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ABSTRACT

SEARCH FOR A MOVING TARGET 

GEORGINA WOODWARD

A mathematical model of a discrete sequential search for 
a target moving in discrete space is given. The model is 
based on a Bayesian updating algorithm giving successive 
probability distributions of target position at intervals 
throughout the search. Updating allows for target 
movement and for negative information gained from 
unsuccessful search.

The search is conducted by taking a sequence of discrete, 
instantaneous looks at chosen points, or nodes, of the 
search area. The sequence of chosen nodes is termed a 
strategy. Th e successive target position distributions 
allow the probability of detecting the target to be found 
for any strategy.

The model is an improvement over previous discrete 
sequential search models with respect to the following 
points. Target movement between nodes of the search area 
is formulated in terms of statistical information of 
target speed and direction, which are likely to be known. 
The time interval between looks, and target movement 
during this time, are related to the distance travelled 
by the searcher between search nodes. Also, with each 
look, the searcher has a view of surrounding nodes as 
well as the chosen search node. Implementation of these 
refinements is aided by considering the search area to 
consist of a finite, isometric pattern of nodes.

Optimisation of strategies with respect to both detection 
probability and detection probability per unit cost is 
considered, and a criterion given in each case to assist 
optimisation. However, in practice, these criteria are of 
limited use, and full optimisation can only be carried 
out in a limited range of cases. Restricting both the 
planning horizon of the optimisation process, and 
searcher travel distance, allows sub-optimal strategies 
to be found in a wider range of cases. Results suggest 
that the detection probability of strategies found under 
these restrictions is normally close to optimal.



CHAPTER ONE 

THE SEARCH PROBLEM AND ITS HISTORY

1.0 INTRODUCTION

The process of search is a fundamental part of human 

behaviour, but it is only in comparatively recent 

times that a mathematical theory of search has been 

developed. In this chapter the early history of search 

theory is outlined, and some of the current 

applications of the theory are introduced. Ways in 

which search processes may be modelled mathematically 

are also discussed and the extent to which optimal 

solutions have been obtained for these models is 

examined. The inadequacy of present models in 

providing practical guidance for single searcher, 

moving target searches is discussed, and an approach 

is proposed that would provide a strategy for such a 

search.

1.1 THE ORIGIN OF SEARCH THEORY

The short history of search theory, as part of the 

general development of Operations Research, can be 

traced to its beginning during World War II.



Operations Research did not emerge as a coherent 

professional field until the early years of the war. 

Its development, chronicled by Larnder (1984), can be 

traced to the need to answer a specific military 

threat: the defence of Britain against air attack. The 

pre-war build up of German air power posed for Britain 

a serious problem of early warning against airborne 

attack. The development of radar to counter this 

threat led to the establishment of the first 

experimental radar station in 1937, followed by four 

more by the summer of 1938.

Early trials had seemed encouraging, but a major air 

defence exercise, carried out in July 1938, revealed 

that the additional stations did not improve 

effectiveness as expected. It became clear that there 

was a need to coordinate and correlate the often 

conflicting information received from these stations. 

A proposal was therefore made that research should be 

carried out into the operational, as opposed to the 

technical, aspects of the radar system. The term 

'Operational Research' (O.R.) was coined as a suitable 

description of this new branch of applied science.

The Operational Research Group thus formed played a 

key role in the analysis and evaluation of the radar 

system, its impact on air tactics and its



effectiveness against enemy raids. The subsequent 

extension of O.R. analysis to the prediction of the 

outcome of future operations was even more important 

in its consequent effect on policy decisions.

The entry of the United States into World War II 

brought further defence problems. A major threat was 

that of U-boat attack on U.S. shipping. In answer to 

this the Antisubmarine Warfare Unit (A.S.W.) was set 

up to study and coordinate defence against German 

submarines. Collaboration with the British had 

demonstrated the value of employing civilian 

operational analysts on defence projects. Hence a non- 

military scientific task force was recruited, under 

the leadership of Philip Morse, to assist the A.S.W. 

unit in analysing the U.S. antisubmarine effort.

The primary danger from a submarine lay in its ability 

to remain undetected, so the process of finding it was 

an important part of the counteraction. Morse and his 

colleagues identified a set of important quantities 

involved in the search process, and derived equations 

relating them, enabling the prediction of search 

efficiencies and effective search patterns. In this 

way the early theory of search uniting physical and 

operational attributes of target and searcher through 

mathematical concepts was developed. The



recommendations made on the basis of this work 

measurably improved the tactics of convoy protection 

and submarine search.

The A.S.W. Operations Research Group, as they were 

called, eventually grew to about forty members, 

including Bernard Koopman and George Kimball who are 

recognised as being among the founders of modern 

search theory. An account of the development of the 

group and its contribution to the early days of O.R. 

in the United States is given by Morse (1986).

At the end of the war, the work of the group was 

consolidated into a series of reports, one of which 

was 'Search and Screening' written by Koopman (1946) . 

This remained classified for many years, but a series 

of papers on search, Eoopman (1956a) , (1956b) and 

(1957) were published. This work laid the foundation 

for modern search theory. An expanded and updated 

version of Search and Screening, Koopman (1980) has 

since been produced.

Applications of search theory can today be found in 

fields much wider than this military origin, although 

the military influence still persists, particularly in 

the common use of the word 'target' for the object of 

the search.



1.2 THE SCOPE OF APPLICATION OF MODERN SEARCH THEORY

Search theory today is a broad field of applied 

science encompassing many disciplines and having 

application to a wide range of practical problems. 

Some of the more common areas of application of search 

theory are given below.

(a) Milita ry

Search theory has today, as at its origin, important 

military and defence application. Areas of interest 

range from the traditional topics of efficient search 

patterns for enemy units and effective barrier patrol, 

to tracking and guidance systems of modern missiles. 

Much of the research in the military field is 

necessarily classified, but Sutcliffe (1985) indicates 

that most of current British military research centres 

on the mechanism of detection, in particular with 

respect to target characteristics and behaviour, 

sensor characteristics and the environment.

Detectabi1ity is an important consideration to both 

searcher and target. For the searcher, it is important 

firstly, to have detection equipment which is as 

efficient as possible. Considerable research effort is 

devoted to the continuing development of sophisticated 

radar, sonar and satellite surveillance hardware, 

aided by the signal processing and image enhancement



capabilities of modern computers. Secondly it is 

important to know the true operational capability of 

such equipment, in order to accurately estimate the 

efficiency of any search. The performance of equipment 

in the far from ideal conditions of combat, under the 

supervision of operators under stress, may be very 

different from that measured under laboratory 

conditions. Gathering reliable data in these 

conditions is often problematic.

Conversely a target wishing to remain unseen must aim 

to present an image, or behave in a way that will 

minimise the probability of recognition by enemy 

sensors. One of the design requirements of a modern 

battleship, for example, is a profile which will give 

a radar image that is as confusing as possible. Also 

such tactics as the ejection of metallic chaff from 

ships in order to confuse enemy rocket guidance 

systems, and low flying of aircraft to avoid radar 

detection are commonly practiced.

(b) Search and Rescue

Rescue services are confronted daily with the problem 

of locating missing persons lost in hostile 

environments. Such examples as air sea rescue 

operations and mountain searches are seen frequently 

in news reports. Planning searches of this type has



traditionally relied heavily on the intuition and 

experience of the leader of the search team. 

Increasingly, however, search theory methodology is 

being employed to assist in the efficient deployment 

of search resources.

The missing person (the search target) is often at 

risk from the environment, or from injuries that may 

have been sustained. For this reason the overriding 

concern of a search and rescue (S.A.R) operation is 

normally the recovery of the target in the shortest 

possible time. Optimal utilisation of the manpower and 

equipment available to the search is therefore of 

paramount importance.

The most extensive application of computer aided 

search planning in S.A.R. is the United States Coast 

Guard Computer Aided Search Planning System (C.A.S.P.) 

described by Richardson and Discenza (1980). This 

system has been used by the U.S. Coast Guard, in 

planning open water searches, since 1974. The 

principal output from the C.A.S.P. system is a 

sequence of probability 'maps' which display the 

current target location probability distribution 

throughout the search period.



The initial probability map, of target position at the 

time of the incident, is produced by Monte Carlo 

methods from a number of scenarios of the events 

leading to the incident, weighted according to 

credibility. Monte Carlo simulation is also used to 

update this probability map to account for subsequent 

drift, due to currents and winds, in the time period 

until the search is started. C.A.S.P. then gives 

guidance on the allocation of search effort based on 

optimal search theory. If the day's search is 

unsuccessful, Bayesian updating is used to reflect 

this negative information and the steps of updating 

for movement and of search planning are repeated. 

C.A.S.P. has proved to be a very useful aid and has 

been credited with saving many lives.

Many of the problems associated with planning S.A.R. 

operations are described in Haley and Stone (1980), 

pages 45-71. Particular difficulty is frequently found 

in producing accurate initial probability 

distributions from the vague and conflicting 

information that is often presented to search 

planners. Similar problems are discussed by Hypher 

(1980) and Mattson (1980).



(c) Recovery and Clearance

The problems associated with clearing debris and 

recovering equipment for analysis, following a 

disaster, are similar in nature to those of a S.A.R. 

operation. The principal difference, however, is that 

the priority is not normally speed of detection, but 

completion of the operation with minimum cost.

Richardson and Stone (1971) describe the operations 

analysis of the deep water search for the remains of 

the submarine Scorpion. The search, which took place 

over a period of five months, was conducted using a 

towed platform carrying cameras, magnetometers, and 

sonar equipment. The platform was submerged to depths 

of up to two miles. The search area covered 

approximately 150 square miles of ocean floor. Search 

effort was allocated within this area on the basis of 

an a priori distribution of Scorpion's wherabouts 

(produced in a similar manner to that used in the 

C.A.S.P. system) and information gained during the 

search.

One of the main problems in allocating search effort 

was in estimating search effectiveness when knowledge 

of the capabilities of the sensors against the target 

were uncertain. Analysis carried out after Scorpion 

had been found, showed that sensor capabilities had



been overestimated, indicating that the search plan 

had not been as efficient as anticipated. Other 

problems included navigational uncertainties making it 

difficult to execute the search as planned, and 

difficulty in deciding how much effort shold be 

expended in close investigation of some contacts. This 

occured when it was uncertain whether an object 

detected was in fact Scorpion, or a false target such 

as a magnetic rock.

Grasty (1980) describes a clearance operation of a 

different nature following the disintegration of the 

nuclear powered Russian satellite COSMOS 954 on re­ 

entry into earth atmosphere. Radioactive debris, which 

was scattered over a large area of Canada's Northwest 

Territories, had to be located and retrieved. Gamma 

ray detection equipment was used in airborne 

reconnaissance flights. Here again some difficulty was 

encountered in distinguishing true radioactive 

contacts from naturally occuring sources of radiation, 

and in pinpointing the exact ground location of 

contacts detected from the air, particularly in 

densely wooded areas.

(d) Medical

There is currently substantial medical interest in

increasing the efficiency of procedures for screening
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and monitoring large populations for the early 

indications of certain diseases. Diseases such as 

cancer, hypertension and glaucoma can be treated much 

more effectively if detected in their early stages, 

before symptoms become apparent to the patient. If 

screening can be made more efficient, larger groups of 

people can be tested.

Kolesar (1980) describes an application of search 

theory to the location of retina blind spots 

characteristic of the disease glaucoma. The eye is 

tested for blind spots by determining the patient's 

response to a small light stimulus directed at points 

on the retina. Kolesar has shown that, by positioning 

test points optimally on the retina, the number of 

points tested can be reduced from the seventy two 

commonly used to only ten, while maintaining a 95% 

probability of detecting a blind spot if present.

(e) Other Applications

Additional areas to which search theory is currently 

applied include surveillance, mining and exploration, 

and indus t ry.

The purpose of a surveillance operation is not to find 

a specific target, but to monitor the state of a given 

system by information gathering. Search theory can

11



assist in planning a surveillance operation by 

determining an optimal allocation of the available 

surveillance resources in order to maximise 

information gain. Pollock (1980) analyses the 

surveillance problem and indicates the role of search 

theory within this larger context.

Areas of application of this approach include 

allocation of police patrol routes, pollution control, 

and monitoring livestock and fish populations in order 

to determine stock levels, and enforce hunting and 

fishing regulations. These and other applications are 

discussed in Haley and Stone (1980), pages 99-112.

Exploration for coal, oil and mineral deposits often 

involves drilling test bores in areas where geological 

survey data indicates deposits may be found. Optimal 

placement of test bores, to increase the probability 

of a find, can be assisted by utilisation of both 

positive and negative results (from successful and 

unsuccessful bores respectively) to update current 

geological information. Surkan (1975) developed a 

computer program to assist in exploration for oil 

deposits. This quantifies prior information from 

geological surveys into a density map for oil 

deposits, which is then modified in a Bayesian manner 

for information gained during exploration.

12



Kadane (1980) describes several industrial 

applications including, minimising the cost of quality 

control testing and fault detection, the management of 

research and development projects, and maintainance 

scheduling. All of these may be viewed as task 

sequencing problems within the constraint of 

minimising costs.

The application of search theory in many of the areas 

described above has only been made possible by the use 

of high speed computer processing. This has enabled 

the construction of a variety of mathematical models, 

many of which would have been impossible to attempt by 

other means. Some common features of current search 

models are examined in the next section.

1.3 MODELS OF THE SEARCH PROCESS

A number of different approaches to modelling search 

processes may be found in current literature, 

reflecting the diversity of situations to which they 

apply. A comprehensive index of papers on the topic 

can be found in Strumpfer (1980).

Several features can, however, be identified as common 

to many models. These features, which may briefly be 

summarised as:

13



1) Target wherabouts

2) Detection capability

3) Updating target information 

are discussed in the following sections.

1.3.1 TARGET WHERABOUTS

The exact position of the target is clearly unknown at 

the start of the search, otherwise no search would be 

necessary. However, an a priori probability 

distribution of the possible wherabouts of the target 

can frequently be calculated from known information. 

This information may consist, for example, of a last 

reported position, or a re-entry trajectory as in the 

COSMOS 954 search, or geological data as in oil 

exploration.

The a priori distribution of a target located in an 

open area can, in pricipal, be described 

mathematically by a continuous probability density 

function over two (or three) dimensional Euclidean 

space. Search effort may then be allocated to any 

point in the search area. Stone (1975) page 20, gives 

an example of a bivariate normal distribution 

representing the position of a ship in distress. The 

distribution, centered on the ship's reported 

position, describes the error in the navigational 

sys t em used.

14



In practical searches it is frequently found to be 

more convenient to divide the search area into 

rectangular cells, where a cell represents the 

smallest region to which search effort can be 

allocated. A discrete a priori distribution over the 

set of cells of the search area may then be 

determined. The search area is divided in this way in 

the C.A.S.P. system and also in the search for 

Scorpion. As in these examples, described in section 

1.2(b), Monte Carlo simulation is often used to 

produce the a priori distribution when this approach 

is t ake n.

A discrete distribution is also appropriate when the 

target may be located in one of a number of disjoint 

locations, for example an object hidden in one of a 

number of boxes. Pollock (1970), Dobbie (1974) and 

Wegener (1982), among others, formulate search models 

of this type. Here it is often assumed that the 

probability of the target being in any box is known in 

advanc e .

Other applications where a discrete distribution is 

appropriate, suggest a conceptual, rather than 

physical search space. In the case of quality control 

testing the target is a fault (if any) in a 

manufactured article. The search space consists of the

15



set of all possible faults and an initial distribution 

may be determined from the frequency of occurance of 

each f ault.

In cases where an a priori distribution is required, 

but no information is available, a uniform 

distribution over the search space may be used.

1.3.2 DETECTION CAPABILITY

In order to plan a search it is necessary to have a 

measure of the effectiveness of the search effort 

applied. This requires knowledge of the ability of the 

sensor to detect the target. At any instant a sensor 

will not detect a target with total certainty, there 

is normally some probability, dependent on range and 

operational conditions, that the target will be 

overlooked. Search effectiveness relates the amount of 

effort spent looking in an area to the probability of 

detecting the target given that it is in that area.

Mathematically search effort is regarded in one of two 

ways: as discrete units of a fixed quantity applied 

sequentially such as the light stimulus used in the 

glaucoma test, or as continuously applied amounts 

available in any required quantity such as the towed 

sensors used in the search for Scorpion. Detection 

probability in each of these cases is discussed below.

16



a ) Discrete Effort

Search where effort is available in discrete units is 

called discrete search, not to be confused with the 

description of the search space or target motion. A 

unit of search effort is termed a look or glimpse and 

is assumed to be instantaneous. The quantity of search 

effort expended can be measured by the number of looks 

taken.

The instantaneous probability of detection in one 

look, conditional on the target being present, may 

vary with time, position and range. Koopman (1980) 

page 54, however, considers the simplest case where 

detection probability is constant. Assuming that the 

probability of detection, p, in each look is 

independent of other looks, the probability of 

detecting the target in n looks, denoted P n is

P n = 1 - (1 - p) n (1.1) 

by the usual rules of probability.

Pollock (1970) and Kan (1977) consider searches for an 

object hidden in one of a number of boxes, where the 

detection probability is independent of time but 

dependent on the box searched, while Wegener (1982) 

allows detection probability to be dependent not only 

on the box searched, but on the number of looks

17



already taken in that box, thus removing the need for 

the condition of independence.

Eoopman, Chapter 3.2, discusses the dependence of 

instantaneous detection probability on range for a 

look taken over an open area, and extends the 

application of discrete effort to the case of a 

searcher moving over open water, taking a series of 

discrete looks as it travels. The approach taken here 

is somewhat different from the usual discrete effort 

search as the glimpses are assumed to occur rapidly, 

leading to a formulation similar in nature to the 

continuous case discussed next.

b) Continuous Effort

Detection capability of a continuous sensor can be 

expressed in terms of a detection function relating 

the amount of effort expended in an area to the 

probability of detecting a target in that area.

Eoopman (19S6a) and (1956b), characterised the 

detection ability of a continuous sensor in terms of 

its lateral range function and sweep width. The 

lateral range of a target from a sensor when both are 

travelling with fixed speed and course is the distance 

of their closest approach, denoted by x in diagram 

1 .1 .

