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ABSTRACT
SEARCH FOR A MOVING TARGET

GEORGINA VWOODWARD

A mathematical model of a discrete sequential search for
a target moving in discrete space is given. The model 1is
based on a Bayesian updating algorithm giving successive
probability distributions of target position at intervals
throughout the search. Updating allows for target
movement and for negative information gained from
unsuccessful search.

The search is conducted by taking a sequence of discrete,
instantaneous looks at chosen points, or nodes, of the
search area. The sequence of chosen nodes is termed a
strategy. The successive target position distributions
allow the probability of detecting the target to be found
for any strategy.

The model is an improvement over previous discrete
sequential search models with respect to the following
points. Target movement between nodes of the search area
is formulated in terms of statistical information of
target speed and direction, which are likely to be known.

The time interval between looks, and target movement
during this time, are related to the distance travelled
by the searcher between search nodes. Also, with each
look, the searcher has a view of surrounding nodes as

well as the chosen search node. Implementation of these
refinements is aided by considering the search area to
consist of a finite, isometric pattern of nodes.

Optimisation of strategies with respect to both detection
probability and detection probability per unit cost is

considered, and a criterion given in each case to assist
optimisation. However, in practice, these criteria are of
limited wuse, and full optimisation can only be <carried
out in a limited range of cases. Restricting both the
planning horizon of the optimisation process, and
searcher travel distance, allows sub-optimal strategies

to be found in a wider range of cases. Results suggest
that the detection probability of strategies found under
these restrictions is normally close to optimal.



CHAPTER ONE

THE SEARCH PROBLEM AND ITS HISTORY

1.0 INTRODUCTION
The process of search is a fundamental part of human
behaviour, but it is only in comparatively recent
times that a mathematical theory of search has been
developed. In this chapter the early history of search
theory is outlined, and some of the current
applications of the theory are introduced. Ways in
which search processes may be modelled mathematically
are also discussed and the extent to which optimal
solutions have been obtained for these models is
examined. The inadequacy of present models in
providing practical guidance for single searcher,
moving target searches is discussed, and an approach
is proposed that would provide a strategy for such a

search.

1.1 THE ORIGIN OF SEARCH THEORY
The short history of search theory, as part of the
general development of Operations Research, can be

traced to its beginning during World War II,



Operations Research did not emerge as a coherent
professional field until the early years of the war.
Its development, chronicled by Larnder (1984), can be
traced to the need to answer a specific military
threat: the defence of Britain against air attack. The
pre-war build up of German air power posed for Britain

a serious problem of early warning against airbormne

attack. The development of radar to counter this
threat led to the establishment of the first
experimental radar station in 1937, followed by four

more by the summer of 1938.

Early trials had seemed encouraging, but a major air
defence exercise, carried out in July 1938, revealed
that the additional stations did not improve
effectiveness as expected. It became clear that there
was a mneed to coordinate and correlate the often
conflicting information received from these stations.
A proposal was therefore made that research should be
carried out into the operational, as opposed to the
technical, aspects of the radar system, The term
'"Operational Research' (O.R.) was coined as a suitable

description of this new branch of applied science.

The Operational Research Group thus formed played a
key role in the analysis and evaluation of the radar

system, its impact on air tactics and its



effectiveness against enemy raids. The subsequent
extension of O.R. analysis to the prediction of the
outcome of future operations was even more important

in its consequent effect on policy decisions.

The entry of the United States into World War II
brought further defence problems. A major threat was
that of U-boat attack on U.S. shipping. In answer to
this the Antisubmarine Warfare Unit (A.S.W,) was set
up to study and coordinate defence against German
submarines. Collaboration with the British had
demonstrated the value of employing civilian
operational analysts on defence projects. Hence a non-
military scientific task force was recruited, under
the 1leadership of Philip Morse, to assist the A.S.VW,

unit in analysing the U.S. antisubmarine effort.

The primary danger from a submarine lay in its ability

to remain undetected, so the process of finding it was

an important part of the counteraction. Morse and his
colleagues identified a set of important quantities
involved in the search process, and derived equations
relating them, enabling the prediction of search

efficiencies and effective search patterns. In this
way the early theory of search uniting physical and
operational attributes of target and searcher through

mathematical concepts was developed. The



recommendations made on the Dbasis of this work
measurably improved the tactics of convoy protection

and submarine search.

The A.S.W,. Operations Research Group, as they were
called, eventually grew to about forty members,
including Bernard Koopman and George Kimball who are
recognised as being among the founders of modern
search theory. An account of the development of the
group and its contribution to the early days of O.R.

in the United States is given by Morse (1986).

At the end of the war, the work of the group was
consolidated into a series of reports, one of which
was 'Search and Screening’ written by Koopman (1946) .
This remained classified for many years, but a series
of opapers on search, Koopman (1956a), (1956b) and
(1957) were published. This work laid the foundation
for modern search theory. An expanded and nupdated
version of Search and Screening, Koopman (1980) has

since been produced.

Applications of search theory can today be found in
fields much wider than this military origin, although
the military influemnce still persists, particularly in
the common use of the word ’'target' for the object of

the search.



1.2 THE SCOPE OF APPLICATION OF MODERN SEARCH THEORY
Search theory today is a broad field of applied
science encompassing many disciplines and having
application to a wide range of practical problems.
Some of the more common areas of application of search

theory are given below.

(a) Military

Search theory has today, as at its origim, important
military and defence application. Areas of interest
range from the traditiomal topics of efficient search
patterns for enemy units and effective barrier patrol,
to tracking and guidance systems of modern missiles.
Much of the research in the military field is
necessarily classified, but Sutcliffe (1985) indicates
that most of current British military research centres
on the mechanism of detection, in particular with
respect to target characteristics and behaviour,

sensor characteristics and the environment.

Detectability is an important consideration to both
searcher and target. For the searcher, it is important
firstly, to have detection equipment which is as
efficient as possible. Comnsiderable research effort is
devoted to the continuing development of sophisticated
radar, sonar and satellite surveillance hardware,

aided by the signal processing and image enhancement



capabilities of modern computers. Secondly it is
important to know the true operational capability of
such equipment, in order to accurately estimate the

efficiency of any search. The performance of equipment

in the far from ideal comnditions of combat, under the
supervision of operators under stress, may be very
different from that measured under laboratory
conditions. Gathering reliable data in these

conditions is often problematic.

Conversely a target wishing to remain unseen must aim
to present an image, or behave in a way that will
minimise the probability of recognition by enemy
sensors. One of the design requirements of a modern
battleship, for example, is a profile which will give
a radar image that is as confusing as possible. Also
such tactics as the ejection of metallic chaff from
ships in order to confuse emnemy rocket guidance
systems, and low flying of aircraft to avoid radar

detection are commonly practiced.

(b) Search and Rescue

Rescue services are confronted daily with the problem
of locating missing persons lost in hostile
environments. Such examples as air—-sea rescue
operations and mountain searches are seen frequently

in news reports, Planning searches of this type has



traditionally relied heavily on the intuition and
experience of the leader of the search team,
Increasingly, however, search theory methodology 1is
being employed to assist in the efficient deployment

of search resources.

The missing person (the search target) is often at
risk from the environment, or from injuries that may
have been sustained. For this reason the overriding
concern of a search and rescue (S.A.R) operation is
normally the recovery of the target in the shortest
possible time. Optimal utilisation of the manpower and
equipment available to the search is therefore of

paramount importance.

The most extensive application of computer aided
search planning in S.A.R. is the United States Coast
Guard Computer Aided Search Planning System (C.A.S.P.)

described by Richardsonm and Discenza (1980). This

system has been used by the U.S. Coast Guard, in
planning open water searches, since 1974. The
principal output from the C.A.S.P. system is a

sequence of probability 'maps’ which display the
current target location probability distribution

throughout the search period.



The initial probability map, of target position at the
time of the incident, is produced by Monte Carlo
methods from a number of scemnarios of the events
leading to the incident, weighted according to
credibility. Monte Carlo simulation is also used to
update this probability map to account for subsequent
drift, due to currents and winds, in the time period
until the search is started. C.A.8.P. then gives
guidance on the allocation of search effort based on
optimal search theory. If the day's search is
unsuccessful, Bayesian updating is used to reflect
this negative information and the steps of updating
for movement and of search planning are repeated.
C.A.S.P, has proved to be a very useful aid and has

been credited with saving many lives.

Many of the problems associated with planning S.A.R.
operations are described in Haley and Stone (1980),

pages 45-71. Particular difficulty is frequently found

in producing accurate initial probability
distributions from the vague and conflicting
information that 1s often presented to search

pPlanners. Similar problems are discussed by Hypher

(1980) and Mattson (1980).



(¢) Recovery and Clearance

The problems associated with <c¢clearing debris and
recovering equipment for analysis, following a
disaster, are similar in nature to those of a S.A.R,
operation. The principal difference, however, is that
the priority is not mormally speed of detection, but

completion of the operation with minimum cost.

Richardson and Stone (1971) describe the operations

analysis of the deep water search for the remains of

the submarine Scorpion. The search, which took place
over a period of five months, was conducted using a
towed platform carrying cameras, magnetometers, and

sonar equipment. The platform was submerged to depths
of up to two miles. The search area covered
approximately 150 square miles of ocean floor. Search
effort was allocated within this area on the basis of
an a priori distribution of Scorpion's wherabouts
(produced in a similar manner to that used in the
C.A.S.P. system) and information gained durimng the

search,

One of the main problems in allocating search effort
was in estimating search effectiveness when knowledge
of the capabilities of the sensors against the target
were uncertain, Analysis carried out after Scorpion

had been found, showed that sensor capabilities had



been overestimated, indicating that the search plan
had not been as efficient as anticipated. Other
problems included navigational uncertainties making it
difficult to execute the search as planned, and
difficulty in deciding how much effort shold ©be
expended in close investigation of some contacts. This
occured when it was uncertain whether an object
detected was in fact Scorpion, or a false target such

as a magnetic rock.

Grasty (1980) describes a clearance operation of a
different nature following the disintegration of the
nuclear powered Russian satellite COSMOS 954 on re-
entry into earth atmosphere. Radioactive debris, which
was scattered over a large area of Canada's Northwest
Territories, had to be located and retrieved. Gamma
ray detection equipment was used in airborme
reconnaissance flights. Here again some difficulty was
encountered in distinguishing true radioactive
contacts from naturally occuring sources of radiation,
and in pinpointing the exact ground location of
contacts detected from the air, particularly in

densely wooded areas.

(d) Medical
There is currently substantial medical interest in

increasing the efficiency of procedures for screening

10



and monitoring large populations for the early
indications of certain diseases. Diseases such as
cancer, hypertension and glaucoma can be treated much
more effectively if detected in their early stages,
before symptoms become apparent to the patient. If
screening can be made more efficient, larger groups of

people can be tested.

Kolesar (1980) describes an application of search
theory to the location of retina blind spots
characteristic of the disease glaucoma. The eye is
tested for blind spots by determining the patient's
response to a small light stimulus directed at points
on the retina, Kolesar has shown that, by positioning
test points optimally on the retina, the number of
points tested can be reduced from the seventy two
commonly wused to only ten, while maintaining a 95%

probability of detecting a blind spot if present.

(e) Other Applications
Additional areas to which search theory is <currently
applied include surveillance, mining and exploration,

and industry.

The purpose of a surveillance operation is mnot to find

a specific target, but to monitor the state of a given

system by information gathering. Search theory can

11



assist in planning a surveillance operation by
determining an optimal allocation of the available
surveillance resources in order to maximise
information gain. Pollock (1980) analyses the
surveillance problem and indicates the role of search

theory within this larger context.

Areas of application of this approach include
allocation of police patrol routes, pollution control,
and monitoring livestock and fish populations in order
to determine stock levels, and enforce hunting and
fishing regulations. These and other applications are

discussed in Haley and Stomne (1980), pages 99-112.

Exploration for coal, 0il and mineral deposits often
involves drilling test bores in areas where geological
survey data indicates deposits may be found. Optimal
placement of test bores, to increase the probability
of a find, can be assisted by utilisation of Dboth
positive and negative results (from successful and
unsuccessful ©bores respectively) to wupdate <current
geological information. Surkan (1975) developed a

computer program to assist in exploration for oil

deposits. This quantifies prior information from
geological surveys into a density map for oil
deposits, which is then modified in a Bayesian manner

for information gained during exploration.

12



Kadane (1980) describes several industrial
applications including, minimising the cost of quality
control testing and fault detection, the management of
research and development projects, and maintainance
scheduling. All of these may be viewed as task
sequencing problems within the constraint of

minimising costs,

The application of search theory in many of the areas
described above has only been made possible by the use
of high speed computer processing. This has enabled
the construction of a variety of mathematical models,
many of which would have been impossible to attempt by
other means. Some common features of current search

models are examined in the next section.

1.3 MODELS OF THE SEARCH PROCESS
A number of different approaches to modelling search
processes may Dbe found in current literature,
reflecting the diversity of situations to which they
apply. A comprehensive index of papers on the topic

can be found in Strumpfer (1980).

Several features can, however, be identified as common
to many models. These features, which may briefly be

summarised as:

13



1) Target wherabouts
2) Detection capability
3) Updating target information

are discussed in the following sections.

1.3.1 TARGET WHERABOUTS

The exact position of the target is clearly unknown at
the start of the search, otherwise no search would be
necessary. However, an a priori probability
distribution of the possible wherabouts of the target
can frequently be calculated from known information.
This information may consist, for example, of a last
reported position, or a re—entry trajectory as in the
COSMOS 954 search, or geological data as in o0il

exploration.

The a priori distribution of a target located in an
open area can, in pricipal, be described
mathematically by a continuous probability density
function over two (or three) dimensional Euclidean
space. Search effort may then be allocated to any
point in the search area. Stone (1975) page 20, gives
an example of a bivariate normal distribution
representing the position of a ship in distress. The
distribution, centered on the ship’'s reported
position, describes the error in the navigational

system used.

14



In practical searches it is frequently found to be

more convenient to divide the search area into
rectangular cells, where a cell represents the
smallest region to which search effort can be

allocated. A discrete a priori distribution over the
set of cells of the search area may then be
determined. The search area is divided in this way in
the C.A.S.P. system and also in the search for
Scorpion. As in these examples, described in section
1.2(b), Monte Carlo simulation is often used to
produce the a priori distribution when this approach

is taken,.

A discrete distribution is also appropriate when the
target may be located in one of a number of disjoint
locations, for example an object hidden in one of a
number of boxes. Pollock (1970), Dobdbie (1974) and
Wegener (1982), among others, formumlate search models
of this type. Here it is often assumed that the
probability of the target being in any box is known in

advance.

Other applications where a discrete distribution is
appropriate, suggest a conceptual, rather than
physical search space. In the case of quality control
testing the target is a fault (if any) in a

manufactured article. The search space consists of the

15



set of all possible faunlts and an initial distribution
may be determined from the frequency of occurance of

each fault.

In cases where an a priori distribution is required,
but no information is available, a uniform

distribution over the search space may be used.

1.3.2 DETECTION CAPABILITY

In order to plan a search it is mnecessary to have a
measure of the effectiveness of the search effort
applied. This requires knowledge of the ability of the

sensor to detect the target. At any instant a sensor

will not detect a target with total certainty, there
is normally some probability, dependent on range and
operational conditions, that the target will ©be

overlooked. Search effectiveness relates the amount of
effort spent looking in an area to the probability of

detecting the target given that it is in that area.

Mathematically search effort is regarded in one of two
ways: as discrete units of a fixed quantity applied
sequentially such as the light stimulus used in the
glaucoma test, or as continuwously applied amounts
available in any required quantity such as the towed
sensors used in the search for Scorpion. Detection

probability in each of these cases is discussed below.

16



a) Discrete Effort

Search where effort is available in discrete umnits is
called discrete search, not to be confused with the
description of the search space or target motion. A
unit of search effort is termed a look or glimpse and
is assumed to be instantaneous. The quantity of search
effort expended can be measured by the number of looks

taken.

The instantaneous probability of detection in one

look, conditional on the target being present, may
vary with time, position and range. Koopman (1980)
page 54, however, considers the simplest case where

detection probability is constant. Assuming that the
probability of detection, P, in each 1look is
independent of other looks, the probability of

detecting the target im n looks, denoted P, is
- n
P = 1 - (1 - p) (1.1)

by the usual rules of probability.

Pollock (1970) and Kan (1977) consider searches for an
object hidden in one of a number of boxes, where the
detection probability is independent of time Dbut
dependent on the box searched, while Wegener (1982)
allows detection probability to be dependent not only

on the box searched, but on the number of looks

17



already taken in that box, thus removing the need for

the condition of independence.

Koopman, Chapter 3.2, discusses the dependence of
instantaneous detection probability on range for a
look taken over an open area, and extends the
application of discrete effort to the case of a
searcher moving over open water, taking a series of
discrete looks as it travels. The approach taken here
is somewhat different from the usual discrete effort
search as the glimpses are assumed to occur rapidly,
leading to a formulation similar in nature to the

continuous case discussed next.

b) Continuous Effort

Detection <capability of a continuous sensor <c¢an be
expressed in terms of a detection fumnction relating
the amount of effort expended in an area to the

probability of detecting a target in that area.

Koopman (1956a) and (1956b), characterised the
detection ability of a continuous sensor in terms of
its lateral range function and sweep width. The
lateral range of a target from a sensor when both are
travelling with fixed speed and course is the distance
of their <closest approach, denoted by x in diagram

1.1.

18



Target

Relative path
of searcher

Sweep
width

Diagram 1.1 The Path Swept by a Sensor

The lateral range function is a measure of the
detection ability of the sensor in terms of the
lateral range of the target. It gives the cumulative
probability, P(x), that the sensor, as it travels
along its course, will detect a target having lateral

range X.

