iteration 11 produces a sibling-traversal, not a solution, crossing the same boundary
crossed by the predicted point (iteration 5). The LP now abandons variable A.

Iter

5
6
7
8
9
10
11

Generate point
ABC
-3
-2
-1
0
1
2
3

9
9
9
9
9
9
9

6
6
6
6
6
6
6

Execute point
ABC
-2
-1
0
1
2
3
4

9
9
9
9
9
9
9

6
6
6
6
6
6
6

Trav
effect

UD
UD
UD
UD
UD
UD
ST

Pred Next
value action

BBP
BBP
BBP
BBP
BBP
BBP

-7 TNV

Table 6.11 - Run T3 excerpt: LP considering node 12 in the Predicted-point phase,
modifying variable A to locate a point that causes sibling-traversal after predicting a

point and producing an upper-deviation

8
7
6
5

*
*
*
*
-4

*
*
*
*
-3

*
*
*
*
-2

*
*

*
-1

*
*

*
0

*
*

*

1

-3
*

*
2
A

-4
-5

*
3

-5
-6
-7
*
4

-6
-7
-8
-9
5

-7
-8
-9

-10
6

-8
-9

-10
-11
7

-9
-10
-11
-12

8

Figure 6.4 - Run T3 (A, C) partial input plane : LP considering linear node 12 and
failing

On setting up for variable B, the LP updates the base point and closest point stored,
as modifying variable A produced the point (4, 9, 6) which is closer than the previous
base point (7, 9, 6). From this new base point the LP went on to consider variables
B, C and A again (table 6.12). Once again, in iteration 13, a point is produced that is
closer to the expected boundary than the current LP base point. Having no success
on all three input variables, the LP terminated, allowing the BF to be used.

Iter

BP
12
13
14
15
16

Var

B
C
c
A
A

Generate point
ABC

4
4
4
4
4

9
9
9
9
9

6
6
6
6
6

Execute point
ABC
4
4
4
4
5
3

9
10
9
9
9
9

6
6
7
5
6
6

Trav
effect

ST
UD
ST
UD
ST
UD

Pred Next
value action

-7
TNV

-6 -C
TFV

-8 -A
TERM

Table 6.12 - Run T3 excerpt: LP considering node 12 in the Determine-linearity
phase having no success

The BF chose the start point (4, 9, 7). The DL subphase of the OCP phase, which is
virtually the same as the LP, established that variable A is linear with respect to node
13 (table 6.13 : iterations 17 to 20 and figure 6.4). The prediction (iteration 21)
produced an upper-deviation, resulting in the BF abandoning variable A. On variable
B (table 6.13 : iterations 22 to 24 and figure 6.5) an upper-deviation is produced
again resulting in variable B being abandoned.

84

Chapter 6 The Triangle Classification Problem

Iter

BP
17
18
19
20
21
22
23
24

Var

A
A
A
A
A
B
B
B

Phase

DDL
ODL
ODL
ODL
OPP
ODL
ODL
ODL

Generate point
ABC

4
4
4
4
-2
4
4
4

9
9
9
9
9
9
9
9

7
7
7
7
7
7
7
7

Execute point
ABC
4
5
3
6
7
-1
4
4
4

9
9
9
9
9
9
10
8
11

7
7
7
7
7
7
7
7
7

Trav
effect

ST
ST
ST
ST
ST
UD
ST
ST
UD

Pred
value

-6
-7
-5
-8
-9

-7
-5

Next
action

-A
+A
+A
PP

TNV
-B
+B

TNV

Table 6.13 - Run T3 excerpt: BF considering node 12 in the Obtain-a-close-point
phase, having no success

On variable C, the BF makes a prediction (table 6.14 : iterations 25 to 30 and figure
6.5) without producing upper-deviations.
To explain why the BF found a solution when the LP should have, stems back to
iteration 13. On this iteration the LP's Determine-linearity phase located a point that
was closer to the expected boundary than the base point at the time. Iteration 14
produced an upper-deviation which resulted in the LP abandoning variable C.
Eventually, after considering other variables, the LP terminated. The BF found a
solution using variable C from the point produced in iteration 13. Had the LP
returned to variable C using point (4, 9, 7) as a base, it would have located the
solution.

Iter

BP
25
26
27
28
29
30

Phase

ODL
ODL
ODL
ODL
OPP
OPP

Generate point
ABC

4
4
4
4
4
4

9
9
9
9
9
9

7
7
7
7
13
12

Execute point
ABC
4
4
4
4
4
4
4

9
9
9
9
9
9
9

7
8
6
9
10
12
13

Trav
effect

ST
ST
ST
ST
ST
ST
NT

Pred
value

-6
-5
-7
-4
.3
-1
0

Next
action

-C
+c
+c
PP
PP

succ

Table 6.14 - Run T3 excerpt: BF considering node 12 in the Obtain-a-close-point
phase succeeding by modifying variable C

14
13
12
11
10
9
8
7
6

2
1
0
-1
-2
-3
-4
-5
-6
8

1
0
-1
-2
-3
-4
-5
-6
-7
9

0
-1
-2
-3
-4
-5
-6
-7
*
10
B

-1
-2
-3
-4
-5
-6
-7
*
*
11

-2
-3
-4
-5
-6
-7
*
*
*
12

Figure 6.5 - Run T3 (B, C) partial input plane : BF considering node 12 and
succeeding

85

Chapter 6 The Triangle Classification Problem

6.3.4 Comparison of HATS with Random Testing on the TRIANGLE
Procedure

The random testing range for each input variable is ± 100, which is the same as
HATS's initial point selection range. Each random testing run continues till all nodes
are traversed. The number of iterations taken to traverse each node is recorded. The
average iterations per node, over 500 runs, is calculated and used. Results for HATS
are taken from runs Tl to T3.

Node

1
2
3
4
5
6
7
8
9
10
11
12
13

HATS
iterations

IPT
3
3
3
3
3
3
1

IPT/CT
2-8

IPT/CT
3-30

IPT/CT

Random
iterations

1
2.002
1.966
4.12

4.004
8.178
8.012
48.22
9.336
51.896
11.278
45.74
15.826

Key:
IPT Initial point traversed
CT Coincidentally traversed

Table 6.15 - The number of iterations taken by HATS and random testing for each of
TRIANGLE'S nodes

Table 6.15 shows that nodes 2 to 5 are comparable. On nodes 6 and 7, HATS took
approximately half the iterations of random. While, the iterations for HATS on
nodes 2 to 7 remained constant, on nodes 6 and 7 random took approximately twice
the iterations of node 2 to 5. This is because the satisfying domain for nodes 6 and 7
is half the size of nodes 2 to 5. With nodes 8 to 13, HATS takes less iterations than
random. Nodes 9, 11 and 13, which have a larger satisfying domain than nodes 8, 10
and 12, are all covered by HATS with the initial point or through coincidental
traversal. The HATS solution to node 8 took only 1 iteration as HATS started on a
point next to the solution found. Generally, HATS improves on random and at worst
is equal to random.

6.4 TRIANGLE 2 Experiments

TRJANGLE_2 (figure 6.6) decides if the given side lengths represent an equilateral
or isosceles triangle. If the lengths represent neither of these then normally
RIGHT_ANGLE_CHECK would be called. However, to enable unit testing, this call
has been commented out and TRIANGLE_2 is used independently of TRIANGLE,

86

Chapter 6 The Triangle Classification Problem

which would normally invoke it. A value representing the triangle type is returned
after identification.

- Control flow tree node number
i- Line number

i- Ada statements

Y Y
1 procedure TRIANGLE_2

(A, B, C in INTEGER; TRIJUND out TRI TYPE) is
2 begin

1C 3 if(A = B)then
2C 4 if(B = C)then
4C 5 TRIJOND := EQUILATERAL;

6 else
5C 7 TRI_KIND := ISOSCELES;

8 end if;
9 else

3C 10 if(A = C)then
6C 11 TRI_KIND := ISOSCELES;

12 else
7C 13 if(B = C)then
8C 14 TRIJUND := ISOSCELES;

15 else
9C 16-- RIGHT_ANGLE_CHECK (A, B, C, TRI KIND);

17 end if;
18 end if;
19 end if;
20 end TRIANGLE_2;

Figure 6.6 - The TRIANGLE_2 procedure

Figure 6.7 - Control flow tree of the TRIANGLE_2 procedure

TRIANGLE_2's control flow tree (figure 6.7) has 8 branches, 9 nodes and the longest
path consists of 4 nodes. All conditions have a linear relationship with the input
variables. Table 6.16 contains the initial points for three HATS harness runs.

87

Chapter 6 The Triangle Classification Problem

HATS Input variable
run A B C
T4 -27 -42 -77
T5 29 47 93
T6 1 4 3

Table 6.16 - TRIANGLE_2 procedure's initial points

6.4.1 RunT4

Table 6.17 contains the traversal results for this run.

Initial point path 1,3,7,9
Nodes considered and traversed

Node
2
6
4

Heuristic
LP
LP
LP

Iters
6
9
8

Coincidental nodes
5
8

Table 6.17 - Run T4 traversal results

The LP considered nodes 2, 6, and 4 in that order. The DA is not suitable for any of
TRIANGLE_2's conditions. On node 2, the LP used variable A to determine that the
node is linear and predict a solution point. On node 6, the LP selected a base point
that had been generated through node 2's consideration. Modifying variables A and
B produced upper-deviations, however modifying variable C located a solution point.
On node 4, the LP again selected a base point that had been generated through node
2's consideration. Again modifying variables A and B produced upper-deviations,
but modifying variable C located a solution point.
This run presents a common obstacle for heuristics to manage. Heuristics attempt to
generate points that are close to a domain boundary. When lower nodes in the
control flow tree are considered a heuristic may choose one of these points close to a
boundary higher in the control flow tree, as a base point. As the heuristic progresses
the high nodes (interfering predicates) boundary may be crossed resulting in an
upper-deviation. This may prevent any further progression with the current variable
since there is no predicate value for the considered node's sibling, resulting in the
current variable being abandoned.
The solution point for the lower node may not be located due to the upper-deviations
affecting the active heuristic. The lower a node is in the control flow tree, the harder
it is to locate a solution point, since there is a greater number of branches that can
take control away from the considered node or its sibling, interrupting the active
heuristic.

88

Chapter 6 The Triangle Classification Problem

6.4.2 RunTS

Table 6.18 contains the traversal results for this run.

Initial point path 1,3,7,9
Nodes considered and traversed

Node
2
6
4

Heuristic
LP
LP
LP

Itcrs
6
9
8

Coincidental nodes
5
8

Table 6.18 - Run T5 traversal results

This run presents a similar situation to run T4, in that the LP selected start points for
nodes 4 and 6 that are close to a boundary which, if crossed, will cause an upper-
deviation. However, the LP is able to perform linearity determination and predict a
successful point by modifying one of the variables without producing upper-
deviations.

6.4.3 RunT6

Table 6.19 contains the traversal results for this run.

Initial point path 1,3,7,9
Nodes considered and traversed

Node
2
4
8

Heuristic
LP
LP
LP

Iters
4
3
6

Coincidental nodes
6,5

Table 6.19 - Run T6 traversal results

Again LP chose start points for nodes 4 and 8 that are close to an upper boundary and
solution points for the considered nodes. All the solutions were found during the
LP's Determine-linearity phase.

6.4.4 Comparison of HATS with Random Testing on the
TRIANGLE 2 Procedure

The random testing range for each input variable is ± 100, which is the same as
HATS's initial point selection range. Each random testing run continues till all nodes
are traversed. The number of iterations taken to traverse each node is recorded. The
average iterations per node, over 500 runs, is calculated and used. Results for HATS
are taken from runs T4 to T6.

89

Chapter 6 The Triangle Classification Problem

Node

1
2
3
4
5
6
7
8
9

HATS
iterations

IPT
4-6

IPT/CT
3-8

IPT/CT
9

IPT/CT
6

IPT/CT

Random
iterations

1
192.534

1.006
42652.4
193.314
203.542

1.01
196.224

1.012

Key:
IPT Initial point traversed
CT Coincidentally traversed

Table 6.20 - The number of iterations taken by HATS and random testing for each of
TRIANGLE_2's nodes

Table 6.20 indicates that nodes 3,7 and 9 have a large solution domain and
consequently are easy to traverse. However, nodes 2, 4, 5, 6 and 8 are not as easy
and random takes a higher number of iterations, especially on node 4. Nodes 2, 5, 6
and 8 have an equality predicate in the partial path to them. Node 4 has two equality
predicates in the partial path to it. Each equality predicate in the partial path to a
node reduces the dimensionality of the solution domain by one (White and Cohen,
1980). Consequently, random test data generation takes an increasing number of
iterations for each equality predicate in the partial path to a considered node. HATS
has taken significantly fewer iterations than random. There has not been any
noticeable increase in iterations considering node 4 to nodes 2, 6 or 8, unlike random.

6.5 RIGHT ANGLE CHECK Experiments

This procedure (figure 6.8) checks the given side lengths to see if they represent a
right angled scalene triangle or a non right angled scalene triangle. TRIANGLE_2
would normally call RIGHT_ANGLE_CHECK, however for unit testing
RIGHT_ANGLE_CHECK is tested independently. All conditions have a non-linear
relationship with the input variables.

90

Chapter 6 The Triangle Classification Problem

Control flow tree node number
Line number

Ada statements

procedure RIGHT_ANGLE_CHECK (A, B, C in INTEGER;
TRI_KIND out TRI_TYPE) is

begin
if(((A*A) + (B*B)) = (C*C)) then
TRIJUND := RIGHT_ANGLED_SCALENE;

else
if(((B*B) + (C*C))=(A*A)) then
TRI_KIND :=RIGHT_ANGLED_SCALENE;

else
if(((A*A) + (C*C) = (B*B)) then

TRI_KIND := RIGHT_ANGLED SCALENE;
else

TRI KIND := NON RIGHT_ANGLED_SCALENE;
end if;

end if;
end if;

end RIGHT_ANGLE_CHECK;

Figure 6.8 - The RIGHT_ANGLE_CHECK procedure

Figure 6.9 - Control flow tree of the RIGHT_ANGLE_CHECK procedure

The control flow tree (figure 6.9) has 6 branches, 7 nodes and the longest path
consists of 4 nodes. Table 6.21 contains the initial points for three HATS harness

runs.

HATS
run
T7
T8
T9

Input variable
ABC
5
10
-27

3
20
-63

3
30
-97

Table 6.21 - RIGHT_ANGLE_CHECK procedure s initial points

91

Chapter 6 The Triangle Classification Problem

6.5.1 RunT7

Table 6.22 contains the traversal results for this run.

Initial point path
Nodes considered

Node Heuristic
2 LP
4 LP
6 LP

BF

Iters
8
6
12
17

1,3,5,7
and traversed

Coincidental nodes

Table 6.22 - Run T7 traversal results

On node 2, the LP used variable A to determine that the node is non-linear (table 6.23
: iterations 1 to 4). Consequently the heuristic creeps to a solution point (table 6.23 :
iterations 5 to 8).

Iter

1
2
3
4
5
6
7
8

Phase

DL
DL
DL
DL
CR
CR
CR
CR

Generate point
ABC
5
5
5
5
4
3
2
1

3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3

Execute point
ABC
6
4
7
8
3
2
1
0

3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3

Trav
effect

ST
ST
ST
ST
ST
ST
ST
NT

Pred
value

36
16
49
64
9
4
1
0

Next
action

-A
+A
+A
-A
-A
-A
-A

SUCC

LP base point
A B C Val
5
5
5
5
4
3
2
1

3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3

25
25
25
25
16
9
4
1

Table 6.23 - Run T7 excerpt: LP creeping to a solution point, modifying variable A,
on non-linear node 2

On node 4, the LP operated similarly to node 2, On node 6, the LP failed, but the BF
succeeded. BF selected variable A for the Cross role and B for the Follow role.
Figure 6.10 and table 6.24 illustrate the operation of the BF in the Follow-boundary
phase, to the location of a solution point.

Iter

24
25
26
27
28
29

Var

B
A
A
A
B
A

Phase

FBF
FBC
FBC
FBC
FBF
FBC

Generate point
ABC
1
1
1
1
3
3

3
4
4
4
4
5

3
3
3
3
3
3

Execute point
ABC
1
2
0
3
3
4

4
4
4
4
5
5

3
3
3
3
3
3

Trav
effect
-ST
-ST
-ST
+ST
-ST
NT

Pred
value

-6
-3
-7
2
-7
0

Next
action
Cl
Cl
C2

F
Cl

SUCC

Table 6.24 - Run T7 excerpt: BF finding a solution for non-linear node 6

92

Chapter 6 The Triangle Classification Problem

6
5
4
3
2

-26
-15
-6
1
6
-1

-27
-16
-7
*
5
0

-26
-15
-6
1
6
1

-23
-12
-3
4
9
2
A

-18
-7
2
9
14
3

-11
0
9
16
21
4

-2
9
*

25
30
5

C=3

Figure 6.10 - Run T7 (A, B) partial input plane : BF considering node 6

Interestingly, the LP located solution points for the non-linear node 2 and 4. This
occurred because the heuristic's start points are very close to the solution points
located.