1 8



Targe t

Relative path 
of searcher

Diagram 1.1 The Path Swept by a Sensor

The lateral range function is a measure of the 

detection ability of the sensor in terms of the 

lateral range of the target. It gives the cumulative 

probability, P(x), that the sensor, as it travels 

along its course, will detect a target having lateral 

rang e x.

In general the lateral range function will be 

dependent on the relative velocity of target and 

searcher as well as on operational factors. A typical 

lateral range function is shown in diagram 1.2a, while 

diagram 1.2b shows the lateral range function of an 

idealised sensor having a definite range law of 

detection. This idealised sensor will detect with 

total certainty any target within range R, any target 

outside this range will not be detected.

19



P(x)

P(x) '

.2a

-R R

.2b

Diagram 1.2 Lateral Range Functions
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The sweep width of the sensor, denoted by W, is given 

by the integral of the lateral range function, thus

IW = P(x) dx (1.2) .

— oo

Sweep width is a commonly used measure of the 

capability of a continuous sensor.

A sensor with effective sweep width W has a 

probability of detecting a target equivalent to that 

of a sensor with a definite range law of detection, of 

range R = W/2. Thus the product (path length 

travelled) x (effective sweep width) gives an area 

equivalent to that 'swept clean' by such a sensor on 

the same path, as illustrated in diagram 1.1. This 

product is used as a measure of the search effort 

applied, from which the detection probability can be 

calculated.

The classical exponential detection function 

formulated by Koopman as the 'law of random search', 

for a target located in an area A, is based on the 

following assumptions:

1) The target distribution is uniform in A.

2) Th e sensor has a definite range law of 

detection of width W/2.

21



3) The observer's path is random in A, in the 

sense that different small portions of the path 

are placed independently of one another in A.

Th is leads to a detection probability p given by

p = 1 - e~ WL/A (1.3) 

where L is the total path length in A.

Assumption 3 is, in practice, impossible to satisfy in 

most applications. However the law of random search is 

frequently assumed to apply as it gives a useful lower 

bound on the detection probability, even when the 

search path is far from random.

In the C.A.S.P. system the search effort applied to 

any cell is assumed to be uniformly distributed over 

the cell area. This is approximated in practice by 

performing equally spaced parallel sweeps covering the 

cell. Allowing for the uncertainties in navigational 

accuracy leads to a detection function equivalent to 

the law of random search.

c) Further Considerations

The above discussions on discrete and continuous 

application of search effort assume that the detection 

capability of the sensor against the target is known.

22



In practice this is frequently not the case, either 

because of the difficulty in assessing operational 

values, or because the state of the target is not 

known. Richardson and Belkin (1972) consider a search 

model where the sweep width of the sensor is fixed, 

but only known as a. prior probability distribution, 

while Discenza and Stone (1981) look at a survivor 

search where the target may change state during the 

search, each state having a different detectabi1ity.

A further assumption is that the sensor has perfect 

discrimination, that is it will not mistakenly detect 

a false target such as the magnetic rock found in the 

search for Scorpion. Where false targets may be 

detected a distinction must be made between detecting 

a object and conclusively identifying it to be the 

target after closer investigation. Dobbie (1973) and 

Stone et al (1972) consider searches in the presence 

of false targets.

The models so far considered also assume that the 

search is passive, that is that the search conditions 

are in no way changed by the presence of the searcher. 

In particular it is assumed that the target is not 

aware of the search, so unable to change its behaviour 

in order to avoid or assist detection. Dobbie (1975) 

models a search where the target attempts to avoid

23



detection by moving away from the vicinity of the 

searcher when it becomes aware of the searcher's 

pr e s enee .

1.3.3 UPDATING TARGET INFORMATION

As the search progresses, the current estimate of the 

position distribution of the target may need to be 

updated. There are two reasons for updating. Firstly, 

if the target can move, the position distribution will 

change with time as the search is conducted. Secondly, 

when search effort is applied to a region and the 

target is not detected, an a posteriori probability 

that the target is in that region can be calculated.

Considering firstly target motion. This may be 

described in a variety of ways, but is frequently 

modelled as a stochastic process which may occur in 

either discrete or continuous time.

Pollock (1970), Kan (1977) and Washburn (1980) 

consider searches for a target moving between a set of 

discrete cells or boxes. In each case, the motion is 

described by a discrete time Markov process determined 

by a known set of constant transition probabilities 

(Pjj}, which give the probability that the target is 

located in box j at time t^+j given that it is in box 

i at time t* . Dobbie (1974) also considers Markov

24



target motion between discrete cells but here motion 

is in continuous time described by known transition 

rates between cells.

Pursiheimo (1978) investigates a case where target 

motion between boxes is conditionally deterministic. 

The motion is uniquely determined by a route function 

partly dependent on the initial box. In contrast the 

most general type of motion is modelled by Stone 

(1979). Here movement is described by a stochastic 

process (X^. , t^.0} representing virtually any 

reasonable type of target motion in Euclidean n space.

On a practical level the C.A.S.P. system allows for 

target motion by computing a set of drift vector 

probability distributions. These represent the effect 

on the target of winds and ocean currents at various 

geographical locations. Updating is performed daily by 

Monte Carlo methods, the target being moved along in 

short time intervals until updating is complete.

Updating the target distribution for additional 

information gained as the search progresses may be 

carried out using Bayes' rule. In its simplest form 

the posterior probability that the target is located 

in area A, given an unsuccessful search, can be 

expressed as
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26



Thus, with allowance also for target movement, the 

updated probability is given by

1:L

Similarly, if a look is taken in box 2,

P21

Explicit updating in this manner is only performed 

when effort is available in discrete units, however 

implicit allowance for the effect of previous search 

is made in any search plan that proceeds in time.

1.4 OPTIMISATION

A search operation normally has only a limited amount 

of search effort or resources availible. The basic 

problem of search is the optimal distribution of these 

resources subject to the constraints and requirements 

of the individual application.

A rule specifying the way search effort is distributed 

in space is called an allocation. When the rule also 

dictates how the search should be carried out in time 

it is called a search plan or strategy. In the case of
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discrete effort, a search plan consists of a sequence 

of locations Xj,X2p....Xn at which a look is to be

taken at time t^ , t^ • • • •   t n .

In the continuous case, effort applied over a discrete 

or continuous search space is often assumed to be 

infinitely divisible. That is, the effort available at 

any time can be distributed as finely as desired over 

the search space. Where a fixed amount of effort is 

available an allocation of this effort takes the form 

of a real valued function of the search space.

Constraints on a search plan may take the form of 

limits to the total time or cost available for the 

search, and to the rate at which search effort may be 

applied. An optimal search plan is one that gives a 

distribution of effort within these constraints that 

is optimal subject to a given criterion.

Th e applications discussed in section 1.2 illustrate 

the more commonly applied optimisation criteria. These 

include maximising the probability of detection within 

a given cost or time, maximising the probability of 

detection per unit cost and minimising the expected 

time to detection.
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Optimisation of stationary target searches has been 

thoroughly investigated. However optimal plans for 

moving target searches are considerably more difficult 

to find. Progress that has been made in finding 

optimal plans for discrete sequential searches, and 

searches with infinitely divisible effort is discussed 

be 1ow.

1.4.1 INFINITELY DIVISIBLE SEARCH EFFORT

a) Stationary Target

Koopman (1946) first investigated the optimal 

allocation of search effort for a stationary target, 

finding a solution for an exponential detection 

function and circular normal target distribution. A 

method of finding allocations for more general target 

distributions is given in Koopman (1957). Stone (1975) 

provided necessary and sufficient conditions for 

optimal allocation within a given cost, giving a 

method of solution using Lagrange multipliers.

Where more search effort becomes available with time, 

a search plan which gives an optimal allocation by 

time t for all t >. 0 i s called uniformly optimal. 

Stone (1975) showed the existence of uniformly optimal 

plans under very general conditions and again used 

Lagrange multiplier techniques to obtain solutions.
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b) Moving Targets

Dobbie (1974) considered a search with exponential 

detection function and continuous time Markov target 

motion between two discrete cells. He gave 

distributions of search effort maximising the 

probability of detection by a fixed time T, and 

minimising the expected time to detection.

Results for continuous space moving target models were 

initially restricted to exponential detection function 

and special types of target motion, such as special 

Markov processes (Hellman (1972) and Saretsalo 

(1973)), or conditionally deterministic motion (Stone 

and Richardson (1974) and Persiheimo (1978)). However. 

Stone (1979) gave necessary and sufficient conditions 

for optimal search plans for a wide class of 

stochastic target motion in discrete or continuous 

time and discrete or continuous space.

In the case of discrete time target motion and 

exponential detection function, Stone's conditions 

have a simple interpretation, as follows. If at some 

instant t, the target position distribution (given the 

failure of previous search) is g t , then the optimal 

allocation of effort at that instant is the same as 

that for a stationary target search with target 

distribution g t - The previously known results
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constitute special cases of Stone's result.

Practical methods of solution, (other than the simple 

two cell model considered by Dobbie), are restricted 

to the case of discrete time motion with exponential 

detection function. Brown (1980) gave an iterative 

algorithm for this case that produces a sequence of 

search plans which converges to an optimal plan. 

Conditions under which the algorithm may be applied 

were further investigated by Washburn (1983).

Brown compared the results obtained with those found 

by an incrementa 1ly optimal or myopic plan. This 

allocates effort such that each increment of effort 

applied yields the maximum increase in detection 

probability considering the previous increments. The 

comparison showed that, unlike the stationary target 

case, moving target optimal plans are not normally 

uniformly optimal. That is for n < m an optimal plan 

for m time intervals need not be an extension of the 

optimal plan for n time intervals.

1.4.2 DISCRETE SEQUENTIAL SEARCH

a) Stationary target

Pollock (1960) first considered the case of a single

searcher taking a sequence of discrete looks for a

stationary target. He produced optimal strategies
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minimising the expected time to detection in the two 

region case using a dynamic programming approach. 

Black (1965) showed by a simple geometric argument 

that the expected cost of the search is minimised by 

taking the next look in the region for which the 

probability of finding the target, (given the failure 

of previous looks), divided by the cost of that look, 

is greatest.

More recently, Wegener (1980) minimised the expected 

search cost, considering only those strategies which 

are ultimately certain to find the target. Lossner and 

Wegener (1982) consider a variation on the basic 

search model introducing a cost penalty for the 

searcher switching from one cell to another.

b) Moving Target

Results for moving target searches with discrete 

effort have proved difficult to obtain. Pollock (1970) 

gave expressions for the minimum expected number of 

looks and the maximum probability of detection with a 

given number of looks when the search space consists 

of two discrete boxes. Using a dynamic programming 

technique not easily extended to a larger search space 

he obtained solutions in two special cases. These are 

the case of perfect detection and the 'no learning' 

case, where transition prbabilities p 4 j = Vj for all
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i, resulting in no information being gained from 

previous searches.

Kan (1977) extended Pollock's model to an arbitrary 

number of cells and obtained solutions in the no 

learning case and when the transition probabilities 

are represented by a Jordan matrix. Washburn (1980) 

applied an algorithm similar to that used by Brown 

(1980) but showed that when effort is not infinitely 

divisible the strategies obtained may not be optimal.

1.5 THE NEED FOR A REVISED SEARCH MODEL

The presently available models of moving target 

searches do not allow the calculation of an optimal 

path for a single searcher to follow over an open 

search area.

Search plans found under the assumption of infinite 

divisibility of effort are in practice impossible to 

implement, although they are sometimes used as a guide 

for the allocation of effort, as is the case in the 

C.A.S.P. system. However, approximating a search plan 

found under this assumption is only appropriate where 

a large number of search vehicles are available or 

target speed is very slow in relation to the time 

required to perform the search.
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Some attempts have been made to express probability of 

detection for a single searcher travelling a specific 

path. Mangel (1982) for example gives an expression 

for the detection probability in the special case of 

target motion being a diffusion process. This has 

however, only been sucessful for very limited types of 

target motion, and the expressions found have proved 

very complicated.

Ideally it would be desirable to develope a model that 

would allow the specification of a continuous optimal 

path over the search area. However, in view of the 

difficulty in obtaining expressions for detection 

probability in this case, a more feasible approach 

would appear to to be to approximate the continuous 

path by a sequence of discrete searches.

Current models of discrete sequential search processes 

are not applicable to search over a large, two 

dimensional search area, for two reasons. Firstly, 

they are normally formulated as 'box type' searches, 

where the target can only be detected if it is in the 

box, or cell, in which a look is taken. This does not 

allow a situation where the cell size and spacing may 

be small in relation to the detection range of the 

searcher, giving the possibility of detection of a 

target in a nearby cell. Secondly target movement is
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normally expressed as a known, fixed set of transition 

probabilities between cells, implying a fixed time 

interval between looks. More realistically, the 

velocity of the target would be known, and the time 

interval between looks determined by the time taken by 

the searcher to travel across the search area.

This thesis attempts to extend the discrete sequential 

search model in these areas, in order to produce 

practical search strategies applicable to a search for 

a target moving in two dimensional space. In the 

following chapters a search model is developed, 

encompassing these features, that allows the 

calculation of detection probability for any search 

strategy. The problem of determining optimal 

strategies is also addressed, and a selection of the 

resulting search strategies obtained are presented and 

discussed.
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CHAPTER TWO 

A MODEL OF THE SEARCH PROCESS

2.0 INTRODUCTION

In this chapter an algorithm is developed for the 

determination of discrete search strategies for a 

moving target. The basis of the algorithm is a 

Bayesian updating procedure allowing probability 

distributions of the target position to be found prior 

to each look being taken. From these distributions the 

probability of detection for any strategy can be 

found.

Use of the updating procedure requires that the 

detection capability of the sensor and an initial 

probability distribution of target location are known. 

Further statistical knowledge is required concerning 

the speed and direction of motion of the target, from 

which a set of transition matrices (also required in 

the procedure) are determined. Calculation of these 

matrices is greatly simplified by restricting searcher 

and target movement to an isometric grid such as those 

illustrated in diagram 2.3.

36



2.1 THE SEARCH PROCESS

For the purpose of modelling the search process it is 

supposed that the search is conducted in the following 

manne r.

Assume that the search area consists of a finite set 

of discrete locations which will be termed nodes. For 

simplicity, assume also that the search area is known 

to contain the target (although the model may also be 

used in the case of a defective initial distribution). 

Th e searcher takes a sequence of discrete looks at 

intervals throughout the search. Between looks, target 

and searcher are constrained to move from node to node 

within the search area.

At each stage of the procedure the searcher chooses a 

node (called a search node) at which the next look i 

to be taken. The look is assumed to occur 

instantaneously, and at that moment the searcher has 

view of the surrounding nodes as well as the search 

node. Denote the set of nodes of the search area by X. 

If node JeX is the chosen search node, the target can 

be detected with known probability 0j n e[0,l] given it 

is at node heX at this time. A look can only be taken 

at a node.

s

a
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The time interval between looks is not assumed to be 

constant. During this interval the target moves 

between nodes with Markov motion described by a set of 

known transition probabilities which are dependent on 

the length of the interval.

A discrete collection of nodes is not the most natural 

way in which to model a two dimensional search area. 

However this, together with the assumption of discrete 

effort gives a search model that is amenable to 

n um erical calculation, as discussed in section 1.5.

The simplifications of discrete time Markov target 

motion and instantaneous detection are made in order 

to minimise the amount of computation involved in 

updating the target position distribution. This 

computation will be considerable because of the large 

number of nodes required to adequately represent a two 

dimensional search area.

Also to minimise computation, added assumptions are 

made that neither target motion, nor the detection 

ability of the searcher change with time, or as a 

result of previous search (i.e. it is a passive 

search). It is also assumed that the search is not 

complicated by the presence of false targets, and that 

if a detection is made, no further investigation is
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needed so the procedure will terminate. In practice 

this is often not the case, as indicated in section 

1.2, however these simplifications are frequently 

applied, for example by Pollock (1970), Kan (1977), 

and Eagle (1984).

In the following section an algorithm is derived which 

allows an updated probability distribution of target 

position to be calculated. Although position may not 

be the only target statistic in error, (the speed or 

direction of motion may also have been incorrectly 

estimated), updating target position is the most 

natural approach as it is the target's correct 

location that is being sought. The model could, in 

theory, be extended to also allow target velocity, or 

even detectability, to be updated. However this 

approach was not taken because of the complexity of 

the resulting updating algorithm.

2.2 DERIVATION OF THE UPDATING PROCEDURE

A procedure for finding an updated probability 

distribution of target position following an 

unsuccessful look and and subsequent target movement 

can be found as follows.

Assume that at time t fc the probability distribution of 

target position is given by {jtj.ieX} with £ n^= 1.
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This is implicitly conditional on the target being in 

the search area and being undetected at any time 

t < t t (otherwise the search would have terminated). 

Suppose a look is made at node JeX at time t, and 

denote the updated distribution at some later time 

t k+1 by { JT ' i , ieX} .

Denote the following events:-

i' = target at node i at time t, + , , 

Dj = target not detected from J at time t, . 

h = target at node h at time t, ,

S, . = target moves from node h to node i in the 

time interval

The updated probability n ' -, that the target is at 

node i at time tt + i   given that the look at time t^ is 

unsuccessful, can be expressed as:

P(

by the usual rules of probability.

The target can only occupy one node at any time, so as 

mutually exclusive events this can be written
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P(h) P(Djlh) P(S hi I(hnDj)) 
h - ———————— -———————————————— (2.1) 

2 P(h) P(Djlh)

again by the usual rules of probability.

To simplify this a little the following notation is

introduced:-

Let

njh = P(Djlh) J.heX

Thus TIJ-L is the probability that a target at node h is 

not detected by a look from node J. (i.e."jh^ ~® Jh^

Also let At = t k+1 - t^. and

p hi (At) = P(S fai I(hnDj)) h.ieX with ^ p fai = 1
i 

That is pj-(At) is the transition probability from

node h to node i for the time interval t k+l~ t k' 

of length At. It is conditional on the target being at 

node h at time t t , and not detected by the look made 

at node J at this time.

And, by definition, n, = P(h).
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Substitution in equation (2.1) gives

"h ^Jh Phi (At)
(2.2)

"h ^Jh 
h

The updating expressions given by Pollock (1970), 

equations (1.5a) and (l.Sb), are a particular case of 

equation (2.2). If the search space consists of just 

two nodes, and the possibility of detection restricted 

to a target at the node at which the look is taken, 

equation (2.2) reduces to equations (1.5a) and (l.Sb).