In general the lateral range function will be
dependent on the relative velocity of target and
searcher as well as on operational factors. A typical
lateral range function is shown in diagram 1.2a, while
diagram 1.2b shows the lateral range function of an
idealised sensor having a definite <range law of
detection. This idealised sensor will detect with
total certainty any target within range R, any target

outside this range will not be detected.

19



P(x) ﬂ\
1 -
X
1.2a
Pp(x) P
1
S
-R R x
1.2b

Diagram 1.2 Lateral Range Functions
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The sweep width of the sensor, denoted by W, is given

by the integral of the lateral range fumctiomn, thus
W = J P(x) dx (1.2).

Sweep width is a commonly wused measure of the

capability of a continuous sensor.

A sensor with effective sweep width W has a
probability of detecting a target equivalent to that
of a sensor with a definite range law of detectiomn, of
range R = WwW/2. Thus the product (path length
travelled) X (effective sweep width) gives amn area
equivalent to that ’'swept clean’ by such a sensor on
the same path, as illustrated in diagram 1.1, This
product is used as a measure of the search effort
applied, from which the detection probability can be

calculated.

The classical exponential detection function
formulated by Koopman as the ‘law of random search’,
for a target located in an area A, is based omn the

following assumptions:
1) The target distribution is uniform im A,

2) The sensor has a definite range law of

detection of width W/2.

21



3) The observer's path is random in A, in the
sense that different small portions of the path

are placed independently of one another in A.

This leads to a detection probability p given by

e"WL/A (1.3)

where L is the total path length in A.

Assumption 3 is, in practice, impossible to satisfy in
most applications. However the law of random search is
frequently assumed to apply as it gives a useful lower
bound on the detection probability, even when the

search path is far from random.

In the C.A.S.P. system the search effort applied to
any cell is assumed to be uniformly distributed over
the cell area. This is approximated in practice by
performing equally spaced parallel sweeps covering the
cell. Allowing for the uncertainties in navigational
accuracy leads to a detection function equivalent to

the law of random search.

¢c) Further Considerations
The above discussions on discrete and continuous
application of search effort assume that the detection

capability of the sensor against the target is known.

22



In practice this is frequently not the case, either
because of the difficulty in assessing operational
values, or because the state of the target is not
known. Richardson and Belkin (1972) consider a search
model where the sweep width of the sensor is fixed,
but only known as a prior probability distribution,
while Discenza and Stone (1981) 1look at a survivor
search where the target may change state during the

search, each state having a different detectability.

A further assumption is that the sensor has perfect
discrimination, that is it will not mistakenly detect
a false target such as the magnetic rock found in the
search for Scorpion. Where false targets may Dbe
detected a distinction must be made between detecting
a object and conclusively identifying it to Dbe the
target after closer investigation. Dobbie (1973) and
Stone et al (1972) consider searches in the presence

of false targets.

The models so far considered also assume that the
search is passive, that is that the search conditions
are in no way changed by the presence of the searcher.
In particular it is assumed that the target is mnot
aware of the search, so unable to change its behaviour
in order to avoid or assist detection. Dobbie (1975)

models a search where the target attempts to avoid

23



detection by moving away from the vicimnity of the
searcher when it becomes aware of the searcher’'s

presence.

1.3.3 UPDATING TARGET INFORMATION

As the search progresses, the current estimate of the
position distribution of the target may need to be
updated. There are two reasons for updating. Firstly,
if the target can move, the positiomn distribution will
change with time as the search is conducted. Secondly,
when search effort is applied to a region and the
target is not detected, an a posteriori probability

that the target is in that region can be calculated.

Considering firstly target motion. This may be
described in a variety of ways, but is frequently
modelled as a stochastic process which may occur in

either discrete or continuous time,.

Pollock (1970), Kan (1977) and Washburn (1980)
consider searches for a target moving between a set of
discrete cells or boxes. In each case, the motion is
described by a discrete time Markov process determined
by a known set of constant transition probabilities
{pij}. which give the probability that the target is
located in box j at time ty .9 given that it is in box

i at time ty. Dobbie (1974) also considers Markov

24



target motion between discrete cells but here motion
is in continuous time described by known transition

rates between cells.

Pursiheimo (1978) investigates a case where target
motion between boxes is conditionally deterministic.
The motion is uniquely determined by a route function
partly dependent on the initial box. In contrast the
most general type of motion is modelled by Stone
(1979). Here movement is described by a stochastic
process {(x,, t>0} representing virtually any

reasonable type of target motion in Euclidean n space.

On a practical level the C,A.S.P. system allows for
target motion by <computing a set of drift vector
probability distributions. These represent the effect
on the target of winds and ocean currents at various
geographical locations. Updating is performed daily by
Monte Carlo methods, the target being moved along in

short time intervals until updating is complete.

Updating the target distribution for additional
information gained as the search progresses may Dbe
carried out using Bayes' rule. In its simplest form
the posterior probability that the target 1is located
in area A, given an unsuccessful search, can be

expressed as

25



P(AlS) = 5)

where A is the event 'ta ev

'search fails'. Tfai

event
updated in a separate se

system, or in conjunam

target movement as perfot a

Pollock provides an algoes
target location distribm d
a target moving with Ming
between two boxes. It oxe
located in box 1 with pr 1l
2 with probability 1-mn. 1lit
or box 2 and detects thete
g, Tespectively, condily,
the ©box in which the ldch
moves from box i to box i
pij' The updated probabied

1 after an unsuccessfulkuc

’

is denoted by = . n .

If a look is taken in bcake

equation (1.4), ,

P(A) = P(1) = P

and P(AlS) P (A
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Thus, with allowance also for target movement, the

updated probability is given by

, Tf(l_Q]_)Pll + (1—1’r)p21
n = mmmmmm oo (1.5a).

Similarly, if a look is taken in box 2,

, T(pll + (1—11)(1"(12)1)21
n = mmmmm o (1.5b).

Explicit updating in this manner 1is only performed
when effort is available in discrete units, however
implicit allowance for the effect of previous search

is made in any search plan that proceeds in time.

1.4 OPTIMISATION
A search operation normally has only a2 limited amount
of search effort or resources availible. The Tbasic
problem of search is the optimal distribution of these
resources subject to the constraints and requirements

of the individual application.

A rule specifying the way search effort is distributed
in space is called an allocation. When the rule also
dictates how the search should be carried out in time

it is called a search plamn or strategy. In the case of

27



discrete effort, a search plan consists of a sequence

of locations Xl,Xz.....X at which a look is to be

n

taken at time tgatgen ity
In the continuous case, effort applied over a discrete
or continuous search space is often assumed to be
infinitely divisible. That is, the effort available at
any time can be distributed as finely as desired over
the search space. Where a fixed amount of effort is
available an allocation of this effort takes the form

of a real valued function of the search space.

Constraints on a search plan may take the form of
limits to the total time or cost available for the
search, and to the rate at which search effort may be
applied. An optimal search plan is one that gives a
distribution of effort within these constraints that

is optimal subject to a given criterion.

The applications discussed in section 1.2 illustrate
the more commonly applied optimisation criteria. These
include maximising the probability of detection within
a givem cost or time, maximising the probability of
detection per unit cost and minimising the expected

time to detection.

28



Optimisation of stationary target searches has ©been
thoroughly investigated. However optimal plans for
moving target searches are considerably more difficult
to find. Progress +that has been made in finding
optimal plans for discrete sequential searches, and
searches with infinitely divisible effort is discussed

below.

1.4.1 INFINITELY DIVISIBLE SEARCH EFFORT

a) Stationary Target

Koopman (1946) first investigated the optimal
allocation of search effort for a statiomary target,
finding a solution for an exponential detection
function and circular normal target distribution. A
me thod of finding allocations for more gemneral target
distributions is given in Koopman (1957). Stone (1975)
provided mnecessary and sufficient conditions for
optimal allocation within a given <cost, giving a

method of solution using Lagrange multipliers.

Where more search effort becomes available with time,
a search plan which gives an optimal allocation by
time t for all t > 0 is <c¢alled uniformly optimal.
Stone (1975) showed the existence of uniformly optimal
plans under very general conditions and again used

Lagrange multiplier techniques to obtain solutions.
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b) Moving Targets
Dobbie (1974) <considered a search with exponential

detection function and continuous time Markov target

motion between two discrete cells. He gave
distributions of search effort maximising the
probability of detection by a fixed time T, and

minimising the expected time to detection.

Results for continuous space moving target models were

initially restricted to exponential detection fumnction

and special types of target motionmn, such as special
Markov processes (Hellman (1972) and Saretsalo
(1973)), or conditionally deterministic motion (Stone

and Richardson (1974) and Persiheimo (1978)). However,
Stone (1979) gave mnecessary and sufficient conditions
for optimal search plans for a wide class of
stochastic target motion im discrete or continuous

time and discrete or continuous space.

In the <case of discrete time target motiom and
exponential detection function, Stone's conditions
have a simple interpretation, as follows. If at som
instant t, the target position distribution (given th
failure of previous search) is 8¢ then the optimal
allocation of effort at that instant is the same as
that for a stationary target search with target

distribution g¢- The previously known results
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constitute special cases of Stone’'s result.

Practical methods of solution, (other than the simple
two <cell model considered by Dobbie), are restricted
to the case of discrete time motion with exponential
detection function. Brown (1980) gave an iterative
algorithm for this case that produces a sequence of
search plans which converges to an optimal plan.
Conditions under which the algorithm may ©be applied

were further investigated by Washburn (1983).

Brown compared the results obtained with those found
by an incrementally optimal or myopic plan. This
allocates effort such that each increment of effort
applied yields the maximum increase in detection
probability considering the previous increments. The
comparison showed that, unlike the stationary target
case, moving target optimal plans are not mnormally
uniformly optimal. That is for n { m an optimal plan
for m time intervals need not be an extension of the

optimal plan for n time intervals.

1.4.2 DISCRETE SEQUENTIAL SEARCH

a) Stationary target

Pollock (1960) first considered the case of a single
searcher taking a sequence of discrete looks for a

stationary target. He produced optimal strategies
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minimising the expected time to detection in the two
region case using a dynamic programming approach,
Black (1965) showed by a simple geometric argument
that the expected cost of the search is minimised by
taking the next look in the region for which the
probability of finding the target, (given the failure
of previous looks), divided by the cost of that look,

is greatest.

More recently, VWegener (1980) minimised the expected
search cost, considering only those strategies which
are ultimately certain to find the target. LOossner and
Wegener (1982) consider a variation on the basic
search model introducing a cost penalty for the

searcher switching from one cell to another.

b) Moving Target

Results for moving target searches with discrete
effort have proved difficult to obtain. Pollock (1970)
gave expressions for the minimum expected number of
looks and the maximum probability of detection with a
given number of looks when the search space consists
of two discrete boxes. Using a dynamic programming
technique not easily extended to a larger search space
he obtained solutions in two special cases. These are

the case of perfect detection and the 'no learning'’

case, where transition prbabilities Pij = Vj for all
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i, resulting in no information being gained

previous searches.

Kan (1977) extended Pollock’s model to an arbit
number of cells and obtained solutions in the

learning case and when the transitionmn probabili

from

rary

no

ties

are represented by a Jordan matrix. Washburn (1980)

applied an algorithm similar to that used by B

(1980) but showed that when effort is not infini

rown

tely

divisible the strategies obtained may not be optimal.

1.5 THE NEED FOR A REVISED SEARCH MODEL
The presently available models of moving ta
searches do mnot allow the calculation of an opt
path for a single searcher to follow over an

search area.

rget
imal

open

Search plans found under the assumption of infinite

divisibility of effort are in practice impossible

to

implement, although they are sometimes used as a guide

for the allocation of effort, as is the case in

the

C.A.S.P. system. However, approximating a search plan

found wunder this assumption is only appropriate w
a large number of search vehicles are available
target speed is very slow in relation to the

required to perform the search.
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Some attempts have been made to express probability of
detection for a single searcher travelling a specific
path. Mangel (1982) for example gives an expression
for the detection probability in the special case of
target motion being a diffusion process. This  has
however, only been sucessful for very limited types of
target motion, and the expressions found have ©proved

very complicated.

Tdeally it would be desirable to develope a model that
would allow the specification of a continuous optimal
path over the search area. However, in view of the
difficulty in obtaining expressions for detection
probability in this case, a more feasible approach
would appear to to be to approximate the continuous

path by a sequence of discrete searches.

Current models of discrete sequential search processes

are not applicable to search over a large, two
dimensional search area, for two reasons., Firstly,
they are normally formulated as 'box type' searches,

where the target can only be detected if it is in the
box, or cell, in which a 1look is taken. This does not
allow a situation where the cell size and spacing may
be small in relation to the detection range of the
searcher, giving the possibility of detection of a

target in a nearby cell. Secondly target movement is
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normally expressed as a known, fizxed set of transition

probabilities between cells, implying a fixed time
interval ©between looks. More realistically, the
velocity of the target would be known, and the time

interval between looks determined by the time taken by

the searcher to travel across the search area.

This thesis attempts to extend the discrete sequential
search model in these areas, in order to produce
practical search strategies applicable to a search for
a target moving in two dimensional space. In the
following chapters a search model is developed,
encompassing these features, that allows the
calculation of detection probability for any search
strategy. The problem of determining optimal
strategies is also addressed, and a selection of the
resulting search strategies obtained are presented and

discussed.
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CHAPTER TWO

A MODEL OF THE SEARCH PROCESS

2.0 INTRODUCTION
In this chapter an algorithm is developed for the
determination of discrete search strategies for a
moving target. The basis of the algorithm is a
Bayesian updating procedure allowing probability
distributions of the target position to be found prior
to each look being taken. From these distributions the
probability of detection for anmny strategy camn Dbe

found.

Use of the updating procedure requires that the
detection capability of the sensor and an initial
probability distribution of target location are known.
Further statistical knowledge is required <concerning
the speed and direction of motion of the target, from
which a set of transitionm matrices (also required in
the procedure) are determined. Calculation of these
matrices is greatly simplified by restricting searcher
and target movement to an isometric grid such as those

illustrated in diagram 2.3,
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2.1 THE SEARCH PROCESS
For the purpose of modelling the search process it is

supposed that the search is conducted in the following

manner.

Assume that the search area consists of a finite set
of discrete locations which will be termed mnodes. For
simplicity, assume also that the search area is known
to contain the target (although the model may also be
used in the case of a defective initial distribution).
The searcher takes a sequence of discrete looks at
intervals throughout the search. Between looks, target
and searcher are constrained to move from node to node

within the search area.

At each stage of the procedure the searcher chooses a
node (called a search node) at which the next look 1is
to be taken. The 1look is assumed to occur
instantaneously, and at that moment the searcher has a
view of the surrounding nodes as well as the search
node. Denote the set of nodes of the search area by X.
If node JeX is the chosen search node, the target can
be detected with known probability @j5,e[0,1] given it
is at node heX at this time. A look can only be taken

at a node.
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The time interval between looks is not assumed to be
constant. During this interval the target moves
between nodes with Markov motion described by a set of
known transition probabilities which are dependent on

the length of the interval.

A discrete collection of nodes is not the most natural
way in which to model a two dimensional search area.
However this, together with the assumption of discrete
effort gives a search model that is amenable to

numerical calculation, as discussed in section 1.5.

The simplifications of discrete time Markov target
motion and instantaneous detection are made in order
to minimise the amount of computation involved in
updating the target position distribution. This
computation will be considerable because of the large
number of nodes required to adequately represent a two

dimensional search area.

Also to minimise computation, added assumptions are
made that neither target motion, nor the detection
ability of the searcher change with time, or as a
result of previous search (i.e. it is a passive

search) . It is also assumed that the search is not
complicated by the presence of false targets, and that

if a detection is made, no further investigation 1is
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needed so the procedure will terminate. In practice
this is often not the case, as indicated in section
1.2, however these simplifications are frequently
applied, for example by Pollock (1970), Kan (1977),

and Eagle (1984).

In the following section an algorithm is derived which
allows an updated probability distribution of target
position to be calculated. Although position may not
be the only target statistic in error, (the speed or
direction of motion may also have been incorrectly
estimated), updating target position is the most
natural approach as it is the target'’s correct
location that is being sought. The model could, in
theory, be extended to also allow target velocity, or
even detectability, to be updated. However this
approach was not taken because of the complexity of

the resulting updating algorithm.

2.2 DERIVATION OF THE UPDATING PROCEDURE
A procedure for finding an updated probability
distribution of target position following an
unsuccessful look and and subsegquent target movement

can be found as follows.

Assume that at time t, the probability distribution of

target position is given by {ni,isX} with 2 ;= 1.
i
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This is implicitly conditional on the target being in
the search area and being undetected at any time
t < ty (otherwise the search would have terminated).
Suppose a look is made at node JeX at time ty and
denote the updated distribution at some later time

tyyq by {m’;,ieX}.

Denote the following events:-—

. - . .
i target at node i at time Crt1

ﬁJ = target not detected from J at time tyo

h = target at node h at time ty

Shi = target moves from node h to node i in the

time interval tk+1_tk'

The updated probability =’ that the target is at

i ]
node i at time tr+1 given that the look at time ty is

unsuccessful, can be expressed as:

n'; = P(i'lDy)

by the usual rules of probability.

The target can only occupy one node at any time, so as

mutually exclusive events this can be written
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Y P(hnDyns,.)
b

= h Cmoomosoooo—ooooomooooos oo (2.1).
Y P(n) P(Dyln)
h

again by the usual rules of probability.
To simplify this a 1little the following mnotatiom is
introduced: -
Let
nyy = P(Dylh) J,heX
Thus nyy is the probability that a target at node h is

not detected by a look from node J. (i.e.nJh=1—¢Jh)

Also let At = typ,q — tyg- and

ppi(At) = P(Sy;1(hnDy))  h,ieX with } py; = 1
That is py;(At) is the transition probabili;y from
node h to mnode i for the time interval ty .-ty
of length At. It is conditional on the target being at
node h at time t,. and not detected by the look made

at node J at this time.

And, by defimnition, ny, = P(h).

41



Substitution in equation (2.1) gives

n'; = h ——--So—-To (2.2).