6.5.2 Run T8

Table 6.25 contains the traversal results for this run.

Initial point path 1,3,5,7
Nodes considered and traversed

Node
2

4

6

Heuristic
LP
BF
LP
BF
LP
BF

Iters
26
19
42
270
33
67

Coincidental nodes

Table 6.25 - Run T8 traversal results

The LP identified nodes 2,4 and 6 as non-linear and crept to the closest point to the
expected boundary it could locate for each node, then terminated. The BF took over
and found solution points for each of these nodes.
The BF behaved as expected on nodes 2 and 4, but unusually on node 6, which
deserves further investigation. Just after the initial allocation of the Follow and Cross
roles the Reorient-boundary-follower phase was invoked three times. This appeared
unusual since there are no "corners" (where two border segments meet) to navigate in
this part of the sibling-traversal domain (figure 6.11).

B

C=30

32
31
30
29
28
27

-115 -120 -123 -124 -123 -120 -115
-52 -57 -60 -61 -60 -57 -52
941*149
68 63 60 59 60 63 68
125 120 117 116 117 120 125
180 175 172 171 172 175 180
-3 -2 -1 0

A
1

Figure 6.11 - Run T8 (B, C) partial input plane : BF considering node 6 and
reorienting three times

93

Chapter 6 The Triangle Classification Problem

Figure 6.11 shows the boundary to be followed and an upper-deviation point (0, 30,
30). It is this upper-deviation point which caused the BF to behave unusually. In the
BF's Determine-initial-follow-and-cross-details phase each input variable is increased
then decreased by 1 from the central point (-1, 30, 30). Modifying variable A
produced an upper-deviation and a positive-sibling-traversal, and modifying variable
B produced a negative-sibling-traversal and a positive-sibling-traversal. Ideally
variable B would be allocated Cross and variable A, Follow (figure 6.11). However,
in the Determine-initial-follow-and-cross-details phase, variable A is modified before
B, and produces two different traversal-effects. Therefore, variable A is allocated the
Cross role and variable B the Follow role. With this allocation, modifying variable A
will not locate a point on the other side of the notional boundary that may lead the BF
to a solution point. The point causing upper-deviation has adversely affected the
initial allocation of the Follow and Cross roles.
This is confirmed as the Follow-boundary phase is unable to cross the notional
boundary (table 6.26 : iterations 51 to 54 and figure 6.11), as only negative-sibling-
traversals were produced. Consequently the Reorient-boundary-follower phase is
invoked and boundary crossing points located (table 6.26 : iterations 55 to 56), so
that the roles could be reallocated. The Follow role is allocated to variable A and
Cross to variable B. The Point (-1, 31, 30) is selected to start the Follow-boundary
phase.

Iter

51
52
53
54
55
56

Var

B
A
A
A

A,B
A

Phase

FBF
FBC
FBC
FBC
RBF
RBF

Generate point
ABC
-1
-1
-1
-1
-1
-1

30
31
31
31
31
30

30
30
30
30
30
30

Execute point
ABC
-1
0
-2
1
0
-2

31
31
31
31
30
30

30
30
30
30
30
30

Trav
effect
-ST
-ST
-ST
-ST
UD
+ST

Pred
value
-60
-61
-57
-60

4

Next
action
Cl
Cl
C2

OF+C
-C
FB

Table 6.26 - Run T8 excerpt: BF's first reorientation considering node 6

In the Follow-boundary phase, iteration 59 and 60 (table 6.27) crossed the notional
boundary from the negative-sibling-traversal domain into an upper-deviation domain,
then crossed the notional boundary again, coming out in the positive-sibling-traversal
domain. Since the Follow move (iteration 60) crossed a boundary the Cross-rule
determined that the Cross direction should be the same as the last direction to cross
the notional boundary (decrease). Consequently, the BF could not cross back into the
negative-sibling-traversal domain (iterations 61 and 62). This reorientation occurred
as the Cross-rule had not taken the upper-deviation domain into consideration when it
determined the Cross direction to use for iteration 61.

94

Chapter 6 The Triangle Classification Problem

Iter

57
58
59
60
61
62
63
64

Var

A
B
B
A
B
B

A,B
B

Phase

FBF
FBC
FBC
FBF
FBC
FBC
RBF
RBF

Generate point
ABC
-1
0
0
0
1
1
1
0

31
31
31
30
30
30
30
30

30
30
30
30
30
30
30
30

Execute point
ABC
0
0
0
1
1
1
0
0

31
32
30
30
29
28
31
29

30
30
30
30
30
30
30
30

Trav
effect
-ST
-ST
UD
+ST
+ST
+ST
-ST
+ST

Pred
value
-61

-124

1
60
117
-61
59

Next
action
Cl
Cl

F
Cl
C2

OF+C
-C
FB

Table 6.27 - Run T8 excerpt: BF's second reorientation considering node 6

The allocation of roles from the second reorientation rendered crossing the notional
boundary very difficult (table 6.28 : iterations 66 and 67). A further reorientation
took place, allocating the roles, Follow to variable A and Cross to B. With the best
role allocation and the upper-deviation point out of the way the Follow-boundary
phase continued (table 6.28 : iterations 70 to 73) without further interruptions and
eventually located a solution point.

Iter

65
66
67
68
69
70
71
72
73

Var

B
A
A

A,B
A
A
B
A
B

Phase

FBF
FBC
FBC
RBF
RBF
FBF
FBC
FBF
FBC

Generate point
ABC
1
1
1
1
1
1
2
2
3

30
31
31
31
30
31
31
30
30

30
30
30
30
30
30
30
30
30

Execute point
ABC
1
0
-1
2
0
2
2
3
3

31
31
31
30
30
31
30
30
31

30
30
30
30
30
30
30
30
30

Trav
effect
-ST
-ST
-ST
-fST
UD
-ST
+ST
+ST
-ST

Pred
value
-60
-61
-60
4

-57
4
9

-52

Next
action
Cl
C2

OF+C
-Cr
FB
Cl
F

Cl
F

Table 6.28 - Run T8 excerpt: BF's third reorientation considering node 6

In run T7, there are upper-deviation points dividing the notional boundary being
followed (figure 6.10). Since the upper-deviation points were not used, the problem
observed in this run did not occur. However, if they were used then there would be
less of a problem as the notional boundary is on a diagonal, so it is possible to cross
with both variables.

6.5.3 Run T9

Table 6.29 contains the node traversal results for this run.

95

Chapter 6 The Triangle Classification Problem

Initial point path 1,3,5,7
Nodes considered and traversed

Node Heuristic Iters Coincidental nodes
LP
BF

59
148

Nodes considered and untraversed
Node Heuristic Iters Coincidental nodes

LP
BF

9
491

Nodes unconsidered
Considered node Nodes unconsidered

Table 6.29 - Run T9 traversal results

The LP identified node 2 as non-linear and crept to the point closest to the expected
boundary, then terminated. The BF found a solution without difficulty. The LP
identified node 4 as non-linear, crept then terminated. The BF followed a boundary
without difficulty till the node iteration threshold was reached, then terminated.
Hence no solution was found. Node 6 was not considered as HATS terminated after
considering node 4.
Node 4's consideration raises an important concern on choosing a value for the node
iteration threshold. This was previously raised in section 5.5.3. In this case the area
around the boundary followed and further along the boundary was searched for
solutions, and none existed.

6.5.4 Comparison of HATS with Random Testing on the
RIGHT ANGLE CHECK Procedure

The random testing range for each input variable is ± 100, which is the same as
HATS's initial point selection range. Each random testing run continues till all nodes
are traversed. The number of iterations taken to traverse each node is recorded. The
average iterations per node, over 500 runs, is calculated and used. Results for HATS
are taken from runs T7 to T9.

Node

1
2
3
4
5
6
7

HATS
iterations

IPT
8-207

IPT/CT
6-312

IPT/CT
29-100
IPT/CT

Random
iterations

1
5442.05

1
6738.34

1
9676.02

1

Key:
IPT Initial point traversed
CT Coincidentally traversed

Table 6 30 - The number of iterations taken by HATS and random testing for each of
RIGHT_ANGLE_CHECK's nodes

96

Chapter 6 The Triangle Classification Problem

Table 6.30 indicates that nodes 3, 5 and 7 have a large solution domain and
consequently are easy to traverse. However, nodes 2, 4 and 6 are much harder, which
can be seen by the increased number of iterations taken by both HATS and random
testing compared to the iterations taken for TRIANGLE and TRIANGLE_2. HATS
takes significantly fewer iterations than random testing. The large difference in
HATS iteration range is due to the proximity of the initial point to the located
solution point.

6.6 TRIANGLE COMPLETE Experiments

The TRIANGLE_COMPLETE procedure (figure 6.12) is composed of the three
procedures previously covered. The conditions in the procedure have a linear
relationship with the input variables till the RIGHT_ANGLE_CHECK procedure.
From there on, there is a non-linear relationship between the input variables and the
conditions. The control flow tree (figure 6.13) has 26 branches, 27 nodes and the
longest path consists of 13 nodes. Where the control flow tree node number is
prefixed by the letter P, this indicates that the statement is a procedure call and the
node specified is the first executed. TRIANGLE_COMPLETE has a considerably
higher control flow complexity than any of the previous procedures tested. Further,
the RIGHT_ANGLE_CHECK procedure, which has the hardest predicates to satisfy,
is the last for control to encounter. Consequently, for a point to reach this procedure
it must satisfy 9 predicates, or in other words, not deviate from 9 branches.

97

Chapter 6 The Triangle Classification Problem

_ Control flow tree node number
Line number

I _ Ada statements

T T
1 procedure TRIANGLE_COMPLETE (A3,C in INTEGER; TRI KIND oul TRI TYPE) is
2 P: INTEGER;
3 procedure TRIANGLE_2 (A3,C in INTEGER; TRIJUND out TRIJTYPE) is
4 procedure RIGHT ANGLE_CHECK (A3,C in INTEGER; TRIJCIND out TRI TYPE) is
5 begin

20C 6 ir(((A*A) + (B*B)) = (C*C))then
23 C 7 TRIJCIND := RIGHT_ANGLED_SCALENE;

8 else
22C 9 if(((B*B)+(C*C)) = (A»A))then
25 C 10 TRI_KIND := RIGHT_ANGLED_SCALENE;

II else
24C 12 if(((A*A) + (C»C) = (B*B))then
27 C 13 TRI KIND := RIGHT ANGLED SCALENE;

14 else
26 C IS TRIJCIND := NON_RIGHT ANGLED_SCALENE;

16 end if;
17 end if;
18 end if;
19 end RIGHT_ANGLE_CHECK;
20 begin

13 C 21 if(A = B Mhcn
15C 22 lf(B = C)then
19 C 23 TRI KIND := EQUILATERAL;

24 else
18 C 25 TRIJCIND := ISOSCELES;

26 end if;
27 else

14C28 if(A = C)then
17 C 29 THIJCIND := ISOSCELES;

30 else
16C 31 if(B = C)then
21 C 32 TRI KIND := ISOSCELES;

33 else
P20 C 34 RIGHT_ANGLE_CHECK (A, B, C, TRIJUND);

35 end if;
36 end if;
37 end If:
38 end TRIANGLE 2;
39 begin

1 C 40 if(A>0)then
3C 41 if (It > 0 I then
5C 42 if(C>0)then
7 T 43 P := (A + B H- C);

L 44 if((2*A)<P)then
9C45 ir((2»B)<P)then

11C 46 ir«2*C)<P)lhen
PI 3 C 47 TRIANGLE_2 (A, B, C, TRI_KIND);

48 else
12 C 49 TRI KIND := NOT^A TRIANGLE;

50 endifT
10 51 end if;
8 ~ 52 end if;

53 else
6 C 54 TR1_KIND := NOT_A_TRIANGLE;

55 end if;
56 else

4 C 57 THIJKIND := NOT_A_TRIANGLE;
58 end if;
59 else

2 C 60 TRI_KIND := NOT_A_TRIANGLE;
61 end if;
62 end TRIANGLE_COMPLETE;

	Figure 6.12 - The TRIANGLE_COMPLETE procedure

98

Chapter 6 The Triangle Classification Problem

Figure 6.13 - Control flow tree of the TRIANGLE_COMPLETE procedure

Table 6.31 contains the initial points for the three HATS harness runs. The initial
points for runs T10 and Tl 1 were specifically selected to traverse the significant
partial path to RIGHT_ANGLE_CHECK so that the heuristics would consider other

99

Chapter 6 The Triangle Classification Problem

nodes in RIGHT_ANGLE_CHECK without the possibility of the HATS harness
deeming this part of the control flow tree infeasible.

HATS
run
T10
Til
T12

Input variable
ABC
3
3

56

5
4
23

4
5
19

Table 6.31 -TRIANGLE_COMPLETE procedure's initial points

6.6.1 RunTIO

Table 6.32 contains the traversal results for this run.

Initial point path 1,34,7,9,11,13,14,16,20,22,24,2
7

Nodes considered and traversed
Node Heuristic

2 DA
4 DA
6 DA
8 LP
15 LP
19 LP
21 LP

Iters Coincidental nodes
3 10
3 12
3
3 17
3 26,18
3
3

Nodes considered and untraversed
Node Heuristic

23 LP
BF

Iters Coincidental nodes
4
10

Nodes unconsidered
Considered node

23
Nodes unconsidered

25

Table 6.32 - Run T10 traversal results

With nodes 8, 15, 19 and 21 the LP chose a start point that is very close to the
solution point located. On node 23, the LP terminated since upper-deviations were
produced after modifying each input variable. BF then took over and failed after
only 10 iterations since it could not allocate the Follow role to any of the input
variables. This was considered unusual since the BF is the most suitable heuristic,
and deserves further investigation.

100

Chapter 6 The Triangle Classification Problem

B

y
8
7
6
5
4
3
2
1

* * * * 13

* * * * _3

-2-1012
A

*

29
18

*
-3

3

*
*

*

*

4

73
58
45
*

18
13

5

101
84
69

45

29

6
C = 4

Figure 6.14 - Run T10 (A, B) partial input plane : BF considering node 23 in the
Determine-initial-follow-and-cross-details phase

The BF commences the Determine-initial-follow-and-cross-details phase with a
central point of (2, 5, 4). Variable A is allocated the Cross role since its modification
produced a positive-sibling-traversal (3, 5, 4) and an upper-deviation (1, 5, 4) (figure
6.14).
However, BF could not allocate the Follow role since modifying the remaining two
input variables B ((2, 6,4) and (2, 4, 4)) and C (2, 5, 5) and (2, 5, 3)) produced only
upper-deviations (figure 6.15). BF requires that at least one of the modifications to
an input variable, produces a sibling-traversal for the Follow role to be allocated to
the variable.

8
7
6
5
4
3
2
1
0

*
*
*
*
*
*
*
*
*
1

*
*
*
*
*
*
*
Hi

*
2

*
*
*
*
-3
*
*
*
*
3

*
*
*
-5
*
11
*
*
*
4

*
*
-7
*
13
*
*
*
*
5
B

*
-9
*
15
*
*
*
*
*
6

-11
*
17
*
*
*
*
*
*
7

*
19
*
*
*
*
*
*
*
8

21
*
*
*
*
*
*
*
*
9

A = 2

Figure 6.15 - Run T10 (B, C) partial input plane : BF considering node 23 in the
Determine-initial-follow-and-cross-details phase

Figures 6.14 and 6.15 show a much more partitioned sibling-traversal domain to that
seen previously. This is due to the branches above node 23.
Let us consider the three 2 dimensional planes around the central point (2, 5, 4), these
being (A, B) (figure 6.14), (A, C) and (B, C) (figure 6.15). When the BF allocates
the Follow and Cross roles to two variables, it is committed to follow a boundary in
the corresponding plane. Both the (A, B) (figure 6.14) and (A, C) planes have
isolated sibling-traversal domains around the central point with no solutions present.
Had the BF followed a boundary in one of these planes then it may end up circling
the same sibling-traversal domain. In the (B, C) plane (figure 6.15) there are two
sibling-traversal domains, the left-most starting at point (2, 3, 4) and the other at

101

Chapter 6 The Triangle Classification Problem

point (2, 4, 3). An exhaustive search further along these sibling-traversal domains,
revealed that no solutions were present, hence following the boundary surrounding
them would be pointless. There is a possibility that this could be inferred since the
predicate values shown in figure 6.15 progress away from 0.
To establish if a solution point does exist and where, a three dimensional exhaustive
search was conducted around the central point. This spanned the range (-2, 1, 0) to
(6, 9, 8). Two solutions were found at points (3, 4, 5) and (4, 3, 5), which are very
close to the central point. In its present form, the BF could not locate either of these
points since it can only move in the same two dimensions. Further, the central point
chosen determines which boundaries the BF may follow. Hence, this also influences
the success of the BF.