Use of this algorithm to produce successive target 

position distributions requires three components. 

Th e se are:

1) an initial probability distribution of target 

position,

2) a set of non-detection probabilities ^Jh-' ^ or 

searcher and target at any positions J and h 

respectively in the search area, and

3) transition probabilities Pki<At) between any pair 

of nodes h and i for a variety of time intervals At.

Estimation of initial target position and of the

detection capability of the searcher can present

complex problems, as indicated in Chapter 1. However,

for the purpose of the present model, it is assumed
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that an initial target distribution and the non- 

detection probabilities are known. Ways in which they 

may be specified are discussed in section 2.7.

In search models of this type, it is normally also 

assumed that transition probabilities governing target 

motion are known. Pollock (1970), Kan (1977), Washburn 

(1980) and Eagle (1984) all take this approach, 

allowing only a fixed time interval between looks. It 

is however, more realistic that target motion in a two 

dimensional area would be known in terms of speed and 

direction of movement. Determination of transition 

probabilities from this information for time intervals 

of varying length will be examined in detail in 

section 2.4.

2.2.1 AN ALTERNATIVE APPROACH

An alternative derivation of equation (2.2) can be

obtained by considering the two steps of

a) updating following an unsuccessful look, and

b) updating to allow for target movement, 

as separate operation as performed in the C.A.S.P. 

system. This can be achieved as follows.

Let {n- s ,ieX} be the updated position distribution 

following an unsuccessful look at node J, (with no 

subsequent movement). By Bayes rule, the posterior
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probability n i s that the target is at node i i

s "i S = —————— (2.3)

Also, let {n i m ,ieX} be the position distribution 

updated for target movement only in time interval At. 

The probability n^ m that the target is at node i after 

this interval is

Phi (At > < 2 - 4) •

The probability that the target is at node i at time 

*k+l' following an unsuccessful look and subsequent 

movement, denoted by (n. s ) m is given by the 

composition of expressions (2.3) and (2.4):

<s \ m VI"i > = Z v—~" 
h LJ n h

h

Phi (At) / 0 ^ 
= h -------------- (which is equation 2.2).

n h

This approach, of updating in two separate steps, will 

be considered further in Chapter 5, where a revised 

method of determining target transition probabilities 

is discussed.
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This two-stage method of updating can also lead to an 

alternative algorithm. By performing the updating 

steps in reverse order, first allowing for movement, 

and then for an unsuccessful look, a sequence of 

distributions of target position immediatly following 

each look can be obtained.

Denote the updated probability that the target is at 

node i, following movement during time At and a 

subsequent unsuccessful look at node J, by (n.^"1 ) 8 . The 

composition of expressions (2.3) and (2.4) in this 

order gives

_ _ n h Phi (At) IJi 
(7t m i ) s = h —————————————————— (2.5).

J n k Pkh (At > > 
k

The double sum in the denominator makes this 

expression a little more awkward to use than equation 

(2.2). Also, it is more useful to have information 

about target position immediatly before the decision 

of where to place each look is made, so equation (2.2) 

was chosen as the basis of the updating algorithm in 

preference to equation (2.5).

2.3 THE SEARCH AREA

Before target transition probabilities for any given 

time interval can be determined, consideration must be 

given to the specification of the search area.
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It was initially thought that a continuous two 

dimensional search area could be used, divided into 

discrete rectangular cells, as in the C.A.S.P. system. 

However it was found that direct calculation of 

transition probabilities between cells from 

information of target speed and direction was too 

complicated to be of practical use. This is because 

the probability of movement from one cell to another 

depends not only on velocity, but also on position 

within a cell as illustrated by diagram 2.1. These 

quantities are only known probabilistically and 

evaluation of the resulting trigonometric expressions 

would have been too complex to incorporate in the 

updating algorithm. Monte Carlo methods, used in the 

C.A.S.P. system, would also be unsuitable in this case 

as updating in this way between successive looks would 

be far too time consuming.

Other cell shapes, such as triangular or hexagonal 

divisions, were also considered but these offered no 

advantage over rectangular cells. Approximating the 

search area by a collection of discrete points, as 

illustrated in diagram 2.2, was therefore found to be 

the most suitable approach.
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Diagram 2.1 Target Movement Between Cells

Diagram 2.2 A Collection of Discrete Nodes
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The target transition probability between any two 

nodes is dependent on the relative position and 

spacing of the nodes. Consideration must therefore be 

given to the arrangement of the nodes of the search 

area. An isometric arrangement, where neighbouring 

nodes are equidistant from each other is computation­ 

ally the most convenient. The three possible such 

arrangements in two dimensions are illustrated in 

diagrams 2.3a, 2.3b and 2.3c which show nodes Having 

three, four and six neighbours respectively.

The principal advantage of such an arrangement is 

that, if the target is constrained to move along the 

grid lines indicated in the diagrams, the distance of 

travel between any two nodes is always an integer 

multiple of the node spacing. This greatly simplifies 

the formulation of transition probabilities. A further 

advantage is obtained in determining the time interval 

between looks if searcher movement is also constrained 

in this way. This point is discussed in section 2.5.

Constraining target and searcher movement in this way 

clearly restricts the direction of motion, however the 

computational advantages of this simplification are 

substantial. To minimise the restriction on direction, 

the node arrangement shown in diagram 2.3c was chosen, 

allowing six directions of travel from each node.
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2 .3a

2 .3b

2 .3c

Diagram 2.3 Isometric Node Arrangements
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For computational convenience the nodes are considered 

to have unit spacing and are given coordinates by 

means of a pair of non—orthogonal axes as shown in 

diagram 2.4. With this coordinate system, the minimum 

distance N, along the grid lines, between two nodes 

having coordinates (x a ,yi), (x 2 ,y 2 ) respectively is 

given by the relation

N =

Ui-x 2 l + Iyi-y 2 l if ( x i-x* ) ( y*-y » ) >0
(2 .6a)

max{ IxjL-xa I , Iyi-y 2 I } if ( x i-x » ) ( y*-y a ) <.0
(2.6b)

Thus in diagram 2.4, the distance from the node 

labeled A, of any node in the shaded regions is given 

by expression (2.6a), while the distance of any node 

in the non-shaded regions is given by (2.6b). (In the 

case of nodes on the boundary of the two regions, the 

two expressions are equivalent.)

For example, the distance between points A(l,-l) and 

B(2,l), shown in diagram 2.4, is

N = I 1-21 + 1 (-l)-ll = 1+2 = 3 units,

and the distance between A(l,-l) and C(-3,2) is

N = max { |l-(-3) I , I (-D-2 I } = max { 4,3 } = 4 unit
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Diagram 2.4 Illustrating the Distance Function
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2.4 SPECIFICATION OF TARGET MOTION

It is assumed that the motion of the target may be 

specified as independent probability density functions 

of speed and direction of movement. Such information 

might be available from historical data of similar 

targets, or estimated from prevailing search 

conditions .

The assumption of independence may not be appropriate 

to every search, strong winds for instance may make 

travel in one direction slower than another. However, 

this assumption simplifies the calculation of 

transition probabilities. Also to facilitate this 

calculation, target motion is assumed to be 

independent of position. Again this would not be 

appropriate in every situation, as geographical 

features might, for example, impede movement in some 

locations. The two components of motion are discussed 

in the following sub-sections.

2.4.1 SPEED

The distribution of target speed may be specified by 

any probability density function appropriate to the 

search under consideration.
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For computational investigation of the search model it 

is assumed that the speed is given by a Beta 

distribution. This has the form:

B(x) = A x 0 " 1 (l-x)P- 1 xeCO.l] (2.7) 

with

a + p )

P<a>

The Beta distribution was used because it is of a 

suitable shape and has the necessary flexibility to 

model a range of target behaviour.

It is assumed that three statistics of target speed 

are known, allowing specification of a particular Beta 

distribution. Th e s e are:

1) The maximum target speed, denoted by V.

This allows the speed distribution to be specified 

over the interval [0,1] . Denoting the speed 

distribution by s(v), and target speed by V\ this 

can be achieved by setting v = V t /V tmax .

2) The normal running speed of the target, denoted by

V tn-

This is assumed to determine the mode of the

distribution, from which a relation between the 

parameters a and p can be found.
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The mode, M, of the Beta distribution with a, P > 1 

is given by

a-1
M = ————— (2.8) .

a + p-2

Rearranging and setting M=v tn/ v tmax gives the 

relationship between the parameters,

M (p-1) 
a-1 = ——————— (2.9)

1-M

3) The probability that the target is moving at a 

speed greater than \ (V tn+V tmax ), denoted by X. 

This statistic determines the top tail of the Beta 

distribution from -j(M + l) to 1.

Substituting expression (2.9) for (a-1) in equation 

(2.7) (written in terms of v), allows P to be found 

from the expression

1

A v c(P "1) (l-v)^" 1 dv = X (2.10)

with
M

1-M

These three statistics were chosen because they 

constitute information that might reasonably be known
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about target behaviour, and allow the parameters a and 

p to easily be calculated. The mode was chosen as 

statistic two in preference to the mean, because it 

was felt that it would be more likely that the normal 

running speed would be known, rather than the average 

running speed, particularly in the case of skew 

distributions.

It might also seem more natural to give the value of 

the integral from M to 1 as statistic three , but in 

the case of a symmetric distribution this is always 

equal to 0.5 whatever the value of o = p. To avoid 

being unable to determine the parameters in this 

situation the specified statistic was chosen, although 

the integral over another range could equally well be 

used.

The parameters a and p were found by evaluating the 

integral given in equation (2.10), using a N.A.G. 

computer routine. A range of values of P in intervals 

of 0.1 was taken, and that giving the closest 

approximation to X chosen. This degree of accuracy was 

felt to be sufficient for the purpose of investigating 

the model. In practice, more accurate interpolation 

could be used if the accuracy of target information 

was sufficient to warrant this.
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The restriction was made that a, p >. 1. This was 

imposed to exclude Beta distributions having infinite 

values at v = 0 and v = 1 as these were not felt to be 

suitable to represent target speed. (Although equation 

(2.8) is not strictly defined at a = P = 1, equation 

(2.10) may still be used to specify a uniform 

distribution.)

A further restriction was imposed that a, P <=10, for 

two reasons. Firstly it was thought that this range 

gave a sufficient degree of flexibility in specifying 

target movement. Secondly, large changes in a and p 

above this range are required to produce small changes 

in the value of the integral. The degree of accuracy 

to which X, is likely to be known was not thought to 

warrant taking extreme values of a and p, although 

again in practice this restriction could be lifted if 

desired.

2.4.2 DIRECTION

Clearly on the grid described there are six possible 

directions of travel from any node. In order to 

specify the distribution d(6) a convention is adopted 

for numbering the directions as shown in diagram 2.5.

56



d(2)

d(6) <————V————d(3)

d(5) d(4)

Diagram 2.5 Numbering System for Direction

Any suitable discrete distribution may be used to give 

the direction of motion of the target, ranging from 

the case where d(6) is uniform, expressing an unknown 

direction, to the case d(9) = 1 for 0 = a, d(9) = 0 

for 9 ?t a , 9,ae{l, 2, ..,6} giving an exact direction.

2.5 TRANSITION MATRICES

Target movement, specified by the distributions of 

speed and direction discussed in section 2.4, must be 

translated into transition probabilities between nodes 

for use in the updating procedure given by equation 

(2.2). The transition probabilities are also dependent 

on the length of time between successive looks, which 

is discussed in the next sub-section.

2.5.1 THE TIME INTERVAL BETWEEN LOOKS

To minimise the computation involved in updating the

target distribution it is essential that the
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transition probabilities be known before the updating 

procedure begins. Clearly a set of transition 

probabilities can be calculated for each of only a 

limited number of time intervals. A suitable method of 

determining a finite set of time intervals, realistic 

to a physical search, is to consider how long it would 

take the searcher to travel between consecutive search 

node s .

The simplification is made that the searcher moves 

between nodes by the shortest path, along the grid 

lines described in section 2.3, travelling at a 

constant speed V_. If consecutive search nodes are 

distance N units apart, the corresponding time 

interval At between looks is given by

At = N (2.11), 
V s

Diagram 2.6 illustrates the set of nodes at distance 

three units from a search node labelled J. The choice 

of any one of these as the next search node would 

result in a time interval of 3/V between the looks.

With this convention a set of transition probabilities 

are required for each time interval N/V g for 

N = 0,1,...Nm __. where N___ is the maximum distance,in a jL ill O- A.

ov er the grid, between any two nodes.
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Diagram 2.6 Nodes at Distance Three Units
from Search Node J
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Diagram 2.7 Nodes Within Three Units
of Search Node J
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An alternative approach would be to specify a maximum 

searcher speed, V cma ^ and calculate a set of
o ILL a. JL

transition probabilities for each time interval

N/V smax for N = 0.1....N t , where N t >. Nmax is the 

maximum allowable time interval between looks. At time 

N the searcher might choose either, to take a look at 

any node K such that the distance between K and the 

previous search node is less than or equal to N units, 

or wait until the next time. The set of nodes from 

which a search node may be chosen at time N = 3 are 

illustrated in diagram 2.7.

Although this approach would avoid limiting the 

searcher to a constant speed, it would greatly 

increase the computation involved in the decision 

process used to determine search strategies, so was 

not adopted.

2.5.2 CALCULATION OF TRANSITION PROBABILITIES

Suppose the searcher travels a distance N units 

between consecutive search nodes, so that, by equation 

(2.11), At = N/V C . Assume that at the begining of the
o

interval At the target is at node h, and consider the 

probability that at the end of this interval it is at 

node i, where h.ieX, the set of all nodes. This may be 

expressed in terms of distance travelled and path 

take n.
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To achieve this the following events are defined:

R^t = target moves a distance R in time At,

S^i = target path starting at node h ends at node i.

As the nodes have unit spacing the target must move an 

integral number of units to reach another node. 

Therefore RAt takes the discrete values 0,1,2...... .

These distances are exhaustive and mutually exclusive, 

so the transition probability from node h to node i, 

pj1 ^(At), defined in section 2.2, may be written as:

P hi (At) =
R=0

P(RAt )-P(Shi |R) (2.12) 
R=0

by the usual rules of probability.

Thus the two components, distance and path taken, may

be considered separately.

a) Distance Travelled

The distance R moved by the target at speed V t in time

At is

R = V t At

V t N by equation l2.11).
v s

Thus the probability that the target moves distance R 

units in At is equivalent to the probability that the 

target speed is
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V t = R^V for N /O.
N

However, R can only take integer values, so to convert 

the continuous distribution of target speed into 

discrete probabilities the assumption is made that

<R-!)v s <R+T)V S
P(RAt ) = P ——————— < V t

N N

As this is dependent on the distance N between 

consecutive search nodes, P(R».) is more clearly 

written as P(R|N). Dividing by V tmax to scale to [0,1] 

allows P( RAt^ to be expressed in terms of the speed 

distribution s(v) by the integral

P(R A<.) = P(R|N) = s(v) dv (2.13)At I
where K = V g

N V tmax

To avoid difficulties when the range of integration 

falls partially outside the interval [0,1] , over which 

the function s(v) is defined, the additional 

definition is made that s(v) = 0 for v < 0 and v > 1.

Discretising target speed in this way is not suitable 

in the case of a slow moving target, as it can lead to 

target motion being artificially frozen. This can be 

seen by considering the case V g > 2.V tmax with N = 1,
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giving a value of K > 2. Evaluating equation (2.13) in 

this case, with any speed distribution, gives 

P(R|N) = 0 for all R > 0. Thus if the searcher moves 

only one unit between looks, as is frequently the case 

when optimal strategies are considered, the target is 

stationary.

Even in cases where V g < 2.V tmax this straightforeward 

discretisation of target speed, which was initially 

employed, proved to be far from satisfactory. This is 

because it results in uncceptable distortions of the 

speed distribution, as illustrated by the results 

shown in Chapter 4. Ways in which this might be 

overcome are investigated in Chapter 5, and an 

alternative approach proposed.

In addition to the description of target speed by the 

function s(v), the target may also have a known 

probability of being stationary. Denoting this 

probability by q, the probabilities P(R|N) defined by 

equation (2.13) may be adjusted in this case by 

writing

P'(RlN)
q + (1-q) P(RlN) R = 0 

(1-q) P(R|N) R > 0
(2 .14)
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b) Path Taken

Consider the probability p(S hilD that the target 

moves from node h to node i given R = 1, and denote 

this by

P(S h .|l) = mh ..

The probability mhi * s easily expressed in terms of 

the probability distribution of target direction d(0), 

since for neighbouring nodes mhi = d(6) 06{1.2,. .6} 

where 9 is the direction of travel from node h to node 

i, and for non-neighbouring nodes m*. = 0. Let mi, • be 

element (h,i) of matrix M. It can then be seen by 

applying the well known result of Markov chains that, 

for any R >_ 0 ,

P(S hi |R) = element (h.i) of MR (2.15)

(with M° = the identity matrix).

Thus the probability that the target moves from node h 

to node i, given that it moves R units, is contained 

in the appropriate power of matrix M.

c) Matrix Form of Transition Probabilities 

With p ( RAt* and P(S ti lR) defined in terms of the 

distributions of speed and direction by equations 

(2.13) and (2.15) respectively, transition 

probabilities for each of the range of time intervals 

may be found by equation (2.12).
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A limit may be placed on the range of summation of 

equation (2.12) as follows. Any value of R such that

R > 1 + 1
K 2 (2.16)

(where K is given in equation (2.13)), gives a range 

of integration of expression (2.13) outside the 

interval [0,1], giving P(R^ t ) = 0. Denoting by L the 

smallest value of R for which equation (2.16) holds, 

equation (2.12) may be written

L 
P hi (At) = J p ( RAt } .P<S hi lR)

R=0 

L
P(R|N) .P(S hi lR) (2.17) .

The set of transition probabilities for each time 

interval is more conveniently expressed in matrix 

f o rm . Writing

L
PN = J P(R|N) MR (2.18), 

R = 0

the transition probability p^^At) corresponding to At 

defined by a distance N between consecutive search 

nodes, is given by element (h,i) of matrix P^ .