The nupdating expressions given by Pollock (1970),
equations (1.5a) and (1.5b), are a particular case of
equation (2.2). If the search space consists of just
two nodes, and the possibility of detection restricted
to a target at the node at which the look is taken,

equation (2.2) reduces to equations (1.5a) and (1.5b).

Use of this algorithm to produce successive target
position distributions requires three components.
These are:

1) an initial probability distribution of target
position,

2) a set of non-detection probabilities [nJh] for
searcher and target at any positions J and h
respectively in the search area, and

3) transition probabilities py;(At) between any pair

of nodes h and i for a variety of time intervals At.

Estimation of initial target position and of the
detection capability of the searcher can present
complex problems, as indicated in Chapter 1. However,

for the purpose of the present model, it 1is assumed
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that an initial target distribution and the non-
detection probabilities are known. Ways in which they

may be specified are discussed in sectiom 2.7.

In search models of this type, it is normally also
assumed that transition probabilities governing target
motion are known. Pollock (1970), Kan (1977), Washburn
(1980) and Eagle (1984) all take this approach,
allowing only a fixed time interval between looks. It
is however, more realistic that target motiom in a two
dimensional area would be known in terms of speed and
direction of movement. Determination of transition
probabilities from this information for time intervals
of wvarying length will ©be examined in detail in

section 2.4.

2.2.1 AN ALTERNATIVE APPROACH
An alternative derivation of equation (2.2) can be
obtained by considering the two steps of
a) updating following an unsuccessful look, and
b) updating to allow for target movement,
as separate operation as performed in the C.A.S.P.

system. This can be achieved as follows.
Let {nis.ieX} be the updated position distribution

following an unsuccessful look at node J, (with no

subsequent movement). By Bayes rule, the posterior
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probability n S

i that the target is at node i is

s Ty Mryi
Ty = L TTTTT (2.3).
2 Th MJn
Also, 1let {nim,ieX] be the position distribution

updated for target movement only in time interval At.
The probability nim that the target is at node i after

this interval is

n® = % my Ppi(At) (2.4).

The probability that the target is at node i at time
tr+1 following an unsuccessful look and subsequent
s)m

movement, denoted by (my is given by the

composition of expressions (2.3) and (2.4):

(n.;S)D =

This approach, of updating in two separate steps, will
be considered further in Chapter 5, where 2 revised
method of determining target transition probabilities

is discussed.
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This two-stage method of updating can also lead to an
alternative algorithm. By performing the wupdating
steps in reverse order, first allowing for movement,
and then for an unsuccessful look, a sequence of
distributions of target position immediatly following

each look can be obtained.

Denote the updated probability that the target is at
node i, following movement during time At and a
subsequent unsuccessful look at node J, by (nim)s. The
composition of expressions (2.3) and (2.4) in this

order gives

(nmi)s = h -——mr———————— (2.5).
Y X omy prp(At) ) ngy
h k
The double sum in the denominator makes this

expression a little more awkward to use than equation
(2.2). Also, it is more useful to have information
about target position immediatly before the decision
of where to place each look is made, so equation (2.2)
was chosen as the basis of the updating algorithm in

preference to equation (2.5).

2.3 THE SEARCH AREA
Before target transition probabilities for anmy given
time interval can be determined, consideration must be

given to the specification of the search area.
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It was initially thought that a continuous two
dimensional search area could be used, divided into
discrete rectangular cells, as in the C.A.S.P. system.
However it was found that direct calculation of
transition probabilities between cells from
information of target speed and direction was too
complicated to be of practical use. This is Dbecause
the probability of movement from one cell to another
depends not only on velocity, but also on position
within a cell as illustrated by diagram 2.1, These
quantities are only known probabilistically and
evaluation of the resulting trigonometric expressions
would have been too complex to incorporate in the
updating algorithm. Monte Carlo methods, used in the
C.A.S.P. system, would also be unsuitable in this case
as updating in this way between successive looks would

be far too time consuming.

Other cell shapes, such as triangular or hexagonal
divisions, were also considered but these offered no
advantage over rectangular cells. Approximating the
search area by a collection of discrete points, as
illustrated in diagram 2.2, was therefore found to be

the most suitable approach.
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Diagram 2.1 Target Movement Between Cells

Diagram 2.2 A Collection of Discrete Nodes
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The target transition probability between any two
nodes is dependent on the relative position and
spacing of the nodes. Consideration must therefore be
given to the arrangement of the nodes of the search
area. An isometric arrangement, where mneighbouring
nodes are equidistant from each other is computation-—
ally the most convenient. The three possible such
arrangements in two dimensions are illustrated in
diagrams 2 ,3a, 2.3b and 2.3c¢c which show nodes having

three, four and six neighbours respectively.

The principal advantage of such an arrangement is
that, if the target is comstrained to move along the
grid linmes indicated in the diagrams, the distance of
travel between any two nodes is always an integer
multiple of the node spacing. This greatly simplifies
the formulation of transition probabilities. A further
advantage is obtained in determining the time interval
between looks if searcher movement is also constrained

in this way. This point is discussed im section 2.5.

Constraining target and searcher movement in this way
clearly restricts the direction of motion, however the
computational advantages of this simplification are
substantial. To minimise the restriction on direction,
the node arrangement shown in diagram 2.3c¢ was chosen,

allowing six directions of travel from each node.

48



Diagram 2.3 Isometric Node Arrangements
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For computational convenience the nodes are considered
to have unit spacing and are given coordinates by
means of a pair of non-orthogonal axes as shown in
diagram 2.4, With this coordinate system, the minimum
distance N, along the grid lines, between two nodes
having coordinates (x3,ya1)., (x,.,52) respectively is

given by the relation

lzi-x,1 + lysi-y2l if (x1-%x2)(y1-y2)>0
(2.6a)
N =

max { Ix:l"sz-IYI'Yzl } if (x1-x2)(y1—-y2)£0
(2.6b).
Thus in diagram 2.4, the distance from the node
labeled A, of any node in the shaded regions is given
by expression (2.6a), while the distance of any node

in the non-shaded regions is given by (2.6b). (In the
case of nodes on the boundary of the two regions, the

two expressions are equivalent.)

For example, the distance between points A(1,-1) and

B(2,1), shown in diagram 2.4, is

N = J1-21+](-1)-1] = 1+2 = 3 units,

and the distance between A(1,-1) and C(-3,2) is

N = max { f1-(-3)1,1(-1)-21 } = max { 4,3 } = 4 units.
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Diagram 2.4

Illustrating
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2.4 SPECIFICATION OF TARGET MOTION
It is assumed that the motion of the target may be
specified as independent probability density functions
of speed and direction of movement. Such information
might be available from historical data of similar
targets, or estimated from prevailing search

conditions,

The assumption of independence may not be appropriate
to every search, strong winds for instance may make
travel in one direction slower than another. However,
this assumption simplifies the calculation of

transition probabilities. Also to facilitate this

calculation, target motion is assumed to be
independent of position. Again this would mnot ©be
appropriate in every situation, as geographical
features might, for example, impede movement in some

locations. The two compomnents of motion are discussed

in the following sub-sections.

2.4.1 SPEED
The distribution of target speed may be specified by
any probability density function appropriate to the

search under consideration.
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For computational investigation of the search model it
is assumed that the speed is given by a Beta

distribution. This has the form:

B(x) = A x9°1 (1-x)B-1 xel[0,1] (2.7)

with

Moy THep)

The Beta distribution was used because it is of a
suitable shape and has the necessary flexibility to

model a range of target behaviour.

It is assumed that three statistics of target speed
are known, allowing specification of a particular Beta

distribution. These are:

1) The maximum target speed, denoted by Vtmax
This allows the speed distribution to be specified
over the interval [O0,1]. Denoting the speed
distribution by s(v), and target speed by V, this
can be achieved by setting v = V. /V, .
2) The normal running speed of the target, denoted by
th’
This is assumed to determine the mode of the

distribution, from which a relation between the

parameters a and B can be found.
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The mode, M, of the Beta distribution with a, B > 1

is given by

M o= o (2.8).

Rearranging and setting M=V,  /V,. .~ gives the

relationship between the parameters,

a-1l = --=-—-——- (2.9).

3) The probability that the target is moving at a
speed greater than ;(th+vtmax)' denoted by M.
This statistic determines the top tail of the Beta
distribution from ;(M+1) to 1.
Substituting expression (2.9) for (a-1) in equation
(2.7) (written in terms of v), allows B to be found

from the expression

1
JA ve(B-1) (1-v)B-1 gy = & (2.10)
3 (M+1)
with
M
c = -——--—-
1 - M
These three statistics were <chosen because they

constitute information that might reasonably be known
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about target behaviour, and allow the parameters a and
B to easily be calculated. The mode was chosen as
statistic two in preference to the mean, because it
was felt that it would be more likely that the normal
running speed would be known, rather than the average
running speed, particularly in the case of skew

distributions,

It might also seem more natural to give the value of
the integral from M to 1 as statistic three , but in
the case of a symmetric distribution this is always
equal to 0.5 whatever the value of o = B. To avoid
being wunable to determine the parameters in this
situation the specified statistic was chosen, although
the integral over another range could equally well be

used.

The parameters o and f were found by evaluating the
integral given in equatiom (2.10), wusing a N.A.G.
computer routine. A range of valunes of B in intervals
of 0.1 was taken, and that giving the closest
approximation to A chosen. This degree of accuracy was
felt to be sufficient for the purpose of investigating
the model. In practice, more accurate interpolation
could be used if the accuracy of target information

was sufficient to warrant this.
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The restriction was made that a, B > 1. This was
imposed to exclude Beta distributions having infinite
values at v = 0 and v = 1 as these were not felt to be
suitable to represent target speed. (Although equation
(2.8) is not strictly defined at ¢« = B = 1, equation
(2.10) may still be wused to specify a uniform

distribution.)

A further restriction was imposed that e, B <=10, for
two reasons. Firstly it was thought that this range
gave a sufficient degree of flexibility in specifying
target movement. Secondly, large changes in a and
above this range are required to produce small changes
in the value of the integral. The degree of accuracy
to which A is likely to be known was not thought to
warrant taking extreme values of ¢ and 8, although
again in practice this restriction could be lifted if

desired.

2.4.2 DIRECTION

Clearly on the grid described there are six possible
directions of travel from any mnode. In order to
specify the distribution d(6) a convention is adopted

for numbering the directions as shown in diagram 2.5.
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d(1) d(2)

d(6) ¢ 5  d(3)

d(5) d(4)

Diagram 2.5 Numbering System for Direction

Any suitable discrete distribution may be used to give
the direction of motion of the target, ranging from
the case where d(®) is uniform, expressing an unknown
direction, to the case d(6) =1 for 6 = a, d(8) =0

for € # a, 6,ae{l, 2, ..,6} giving an exact direction.

2.5 TRANSITION MATRICES
Target movement, specified by the distributions of
speed and direction discussed in section 2.4, must be
translated into transition probabilities between nodes
for use in the updating procedure given by equation
(2.2). The transition probabilities are also dependent
on the length of time between successive looks, which

is discussed in the next sub-section.

2.5.1 THE TIME INTERVAL BETWEEN LOOKS
To minimise the computation involved in updating the

target distribution it is essential that the
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transition probabilities be known before the updating
procedure begins. Clearly a set of transition
probabilities can be calculated for each of only a
limited number of time intervals. A suitable method of
determining a finite set of time intervals, realistic
to a physical search, is to consider how long it would
take the searcher to travel between consecutive search

nodes.

The simplification is made that the searcher moves
between mnodes by the shortest path, along the grid
lines described in section 2.3, travelling at a
constant speed V. If consecutive search mnodes are
distance N units apart, the corresponding time

interval At between looks is given by

(2.11)

<z

S

Diagram 2.6 illustrates the set of nodes at distance
three units from a search node labelled Y. The choice
of any one of these as the next search mnode would

result in a time interval of 3/Vs between the looks.

With this convention a set of transition probabilities
are required for each time interval N/Vs for

N = 0,1,...N where Nmax is the maximum distance,

max’

over the grid, between any two mnodes.
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C) * * ® C)
® ® ® ®

Diagram 2.6 Nodes at Distance Three Units
from Search Node J

® ® ® ®
® ® & ® ©
® ® & 66 & ©
® ® C;D ® ® ©
® & &6 0 6o 6
® 6 6 6 6

® & © 6

Diagram 2.7 Nodes Within Three Units
of Search Node 7J
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An alternative approach would be to specify a maximum

searcher speed, Vsmax and calculate a set of
transition probabilities for each time interval
N/Vimax for N = 0,1,...Ny, where N, > N .. is the

maximum allowable time interval between looks. At time
N the searcher might choose either, to take a look at
any node K such that the distance between K and the
previous search node is less than or equal to N units,
or wait until the next time. The set of nodes from
which a search node may be chosen at time N = 3 are

illustrated in diagram 2.7.

Although this approach would avoid limiting the
searcher to a constant speed, it would greatly
increase the computation involved in the decision
process used to determine search strategies, SO was

not adopted.

2.5.2 CALCULATION OF TRANSITION PROBABILITIES

Suppose the searcher travels a distance N units
between consecutive search nodes, so that, by equation
(2.11), At = N/V_ . Assume that at the begining of the
interval At the target is at node h, and consider the
probability that at the end of this interval it is at
node i, where h,ieX, the set of all nodes. This may be

expressed in terms of distance travelled and path

taken.
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To achieve this the following events are defined:
RAt = target moves a distance R in time At,

S,; = target path starting at node h ends at mnode 1i.

As the nodes have unit spacing the target must move an
integral number of units to reach another mnode.
Therefore R,, takes the discrete values 0,1,2,..... .
These distances are exhaustive and mutually exclusive,
sO the transitiom probability from node h to mnode i,

phi(At), defined in section 2.2, may be written as:

@

2 P(RyNS;)
R=0

Phi(At)

o]

¥ P(Ru.) -P(Sy;IR) (2.12)
R=0

by the usual rules of probability.
Thus the two components, distance and path taken, may

be considered separately.

a) Distance Travelled
The distance R moved by the target at speed Ve in time
At is

R = VAt

VN by equation (2.11).

Vs

Thus the probability that the target moves distance R

units in At is equivalent to the probability that the

target speed is
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vV, = Bﬁys for N #0.

However, R can only take integer values, so to convert
the continuous distribution of target speed into

discrete probabilities the assumption is made that

P(Rpe) = Pol-mm=- L Vg & ===

As this is dependent on the distance N Dbetween
consecutive search nodes, P(RAt) is more clearly
written as P(RIN). Dividing by Vi p,. to scale to [0,1]
allows P(R,,) to be expressed in terms of the speed

distribution s(v) by the integral

K(R+3)
P(R,,) = P(RIN) = J s(v) dv (2.13).
1

K(R-3

where K = Vs

N Vtmax

To avoid difficulties when the range of integration
falls partially outside the interval [0,1], over which
the function s(v) is defined, the additional

definition is made that s(v) = 0 for v < 0 and v > 1.

Discretising target speed in this way is mnot suitable
in the case of a slow moving target, as it can lead to
target motion being artificially frozen. This can be

seen by considering the case Vs > 2.Vinax With N = 1,
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giving a value of K > 2, Evaluating equation (2.13) in
this case, with any speed distribution, gives
P(RIN) = 0 for all R > 0. Thus if the searcher moves
only one unit between looks, as is frequently the case
when optimal strategies are considered, the target is

stationary.

Even in cases where V_ ( 2.Vimax this straightforeward
discretisation of target speed, which was initially
employed, proved to be far from satisfactory. This is
because it results in uncceptable distortions of the
speed distribution, as illustrated by the results
shown in Chapter 4. Ways in which this might be
overcome are investigated in Chapter 5, and an

alternative approach proposed.

In addition to the description of target speed by the
function s(v), the target may also have a known
probability of being stationary. Denoting this
probability by q, the probabilities P(RIN) defined by
equation (2.13) may be adjusted in this case by
writing

g + (1-q) P(RIN) R =0

P'(RIN) (2.14).

(1-q) P(RIN) R >0

63



b) Path Taken

Consider the probability P(Shill) that the target
moves from node h to node i given R = 1, and denote
this by

P(Shill) = mhi.

The probability my; is easily expressed in terms of
the probability distribution of target direction d(9),
since for mneighbouring nodes my; = d(e) 8ef{l1,2,..6}
where 6 is the direction of travel from node h to node
i, and for non—-neighbouring nodes my. = 0. Let my; be
element (h,i) of matrix M, It can then be seen by
applying the well known result of Markov chains that,

for any R > O,

P(ShilR) = element (h,i) of MR (2.15)

(with MO = the identity matrix).

Thus the probability that the target moves from node h
to node 1, given that it moves R units, is contained

in the appropriate power of matrix M.

¢) Matrix Form of Transition Probabilities

With P(RAt) and P(ShilR) defined in terms of the
distributions of speed and direction by equations
(2.13) and (2.15) respectively, transition
probabilities for each of the range of time intervals

may be found by equation (2.12).
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A 1imit may be placed on the range of summation of

equation (2.12) as follows. Any value of R such that
R > 1,1

- K 2 (2.16)

(where K is given in equationm (2.13)), gives a range

of integration of expression (2.13) outside the

interval [0,1]1, giving P(R,.) = 0. Denoting by L the

smallest value of R for which equation (2.16) holds,
equation (2.12) may be written
L

¥ P(R,,).P(Sy;IR)
R=0

phi(At)

L
¥ P(RIN) .P(Sy,IR) (2.17)
R=0

The set of transition probabilities for each time
interval is more conveniently expressed in matrix
form. Writing

L

¥ P(RIN) MR (2.18),
R=0

PN
the transition probability phi(At) corresponding to At

defined by a distance N between consecutive search

nodes, is given by element (h,i) of matrix Py.