6.6.2 Run Til

Table 6.33 contains the traversal results for this run.

Initial point path 1,3,5,7,9,11,13,14,16,20,23
Nodes considered and traversed

Node Heuristic
2 DA
4 DA
6 DA
8 LP
17 LP

BF

Iters Coincidental nodes
3 12
3
3 10
3 15,18
6 21,22,24,26
5 19

Nodes considered and untraversed
Node Heuristic

25 LP
BF

Iters Coincidental nodes
4

496
Nodes unconsidcred

Considered node
25

Nodes unconsidered
27

Table 6.33 - Run Til traversal results

The LP failed on linear node 17 when there are solutions surrounding the start point
of (3, 4, 5). Both figures 6.16 and 6.17 show that the start point is partially
surrounded by upper-deviations, which cause the LP to terminate. The BF succeeds
during its Obtain-a-close-point phase, since it used a different but closer start point to
the expected boundary, which was generated during the LP's attempt.

102

Chapter 6 The Triangle Classification Problem

7
6
5
4
3
2
1

*
*
-4
*
*
*
*
1

*
-3
-3
-3
*
*
*
2

-2
-2
-2
-2
*
*
*
3

-1
-1
-1
*
-1
-1
*
4
A

0
0
*
0
0
0
0
5

1
*
1
1
1
1
*
6

*

2
2
2
2
*
*
7

Figure 6.16 - Run Til (A, B) partial input plane : LP considering node 17

7
6
5
4
3
2
1

*
*
*
*
0
*
*
1

*
*
*
-1
0
1
*

2

*
*
*
*
*
*
*
3

*
-3
-2
-1
0
1
*
4
B

-4
-3
-2
-1
0
*
*
5

-4
-3
-2
-1
*
*
*
6

-4
-3
_2
*
*
*
*
7

Figure 6.17 - Run Til (B, C) partial input plane : LP considering node 17

On node 25, the BF selected the central point (3, 5, 4) and allocated the Follow role
to variable B and Cross to A. After following the boundary for a little way the
Reorient-boundary-follower phase was invoked and the initial allocations swapped.
The BF continued till the node iteration threshold was reached and terminated. No
solution was found and deserves further investigation.
The area around the boundary followed (in the range 0 to 500 for A and B, with C
constant at 4) was exhaustively searched. Only one solution was found at point (5, 3,
4), which is very close to the central point. Had the boundary been followed in the
opposite direction then this solution point would have been found.
A larger, exhaustive, three dimensional search in the range 0 to 500 for each input
variable (total of 501 3 points) was conducted and 772 solutions to node 25 were
found. Yet there is only one solution when C is held constant at 4. Clearly,
restricting the BF to operate in only two dimensions can severely limit the number of
potential solutions. However, increasing the dimensionality of the search also
increases the number of non-solution points.

6.6.3 Run T12

Table 6.34 contains the traversal results for this run.

103

Chapter 6 The Triangle Classification Problem

Initial point path 1,3,5,7,8
Nodes considered and traversed

Node Heuristic Iters Coincidental nodes
2
4
6
11
12
15
17

DA
DA
DA
LP
LP
LP
LP

3
3
3
9
4
6
5

9,10

13,14,16.21

19
20,22,24,26

Nodes considered and untraversed
Node Heuristic Iters Coincidental nodes

23 LP
BF

4
496

18

Nodes unconsidered
Considered node Nodes unconsidered

23 25,27

Table 6.34 - Run T12 traversal results

On node 23 the BF chose a start point of (18, 19, 20) which has a predicate value of
285. Using the central point (18, 19, 26), variable C was allocated the Follow role
and variable B, Cross. Table 6.35 shows the operations from the commencement of
the Follow-boundary phase. Notice that the boundary located was followed by
mainly increasing variable C. Figure 6.18 shows the domain operated in by the BF in
table 6.35. Notice that the predicate values decrease and continue to decrease as
variable C increases.
Iterations 23, 27, 28, 31 and 32 show the predicate value decreasing as the boundary
located is followed. This continues right up to the last point causing sibling-traversal
(iteration 492 of 496) before the node iteration threshold is reached.

Iter

23
24
25
26
27
28
29
30
31
32

Var

C
B
B
C
B
C
B
C
B
C

Phase

FBF
FBC
FBC
FBF
FBC
FBF
FBC
FBF
FBC
FBF

Generate point
ABC
18
18
18
18
18
18
18
18
18
18

19
19
19
18
18
19
19
18
18
19

26
27
27
27
28
28
29
29
30
30

Execute point
ABC
18
18
18
18
18
18
18
18
18
18

19
20
18
18
19
19
18
18
19
19

27
27
27
28
28
29
29
30
30
31

Trav
effect
-ST
-ST
UD
UD
-ST
-ST
UD
UD
-ST
-ST

Pred
value
-44
-5

-99
-156

-215
-276

Next
action
Cl
Cl
F

Cl
F

Cl
F

Cl
F

Cl

Table 6.35 - Run T12 excerpt: BF considering node 23 in the first Follow-boundary
phase

104

Chapter 6 The Triangle Classification Problem

35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19

*
*

-509
-444
-381
-320
-261
-204
-149
-96
-45
4
51
96
139
180
219
16

*
-543
-476
-411
-348
-287
-228
-171
-116
-63
-12
37
84
129
172
213
252
17

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
18
B

-540
-471
-404
-339
-276
-215
-156
-99
-44
9
60
109
156
201
244
285
*
19

-501
-432
-365
-300
-237
-176
-117
-60
-5
48
99
148
195
240
283
*

363
20

A=18

Figure 6.18 - Run T12 (B, C) partial input plane : BF considering node 23; from the
heuristic's start point

The BF has followed a boundary but it does not take into consideration that the
predicate value is ever decreasing. A predicate value moving in mainly one direction
away from 0, indicates that there is a progressively reducing chance of finding a
solution. Ideally, as the boundary is followed there would be a healthy alternation
between positive and negative predicate values or upper-deviations and small
predicate values. However, solutions can still be found in less than ideal situations.
Table 6.35 and figure 6.18 illustrate that the BF has followed the boundary defined
by upper-deviations and negative-sibling-traversals from the central point upwards in
figure 6.18. An exhaustive search of the input space, in the range 0 to 500 for
variables B and C with A constant at 18, revealed two solution points (18, 24, 30) and
(18, 80, 82). The first solution is close to the central point. However, the BF did not
locate it as it was following a different boundary. Figure 6.19 shows the domain
surrounding the central point and the first solution point. There are two boundaries
in this partial input plane, the first is the vertical line of upper-deviation points. The
second is the notional boundary which exists between the positive and negative
predicate values and surrounds the solution point. Notice that the notional boundary
emanates from the real boundary.

105

Chapter 6 The Triangle Classification Problem

31
30
29
28
27
26

-348
-287
-228
-171
-116
-63
17

*

*
*
*
*
*
18

-276
-215
-156
-99
-44
9
19

-237
-176
-117
-60
-5
48
20

-196
-135
-76
-19
36
89
21
B

-153
-92
-33
24
79
132
22

-108
-47
12
69
124
177
23

-61
0
59
116
171
224
24

-12
49
108
165
220
273
25

A=18

Figure 6.19 - Run T12 (B, C) partial input plane : BF considering node 23; showing
part of the boundary followed and a solution point

The central point lies close to two boundaries. The BF is unable to determine when
this is the case and so make a decision over which boundary to follow.

6.6.4 Comparison of HATS with Random Testing on the
TRIANGLE COMPLETE Procedure

The random testing range for each input variable is ± 100, which is the same as
HATS's initial point selection range. Each random testing run continues till all nodes
are traversed. The number of iterations taken to traverse each node is recorded. The
average iterations per node, over 500 runs, is calculated and used. Results for HATS
are taken from runs T10 to T12.
The results for nodes 2 to 13 (table 6.36) have little difference to the isolated
TRIANGLE procedure's (section 6.3.4). On nodes 14 to 21, HATS performance is
considerably better than random and has little difference to that on the isolated
TRIANGLE_2 procedure (section 6.4.4). However, random takes between two and
five times more iterations to those in section 6.4.4. This is due to the TRIANGLE
procedure reducing the solution domain size and increasing the potential for control
deviation. The difference between HATS and random on node 19 is particularly
notable; 3 : 83699.1.
Nodes 22, 24 and 26 are easy nodes, which HATS covers in less iterations than
random. On nodes 23, 25 and 27, HATS is unable to locate a solution. However,
complete coverage is normally achieved when the RIGHT_ANGLE_CHECK is
considered in isolation. This illustrates the impact of increased control and partial
path function complexity to the considered node. Random testing effort is
considerably increased from section 6.5.4.

106

Chapter 6 The Triangle Classification Problem

Node

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

HATS
iterations

IPT
3

IPT/CT
3

IPT/CT
3

IPT/CT
3

IPT/CT
IPT/CT

9
4

IPT/CT
IPT/CT

3-6
IPT/CT

5-11
IPT/CT

3
IPT/CT

3
IPT/CT
NNT

IPT/CT
NNT

IPT/CT
NNT

Random
iterations

1
1.98

2.034
3.852
4.42
8.458
8.62

47.768
10.318
50.964
12.376
47.176
16.278
16.446

1072.03
16.554

1119.62
1080.77
83699.1
16.752
1037.8
16.752

84072.5
16.752

80568.2
16.752

79940.3

Key:
IPT Initial point traversed
NNT Node not traversed
CT Coincidentally traversed

Table 6.36 - The number of iterations taken by HATS and random testing for each of
TRIANGLE_COMPLETE's nodes

6.7 Overall Discussion

Table 6.37 shows the overall branch coverage for each procedure and all procedures.

Procedure

TRIANGLE
TRIANGLE_2

RIGHT_ANGLE_CHECK
TRIANGLE_COMPLETE

All procedures

Branches
in procedure

12
8
6
26
52

Branches covered out
of total for all runs

36/36
24/24
16/18
71/78

147/156

Branch
coverage %

100
100
89
91
94

Table 6.37 - HATS branch coverage on the triangle related procedures

With RIGHT_ANGLE_CHECK 100% coverage was not achieved as the BF pursued
a boundary not knowing that no solutions exist upon it. With
TRIANGLE_COMPLETE, full coverage was not achieved as the BF was adversely
affected by upper-deviations and the BF pursued boundaries not knowing that no
solutions exist upon it or in the direction being followed. Clearly, increasing the
number of branches and non-linear predicates, especially involving equality,
increases the number of iterations required. HATS finds it particularly difficult when

107

Chapter 6 The Triangle Classification Problem

non-linear equality predicates are in the lower region of a procedure's significant
control flow tree. The performance of each heuristic is now discussed.

6.7.1 Direct Assignment Heuristic

The DA worked well without any problems and generated some useful points which
were used by the LP and BF.

6.7.2 Linear Predictor Heuristic

Generally the LP worked well. However when upper-deviations were produced, this
caused some difficulty, resulting in additional iterations being used and may even
cause the LP to terminate. More careful management of the closest point to the
expected boundary is required. The LP's termination criteria worked well, operating
at the earliest time and not while there was potential for a solution to be found. The
LP has made efficient use of iterations due to its direct nature of solution location and
effective termination criteria. However, better handling of upper-deviations is
required.

6.7.3 Boundary Follower Heuristic

When possible the BF has accurately followed a boundary. However, the
RIGHT_ANGLE_CHECK and TRIANGLE_COMPLETE procedures have raised a
number of concerns. The BF can follow a boundary in the opposite direction to a
solution or where no solution exists. This indicates two areas for improvement.
First, determining a direction to follow a boundary. Second, introducing termination
criteria to ensure that boundary following continues only when there is a good chance
of a solution existing. Related to this second point is the ability to prevent such a
boundary from being followed. It should not be the responsibility of the node
iteration threshold to play a dual role and operate as a secondary heuristic termination
criterion as well as an upper iteration limit.

108

Chapter 7 The Remainder and Linear Search Problems

7 The Remainder and Linear Search Problems

7.1 Introduction

This chapter introduces two new testing problems to HATS; loops and the composite
data type, arrays. Two procedures are used as vehicles. The first, a remainder
procedure, has a number of loops and the second, a linear search procedure, combines
both a loop and an integer array. These new problems and the enhancements to
HATS in order to test them are described. The DA, LP and BF heuristics are applied
to both the procedures. Results and discussion are presented for branch and mutation
testing of the remainder procedure and branch testing of the linear search procedure.

7.2 The REMAINDER Procedure

The REMAINDER procedure (figure 7.1) calculates the remainder after an integer
division. REMAINDER has two integer input variables; A, the dividend, and B, the
divisor. The single output variable, REM, is integer and is the remainder after A has
been divided by B. All conditions within the procedure have a linear relationship
with the input variables. There are 18 branches in the procedure and the control flow
tree (figure 7.2) has 19 nodes, with the longest path consisting of 6 nodes. The
changes to the control flow tree necessary to represent loops are described in the next
section.
Table 7.1 shows the six cases handled in the procedure. Cases 3 to 6 are handled by
the four loops in the procedure, where the remainder is computed. Case 2, division
by zero, has been simplified to ease the management of exceptions.

Case
1
2
3
4
5
6

Value of A Value of B
0

/=o
-ve
-ve
+ve
+ve

any value
0

-ve
+ve
-ve
+ve

Valid
yes
no
yes
yes
yes
yes

Value of REM Handled by node(s)
0
0

remainder
remainder
remainder
remainder

3
5

12,13
14,15
16,17
18,19

Table 7.1 - The 6 cases handled in the REMAINDER procedure

109

Chapter 7 The Remainder and Linear Search Problems

- Control flow tree node number
r- Line number
I r- Ada statements

Y Y
1 procedure REMAINDER (A, B in INTEGER; REM out INTEGER) is
2 N,R : INTEGER;
3 begin

l[-4 R:=0;
5 N:=0;

L 6 if (A = 0) then
3C 7 REM:=0;

8 else
2C 9 if (B = 0) then
5C 10 REM:=0;

II else
4C 12 if (A > 0) then
7C 13 if(B>0)then

14 R:=A;
15 whUe ((A - N) >= B) loop
16 N:=N + B;
17 R:=A-N;
18 end loop;
19 else

r 20 R:=A;
L 21 whUe ((A + N) >= abs (B)) loop

22 N:=N + B;
23 R := A + N;
24 end loop;
25 end if;
26 else

6C 27 if (B > 0) then
28 R:=A;
29 while (abs (A + N) >= B) loop
30 N := N + B;
31 R:=A+N;
32 end loop;
33 else

If 34 R:=A;
L 35 while ((A - N) <= B) loop

C 36 N := N + B;
37 R:=A-N;
38 end loop;
39 end if;
40 end if;
41 end if;
42 end if;
43 REM := R;
44 end REMAINDER;

Figure 7.1 - The REMAINDER procedure

110

Chapter 7 The Remainder and Linear Search Problems

Key to nodes 12 -19

C1:((A-N)<=B)
C2 : (abs (A + N) >= B)
C3 : ((A + N) >= abs (B))
C4 : ((A - N) >= B)

: True
: False
: Loop entry
: Loop non-entry

Figure 7.2 - Control flow tree of the REMAINDER procedure

7.3 Techniques for Testing LOOPS

Several issues must be considered before loops can be tested in HATS. Exactly what
constitutes branch testing of loops must be established. A loop has two branches; one
where control enters the loop and iterates the loop one or more times, and the other
where control does not enter the loop, hence the loop iterates zero times. Therefore,
to satisfy branch testing, a point should cause the loop's condition to be true upon its
first evaluation, and a further point should cause the condition to be false upon its
first evaluation. The order of entry and non-entry to a loop does not matter.
Although the present program model, a control flow (binary) tree, does not allow any
cycles, it is possible to represent a loop's branches as nodes (figure 7.2). A circular
node represents entry to the loop and the sequence of non-control flow affecting
statements the loop contains. Statements within the loop are shown as nodes
emanating from the loop's circular node. A square node represents non-entry to the
loop. This node's number is not shown in the procedure text (figure 7.1) since the
jump it corresponds to is not explicitly shown in the procedure text.
Instrumenting loops presents two distinct concerns. Firstly, if data were recorded on
every iteration of a loop then this would result in significantly more data being stored
in the program model. However, this is unnecessary as the heuristics only require
data to be recorded when control first encounters the loop. The second concern is
recording non-entry to the loop. Unlike an "if statement without an "else" where the
"else" can be inserted for instrumentation purposes to record the false branch, this is

111

Chapter 7 The Remainder and Linear Search Problems

not possible with a loop. The solution to these two concerns is to control when the
instrumentation works. The instrumentation will only "fire" if a Boolean variable, or
instrumentation switch, is true. Figure 7.3 shows how one of the while loops in the
REMAINDER procedure is instrumented.