2.6 DETERMINATION OF SEARCH PATH

A sequence of looks forming a search strategy may be 

planned by considering the probability of detection 

for that strategy, calculated from the successive
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distributions of target position produced by equation 

(2.2). The simplest form of planning is that of an 

incremental, or myopic strategy, which places each 

look to give the highest probability of detection at 

that stage.

Use of the updating procedure to plan a strategy, with 

the transition matrices described in section 2.5, is 

not as straightforeward as with a single transition 

matrix such as those used by Pollock (1970) and Kan 

(1977). This is because the target position 

distribution at the time of each look is dependent, 

through the transition probabilities, on the distance 

travelled by the searcher between search nodes.

Consider, for example, the situation illustrated in 

diagram 2.8, with the searcher positioned at node J. 

If the next look is to be taken at one of the nodes 

labelled i, at distance 1 unit from J, then the target 

distribution immediatly before that look may be found 

by using elements of the transition matrix Pj (defined 

in equation (2.18)) in the updating algorithm. If, 

however, one of the nodes labeled h is to be the next 

search node, a different target distribution formed 

using elements of ?2 will be required, and so on.
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* * *
h h h

* * * *
h i i h

* * *
i J i

* * *
i i h

Diagram 2.8 Nodes at Various Distances
from Search Node J

Therefore, to determine the next search node of an 

incremental strategy, the distance to each node of the 

search area, from the current search node, must be 

found. The corresponding target distribution may then 

be generated in order to calculate the probability of 

detecting the target with a look taken at that node. 

In this way the node giving the highest detection 

probability can be chosen.

In practice, this is most economically performed by 

considering the nodes in order of ascending distance 

from the current search node. This allows the target 

distribution corresponding to each distance to be 

calculated only once, and then over-written after the 

detection probability for every node at that distance 

has been found. An example of a search strategy 

planned in this way is given in the following section.
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2.7 AN EXAMPLE SEARCH STRATEGY

The following example illustrates a simple incremental 

search strategy, planned using the algorithm developed 

in this chapter. The algorithm was implemented in a 

FORTRAN computer program, which allows the input of 

the parameters of initial distribution, detection 

capability, and target movement.

The search area consists of a hexagonal array of 

nodes, of a size chosen by the user, up to a maximum 

size of 91 nodes. For ease of reference the nodes are 

numbered in a spiral manner from the centre, the 

numbering of the largest array being illustrated in 

diagram 2.9. Once the size of search area is chosen 

the parameters are specified in the following way.

a) Initial Disribution

For simplicity the program allows only a limited range 

of distributions, which may be specified in one of two 

ways. The first method, which is used in the following 

example, gives a symmetric distribution on the central 

seven nodes. It is specified by giving the probability 

n-i that the target is at the central node; the 

remaining probability 1 - n^ is then uniformly 

distributed over the six nodes surrounding the central 

node. Alternatively a uniform distribution, (again 

symmetric about the central node), may be specified,
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the range of the distribution being chosen by the 

user.

The program could easily be adapted to enable more 

detailed specification of initial position. This could 

be done by allowing the position probability at each 

node to be input individually, or by discretising a 

continuous distribution in a suitable way.

b) Target Movement

Target movement is specified by giving values of the 

parameters of target and searcher speed and target 

direction discussed in sections 2.4 and 2.5.

The program calculates the appropriate Beta 

distribution from the target speed parameters ^tmax' 

V t and X defined in section 2.4.1. Specifying the 

searcher speed V enables the distribution to be 

discretised using equation (2.13). It is then combined 

with the matrices constructed from the six direction 

probabilities to form the final transition matrices, 

as described in section 2.5.2.

To enable the the model to be used on the search area 

shown in diagram 2.9, the direction probabilities have 

to be adapted at edge and corner nodes in the way 

illustrated in diagram 2.10. This is so that the
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requirement P hi = 1 is satisfied for all h e X. (An
i 

alternative approach might be to introduce an

absorbing state, the target being 'lost' on entering 

this state.)

d(3)+d(2)

d(5) d(4)

d(4)

Diagram 2.10 Adaptation of Direction Probabilities
at Edge and Corner Nodes

c) Detection Capability

Again for the purpose of simplifying the input to the 

program, it is assumed that detection capability is 

independent of position, and dependent only on target 

range from the current search node. It is specified by 

giving the six probabilities that a target, at range 

0, 1, 2,...5 units from the search node, will not be 

detected. The non-detection probability at range
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greater than five units is assumed to be equal to one. 

From these values the matrix of non-detection 

probabilities required in the algorithm is 

constructed.

Again the facility to provide a more detailed

description of detection capability could easily be

incorporated in the program.

The above information enables the matrices required 

in the updating algorithm to be set up. The user then 

specifies the initial position of the searcher and the 

number of looks (following the initial look) that are 

r equi red.

In the following example of an incremental strategy, 

each search node is chosen to give the highest 

probability of detection at that look. This 

incremental method of planning does not necessarily 

give optimal probability of detection for the search 

as a whole. Th e production of optimal strategies is 

investigated in Chapter 3.

The values of the parameters used in the example are 

as foilows.
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Size of search area = 91 nodes

Initial distribution:

0.4 

0.1 

0

Target and searcher speed:

i = 1

i e {2,3 ... .7}

i e {8,9 ... .91}

V V s = 30

V tn =12

tmax - AU

X =0.15 

g iving

a =2 .20 p =1.80 

(actual value of integral = 0.152).

Target direction:

0.1 

0.2

0 e {1,2}

0 e {3,4,5,6}

Non-detection probabilities:

range 012345

probability 0.1 0.5 0.9 1.0 1.0 1.0

Initial position of searcher = node 37. 

Number of looks = 15.

The resulting search strategy is shown in Table 2.1. 

The table gives the node at which each look is to be 

taken (numbered as in diagram 2.9), the resulting 

probability of detecting the target with that look, 

and the cumulative probability of detection for the
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search so far. The cumulative probability does not

include the probability of detection at the initial

node as this is not part of the decision process. The

path of the strategy is illustrated in diagram 2.11.

Table 2.1 The Search Strategy

Lo ok 
Numb e r

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Search 
Node

1

1

4

5

6

3

2

14

16

12

50

53

48

32

50

Detection 
Pr ob ab i 1 i ty

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.4231

.3049

.2610

.2141

.1855

.1884

.1264

.1207

.1000

.093 1

.0791

.0783

.0771

.0783

.0805

Cumula t : 
Pr ob ab i

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

.4231

.5990

.7036

.7671

. 8103

.8460

. 8655

.8817

.8936

.9035

. 9111

.9181

.9244

.9303

.9359
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CHAPTER THREE 

OPTIMISATION

3.0 INTRODUCTION

An incremental, or myopic strategy for a moving target 

search, as illustrated by the example given in section 

2.7, does not necessarily give the maximum probability 

of detection. This was shown by Brown (1980) in the 

case of infinitely divisible effort, and is 

illustrated in the present case by the results given 

in Chap t e r 6.

This chapter examines ways in which optimal strategies 

may be obtained using the search model developed in 

Chapter 2. Two optimisation policies are considered in 

section 3.1, and ways in which the optimisation may be 

carried out for each case are discussed in sections 

3.2 and 3.3. For cases where optimisation cannot be 

achieved alternative methods of solution leading to 

sub-optimal strategies are considered in section 3.4.
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3.1 CRITERIA FOR OPTIMISATION

The applications described in section 1.2 illustrate 

some of the more common objectives of search planning, 

which may be used as criteria under which optimal 

search paths are sought. A common requirement is to 

maximise the probability of detecting the target, 

subject to some limit on the total available search 

resources. Alternatively, the return on the cost 

invested in the search may be of importance, with with 

detection probability in relation to cost being the 

relevant criterion.

Optimisation with respect to each of these 

requirements is investigated in this chapter. In the 

first case, total search resources are measured by the 

number of looks available, and maximisation of 

detection probability in a given number of looks is 

considered. In the second case detection probability 

per unit cost is optimised, again within the 

constraint of a specified number of looks. The 

quantities that may be involved in the measurement of 

search cost are discussed in section 3.3.

These two represent the most common optimisation 

requirements, but are not the only possible criteria. 

Pollock (1970), for example, considers the minimum 

expected number of looks to detection in the two cell
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case. This approach, however, assumes unlimited search 

resources are available if needed, and may lead to 

infinite solutions. Since, in practice, the available 

resources are limited, this approach was not adopted.

3.2 OPTIMAL PROBABILTY OF DETECTION

An expression giving the probability of detecting the 

target in a given number of looks can be obtained as 

foil ow s .

Suppose that at some time t, the searcher is at a 

known node I, where leX, the set of all nodes of the 

search area. Assume that the target position 

distribution at time t^, denoted by { TT ± ( t k ) , i eX } , is 

known, and consider a sequence of M+l looks taken at 

nodes I , J ̂  , . . . . Jjj at times tjt ,tjt + ]_,....tjt + jj. Such a 

sequence of nodes will be termed a strategy.

Denote the probability that target is not detected by 

the look at time t, given that it is undetected at any 

time t' < t, by P(t). The probability that the target 

remains undetected after M+l looks is given by the 

product of these conditional probabilities for times 

tk' *k+l ' ' ' • ' t k+M' Thus the total probability of 

detection in M+l looks, denoted by is

M
DM+1 = 1 - FT P(t k+a ) (3.1).

a = 0
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Evaluation of DM+1 for any known strategy is 

straightforward. Let TIJ^ denote the probability that a 

look taken at node J will not detect the target, given 

that it is at node h (as previously defined in section 

2.2), and denote the target position distribution at 

time t k+Q by { TT i ( t k + Q ) . i eX } . Then, if node J a is the 

chosen search node at time *> + „ • tne corresponding 

probability ^(tfc+a^ is given, by the usual rule for 

conditional probability, by

H T . (3.2).

The distribution { Tr i^ t k+ ^ may be obtained from 

{ TT ,( t, + _i ) ) by use of equation (2.2) . Thus, knowing 

{n.(t, )} and the sequence of search nodes, VM + -\ can be 

found.

Obtaining an optimal strategy however, presents 

problems. Denoting the sequence of search nodes 

J^,J~,....Jj, by S, the max imum obtainable prob ability 

of detection in M+l looks starting at a fixed node I

i s

M
Max[ DM+1 ] = Max[ 1 - n P(t k+Q ) 1 (3.3).

S a = 0

This maximisation cannot easily be performed as will 

be seen in the following sub-sections, where methods 

of finding optimal strategies are examined.
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3.2.1 DYNAMIC PROGRAMMING

Dynamic programming has been applied in the 

optimisation of discrete stationary target search 

problems, and some simple moving target problems. 

Pollock (1970), for example, gave analytic solutions 

by this method for some special cases of the two cell 

moving target problem.

Although equation (3.3) can be expressed as a dynamic 

programming recursion, the application of this method 

is of little practical use in this case, as can be 

seen from the following analysis.

Let Vjj+ .j ({ n . ( t k ) } -I) denote the maximum obtainable 

probability of detection in M+l looks, first looking 

at node I at time t, with prior distribution

By assumption, I and {n^(t k )} are known, so

V l ( {«i(t k )} ,D = 1 - P"(t k ) is known

From equation (3.3)

M
Cn i (t k )} ,D = Max[l - IT. P<t k+a >l

S a = 0

M
= Max[l-P( t k )+P( t k ) (1 - Ft 

S a =
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M
l-P(t k )+P(t k )Max[l - FT P(t k+

S a = l

= 1-P(t k )+P(t k )Max V«({n.
JeX

(3 .4)

Unf or tuna t ly , equation (3.4) is not readily solvable

because of the dependence of the distribution { JT j ( t ) }

at any time t > t k on the chosen search path. This can

be seen by inspection of equation (2.2). Writing

n^(t k+a + j) for IT' and ^i^^ + n^ for n to make explicit 

the time dependence, and denoting the search node at

time *>+« ^y ^ a ^ a ^^ other notation being as defined

in section 2.2), equation (2.2) becomes

Jt h (t k+a ) ^J a h Phi (At)
— — — — — — — — — — — ___ (3.5)

n h (t k+a ) ^Jh

Thus at each time tfc+a+l the target position 

distribution is dependent explicitly on the search 

node J , and implicitly on the previous path 

I . J., , . . . . J a _ 1 (through the distribution * n i ^ * k+ a ^ * * 

It is also dependent on the search node J a+ ^ chosen at 

time t fc+ +1 due to the dependence of the transition 

probability p on the travel time At between nodes J a 

and J a +i•
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The only restriction that can be placed on (n.(t)} at 

any time t > t v , when the path is unknown is

Thus the dynamic programming state space for a search 

area of N nodes is XxRN where X = {1.2...N}. and R is 

the non-negative real numbers (with the additional 

constraints given above).

The complexity of finding optimal feasible solutions 

to this problem is prohibitive for all but simple 

cases. Eagle (1984) presents a method of removing 

unnecessary vectors from the state space in a less 

complex moving target model. The method however 

requires the solution of a potentially large linear 

programming problem, which would make its application 

to the present model unsuitable.

3.2.2 EXHAUSTIVE EVALUATION OF STRATEGIES

Optimal strategies can in principal be found by 

evaluation of detection probability for every possible 

strategy, enabling the strategy or strategies giving 

the highest detection probability to be found.

For this purpose equation (3.3) may be re-written in 

the following way:
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M 
Max[ DM+1 ] = 1 - Min[ n P(t

_ f\ U ~~ \J

M
= 1 - P(t k ) Mint n P(t k+ ) ] 

S a=l

(since P(t k ) is known) (3.6).

An optimal strategy is therefore one which minimises

the overall probability that the target is undetected

in the M looks taken at times t V4. 1 ,t Vi0 ,....t t + M .

For every possible sequence S, the corresponding 

values P(t k+ ) , a. = 1 , . . . , M, may be found in the way 

discussed in section 3.2, and hence an optimal 

strategy can be chosen.

As the target position distribution at each stage is 

dependent on the sequence of search nodes to that 

point, the evaluation and minimisation is most 

economically performed as a depth first tree search, 

backtracking through the tree until all possible 

strategies have been considered. The order of 

evaluation of non-detection probabilities is 

illustrated in diagram 3.1 in the case of four looks 

taken in a search area of three nodes. As explained in 

section 2.6, further economy can be made by 

considering the nodes at each step in ascending order 

of distance from the previous search node. (This 

refinement is not shown in the diagram.)
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In practice, the size of problem that can be optimised 

in this way is severely limited. This is because a

sequence of M+l looks in a search area of N nodes

M 
generates N different strategies, (as can be seen

from diagram 3.1). The volume of computation therefore 

grows exponentially with the number of looks. Although 

ever-increasing computing speeds may make this 

approach more feasible in the future, at present only 

problems of a limited size can be optimised in this 

way if all possible strategies have to be evaluated. 

However, in the following sub-section a condition is 

found under which some strategies may, theoretically, 

be eliminated from evaluation.

3.2.3 ELIMINATION OF STRATEGIES

Unfortunat1y, since equation (3.6) requires the 

minimisation of the product of non-detection 

probabilities P(t^+a ), a = !••••.M, each of which is 

in the range 0 <^ P <. 1 , no strategy can be chosen or

eliminated on the basis of the partial product

TJ
n P(t t + ). U < M (except where this is zero, giving

a = l
certain detection). A criterion has however been found

which allows a node J Q to be eliminated from 

consideration as search node at time t ^+ a ' The 

criterion is an extension of the result given by Kan 

(1977) .
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Kan considers a search for a target moving from box to 

box in a search area of N boxes. The search model is a 

particular case of the model considered here, with the 

following restrictions:

1) Searches take place at unit time intervals with 

target transition probability from box to box 

between these times described by a single Markov 

transition matrix, (denoted by {p-sj,} in the 

following equation (3.7)).

2) A target can only be detected if it is in the box 

in which the look is taken, i.e. r\ ^ - = 1 whenever 

i £ j. (For simplicity the probability of detection 

(1-n..) is denoted by 0 , in equation (3.7)).

Theorem 1 of Kan may be written in the following way. 

If at time t there exists a box J such that:

Ttj(t)0jp jh >. n i (t)(5 i p ih for all h.ieX (3.7)

then to maximise the probability of detecting the 

target an optimal strategy looks in box J at time t.

A comparable result for the present search model may 

be obtained as follows.
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Let S' denote the final M looks of a strategy S of 

length A+l+M looks, A > 0, and assume that the initial 

A search nodes of S have already been decided. In 

order to choose the next node, J, of the strategy in 

an optimal way, J must be chosen so that the 

probability of detection in the strategy JS'is a 

max imum.

Define the following notation.

Let FM + 1 ( {T^} , JS ' ) = Probability of detection in M+l

looks with prior distribution 

{n • } , first looking at node J, 

then following strategy S'.

Also, let GM ( i, S ' ) = Probability of detection in M

looks following strategy S' given 

target at node i.

(As the first A nodes of S are known, {n A } is known.)

To emphasise the dependence on strategy, denote the 

probability that the target is undetected by the look 

taken at node J by Pj, and the target position 

distribution following this unsuccessful look and 

subsequent movement by {n^}. Then, by equation (3.2), 

omitting the time dependence for simplicity,

Pj = J n h njh (3.8) 
h
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and, by equation (3.2)

.————— (3.9) 
PJ

By comparison with equation (3.4), again omitting the 

time dependence, the probability of detection for 

the sequence of looks JS' may be expressed as follows.

i 
(by the usual rule for conditional probability),

[ y'JTi-TlTt.P'U • I £. n j n n i I "U ^ _ __ _ _ _ _ I fl ( -J Q'^ Jl I vTllfV-"-!^ ' 
— I M 
P J J

(by equa tion (3.9)),

ih

Now since ^Pli' = ^ ^ or a11 ^ eX ' equation (3.8) may be
i 

exp ressed as

PJ =
i h

ih
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Thus from equation (3.10),

- JS ' > = 1 - h^JhPhi* 1 - GM (i,S')) (3.11) 
ih

The conditional probability GM (i.S') is independent of 

previous search strategy, thus if for some JeX

^h^JhPhi^itJ < J JT h 1lLhPhi (A ^ t) (3.12) 
h h

for all LeX, ieX, A x t,A a t e {0,1,2,...},

where {n^} and { TI £ } are possibly different target 

position distributions, as explained below, then

FM+1 ({ ni },JS') > FM+1 ({n!},LS')

for any LeX and any sequence S'.

