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SUMMARY

Application of fracture mechanics to the cracking and failure
of concrete under stress has been receiving considerable attention.
Most of these investigations have been directed towards the
determination of the critical stress intensity factor or fracture
toughness of concrete, mortar, or cement paste, failing in tension.
Studies on an experimental determination of fracture toughness for
concrete subjected to a compressive stress field have Timited report

so far.

This project applies the concept of linear elastic fracture
mechanics to investigate the Mode II shear type of failure of mortar
and soil-cement. Fracture studies are particularly important in
mortars and other cement composites as these materials are generally
weak in shear. The fracture toughness is determined using both the
stress intensity factor K approach and the strain energy release rate
4 approach. Both experimental and numerical methods are applied to
determine the fracture toughness (KIIC) and results are compared

on a range of specimen geometries.

The numerical work was carried out on 100mm double-notched,
single-notched and 150mm double-notched cubes and their stress
intensity factors were determined using the displacement approach of
the finite element method. The results of the numerical analysis
indicate that with decreasing notch spacing and increasing notch

depth the shear failure mechanism assumes the greater significance.



The experimental work consisted of a series of fracture tests
which were carried out on 100mm double-notched and single-notched
cubes applied to both mortar and soil-cement. The standard 100mm
concrete cube was modified and a testing arrangement developed
which would appear to be suitable for the testing of cement
composites for fracture mechanics purposes in the Mode II type of
failure. All these tests were carried out on the INSTRON testing
machine. The fracture toughness values were determined using the
strain energy release rate utilizing the 'pop-in' load P]
corresponding to the appearance of the first crack introduced on
the Toad-displacement curves. The experimental results confirmed
that linear elastic fracture mechanics can be applied to mortar and

soil-cement.

Good correlation between the stress intensity factor K
approach and the strain energy release rate & approach is obtained
provided correction for the machine/specimen interaction or the

machine stiffness characteristics is applied to experimental results.



LIST OF SYMBOLS

shear stress

tensile stress

elastic energy

change in the elastic energy

change in the elastic surface energy
elastic surface energy of a material

plastic strain work

rectangular components of stress

Young's modulus

shear modulus

Poisson's ratio

Polar angle with the origin located

at the crack tip

radial distance measured from the crack tip

radial distance measured towards the crack tip

components of crack surface displacement

components of crack surface displacement along (x,0)

compact shear



SRS E8!

Grebrce }

Br11c

Ki-KiroKion

KIc’KIIc’}

KI1c

KLt

notch depth

notch spacing

width of a cube

thickness of a specimen

vertical distance between two notch tips
crack surface area
crack resistance
compliance of a body (= displacement/Toad)

work done

calibration coefficient

applied load

"pop-in' load

failure load

strain energy release rate in Mode I,

Mode II and ModeIIl type of failure respectively
critical strain energy release rate in Mode I,
Mode II and Mode III type of failure respectively
Stress intensity factor in Mode I, Mode II and
Mode III type of failure respectively

Critical stress intensity factor in Mode I, Mode II,

Mode III type of failure respectively

latent fracture toughness



CHAPTER 1

INTRODUCTION

For the engineering application of linear elastic fracture
mechanics to the prediction of the strength and life of cracked
structures, a knowledge of the crack tip stress intensity factor
is necessary. This information, combined with an experimentally
determined critical stress intensity factor and the crack growth

rates for the structural materials made such predictions possibie.

In the development of basic fracture mechanics concepts,
extensive research has been carried out analysing the Mode I type
of failure on both metallic and non-metallic materials, mainly
steel and concrete. Although Timited analytical work has been done
on the Mode II type of failure, little has been experimentally

verified on cementitious materials.

The object of this study is to determine the Mode II fracture
toughness of mortar and soil-cement using both the stress intensity
factor K approach and the strain energy release rate & approach.

This includes the development of a mathematical model which satisfies
the Mode Il type of fracture failure conditions. The Mode II stress
intensity factors are predicted using the computer program suite,
PAFEC. The results are verified experimentally by means of the

compression tests on the INSTRON testing machine.

The critical literature review on numerical methods in

determining stress intensity factors shows that the finite element



method is the best choice because it can provide approximate
solutions of finite cracked bodies when exact solutions are
difficult or impossible to obtain. In this project the
displacement approach of the finite element method used by Chan
et al is adopted for analysing 100mm double-notched cubes and
the one used by Woo et al is adopted for 100mm single-notched
and 150mm double-notched cubes. Instead of using a fine
triangular element mesh around the crack tip as demonstrated by
Chan, a coarse mesh of quadrilateral isoparametric elements with
four crack tip elements at the crack tip is used on all specimen

geometries.

A compact shear specimen has been adopted and modified for
a Mode II fracture study in this project. This includes numerical

analysis and experimental work.

(1) Finite element analysis

It is important in the initial stage of this study to establish
a mathematical model which satisfies the Mode II type of fracture
failure conditions before full scale experiments are operated.
Three main geometries have been used in this study. They are 100mm
double-notched, 100mm single-notched and 150mm double-notched
cubes with notches cut in both the upper and lower faces. The 100mm
double-notched cubes include three configurations differ according
to the spacing H of the notches, these being 50 , 40 and 30mm.
The upper notches are 10mm deep, whereas the lower notches vary

from 25mm to 60mm in 5mm increments. The single-notched cube



has the same variation of notch depths as the double-notched cube
except the top notch is 6mm off-centre to the bottom one. The
150mm double-notched cubes include H=80 , 60 and 40mm with the
upper notches being kept at 15mm deep, whereas the lower notches

vary from 30mm to 80mm in 5mm increments.