REMAINDER code
- Control flow tree node number

Line number
Ada statements

Code modelled

i- .Line iu
34 R := A;
35 while((A-N)<=B)loop

8 [
12|~36 N:=N + B;

L 37 R := A - N;
38 end loop;

Code instrumented

Loop entry
instrumentation

Loop non-entry
instrumentation

-JO-f

..INST12, INST13,..: BOOLEAN := TRUE;
begin

34 R := A;
35 while ((A - N) <= B) loop

iflNSTllthen
UPDATE_LEFT_NODE (..);
INST12 := FALSE; EMST13 := FALSE;

end if;
N:=N+B;
R:=A-N;

38 end loop;
ifINST13then

UPDATE RIGHT NODE (..);
end if;

Figure 7.3 - The modelling and instrumentation of a loop

All instrumentation switches are initialised to true. The instrumentation to record
entry to the loop is placed as the first statements inside the loop. If control enters the
loop, the instrumentation (INST12) will fire which updates the control flow tree and
sets the switches for this instrumentation (INST12) and the instrumentation for non-
entry to the loop (INST13), to false. This ensures that the control flow tree is
updated once when the loop is entered and is not updated by the loop non-entry
instrumentation when the loop stops iterating. The instrumentation for non-entry to
the loop does not affect any instrumentation switches.
The program model proposed above could be considered as a simplification of the
exemplar-path tree model for structural testing (Cimittle and Carlini, 1991).

112

Chapter 7 The Remainder and Linear Search Problems

7.4 REMAINDER Branch Testing Experiments

7.4.1 HATS Experimental Set Up

Five initial points have been hand selected in the range ± 20 for both input variables
(table 7.2).

HATS
run
Rl
R2
R3
R4
R5

Input variable
A B
-6
19

-18
10
3

-3
.4
5
3
10

Table 7.2 - REMAINDER procedure's initial points

The points were selected so that each loop is covered by at least one point. This
enables the heuristics to consider all the loops over the five runs. The node iteration
threshold is 500 and the LP and BF consider input variables in the order A first then
B,second.

7.4.2 Run Rl

Table 7.3 contains the traversal results for this run.

Initial point path 1,2,4,6,8,12
Nodes considered and traversed

Node Heuristic
3 DA
5 DA
11 DA
15 LP
19 LP

Iters
3
3
3
8
3

Coincidental nodes
13,7,10,17

9,14
16,18

Table 7.3 - Run Rl traversal results

3
2
1
0
-1

5
6
7
*
*
-8

4
5
6
*
*
-7

3
4
5
*
*
-6

2
3
4
*
*
-5

1
2
3
*
*
-4
A

0
1
2
*
*
-3

-1
0
1
*
*
-2

-2
-1
0
*

*

-1

*
*
*
*
*
0

*
*
*
*
*

1

Figure 7.4 - Run Rl partial input space : LP considering node 15

On node 15, the LP starts from point (-6, 1), generated by the DA on node 5, and was
unable to locate a solution increasing variable A (figure 7.4). The closest point the
LP located (-1, 1), is the corner point of the domain satisfying node 9 (node 15's
parent). From this point, B is increased to locate the solution point (-1, 2).

113

Chapter 7 The Remainder and Linear Search Problems

On node 19, the LP takes three iterations over finding a solution point in the
Determine-linearity phase.

7.4.3 RunR2

Table 7.4 contains the traversal results for this run.

Initial point path 1,2,4,7,10,16
Nodes considered and traversed

Node Heuristic
3 DA
5 DA
9 DA
15 LP
19 LP

Iters
3
3
3
2
8

Coincidental nodes
6,8,13,17

11,18
12,9,14

Table 7.4 - Run R2 traversal results

Node 15's solution point was found during the LP's Determine-linearity phase. On
node 19, the LP starts from point (19, 1), generated by the DA on node 5, and was
unable to locate a solution decreasing variable A (figure 7.5). The closest point the
LP located (1, 1) is the corner point of the domain satisfying node 11 (node 19's
parent). From this point, B is increased to locate the solution point (1,2).

3
2
1
0
-1

*
*
*
*
*
-1

*
*
*
*
*
0

-2
-1
0
*
*
1
A

-1
0
1
*
*
2

0
1
2
*
*
3

Figure 7.5 - Run R2 partial input space : LP considering node 19

7.4.4 Run R3

Table 7.5 contains the traversal results for this run.

Initial point path
Nodes considered

Node
3
5
10
13
"
17"

Heuristic
DA
DA
DA
LP
BF
LP
BF

Iters
3
3
3
8
6
3
6

1,2,4,6,9,14
and traversed

Coincidental nodes
15,7,11,19

12,8
16,18

Table 7.5 - Run R3 traversal results

114

Chapter 7 The Remainder and Linear Search Problems

On two nodes the LP was unsuccessful, resulting in the application of the BF. This
was unexpected as the REMAINDER has only linear nodes. On node 13, the LP
starts from point (-18, -1), generated by the DA on node 5, and was unable to locate a
solution increasing variable A (figure 7.6) since an upper-deviation is produced. The
closest point the LP located (-1, -1) is the corner point of the domain satisfying node
8 (node 13's parent). From this point, variable B is increased producing an upper-
deviation which causes the LP to terminate.
BF starts from the point (-1, -1) and is unable to locate a closer point in the Obtain-a-
close-point phase since two upper-deviations were produced. During the Determine-
initial-follow-and-cross-details phase a solution is located at (-1, -2).

B
1
0-1
-2

*
*
-2
-1
-3

*
*
-1
0
-2

*
*
0
1

-1
A

*
*
*
*
0

*
*
*
*
1

Figure 7.6 - Run R3 partial input space : LP and BF considering node 13

On node 17, the LP starts from point (1, -1), generated by the DA on node 10, and
terminates after producing upper-deviations modifying both input variables. The
closest point located by the LP is (1, -1) (figure 7.7). The BF is unable to locate a
closer point and locates a solution point (1, -2) during the Determine-initial-follow-
and-cross-details phase.

B
1
0-1
-2
-3

*
*
*
*
*
-1

*
*
*
*
*
0

*
*
0-1
-2
1
A

*
*
1
0
-1
2

*
*
2
1
0
3

Figure 7.7 - Run R3 partial input space : LP and BF considering node 17

7.4.5 RunR4

Table 7.6 contains the traversal results for this run.

115

Chapter 7 The Remainder and Linear Search Problems

Initial point path
Nodes considered

Node
3
5
8
13
"

17
M

Heuristic
DA
DA
DA
LP
BF
LP
BF

Iters
3
3
3
2
6
8
6

1,2,4,7,11,18
and traversed

Coincidental nodes
6,9,15,19

10,16
12,14

Table 7.6 - Run R4 traversal results

On node 13, the LP starts from point (-1, -1), and produces upper-deviations
modifying both input variables, then terminates. The BF takes over, starting from
point (-!,-!) and finds a solution point at (-1, -2).
On node 17, the LP starts from point (10, -1), generated by the DA on node 5, and
terminates after producing upper-deviations modifying both input variables. The
closest point the LP could locate is (1, -1). The BF does not locate a closer point to
start from and goes on to locate a solution point at (1, 2).

7.4.6 RunR5

Table 7.7 contains the traversal results for this run.

Initial point path
Nodes considered

Node
3
5
8
13

11
17
"

Heuristic
DA
DA
DA
LP
BF
LP
BF

Iters
3
3
3
2
6
8
6

1,2,4,7,11,19
and traversed

Coincidental nodes
6,9,15

10,16,18
12,14

Table 7.7 - Run R5 traversal results

The consideration of node 13 follows exactly the same operational pattern as the
same node in the previous run (R4). The LP starts from point (-!,-!) and the BF
locates a solution point at (1, 2).
On node 17, the LP starts from point (3, 1) and terminates after producing upper-
deviations on both input variables. The closest point the LP could locate is (1, -1).
The BF is unable to locate a closer point to start from and locates a solution point (1,
-2) during the Determine-initial-follow-and-cross-details phase. The BF's operational
pattern is exactly the same as in runs R3 and R4.

116

Chapter 7 The Remainder and Linear Search Problems

7.4.7 Overall Discussion for the HATS Branch Testing Runs

Two phenomena have been observed in the HATS branch testing runs. Firstly,
repeated heuristic operation patterns and secondly, the LP's inability to locate a
solution, despite being close to one.
The REMAINDER'S input space is divided into 10 partitions (figure 7.8). The first
two partitions correspond to the first two cases outlined in table 7.1. Cases 3 to 6 are
defined by the REMAINDER'S four while loops and are shown in figure 7.8 as
quadrants. Each while loop's condition divides each quadrant into two. One half for
entry to the corresponding while loop and one for non-entry, making the remaining 8
input space partitions. In other words, each partition corresponds to the path to each
leaf node in the control flow tree (figure 7.2).

1.
B 0'-1'

-n

\
Case 4

\

Case 3

Case 6

\
Case 5

\
-101 +n

A

Figure 7.8 - REMAINDER procedure's input space

When the DA is applied to nodes 2, 3, 4 or 5, values of -1, 0, and 1 are produced for
variable A or B. The execute point traverses the considered node and is just inside
one of the quadrants where control arrives at a while loop. If one of the loop's nodes
is untraversed then this node is considered by the LP. The LP converges on the
corner point since it modifies one input variable at a time. Figures 7.4 to 7.7 show
that the corner point has a predicate value of 0. When the LP has located a quadrant's
corner point and the considered node remains untraversed, Linearity-determination
may either locate a solution point or cause an upper-deviation. The outcome is
dependent upon which node is considered (the quadrant currently in) and which input
variable is about to be increased by 1. A solution point was located in run Rl, node
15 and run R2, node 19. However, in other runs, i.e. run R3, nodes 13 and 17, an
upper-deviation was produced resulting in the LP's termination. The BF takes over
and does not find solution points in the Obtain-a-close-point phase, but does in the
Determine-initial-follow-and-cross-details phase. This is because the corner point

117

Chapter 7 The Remainder and Linear Search Problems

was used as the central point and the phase increases and decreases each input
variable.
Repeated heuristic operation patterns have been observed due to the heuristics using
the same points in different runs. Because the heuristics are deterministic the same
actions will be taken and points generated.
The two phenomena identified are due to the REMAINDER'S input space and the
points produced by the DA.

7.4.8 Comparison of HATS with Random Testing on the
REMAINDER Procedure

The random testing range for each input variable is ± 20, which is the same as
HATS's initial point selection range. Each random testing run continues until all
nodes are traversed. The number of iterations taken to traverse each node is
recorded. The average iterations per node, over 500 runs, is calculated and used.
Results for HATS are taken from runs Rl to R5.

Node

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

HATS
iterations

IPT
IPT/CT

3
IPT/CT

3
IPT/CT
IPT/CT

3
3
3
3

IPT/CT
8-14

IPT/CT
2-8

IPT/CT
9-14

IPT/CT
3-8

Random
iterations

1
1.03

43.666
1.058
42.20
2.096
2.272
4.316
4.308
4.404
4.21
7.88

8.842
7.762
9.314
8.18
9.402
7.906
8.652

Key:
IPT Initial point traversed
NNT Node not traversed
CT Coincidentally traversed

Table 7.8 - The number of iterations taken by HATS and random testing for each of
REMAINDER'S nodes

Table 7.8 shows that nodes 2, 4, 6 and 7 have the largest solution domain and are
consequently the easiest to traverse. Nodes 3 and 5 have the smallest solution
domains in the REMAINDER procedure. On these nodes, HATS takes 3 iterations to
random's 43 iterations (approximately). On nodes 8 to 11 the iterations taken by both
HATS and random are similar. Nodes 12 to 19 have similar domain sizes. With
HATS the nodes with the slightly larger solution domains (entry to loop) are covered

118

Chapter 7 The Remainder and Linear Search Problems

by the initial point or by coincidental traversal. Again, the iterations taken by both is
similar.

7.5 Mutation Analysis of the REMAINDER Procedure

Budd (1981) outlines four levels of mutation analysis; statement, predicate, domain
and coincidental correctness; levels 1 to 4 respectively. Levels 1 and 2 were applied
to the QUADRATIC procedure (chapter 4). However, it is unnecessary to produce
level 1 (statement analysis) mutants as this is achieved by HATS's branch testing
criterion.
Predicate analysis consists of three mutation operators; absolute operator insertion,
relational operator alteration and predicate alteration by a small amount. To further
reduce the number of mutants, only predicate alteration by a small amount will be
used. This mutation operator produces mutants that are the hardest of the three to
reveal since it causes only a small change in the location of input space boundaries.
The other two mutation operators generally have a more substantial effect on the
input space, which is easier to detect.

7.5.1 Mutation Experiments

Applying the mutation operator, predicate alteration by a small amount, to the
REMAINDER procedure produces 38 mutants (table 7.9).

119

Chapter 7 The Remainder and Linear Search Problems

Mutant

RM1
RM2
RM3
RM4
RM5
RM6
RM7
RM8
RM9

RM10
RM11
RM12
RM13
RM14
RM15
RM16
RM17
RM18
RM19
RM20
RM21
RM22
RM23
RM24
RM25
RM26
RM27
RM28
RM29
RM30
RM31
RM32
RM33
RM34
RM35
RM36
RM37
RM38

Line no

6
6
9
9
12
12
13
13
15
15
15
15
15
15
21
21
21
21
21
21
21
21
27
27
29
29
29
29
29
29
29
29
35
35
35
35
35
35

Original
condition

(A=0)
"

(B=0)
"

(AX))
"

(B>0)
"

((A-N)>=B)11
"
"
"
11

((A+N)>=abs(B)11
"
M
M

"

"

"

(B>0)
"

(abs(A+N)>=B)
11

"

11

"

"

"

"

((A-N)<=B)"
"
11
"
"

Mutated Simplified
condition mutation
(A-l)=0 (A=l)
(A+l)=0 (A=-l)
(B-l)=0 (B=l)
(B+l)=0 (B=-l)
(A-l)>0 (A>1)
(A+l)>0 (A>-1)
(B-l)>0 (B>1)
(B+l)>0 (B>-1)

((A-1)-N)>=B
((A+1)-N)>=B
(A-(N-1))>=B
(A-(N+1))>=B
(A-N)>=(B-1)
(A-N)>=(B+1)

((A-l)+N)>=abs(B)
((A+l)+N)>=abs(B)
(A+(N-l))>=abs(B)
(A+(N+l))>=abs(B)
(A+N)>=abs(B-l)
(A+N)>=abs(B+l)
(A+N)>=(abs(B)-l)
(A+N)>=(abs(B)+l)

(B-l)>0 (B>1)
(B+l)>0 (B>-1)

abs((A-l)+N)>=B
abs((A+l)+N)>=B
abs(A+(N-l))>=B
abs(A+(N+l))>=B
(abs(A+N)-l)>=B
(abs(A+N)+l)>=B
abs(A+N)>=(B-l)
abs(A+N)>=(B+l)

((A-1)-N)<=B
((A+1)-N)<=B
(A-(N-1))<=B
(A-(N+1))<=B
(A-N)<=(B-1)
(A-N)<=(B+1)

Identical
to

Original

Original
RM12, RM14
RM11.RM13
RM10.RM13
RM9,RM14

RM10,RM11
RM9.RM12
RM17.RM22
RM18.RM21
RM15.RM22
RM16.RM21

RM16.RM18
RM15.RM17

Original
RM27
RM28
RM25
RM26
RM32
RM31
RM30
RM29

RM36, RM38
RM35, RM37
RM34, RM37
RM33, RM38
RM34, RM35
RM33, RM36

Used

Y
Y
Y
Y
Y
N
Y
N
Y
Y
N
N
N
N
Y
Y
N
N
Y
Y
N
N
Y
N
Y
Y
N
N
Y
Y
N
N
Y
Y
N
N
N
N

Table 7.9 - Mutants produced from the REMAINDER procedure using the mutation
operator, predicate alteration by a small amount

Of these 38 mutants, 29 are classified as identical. Of the 29 identical mutants, 26
are identical with some other mutant produced and 3 are identical (or equivalent)
with the original REMAINDER procedure. Mutants 6, 8 and 24 are equivalent since
the values of A and B required to reveal them would not take control to the mutated
statement. Control is deviated above the mutation, hence the necessary output values
cannot be produced. Of the 38 mutants produced, 19 are to be used for mutation
analysis of the REMAINDER.
For each of the 19 runs, a single, randomly generated initial point is used. The
random values are generated in the range ± 100 for each input variable. The node
iteration threshold is 500 and the input variables are considered in the order A first,

then B.