2.6 DETERMINATION OF SEARCH PATH
A sequence of looks forming a search strategy may be
planned by considering the probability of detection

for that strategy, calculated from the successive
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distributions of target position produced by equation
(2.2). The simplest form of planning is that of an
incremental, or myopic strategy, which places each
look to give the highest probability of detection at

that stage.

Use of the updating procedure to plan a strategy, with
the transition matrices described in sectiomn 2.5, is
not as straightforeward as with a single transition
matrix such as those used by Pollock (1970) and Kan
(1977). This is because the target position
distribution at the time of each look is dependent,
through the transition probabilities, on the distance

travelled by the searcher between search nodes.

Consider, for example, the situation illustrated in
diagram 2.8, with the searcher positioned at node J.
If the mnext look is to be taken at one of the mnodes
l1abelled i, at distance 1 unit from J, then the target
distribution immediatly before that look may be found
by using elements of the transition matrix Pl (defined
in equation (2.18)) in the wupdating algorithm. If,
however, one of the nodes labeled h is to be the next
search node, a different target distribution formed

using elements of P2 will be required, and so on.
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h h h
* * * * * *
h i h
% * * * * *
J i h
* * * *

Diagram 2.8 Nodes at Various Distances
from Search Node J

Therefore, to determine the next search node of an
incremental strategy, the distance to each node of the
search area, from the current search node, must Dbe
found. The corresponding target distribution may then
be generated in order to calculate the probability of
detecting the target with a look taken at that mnode.
In this way the node giving the highest detection

probability can be chosen.

In practice, this is most economically performed by
considering the nodes in order of ascending distance
from the current search node. This allows the target
distribution corresponding to each distance to be
calculated only once, and then over—written after the
detection probability for every node at that distance
has been found. An example of a search strategy

planned in this way is given in the following section,.
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2.7 AN EXAMPLE SEARCH STRATEGY
The following example illustrates a simple incremental
search strategy, planned using the algorithm developed
in this chapter. The algorithm was implemented in a
FORTRAN computer program, which allows the input of
the parameters of initial distribution, detection

capability, and target movement.

The search area consists of a hexagonal array of

nodes, of a size chosen by the user, up to a maximum
size of 91 nodes. For ease of reference the nodes are
numbered in a spiral manner from the centre, the

numbering of the largest array being illustrated in
diagram 2.9. Once the size of search area is chosen

the parameters are specified in the following way.

a) Initial Disribution

For simplicity the program allows only a limited range
of distributions, which may be specified in one of two
ways. The first method, which is used in the following
example, gives a symmetric distribution on the central
seven nodes. It is specified by giving the probability
Ty that the target is at the central node; the
remaining probability 1 - Ty is then uniformly
distributed over the six nodes surrounding the central

node. Alternatively a uniform distribution, (again

symmetric about the central node), may be specified,
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the range of the distribution being chosen by the

user.

The program could easily be adapted to enable more
detailed specification of initial position. This could
be done by allowing the position probability at each
node to be input individually, or by discretising a

continuous distribution in a suitable way.

b) Target Movement
Target movement is specified by giving values of the
parameters of target and searcher speed and target

direction discussed in sections 2.4 and 2.5.

The program calculates the appropriate Beta
distribution from the target speed parameters V

tmax'’

Vv and )\ defined in section 2.4.1., Specifying the

tn
searcher speed Vg enables the distribution to be
discretised using equation (2.13). It is then combined
with the matrices constructed from the six direction

probabilities to form the final transitiom matrices,

as described in sectiom 2.5.2.

To enable the the model to be used on the search area
shown in diagram 2.9, the direction probabilities have
to be adapted at edge and corner nodes in the way

illustrated in diagram 2.10. This is so that the
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requirement 2 Pri = 1 is satisfied for all h & X. (An
i

alternative approach might be to introduce an

absorbing state, the target being ’'lost’ on entering

this state.)

d(6)+d(1) > d(3)+d(2)
a(s) d(4)
d(3)+d(2)+3d(1)
d(5)+d(6)+3d (1) acs4)

Diagram 2.10 Adaptation of Direction Probabilities
at Edge and Corner Nodes

¢) Detection Capability

Again for the purpose of simplifying the input to the
program, it is assumed that detection capability is
independent of position, and dependent only on target

range from the current search node. It is specified by

giving the six probabilities that a target, at range
0 1, 2,...5 units from the search node, will not be
detected. The non—-detection probability at range
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greater than five units is assumed to be equal to one.
From these values the matrix of non—-detection

probabilities required in the algorithm is

constructed.

Again the facility to ©provide a more detailed
description of detection capability could easily ©be

incorporated in the program.

The above information enables the matrices required
in the updating algorithm to be set up. The user then
specifies the initial position of the searcher and the
number of looks (following the imitial look) that are

required.

In the following example of an incremental strategy.,
each search node is chosen to give the highest
probability of detection at that look. This
incremental method of planning does not necessarily
give optimal probability of detection for the search
as a whole. The production of optimal strategies is

investigated in Chapter 3.

The values of the parameters used in the example are

as follows.
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Size of search area = 91 nodes.

Initial distribution:

0.4 i =1
ny = 0.1 i e {2,3,...7}
0 i e {8,9,...91}.

Target and searcher speed:

Vtmax = 20 Ve = 30
Vin = 12 A = 0.15
giving

a = 2.20 B =1.80

(actual value of integral = 0.152),.

Target direction:
0.1 6 ¢ {1,2}

da(e) =
0.2 e ¢ {3,4,5,61}.

Non-detection probabilities:

range 0 1 2 3 4 5
probability 0.1 0.5 0.9 1.0 1.0 1.0
Initial position of searcher = node 37.

Number of looks = 15.

The resulting search strategy is shown in Table 2.1.
The table gives the node at which each look is to be
taken (numbered as in diagram 2.9), the —resulting
probability of detecting the target with that 1look,

and the cumunlative probability of detection for the
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search so far. The cumulative probability does not
include the probability of detection at the initial
node as this is not part of the decision process. The

path of the strategy is illustrated in diagram 2.11.

Table 2.1 The Search Strategy

Look Search Detection Cumulative
Number Node Probability Probability
1 1 0.4231 0.4231
2 1 0.3049 0.5990
3 4 0.2610 0.7036
4 5 0.2141 0.7671
5 6 0.1855 0.8103
6 3 0.1884 0.8460
7 2 0.1264 0.8655
8 14 0.1207 0.8817
9 16 0.1000 0.8936
10 12 0.0931 0.9035
11 50 0.0791 0.9111
12 53 0.0783 0.9181
13 48 0.0771 0.9244
14 32 0.0783 0.9303
15 50 0.0805 0.9359
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CHAPTER THREE

OPTIMISATION

3.0 INTRODUCTION
An incremental, or myopic strategy for a moving target
search, as illustrated by the example given in section
2.7, does not necessarily give the maximum probability
of detection. This was shown by Brown (1980) in the
case of infinitely divisible effort, and is
illustrated in the present case by the results given

in Chapter 6.

This chapter examines ways in which optimal strategies
may Dbe obtained using the search model developed in
Chapter 2. Two optimisation policies are considered in
section 3.1, and ways in which the optimisation may be
carried out for each case are discussed in sections
3.2 and 3.3. For cases where optimisation cannot be
achieved alternative methods of solutiom 1leading to

sub-optimal strategies are considered in section 3.4.
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3.1 CRITERIA FOR OPTIMISATION
The applications described in sectiomn 1.2 illustrate
some of the more common objectives of search planning,
which may be used as criteria under which optimal
search paths are sought. A common requirement is to
maximise the probability of detecting the target,
subject to some limit on the total available search
resources, Alternatively, the return on the cost
invested in the search may be of importance, with with
detection probability in relation to cost being the

relevant criterion.

Optimisation with respect to each of these
requirements is investigated in this chapter. In the
first case, total search resources are measured by the
number of looks available, and maximisation of
detection probability in a given number of looks is
considered. In the second case detection probability
per unit cost is optimised, again within the
constraint of a specified mnumber of looks. The
quantities that may be involved in the measurement of

search cost are discussed in section 3.3.

These two represent the most common optimisation
requirements, but are mnot the only possible criteria.
Pollock (1970), for example, considers the minimum

expected number of looks to detection in the two cell
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case. This approach, however, assumes unlimited search
resources are avaliable if needed, and may lead to
infinite solutions, Since, in practice, the available

resources are limited, this approach was not adopted.

3.2 OPTIMAL PROBABILTY OF DETECTION
An expression giving the probability of detecting the
target in a given number of looks can be obtained as

follows.,

Suppose that at some time ty the searcher is at a

known node I, where I¢X, the set of all nodes of the
search area. Assume that the target position
distribution at time t,, denoted by {m;(ty),ieX}, is
known, and consider a sequence of M+1 looks taken at

nodes I,J;,....Jy at times ty,ty4q,.+..tg4y. Such a

sequence of nodes will be termed a strategy.

Denote the probability that target is not detected by
the look at time t, given that it is undetected at any
time t’ < t, by P(t). The probability that the target
remains undetected after M+l looks is givem by the
product of these conditional probabilities for times
tk’tk+1”"’tk+M‘ Thus the total probability of

detection in M+1 looks, denoted by DM+1 is

M
1 - TT Plty,,) (3.1).
a:

D =
M+1 0
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Evaluation of Dyyq for any known strategy is
straightforward. Let My denote the probability that a
look taken at node J will not detect the target, given
that it is at node h (as previously defined in section
2.2), and denote the target position distribution at
time t,, by {ni(tk+a),iaX}. Then, if node J, is the
chosen search node at time tk+a' the corresponding
probability P(ty,, ) is given, by the usual rule for

conditional probability, by
P(tk+(l) = g ﬂh(tk+a) nJah (3.2).
The distribution {ni(tk+a)] may be obtained from

{“i(tk+a—1)} by use of equation (2.2). Thus, knowing

{"i(tk)} and the sequence of search nodes, Dy, ,, can be

found.
Obtaining an optimal strategy however, presents
problems. Denoting the sequence of search mnodes

JI'JZ""'JM by S, the maximum obtainable probability

of detection in M+1 looks starting at a fixed mnode 1

is
M B
Max[ Dy,q ] = Max[ 1 - ITOP(tk+a) ] (3.3).
S a=

This maximisation cannot easily be performed as will
be seen in the following sub-sections, where methods

of finding optimal strategies are examined.
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3.2.1 DYNAMIC PROGRAMMING

Dynamic pProgramming has Dbeen applied in the
optimisation of discrete stationary target search
problems, and some simple moving target problems.
Pollock (1970), for example, gave analytic solutions
by this method for some special cases of the two cell

moving target problem,.

Although equation (3.3) can be expressed as a dynamic
programming recursion, the application of this method
is of little practical use in this case, as can be

seen from the following analysis.

Let Vy,q({m;(t )} ,I) denote the maximum obtainable
probability of detection in M+1l looks, first looking
at node I at time te with prior distribution
{ﬂi(tk).iex}.

By assumption, I and [ni(tk)} are known, so

Vl({nl(tk)}'I) = 1 - l—)-(tk) is known.

From equation (3.3)

M

S 0

M
= Max[l—f’(tk)*’f’(tk)(l - II l_)(tk+(l))]
S a=1
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M
1—§(tk)+P(tk)Max[1 - ]._I P(tk+a)]
S a=1

I}

15

(3.4).

Unfortunatly, equation (3.4) is not readily solvable
because of the dependence of the distribution {m;(t)]}
at any time t > tk on the chosen search path, This can
be seen by inspection of equation (2.2). Writing
"i(tk+a+1) for nn' and ”i(tk+a) for n to make <explicit
the time dependence, and denoting the search node at
time ty., by J (all other notation being as defined

o

in section 2.2), equation (2.2) becomes

n.(t ) = 2 n. (t ) py: (AL)

k+a+1 h* "k+ J,h Fhi

* @ h -—————-— b - (3.5)
2 "wltgea) My on

Thus at each time tera+l the target position

distribution is dependent explicitly on the search

node Ja' and implicitly on the previous path

I,Jl.....J 1 (through the distribution {ni(tk+a)}).

a-—
It is also dependent on the search node Ja+1 chosen at

time tk+a+1 due to the dependence of the transition

probability p on the travel time At between nodes J,

and Ja+1.
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The only restriction that can be placed on {n,(t)} at

any time t > t,, when the path is unknown is
n,(t)>0, 2ni(t) = 1.
1

Thus the dynamic programming state space for a search
area of N nodes is XxRN where X = {1,2,..N}, and R is
the non-negative real numbers (with the additional

constraints given above).

The complexity of finding optimal feasible solutions

to this problem is prohibitive for all but simple
cases, Eagle (1984) »presents a method of removing
unnecessary vectors from the state space in a less
complex moving target model. The method however
requires the solution of a potentially large linear
programming problem, which would make its application

to the present model unsuitable.

3.2.2 EXHAUSTIVE EVALUATION OF STRATEGIES

Optimal strategies can in principal be found by
evaluation of detection probability for every possible
strategy, enabling the strategy or strategies giving

the highest detection probability to be found.

For this purpose eguation (3.3) may be re-writtem in

the following way:
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M

Max[ Dy, ] =1 - M;n[ rIOP(tk+a) ]
a:
_ M
=1 - P(ty) Min[ TT P(ty, ) 1]
S a=1

(since ?(tk) is known) (3.6).

An optimal strategy is therefore one which minimises
the overall probability that the target is unde tected

in the M looks taken at times tk+1'tk+2""'tk+M'

For every ©possible sequence S, the corresponding
values F(tk+a)' a =1,...,M, may be found in the way
discussed in section 3.2, and hence an optimal

strategy can be chosen,

As the target position distribution at each stage is
dependent on the sequence of search nodes to that
point, the evaluation and minimisation is most
economically performed as a depth first tree search,
backtracking through the tree until all possible
strategies have been considered. The order of
evaluation of non—-detection probabilities is
illustrated in diagram 3.1 in the case of four 1looks
taken in a search area of three nodes. As explained in
section 2.6, further economy <c¢an be made by
considering the nodes at each step in ascending order
of distance from the previous search node. (This

refinement is not shown in the diagram.)
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In practice, the size of problem that can be optimised
in this way is severely limited. This is because a
sequence of M+1 looks in a search area of N nodes
generates NM different strategies, (as can be seen
from diagram 3.1). The volume of computation therefore
grows exponentially with the number of looks. Although
ever—increasing computing speeds may make this
approach more feasible in the future, at present only
problems of a limited size can be optimised in this
way if all possible strategies have to be evaluated.
However, in the following sub-sectionm a condition is
found under which some strategies may, theoretically,

be eliminated from evaluation.

3.2.3 ELIMINATION OF STRATEGIES

Unfortunatly, since equation (3.6) requires the
minimisation of the product of non—-detection
probabilities P(ty, ), @ = 1,...,M, each of which is
in the range 0 ¢ P <1, no strategy can be chosen or
eliminated on the basis of the partial product
gI P(tk+a)' U < M (except where this is zero, giving
a=1

certain detection). A criterion has however been found
which allows a node Ja to Dbe eliminated from

consideration as search node at time ty+a- The

criterion is an extension of the result given by Kan

(1977) .
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Kan considers a search for a target moving from box to
box in a search area of N boxes. The search model is a
particular case of the model considered here, with the
following restrictions:

1) Searches take place at unit time intervals with
target transition probability from box to box
between these times described by a single Markov
transition matrix, (denoted by {p;;} in the
following equation (3.7)).

2) A target can only be detected if it is in the ©box

in which the 100k is taken, i.e. = 1 whenever

nij
i # j. (For simplicity the probability of detection

(1-m;;) is denoted by @#; in equation (3.7)).

Theorem 1 of Kan may be written in the following way.

If at time t there exists a box J such that:

ﬂJ(t)ﬂJth 2 ni(t)bipih for all h,iegX (3.7)

then to maximise the probability of detecting the

target an optimal strategy looks im box J at time t.

A comparable result for the present search model may

be obtained as follows.
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Let S' denote the final M looks of a strategy S of

length A+1+M 1looks, A > 0O, and assume that the initial

A search nodes of S have already been decided. In
order to choose the next node, T, of the strategy in
an optimal way, J must ©be chosen so that the

probability of detection in the strategy JS'is a

maximum.

Define the following notation.

Let Fy,,({n;},TS') = Probability of detection in M+l

looks with prior distribution
{rn.}, first 1looking at mnode T,

1

then following strategy S'.

Also, let GM(i,S')

=

Probability of detection in
looks following strategy S' given

target at mnode 1i.

(As the first A nodes of S are known, {"i} is known.)

To emphasise the dependence on strategy, denote the
probability that the target is undetected by the 1look
taken at mnode J by ?J. and the target ©position
distribution following this unsuccessful look and
subsequent movement by {n{]. Then, by equationm (3.2),

omitting the time dependence for simplicity,

PJ = % My MTh (3.8)
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and, by equation (3.2)

J -

Ty = Enthhph1

E“thh

= E"thhphl

h———: ————— (3.9)
Py

By comparison with equation (3.4), again omitting the
time dependence, the probability of detection for

the sequence of 1looks JS’' may be expressed as follows.

Fyyq({n;3,787) =1 - Py + ByFy({n].s")

_— - D D . J H '
=1 Py + PJZ n3Gy (i, S")
1

(by the usual rule for conditional probability),
=1 - PJ- + PJ} [h——“:_———] GLI(1|S')
i
(by eqgmation (3.9)),

1

Now since Ephi = 1 for all heX, equation (3.8) may be
i

expressed as

Py = zphig“thh
1

- zE“thhphi
ih
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Thus from equation (3.10),

FM+1({”1}"TS') =1 - EEﬂh‘nJhphl(l - GM(i'S’)) (3.11)
ih

The conditional probability Gy(i,8’) is independent of

previous search strategy, thus if for some JeX

%nhnlhphi(AIt) £ ENﬁnthhi(Azt) (3.12)
h

for all LeX, ieX, A,t,A,t ¢ {0,1,2,...1,

where {rn;} and {n{} are possibly different target

position distributions, as explained below, then

Fys ({m33,38") 2 FM+1({ni]’LS')
for any LegX and any sequence S’,
Hence, if there exists a node J for which condition
(3.12) holds, then J must be chosen as the next search
node in order to give optimal probability of detection

in the final M+1 looks of strategy S.