Hence, if there exists a node J for which condition 

(3.12) holds, then J must be chosen as the next search 

node in order to give optimal probability of detection 

in the final M+l looks of strategy S.

In equation (3.12), the distribution { JT £} may differ 

from {n•} if nodes L and J are at different distances 

from the previous search node. These distances are 

shown as Dj and Di in diagram 3.2, which illustrates 

the choice between sequences JS' and LS'. Also shown 

are the distances D 2 and Di to the first node of 

sequence S' from J and L respectively. These determine 

the time intervals A x t and A 2 t which in general will 

not be kn own.
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Initial A Nodes 
of Strategy S 

(known)

D

Final M Node s
of Strategy S

(= Strategy S ' )
(unknown)

Key

X 
J,L

A th node strategy Sof
alternative 
nodes of strategy S 
first node of strategy S 

known distances 
unknown distances

Diagram 3.2 Showing the Choice Between Two Strategies
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Condition (3.12) has a simple physical interpretation.

The quantity ^"h 1! JhP hi (A 1 t > is the probability that
h

the target will be undetected by the look taken at

node J and be situated at node i at time A x t after

that look is taken.

In practice it is unlikely that any node will satisfy 

condition (3.12), however the converse of this 

condition may be used to eliminate nodes from 

consideration at each level of the tree search in the 

fo1 low ing way.

Suppose, given the first A nodes of S, there exists a 

node K for which

(3.13) 
h h

for some LeX and all ieX, A^t.Aat e {0,1,2...},

then K cannot be the A+lth node of S if S is to be

optimal.

To illustrate the use of conditions (3.12) and (3.13), 

consider the nodes labeled A, B and C at level 1 of 

the search tree shown in diagram 3.1. If, say node A 

satisfied condition (3.12), then the branches 

containing nodes B and C could not contain optimal 

strategies so could be ignored, thus eliminating two 

thirds of the possible strategies. Alternatively if
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condition (3.12) could not be satisfied, but say node 

C fulfilled condition (3.13), then the branch 

containing node C could be ignored, and only 

strategies in branches A and B need be compared for 

optimali ty.

It is clear that if one of these conditions could be 

found to hold, particularly at the early decisions of 

the search, a significant reduction could be achieved 

in the number of strategies to be investigated. 

However, the application of these conditions involves 

a substantial amount of computation. This is 

particularly wasteful if unsuccessful, because the 

comparisons have to be made across the tree at each 

level, so losing the economy of the depth first 

approach.

Some preliminary investigation of the usefulness of 

these criteria indicated that in a few cases up to 10% 

of possible strategies could be eliminated, but in the 

majority of cases little or no reduction in the number 

of paths could be made. In many cases full 

implementation of these criteria would increase, 

rather than decrease the computation time. For this 

reason the criteria were not incorporated in the 

optimisation programs used to determine the strategies 

presented in Chapter 6.
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It is clear from the above discussion that alternative 

methods of reducing the volume of computation must be 

considered, in order to make the calculation of search 

paths feasible. Some alternative approaches, leading 

to strategies that may not necessarily be optimal, are 

discussed in section 3.4.

3.3 DETECTION PROBABILITY PER UNIT COST

The costs involved in a search operation vary 

greatly with the application considered. 

Mathematically search cost is frequently defined as a 

function of the node or area searched. Black (1965) 

defines search cost in this way in a stationary target 

model as does Ean (1977) in a moving target case.

In a practical search operation over a two dimensional 

area, for example an airborne search, costs will be in 

terms of manpower, equipment and fuel. In general 

these costs depend mainly on the duration of th 

search, thus for simplicity it is assumed that search 

cost is proportional to the time taken to complete th 

search operation.

e

e

As only instantaneous search is being considered, and 

the searcher is assumed to move at constant speed, the 

search time is determined by the distance travelled by 

the searcher. Thus in order to maximise the
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probability of detection per unit cost, the equivalent 

problem of maximising probability of detection per 

unit distance, in a given number of looks, is 

considered.

Detection probability per unit cost in a given number 

of looks may be defined in the following way. Consider 

again a sequence of M+l looks and let R, be the 

distance between search nodes Jv-i and J. (with 

JQ = I) . Denote the detection probability per unit 

cost in the M searches following the initial search of 

node I by C(M), with all other notation as previously 

defined.

Then C(M) may be defined by

M
i - rr P(t k ) 

k=i
C(M) = ———————————— (3.14)

M

k = l

Alternatively, detection probability per unit cost 

could be defined over the M+l looks as

M
i - n P( t k )

k = 0
C(M + 1) = —— -- — -- —— (3.15)

M
J Rk with R0 = 0. 

k = 0
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However,the initial node I is pre-determined,and there 

is no associated travel distance to that node, so 

definition (3.14) was chosen in preference.

Difficulties would arise in the calculation of C(M)

from equation (3.14) if £ Rk = ®" To avoid this the
k 

restriction is made that the searcher is not allowed

to take consecutive looks at the same node, thus 

imposing a minimum travel distance of 1 unit 

between consecutive search nodes.

An alternative approach might be to introduce a 

nominal cost of looking at each node, the total cost 

of each look being composed of this nominal cost plus 

the distance cost. For simplicity, however, the first 

alternative was chosen.

3.3.1 OPTIMISATION

The maximum probability of detection per unit cost can 

be expressed, using definition (3.14) as

M

Max C(M) Max 
S

- n p(t k >
k = l

M

k =

(3 .16)

Several approaches were taken to this maximisation 

problem, but as in the previous case, the optimisation
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is not, in general, easily achieved. Dynamic 

programming again proved to be unsuitable. In this 

case equation (3.16) appears not to be expressable as 

a dynamic programming relation, as the sum in the 

denominator prevents the expression from being 

separated in a suitable way. A sequence of nodes 

maximising C(M) can be found by exhaustive evaluation 

of strategies in a similar way to that described in 

section 3.2.2, but as previously discussed, this is 

only feasible for a limited range of cases.

A condition comparable with (3.12) does not appear to 

be obtainable in this case, again because of the 

inseparability of equation (3.16) . However, a simple 

alternative criterion can be given, which can be of 

use in some cases in reducing the number of strategies 

to be investigated in the exhaustive evaluation.

The condition stems from observing from equation 

(3.14) that, for any strategy,

1
C(M) < ——— (3.17).

M

k = l 

Now, suppose for some strategy S with path length

^ Rk = L, it is known that the total probability of
k
not detecting the target is H L . Then for strategy S,

equation (3.14) gives
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1 - HL
C(M) = ———— (3.18).

L

It then follows from equation (3.17) that any strategy 

with path length L+W such that

1 1 - HL
-——— < ~ — -- (3.19)
L + W L

cannot give a higher probability of detection per unit 

distance than strategy S, whatever the detection 

probability for that path.

Rearranging equation (3.19) gives

LHL
W 1 —————— (3.20).

i - H

Denoting the smallest value of W for which equation 

3 . 20 holds by a .

LHL
a = —————— (3 .21) .

1 - HL

Thus any strategy of path length L+W with W > a can be 

ignored in the optimisation process.

This condition can be very conveniently incorporated 

into the exhaustive optimisation process to provide an 

upper limit to the path length of those strategies 

that need to be evaluated. For a search consisting of
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M looks (following an initial look at node I) this can 

be done in the following way. The application of the 

restriction discussed in section 3.3, disallowing 

successive looks at the same node, gives a minimum 

path length of M units. If the optimisation is carried 

out using the depth first tree search, with nodes 

taken in order of ascending distance from the previous 

search node, as previously discussed, a value of HJJ 

for this minimum distance is the first to be 

calculated. This can be used to find an initial value 

for a. As the optimisation proceeds, this value can be 

updated whenever a strategy giving a higher 

probability of detection per unit distance is found.

To illustrate the use of condition (3.21) suppose 

that, in a search of 5 looks (following the initial 

look), the probability of detecting the target with a 

strategy S of minimum path length is 0.6. This gives 

H T = 0.4, and L = 5 , so from equation (3.21)L/

5 x 0.4
a = ——————— = 3.3 

0 .6

As path length can only take integer values, any 

strategy with path length greater than 8 units will 

therefore give a lower probability of detection per 

unit distance than strategy S.
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It can be seen from the results given in Chapter 6 

that the values quoted here are not untypical of those 

that can be expected in some cases. Since, on the 91 

node grid shown in diagram 2.6, paths of up to 50 

units are possible for a strategy of 5 looks, 

significant savings in computation can be made in 

cases such as this.

However, where detection probability is lower, the 

saving is less significant. This can be seen from 

diagram 3.3 which shows a graph of a against detection 

probability (1 - HT) for various values of L. It can 

be seen from the graph that condition (3.21) is of 

most use when high detection probability is obtained 

in minimum path length, giving a low value of a.

ion 

r om

Considering the case where L = 10, with a detecti

probability of 0.4, a value of a = 15 is obtained f

the graph, giving a maximum total path length of L + W

= 25 units. While this still represents a 50%

reduction in maximum path length for 5 looks, the

saving in computation will be insufficient to allow 

opt im i sa t ion.
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In such cases it may be possible to put an upper bound 

B < 1 on the maximum achievable detection probability, 

allowing equation (3.19) to be replaced by

B 1 - H L

L + W L

leading to a lower value of a. This might be possible, 

for example, if the search sensor had poor detection 

capab i1ity .

In general however, in cases where optimisation is not 

possible with the aid of condition (3.21), it will be 

necessary to employ the alternative methods of 

solution discussed in the following section.

3.4 SUB-OPTIMAL SOLUTIONS

This section considers further ways of reducing the 

amount of computation in the exhaustive optimisation 

process, in cases where the application of conditions 

(3.13) and (3.21) are insufficient. The methods 

produce solutions which may not necessarily be optimal 

but, as demonstrated by the results given in Chapter 

6, are acceptable approximations to optimal solutions.
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Three methods of solution are considered. These are:-

1) Planning the search path to a limited horizon.

2) Limiting the distance travelled by the searcher 

between consecutive search nodes.

3) The introduction of a moving grid system.

The first two methods have been used extensively in 

obtaining the results shown in Chapter 6, the third is 

introduced to enable the model to be applied to a 

search for a target moving through a large area.

The methods are discussed below in relation to the 

optimisation of detection probability, but are equally 

applicable to optimisation with respect to cost.

1) Limited Horizon.

As stated in section 3.2.2, the number of possible 

strategies for a sequence of M + 1 looks in a search 

area of N nodes is NM (assuming that the first node is 

pre-determined). Thus the computation time increases 

exponentially with the number of looks over which the 

optimisation is carried out. One method of reducing 

the computation time is to plan the strategy in a step 

by step manner, optimising over only a limited number 

of future looks before each decision is made.
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In a sequence of M+l looks starting at node I 1 this 

may be achieved by finding an optimal strategy 

(Ij . J]_ , J 2 . . . . Jg) for the first K+l of these looks. The 

node J^ is taken as the next search node of the sub- 

optimal path, it then becomes the initial node I~ of 

the optimisation procedure over the next K+l looks and 

the process is repeated. The procedure is carried out 

M-K+1 times, the last giving a path ^M-K+l' 

J^ , J 2 . • • • Jjj ) which is optimal for the last K+l looks.

The number of possible strategies is therefore reduced 

from NM of length M+l nodes to (M-K+1) x N K of length 

K+l nodes. Thus for say, 11 looks over 91 nodes, 

optimising over 3 looks ahead, the reduction will be 

from 91 10 strategies of 11 nodes to 8 x 91 3 of 4 nodes 

with a corresponding reduction in computation time.

Optimal strategies cannot always be found for 

comparison, but results obtained by restricting 

planning horizon in this way suggest that this method 

of solution gives strategies with detection 

probability that is close to optimal. In the cases 

considered in Chapter 6, it is frequently found that 

the detection probability obtained from a myopic 

strategy (which is optimised over just one look ahead) 

differs only minimally from an optimal value, the 

difference being typically of the order of 2%.
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2) Limited Distance.

An alternative method of reducing the number of 

strategies considered is to restrict the maximum 

distance that the searcher is permitted to travel 

between consecutive search nodes. Again taking the 

example of M + 1 looks over 91 nodes. If the searcher 

is restricted to move at most two units between looks, 

it can be seen from the grid illustrated in diagram 

2.9 that at each decision there is a choice of at most

19 nodes. This restricts the number of strategies from

M M 91 to at most 19 , again giving a substantial saving

in computation.

From a practical point of view, restricting searcher 

movement in this way is often more realistic than 

allowing a free choice of search node. For example, a 

searcher physically travelling over a two dimensional 

search area is unlikely to pass over a search node 

without investigating it.

The results discussed in Chapter 6 indicate that, in 

the majority of cases, the searcher will choose to 

move only a limited distance between looks (typically 

no more than two). Thus restricting searcher movement 

in this way is unlikely to greatly affect the overall 

detection probability. Some exceptions to this are 

discussed further in Chapter 6.
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3) Moving Grid.

The procedures described above allow sub-optimal 

solutions to be found for more prolonged searches over 

larger search areas. There is still however a 

comparitively small limit to the size of search area 

that can be used. This is because updating target 

position and optimising over many hundreds of nodes 

would be prohibitive in terms of computer time and 

available memory. In order to apply the model to 

searches over a larger area the concept of a search 

grid moving with the searcher is introduced here.

One arrangement for such a grid is illustrated in 

diagram 3.4. The diagram shows a hexagonal grid of 

nodes T^ termed the target grid over which a target 

position distribution { TT j, , ie T^} is known, with

/Hj=l. The searcher is assumed to be situated at the
i
central node (I). Surrounding node I is the grid of

nodes S-i from which the next search node may be 

chosen.

Suppose node J is the next search node. A new target 

grid To centred on J is defined as follows. Nodes 

belonging to both T^ and T2 reta i n tne same target 

position probability, all other nodes in T^ are 

ignored. Nodes now in T2 but not in T I are given 

probability 0. The target position distribution on T 2
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is updated and normalised following the look at node 

I, and the process is repeated.

At each stage the true probability that the target is 

in area T must be maintained in order to calculate the 

probability of detection at each look. The procedure 

is carried out until either the required number of 

looks has been made, or the probability that the 

target is in area T falls below a specified level.

In order to minimise the error in computed detection 

probability caused by the truncation of the target 

distribution, the size if grids S and T are chosen so 

that

radius of T >. radius of S + R + 1

where R is the maximum range of detection of the 

searcher. This ensures that all nodes 'visible' from 

grid S are contained within grid T, and that the edge 

nodes of T, which are likely to be the most in error, 

are outside the range of detection.

It is clear that this approach is most suitable in 

cases where the direction of motion of the target is 

well defined as this will result in the least 'loss of 

probability' when the target grid is moved.
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The application of the restrictions discussed above 

allow search strategies to be calculated for grids 

that might realistically represent a physical search 

area. It is often necessary to apply more than one 

restriction, i.e. restricting movement and optimising 

over a limited horizon, but in cases where comparisons 

can be made, the results obtained compare favourably 

with optimal solutions. An analysis of the methods of 

producing search strategies discussed in this chapter 

is given in Chapter 6.
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CHAPTER FOUR 

ANALYSIS OF THE SEARCH MODEL

4.0 INTRODUCTION

Investigation of the search model developed in 

Chapter 2 can be considered from two aspects. These 

are, firstly verifying that the algorithm given by 

equation (2.2) produces an acceptable updated target 

distribution, and secondly that search strategies 

generated from this distibution are, by some measure, 

sensible. The first of these aspects is investigated 

in this chapter, while verification of search 

strategies is considered in Chapter 6.

The updated distribution is considered with respect to 

the individual components of the search model. It is 

shown to be consistent with predicted values except in 

relation to target speed. The model of target speed is 

shown in section 4.3.1 to produce anomalies in the 

target distribution which might unacceptably influence 

the choice of search strategy. An alternative model of 

target speed is given in Chapter 5.
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4.1 ELEMENTS OF THE SEARCH MODEL

The updating algorithm, equation (2.2), takes three 

components, initial target position, searcher 

detection capability and target movement, to calculate 

a revised estimate of target wherabouts following each 

look. Equation (2.2) is reproduced here as equation 

(4.1):

5 "h Ijh Phi (At > 
n'i = h--———————————— (4.1).

I "* -jh

where n h >JT 'i denote target positon probability, 

f[ j k denotes non—de t e c t i on probability, 

and pj1 £(At) denotes transition probability for the

time interval At, 

as defined in section 2.2.

In order to verify that the algorithm gives sensible

information about target position, the updated

distribution is considered, in the following sections,

with respect to each of the three components.

4.2 INITIAL DISTRIBUTION AND DETECTION CAPABILITY

The initial target distribution {n^, heX}, and the set 

of non-detection probabilities f^j^. j.heX} (giving 

the probability that a target situated at node h will 

not be detected by a look taken at node j), are 

assumed to be known parameters of the algorithm, and
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are thus not considered with respect to modelling.

However, the effect on the updated distribution of

varying both initial target position and detection

capability has been investigated.

Target distributions obtained from a computer program 

implementing the algorithm, have been found in all 

cases to be in accordance with expected values in 

relation to these parameters. (This is illustrated by 

the results discussed in sections 6.2 and 6.3.) This 

observation is supported by the following analytic 

investigation of two special cases.

Consider first the case where the target is 

stationary, and the searcher has zero probability of 

detection at any node. As no information is gained 

from the search, and there is no target movement, the 

target position distribution should remain unchanged. 

This may be verified by setting

r\ • k = 1 for all j.heX, 

and the transition probabilities

if h=i 

if hM.
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Equation (4.1) then gives

i

Hi

since = 1 .

Thus the distribution is unchanged, as expected.

Next consider the case where, again the target is 

stationary, but where the searcher has certain 

detection at the search node j, and zero probability 

of detection at all other nodes. In this case the 

updated target position probability should be reduced 

to zero at the search node. Again this may be verified 

by sett ing

0 if j=h

1 i f .1 ^ h

and

Phi

Th en, by equation (4.1)

if h=i 

if h^i

rt h

0

"

if i = j

if i
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Thus the probability density function becomes zero at 

the search node as expected, and is increased 

proportionally at the remaining nodes to normalise the 

distribution.

This argument may be extended to other simple cases, 

such as where there is certain detection at nodes 

other than the search node, or where detection 

probability at the search node takes some value other 

than 1, where a corresponding reduction in position 

probability will be seen from equation (4.1).