120

Chapter 7 The Remainder and Linear Search Problems

To speed up and simplify the mutation testing process, output from a mutant is not
compared with output from the original procedure. A substitute for the original is
used; the intrinsic Ada "rem", remainder function. When the mutant's output is
produced the Ada "rem" function is called with the same point used on the mutant.
The mutant's output and the Ada "rem" function's output is compared. If there is a
difference, it is reported.

7.5.2 Mutation Analysis Results and Discussion

Table 7.10 shows the results obtained.

Mutant

RM1
RM2
RM3
RM4
RM5
RM7
RM9
RM10
RM15
RM16
RM19
RM20
RM23
RM25
RM26
RM29
RM30
RM33
RM34

Initial point
A B

-31
91
9

-77
88
69
-29
-49
80
82
76
-85
-61
-79
-36
-37
-52
-31
72

93
21
-98
-14
-68
-34
18
-59
52
84
4
72
61
-57
100
-81
67
-52
-10

Result

Difference
Difference

Stuck in loop
Stuck in loop
Stuck in loop
Stuck in loop

Difference
Difference
Difference
Difference
Difference
Difference

Stuck in loop
Difference
Difference
Difference

Stuck in loop
Difference
Difference

If Revealed:
Heuristic used

DA
DA
DA
DA
LP
DA
DA
DA
DA
DA
DA
DA
DA
DA
DA
DA
DA
DA
DA

Revealing point
A B
1

-1
9

-77
1

69
1
1

80
82
76

1
-61
-79
-36
-37
-52
-31
-1

93
21
0
0
1
1
1
1

-1
-1
-1
-1
1
1
1
1
1

-1
-1

Table 7.10 - Results from mutation testing the REMAINDER procedure

In 6 of the runs, control became stuck in one of the REMAINDER'S four loops.
Consequently, there is no output and nothing to compare with the Ada intrinsic
remainder function. However, we can assume, and this is supported by Abbot
(1986), that if a mutant does not terminate, it can be considered revealed.
One hundred percent mutation adequacy is achieved using one HATS run for each
initial point. The DA revealed 18 of the 19 mutants (95%). The DA achieves this
through generating boundary located points for some of the 10 predicates it can be
applied to. These predicates control nodes 2 to 10 in figure 7.2. Boundary located
points reveal mutants produced by the mutation operator, predicate alteration by a

small amount.
Considering the original condition controlling nodes 6 and 7 (A > 0) and its mutation
(A > 1), it is apparent that variable A requires a value of 1 for the mutant to be
revealed. In mutant RM5's run, the DA generated the point (1, -68) on node 3, but no

121

Chapter 7 The Remainder and Linear Search Problems

difference in output was reported. Instrumentation in the mutant revealed that an
incorrect path had been taken but the correct output was produced. Later, on node
19, the LP generated the point (1,1) which revealed mutant RM5.

7.6 The LINEAR SEARCH Procedure

The LINEAR_SEARCH (figure 7.9) performs a sequential search for a given integer
value on a list of integer values. If the given value is located, its location in the list is
returned, otherwise, the value 0 is returned. The procedure's control flow tree is
shown in figure 7.10.

- Control flow tree node number

{ Line number
p Ada statements

Y
1 procedure LINEAR_SEARCH

(A in INTARRAY; X in INTEGER; Y out INTEGER) is
2 I: POSITIVE;
3 begin

IP 4 I:=l;
L S while (I <= A'LAST) and then (A(I)/= X) loop

2C 6 I:=I + 1;
7 end loop;
8 if (I <= A'LAST) then
9 Y:=I;
10 else
11 Y:=0;
12 end if;
13 end LINEAR_SEARCH;

Figure 7.9 - The LINEAR_SEARCH procedure

Figure 7.10 - Control flow tree of the LINEAR_SEARCH procedure

The LINEAR_SEARCH procedure has 2 input variables. Variable A, is a five
element integer array and contains the values to be searched. Integer variable X
contains the value to be searched for. The only output variable is integer variable Y
which stores the index of X where Y is located, or 0 otherwise.
The Ada code (figure 7.9) has two conditional statements, however, only one
conditional statement is modelled in the control flow tree (figure 7.10). This is due
to the "if statement condition at line 8 having no direct data flow influence from the
input variables. Hence, the branches it controls cannot be affected by a heuristic.

122

Chapter 7 The Remainder and Linear Search Problems

These branches are controlled by the number of iterations the while loop takes, which
is affected by a heuristic. Consequently, this "if statement is not represented in the
control flow tree.

7.7 Techniques for Testing Arrays

The techniques used are the same as those used on scalar variables. Each element is
treat the same as a scalar variable. Since HATS is a dynamic testing system it does
not suffer from the array reference difficulties that symbolic execution has (Coward,
1988). Instrumentation has access to actual variable values. By monitoring a
predicate value, a heuristic can determine which element of an array influences the
considered predicate. The instrumentation for a scalar variable condition and an
array variable condition are compared in figure 7.1 1.

if(A=B)then if (A(I)=B) then
PV = (A-B); PV = (A(I)-B);
UPDATE_LEFT_NODE (..,PV,..); UPDATE_LEFT_NODE (..,PV,..);

CISC

PV = (A-B)• PV =
UPDATE_RIGHT_NODE (..,PV,..); UPDATE_RIGHT_NODE (..,PV,..);

end i'f; end If5

Where A and B are integer input variables Where A is an integer array input variable
and, B and I are integer input variables

Instrumentation for a Condition Instrumentation for a Condition
Involving Integer Variables Involving an Integer Array and an

Integer Variable

Figure 7.11- Comparison of instrumentation for scalar variable and array variable
conditions

The LINEAR_SEARCH has a loop that is controlled by an equality operator between
an array variable, A, and a scalar variable, X. To satisfy a loop's branches, control
must enter the loop on one run and on another run, must not enter the loop. This
corresponds to 1 or more loop iterations and 0 loop iterations. Therefore branch
satisfaction is achieved through the values stored in the first element of array A and
variable X. The remaining elements in the array have no influence over branch
coverage for the loop concerned. However, they could affect additional statements
placed inside the loop and statements before and after the loop.

123

Chapter 7 The Remainder and Linear Search Problems

7.8 LINEAR SEARCH Branch Testing Experiments

7.8.1 HATS Experimental Set Up

Five initial points have been hand selected in the range ±100 for each input variable.
A concern with automatic test data generation is its management of arrays, since
effort may be wasted on non-influential input variables. To illustrate how HATS
fairs, the order input variables are considered in has been modified. The initial points
and the order input variables are to be considered in is shown in table 7.11. The
previous section (7.7) pinpointed the influential variables X and A(l).

Run

LSI
point
LS2
point
LS3
point
LS4
point

Input variables and values
Considered first

X
12
X
41

A(l)
41

A(5)
41

A(l)
1

A(l)
-53

A(2)
-53

A(4)
-43

A(2)
4

A(2)
-35

A(3)
-35

A(3)
82

A(3)
3

A(3)
-37

A(4)
-37

A(2)
-21

Considered last
A(4)

5
A(4)
91

A(5)
91

A(l)
-93

A(5)
3

A(5)
92
X
92
X
27

Table 7.11- LINEAR_SEARCH's initial points and the order heuristics will consider
input variables

The two influential variables will be the first two considered by heuristics in runs
LSI and LS2. In run LS3, A(l) will be considered first and X, last. In run LS4, the
two variables will be considered last. The node iteration threshold is 500.

7.8.2 Run LSI

The initial point traversed the path 1, 2 (figure 7.10) and had a node 2 predicate value
of -11. On node 3, the LP found a solution point after 6 iterations (table 7.12).
There were no problems over identifying which input variables were influential.
Only variable X was modified, all other input variables remained constant.

Iter

1
2
3
4
5
6

Phase

DL
DL
DL
DL
PP
PP

Generate
value X

12
12
12
12
1
2

Execute
value X

13
11
14
15
2
1

Trav
effect

ST
ST
ST
ST
ST
NT

Pred
value
-12
-10
-13
-14
-1
0

Next
action

-X
+x
+x
PP
PP

succ

Table 7.12 - Run LSI excerpt: LP considering node 3, modifying variable X; array
A stayed constant with elements 1 to 5 having values 1, 4, 3, 5 and 3 respectively

124

Chapter 7 The Remainder and Linear Search Problems

7.8.3 RunLS2

The order input variables were considered is the same as the previous run, LSI. The
initial point traversed the path 1,2. On node 3, the LP modified the first variable X.
A solution point was located at (-53, -53, -35, -37, 91, 92) for variables X and A(1..5)
respectively. The LP took 6 iterations.

7.8.4 Run LS3

Although the same point is used as run LS2, the allocation of values to variables has
changed and so has the order variables are considered in. The initial point traversed
the path 1,2. On node 3, the LP modified the first element of array A. A solution
point was located at (92, -53, -35, -37, 91, 92), for variables A (1..5) and X
respectively, after 6 iterations.

7.8.5 Run LS4

This run considers the hardest scenario for HATS, where the influential variables,
A(l) and X, are not considered until last. The initial point traversed the path 1, 2,
producing a predicate value of -120. On node 3, the LP first considered variable
A(5). Table 7.13 shows there is no change in the predicate value. This enables the
LP to detect a non-influential input variable. The same occurred with the next three
variables considered, A(4), A(3) and A(2).

Iter

1
2
3
4

Generate
value

41
41
41
41

Execute
value

42
40
43
44

Trav
effect

ST
ST
ST
ST

Pred
value
-120
-120
-120
-120

Next
action
-A(5)
+A(5)
+A(5)
TNV

Table 7.13 - Run LS4 excerpt: LP considering node 3, modifying variable A(5) in
the Determine-linearity phase; array A (1..4) and X stayed constant having values -

93, -21, 82, -43 and 27 respectively

Iter

17
18
19
20
21
22

Phase Generate
value A(1)

DL
DL
DL
DL
PP
PP

-93
-93
-93
-93
27
26

Execute
value A(l)

-92
-94
-91
-90
26
27

Trav
effect

ST
ST
ST
ST
ST
NT

Pred
value
-119
-121
-118
-117

-1
0

Next
action
-A(l)
+A(1)
+A(1)

PP
PP

succ

Table 7.14 - Run LS4 excerpt: LP considering node 3, modifying variable A(l);
array A (2..5) and X stayed constant having values -21, 82, -43, 41 and 27

respectively

125

Chapter 7 The Remainder and Linear Search Problems

After 16 iterations the LP considered the first influential variable A(l). Modifying
this variable, the LP located a solution point at (27, 27, -21, 82, -43, 41) for variables
X, A (1..5) respectively, after 22 iterations (table 7.14).

7.8.6 HATS Discussion

The LP ensured that complete branch coverage was achieved in every run. There
was no impact from upper-deviations since they could not occur. A concern with
arrays as input variables is the ability to identify which elements are influential in the
considered predicate. The LP took only 4 iterations over a non-influential input
variable and concentrated on influential input variables when they were located.

7.8.7 Comparison of HATS with Random Testing on the
LINEAR SEARCH Procedure

The random testing range for each input variable is ± 100, which is the same as
HATS's initial point selection range. Each random testing run continues until all
nodes are traversed. The number of iterations taken to traverse each node is
recorded. The average iterations per node, over 500 runs, is calculated and used.
Results for HATS are taken from runs LS1 to LS4.

Node

1
2
3

HATS
iterations

IPT
IPT
6-22

Random
iterations

1
1.002

210.776

Key:
IPT Initial point traversed
CT Coincidentally traversed

Table 7.15 - The number of iterations taken by HATS and random testing for each of
the LINEAR_SEARCH's nodes

Node 2 has a very large solution domain. This is shown in table 7.15 by the number
of iterations random testing takes. On node 3, HATS makes a good improvement
over random.

126

Chapter 8 Conclusions and Further Work

8 Conclusions and Further Work

8.1 Introduction

This chapter draws conclusions from the research presented in this thesis. The
limitations of the approach presented are discussed, and some suggestions on how
they may be overcome and how the approach may be extended are given.

8.2 Conclusions

8.2.1 HATS is an Improvement Over Random Testing

The random test data generation effort (number of points generated) required to
traverse a node is dependent upon the size and form of the node's solution domain.
The effort HATS must expend to traverse a node is dependent upon the size and form
of the node's solution domain, the form of the partial path function to the node and
the number of branches in the partial path to the node.
The following properties have been identified to be present when HATS takes less
effort than random testing.
• When a considered node's domain occupies, on average, 9% or less of the test

software's input space.
• When the considered node's partial path function is linear.
• When the value to satisfy the considered node's predicate can be determined.
• When a node's domain is very small and has frequently located points along a

single boundary.
• When a solution point is local to the current search and can be located in a co

ordinate direction.
The above list requires explanation. The considered node's domain size as a
percentage of the test software's input space, where HATS will typically take less
iterations then random testing, is calculated as follows. From all non-mutation runs,
the size of the considered nodes' domains, as a percentage of input space, where
HATS took less iterations than random to traverse, is averaged. On some nodes the
difference in effort can be marginal and others, considerable. In practice, the node's
domain size can be much larger; up to 48%. This is due to initial point traversal or
coincidental traversal of the node. Also in practice, the node's domain size can be
considerably smaller than 9%. This has only occurred when the node's domain is
located on a notional boundary and HATS has failed to locate a solution before the
node iteration threshold is reached. Random generation is able to locate a solution,
but using a very large number of iterations.

127

Chapter 8 Conclusions and Further Work

Due to the nature of software, the items in the above list cannot be regarded in
isolation; there is a relationship between them. Determining when HATS should be
an improvement over random could involve one or more of the items. These
observations have been made through the use of the four heuristics, DA, AV, LP and
BF. Should other heuristics be used then the properties that help HATS to improve
on random testing may change.

8.2.2 Domain Boundaries Can be Used as a Guide to Solution Points

When solution points to the considered node are sparsely located on a domain
boundary, the boundary can be used as a guide to them. The Boundary Follower
heuristic has demonstrated this. A spin-off from boundary following is that only
boundary located points are generated (boundary value test data).

8.2.3 Control Deviations From Partial Paths to a Considered Node
Have a Detrimental Affect on Heuristic Performance

When a heuristic's operation depends on the comparison of predicate values, control
deviations from the one or more partial paths to a considered node have a detrimental
affect on the heuristic's performance. This affect is not to be under-estimated; it can
be significant and cause a heuristic to fail; in occasional cases, even when a solution
point is very close. When a control deviation from the partial path to the considered
node occurs the heuristic is aware of this but there is no predicate value to compare
with previous predicate values. Hence, the heuristic must take some appropriate
action to cause control to resume execution through the considered node's parent
node and produce a predicate value. This action upsets the normal flow of the
heuristic and uses iterations.
The potential for upper-deviations is related to the number of branches above the
considered node and the partial paths' function.

8.2.4 Termination Criteria Based on Promising Effects are Effective
and Efficient

It is important that a heuristic's termination criteria are effective otherwise many
iterations can be wasted or a search cut short before a solution is found. The Linear
Predictor's termination criteria, which are based on promising effects, have been
shown to be effective and efficient.

8.2.5 Coincidental Traversal Can be Considerable

128

Chapter 8 Conclusions and Further Work

Coincidental traversal occurs in two cases. First, when control is following a path
already traversed and deviates at some branch, traversing a previously untraversed
node. If the considered node has successor nodes that are untraversed, control may
traverse these. Second, when a considered node is traversed and control continues to
traverse previously untraversed nodes that are successors of the considered node.
The two cases are related through the traversal of previously untraversed successor
nodes.
Coincidentally traversed nodes tend to be the nodes that would only require a small
amount of heuristic effort to traverse; these are easy nodes. The number of
coincidentally traversed nodes in a run is dependent on the path taken by the initial
point. If this leaves a number of easy nodes then there is a higher chance of
coincidental traversal taking place.
The number of coincidentally traversed nodes can be considerable. The maximum
achieved in the runs presented in this thesis was 47% in run R2. The average
coincidental coverage from all non-mutant runs is 29%. TRIANGLE_COMPLETE
and REMAINDER had a higher coincidental coverage than the other procedures, due
to them having more nodes than the other procedures tested.
Generally, on runs where the initial point differed but the same initial path was
traversed, the same nodes are coincidentally traversed, since generally the same nodes
are considered.