In equatiom (3.12), the distribution (n}} may differ
from {ni} if nodes L and J are at different distances
from the previous search node. These distances are
shown as D, and D{ in diagram 3.2, which illustrates
the choice between sequences JS' and LS'. Also shown
are the distances D, and Dj to the first node of
sequence S' from J and L respectively. These determine

the time intervals Ayt and At which in gemeral will

not be known.
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Initial A Nodes
of Strategy S
(known)

J
Final M Nodes .
of Strategy S .
(= Strategy S') .
(unknown) .

X Ath pode of strateﬁy S
J,L alternative (A+1)*
nodes of strategy S
Y first node of strategy S8’

D,,D{ known distances
D,,Di unknown distances

Diagram 3.2 Showing the Choice Between Two
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Condition (3.12) has a simple physical interpretation.
The quantity g"h"Jhphi(Alt) is the probability that
the target will be undetected by the look taken at
node J and be situated at node i at time At after

that look is taken.

In practice it is unlikely that any node will satisfy
condition (3.12), however the <converse of this
condition may be used to eliminate mnodes from
consideration at each level of the tree search in the

following way.

Suppose, given the first A nodes of S, there exists a

node K for which

XTpMgpPhi(Aat) > ¥ pmLpPpy (BA2t) (3.13)
b h

for some LeX and all ieX, Aj;t,A,t ¢ (0,1,2...},
then K <cannot be the A+1th node of S8 if S is to be

optimal,.

To illustrate the use of comditions (3.12) and (3.13),
consider the nodes labeled A, B and C at level 1 of
the search tree shown in diagram 3.1. If, say mnode A
satisfied condition (3.12), then the branches
containing nodes B and C could not <contain optimal
strategies so could be ignored, thus eliminating two

thirds of the possible strategies. Alternatively if
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condition (3.12) could not be satisfied, but say node
C fulfilled condition (3.13), then the branch
containing node C could be ignored, and only
strategies in branches A and B need be compared for

optimality.

It is clear that if one of these conditiomns could be
found to hold, particularly at the early decisions of
the search, a significant reduction could be achieved

in the number of strategies to be investigated.

However, the application of these conditioms involves
a substantial amount of computation. This is
particularly wasteful if nunsuccessful, because the

comparisons have to be made across the tree at each
level, so losing the economy of the depth first

approach.

Some preliminary investigation of the usefulness of
these criteria indicated that in a few cases up to 10%
of possible strategies could be eliminated, but in the
majority of cases little or mno reduction in the number
of paths could be made. In many cases full
implementation of these <criteria would increase,
rather than decrease the computation time. For this
reason the criteria were mnot incorporated in the

optimisation programs used to determine the strategies

presented in Chapter 6.
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It is clear from the above discussion that altermative
me thods of reducing the volume of computation must be
considered, in order to make the calculation of search
paths feasible. Some alternative approaches, leading
to strategies that may not necessarily be optimal, are

discussed in section 3.4.

3.3 DETECTION PROBABILITY PER UNIT COST
The costs involved in a search operation vary
greatly with the application considered.
Mathematically search cost is frequently defined as a
function of the node or area searched. Black (1965)
defines search cost in this way in a statiomary target

model as does Kan (1977) in a moving target case.

In a practical search operation over a two dimensional
area, for example an airborme search, costs will be in
terms of manpower, equipment and fuel. In general
these costs depend mainly on the duration of the
search, thus for simplicity it is assumed that search
cost is proportiomnal to the time taken to complete the

search operation.

As only instantaneous search is being considered, and
the searcher is assumed to move at constant speed, the
search time is determined by the distance travelled by

the searcher. Thus in order to maximise the
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probability of detection per unit cost, the equivalent
problem of maximising probability of detection per

unit distance, in a given number of looks, is

considered.

Detection probability per unit cost in a given number
of looks may be defined in the following way. Consider
again a sequence of M+1 1l1looks and let Rk be the
distance between search nodes Jk—l and Jk (with
Jo = I). Denote the detection probability per unit
cost in the M searches following the initial search of

node I by C(M), with all other notation as previously

defined.

Then C(M) may be defined by

1
C(M) = |  memmemmm— e (3.14)
M
2 Ry
k=1
Alternatively, detection probability per unit cost

could be defined over the M+1 1looks as

C(M+1) =  ——————————— (3.15)

M
E Ry with Ry = 0.
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However, the initial node I is pre-determined,and there
is no associated travel distance to that node, so

definition (3.14) was chosen in preference.

Difficulties would arise in the calculation of C(M)
from equation (3.14) if E Ry = 0. To avoid this the
restriction is made that ihe searcher is not allowed
to take consecutive looks at the same mnode, thus
imposing a minimum travel distance of 1 unit

between consecutive search nodes.

An alternative approach might ©be to introduce a
nominal cost of looking at each node, the total cost
of each look being composed of this nominal cost plus
the distance cost. For simplicity, however, the first

alternative was chosen.
3.3.1 OPTIMISATION

The mazximum probability of detectionm per unit cost can

be expressed, msing definition (3.14) as

Max C(M) = Max | ———————————-— (3.16).

Several approaches were taken to this maximisation

problem, but as in the previous case, the optimisation
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is not, in general, easily achieved. Dynamic
Programming again proved to be unsuitable, In this
case equation (3.16) appears not to be expressable as
a dynamic Programming relation, as the sum in the
denominator prevents the expression from being
separated in a suitable way. A sequence of nodes
maximising C(M) can be found by exhaustive evaluation
of strategies in a similar way to that described in
section 3.2.2, but as previously discussed, this is

only feasible for a limited range of cases.

A condition comparable with (3.12) does not appear to

be obtainable in this case, again because of the
inseparability of equation (3.16). However, a simple
alternative criterion can be given, which can be of

use in some cases in reducing the number of strategies

to be investigated in the exhaustive evaluation.

The condition stems from Oobserving from equation

(3.14) that, for any strategy,

C(M) £ ———- (3.17).

Now, suppose for some strategy S with path 1length
E Rk = L, it is known that the total probability of
k

not detecting the target is H;. Then for strategy S,

equation (3.14) gives
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C(M) = ———-- (3.18).

It then follows from equation (3.17) that any strategy

with path length L+W such that

————— < ————- (3.19)
cannot give a higher probability of detection per unit

distance than strategy S, whatever the detection

probability for that path.

Rearranging equation (3.19) gives

W > mm==—- (3.20).

Denoting the smallest value of W for which equation

3.20 holds by o,

« =  ——-—u- (3.21).

Thus any strategy of path length L+W with W > a can be

ignored in the optimisation process.

This condition can be very conveniently incorporated
into the exhaustive optimisation process to provide an
upper limit to the path length of those strategies

that need to be evaluated. For a search consisting of
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M looks (following an initial look at node I) this can
be done in the following way. The application of the
restriction discussed in section 3.3, disallowing
successive looks at the same node, gives a minimum
path length of M units. If the optimisation is carried
out using the depth first tree search, with nodes
taken in order of ascending distance from the previous
search node, as previously discussed, a value of Hy
for this minimum distance is the first to be
calculated. This can be used to find an initial value
for a. As the optimisation proceeds, this value can be
updated whenever a strategy giving a higher

probability of detection per unit distance is found.

To illustrate the use of comdition (3.21) suppose
that, in a search of 5 looks (following the initial
look), the probability of detecting the target with a
strategy S of minimum path length is 0.6. This gives

Hi = 0.4, and L = 5, so from equation (3.21)

5 x 0.4
a = - = 3.3
0.6
As path 1length <can only take integer values, any

strategy with path length greater than 8 units will

therefore give a lower probability of detection per

unit distance thanm strategy S.
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It can be seen from the results given in Chapter 6
that the values quoted here are not untypical of those
that can be expected in some cases. Since, on the 91
node grid shown in diagram 2.6, paths of up to 50
units are possible for a strategy of 5 looks,
significant savings in computation can be made in

cases such as this.

However, where detection probability is 1lower, the
saving is less significant. This can be seen from
diagram 3.3 which shows a graph of a against detection
probability (1 - Hp) for various values of L. It can
be seen from the graph that condition (3.21) is of
most wuse when high detection probability is obtained

in minimum path length, giving a low value of a.

Considering the case where L = 10, with a detection
probability of 0.4, a value of @ = 15 is obtained from
the graph, giving a maximum total path length of L + W
= 25 units. While this still represents a 50%
reduction in maximum path length for 5 looks, the

saving in computation will be insufficient to allow

optimisation.
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In such cases it may be possible to put an upper bound
B (1 on the maximum achievable detection probability,

allowing equation (3.19) to be replaced by

leading to a lower value of o. This might be possible,
for example, if the search sensor had poor detection

capability.

In general however, in cases where optimisation is not
possible with the aid of condition (3.21), it will be
necessary to employ the alternative methods of

solution discussed in the following section.

3.4 SUB-OPTIMAL SOLUTIONS
This section considers further ways of reducing the
amount of computation in the exhaustive optimisation
process, in cases where the application of conditions
(3.13) and (3.21) are insufficient. The methods
produce solutions which may not necessarily be optimal
but, as demonstrated by the results given in Chapter

6, are acceptable approximations to optimal solutions.
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Three methods of solution are considered. These are: -

1) Planning the search path to a limited horizon.

2) Limiting the distance travelled by the searcher
between consecutive search nodes.

3) The introduction of a moving grid system.

The first two methods have been used extensively in
obtaining the results shown in Chapter 6, the third is
introduced to enable the model to be applied to a

search for a target moving through a large area.

The methods are discussed below in relation to the
optimisation of detectiom probability, but are equally

applicable to optimisation with respect to cost.

1) Limited Horizon.

As stated in section 3.2.2, the number of possible
strategies for a sequence of M + 1 looks in a search
area of N nodes is nM (assuming that the first node is
pre—determined) . Thus the computation time increases
exponentially with the number of looks over which the
optimisation is carried out. One method of reducing
the computation time is to plan the strategy in a step
by step manner, optimising over only a limited number

of future looks before each decision is made.
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In a sequence of M+1 looks starting at node I1 this
may be achieved by finding an optimal strategy
(I{,77.35....7g) for the first K+1 of these looks. The
node Jq is taken as the next search node of the sub-
optimal path, it then becomes the initial node I, of
the optimisation procedure over the next K+1 looks and
the process is repeated. The procedure is carried out
M-K+1 times, the last giving a path (Iy_g+1°

J1.35,...Jg) which is optimal for the last K+1 looks.

The number of possible strategies is therefore reduced
from NM of length M+1 nodes to (M-K+1) x NK of 1length
K+1 nodes. Thus for say, 11 looks over 91 nodes,
optimising over 3 looks ahead, the reduction will |Dbe
from 9110 strategies of 11 nodes to 8 x 913 of 4 nodes

with a corresponding reduction in computation time.

Optimal strategies cannot always Dbe found for
comparison, but results obtained by restricting

planning horizon in this way suggest that this method

of solution gives strategies with detection
probability that is close to optimal. In the <cases
considered in Chapter 6, it is frequently found that

the detection probability obtained from a myopic
strategy (which is optimised over just one look ahead)
differs only minimally from an optimal value, the

difference being typically of the order of 2%.
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2) Limited Distance.

An alternative method of reducing the number of
strategies considered is to restrict the maximum
distance that the searcher is permitted to travel
between consecutive search nodes. Again taking the
example of M + 1 1looks over 91 nodes. If the searcher
is restricted to move at most two units between looks,
it can be seen from the grid illustrated in diagram
2.9 that at each decision there is a choice of at most
19 nodes. This restricts the number of strategies from
91M ¢, at most 19M. again giving a substantial saving

in computation,

From a practical point of view, restricting searcher
movement in this way is often more realistic than
allowing a free choice of search node. For example, a
searcher physically travelling over a two dimensional
search area is unlikely to pass over a search mnode

without investigating it.

The results discussed in Chapter 6 indicate that, in
the majority of cases, the searcher will choose to
move only a limited distance between looks (typically
no more than two). Thus restricting searcher movement
in this way is unlikely to greatly affect the overall
detection probability. Some exceptions to this are

discussed further in Chapter 6.
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3) Moving Grid.

The procedures described above allow sub-optimal
solutions to be found for more prolonged searches over
larger search areas. There is still however a
comparitively small limit to the size of search area
that can be used. This is because updating target
position and optimising over many hundreds of nodes
would be prohibitive in terms of computer time and
available memory. In order to apply the model to
searches over a larger area the concept of a search

grid moving with the searcher is introduced here.

One arrangement for such a grid 1is illustrated in
diagram 3.4. The diagram shows a hexagonal grid of
nodes T; termed the target grid over which a target

position distribution (= ie Tq1 is known, with

i ’
2”i=1' The searcher is assumed to be situated at the
i

central node (I). Surrounding node I is the grid of

nodes S, from which the next search mnode may be

chosen.

Suppose node J is the next search node. A new target
grid Ty centred on J is defined as follows. Nodes
belonging to both T; and Ty, retain the same target
position probability, all other =nodes in T; are
ignored. Nodes mnow in T, but not in Ty are given

probability O. The target position distribution omn T,
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is updated and normalised following the look at node

I, and the process is repeated.

At each stage the true probability that the target 1is
in area T must be maintained in order to calculate the
probability of detection at each look. The procedure
is carried out until either the required number of
looks has been made, or the ©probability that the

target is in area T falls below a specified level.

In order to minimise the error inm computed detection
probability caused by the truncation of the target
distribution, the size if grids S and T are chosen so
that
radius of T > radius of 8§ + R + 1

where R is the maximum range of detectiom of the
searcher. This ensures that all nodes 'visible' from
grid S are contained within grid T, and that the edge
nodes of T, which are likely to be the most in error,

are outside the range of detection.

It is clear that this approach is most suitable in
cases where the direction of motion of the target is
well defined as this will result in the least 'loss of

probability’ when the target grid is moved.
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The application of the restrictions discussed above
allow search strategies to be calculated for grids
that might realistically represent a physical search
area. It is often necessary to apply more than one
restriction, i.e. restricting movement and optimising
over a limited horizon, but in cases where comparisons
can be made, the results obtained compare favourably
with optimal solutions. An analysis of the methods of
producing search strategies discussed in this chapter

is given in Chapter 6.
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CHAPTER FOUR

ANALYSIS OF THE SEARCH MODEL

4.0 INTRODUCTION
Investigation of the search model developed in
Chapter 2 can be considered from two aspects. These
are, firstly verifying that the algorithm given by

equation (2.2) produces an acceptable updated target

distribution, and secondly that search strategies
generated from this distibution are, by some measure,
sensible. The first of these aspects is investigated
in this chapter, while verification of search

strategies is considered in Chapter 6.

The updated distribution is considered with respect to
the individual components of the search model. It is
shown to be consistent with predicted values except in
relation to target speed. The model of target speed 1is
shown in section 4.3.1 to produce anomalies in the
target distribution which might unacceptably influence
the choice of search strategy. An alternative model of

target speed is given in Chapter 5.

109



4.1 ELEMENTS OF THE SEARCH MODEL
The nupdating algorithm, equation (2.2), takes three
components, initial target position, searcher
detection capability and target movement, to calculate

a revised estimate of target wherabouts following each

look. Equation (2.2) is reproduced here as equation
(4.1):
2 mh MNjh PnilAt)
ﬂ,i = h ——————————————— (4-1)'
2 Th Mjh
where "h’"'i denote target positon probability,
njh denotes non-detection probability,
and phi(At) denotes transitionm probability for the

time interval At,

as defined in section 2.2.

In order to verify that the algorithm gives sensible
information about target position, the updated
distribution is considered, in the following sections,

with respect to each of the three components.

4.2 INITIAL DISTRIBUTION AND DETECTION CAPABILITY
The initial target distribution {nh, heX}, and the set
of mnon-detection probabilities {"jh' j+heX} (giving
the probability that a target situated at node h will
not be detected Dby a look taken at mnode j). are

assumed to be known parameters of the algorithm, and
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are thus not considered with respect to modelling.
However, the effect on the updated distribution of
varying both initial target position and detection

capability has been investigated.

Target distributions obtained from a computer program
implementing the algorithm, have been found in all
cases to Dbe in accordance with expected ~values in
relation to these parameters. (This is illustrated by
the results discussed in sections 6.2 and 6.3.) This
observation 1is supported by the following amnalytic

investigation of two special cases.

Consider first the case where the target is
stationary, and the searcher has zero probability of
detection at any node. As no information is gaimned
from the search, and there is no target movement, the
target position distribution should remain unchanged.
This may be verified by setting

Mjn = 1 for all j,heX,

and the transition probabilities

1 if h=i

0 if h#i.
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Equation (4.1) then gives

Ty

ﬂ = ——— — —

2 Th
h

= LY since 2 Ty = 1.

Thus the distribution is unchanged, as expected.

Next <consider the case where, again the target is
stationary, but where the searcher has certain
detection at the search node i and zero probability

of detection at all other nodes. In this case the
updated target position probability should be reduced
to zero at the search node. Again this may be verified

by setting

0 if j=h
'n.h =
J 1 if j#h
and
1 if h=i
Phi =
' 0 if h#i.
Then, by equatiom (4.1)
Ty Mji Pii
n’. = e las____
i <
L ™ Mjn
h
0 if Qo= j
= n.
- if i # .
n
h
h#j
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Thus the probability density function becomes zero at
the search node as expected, and is increased
proportionally at the remaining nodes to normalise the

distribution.

This argument may be extended to other simple cases,
such as where there is certain detection at mnodes
other than the search mnode, or where detection
probability at the search node takes some value other
than 1, where a corresponding reduction im position

probability will be seen from equation (4.1).