4.3 TARGET MOVEMENT

Target motion, discussed in sections 2.4 and 2.5, is 

specified by independent distributions of speed and 

direction of movement, which are converted into 

transition probabilities for use in the updating 

algorithm. The set of transition probabilities 

{p hi (At), h,ieX}, giving the probability that a target 

situated at node h will move to node i in the time 

interval At, is formed from the two distributions by 

use of equation (2.17). In order to validate the 

target movement component of the algorithm it is 

necessary to check that these transition probabilities 

adequately represent the underlying speed and 

direction distributions when applied in equation

(4.1) .
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4.3.1 TARGET SPEED

Target speed is given by a probability density 

function on the interval [O.V tmax ], scaled to [0,1]. 

This is discretised by use of equation (2.13) to give 

the probability that the target moves an integral 

number of units in a given time interval. As the 

discussion in section 2.5.2 indicates, this 

discretisation is unsuitable where target speed is 

slow in relation to searcher speed. However the 

following results show that, even where the ratio of 

target speed to searcher speed is higher, this 

approach can lead to unacceptable distortions of the 

target speed distribution.

Some preliminary analysis was carried out by imposing 

various restrictions on searcher movement to force 

different time intervals between looks. The results 

showed some anomalies in target motion which were 

investigated further. The effect is most clearly shown 

by considering the case where the target is initially 

situated at a given node, and moves in a known 

direction, so that the resulting target distribution 

is spread along a line of nodes as illustrated in 

diagram 4.1. Setting n - ^ = 1 for all j.heX gives zero 

probability of detection, so any change in the target 

distribution will be due only to target movement, and 

should be independent of the number of looks taken.
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I

Diagram 4.1 Target Movement in a Known Direction
from Initial Node I

This case was examined using various values of 

searcher to target speed, both skew and symmetric Beta 

distributions and various time intervals between 

looks. Examples of the resulting target distributions 

are shown in diagrams 4.2 to 4.5. The diagrams, which 

show target distribution after a period of five time 

intervals (i.e. the time required for the searcher to 

move five units), were produced by placing the 

following restrictions on searcher movement. Firstly 

the searcher was constrained to move exactly one unit 

between consecutive looks. Diagrams 4.2a to 4.5a show 

the resulting target distribution after five looks had 

been taken. Next the searcher was forced to move five 

units between looks, diagrams 4.2b to 4.5b show the 

resulting target distribution after just one look.

Both sets of distributions represent target movement 

after five time units, so they should correspond, 

however significant differences can be seen between 

the two sets. The difference is caused by the way in 

which the speed distribution is discretised to give 

the distance travelled in different time intervals.
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Consider the case illustrated by diagrams 4.2a and 

4.2b. These distributions result from a symmetric Beta 

distributions where a = P = 10, and the ratio of 

searcher speed to maximum target speed is 3:2. The 

probability that the distance travelled by the target 

is R units, when the searcher moves N units between 

looks, is given by equation (2.13) as

P(R|N) A x (1 - x) dx

3
for 0 _< x <. 1 with K = --- , and A constant

2 N

The resulting discretisation for the cases N = 1 and 

N = 5 respectively are shown in diagrams 4.6a and 

4.6b. It can be seen from the diagrams that the 

discretisation is much coarser in the first case than 

in the sec ond.

The target position distribution shown in diagram 4.2a 

results from five applications of equation (4.1) using 

transition probabilities formed from the coarse 

discretisation shown in diagram 4.6a. Since in one 

time unit the target has only a small probability of 

moving, the repeated application of this results in a 

target position distribution heavily biased towards 

the star ting node.

118



B(x) 

0 .4-

0 .3- 

0 .2- 

0 .1- 

0.0-
0 .2 0.4 0.6 0 .8

Diagram 4.6a Showing the Discretisation of 
B(x)=Ax 9 (l-x) 9 in the Case N=l

B(x) 

0.4-

0 .3- 

0 .2- 

0 .1- 

0 .0-
0.2 0 .4 0.6 0. 8

Diagram 4.6b Showing the Discretisation of 
B(x)=Ax 9 (l-x) 9 in the Case N=5

(Vertical scale = A.10~ 5 )

1 .0

119



In contrast the position distribution in diagram 4.2b 

results from one application using the discretisation 

show in diagram 4.6b, and can therefore be considered 

to be the true representation of target movement after 

five time intervals.

The effect is clearly most pronounced in cases where 

the discretisation for one time unit results in a high 

probability of the target remaining stationary, as in 

the case just considered, or in a high probability of 

it moving, as in the case illustrated in diagram 4.5.

However, even in cases where the problem is less 

marked, this model of target speed is far from 

satisfactory because the differences in resulting 

target position distribution depend on searcher 

strategy. Hence, when optimising, the search strategy 

will be artificially influenced by the differences in 

target distribution. Alternative approaches to 

modelling target speed are examined in Chapter 5, 

where a revised model is presented.

4.3.2 TARGET DIRECTION

The direction component of target movement was also 

investigated. This was done in conjunction with target 

speed, as the example given in section 4.3.1 

illustrates, and also independently by setting the
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probability that the target moves one unit in each 

time interval equal to one. The latter allows the 

distance moved by the target to be known exactly, 

enabling the direction component of the motion to be 

clearly identified.

The results obtained were, in all cases, found to be 

consistent with anticipated target movement. It must 

however be noted that, in cases where the direction of 

motion is uncertain, the assumed Markov property of 

the motion, dicussed in section 2.1, results in the 

spread of the target distribution being rather slower 

than might at first sight be expected.

This may be illustrated by considering the case where 

the target is initially at the central node, and has 

unknown direction of movement. With notation as 

defined in section 2.4, this is given by setting the 

direction distribution d(0) = 1/6 for 6 = 1,2,..6, 

where 0 denotes direction of movement. Setting T\ ^ . = 1 

for all i.jeX, and the probability that the target 

moves one unit in each time interval equal to 1, as 

previously discussed, the target position distribution 

obtained after three time intervals is shown in 

diagram 4.7.
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Diagram 4.7 Target Position Distribution
After Three Time Intervals

It can be seen that the target still has a high 

probability of being at, or around, the central node 

after moving three units. This is because at each node 

the target has equal probability of moving in any 

direction, and thus has a high probability of 

returning to nodes previously visited. This is a 

feature of the Markov assumption of target movement, 

and might be consistent with the movement of a crash 

survivor wandering aimlessly around, or with a 

military target taking evasive action by changing 

direction frequently to avoid detection. It would not 

however be a suitable model in a case where the
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direction of movement was initially unknown, but once 

chosen was assumed to be maintained.

4.4 CONCLUSION

The discussion in the preceding sections indicates 

that the updating algorithm, developed in Chapter 2, 

produces sensible target position distributions in 

relation to all aspects of the search model, with the 

exception of target speed. An alternative, more 

acceptable, approach to the problem of discretising 

the speed component of target motion is developed and 

discussed in Chapter 5. Further analysis of the search 

model with regard to detection probability, search 

strategy and optimisation is given in Chapter 6.
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CHAPTER FIVE 

REVISED MODEL OF TARGET MOVEMENT

5.0 INTRODUCTION

It was shown in section 4.3 that the discretisation of 

target speed introduced in section 2.5.2, leads to 

unsatisfactory anomalies in target movement when 

applied in the updating algorithm. Two alternative 

methods of overcoming the problem of target movement 

are discussed in this chapter. The first method, 

involving a separate grid for target movement, was 

found to give some improvement in target motion. 

However the motion is still unsatisfactory, and the 

method is computationally unsuitable. The second 

method, updating the target distribution at unit time 

intervals, results in a target position distribution 

which is somewhat flatter than the true distribution. 

However, the distribution is a significant improvement 

over that produced by the initial model, and is 

sufficiently close to the true distribution to be 

acceptable.
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5.1 DOUBLE GRID SYSTEM

The anomalies in target movement identified in section 

4.3 are due to the very course discretisation of the 

target speed distribution that results when the 

searcher moves only short distances between looks. An 

initial attempt to reduce this effect was made by 

introducing a second, more closely spaced grid for 

target movement, the spacing of the target grid being 

chosen so that the nodes of the two grids coincide.

An example of this double grid system is illustrated 

in diagram 5.1. The diagram shows a target grid 

superimposed on the search grid, the target grid 

having node spacing one third of that of the search 

grid. With this arrangement, the searcher is still 

restricted to travel integer distances, while the 

distance travelled by the target can take the values 

0 , 1/3 , 2/3 , ... etc .

****************
*^ * * ^) * * (J) * * (J) * * (*) * * (7) *
****************
*****************
* (J) * * (*) * * (*) * * (*) * * (V) * * (
*****************
**************** 

* (*) * * (*) * * (*) **(*)** (*) *
****************

Diagram 5.1 Double Grid

Key * nodes belonging to target grid
(*) nodes belonging to both target

and searcher grid
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It was found that this approach gave some improvement 

in target motion, however the effect shown in diagrams 

4.2 to 4.5 was still present. This is because, 

although the discretisation of the speed distribution 

is less coarse, it is still different for different 

time intervals. Thus, even with a very fine spacing 

for the target grid, it is likely that this problem 

would still be apparent.

In addition, this method has the following 

disadvantages. The introduction of extra nodes for 

target movement significantly increases the 

computation time required for updating, thus 

magnifying the problem of optimisation. Also the use 

of separate grids places a greater restriction on the 

movement of the searcher than of the target, which is 

unde sir ab1e.

Because of the problems outlined above, an alternative 

approach, not presenting these disadvantages, is 

discussed in the following section.

5.2 UPDATING AT UNIT TIME INTERVALS

An alternative approach to the problem of modelling 

target movement is to update the target position 

distribution at equal time intervals, irrespective of 

whether a look is to be taken at that time.
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This may be performed by considering the updating 

algorithm in the form discussed in section 2.2.1. 

There it was shown that updating using the algorithm 

given by equation (2.2) is equivalent to updating in 

two stages. firstly applying equation (2.3) to allow 

for information gained from a look, and then applying 

equation (2.4) to give target movement prior to the 

next look. Equations (2.3) and (2.4) are reproduced 

below as (5.1) and (5.2), where JT ^ s and n ̂ m are the 

position probabilities at node i updated for search 

and for movement respectively, (all notation being as 

defined in section 2.2).

h

-- — i- (5.1) 

"h Ijh

n h Phi (At > (5 ' 2) 
h

Assume for convenience that the searcher takes unit 

time to travel between adjacent nodes, hence the time 

interval between looks is always an integral number of 

time units. The target position distribution can 

therefore be updated at unit time intervals, applying 

equation (5.2) to give only target movement at those 

times when no look is taken, and equation (2.2) (i.e. 

equations (5.1) and (5.2) combined) to allow also for 

information gained at times when a look is taken.
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Updating in this way ensures that the modelling of 

target movement is independent of searcher activity.

5.2.1 TRANSITION PROBABILITIES

In order to update at unit time intervals, transition 

probabilities must be found to represent the known 

distribution of target speed. Clearly it is not 

sufficient to simply use the discretisation of the 

speed distribution for one time interval given by 

equation (2.13) because, as shown in section 4.3.1, 

repeated application of this results in distorted 

representation of target movement. As an alternative 

to this the following approach was taken.

Assume that the initial target position distribution 

is known at time tQ, and that updating is to be 

carried out at unit intervals tj, \.^ , . . . following tg . 

Let the time interval between tN-1 and tN be interval 

N, and define the following events:

I,N = target moves I units in interval N.

R,t N = target moves R units in the time interval

t N-t 0< (of length N units).

Also, the additional assumption is made that the

maximum speed of the target is no greater than th

speed of the searcher. This restriction is not

unrealistic because, if the searcher was unable to

e
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move at least as fast as the target, the target could 

outrun it. With this restriction the target is not 

able to move more than one distance unit in each time 

interval. That is, it can either move 0 units or 1 

unit in any interval N, hence for all N,

P(0,N) = 1 - P(l,N) (5.3).

For N > 1 the probability that the target does not 

move in interval N can be expressed as a weighted sum 

of probabilities conditional on its movement in the 

previous N-l time units. Thus

N-l
P(0,N) = JP(0,N I R,t N ,).P(R,t N ,) (5.4).

R = 0

In order to find P(0,N) for any N > 1 the components 

of the sum may be evaluated in the following way.

If the target moves R units in N time intervals, this 

can occur in one of two ways: by moving R units in the 

first N-l intervals and 0 units in interval N, or 

moving R-l units in the first N-l intervals and 1 unit 

in interval N. These events are exhaustive and 

mutually exclusive, so the elements of the sum are 

given, for R > 0, by

P(0,N I R, t N _j_) .P(R. t N _j) =

P(R,t N ) - P(1,N I R-l,t N_ ± ).PCR-1,t N_i)
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and in the case R = 0,

P(0,N I 0.t N_ 1 ).P( 0 .t N_ 1 ) = P(0,t N ) (5.6)

Also, for any R > 0 and N > 1

'(l.N I R-l,t N_ 1 ) = 1 - P(0,N (5.7)

Now for any R, P(R,t N > 5 P(R|N), where P(R|N) is the 

probability that the target moves R units given that 

the searcher moves N units, as defined in section 

2.5.2. Hence P(R,tjvj) may be evaluated by use of 

equa tion (2.13):

P(R,t N )

K(R+z)

K(R-|)J

s(v) dv

with K = --- 
N V

(5.8)

tm ax

The probability that the target does not move in the 

first time interval, P(0,l) may be obtained directly 

from equation (5.8). Then for any N > 1, the elements 

required in the evaluation of P(0,N) by equation (5.4) 

may be found by use of equation (5.6) for the case 

R = 0, and then equations (5.7) and (5.5) for 

successive values of R.
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Having found P(0,N), P(1,N) may be found from equation 

(5.3). A set of transition probabilities for use in 

the updating algorithm, can then be constructed for 

each time interval as follows. Let P ni (N) denote the 

probability that the target moves from node h to node 

i in time interval N, given that it is at node h at 

time t- i the n

P hi (N) = '

P(0,N) for h = i,

P(1,N) .d(e hi ) for h,i 1 unit apart,

0 for h.i > 1 unit apart,

(5.9)

where ^hi * s the direction of travel from node h to 

node i, and ^^hi^ i s the direction probability as 

defined in section 2.4.2.

Although this approach requires a different set of 

transition probabilities for each time interval, there 

will only be at most seven non-zero values associated 

with each node. As the assumption was made in section 

2.4 that target motion is independent of position, 

these values will be the same for all nodes of the 

search area. Hence it is only necessary to store the 

set of seven values for each time interval instead of 

a full transition matrix.
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The maximum number of time intervals that need be 

considered can be calculated from the number of looks 

taken multiplied by the maximum distance between any 

two nodes of the search area. For example, a search 

consisting of 10 looks over an area with maximum node 

separation of 10 units will require no more than 100 

time units to complete. Hence the transition 

probabilities can be calculated in advance and stored 

in a file ready to be accessed by the search program.

5.3 ANALYSIS OF THE NEW MODEL OF TARGET MOVEMENT

The target speed distributions resulting from this new 

model of target movement were investigated in a 

similar way to that described in section 4.3.1. 

Unidirectional target movement and zero detection 

capability were applied with various speed 

distributions. In each case the resulting distribution 

of target position was compared after various time 

intervals with that obtained by applying equation 

(2.13). The position distributions for the cases 

considered in section 4.3.1 are illustrated in 

diagrams 5.2a to 5.5a. The corresponding 'true' 

distributions given by equation (2.13) (diagrams 4 . 2b 

to 4.5b)• are reproduced here for comparison as 

diagrams 5.2b to 5 . 5b .
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It can be seen that the distribution of target 

position given by the new model is somewhat flatter 

than the true distribution. However, in all cases, 

both the range and mode of the position distribution 

correspond with those of the 'true' distribution.

This method clearly gives a significant improvement 

over the target movement produced by the previous 

model. It is also computationally convenient and 

ensures that the movement of the target is unaffected 

by the decision strategy of the searcher. For these 

reasons this model was chosen as the most satisfactory 

way found to model target movement.
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CHAPTER SIX 

RESULTING SEARCH STRATEGIES

6.0 INTRODUCTION

In this chapter, search strategies obtained using the 

search model and optimisation procedures developed in 

the previous chapters are discussed, and a selection 

of the results presented.

The strategies were obtained by the process of 

exhaustive evaluation, described in section 3.2.2, 

with extensive use being made of limiting planning 

horizon and travel distance (as discussed in section 

3.4) in order to make this approach feasible. In the 

case of optimising detection probability per unit 

cost, condition (3.21), given in section 3.3.1, was 

also used to reduce the amount of computation. 

Optimisation with respect to detection probability is 

discussed in section 6.1, and with respect to 

detection probability per unit cost in section 6.4.

Comparison of results with strategies obtained by

other methods has not been possible because of the

differences in approach. Most current models are
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concerned with allocation of available effort over the 

entire search area at any instant, and are thus not 

comparable with a discrete sequential approach. As 

discussed in Chapter 1, the discrete models that exist 

are presented in very simple cases which cannot 

usefully be compared with the present model. An 

approach was made to the Department of Operational 

Analysis Establishment for any relevant data that 

might be of use in verification of the model, however 

none was available.

In view of this lack of supporting evidence to verify 

the model, extensive evaluation of the resulting 

search strategies and associated detection 

probabilities has been carried out. To study the 

behaviour of the model a typical case was chosen as a 

standard, to which variations were made in one set of 

parameters at a time. The resulting strategies are 

discussed in sections 6.2 and 6.3 in relation to 

optimising probability of detection, and the 

differences in results obtained when optimising with 

respect to unit cost are discussed in section 6.4.

6.1 OPTIMISING PROBABILITY OF DETECTION

The procedure for optimising detection probability by 

exhaustive evaluation described in section 3.2.2 was 

coded in a FORTRAN computer program SEAR14. The
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program is designed to be used with the transition 

probabilities, described in section 5.2.1, which are 

created by a second FORTRAN program, TRANSP.

The information required in the decision process is 

given in the following way. The parameters of target 

and searcher speed and target direction, specified in 

the same way as in the example in section 2.7, are 

given as input to TRANSP. The program calculates the 

appropriate Beta distribution and creates a file of 

transition probabilities which may subsequently be 

read by SEAR14. The remaining search parameters of 

initial target position and searcher detection 

capability, again specified in the way discussed in 

section 2.7, are given as input to SEAR14. As before, 

an hexagonal search area is used, the size of which 

must be specified, with a maximum of 91 nodes. The 

initial position of the searcher, and the number of 

looks required must also be given as input.