8.2.6 The Initial Point Set Influences the Effort and Success of the
Heuristics

Since the heuristics are localised searches the initial point(s) for a run influence the
number of iterations a heuristic takes and its success. This influence may be direct
when a heuristic is using an initial point or indirect when a heuristic is using a point
descended from an initial point. It is particularly evident when a considered node's
solution domain is small or there is a high potential for upper-deviation.

8.2.7 Point Metrics Based on the Closeness Phenomenon have
Limitations

The point closeness metric has led heuristics to a location in the input space where
the metric indicated a solution would be, however, a solution is not always there.
When the solution domain is small and sparsely located, this increases the chance of a
heuristic being mis-led. The point closeness metric often leads a heuristic to a
notional boundary where there is no solution. The responsibility of identifying and

129

Chapter 8 Conclusions and Further Work

managing this situation lies with the heuristic. Presently, this responsibility is not
executed very well due to the localised, non-random nature of the heuristics.
Cross, et al, (1991) refer to the closeness phenomenon as "goodness". However, the
closest point will not necessarily take a heuristic to a solution point, since the metric
does not take into consideration the structure of the input space the heuristic is
moving into, particularly where domain boundaries may be crossed before a solution
is found. Nevertheless, the metric is good for many of the predicates considered.

8.2.8 Heuristic Based Test Data Generation is a Promising Approach

Software is composed of many diverse functions. To find specific points that cause a
required effect in the software is more-than-likely beyond the capability of a single
algorithm. HATS has addressed this through the ability to contain a number of
diverse heuristics that are selected from a hierarchy for the current problem.
HATS is an improvement over random testing and does not suffer from the intrinsic
problems other approaches do. However, the present heuristic approach has
limitations, which are outlined with potential remedies in section 8.3.
The heuristic approach benefits from coincidental traversal and the fortuitous co
operation of heuristics, where points generated by one heuristic are used to success by
another heuristic.

8.3 Further Work

8.3.1 HATS

8.3.1.1 Automation of Processes the HATS Harness Depends on

Only test data generation has been automated in HATS. Processes such as the
generation of the test software model and the instrumentation of the test software are
undertaken manually. However, their automation is well understood (Yau and
Grabow, 1981; Cimittle and Carlini, 1991) and could be implemented in future.
Once in place they would speed up the whole testing process and aid the use of
different test criteria and software models.

8.3.1.2 Heuristic Selection and Termination

Heuristic selection aims to choose a good heuristic first. A static hierarchy favours
the general heuristics rather than the more specific heuristic, which if required to
solve the problem, will not be used until some effort has been expended. Each of the
heuristics should be described to HATS in terms of exploitable test software

130

Chapter 8 Com Cor

characteristics it can use to influence control toward the consid the consi<
element (i.e. branch). This description can be used to determin) determi
suitable. HATS could determine test software characteristics fi :teristics:
HATS would then produce a selection hierarchy from comparii i compar
descriptions against the determinable characteristics of the test)f the tesl
hierarchy may be updated as further data is produced from the from the
To ensure that a heuristic does not get stuck or take overly lon£ verly Ion
software element, a threshold is required. A static threshold (n reshold (i
be sufficiently large to ensure that a feasible considered softwa ed softw;
traversed at the cost of wasting iterations on an infeasible or to< >ible or tc
Furthermore, a promising heuristic can be left short of iteration if iteratio
used on unsuccessful heuristics. As an alternative to static, test static, tes
based thresholds (i.e. node iteration) a threshold for each heurij ach heuri
determined from the characteristics used in heuristic selection, selection,
heuristic a chance. A limit on the number of heuristics that coi :s that co
considered software element would need to be determined. lined.

8.3.1.3 Determining Influential Input Variables

Modifying only input variables that are influential in the consid the consi
is an important issue. When there are many input variables, mi iables, m
wasted modifying non-influential input variables. Korel (1990; >rel (199(
dynamic data flow analysis to rank input variables according to cording t«
equal to the number of predicates in the partial path to the cons D the con;
element, where the input variable influences control flow on th< low on tl
different approach revealed through the experiments conducted :onducte<
predicate value analysis. Each input variable of a point that cai nt that ca
traversal to the considered element is modified by an equal-smt equal-sm
in the considered elements predicate value would determine wh ymine w
considered predicate influence and to what extent. A comparisi compari:
approaches would be beneficial, particularly to determine dynarnine dym
dependence on the partial path used and predicate value analysi;ue analys
point used.

8.3.1.4 Guiding Control to the Considered Software Elemeire Elenu

HATS does not manage upper-deviations where they occur. A occur. A
remedy the problem from the considered node. Consequently, tequently,
localising the search. Korel (1992) suggests that the search nee.search ne

131

Chapter 8 Conclusions and Further Work

with critical branches that do not allow execution of a specific software element.

Hence, the search would be focused on interfering predicates. However, this could

adversely affect boundary exploiting heuristics. A comparison between these two

techniques and others would be valuable. In general, the form of the input space
surrounding the point causing the upper-deviation may determine the most suitable
technique.

8.3.2 Heuristics

8.3.2.1 Limitations of the Existing Heuristics

In general the existing heuristics are limited through being a localised, co-ordinate-

direction search. Improvements for the existing heuristics are outlined, however, I

believe that the most promising results may be gained from exploring heuristics from

classes other than localised, co-ordinate-direction search.

8.3.2.2 Improvements to Existing Heuristics

Direct Assignment

To handle more complex predicate expressions, further rules could be implemented.

Rules proposed by Howden (1987) could be used as a basis. Deason, et al's, (1991)

system is based on Howden's rules. Clearly this would involve further static analysis

of the test software and storage of the results.

Alternating Variable and Linear Predictor

These two heuristics are similar in the way they modify input variables. However,

they are complementary; the AV is effective with non-linear partial path functions

and conversely, the LP is effective with linear partial path functions. Hence, for

improvement these two heuristics could be merged into one. The new heuristic

would use an updated form of the LP's termination criteria which would support the

AV's method.

Boundary Follower

The BF has several limitations; it is constrained to operate in two dimensions, it only

follows a boundary in one direction, it has no termination criteria and it has difficulty

when there is more than one boundary. Addressing the dimensionality of the search

and operating in the presence of many boundaries, a moving window in input space

132

Chapter 8 Conclusions and Further Work

should be investigated. Presently, the BF has only a single point to view the input
space with and make operational decisions from. The window, formed of the
predicate values over a range of values for the input variables being modified, would
give the BF an improved input space view. The window may be formed of the
perimeter points or be solid, and may change size and dimension. A modified form
of Nelder and Mead's (1965) Simplex Search may be suitable.
Addressing boundary movement direction, a possibility is to use a metric that
indicates the potential success of the present search along a boundary in one
direction. This would be combined with a backtracking technique that would
reposition the heuristic at some other input space point, should the present search
prove to be fruitless. Addressing termination criteria, a further metric could be based
on the heuristic's backtracking, or more simply, a threshold.

8.3.2.3 The Search for Better Heuristics

The heuristic approach relies on many varied heuristics which can tackle the many
problems that test data generation presents. Developing or locating, and evaluating
heuristics should be an on-going process. There is a wealth of existing, modern
optimisation techniques which have not been applied to test data generation (Conn, et
al, 1994). Many of the first generation optimisation techniques have yet to be applied
(Murray, 1972; Gill and Murray, 1974). Although these references span several
classes of techniques, direct search still appears to be the most suitable, because it
makes few assumptions about the optimised function. Deason, et al, (1991) have
concentrated on simpler heuristic techniques which could be built upon.
Some recently developed global optimisation techniques which can operate in the
presence of constraints show particular promise (Goldberg, 1989; Rabinowitz, 1995).
Regardless of which heuristics are used, there is a need to clearly understand the
characteristics of software from an adaptive test data generation point of view. This
would help in many ways; test software could be better defined as an optimisation
problem and suitable optimisation techniques could be selected; optimisation
techniques could be adapted to perform better on the test software.

8.3.3 Alternative Representations of the Test Software as a Test Data
Generation Problem

The test software may be represented or viewed in different ways as a test data
generation problem for the heuristics to solve. The representation potentially
involves several aspects; some of which follow.

133

Chapter 8 Conclusions and Further Work

Software Model

The choice of software model may have significant implications. HATS presently
uses a control flow tree to focus testing attention and store data at suitable locations.
Other models may offer greater versatility (Cimittle and Carlini, 1991; Yau and
Grabow, 1981).
Influencing control flow to the considered element in the test software has been
identified as a difficulty. The structural path-prefix approach depends on control
flow passing close to the considered test software element. A number of approaches
exist to manage this. The traversal of a unique partial path can be required (Korel,
1992) with back tracking to manage control deviations. HATS adopts a more relaxed
approach where any partial path to the considered element may be traversed. Control
deviations are explicitly recognised and the heuristics attempt to influence control
flow back to a partial path bringing control flow close to the considered element.
Korel (1992) later outlines a modification where the traversal of a unique partial path
is relaxed and any partial path that leads to the considered element is acceptable.
Alternative test point metrics may remove the need for a heuristic to explicitly
manage the control deviation problem. New metrics could be based on penalty
functions (Gill and Murray, 1974) which transform the constrained optimisation
problem, which test software is, into an unconstrained problem. This new metric
would be combined with a variable partial path to the considered software element.
Gallagher and Narasimhan (1993) have used penalty functions.

Test Criteria

There are alternative ways the test criteria could be managed toward its satisfaction.
Many approaches, including HATS, consider each software element in turn. Other
approaches (Roper, et al, 1995) consider the overall test criterion satisfaction level.

A few representations and alternatives have been outlined above. Further research
may reveal other representations. Better understanding software as a test data
generation problem is vital so that the most suitable test software representation can
be used for the required testing criteria. Clearly, comparing the above representations
with various test software and test criteria would be a valuable exercise.

8.3.4 Metrics

Metrics play an important part in adaptive test data generation. Most metrics used in
adaptive test data generators are based on the closeness phenomenon. However, this
has been shown to have limited ability. Clearly, more accurate metrics could have

134

Chapter 8 Conclusions and Further Work

significant beneficial impact on a heuristic's success. The development of metrics to
help heuristics in other ways is an interesting area. Two areas that could benefit are
determining a heuristic's suitability to solve a given problem and determining the
potential success or failure of a heuristic subsequent to it running for some time.

8.3.5 Scope of Testable Software

Automatic test data generators still have some way to go before they can be used
productively on industrial software without some effort to help them. Increasing the
diversity and complexity of software that useful test data can be generated for, is
important. This includes testing further statements, data types and other features,
such as a languages support for objects. Increasing the complexity of software that
can be tested is also important.
Testing further data types presents a problem with respect to the point metrics and the
heuristics. Both must be aware of the data type and handle them accordingly. This
places an additional level of complexity on both. The closeness phenomenon does
not exist for some data types such as pointers. Genetic Algorithms (Goldberg, 1989)
overcome this issue by manipulating data types as a bit stream rather than through the
operations each data type allows.
Increasing the complexity of testable conditions, to compound conditions, involves
the point metric. One approach is to assign weights to each simple condition so that
when the compound condition is true it has a value that is produced from each of the
simple condition's values and is above some threshold. This would only support
branch testing. To support multiple-condition testing, a truth table, representing each
simple condition, could be associated with the compound condition. The heuristic's
objective would be to complete the truth table to some degree.

8.3.6 Input Space Study

The input space for software of only a few lines with loops, can be quite complex.
Larger software with many input variables has more-than-likely a very complex input
space. Nevertheless, the heuristics must navigate through the input space in search of
a solution point. Studying the input space of a large sample of software would reveal
useful information that would help in many ways. It would help the development and
improvement of heuristics and metrics. It would aid a comparison with numerical
optimisation problems and help in the selection of suitable optimisation techniques.
White and Cohen (1980) have conducted significant research in this area.

135

Chapter 8 Conclusions and Further Work

8.3.7 New Tools

During the course of this research, tools that would help researchers of automatic test
data generation and possibly other areas, have become apparent.

8.3.7.1 Input Space Navigator

This would enable the operator to view a 2 dimensional window of predicate values,
or some other metric's values, for some location in the test software's input space.
The window is produced by executing the points from a range of values for two of
the input variables. Controls would enable the input space window to be moved, the
non-displayed dimensions to be adjusted and the displayed dimensions to be
exchanged with the non-displayed dimensions. This tool automates the partial input
planes seen in this thesis. The tool would be particularly helpful when analysing the
points selected by a heuristic and looking at areas of the input space where the
heuristic is having difficulty. It would be possible to link HATS to this tool so that
heuristic's input space navigation may be shown in real time. Alternatively the tool
could retrieve test data from storage and replay the heuristics navigation after the
heuristic has executed.

8.3.7.2 Path-based Variable Mapping Viewer

This tool graphically displays the mappings between the values (or ranges of values)
of variables for the path taken by some point. Each variable's range would be shown
as a line representing all the possible values the variable could assume. When a
variable's value is used in the definition of another variable, a line would be drawn
from the used variable's value, in its range, to the defined variable's new value, in its
range. Of course, there can be many variables used in the definition of another
variable. The input variables'ranges would be shown first and their values could be
adjusted. The length of the mapping network would be proportional to the length of
the data flow path. Should some point cause the same data flow path to be taken as
the previous point then only a slight change in mappings should be observed. Should
some point cause a different data flow path to be taken to the previous point then the
variables and their order in the mapping network would change. This tool would be
useful to see if, and to what extent, an input variable influences other variables.

136

Appendix 1 HATS User Summary

Appendix 1 HATS User Summary

The steps involved in using the Heuristically Aided Testing System (HATS) are
outlined in figure ALL

Produce control
flow tree table
and execution
results table

I
Imstrument

test software

i
Produce startup

program and
HATS for test

software

Key for re-entering the testing process

A : New run on the test software
B : Add test data to an existing run
C : Continue an existing run

Clear execution
results table

Execute startup
program

i

Figure Al.l - Flow diagram showing the HATS testing process

The first step in the HATS testing process is to produce two tables in an Oracle
database. The control flow tree table, which must be produced manually, stores a
representation of the test software's control flow tree. Each record holds information
on each node in the tree. The execution results table is where data generated from the
startup program and HATS are stored. A record in this table represents the execution
of a node in the control flow tree. The second step in the HATS testing process is to
instrument the test software and this must be done by hand. Instrumentation is placed
at the following places in the test software: the beginning, after each branch and at

the end.
The next step is to produce the startup program and HATS for the test software being
used. The startup program enables test points to be entered and the test software to
be executed upon them. This step is achieved by specifying the data types and

137

Appendix 1 HATS User Summary

number of input variables, then compiling the startup program and HATS with the
instrumented version of the test software.
The next step, clearing the execution results table is only necessary if the testing
process is being re-entered. On the first time through the table will already be clear
as it has just been created. Clearing this table is achieved by deleting all the rows
from the execution results table. Re-entering the HATS testing process at this point
enables new runs on the test software to be made and is denoted by label A in figure
ALL A test software run consists of one or more iterations where the execution
results table is not cleared. An iteration is the execution of a single test point on the
test software.
The next step is to execute the startup program. It is necessary to run this program
before HATS since it executes the test software and provides a starting point for
HATS to work from. Each time the startup program is run it accepts a test point and
then executes the in-built test software. The startup program can be run any number
of times. Re-entering the HATS testing process at this point, depicted as label B in
figure A 1.1, enables the user to add further test points to an existing HATS run.
The final step in the HATS testing process is to execute HATS. HATS attempts to
consider each untraversed node in the control flow tree. Its objective is to generate
new test points from existing test points in the control flow tree that will traverse the,
as yet, untraversed node, under consideration. It may not be possible to consider all
untraversed nodes as some may be infeasible and others too difficult for the heuristics
to solve. Re-entering the HATS testing process at this point, shown by label C in
figure A 1.1, enables a run to be continued after a break in execution.

138

Appendix 2 Quadratic Mutation Testing Results

Appendix 2 Quadratic Mutation Testing Initial
Points

Table A2.1 contains the initial points chosen for the first round of mutation analysis
on the QUADRATIC procedure. Each mutant run has an identifier, which is
designated by the letters QM followed by a unique number, eg QM1.