4.3 TARGET MOVEMENT
Target motion, discussed in sections 2.4 and 2.5, is
specified by independent distributions of speed and
direction of movement, which are <comverted into
transition probabilities for  use in the updating
algorithm. The set of tramsition probabilities
{ppij(At), h,ieX}, giving the probability that a target
situated at node h will move to node i in the time
interval At, is formed from the two distributions by
use of equation (2.17). In order to validate the
target movement component of the algorithm it is

necessary to check that these transition probabilities

adequately represent the underlying speed and
direction distributions when applied in equation
(4.1).

113



4.3.1 TARGET SPEED

Target speed is given by a probability density
function on the interval [0,Vimax]+ scaled to [0,1].
This is discretised by use of equation (2.,13) to give
the probability that the target moves an integral
number of units in a given time interval. As the
discussion in section 2.5.2 indicates, this
discretisation is wunsuitable where target speed is
slow in relation to searcher speed. However the
following results show that, even where the ratio of
target speed to searcher speed is higher, this
approach can lead to unacceptable distortions of the

target speed distribution.

Some preliminary analysis was carried out by imposing
various restrictions on searcher movement to force
different time intervals between looks. The results
showed some anomaiies in target motion which were
investigated further. The effect is most clearly shown
by considering the case where the target is initially
situated at a given node, and moves in a known
direction, so that the resulting target distribution
is spread along a line of nodes as illustrated in
diagram 4.1. Setting Mjn = 1 for all j,heX gives zero
probability of detection, so any change in the target
distribution will be due only to target movement, and

should be independent of the number of looks taken.
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Diagram 4.1 Target Movement in a Known Direction
from Initial Node I

This case was examined using various values of
searcher to target speed, both skew and symmetric Beta
distributions and wvarious time intervals between
looks. Examples of the resulting target distributions
are shown in diagrams 4.2 to 4.5. The diagrams, which
show target distribution after a period of five time
intervals (i.e. the time required for the searcher to
move five units), were produced by placing the
following restrictions on searcher movement. Firstly
the searcher was constrained to move exactly one unit
between consecutive looks. Diagrams 4.2a to 4.5a show
the resulting target distribution after five looks had
been taken. Next the searcher was forced to move five
units between looks, diagrams 4.2b to 4.5b show the

resulting target distribution after just one look.

Both sets of distributions represent target movement
after five time units, so they should <correspond,
however significant differences can be seen between
the two sets. The difference is caused by the way in
which the speed distribution is discretised to give

the distance travelled in different time intervals.
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Distribution of Target Position in the Case

V=30 Vinay=20 Vipode=10 a=3.1 p=3.1

Key R = distance moved by target
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Position in the Case
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distance moved by target
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Consider the case illustrated by diagrams 4.2a and
4.2b. These distributions result from a symmetric Beta
distributions where ¢ = f = 10, and the ratio of
searcher speed to maximum target speed is 3:2, The
probability that the distance travelled by the target
is R units, when the searcher moves N units between

looks, is given by equation (2.13) as

1
K(R+3)
P(RIN) = Ax? (1 -x)% dx
K (R-7)
3
for 0 ( x £ 1 with K = ——— , and A constant.
2 N
The resulting discretisation for the cases N =1 and
N =35 respectively are shown in diagrams 4.6a and

4.60h. It can be seen from the diagrams that the
discretisation is much coarserx in the first case than

in the second.

The target position distribution shown in diagram 4.2a
results from five applications of equation (4.1) using
transition probabilities formed from the coarse
discretisation shown in diagram 4.6a. Since in one
time unit the target has only a small probability of
moving, the repeated application of this results in a

target position distribution heavily biased towards

the starting node.
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B(x)'
0.4-]| RS = S
I p4 o \n
|
|
0.3-1
|
|
|
0.2-1
|
I
I
0.1-1
|
|
|
0.0-1

Diagram 4.6b Showing the Discretisation of
B(x)=Ax2(1-x)? in the Case N=5

(Vertical scale = A.10_5)
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In contrast the position distribution in diagram 4.2b
results from one application using the discretisation
show in diagram 4.6b, and can therefore be comnsidered

to be the true representation of target movement after

five time intervals.

The effect is clearly most pronounced in cases where
the discretisation for one time unit results in a high
probability of the target remaining stationary, as in
the case just considered, or in a high probability of

it moving, as in the case illustrated in diagram 4.5.

However, even in cases where the problem is less
marked, this model of target speed is far from
satisfactory because the differences in resulting
target pbsition distribution depend on searcher
strategy. Hence, when optimising, the search strategy
will be artificially influenced by the differences in
target distribution, Alternative approaches to
modelling target speed are examined in Chapter 5,

where a revised model is presented.

4.3.2 TARGET DIRECTION

The direction component of target movement was also
jnvestigated. This was done in conjunction with target
speed, as the example given in section 4.3.1

illustrates, and also independently by setting the
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probability that the target moves one unit in each
time interval equal to omne. The latter allows the
distance moved by the target to be known exactly,
enabling the direction component of the motiom to Dbe

clearly identified.

The results obtained were, in all cases, found to be
consistent with anticipated target movement. It must
however be noted that, in cases where the direction of
motion is uncertain, the assumed Markov property of
the motion, dicussed in sectiomn 2.1, results in the
spread of the target distribution being rather slower

than might at first sight be expected.

This may be illustrated by considering the case where

the target is initially at the central node, and has
unknown direction of movement. With notation as
defined in section 2.4, this is given by setting the
direction distribution d(€) = 1/6 for € = 1,2,..6,
where @ denotes direction of movement. Setting njj < 1
for all i, jeX, and the probability that the target
moves one unit in each time interval equal to 1, as

previously discussed, the target position distribution

obtained after three time intervals is shown in

diagram 4.7.
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* * * *
.0046 .0139 ,0139 .0046

* * * * *
.0139 .0278 .0278 .0278 .0139

* * * * * *
.0139 .0278 .0694 .0694 .0278 .0139

* * * * % * *
.0046 .0278 .0694 .0556 .0694 .0278 .0046

* * % * * *
.0139 .0278 .0694 .0694 .0278 .0139

* * * * *
.0139 .0278 .0278 .0278 .0139

* * * *
.0046 .0139 .0139 .0046

Diagram 4.7 Target Position Distribution
After Three Time Intervals

It can be seen that the target still Thas a high
probability of being at, or around, the central node
after moving three units. This is because at each node
the target has equal probability of moving in any
direction, and thus has a high probability of
returning to mnodes previously visited. This is a
feature of the Markov assumption of target movement,
and might be consistent with the movement of a crash
survivor wandering aimlessly around, or with a
military target taking evasive action by <changing
direction frequently to avoid detection. It would not

however be a suitable model in a case where the
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direction of movement was initially unknown, but omnce

chosen was assumed to be maintained.

4.4 CONCLUSION
The discussion in the preceding sections indicates
that the updating algorithm, developed in Chapter 2,

produces sensible target position distributions in

relation to all aspects of the search model, with the
exception of target speed. An altermnative, more
acceptable, approach to the problem of discretising

the speed component of target motion is developed and
discussed in Chapter 5. Further analysis of the search
model with regard to detection probability, search

strategy and optimisation is givenmn in Chapter 6.
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CHAPTER FIVE

REVISED MODEL OF TARGET MOVEMENT

5.0 INTRODUCTION

It was shown in section 4.3 that the discretisation of
target speed introduced in section 2.5.2, leads to
unsatisfactory anomalies in target movement when
applied in the updating algorithm. Two alternative
methods of overcoming the problem of target movement
are discussed in this chapter. The first method,
involving a separate grid for target movement, was

found to give some improvement in target motion.

However the motion is still unsatisfactory, and the
me thod is computationally wunsuitable. The second
method, updating the target distribution at unit time
intervals, results in a target position distribution

which is somewhat flatter than the true distribution.
However, the distribution is a significant improvement
over that produced by the initial model, and is

sufficiently <close to the true distribution to Dbe

acceptable.
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5.1 DOUBLE GRID SYSTEM
The anomalies in target movement identified in section
4.3 are due to the very course discretisation of the
target speed distribution that results when the
searcher moves only short distances between looks. An
initial attempt to reduce this effect was made by
introducing a second, more closely spaced grid for
target movement, the spacing of the target grid being

chosen so that the nodes of the two grids coincide.

An example of this double grid system is illustrated
in diagram 5.1. The diagram shows a target grid
superimposed on the search grid, the target grid
having node spacing one third of that of the search
grid. With this arrangement, the searcher is still
restricted to travel integer distances, while the
distance travelled by the target can take the values

o, 1/3, 2/3, ... etc.

* % % % x % * *x * *x * * *k % * *

@+ @+ +@* 2@+ @« + D+
* * % % % % % % * & ¥ * %k * *k *
k *k * %k Kk %k % * * ¥ * % % ¥ *

C)* *(Z)*:c()* *(:)* *C)*‘* C)
¥ & % = k ok %k & % % % £ % & % * %
£ % k£ % % % % * & *x % * % * *

oo ononior
* % % K % % % ok % & * & * * % *
Diagram 5.1 Double Grid
Key * nodes belonging to target grid

nodes belonging to both target
and searcher grid
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It was found that this approach gave some improvement
in target motion, however the effect shown in diagrams
4.2 to 4.5 was still present. This is because,
although the discretisation of the speed distribution
is less coarse, it is still different for different
time intervals. Thus, even with a very fine spacing
for the target grid, it is 1likely that this problem

would still be apparent.

In addition, this method has the following
disadvantages. The introduction of extra nodes for
target movement significantly increases the
computation time required for updating, thus
magnifying the problem of optimisation. Also the use
of separate grids places a greater restriction on the
movement of the searcher than of the target, which is

undesirable.

Because of the problems outlined above, an alternative
approach, not presenting these disadvantages, is

discussed in the following section.

5.2 UPDATING AT UNIT TIME INTERVALS
An alternative approach to the problem of modelling
target movement is to update the target position
distribution at equal time intervals, irrespective of

whether a look is to be taken at that time.
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This may be performed by considering the updating
algorithm in the form discussed in section 2.2.1.
There it was shown that updating using the algorithm
given by equation (2.2) is equivalent to updating in
two stages, firstly applying equation (2.3) to allow
for information gained from a look, and then applying
equation (2.4) to give target movement prior to the
next look. Equations (2.3) and (2.4) are reproduced
below as (5.1) and (5.2), where 7;% and n;® are the
position probabilities at node i updated for search
and for movement respectively, (all notation being as

defined in section 2.2).

n = T Mus

’ -=--12 (5.1)
£ T"h Mjh

o= g”h pPhi(At) (5.2)

Assume for convenience that the searcher takes unit
time to travel between adjacent nodes, hence the time
interval between looks is always an integral number of
time units. The target position distribution can
therefore be updated at unit time intervals, applying
equation (5.2) to give only target movement at those
times when no look is taken, and equation (2.2) (i.e.
equations (5.1) and (5.2) combined) to allow also for

information gained at times when a look is taken.
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Updating in this way ensures that the modelling of

target movement is independent of searcher activity.

5.2,1 TRANSITION PROBABILITIES

In order to update at unit time intervals, transition
probabilities must be found to represent the known
distribution of target speed. Clearly it is not
sufficient to simply use the discretisation of the
speed distribution for one time interval given by
equation (2.13) because, as shown in section 4.3.1,
repeated application of this results in distorted
representation of target movement. As an altermnative

to this the following approach was taken.

Assume that the initial target position distribution
is known at time tg. and that updating is to be
carried out at unit intervals tg, top,... following tg.
Let the time interval between ty_q and ty be interval

N, and define the following events:

I,N = target moves I units in interval N.
R,ty = target moves R units in the time interval
tNy—to (of length N units).
Also, the additional assumption is made that the

maximum speed of the target is no greater than the
speed of the searcher. This restrictiom is  not

unrealistic because, if the searcher was unable to
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move at least as fast as the target, the target could
outrun it. With this restriction the target is not
able to move more thanm one distance unit in each time
interval. That is, it can either move 0 units or 1

unit in any interval N, hence for all N,

P(O,N)

It

1 - P(1,N) (5.3).

For N > 1 the probability that the target does not
move in interval N can be expressed as a weighted sum
of probabilities conditional on its movement in the
previous N-1 time units. Thus

N-1

P(O,N | R,ty_9).P(R, ty_q) (5.4).
R=0

P(0,N)

In order to find P(0,N) for any N > 1 the components

of the sum may be evaluated in the following way.

If the target moves R units in N time intervals, this
can occur in one of two ways: by moving R umnits in the
first N-1 intervals and O units in interval N, or
moving R-1 units in the first N-1 intervals and 1 unit
in interval N. These events are exhaustive and

mutually exclusive, so the elements of the sum are

given, for R > 0, by

P(O,N | R,ty_q) .P(R,ty_1) =

, - P(1,N | R-1,ty_q1).P(R-1,tNn_1)
PR o) ( N-1 N-1 (5.5)
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and in the case R = 0,

P(O,N | 0,ty_4).P(0,ty_q) = P(O,ty) (5.6).

Also, for any R > 0 and N > 1

P(1,N | R-1,ty 4) =1 - P(O,N | R-1,ty_q) (5.7).

Now for any R, P(R,ty) = P(RIN), where P(RIN) is the
probability that the target moves R units given that
the searcher moves N units, as defined in section

2.5.2. Hence P(R.tN) may be evaluated by use of

equation (2.13):

K (R+3)
P(R, ty) - s(v) dv (5.8)

1

K(R-3

The probability that the target does not move in the
first time interval, P(0,1) may be obtained directly
from equation (5.8). Then for any N > 1, the elements
required in the evaluation of P(O,N) by equation (5.4)
may be found by use of equation (5.6) for the <case

R = O, and then equations (5.7) and (5.5) for

successive values of R.
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Having found P(O,N), P(1,N) may be found from equation
(5.3). A set of transition probabilities for use in
the updating algorithm, can then be constructed for
each time interval as follows. Let phi(N) denote the
probability that the target moves from node h to node
i in time interval N, given that it is at node h at

time tN-1 then

P(O,N) for h = i,
Phr;(N) = P(1,N).d(6y;) for h,i 1 unit apart,
0 for h,i > 1 unit apart,

(5.9)
where ehi is the direction of travel from node h to
node i, and d(6,.) is the direction probability as

defined in sectiomn 2.4.2.

Although this approach requires a different set of
transition probabilities for each time interval, there
will only be at most sevem non-zero values associated
with each node. As the assumption was made in section
2.4 that target motion is independent of position,
these values will be the same for all nodes of the
search area. Hence it is only necessary to store the

set of seven values for each time interval instead of

a full transition matrix.
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The maximum number of time intervals that need be
considered can be calculated from the number of 1looks
taken multiplied by the maximum distance between any
two nodes of the search area. For example, a search
consisting of 10 looks over an area with maximum node
separation of 10 units will require no more than 100
time units to complete. Hence the transition
probabilities can be calculated in advance and stored

in a file ready to be accessed by the search program.

5.3 ANALYSIS OF THE NEVW MODEL OF TARGET MOVEMENT
The target speed distributions resulting from this new
model of target movement were investigated in a
similar way to that described in section 4.3.1,
Unidirectional target movement and zero detection
capability were applied with various speed
distributions. In each case the resulting distribution
of target position was compared after various time
intervals with that obtained by applying equation
(2.13). The position distributions for the cases
considered in section 4.3.1 are illustrated in
diagrams 5.2a to 5.5a. The corresponding 'true'
distributions given by equation (2.13) (diagrams 4.2b

to 4.5b), are reproduced here for comparison as

diagrams 5.2b to 5.5b.
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It can be seen that the distributiomn of target
position given by the new model 1is somewhat flatter
than the true distribution. However, in all <cases,
both the range and mode of the position distribution

correspond with those of the ’‘true’ distribution.

This method <clearly gives a significant improvement
over the target movement produced by the previous
model. It is also computationally convenient and
ensures that the movement of the target is unaffected
by the decision strategy of the searcher. For these
reasons this model was chosen as the most satisfactory

way found to model target movement.
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CHAPTER SIX

RESULTING SEARCH STRATEGIES

6.0 INTRODUCTION
In this chapter, search strategies obtained using the
search model and optimisation procedures developed in
the previous chapters are discussed, and a selection

of the results presented.

The strategies were obtained by the process of
exhaustive evalunation, described in section 3.2.2,
with extensive use being made of limiting planning
horizon and travel distance (as discussed in section
3.4) in order to make this approach feasible. In the
case of optimising detection probability per unit
cost, condition (3.21), given in sectiom 3.3.1, was
also wused to reduce the amount of computation.
Optimisation with respect to detection probability is
discussed in section 6.1, and with respect to

detection probability per unit cost in section 6.4.

Comparison of results with strategies obtained by

other methods has not been possible because of the

differences in approach. Most current models are
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concerned with allocation of available effort over the
entire search area at any instant, and are thus not
comparable with a discrete sequential approach. As
discussed in Chapter 1, the discrete models that exist
are presented in very simple cases which cannot
usefully be compared with the present model, An
approach was made to the Department of Operational
Analysis Establishment for any relevant data that
might be of use in verification of the model, however

none was available.

In view of this lack of supporting evidence to verify
the model, extensive evaluation of the resulting
search strategies and associated detection
probabilities has Dbeen carried out. To study the
behaviour of the model a typical case was chosen as a
standard, to which variations were made in one set of
parameters at a time. The resulting strategies are
discussed in sections 6.2 and 6.3 in relatiomn to
optimising probability of detection, and the
differences in results obtained when optimising with

respect to unit cost are discussed in sectiomn 6.4.

6.1 OPTIMISING PROBABILITY OF DETECTION
The procedure for optimising detection probability by
exhaustive evaluation described in section 3.2.2 was

coded in a FORTRAN computer progran SEAR14. The
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program is designed to be used with the transition
probabilities, described in section 5.2.1, which are

created by a second FORTRAN program, TRANSP.