SEAR14 allows the restrictions on searcher range and 

planning horizon, discussed in section 3.4, to b 

given. Planning horizon is specified as the number of 

future looks over which the optimisation is to b 

performed, ranging from one look, giving an 

incremental strategy, to the total number of looks, 

giving an optimal strategy. An option is also included
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allowing an additional restriction to be imposed, 

preventing the searcher from taking consecutive looks 

at the same node. (Thus giving a minimum distance of 

one unit between search nodes.) This is to enable the 

strategies to be compared with those found when 

optimising with repect to unit cost, where the same 

restriction is used for reasons discussed in section 

3 .3 .

The decision process is carried out as a tree search 

as illustrated in diagram 3.1, the depth to which the 

tree is searched before a decision is made being 

determined by the restriction on planning horizon. The 

search strategy is chosen by calculating the total 

non-detection probability for each possible strategy 

(or, in the case of limited planning horizon. part 

strategy). The values are compared to an accuracy of 

0.5 x 10~^, (to minimise the effect of computer 

rounding errors on the decision process), and the 

strategy with the lowest non-detection probability is 

selected. Where two or more strategies give the same 

value within this tolerance, only one is chosen, this 

being the strategy with the shortest path length. If 

the path length is also the same the first of these 

strategies to be found is selected. No look is taken 

at the initial node, as it is not part of the decision 

process, so it is considered merely as a starting
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point for the searcher with no information being

gained. This aids comparison with results obtained

when optimising with respect to unit cost.

The output from SEAR14 is as follows. Firstly a map 

showing the initial target position distribution over 

the hexagonal search area is shown, and the searcher 

starting point is indicated. In cases where there is 

no limit on planning horizon, the chosen strategy is 

listed (by node number as shown in diagram 2.9), with 

the cumulative probability of detection using that 

strategy. The program then outputs more detailed 

information about the strategy, giving for each look, 

the probability of detection with that look, the 

cumulative detection probability for the search to 

that point, and a map of the target position 

distribution immediately before the look is taken.

In cases where planning horizon is limited, the 

projected strategy for the required number of future 

looks is given. The cumulative detection probability 

for the search, up to and including the projected 

strategy is also output. The detailed information 

described above is given about the first node only of 

the projected strategy, (as this becomes the next 

search node of the final strategy,) before the 

decision process is repeated and the next projected
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strategy output. Finally a summary showing the

complete search. strategy and overall cumulative

detection probability is given.

The behaviour of the decision process when varying the 

length of search, and under differing restrictions on 

planning horizon and searcher range, was investigated 

by producing strategies for the cases shown in table 

6.1. The table shows the maximum length (i.e. number 

of looks) of strategies found under the restrictions 

indicated. In all cases a search grid of 91 nodes was 

used.

Table 6.1 Maximum Search Length 

Searcher Range
Pla 
Hor

nning 
izo n

1

2

3

4

5

6

7

1

20

20

20

20

10

7

7

234

20 20 20

20 20 20

10 10 5

7 4

5

5 6 7 8 9 10

20 10 10 10 10 10

10 10 10 10 10 10

4 3

The results are limited to those given in the table

because the combinatorial possibilities made the

computer time required for optimisation of cases
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outside this range very high. It was felt that a 

better understanding of the model could be gained by 

investigating prolonged searches over the maximum size 

search area, than by complete optimisation of cases of 

a small number of looks and a small search area.

The effect of using different values for the various 

parameters of the search model was investigated by 

choosing a 'standard' case to which changes could be 

made systematically in one set of parameters at a 

time. The results obtained in the standard case are 

given in detail in section 6.2, and a summary of the 

differences found in variations on the standard case 

is given in section 6.3.

6.2 THE STANDARD CASE

The set of values shown below was chosen as a 

'standard' basis for investigation of the search model 

because it was felt to be a fairly typical case that 

could easily be interpreted. The initial target 

distribution, non-detection probabilities and a 

symmetric speed distribution were chosen for 

simplicity, while the distributions of target 

direction and speed were selected as being non- 

uniform, but not too deterministic. The searcher to 

target speed ratio was thought to be representative of 

a typical case. (However in practice, what might be
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typical would depend on the particular application.)

The parameters chosen for the standard case are given 

here with all notation as defined in sections 2.2 and 

2.4. The initial distribution is specified according 

to the node numbering in diagram 2.9, and target 

direction according to diagram 2.5.

Size of search area 

Initial ditribution

= 91 nodes.

1 i = 1

0 i e (2,3, . .91}

Target and searcher speed:

V tmax = 20 

V tn = 10

V s = 25

X =0.1

giving

a =3.1 0 = 3 .1

(actual value of integral = 0.0995).

Target direction:

6 e {1,2}

6 e {3.4,5,6}

Non-detection probabilities:

012 

Oil

r ang e 

probab ility

3

1

4

1

5

1

Initial position of searcher = node 19. 

Minimum distance between search nodes = 1 unit
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The standard case was investigated with the range of 

restrictions shown in table 6.1. The results obtained 

are shown in tables 6.2 to 6.8. Each table shows, for 

a particular restriction on planning horizon, the 

resulting strategy and associated cumulative detection 

probability, for each of the restrictions on maximum 

searcher range. Where the tables are left blank, the 

strategy and detection probability are the same as 

those for the next lower searcher range.

The strategy is specified by giving the sequence of 

search nodes, numbered according to diagram 2.9, at 

which successive looks are to be taken. A fold-out 

copy of the node numbering system, for use with tables 

6.2 to 6.9, is located in the appendix.

The following sub-sections contain further examination 

of the standard case. In section 6.2.1 one strategy is 

chosen for closer analysis, and in section 6.2.2 the 

effect of changing the optimisation restrictions is 

investigated.
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6.2.1 THE BEST STRATEGY FOR TWENTY LOOKS

In order to examine one strategy more closely, the 

case giving the highest probability of detection in 

twenty looks is considered. This is found in the case 

with a planning horizon of four looks and maximum 

searcher range one unit. The path of the strategy is 

illustrated in diagram 6.1, and more detailed 

information about the decision process for this case 

is shown in table 6.9.

In addition to the information already given in table 

6.5, table 6.9 shows the projected search path at each 

stage of the decision process, and the cumulative 

detection probability for a search pursuing that 

projected strategy. The projected path should be read 

from the table diagonally, for example at the first 

decision, the projected path is 7,1,5,4 with 

cumulative probability 0.5316, while the final 

strategy looks at nodes 7,1,3,4 with cumulative 

probability 0.5201. Note that the cumulative detection 

probability is higher for the projected strategy than 

for the first four looks of the final strategy. 

Wherever the two differ this will normally be the 

case, since the projected strategy is optimal for the 

four looks (with this planning horizon) following the 

decision. Any deviation from this strategy made by the 

following decisions causes a reduction in detection
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probability for these looks, in order to gain higher 

detection probability with subsequent looks (unless a 

different path having the same detection probability 

is chosen).

Also shown in table 6.9 is the probability of 

detecting the target with each look (given the failure 

of previous looks). It can be seen tnat, as the search 

progresses, the probability of detection with each 

look tends to decrease as the target distribution 

spreads. However, detection probability is not 

strictly decreasing as would be expected in the case 

of a stationary target, as discussed by Black (1965) 

for example. This is firstly because the target 

distribution is changing with time, so the probability 

that the target is at a particular node when a look is 

taken will vary with the timing of of that look (in 

addition to the effect of previous looks). Secondly, 

as discussed above, the decision process may choose to 

look at a node with relatively low detection 

probability in order to increase detection probability 

later in the search. A third factor is the restriction 

on searcher range, which in some cases may prevent a 

look being taken at a node with higher detection 

probability.
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As diagram 6.1 illustrates, the search is concentrated 

around the lower central area of the search grid, 

reflecting the initial central position of the target 

and the subsequent downward bias of target motion. In 

order to relate the strategy to target position, the 

target distributions after 10 and 20 time units are 

shown in diagrams 6.2 and 6.3 respectively. Diagrams 

6.2a and 6.3a show the distribution at these times if 

no search is made, whilst diagrams 6.2b and 6.3b show 

the target distribution obtained from the updating 

procedure when the strategy in diagram 6.1 is pursued.

Comparison of the distributions with and without the 

search shows how knowledge of the wherabouts of the 

target is modified by the information gained from 

unsuccessful looks. In particular it can be seen that 

the concentration of looks in the central area results 

in the target position probability being reduced in 

this area. This reduction in probability can also be 

seen in nodes below the area searched, since the 

predominantly downward target movement results in 

reduced probability that the target is subsequently in 

this area following the unsuccessful looks. 

Corresponding to this is an increase in probability in 

the upper and edge regions of the grid where no looks 

are taken.
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Information about target wherabouts gained by the 

search is however, dispersed relatively quickly due to 

target movement, as transition between nodes re­ 

distributes the position distribution. An example of 

this can be seen in diagram 6.2b, where the position 

probability at the central node (which is the ninth 

search node of this strategy) has already risen from 

zero, following the ninth look, to 0.0148 just one 

time unit later. Comparison of the two sets of 

diagrams also clearly shows how the search destroys 

the symmetry of the target distribution.

6.2.2 DETECTION PROBABILITY IN RESTRICTED STRATEGIES

To illustrate the effect of changing the restrictions 

on planning horizon and searcher range, tables 6.10 to 

6.14 show the detection probability for searches of 4, 

5, 7, 10, and 20 looks repectively under the range of 

restrictions shown in table 6.1. It must be noted that 

the probabilities quoted differ in some cases from 

those shown in tables 6.2 to 6.7. This is because, 

where the number of looks is less than that shown in 

tables 6.2 to 6.7. the detection probability for the 

projected path up to that number of looks is given.
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Table 6.10 Four Look:

PI anning 
Hor izon

1

Tab

2

3

4

Search
1

.5315

.5316

.5316

.5316

er

.5

.5

.5

.5

1 e 6.11 Five Look

PI anni ng 
Hor izon

1

Tab

Pla 
Hor

2

3

4

5

Search
1

________ 
.5757

.5778

.5778

.5778

.5778

1 e 6.12 Seve n

nn.ing 
izon

1

2

3

4

5

6

7

Search
1

.6382

.6388

.6388

.6400

.6400

.6400

.6400

er

.5

.5

.5

.5

.5

Range 
2

547

547

547

547

s

Range 
2

907

907

907

937

937

Ranges 3 - 10 as Range 2

Ranges 3 - 10 as Range 2

Ranges 3 — 5 as Range 2

Range 3 as Range 2

Ranges 3 - 10 as Range 2

Ranges 3 - 10 as Range 2

Ranges 3 - 4 as Range 2

Lo oks

er

.6

.6

.6

.6

Range 
2

385

385

385

387

Ranges 3 - 10 as Range 2

Ranges 3 - 10 as Range 2

Range 3 as Range 2
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Table 6.13 Ten Look:

Pi anni ng 
Hor izo n

1

Tab

2

3

4

5

Searcher Range 
1 2

.6824 .6767

.6828 .6775

.6832 .6796

.6852

.6852

le 6.14 Twenty Looks

PI anni ng 
Ho r i zon

1

2

3

4

Searcher Range 
1 2

-
.7530 .7438

.7553 .7468

.7581

.7602

Ranges 3 - 10 as Range 2

Ranges 3 - 10 as Range 2

Range 3 as Range 2

345

.7475 .7496 .7504

.7503 .7526

Considering firstly the range restriction. It can be 

seen from the tables that, with 10 or fewer looks, the 

detection probability changes when the searcher range 

is increased from 1 to 2, but that no further change 

is found when increasing the range beyond 2.

Inspection of the corresponding paths (shown in tables 

6.2 to 6.7) shows that for ranges of 2 or more the 

initial look is taken at the central node, requiring a 

move of two units from the starting position. After
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this the strategy usually moves only one unit between 

looks, and never more than two even when the 

restriction is lifted. In the case of a small number 

of looks (4 or 5), this change in strategy results in 

an overall increase in detection probability for the 

search as a whole. However, in the case of a longer 

search (more than 7 looks) , increasing searcher range 

leads to a decrease in overall detection probability.

The reason for this is that, when the range is 

restricted to 1 unit, the first look is taken at node 

7, yielding a low detection probability for that look. 

When this is one of only a small number of looks it 

results in a lower detection probability than can be 

achieved if the searcher can move a greater distance. 

However, when taken as part of a longer search, the 

information gained at this early stage, before the 

target distribution has time to spread, leads to 

greater certainty about target position in later 

looks, outweighing the initial low detection 

probability. The dependence of strategy on search 

length is discussed further in section 6.5.

The searcher normally chooses to move only one unit 

distance at each look because taking longer time 

intervals between looks allows the target distribution 

time to spread, reducing the certainty of target
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position. An exception to this is seen in the case of 

20 looks, where the searcher travels the maximum 

allowable distance between the later looks of the 

strategy. It can be seen from diagram 6.3b that, by 

this stage of the search, target position probability 

starts to accumulate at the lower edge of the search 

grid, due to the downward movement of the target and 

flattening of the distribution by earlier looks. 

Taking large time intervals between looks allows this 

accumulation to take place.

This behavior can be seen in many cases where target 

movement has a directional bias, and is particularly 

marked where target to searcher speed ratio is high. 

However this may not be considered to be a 

representative feature of the search, but an effect 

produced by the limitation of a finite search area.

The maximum change in detection probability with 

searcher range is an increase of about 4% found in the 

case of a strategy of 4 looks. However the behaviour 

of the decision process with respect to searcher range 

depends heavily on the case under consideration, as 

will be discussed in sections 6.3 and 6.5.

164



It can be seen from tables 6.10 to 6.14 that 

increasing the planning horizon results either in no 

change in strategy, or to a small increase in 

detection probability. The maximum increase is seen in 

the case of twenty looks where, with searcher range 1, 

increasing the planning horizon from 1 to 4 looks 

results in an increase in detection probability of 

just under 1%. It will be seen in the following 

section, that increasing the planning horizon may in 

some cases lead to a drop in detection probability, 

although as in this case, any change is normally 

small . Th e effect of changing planning horizon is 

discussed more fully in section 6.5.

6.3 VARIATIONS ON THE STANDARD CASE

The effect of using various values of the search 

parameters was investigated systematically by making 

changes to the standard case. The resulting strategies 

are discussed below, with particular regard to any 

unexpected behaviour, under the following headings:

a) Target direction.

b) Target and searcher speed.

c) Detection capability.

d) Initial conditions.
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6.3.1 TARGET DIRECTION

Five representative direction distributions 

investigated, as summarised in table 6.15, 

directions being as specified in diagram 2.5).

Table 6.15 Direction Distributions Investigated

were

(the

Case
______
1

2

3

4

5

d(l)

1/6

0

0

0

0

d(2)

1/6

0

0

0

0.5

d(3)

1/6

0.2

0

0

0

d(4)

1/6

0.3

0 .2

0

0

d(5)

1/6

0.3

0.6

1

0.5

d(6)

1/6

0 .2

0 .2

0

0

In all cases the resulting search paths closely 

reflect the direction distribution of the target, and 

as would be expected, the probability of detection in 

any given number of looks increases with increasing 

certainty about target direction.

In the uniform case the search path is concentrated 

mainly around the central seven nodes. This reflects 

the uncertainty in direction coupled with the high 

probability of the target returning to the central 

node, caused by the Markov transition probability, as 

discussed in Section 4.3.2. In the remaining cases the 

path strongly follows the movement of the target 

except for instances where the searcher 'wastes time'
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in order to increase detection probability at a later 

look.

An extreme case of time-wasting can for example, be 

seen in the second case listed in table 6.15. Here, at 

one point in the strategy having a planning horizon of 

two looks and searcher range ten, the path jumps from 

the lower part of the search area to a node at the top 

edge of the grid. This area has zero target position 

probability, but gives the maximum time interval 

before the next look, at a node at the bottom edge of 

the grid, allowing the target position probability to 

accumulate in this region. As previously discussed, 

this anomaly is a result of the finite search grid.

An interesting example illustrating the effect of the 

iter-rel ationship between planning horizon and 

searcher range on detection probability can be seen in 

the fourth case listed in table 6.15. Here target 

direction is known and, where searcher range is two 

(or less), the searcher follows the target 

systematically down the diagonal line of movement. The 

strategy in the case of range two, illustrated in 

diagram 6.4, gives certain detection in six looks. 

When searcher range is increased, but planning horizon 

is limited to one look, the path jumps nodes as it 

travels down the diagonal and then back-tracks
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allowing the possibility of target and searcher 

passing each other between looks. Diagram 6.5 

illustrates the path generated with searcher range 

three, which gives a detection probability of a little 

over 0.9. When planning horizon is increased, the 

strategy returns to the path giving certain detection 

in six looks. This is another demonstration that 

increased searcher range can lead to lower detection 

probability when planning horizon is limited.

* 
T

Diagram 6.4 
Search Path With 

Rang e 2.

Diagram 6.5 
Search Path With 

Range 3.

Key: S = Searcher start node T = Target start node
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6.3.2 TARGET AND SEARCHER SPEED

A number of cases were investigated to assess the 

effect of changing the target speed distribution, and 

the ratio of target to searcher speed. In general it 

was found that the search strategies and detection 

probabilities were in accordance with expected 

behaviour. When searcher speed is high in relation to 

normal target speed, detection probability is 

generally higher than in the standard case, and the 

path is concentrated more around the initial position 

of the target. This is because, when the searcher can 

travel faster there is a smaller time interval between 

looks, allowing the target distribution less time to 

spread. When searcher speed is low in relation to 

normal target speed the converse is true.

Three cases were considered in which the target speed 

distribution remained symmetric with mode 10, but 

changed in degree of certainty by setting X = 0.25, 

0.1, and 0.005, giving a = P = 1 , a=P= 3.1 and 

a = ft = 10 respectively. These three distributions 

were combined with searcher speeds of V s = 21, V $ = 25 

and V s = 28. (The case a = p = 3.1. V s = 25 is the 

standard case.) Table 6.16 summarises the maximum 

detection probability obtained in ten looks for these 

cases.
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Table 6.16 Detection Probability in Ten Looks with

Symmetric Target Speed Distributions

1

3

10

.0

.1

.0

V

0

0

0

s = 2

.64

.63

.62

1

1 1

83

5 8

V s

0 .