Mutant

QM1
QM2
QMS
QM4
QMS
QM6
QM7
QM8
QM9

QM10
QM11
QM12
QM13
QM14
QM15
QM16
QM17
QM18
QM19
QM20
QM22
QM23
QM24
QM25
QM26

Initial point
ABC

227
253
153
208
343
561
63
756
458
143
761
80

801
713
105
421
104
252
654
355
252
29
60

631
71

262
798
76
611
190
749
327
752
154
845
291
873
319
111
770
821
814
469
109
868
608
578
338
325
781

26
746
478
352
561
414
889
654
291
369
768
264
363
70

969
334
289
652
554
992
493

3
573
997
920

Mutant

QM27
QM28
QM29
QM30
QM31
QM32
QM33
QM35
QM36
QM40
QM41
QM42
QM43
QM44
QM45
QM46
QM47
QM48
QM49
QM50
QM51
QM52
QMS 3
QM54

Initial point
ABC

700
428
88

973
322
282
427
885
99
249
941
432
51
602

6
808
337
743
322
981
801
187
300

5

540
492
522
979
31

436
188
331
591
763
95
294
96
663
779
939
907
884
517
462
478
919
232
760

706
476
408
361
586
265
608
257
888
713
979
753
905
792
98
202
168
589
102
293
544
890
903
649

Table A2.1 - Initial points for the first round of QUADRATIC mutation analysis

139

Appendix 3 Heuristics' Pseudo Code

Appendix 3 Heuristics' Pseudo Code

A3.1 Direct Assignment Heuristic

A3.1.1 First Iteration Set-up

DA_setup
consid_inp_var := input variable in considered predicate
case (considered predicate's relational operator) is
when '<' =>

instructions := decrease by 1
when '>' =>

instructions := increase by 1
when '/-' =>

instructions := increase by 1
when '=' | '<='] «>='=>

instructions := no change
end case
generate_point := first point to traverse sibling node

with considered predicate's constant for consid_inp_var
end DA_setup

A3.1.2 Generator

DA_generator
case (modification direction of instructions) is
when increase =>

execute_point := add instructions value to consid_inp_var of
generate_point

when decrease =>
execute_point := subtract instructions value from

consid_inp_var of generate_point
when no change =>

execute_point := generate_point
end case

end DA_generator

A3.1.3 Duplicate Data Handler
DA_duplicate_data_handler

terminate HATS harness
end DA_duplicate__data_handler

A3.1.4 Evaluator

DA_evaluator
if (considered node traversed) then

heuristic is successful
else

add considered node and subtree to unreachable nodes list
heuristic has failed

end if
end DA_evaluator

140

Appendix 3 Heuristics' Pseudo Code

A3.2 Alternating Variable Heuristic

A3.2.1 First Iteration Set-up

AV_exploratory_phase_setup
phase := exploratory
consid_inp_var := first input variable
determine_exploratory_instructions

end AV_exploratory_phase_setup

determine_exploratory_instructions
if (only 1 point has traversed the sibling node) then

instructions := increase by 1
generate_point := first sibling point

else
case (comparison of the considered input variable of the

two closest sibling_traversal points) is
when closest point var less than the next closest test

point var =>
if (required predicate value is inbetween the two

closest predicate values) then
instructions := increase by 1

else
instructions := decrease by 1

end if
when closest point var equal to next closest point

var =>
instructions := increase by 1

when closest point var greater than the next closest
point var =>

if (required predicate value is inbetween the two
closest predicate values) then
instructions := decrease by 1

else
instructions := increase by 1

end if
end case
generate_point := the closest sibling_traversal point

end if
end determine_exploratory_instructions

A3.2.2 Generator

AV_generator
case (modification direction of instructions) is
when increase =>

execute_point := add instructions value to consid_inp_var of
generate_point

when decrease =>
execute_point := subtract instructions value from

consid_inp_var of generate_point
end case

end AV_generator

A3.2.3 Duplicate Data Handler

AV_duplicate_data_handler
case (modification direction of instructions) is
when increase =>

add 1 to consid_inp_var of generate_point
when decrease =>

subtract 1 from consid_inp_var of generate_point
end case

end AV_duplicate_data_handler

141

Appendix 3 Heuristics' Pseudo Code

A3.2.4 Evaluator

AV_evaluator
case (traversal effect of execute_point) is
when node_traversal =>

heuristic is successful
when sibling_traversal =>

case (closeness of execute_point to expected boundary
compared to closest point stored) is

when closer to expected boundary ->
closer_sibling_traversal_evaluator

when further from expected boundary =>
further_sibling_traversal_evaluator

end case
when upper_deviation =>

upper_deviation_evaluator
end case

end AV_evaluator

closer_sibling_traversal_evaluator
case (phase) is
when exploratory =>

phase := pattern
increase_pattern_step

when pattern =>
if (required predicate value is in between the two closest

predicate values) then
reverse_modification_direction
much_reduce_pattern_step

else
increase_pattern_step

end if
end case
generate_point := execute_point

end closer_sibling_traversal_evaluator

further_sibling_traversal_evaluator
if (further sibling traversal threshold exceeded) then

try_next_var
else

case (phase) is
when exploratory =>

if (this is the first further sibling_traversal on the
considered input variable) then

reverse_modification_direction
generate_point := the closest point stored

else
try_next_var

end if
when pattern =>

if (pattern further sibling_traversal in succession
threshold exceeded) then

try_next_var
else

much_reduce_pattern_step
generate_point := the closest point stored

end if
end case

end if
end further_sibling_traversal_evaluator

142

Appendix 3 Heuristics' Pseudo Code

upper_deviat ion_evaluator
if (upper_deviation threshold exceeded) then

t ry_next_var
else

case (phase) is
when exploratory =>

if (this is the first upper_deviation on the considered
input variable) then

reverse_modification_direction
generate_point := the closest point stored

else
try_next_var

end if
when pattern =>

phase := exploratory
instructions value := 1
generate_point := the closest point stored

end case
end if

end upper_deviation_evaluator

increase_pattern_step
instructions value := instructions value * 2

end increase_pattern_step

reverse_modification_direction
case (modification direction in instructions) is
when increase =>

instructions direction := decrease
when decrease =>

instructions direction := increase
end reverse_modification_direction

much_reduce_patt ern_s tep
instructions value := instructions value / 5;
if (instructions value < 1) then

instructions value := 1;
end if

end much_reduce_pattern_step

A3.2.4.1 Abandoning Consideration of an Input Variable

t ry_next_var
if (on last input variable) then

consid_inp_var := the first input variable
else

consid_inp_var := the next input variable
end if
phase := exploratory
determine_exploratory_instructions

end try_next_var

A3.3 T.inear Predictor Heuristic

A3.3.1 First Iteration Set-up

LP_DL_phase_setup
phase := DL
consid_inp_var := first input variable
DL_base_point := closest point stored
instructions := increase by 1
generate_point :- DL_base_point

end LP_DL_phase_setup

143

Appendix 3 Heuristics' Pseudo Code

A3.3.2 Generator

LP_generator
case (modification direction of instructions) is
when increase =>

execute_point := add instructions value to consid_inp_var of
generate_point

when decrease =>
execute_point := subtract instructions value from

consid_inp_var of generate_point
end case

end LP_generator

A3.3.3 Evaluator

LP_evaluator
if (considered node traversed) then

heuristic is successful
else

case (phase) is
when DL =>

case (traversal_effect of execute_point) is
when sibling_traversal =>

DL_sibling_traversal_evaluator
when upper_deviation =>

DL_upper_deviation_evaluator
end case

when predictor =>
case (traversal_effect of execute_point and

closeness to expected boundary of execute_point
compared to closest point found) is

when sibling_traversal and closer =>
predictor_closer_sibling_traversal_evaluator

when sibling_traversal and further =>
predictor_further_sibling_traversal_evaluator

when upper_deviation =>
predictor_upper_deviation_evaluator

end case
when creeper =>

case (traversal_effect of execute_point } is
when sibling_traversal =>

creeper_sibling_traversal_evaluator
when upper_deviation =>

creeper_upper_deviation_evaluator
end case

end case
end if

end LP_evaluator

144

Appendix 3 Heuristics' Pseudo Code

A3.3.3.1 Determine-linearity Phase

DL_sibling_traversal_evaluator
if (just executed increase point) then

DL_increase_point := execute_point
instructions := decrease by 1
generate_point := DL_base_point

elsif (just executed decrease point) then
DL_decrease_point := execute_point
if (consid_inp_var influential on considered predicate)

then
attempt_to_predict_a_point

else
t ry_next_var

end if
end if

end DL_sibling_traversal_evaluator

atternpt_to_predict_a_point
if (variations in input var value and predicate value linear)

then
predict_a_point_to_cause_just_sibling_traversal

else
creeper_setup

end if
end attempt_to_predict_a_point

predict_a_point_to_cause_just_sibling_traversal
{ Predict a point that will be close to the expected boundary

and will cause sibling_traversal }
{ Firstly predict (extrapolate) value }
phase := predictor
predicted_input_value := extrapolation using DL_base_point

and DL_increase_point
generate_point := execute_point with predicted_input_value for

consid_inp_var
{ Then modify value for just sibling_traversal }
case (predicted_input_value compared to consid_inp_var

value of DL_base_point) is
when predicted less than base =>

instructions := increase by 1
when predicted greater than base =>

instructions := decrease by 1
when predicted equal to base =>

try_next_var
end case

end predict_a_point_to_cause_just_sibling_traversal

DL_upper_deviat ion_evaluator
try_next_var

end DL_upper_deviation_evaluator

creeper_setup
{ Creep to the expected boundary }
phase := creeper
case (DL direction to come closer to the expected boundary)

is
when increase =>

instructions := increase by 1
generate_point := DL_increase_point

when decrease =>
instructions := decrease by 1
generate_point := DL_decrease_point

when neither =>
try_next_var

end case
end creeper_setup

145

Appendix 3 Heuristics' Pseudo Code

A3.3.3.2 Predictor Phase

predictor_closer_sibling_traversal_evaluator
if (there has been an upper_deviation from the execution of

the predicted point onwards) then
t ry_next_var

else
if (the predicted point has just been executed) then

reverse the modification direction
else

{ Continue with the present modification direction}
end if

end if
end predictor_closer_sibling_traversal_evaluator

predictor_further_sibling_traversal_evaluator
t ry_next_var

end predictor_further_sibling_traversal_evaluator

predictor_upper_deviation_evaluator
if (there has been sibling_traversals from the execution of

the predicted point onwards) then
t ry_next_var

else
if (reached upper_deviation limit for one input variable)

then
try_next_var

else
{ Continue modification in direction away from expected

boundary }
end if

end if
end predictor_upper_deviation_evaluator

A3.3.3.3 Creeper Phase

creeper_sibling_traversal_evaluator
if (execute_point closer to expected boundary than closest

point found) then
{ Continue with present modification direction }

else
t ry_next_var

end if
end creeper_sibling_traversal_evaluator

creeper_upper_deviation_evaluator
try_next_var

end creeper_upper_deviation_evaluator

146

Appendix 3 Heuristics' Pseudo Code

A3.3.3.4 Abandoning Consideration of an Input Variable

try_next_var
if (heuristic failure criteria met) then

terminate operation of heuristic
else

if (on last input variable) then
consid_inp_var := first input variable

else
consid_inp_var := next input variable

end if
DL_base_point := closest point found
instructions :- increase by 1
phase := DL
generate_point := DL_base_point

end if
end try_next_var

A3.4 Boundary Follower Heuristic

A3.4.1 First Iteration Set-up

BF_OC P_phas e_s etup
consid_inp_var : = first input variable
OCP_DL_base_point := closest point found
instructions := increase by 1
phase := OCP.DL
generate_point := OCP_DL_base_point

end BF_OCP_phase_setup

A3.4.2 Generator

BF_generator
case (instructions) is
when increase =>

execute_point := add instructions value to consid_inp_var of
generate_point

when decrease =>
execute_point := subtract instructions value from

consid_inp_var of generate_point
when opposite direction to follow and increase cross =>

case (follow direction) is
when decrease =>

FB_follow_var of execute_point := add instructions value
to FB_follow_var of generate_point

when increase =>
FB_follow_var of execute_point := subtract instructions

value from FB_follow_var of generate_point
end case
FB_cross_var of execute_point := add instructions value to

FB_cross_var of generate_point
end case

end BF_generation

147

Appendix 3 Heuristics' Pseudo Code

A3.4.3 Evaluator

BF_evaluator
if (considered node traversed) then

heuristic is successful
else

case (phase) is
when OCP =>

if (execute_point crossed boundary) then
OCP_try_next_var

else
case (OCP subphase) is
when DL =>

OC P_DL_evaluat or
when predictor =>

OCP_predictor_evaluator
when creeper =>

OCP_creeper_evaluator
end case

end if
when DIFCD =>

DIFCD_evaluator
when FB =>

FB_evaluator
when RBF =>

RBF_evaluator
end case

end if
end BF_evaluator

A3.4.3.1 Obtain-a-close-point Phase

OCP_DL_evaluator
if (just executed increase point) then

OCP_DL_increase_point := execute_point
instructions := decrease by 1
generate_point := DL_base_point

elsif (just executed decrease point) then
OCP_DL_decrease_point := execute_point
attempt_to_predict_a_point

end if
end OCP_DL_evaluator

The procedure attempt_to_predict_a_point and the two procedures it calls,
predict_a_point_to_cause_just_sibling_traversal and creeper_setup, are shown in
appendix A3.3.3.1. In the LP's code however, a phase change should be read as a BF
Obtain-a-close-point subphase change and a call to the procedure try_next_var, refers
to the procedure OCP_try_next_var.

OCP_predictor_evaluator
{ Creep to and over the boundary located }
case (predicted value compared to consid_inp_var value of

DL_base_point) is
when predicted less than base =>

instructions := decrease by 1
when predicted greater than base =>

instructions := increase by 1
end case

end OCP_predictor_evaluator

148

Appendix 3 Heuristics' Pseudo Code

OCP_creeper_evaluator
if (execute_point closer to expected boundary than closest

point stored) then
{ Continue with present modification direction }

else
OCP_try_next_var

end if
end OCP_creeper_evaluator

OC P_t ry_next_var
if (all input variables considered) then

{ Setup for DIFCD phase }
phase := DIFCD
DIFCD_central_point := closest point stored
generate_point := DlFCD_central_point

else
{ Setup for DL subphase on next var }
phase := OCP.DL
consid_inp_var := next input variable
DL_base_point := closest point stored
generate_point := DL_base_point
instructions :- increase by 1

end if
end OCP_try_next_var

A3.4.3.2 Determine-initial-follow-and-cross-details Phase

DIFCD_evaluator
if (done all DIFCD test procedure executions) then

DIFCD_evaluate_and_allocate_roles_for_FB_phase
else

{ Continue DIFCD test procedure executions }
if (completed test procedure executions on one input

variable) then
consid_inp_var := next input variable
instructions := increase by 1

else
instructions := decrease by 1

end if
generate_point := DIFCD_central_point

end if
end DIFCD_evaluator

DIFCD_evaluate_and_allocate_roles_for_FB_phase
DIFCD_evaluate_and_allocate_roles
if (both roles have been allocated) then

{ Setup for FB phase }
phase := FB
FB_follow_var := DIFCD_follow_allocation
FB_cross_var := DIFCD_cross_allocation
FB_move_kind := follow
instructions := increase by 1
generate_point := DIFCD_central_point
consid_inp_var := FB_follow_yar

else
terminate operation of heuristic

end if
end DIFCD_evaluate_and_allocate_roles_for_FB_phase

149

Appendix 3 Heuristics' Pseudo Code

DIFCD_evaluate_and_allocate_roles
for var := first input var to last input var loop

DIFCD_evaluate_and_allocate_roles_for_each_var
end for
{ Try to allocate follow role if not allocated }
if (follow role not allocated) then

if (reserve follow allocated) then
DIFCD_follow_allocation :=

DIFCD_reserve_follow_allocation
end if

end if
end DIFCD_evaluate_and_allocate_roles

DIFCD_evaluate_and_allocate_roles_for_each_var
{ Evaluate each var traversal_effects and try to allocate roles