The information required in the decision process is

given in the following way. The parameters of target
and searcher speed and target direction, specified in
the same way as in the example in section 2.7, are

given as input to TRANSP. The program calculates the
appropriate Beta distribution and creates a file of
transition probabilities which may subsequently ©be

read by SEAR14. The remaining search parameters of

initial target position and searcher detection
capability, again specified in the way discussed in
section 2.7, are given as input to SEAR14. As before,
an hexagonal search area is used, the size of which
must be specified, with a maximum of 91 nodes. The
initial position of the searcher, and the number of

looks required must also be given as input.

SEAR14 allows the restrictions on searcher range and
planning horizon, discussed in section 3.4, to be
given. Planning horizon is specified as the number of
future looks over which the optimisatiom is to be
performed, ranging from one look, giving an
incremental strategy, to the total number of looks,

giving an optimal strategy. An option is also included
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allowing an additiomal restriction to Dbe imposed,
preventing the searcher from taking consecutive looks
at the same node. (Thus giving a minimum distance of
one unit between search nodes.) This is to enable the
strategies to be compared with those found when
optimising with repect to unit cost, where the same

restriction is used for reasons discussed in section

3.3.

The decision process is carried out as a tree search
as illustrated in diagram 3.1, the depth to which the
tree is searched ©before a decision is made being
determined by the restriction on planning horizon. The
search strategy is chosen by calculating the total
non—-detection probability for each possible strategy
(or, in the case of limited planning horizon, part
strategy). The values are compared to anm accuracy of
0.5 X 10_6, (to minimise the effect of computer
rounding errors on the decision process), and the
strategy with the lowest non-detection probability is
selected. Vhere two or more strategies give the same
value within this tolerance, only one is chosen, this
being the strategy with the shortest path length. If
the path length is also the same the first of these
strategies to be found is selected. No look is taken
at the initial node, as it is not part of the decision

process, soO it is considered merely as a starting
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point for the searcher with no information Ybeing
gained. This aids comparison with results obtained

when optimising with respect to unit cost.

The output from SEAR14 is as follows. Firstly a map
showing the initial target position distribution over
the hexagonal search area is shown, and the searcher
starting point is indicated. In cases where there is
no limit on planning horizon, the chosen strategy 1is
listed (by node number as shown in diagram 2.9), with
the cumulative probability of detection using that
strategy. The program then outputs more detailed
information about the strategy, giving for each look,
the probability of detection with that 1look, the
cumulative detection probability for the search to
that point, and a map of the target position

distribution immediately before the look is taken.

In cases where planning horizom is 1limited, the
projected strategy for the required number of future
looks is given. The cumulative detection probability
for the search, up to and including the projected
strategy is also output. The detailed information
described above is given about the first node only of
the projected strategy, (as this becomes the mnext
search node of the final strategy,) before the

decision process is repeated and the next projected
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strategy output. Finally a summary showing the
complete search strategy amnd overall cumulative

detection probability is given,

The behaviour of the decision process when varying the
length of search, and under differing restrictions on
planning horizom and searcher range, was investigated
by producing strategies for the cases shown in table
6.1. The table shows the maximum length (i.e. number
of looks) of strategies found under the restrictions
indicated. In all cases a search grid of 91 nodes was

used.

Table 6.1 Maximum Search Length

Searcher Ramnge
Planning | 1 2 3 4 5 6 7 8 9 10
Horizon

|
|
1 I 20 20 20 20 20 10 10 10 10 10
|
2 I 20 20 20 20 10 10 10 10 10 10
|
3 | 20 10 10 5 4 3
|
4 | 20 7 4
|
5 | 10 5
|
6 | 7
|
7 | 7

The results are limited to those given in the table
because the combinatorial possibilities made the
required for optimisation of cases

computer time

141



outside this range very high, It was felt that a
better understanding of the model could be gained by
investigating prolonged searches over the maximum size
search area, than by complete optimisation of cases of

a small number of looks and a small search area.

The effect of using different values for the various
parameters of the search model was investigated by
choosing a 'standard’ case to which changes could be
made systematically in one set of parameters at a
time. The results obtained in the standard case are
given in detail in sectiom 6.2, and a summary of the
differences found in variations on the standard case

is given in sectiom 6.3.

6.2 THE STANDARD CASE
The set of wvalues shown below was chosen as a
'standard’' basis for investigation of the search model

because it was felt to be a fairly typical case that

could easily be interpreted. The initial target
distribution, non—detection probabilities and a
symmetric speed distribution were chosen for
simplicity, while the distributions of target

direction and speed were selected as being non-
uniform, but not too deterministic. The searcher to

target speed ratio was thought to be representative of

a typical case. (However in practice, what might be
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typical would depend on the particular application.)

The parameters chosen for the standard case are given
here with all notation as defined in sections 2.2 and
2.4. The initial distribution is specified according
to the node numbering in diagram 2.9, and target

direction according to diagram 2.5.
Size of search area = 91 nodes.
Initial ditribution:
0 ie {2,3,...91}.

Target and searcher speed:

Vimax = 20 Vg = 25
Vin =10 A = 0.1
giving

a = 3.1 B = 3.1

(actual value of integral = 0.0995).

Target direction:
0.1 6 ¢ (1,21}

d(8) - 0.2 0 ¢ {3.4,5.6}.

Non-detection probabilities:

range 0 1 2 3 4 5
probability 0 1 1 1 1 1
Initial position of searcher = node 19.
Minimum distance between search nodes = 1 unit.
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The standard case was investigated with the range of

restrictions shown in table 6.1. The results obtained
are shown in tables 6.2 to 6.8. Each table shows, for
a particular restriction on planning horizon, the

resulting strategy and associated cumulative detection
probability, for each of the restrictions on maximun
searcher range. Where the tables are left blank, the
strategy and detection probability are the same as

those for the next lower searcher range.

The strategy is specified by giving the sequence of
search nodes, numbered according to diagram 2.9, at
which successive looks are to be taken. A fold-out
copy of the node numbering system, for use with tables

6.2 to 6.9, is located in the appendix.

The following sub-sections contain further examination
of the standard case. In section 6.2.1 one strategy is
chosen for closer analysis, and in section 6.2.2 the
effect of changing the optimisation restrictions is

investigated.
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6.2.1 THE BEST STRATEGY FOR TWENTY LOOKS

In order to examine one strategy more <closely, the
case giving the highest probability of detection in
twenty looks is considered. This is found in the case
with a planning horizon of four looks and maximum
searcher range one unit. The path of the strategy is
illustrated in diagram 6.1, and more detailed
information about the decision process for this case

is shown in table 6.9.

In addition to the information already given in table
6.5, table 6.9 shows the projected search path at each
stage of the decision process, and the cumulative
detection probability for a search pursuing that

projected strategy. The projected path should be read

from the table diagomnally. for example at the first
decision, the projected path is 7.1,5.,4 with
cumulative probability 0.5316, while the final
strategy looks at nodes 7.,1,3,4 with cumulative

probability 0.5201. Note that the cumulative detection
probability is higher for the projected strategy than
for the first four looks of the final strategy.
Wherever the two differ this will normally Dbe the
case, since the projected strategy is optimal for the
four looks (with this planning horizon) following the
decision. Any deviation from this strategy made by the

following decisions causes a reduction in detection
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probability for these looks, in order to gain higher
detection probability with subsequent looks (unless a
different prath having the same detection probability

is chosen).

Also shown in table 6.9 is the probability of
detecting the target with each look (given the failure
of previous looks). It can be seen that, as the search
progresses, the probability of detection with each
look tends to decrease as the target distribution
spreads. However, detection probability 1is not
strictly decreasing as would be expected in the case
of a stationary target, as discussed by Black (1965)
for example. This is firstly because the target
distribution is changing with time, so the probability
that the target is at a particular node when a look is
taken will vary with the timing of of that look (in
addition to the effect of previous looks). Secondly,
as discussed above, the decision process may choose to
look at a node with relatively low detection
probability in order to increase detection probability
later in the search. A third factor is the restriction
on searcher range, which in some cases may prevent a

look being taken at a node with higher detection

probability.
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As diagram 6.1 illustrates, the search is concentrated
around the lower central area of the search grid,
reflecting the initial central position of the target
and the subsequent downward bias of target motion. In
order to relate the strategy to target position, the
target distributions after 10 and 20 time units are
shown in diagrams 6.2 and 6.3 respectively. Diagrams
6.2a and 6.3a show the distribution at these times if
no search is made, whilst diagrams 6.2b and 6.3b show
the target distribution obtained from the updating

procedure when the strategy in diagram 6.1 is pursued.

Comparison of the distributions with and without the
search shows how knowledge of the wherabouts of the
target is modified by the information gained from
unsuccessful looks. In particular it can be seen that
the concentration of looks in the central area results
in the target position probability being reduced in
this area. This reduction in probability can also be
seen in mnodes below the area searched, since the
predominantly downward target movement results in
reduced probability that the target is subsequently in
this area following the unsuccessful looks.
Corresponding to this is an increase in probability in

the upper and edge regions of the grid where no looks

are taken.
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Information about target wherabouts gained by the

search is however, dispersed relatively quickly due to

target movement, as transition between mnodes re—
distributes the position distribution. An example of
this can be seen in diagram 6.2b, where the position

probability at the central node (which is the ninth
search node of this strategy) has already risen from
zero, following the ninth look, to 0.0148 just one
time unit later. Comparison of the two sets of
diagrams also c¢learly shows how the search destroys

the symmetry of the target distribution.

6.2.2 DETECTION PROBABILITY IN RESTRICTED STRATEGIES

To illustrate the effect of changing the restrictions
on planning horizon and searcher range, tables 6.10 to
6.14 show the detection probability for searches of 4,
5, 7, 10, and 20 looks repectively under the range of
restrictions shown inm table 6.1. It must be noted that
the probabilities quoted differ in some <cases from
those shown in tables 6.2 to 6.7. This is Dbecause,
where the number of looks is less than that shown in
tables 6.2 to 6.7, the detection probability for the

projected path up to that number of looks is given.
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Table 6.10 Four Looks

Planning]| Searcher Range

Horizon } 1 2
o] s ssa7 Ranges 3 - 10 as Range 2
2 { 5316 5547 Ranges 3 - 10 as Range 2
3 = 5316 5547 Ranges 3 - 5 as Range 2
4 I 5316 5547 Range 3 as Range 2

Table 6.11 Five Looks

Planningl| Searcher Range
Horizon | 1 2
f —
1 57517 5907 Ranges 3 - 10 as Range 2
2 5778 5907 Ranges 3 - 10 as Range 2

as Range 2

=
]
=}
[}
(o]
[

w
|

N

|
|
|
|
3 ; .57178 .5907
| .5778 .5937
|
| .5778 .5937

Table 6.12 Seven Looks

Planning| Searcher Range
Horizon | 1 2
v | Teses eaes Ramges 3 - 10 as Range 2
2 : .6388 .6385 Ranges 3 - 10 as Range 2
3 : .6388 .6385 Range 3 as Range 2
4 } .6400 .6387
5 : .6400
6 l .6400
7 l .6400
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Table 6.13 Ten Looks

Planning| Searcher Range
Horizon : 1 2
SRy 6161 Ranges 3 - 10 as Ramge 2
2 : .6828 .67175 Ranges 3 - 10 as Range 2
3 i .6832 .6796 Range 3 as Range 2
4 | .6852
5 { .6852

Table 6.14 Twenty Looks

Planningl| Searcher Range
Horizon | 1 2 3 4 5
v | rsse rase 7 Trase irses
2 : .7553 .7468 .7503 .7526
3 : .7581
4 : .7602

Considering firstly the range restriction. It can be
seen from the tables that, with 10 or fewer looks, the
detection probability changes when the searcher range
is increased from 1 to 2, but that no further change

is found when increasing the range beyond 2.

Inspection of the corresponding paths (shown in tables
6.2 to 6.7) shows that for ranges of 2 or more the
initial look is taken at the central node, requiring a

move of two units from the starting position. After
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this the strategy usually moves only omne unit between

looks, and never more than two even when the
restriction is lifted. In the case of a small number
of looks (4 or 5), this change in strategy results in

an overall increase in detection probability for the
search as a whole. However, in the case of a 1longer
search (more than 7 looks), increasing searcher range

leads to a decrease inm overall detection probability.

The reason for this is that, when the range is
restricted to 1 unit, the first look is taken at node
7, yielding a low detection probability for that look.
When this is one of only a small number of looks it
results in a lower detection probability than can ©be

achieved if the searcher can move a greater distance.

However, when taken as part of a longer search, the
information gained at this early stage, before the
target distribution has time to spread, leads to

greater certainty about target positiomn in later
looks, outweighing the initial low detection
probability. The dependence of strategy on search

length is discussed further in section 6.5.

The searcher normally chooses to move only one unit
distance at each look because taking longer time

intervals between looks allows the target distribution

time to spread, reducing the certainty of target
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position. An exception to this is seen in the case of
20 looks, where the searcher travels the maximum
allowable distance between the later looks of the
strategy. It can be seen from diagram 6.3b that, by
this stage of the search, target position probability
starts to accumulate at the lower edge of the search
grid, due to the downward movement of the target and
flattening of the distribution by earlier looks.
Taking large time intervals between looks allows this

accumulation to take place.

This behavior can be seen in many cases where target
movement has a directiomnal bias, and is particularly
marked where target to searcher speed ratio is high.
However this may not be considered to be a
representative feature of the search, but an effect

produced by the limitation of a finite search area.

The maximum change in detection probability with
searcher range is an increase of about 4% found in the
case of a strategy of 4 looks. However the behaviour
of the decision process with respect to searcher range
depends heavily on the case under consideration, as

will be discussed in sections 6.3 and 6.5.
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It can be seen from tables 6.10 to 6.14 that
increasing the planning horizon results either in =no
change in strategy, or to a small increase in
detection probability. The maximum increase is seen in
the case of twenty looks where, with searcher range 1,
increasing the planning horizon from 1 to 4 1looks
results in an increase in detection probability of
just under 1%, It will be seen in the following
section, that increasing the planning horizon may in
some cases lead to a drop in detection probability,
although as in this case, any change is normally
small. The effect of changing planning horizom is

discussed more fully in section 6.5.

6.3 VARIATIONS ON THE STANDARD CASE
The effect of wusing various valmes of the search
parameters was investigated systematically by making
changes to the standard case. The resulting strategies
are discussed below, with particular regard to any

unexpected behaviour, under the following headings:

a) Target direction.
b) Target and searcher speed.
c) Detection capability.

d) Initial conditions.
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6.3.1 TARGET DIRECTION

Five representative direction distributions were
investigated, as summarised in table 6.15, (the

directions being as specified in diagram 2.5).

Table 6.15 Direction Distributions Investigated

Case : d(1) d(2) d(3) a(csq) da(5s) d(6)
ro 1/6  1/6  1/6  1/6 176  1/6
2 = 0 0 0.2 0.3 0.3 0.2
3 : ] 0 0 0.2 0.6 0.2
4 : 0 0 0 0 1 0
5 | 0 0.5 0 0 0.5 0

In all cases the resulting search paths closely
reflect the direction distribution of the target, and
as would be expected, the probability of detection in
any given number of looks increases with increasing

certainty about target direction,

In the uniform case the search path is concentrated
mainly around the central seven nodes. This reflects
the uncertainty in direction coupled with the high
probability of the target returning to the central
node, caused by the Markov transition probability, as
discussed in Section 4.3.2. In the remaining cases the

path strongly follows the movement of the target

' : ’
except for instances where the searcher ’'wastes time
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in order to increase detection probability at a later

look.

An extreme case of time-wasting can for example, be
seen in the second case listed in table 6.15. Here, at
one point in the strategy having a planning horizon of
two looks and searcher range ten, the path jumps from
the lower part of the search area to a node at the top

edge of the grid. This area has zero target position

probability, but gives the maximum time interval
before the next look, at a node at the bottom edge of
the grid, allowing the target position probability to
accumulate in this region. As previously discussed,

this anomaly is a result of the finite search grid.

An interesting example illustrating the effect of the
iter—-relationship between planning horizon and
searcher range on detection probability can be seen in
the fourth «case listed in table 6.15. Here target
direction is known and, where searcher range is two
(or less), the searcher follows the target
systematically down the diagonal line of movement. The
strategy in the case of range two, illustrated in
diagram 6.4, gives certain detection in six looks.
When searcher range ijs increased, but planning horizon
is limited to one look, the path jumps nodes as it

travels down the diagonal and then back-tracks
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allowing the possibility of target and searcher
passing each other between looks. Diagram 6.5
illustrates the Path generated with searcher range
three, which gives a detection probability of a little
over 0.9, When planning horizon is increased, the
strategy returns to the prath giving certain detection
in six looks, This is another demonstration that
increased searcher range can lead to lower detection

pProbability when planning horizon is limited.

* *
{ ,,
*
é//f fg//
Diagram 6.4 Diagram 6.5
Searcﬁ Path With Search Path With
Range 2. Range 3.
Key: 8 = Searcher start node. T = Target start node.
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6.3.2 TARGET AND SEARCHER SPEED

A number of cases were investigated to assess the
effect of changing the target speed distribution, and
the ratio of target to searcher speed. In general it
was found that the search strategies and detection
probabilities were in accordance with expected
behaviour. When searcher speed is high in relation to
normal target speed, detection probability is
generally higher than in the standard case, and the
path is concentrated more around the initial position
of the target. This is because, when the searcher camn
travel faster there is a smaller time interval between
looks, allowing the target distribution less time to
spread. When searcher speed is low imn relation to

normal target speed the converse is true,.