0.

0 .

= 2

71

5

81

6852

65 85

V s

0 .

0 .

0.

=

7

7

7

28

576

107

253

It can be seen from the table that, for each 

distribution, the probability of detection increases 

as searcher speed increases, as expected. However, the 

table also shows that for any particular searcher 

speed, the detection probability normally tends to 

decrease as the target speed distribution becomes more 

certain (i.e. as a and 0 increase in value). This 

appears to be counter to expectation as increased 

knowledge of target behaviour should increase the 

probability of detection. Inspection of the early 

transition probabilities for these cases reveals that 

this apparent contradiction is a result of the 

discretisation of target motion coupled with the 

initial starting position of the searcher.

Examination of the detection probabilities for each 

look of the respective paths shows that the increased 

probability of detection in the case of the less 

certain distributions occurs only in the first looks
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of each strategy. The reason for this can be seen from 

table 6.17 which, taking the example where V = 28, 

shows the probability that the target moves 1 unit in 

each of the first two time intervals.

Table 6.17 Transition Probability in First Two Time
Intervals for Searcher Speed 28.

t

1

2

a,p=l

0.3000

0 .3500

a ,p=3 .1

0 .1588

0 .6100

a ,p=10

0 .0326

0 .8800

The table shows that the target has an increasingly 

smaller probability of moving in the first time 

interval, and an increasingly larger probability of 

moving in the second interval, as the value of a and p 

increases. Since the searcher is initially two units 

away from the target, this results in a lower 

detection probability in the first two looks in the 

case of a more definite speed distribution. This is 

due to a smaller probability of detecting the target 

after the first time interval,and a higher probability 

that the target distribution will have spread to the 

surrounding nodes after the second time interval.

Thus the effect results from the initial position of

the searcher relative to the target. This has been

verified by investigating these cases with the
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searcher initially one unit away from the target, at 

node 7. With this starting position the effect shown 

in table 6.16 is not present. This behaviour is a 

consequence of the discrete search space and is likely 

to be apparent in any model which discretises target 

movement in this way.

6.3.3 DETECTION CAPABILITY

The effect of changing both the range and capability 

of detection was investigated by considering the range 

of cases summarised in table 6.18.

Table 6.18 Cases of Non-Detection Probability
Considered

Case

1

2

3

4

5

6

7

Rang e 
0 1

0.3 1

0.3 0.5

0.3 0.5

0.3 0.5

0.5 0.7

0.7 0.9

0.9 1

2

1

1

0 .7

0.7

0.9

1

1

3

1

1

1

0 .9

1

1

1

4

1

1

1

1

1

1

1

5

1

1

1

1

1

1

1

The table shows values of non-detection probability 

for a target at various ranges. These values were 

chosen to give a systematically increasing range of 

detection (cases 1 to 4), and a systematically 

decreasing detection capability (cases 4 to 7).
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In all cases the resulting detection probabilty and 

search strategy are much as expected. As the range of 

detection is increased, detection probability 

increases accordingly. However, this increase is 

dramatic when changing detection range from case 1 to 

case 2 of table 6.18. For example, the highest 

probability of detection in ten looks in case 1 is 

0.5431, while the best strategy in case 2 gives a 

detection probability of 0.9424 in the same number of 

looks. The increase is gained mainly in the early 

looks of the search. This is because the greater range 

of detection enables the searcher to 'see' much of the 

area in which the target distribution lies during the 

first stages, before the distribution has time to 

spread.

As the range of detection is increased further, the 

increase in detection probability is less marked. This 

is partly because the target distribution is initially 

compact, so a wider detection range gives little 

improvement in the important early looks. Also the 

detection capability at wider ranges is lower (as 

might realistically be the case), so the overall 

increase in detection capability is less significant.
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When the range of detection is wide, the search 

strategy is initially concentrated around the central 

node. with the searcher repeatedly returning to node 

1, because much of the target distribution can be seen 

from this point. Later, as the target distribution 

spreads, the searcher moves around the lower part of 

the grid, consistently moving more than one unit at a 

time (where this is permitted) because of the ability 

to 'see' the nodes adjacent to each search node.

As the detection capability is reduced, detection 

probability in any given number of looks drops 

accordingly. Th e search path again tends to remain 

around the central node when detection capability is 

low, in this case because little information is gained 

from each look, so the target distribution does not 

flatten as quickly as in the standard case.

One interesting point that can be seen in case 1 of 

table 6.18 is that, as in many of the other cases 

considered, increasing planning horizon sometimes 

leads to a slight drop in overall detection 

probability. (This clearly only occurs when the higher 

planning horizon is still lower than the total search 

length.) Here, in a search of 10 looks with searcher 

range 1, an increase in planning horizon from 4 to 5 

looks results in a drop in detection probability from
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0.5493 to 0.5466. This is because the projected 

strategy for the first seven looks with planning 

horizon 4, gives a probability of detection of 0.4945. 

With planning horizon 5, a different strategy is 

chosen giving a marginally increased probability of 

0.4946 in seven looks. However, the change in path 

results in a reduction in the maximum obtainable 

detection probability in the remaining looks, thus 

giving a drop in the overall value for 10 looks. Any 

such drop in detection probability is normally small, 

this being the largest change observed in the cases 

considered.

6.3.4 INITIAL CONDITIONS

The changes in initial conditions were made in the 

initial distribution of target position, and in the 

starting position of the searcher.

The effect of changing the initial distribution was 

investigated by gradually increasing the spread of the 

distribution, culminating in a uniform distribution 

over all 91 nodes of the search area. The resulting 

detection probabilities were again as expected; the 

greater the spread of the initial distribution. the 

lower the probabilty of detection in any given number 

of 1o oks.
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Generally the search paths generated were also much as 

expected, with the pattern of looks being more spread 

around the search grid in the case of less certain 

initial distrihutions. However, in the case of a 

uniform distribution over the entire search area, the 

strategies exhibit some interesting features. Where 

searcher range is unlimited, the edge effects, due to 

target probability accumulating at the edge nodes of 

the grid, dominated the search strategy. This is 

because initially all nodes have equal probability of 

housing the target, but after the first time interval 

the downward target movement results in target 

probability immediatly beginning to accumulate at the 

lower edge of the grid. The searcher therefore moves 

directly to this area, and the entire search is 

conducted along the lower edge of the search area.

If however searcher range is restricted, a different 

behaviour emerges. The path of the strategy in the 

case with planning horizon 1 and searcher range 1 is 

illustrated in diagram 6.6. Here it can be seen that 

the searcher initially moves against the main 

direction of movement of the target. This is because, 

following the look at the first search node (labeled 1 

in the diagram), the reduction in position probability 

due to this look influences position probability more 

at nodes below the search node than above. This is due
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to the prevailing direction of movement of the target 

as previously discussed. The searcher therefore keeps 

moving upward until the target probability in the 

upper region of the grid begins to drop (again due to 

the downward movement of the target). The path then 

turns downwards and again edge effects begin to 

dom ina t e.

The effect of changing searcher starting position has 

already been discussed in relation to the target speed 

distribution. However a number of additional cases 

have been investigated, all giving results in 

accordance with expected behaviour. Generally, the 

further away the searcher is initially from the target 

distribution, the lower the detection probability due 

to the spreading of the position distribution prior to 

the first look.

6.4 OPTIMISING DETECTION PROBABILITY PER UNIT DISTANCE

The second optimisation criterion, introduced in 

section 3.3, was also investigated. The procedure was 

coded as a FORTRAN program, SEAR15, with input 

parameters the same as those described for SEAR14, 

with the exception of the minimum distance between 

search nodes. This is constrained to be one unit, for 

reasons discussed in section 3.3.
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Again options allowing the restriction of planning 

horizon and maximum searcher range were included, and 

the criterion presented in section 3.3.1. giving a 

limit to the optimal total distance, was also 

implemented. Where a sub-optimal strategy is found by 

limiting planning horizon, this criterion is applied 

only within each projected strategy, not to the final 

strategy as a whole.

In many cases the results that would be obtained from 

SEAR15 could be predicted from the results generated 

by SEAR14, so only a limited number of cases were 

considered. The standard case was again investigated 

in detail. The detection probabilities in this case, 

with respect to planning horizon and searcher range, 

are shown in tables 6.19 and 6.20 for 5 and 10 looks 

respectively.

Table 6.19 Five Looks

PI
Ho

anning 
r i z o n

1

2

3

4

5

Se ar che 
1

. 5757

.5778

.5778

.5778

.5778

r Range 
2

.5907

.5778

.5778

.5778

.5778

Ranges 3 - 10 as Range 2

Ranges 3 - 10 as Range 2

Ranges 3 - 4 as Range 2
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Table 6.20 Ten Looks

PI anni ng 
Hor izon

1

2

3

4

5

Search
1

.6824

. 6828

.6832

.6852

.6852

er Rang e 
2

.6767

.6828

.6832

Ranges 3 - 10 as Range 2

Ranges 3 - 10 as Range 2

Range 3 as Range 2

Here detection probability is given, rather than 

probability per unit distance, in order to aid 

comparison with tables 6.11 and 6.12. From this 

comparison it can be seen that, in most cases, results 

obtained when optimising with respect to distance are 

the same as those found when optimising detection 

probability with searcher range limited to one unit. 

Similar results can be seen in any given search 

length. (In all cases where detection probability is 

the same, the corresponding strategies are identical.)

The only exception to this is in the myopic case with 

maximum searcher range greater than one. Here the 

detection probability is the same as that when 

optimising probability of detection with the same 

planning horizon, and maximum searcher range two. When 

planning horizon is increased, the strategy reverts to 

that of the minimum path length.
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The reason for this is that, if the first look is made 

at a node at minimum distance, the resulting detection 

probability is very low. When this is optimised over a 

planning horizon of one look, a higher detection 

probability per unit distance can be achieved by 

taking the first look at the central node, two units 

from the starting point. However, when optimised over 

more than one look, the increase in distance outweighs 

the increase in cumulative detection probability for 

two or more looks, so the minimum path length is 

chosen.

To illustrate the form of detection probability per 

unit distance that can be expected, table 6.21 shows 

the search strategy, detection probability per unit 

distance for each look, and detection probability per 

unit distance for the strategy as a whole, in one 

case. Th e standard case with planning horizon 3 looks 

and maximum searcher range 3 units was chosen so that 

a prolonged search with reasonable searcher range 

could be examined.

It can be seen from comparison with table 6.4 that the 

strategy is the same as that found when optimising 

detection probability with the same planning horizon 

and searcher range 1. Since the strategy has minimum 

path length (and hence only one distance unit between

181



search nodes) the detection probabilities and 

probabilities per unit distance have the same values. 

Apart from the first two values, the detection 

probability per unit distance for the search as a 

whole, decreases with the length of the search. This 

is because of the decreasing return in detection 

probability discussed in section 3.3.

Table 6.21 Strategy Found by Optimising Probability 
of Detection Per Unit Distance

Planning Horizon: Three Looks 
Maximum Searcher: Range One Unit

Look
No .

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Search
Node

fj

1
5
4
3
1
6

16
5

14
13
12
3
1
6

16
15
30
29
13

Prob. Per Unit
Dist. for Look

0.0272
0.3727
0.4637
0.5316
0.5778
0 .6117
0.6388
0.6552
0.6699
0 .6832
0.6944
0 .7050
0 .7149
0.7237
0 .7308
0.7369
0.7427
0.7481
0.7531
0.7581

Pr ob . per Uni t
Dist. for Path

0.0272
0 .1864
0.1546
0.1329
0 .1156
0.1019
0.0913
0.0819
0.0744
0 .0683
0 .0631
0.0587
0 .0550
0 .0517
0.0487
0.0461
0.0437
0 .0416
0.0396
0.0379

182



In general the results obtained when optimising 

detection probability per unit distance show that, in 

the majority of cases, the optimal path is that with 

minimum path length, thus the strategies are the same 

as those when optimising with respect to detection 

probability with searcher range 1. In particular the 

time-wasting behaviour present in the previous case, 

and loss of detection probability due to search paths 

jumping as in the cases illustrated in diagram 6.5, is 

no t seen.

6.5 CONCLUDING REMARKS

From the foregoing results, it appears that the search 

model normally produces search paths that are sensible 

in relation to the given search parameters. Also, 

predicted detection probabilities usually accord with 

the level of information about target location and 

movement, and with searcher detection capability. Two 

exceptions to this are the anomalies in detection 

probability in relation to the target speed 

distribution, discussed in section 6.3.3, and the 

time-wasting behaviour observed in several cases where 

target position probability accumulates at edge nodes. 

Strategies found under restrictions on planning 

horizon and searcher range appear, in general, to be 

reasonable approximations to an optimal path.
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The change in detection probability observed when 

planning horizon is increased is normally small, 

suggesting that any increase obtained when full 

optimisation is performed, will not be major. Often 

any increase is gained by re-ordering the search nodes 

of a strategy found with a lower planning horizon 

rather than by major changes in path. This suggests 

that fully optimal paths will probably also not differ 

greatly from the sub-optimal cases (with the exception 

of instances where time-wasting is a feature).

Where optimisation is not possible, the results 

suggest that a planning horizon of two or three looks 

is sufficient to produce a reasonably good strategy. 

Raising planning horizon much above this level 

involves substantial computation time for all but the 

most restricted cases. Also, as illustrated by the 

example given in section 6.3.3, increased planning 

horizon may result in a drop, rather than an increase 

in detection probability.

The situation with regard to searcher range is less 

easy to generalise. Normally little increase in 

detection probability is found when extending searcher 

range beyond two units, as the loss in information 

due to target movement is normally a deterrent to 

large time intervals between looks. There are however
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some exceptions to this, which are:

a) where the searcher is initially some distance 

from the target distribution,

b) where the searcher has a significant range of 

detection,

c) where the searcher wastes time in order to allow 

target position probability to accumulate in one 

area.

In the first case it may be most economical in terms 

of computation time, to allow the searcher 

unrestricted range for the first look only. However, 

the effectiveness of this in terms of gain in 

detection probability depends heavily on the initial 

conditions and the total length of the search. If, in 

a prolonged search with limited planning horizon, a 

low probability of detection can be obtained at an 

intermediary node, then higher overall probability of 

detection is obtained when searcher range is 

restricted (as discussed in section 6.2.2 in the 

standard case). Alternatively, if there is zero 

detection probability at intervening nodes, (for 

example where target movement is away from the 

searcher), or the search is short, then increased 

range leads to increased detection probability.
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In cases where time-wasting is evident, substantially 

higher detection probability can in extreme cases, be 

gained with unrestricted searcher range. However, the 

associated strategies often bear little relation to 

the parameters of the search. In these cases 

restricted searcher range produces strategies much 

more representative of target behaviour, and less 

influenced by the artificial limitation of a finite 

search area. For this reason it is felt that 

restricting searcher range is benefical in these 

cases, even if the associated detection probability is 

not op t im a 1 .

From the above discussion, it appears that normally 

little is lost in terms of detection probability, when 

planning horizon and searcher range are restricted, 

and that restricting searcher range can produce more 

sensible strategies in some cases where the 

limitations of the model cause unwelcome searcher 

behaviour. The results indicate that if complete 

optimisation could be carried out over a prolonged 

search, the resulting strategies may well be dominated 

by the edge effects of the finite grid, thus the 

inability to perform complete optimisation is not a 

serious drawback.
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CHAPTER SEVEN 

CONCLUSION

The aim of this work was to produce a mathematical 

model of a moving target search which would give a 

reasonable approximation to a physical search in two 

dimensional space, and provide an optimal search 

strategy that could readily be interpreted in a 

physical, rather than mathematical form.

The model presented in the preceding chapters does 

provide such a strategy which accords with intuitively 

expected behaviour in relation to target movement and 

searcher capability. Although optimisation can only be 

carried out in the simplest cases, acceptable sub- 

optimal solutions can be found by limiting the 

planning horizon of the decision process, and range of 

movement of the searcher. Imposing these limitations 

would allow the use of a much larger search grid than 

that considered here.

The maximum size of 91 nodes considered in the 

evaluation presented in Chapter 6, was chosen in order 

to investigate the optimisation process as fully as

187



possible. (Initially a further consideration was the 

amount of storeage required for the transition 

matrices formulated in section 2.5. however the 

revised approach taken in section 5.2 does not present 

such problems.) However, strategies obtained under 

limitations on optimisation appear to be good 

approximations to optimal strategies, so full 

optimisation is not necessary.

When planning horizon and maximum searcher range are 

fixed, the increase in computation time required when 

the number of nodes is increased, depends primarily on 

the time required to update the target position 

distribution. Thus if planning horizon is limited to 

two looks, and searcher range to two or three units, a 

search area in the region of 1000 nodes would be 

feasible. (Parallel processing of the updating 

procedure could greatly increase this figure.) This 

increased search space would give a more acceptable 

approximation to a two dimensional search space.

Some problems associated with the model still remain. 

The approximation of continuous target movement over 

the discrete search space. although much improved by 

the revised model introduced in Chapter 5, is still 

not totally satisfactory. There are two aspects to 

this problem, firstly the use of a discrete search
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space with discrete instantaneous search can produce 

anomalies in detection probability as discussed in 

section 6.3.2, and secondly discretisation leads to 

a flattening of the target speed distribution. as 

illustrated in section 5.3.

The first of these problems might be reduced by 

relaxing the constraint of constant searcher speed. 

This possibility, discussed in section 2.5.1, would be 

feasible with the restrictions on optimisation 

discussed above. An alternative approach, relevant to 

both problems, might be to consider a search model 

with continuous transition rates between nodes, and 

non—instantaneous detection.

A further problem is the accumulation of target 

position probability at edge nodes of the grid, as 

described in section 6.3.4. The use of an extended 

search area, together with the restriction on searcher 

range, would miminise the effect of this accumulation 

on search strategy. Use of the moving grid system 

introduced in section 3.4 would also reduce this 

effect, and would be particularly appropriate in the 

case of target movement having a strong directional 

bias, where the effect is most marked. An alternative 

might be to model the edge nodes of the grid as 

absorbing states of the Markov process, the target 

being 'lost' on entering one of these nodes.
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