}
if (increase and decrease point for var caused no change in

the considered predicate value } then
{ no allocation }

elsif (increase and decrease point for var caused upper_
deviation) then

(no allocation }
else

case (DIFCD_central_point predicate value compared to
expected boundary predicate value) is

when greater than =>
case (var's traversal_effeet suitability) is
when cross role =>

t ry_t o_a11ocat e_cros s_ro1e
when follow role =>

try_to_allocate_follow_role
end case

when less than =>
case (var's traversal_effeet suitability) is
when cross role =>

try_to_allocate_cross_role
when follow role =>

try_to_allocate_follow_role
end case

end case
end if

end DIFCD_evaluate_and_allocate_roles_for_each_var

try_to_allocate_cross_role
if (cross not allocated) then

DIFCD_cross_allocation := var
elsif (reserve follow not allocated) then

DIFCD_reserve_follow_allocation :- var
end if

end try_to_allocate_cross_role

try_to_allocate_follow_role
if (follow not allocated) then

DIFCD_follow_allocation := var
end if

end try_to_allocate_follow_role

A3.4.3.3 Follow-boundary Phase

FB_evaluator
case (FB_move_kind) is
when follow =>

FB_follow_evaluator
when cross =>

FB_cross_evaluator
end case

end FB_evaluator

150

Appendix 3 Heuristics' Pseudo Code

FB_follow_evaluator
{ Change over to cross from follow move end point }
FB_move_kind := cross
consid_inp_var := FB_cross_var
define_cross_direction
generate_point := execute_point

end FB_follow_evaluator

define_cross_direction
if (a cross move has crossed the boundary during the present

FB phase) then
if (last follow move crossed the boundary) then

{ Direction remains the same as the last cross move }
else

{ Direction is the opposite of the last cross move }
case (last cross move direction) is
when increase =>

instructions := decrease by 1
when decrease =>

instructions := increase by 1
end case

end if
else

{ Boundary not crossed yet - direction is increase }
instructions := increase by I

end if
end define_cross_direction

FB_cross_evaluator
if (execute_point crossed the boundary) then

{ Changeover to follow from execute_point }
FB_move_kind := follow
consid_inp_var := FB_follow_var
instructions := follow direction by 1

elsif (maximum cross step length reached) then
{ Setup for RBF }
phase := RBF
instructions := opposite direction to follow and increase

cross by 1
generate_point := last follow move end point

else
if (a cross move has crossed the boundary during the

present FB phase) then
{ Continue with a unidirectional cross search }
instructions := same direction as last cross with

increased step size
generate_point := last follow move end point

else
{ Continue with a bidirectional cross search }
case (cross direction) is
when increase =>

instructions := decrease by same step size
when decrease =>

instructions := increase with increased step size
end case
generate_point := last follow move end point

end if
end if

end FB_cross_evaluator

151

Appendix 3 Heuristics' Pseudo Code

A3.4.3.4 Reorient-boundary-follower Phase

RBF_evaluator
if (a search pair has been executed) then

search_pair_analysis
else

{ setup for the decrease point from the central line }
instructions := decrease by I
generate_point := cross variable value on central line with

remaining input variables held constant
end if

end RBF_evaluator

RBF_evaluator
if (a search pair has been executed) then

search_pair_analysis
else

{ setup for the decrease point from the central line }
instructions := decrease by 1
generate_point := cross variable value on central line with

remaining input variables held constant
end if

end RBF_evaluator

setup_for_FB_phase
phase := FB
FB_move_kind := follow
temp_var := FB_follow_var
FB_follow_var := FB_cross_var
FB_cross_var := temp_var
if (both search points on other side of the boundary) then

{ follow direction remains unchanged }
else

follow direction is the same as the direction used to
generate the point that crossed the boundary

end if
instructions := follow direction by 1
generate_point := last follow move end point

end setup_for_FB_phase

152

References

References

Abbott, J. (1986) Software Testing Techniques, NCC Publications.

Adby, P.R. and Dempster, M.A.H. (1974) Introduction to Optimisation Methods,
Chapman and Hall.

Andrews, D.M. and Benson, J.P. (1981) 'An Automated Program Testing
Methodology and its Implementation'. In 5th Int. Conf. on Software
Engineering, IEEE, 254-261.

Barnes, J.G.P. (1989) Programming in Ada, Addison Wesley.

Basili, V.R. and Selby, R.W. (1987) Comparing the Effectiveness of Software
Testing Strategies', IEEE Transactions on Software Engineering, SE-13 (12),
1278-1296.

Beizer, B. (1983) Software Testing Techniques, Van Nostrand Reinhold.

Benson, J.P. (1981) 'Adaptive Search Techniques Applied to Software Testing',
ACM Performance Evaluation Revue, 10 (1), 109-116.

Booch, G. (1987) Software Components with Ada : Structures, Tools and
Subsystems, Benjamin/Cummings Pub. Co. Inc.

Box, M.J. (1965) 'A New Method of Constrained Optimization and a Comparison
With Other Methods', Computer Journal, 8, 42-52.

Box, M.J., Davies, D. and Swann, W.H. (1969) Non-Linear Optimisation
Techniques, Oliver & Boyd.

Budd, T.A. (1981) Mutation Analysis : Ideas, Examples, Problems and Prospects'.
In Chandrasekaran, B. and Radicchi, S. (eds.), Computer Program Testing,
North Holland Publishing Co., 129-148.

Burgess, C.J. (1993) 'Software Testing Using an Automatic Generator of Test Data'.
In Ross, M., Brebbia, C. A., Staples, G. and Stapleton, J. (eds.*),First Int.
Conf. on Software Quality Management, Southampton, UK, March 30 - April
1, 541-556.

Cimittle, A. and Carlini, U.D. (1991) "Reverse Engineering : Algorithms for
Program Graph Production', Software Practice and Experience, 21 (5), 519-
537.

Clarke, L.A. (1976) 'A System to Generate Test Data and Symbolically Execute
Programs', IEEE Transactions on Software Engineering, SE-2 (3), 215-222.

Cohen, E.I. (1978) A Finite Domain-Testing Strategy for Computer Program
Testing, PhD, Ohio State University, Columbus.

Conn, A.R., Gould, N.I.M. and Toint, P.L. (1994) Large-Scale Nonlinear
Constrained Optimization : A Current Survey, CERFACS, Toulouse Cedex,
France.

153

References

Cooper, D.W. (1976) 'Adaptive Testing'. In 2nd Int. Conf. on Software
Engineering, San Francisco, US, October 13-15, 102-105.

Coward, P.D. (1988) 'Symbolic Execution Systems - A Review', Software
Engineering Journal, November, 229-239.

Cross, J.H., Chang, K.H., Carlisle, W.H. and Brown, D.B. (1991) Expert System
Assisted Test Data Generation For Software Branch Coverage', Data and
Knowledge Engineering, 6 , 279-295.

Deason, W.H., Brown, D.B., Kai-Hsiung, C. and II, J.H.C. (1991) 'A Rule-Based
Software Test Data Generator', IEEE Transactions on Knowledge and Data
Engineering, 3 (1), 108-117.

DeMillo, R.A. and Offutt, AJ. (1991) 'Constraint-Based Automatic Test Data
Generation', IEEE Transactions on Software Engineering, 17 (9), 900-910.

DeMillo, R.A., Lipton, RJ. and Sayward, F.G. (1978) Hints on Test Data Selection
: Help for the Practicing Programmer', IEEE Computer, 11 (4), 43-41.

Denney, R. (1991) Test-Case Generation From Prolog-Based Specifications', IEEE
Software, 8 (2), 49-57.

Deutsch, M.S. (1982) Software Verification and Validation : Realistic Project
Approaches, Prentice-Hall.

Duran, J.W. and Ntafos, S.C. (1984) 'An Evaluation of Random Testing', IEEE
Transactions on Software Engineering, SE-10 (4), 438-444.

Elshoff, J.L. (1976) 'An Analysis of Some Commercial PL/1 Programs', IEEE
Transaction on Software Engineering, SE-2 (2), 113-120.

Fagan, M.E. (1976) Design and Code Inspections to Reduce Errors in Program
Development', IBM Systems Journal, 15 (3), 182-211.

Furukawa, Z. and Ushijima, K. (1987) 'A Model of the Testing Support Method
With Sequences of a Directed Graph'. In Eleventh Ann. Int. Computer
Software and Applications Conference (COMPSAC 87), Tokyo, Japan,
October 7-9, IEEE, 311-316.

Furukawa, Z., Nogi, K. and Tokunaga, K. (1985) 'AGENT : An Advanced Test-
Case Generation System for Functional Testing'. In Wojcik, A. S. (ed.),
National Computer Conference, Chicago, Illinois, July 15-18, AFIPS Press,
525-535.

Gallagher, M.J. and Narasimhan, V.L. (1993) A Software System for the
Generation of Test Data for Ada Programs', Microprocessing and
Microprogramming, 38 , 637-644.

Gill, P.E. and Murray, W. (1979) Performance Evaluation for Optimisation
Software'. In Fosdick, L. (ed.), Performance Evaluation of Numerical
Software, IFIP, North-Holland Pub. Co., 221-234.

Gill, P.E. and Murray, W. (eds.) (1974) Numerical Methods for Constrained
Optimisation, Academic Press Inc.

154

References

Glass, H. and Cooper, L. (1965) Sequential Search : A Method for Solving
Constrained Optimisation Problems', Journal for the Association for
Computing Machinery, 12 (1), 71-82.

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine
Learning, Addison Wesley.

Graham, D.R. (1991) Computer Aided Software Testing : CAST Report, Unicom.

Hecht, M.S. (1977) Flow Analysis of Computer Programs, Elsevier North-Holland
Inc.

Hedley, D. and Hennell, M.A. (1985) The Causes and Effects of Infeasible Paths in
Computer Programs'. In Eighth Int. Conf. on Software Engineering, London,
August 28-30, IEEE, 259-266.

Holmes, S.T., Jones, B.F. and Eyres, D.E. (1993) 'An Improved Strategy for the
Automatic Generation of Test Data'. In Ross, M., Brebbia, C. A., Staples, G.
and Stapleton, J. (eds.), First Int. Conf. on Software Quality Management,
Southampton, UK, March 30 - April 1, 565-577.

Hooke, R. and Jeeves, T.A. (1961) "'Direct Search" Solution of Numerical and
Statistical Problems', Journal for the Association for Computing Machinery, 8
, 212-229.

Howden, W.E. (1977) Symbolic Testing and the DISSECT Symbolic Evaluation
System', IEEE Transactions on Software Engineering, SE-3 (4), 266-278.

Howden, W.E. (1987) Functional Program Testing and Analysis, McGraw-Hill.

Huang, 1C. (1978) "Program Instrumentation and Software Testing', IEEE
Computer, April, 11, 25-32.

Inamura, H. (1989) Trial-and-Error Method for Automated Test Data Generation
and Its Evaluation', Systems and Computers in Japan, 20 (2), 78-91.

Ince, D.C. (1987) The Automatic Generation of Test Data', The Computer Journal,
30 (1), 63-69.

Infotech (1979) Infotech State of the Art Report: Vol.1 Analysis and Bibliography,
Infotech Int. Ltd.

Klingman, W.R. and Himmelblau, D.M. (1964) Nonlinear Programming With the
Aid of Multiple Gradient Summation Techniques', Journal of the Association
for Computing Machinery, 11, 400-415.

Knuth, D.E. (1971) 'An Empirical Study of FORTRAN Programs', Software-
Practice and Experience, 1, 105-133.

Korel, B. (1990a) 'Automated Software Test Data Generation', IEEE Transactions
on Software Engineering, 16 (8), 870-879.

Korel, B. (1990b) 'A Dynamic Approach of Test Data Generation'. In Conf. on
Software Maintenance, San Diego, US, November 26-29, IEEE, 311-316.

155

References

Korel, B. (1992) Dynamic Method for Software Test Data Generation', Journal of
Software Testing, Verification and Reliability, 2, 203-213.

Kundu, S. (1979) SETAR - A New Approach to Test Case Generation'. In
Westley, A. (ed.), Infotech State of the Art Report Software Testing : Vol. 2.
Invited Papers, Infotech Int. Ltd., 161-186.

McMullin, P.R. and Cannon, J.D. (1983) ^Combining Testing With Formal
Specifications: A Case Study', IEEE Transactions on Software Engineering,
SE-9 (3), 328-335.

Miller, W. and Spooner, D.L. (1976) 'Automatic Generation of Floating-Point Test
Data', IEEE Transactions on Software Engineering, SE-2 (3), 223-226.

Minoux, M. (1986) Mathematical Programming : Theory and Algorithms, Wiley.
Moranda, P.B. (1978) Limits to Program Testing With Random Number Inputs'.

In COMPSAC 78, 521-526.

Murray, W. (ed.) (1972) Numerical Methods for Unconstrained Optimisation,
Academic Press.

Myers, GJ. (1979) The Art of Software Testing, Wiley-Interscience.

Nelder, J.A. and Mead, R. (1965) 'A Simplex Method for Function Minimization',
The Computer Journal, 7, 308-313.

Neumann, P.G. (1995) Inside RISKS / Risks to the Public from Computers and
Related Systems', ACM SIGSOFT Software Engineering Notes, 20.

Ntafos, S.C. (1988) 'A Comparison of Some Structural Testing Strategies', IEEE
Transactions on Software Engineering, 14 (No 6), 868-874.

Offutt, A.J. (1992) Investigations of the Software Testing Coupling Effect', ACM
Transactions on Software Engineering and Methodology, 1(1), 5-20.

Offutt, A.J. and Seaman, E.J. (1990) Using Symbolic Execution to Aid Automatic
Test Data Generation'. In COMPASS '90, 12-21.

Prather, R.E. and Myers, J.P. Jr. (1987) The Path-Prefix Software Testing
Strategy', IEEE Transactions on Software Engineering, SE-13 (7), 761-766.

Pressman, R.S. (1994) Software Engineering : A Practitioner's Guide, 3rd Ed.,
McGraw Hill.

Rabinowitz, P.M. (1995) 'Algorithm 744: A Stochastic Algorithm for Global
Optimization with Constraints', ACM Transactions on Mathematical Software,
21 (2), 194-213.

Ramamoorthy, C.V., Ho, S.F. and Chen, W.T. (1976) 'On the Automated
Generation of Program Test Data', IEEE Transactions on Software
Engineering, SE-2 (4), 293-300.

Richardson, D.J. and Clarke, L.A. (1981) 'A Partition Analysis Method to Increase
Program Reliability'. In Fifth Int. Conf. on Software Engineering, IEEE, 244-
253.

156

References

Roberts, S.M. and Lyvers, H.I. (1961) The Gradient Method in Process Control',
Industrial and Engineering Chemistry, 53 (11), 877-882.

Roper, M. (1994) Software Testing, McGraw-Hill.

Roper, M., Maclean, I., Brooks, A., Miller, J. and Wood, M. (1995) Genetic
Algorithms and the Automatic Generation of Test Data, Dept. Computer
Science, University of Strathclyde, Glasgow, UK.

Rosenbroch, H.H. (1960) 'An Automatic Method for Finding the Greatest or Least
Value of a Function', The Computer Journal, 3, 175-184.

Schmitz, P., Megan, R.v. and Bons, H. (1980) Methods of Systematic Test Case
Determination and Test Case Preparation'. In Ebert, R., Lugger, J. and
Goecke, L. (eds.), Practice in Software Adaption and Maintenance, North-
Holland Pub. Co., 209-221.

Tai, K.C. (1990) €ondition-Based Software Testing Strategies'. In Fourteenth
Ann. Int. Computer Software and Applications Conference (COMPSAC 90),
Vol. Chicago, Illonois, US, October 29 - November 2, IEEE, 564-569.

Voges, U., Gmeiner, L. and Mayrhauser, A.Av. (1980) SADAT - An Automated
Testing Tool', IEEE Transactions on Software Engineering, SE-6 (3), 286-
290.

Weyuker, EJ. (1982) 'On Testing Non-Testable Programs', The Computer Journal,
25 (4), 465-470.

Weyuker, EJ. (1986) 'Axiomatizing Software Test Data Adequacy', IEEE
Transactions on Software Engineering, SE-12 (12), 1128-1138.

White, L.J. and Cohen, E.I. (1979) 'A Domain Strategy for Computer Program
Testing'. In Westley, A. (ed.), Infotech State of the Art Report: Vol 2. Invited
Papers, Infotech Int. Ltd., 325-363.

White, L.J. and Cohen, E.I. (1980) 'A Domain Strategy for Computer Program
Testing', IEEE Transactions on Software Engineering, SE-6 (3), 247-257.

Woodward, M.R., Hedley, D. and Hennell, M.A. (1980) Experience With Path
Analysis and Testing of Programs', IEEE Transactions on Software
Engineering, SE-6 (3), 278-285.

Yau, S.S. and Grabow, P.C. (1981) 'A Model for Representing Programs Using
Hierarchical Graphs', IEEE Transactions on Software Engineering, SE-7 (6),
556-574.

157