Three cases were considered in which the target speed
distribution remained symmetric with mode 10, but
changed in degree of certainty by setting A = 0.25,

0.1, and 0.005, giving ¢ = p =1, c = pf = 3.1 and

¢ = B =10 respectively. These three distributions
were combined with searcher speeds of V = 21, Vs = 25
and V_ = 28. (The case ¢ = B = 3.1, Ve, = 25 is the

standard case.) Table 6.16 summarises the maximum

detection probability obtained in ten looks for these

cases.
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Table 6.16 Detection Probability inm Ten Looks with
Symmetric Target Speed Distributions

oo o VeT2r | VeT2S | Ven2S
1.0 : 0.6411 0.7181 0T7576
3.1 ‘ 0.6383 0.6852 0.7107
10.0 | 0.6258 0.6585 0.7253
It can be seen from the table that, for each
distribution, the probability of detectiomn increases

as searcher speed increases, as expected. However, the
table also shows that for any particular searcher
speed, the detection probability normally tends to
decrease as the target speed distribution becomes more
certain (i.e. as a and P increase in value). This
appears to be counter to expectation as increased
knowledge of target behaviour should increase the
probability of detection. Inspection of the early
transition probabilities for these cases reveals that
this apparent contradiction is a result of the
discretisation of target motion coupled with the

ijnitial starting position of the searcher.

Examination of the detection probabilities for each
look of the respective paths shows that the increased
probability of detection in the case of the 1less

certain distributions occurs only in the first looks
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of each strategy. The reason for this can be seen from
table 6.17 which, taking the example where v, = 28,
shows the probability that the target moves 1 unit in

each of the first two time intervals.

Table 6.17 Transition Probability in First Two Time
Intervals for Searcher Speed 28.

t | a,p=1 a,p=3.1 a.,p=10
1 : 0.3000 0.1588 0.0326
2 | 0.3500 0.6100 0.8800

The table shows that the target has an increasingly
smaller ©probability of moving in the first time
interval, and an increasingly larger probability of
moving in the second interval, as the value of e and B
increases. Since the searcher is initially two units
away from the target, this results in a 1lower
detection probability in the first two looks in the
case of a more definite speed distribution. This is
due to a smaller probability of detecting the target
after the first time interval,and a higher probability
that the target distribution will have spread to the

surrounding nodes after the second time interval.
Thus the effect results from the initial position of

the searcher relative to the target, This has been

verified by investigating these cases with the
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searcher initially omne unit away from the target, at
node 7. With this starting position the effect shown
in table 6.16 is not present. This behaviour is a
consequence of the discrete search space and is likely

to be apparent in any model which discretises target

movement in this way.

6.3.3 DETECTION CAPABILITY

The effect of changing both the range and capability
of detection was investigated by considering the range
of cases summarised in table 6.18.

Table 6.18 Cases of Non-Detection Probability
Considered

Range
Case | ] 1 2 3 4 5
S e
2 I 0.3 0.5 1 1 1 1
3 : 0.3 0.5 0.7 1 1 1
4 } 0.3 0.5 0.7 0.9 1 1
5 : 0.5 0.7 0.9 1 1 1
6 : 0.7 0.9 1 1 1 1
7 ; 0.9 1 1 1 1 1

The table shows values of non-detection probability
for a target at various ranges. These values were
chosen to give a systematically increasing range of
detection (cases 1 to 4), and a systematically

decreasing detection capability (cases 4 to 7).
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In all cases the resulting detection probabilty and
search strategy are much as expected. As the range of
detection is increased, detection probability
increases accordingly. However, this increase is
dramatic when changing detection range from case 1 to
case 2 of table 6.18. For example, the highest
probability of detection in ten looks in case 1 is
0.5431, while the ©best strategy in case 2 gives a
detection probability of 0.9424 in the same number of
looks. The increase is gained mainly in the early
looks of the search. This is because the greater range
of detection enables the searcher to ’'see’ much of the

area in which the target distribution lies during the

first stages, before the distribution has time to
spread.
As the range of detection is increased further, the

increase in detection probability is less marked. This
is partly because the target distribution is initially
compact, so a wider detection range gives little
improvement in the important early looks. Also the
detection capability at wider ramnges is lower (as
might realistically be the case), so the overall

increase in detection capability is less significant.
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When the range of detection is wide, the search
strategy is initially concentrated around the central
node, with the searcher repeatedly returning to node

1, because much of the target distribution can be seen

from this point, Later, as the target distribution
spreads, the searcher moves around the lower part of
the grid, consistently moving more than one unit at a

time (where this is permitted) because of the ability

to 'see' the nodes adjacent to each search node.

As the detection capability is reduced, detection
probability in any givenm mnumber of 1looks drops
accordingly. The search path again tends to remain
around the central node when detection capability is
low, in this case because little information is gained
from each look, so the target distribution does not

flatten as quickly as in the stanmdard case.

One interesting point that can be seen in case 1 of

table 6.18 is that, as in many of the other <cases
considered, increasing planning horizon sometimes
leads to a slight drop in overall detection

probability. (This clearly only occurs when the higher
planning horizon is still lower than the total search
length.) Here, in a search of 10 looks with searcher
an increase in planning horizomn from 4 to 5

range 1,

looks results in a drop in detection probability from
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0.5493 to 0.5466. This is because the projected
strategy for the first sevemn looks with planning
horizon 4, gives a probability of detection of 0.4945.
With planning horizon 5, a different strategy is
chosen giving a marginally increased probability of
0.4946 in seven looks. However, the change in path
results in a reduction in the maximum obtainable
detection probability in the remaining looks, thus
giving a drop in the overall value for 10 looks. Any
such drop in detection probability is normally small,
this being the largest change observed in the cases

considered.

6.3.4 INITIAL CONDITIONS
The changes in initial conditions were made in the
initial distribution of target position, and in the

starting position of the searcher.

The effect of changing the initial distribution was
investigated by gradually increasing the spread of the
distribution, culminating in a uniform distribution
over all 91 nédes of the search area. The resulting
detection probabilities were again as expected; the
greater the spread of the initial distribution, the

lower the probabilty of detection in any given number

of looks.
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Generally the search paths generated were also much as
expected, with the pattern of looks being more spread

around the search grid in the case of less certain

initial distributions. However, in the case of =a
uniform distribution over the entire search area, the
strategies exhibit some interesting features. Where
searcher range is unlimited, the edge effects, due to

target probability accumulating at the edge nodes of
the grid, dominated the search strategy. This is
because initially all nodes have equal probability of
housing the target, but after the first time interval
the downward target movement results in target
probability immediatly beginning to accumulate at the
lower <edge of the grid. The searcher therefore moves
directly to this area, and the entire search is

conducted along the lower edge of the search area.

If however searcher range is restricted, a different
behaviour emerges. The path of the strategy in the
case with planning horizon 1 and searcher range 1 is
illustrated in diagram 6.6. Here it can be seen that
the searcher initially moves against the main
direction of movement of the target. This is because,
following the look at the first search node (labeled 1
in the diagram), the reduction in position probability
due to this look influences position probability more

at nodes below the search node than above. This is due
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to the prevailing direction of movement of the target
as previously discussed. The searcher therefore keeps
moving upward until the target probability in the
upper region of the grid begins to drop (agaim due to
the downward movement of the target). The path then

turns downwards and again edge effects begin to

dominate.

The effect of changing searcher starting position  has
already been discussed in relation to the target speed
distribution. However a number of additional cases
have been investigated, all giving results in
accordance with expected behaviour. Generally, the
further away the searcher is initially from the target
distribution, the lower the detection probability due
to the spreading of the position distribution prior to

the first look.

6.4 OPTIMISING DETECTION PROBABILITY PER UNIT DISTANCE

The second optimisation criterion, introduced in
section 3.3, was also investigated. The procedure was
coded as a FORTRAN program, SEAR15, with input

parameters the same as those described for SEAR14,
with the exception of the minimum distance between

search nodes. This is constrained to be one unit, for

reasons discussed in section 3.3.
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Again options allowing the restriction of planning

horizon and maximum searcher range were included, and

the criterion presented in section 3.3.1, giving

limit to the optimal total distance, was also

implemented. Where a sub-optimal strategy is found by

limiting planning horizon, this criterion is applied

only within each projected strategy, not to the final

strategy as a whole.

In many cases the results that would be obtained from

SEAR1S could be predicted from the results generated

by SEAR14, so only a limited number of <cases were

considered. The standard case was again investigated

in detail. The detection probabilities in this case,

with respect to planning horizon and searcher range,

are shown in tables 6.19 and 6.20 for 5 and 10 looks

respectively.

Table 6.19 Five Looks

Planningl Searcher Range

Horizon | 1 2
y 1 Ls1s1 .se01 Ramges 3 - 10 as Range 2
2 ’ .5778 .5778 Ranges 3 - 10 as Range 2
3 { .5778 .5778 Ranges 3 - 4 as Range 2
4 : .5778 5778
5 : .5778 .5778
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Table 6.20 Ten Looks

Planningl| Searcher Range
Horizon : 1 2
1o ese erer  Ranges 3 - 10 as Ramge 2
2 : .6828 .6828 Ranges 3 - 10 as Range 2
3 ‘ .6832 .6832 Range 3 as Range 2
4 } .6852
5 | .6852
Here detection probability is given, rather than
probability per unit distance, in order to aid
comparisonmn with tables 6.11 and 6.12. From this

comparison it can be seen that, in most cases, results
obtained when optimising with respect to distance are
the same as those found when optimising detection
probability with searcher range limited to omne unit.
Similar results can be seen imn any given search
length. (In all cases where detection probability is

the same, the corresponding strategies are identical.)

The only exceptiom to this is in the myopic case with
maximum searcher range greater than one. Here the
detection probability is the same as that when
optimising probability of detection with the same
planning horizon, and maximum searcher range two. When
planning horizon is increased, the strategy reverts to

that of the minimum path length.
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The reasom for this is that, if the first look is made
at a node at minimum distance, the resulting detection
probability is very low. When this is optimised over a
Planning horizon of one look, a higher detection
probability per unit distance can be achieved by
taking the first look at the central node, two units
from the starting point. However, when optimised over
more than one look, the increase in distance outweighs
the increase in cumulative detection probability for
two or more looks, so the minimum path length is

chosen.

To illustrate the form of detection probability per

unit distance that can be expected, table 6.21 shows
the search strategy, detection probability per unit
distance for each look, and detection probability per
unit distance for the strategy as a whole, in one

case. The standard case with planning horizon 3 looks
and maximum searcher range 3 units was chosen so that

a prolonged search with reasonable searcher range

could be examined.

It can be seen from comparison with table 6.4 that the
strategy is the same as that found when optimising
detection probability with the same planning horizon
and searcher range 1. Since the strategy has minimum

path length (and hence only one distance unit between
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search nodes) the detection probabilities and
probabilities per unit distance have the same values.
Apart from the first two values, the detection
probability per unit distance for the search as a
whole, decreases with the length of the search. This
is because of the decreasing return in detection

probability discussed in section 3.3.

Table 6.21 Strategy Found by Optimising Probability
of Detection Per Unit Distance

Planning Horizon: Three Looks
Maximum Searcher: Range One Unit

Look | Search | Prob. Per Unit | Prob. per Unit
No. : Node | Dist. for Look { Dist. for Path
1 | 7 | 0.0272 | 0.0272
2 | 1 | 0.3727 | 0.1864
3 | 5 | 0.4637 | 0.1546
4 | 4 | 0.5316 | 0.1329
5 | 3 | 0.5778 I 0.1156
6 | 1 | 0.6117 I 0.1019
7 | 6 | 0.6388 | 0.0913
8 | 16 | 0.6552 | 0.0819
9 | 5 | 0.6699 | 0.0744

10 | 14 | 0.6832 I 0.0683

11 | 13 | 0.6944 I 0.0631

12 I 12 | 0.7050 | 0.0587

13 | 3 | 0.7149 | 0.0550

14 | 1 | 0.7237 | 0.0517

15 | 6 | 0.7308 | 0.0487

16 | 16 | 0.7369 | 0.0461

17 | 15 | 0.7427 I 0.0437

18 | 30 l 0.7481 | 0.0416

19 I 29 | 0.7531 | 0.0396

20 | 13 | 0.7581 I 0.0379

182



In gemneral the results obtained when optimising

detection probability per unit distance show that, in
the majority of cases, the optimal path is that with
minimum path length, thus the strategies are the same

as those when optimising with respect to detection
probability with searcher range 1. In particular the
time—-wasting behaviour present in the previous case,
and loss of detection probability due to search paths
jumping as in the cases illustrated in diagram 6.5, is

not seen.

6.5 CONCLUDING REMARKS
From the foregoing results, it appears that the search
model normally produces search paths that are sensible
in relation to the given search parameters. Also,
predicted detection probabilities usually accord with
the level of information about target location and
movement, and with searcher detection capability. Two
exceptions to this are the anomalies in detection
probability in relation to the target speed
distribution, discussed in sectiom 6.3.3, and the
time—-wasting behaviour observed in several cases where
target position probability accumulates at edge nodes.
Strategies found under restrictions on planning
horizon and searcher range appear, in general, to be

reasonable approximations to an optimal path.
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The change in detection probability observed when

planning horizon is increased is normally small,

suggesting that any increase obtained when full
optimisation is performed, will not be major. Often
any increase is gained by re-ordering the search nodes
of a strategy found with a 1lower planning horizon
rather than by major changes in path. This suggests
that fully optimal paths will probably also not differ
greatly from the sub-optimal cases (with the exception

of instances where time-wasting is a feature).

Where optimisation is not possible, the results
suggest that a planning horizon of two or three looks
is sufficient to produce a reasonably good strategy.
Raising planning horizon much above this level

involves substantial computation time for all but the

most restricted cases. Also, as illustrated by the
example given in section 6.3.3, increased ©planning
horizon may result in a drop, rather than an increase

in detection probability.

The situation with regard to searcher range is less
easy to generalise. Normally 1little increase in
detection probability is found when extending searcher
range beyond two anits, as the loss in information
due to target movement is normally a deterrent to

large time intervals between looks. There are however
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some exceptions to this, which are:

a) where the searcher is initially some distance

from the target distribution,

b) where the searcher has a significant range of

detection,

c) where the searcher wastes time in order to allow
target position probability to accumulate inm one
area.

In the first case it may be most economical in terms
of computation time, to allow the searcher
unrestricted range for the first look only. However,
the effectiveness of this in terms of gain in
detection probability depends heavily on the initial
conditions and the total length of the search. If, in
a prolonged search with limited planning horizon, a
low probability of detection can be obtained at an
intermediary mnode, then higher overall probability of
detection is obtained when searcher range is

restricted (as discussed in section 6.2.2 in the

standard case). Altermnatively, if there is Zero
detection probability at intervening nodes, (for
examfle where target movement is away from the
searcher), or the search is short, then increased

range leads to increased detection probability.
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In cases where time—-wasting is evident, substantially
higher detection probability can in extreme cases, be
gained with unrestricted searcher range. However, the
associated strategies often bear little relatiom to
the parameters of the search. In these cases
restricted searcher range produces strategies much
more representative of target behaviour, and less
influenced by the artificial limitation of a finite
search area. For this reasom it is felt that
restricting searcher range is ©bemnefical in these
cases, even if the associated detection probability is

not optimal,

From the above discussion, it appears that mnormally
1ittle is lost in terms of detection probability, when
planning horizon and searcher range are restricted,
and that restricting searcher range can produce more
sensible strategies in some cases where the
limitations of the model cause unwelcome searcher
behaviour. The results indicate that if <complete
optimisation could be carried out over a prolonged
search, the resulting strategies may well be dominated
by the edge effects of the finite grid, thus the

ijnability to perform complete optimisation is mnot a

serious drawback.
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CHAPTER SEVEN

CONCLUSION

The aim of this work was to produce a mathematical
model of a moving target search which would give a
reasonable approximation to a physical search in two
dimensional space, and provide an optimal search
strategy that could readily ©be interpreted in a

physical, rather than mathematical form.

The model presented in the preceding chapters does
provide such a strategy which accords with intuitively
expected behaviour in relation to target movement and
searcher capability. Although optimisation can only be
carried out in the simplest cases, acceptable sub—
optimal solutions can Dbe found by limiting the
planning horizon of the decision process, and range of
movement of the searcher, Imposing these limitations
would allow the use of a much larger search grid than

that considered here.

The maximum size of 91 nodes considered in the
evaluation presented in Chapter 6, was chosen in order

to investigate the optimisation process as fully as
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possible. (Initially a further consideration was the

amount of storeage required for the transition
matrices formulated in section 2.5, however the

revised approach taken in sectiom 5.2 does not present

such problems.) However, strategies obtained under
limitations on optimisation appear to be good
approximations to optimal strategies, 50 full

optimisation is not necessary.

When planning horizon and maximum searcher range are
fixed, the increase in computation time required when
the number of nodes is increased, depends primarily on
the time required to update the target position
distribution. Thus if planning horizon is limited to
two looks, and searcher range to two or three units, a
search area in the region of 1000 nodes would Dbe
feasible. (Parallel processing of the updating
procedure could greatly increase this figure.) This
increased search space would give a more acceptable

approximation to a two dimensional search space.

Some problems associated with the model still remain.

The approximation of continuous target movement over

the discrete search space, although much improved by
the revised model introduced in Chapter 5, is still
not totally satisfactory. There are two aspects to

this problem, firstly the use of a discrete search
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space with discrete instantaneous search can produce
anomalies in detection probability as discussed in
section 6.3.2, and secondly discretisation leads to

a flattening of the target speed distribution, as

illustrated in section 5.3.

The first of these problems might be reduced by
relaxing the constraint of constant searcher speed.
This possibility, discussed in section 2.5.1, would be
feasible with the restrictions on optimisation
discussed above. An altermnative approach, relevant to
both problems, might be to consider a search model
with continuous transition rates between nodes, and

non—instantaneous detection.

A further problem is the accumulation of target
position probability at edge nodes of the grid, as
described in section 6.3.4. The use of an extended
search area, together with the restriction on searcher
range, would miminise the effect of this accumulation
on search strategy. Use of the moving grid system
introduced in section 3.4 would also reduce this
effect, and would be particularly appropriate in the
case of target movement having a strong directional
bias, where the effect is most marked. An alternative
might be to model the edge nodes of the grid as
absorbing states of the Markov process, the target
'1ost’' on entering one of these nodes.

being
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