The aims of this analysis are :

1. to represent a cube into a methematical model which meets
the loading and boundary conditions,

2. to study the capabilities of various finite elements,

3. to carry out a convergence study in order to find the

suitable finite element mesh size,

4. to study the stress profiles along the line of action

of the load,
5. to compare KII and KI values,
6. to determine the calibration coefficients Y(a/W),

7. to compare the finite element methods with the boundary
collocation method in the determination of stress

intensity factors.

(2) Experimental analysis on 100mm cubes

The aims of this experimental analysis are :

1. to develop a testing arrangement which is suitable for
the testing of cement composites in the Mode IT type

of failure,



2. to determine a suitable test geometry,

3. to find an acceptable method of evaluating the
load-displacement curves for the determination of

fracture toughness for mortar and soil-cement.

The experimental work is divided into two main parts :

Part A : mortar

The general properties of mortar have been determined, these

include :
(a) the bulk density,
(b) the standard compressive (100mm) cube strength test,
(c) the standard static modulus of elasticity test.
A testing arrangement has been determined for the Mode II type

of fracture failure. The fracture tests in compression include
using
(a) the existing Departmental made compressive platens

(Test series one),

(b) the INSTRON compressive platens and a load rig

(Test series two).

The fracture toughness values have been determined by using
both the stress intensity factor K approach and the strain energy

release rate 4& approach for :



(a) 100mm double-notched cubes (Test series three),

(b) 100mm single-notched cubes (Test series four).

Part B : soil-cement

The general properties of soil-cement have been determined,

these include :
(a) the bulk density,
(b) the optimum dry density and moisture content,
(c) the compressive (100mm) cube strength test.
The fracture toughness values have been determined by using

both the stress intensity factor K approach alid the strain energy

release rate & approach for :
(a) 100mm double-notched cubes (Test series five),

(b) 100mm single-notched cubes (Test series six).
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CHAPTER 2

REVIEW OF LITERATURE

2.1 INTRODUCTION

A highly intriguing problem in the theory of Elasticity is that
which involves the stress concentration in the region around a void
or notch. This also becomes a design problem when thin structural
members of higher strength steel or other structural materials,
sensitive to fatigue and brittle fracture, are used. As engineers
need to predict the strength of cracked structures, in order to design
against sudden failure, the science of fracture mechanics has grown

into a major field of study in engineering mechanics.

The type of fracture which occurs in engineering materials is
either ductile or brittle. In ductile fracture, failure takes place
following the plastic deformation of the material particularly where
shear and sliding takes place at 45° to the direction of principal
stresses. In brittle fracture there is little or no plastic deformation
prior to failure and the type of fracture which occurs is largely

dependent upon the nature of the material and loading.

2.2 GRIFFITH THEORY

The first successful analysis of fracture problems was that of
Griffith (1) in 1920. He investigated the propagation of brittle cracks

in glass.

Griffith stated that crack propagation will occur if the energy

released upon crack growth is sufficient to provide all the energy
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that is required for crack growth,.

He then considered an infinite plate, containing a unit-thickness
crack of length 2a’and subjected it to uniform tensile stress, o ,
applied at infinity (Figure 2.1). The total energy of the cracked

plate was found to be

U=U +U +U (2.7)
where
Uy = elastic energy of the loaded uncracked plate
Ua = change in the elastic energy caused by
introducing the crack in the plate
US = change in the elastic surface energy caused by

the formation of the crack surfaces

He used a stress analysis in order to show the elastic energy is

2
Ua =9 Eﬂa (for plane stress) (2.2)

and the elastic surface energy is

U, = 2(2as,) (2.3)

where Se is the elastic surface energy of the material.

Substituting equations (2.2) and (2.3) into (2.1) gives

U=u -2 +4as, (2.4)



where the decrease in elastic energy of the plate is shown as a

negative sign.

The equilibrium condition for crack extension is obtained by

substituting

(2.7)

12

Crack extension in truly brittle materials occurs when equation (2.7)

has a constant critical value.

2.3 TIRWIN'S MODIFICATION TO THE GRIFFITH THEORY

Equation (2.6) may be rearranged in the form :

For a small crack extension, the elastic energy per unit crack

surface area is represented by the energy release rate

(2.8)

(2.9)
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and the increased surface energy is represented by the crack

resistance

R=2S, (2.10)

Before unstable crack growth occurs,

If R 1is a constant, & must exceed a critical value ,GC .

Thus fracture occurs when

2 ma _ _
o g2 0. | < «GC =R (2.11)

where O is the stress required to fracture a plate with a crack

of size ?2a.

Irwin (2) and Orowan (3) independently suggested that the
Griffith theory for truly brittle materials could be modified and
applied to both brittle materials and metals that exhibit plastic
deformation. They recognized that a material's resistance to crack

extension was

o 2 ma _ _
£=0 — = 2(5e + Sp) =R (2.12)

where Sp = plastic strain work



For relatively ductile materials Sp >> Se
i.e. R s mainly plastic energy and the surface energy can be

neglected.

2.4 LINEAR ELASTIC FRACTURE MECHANICS (LEEM)

The principle of linear elastic fracture mechanics states
that the stress intensity factor is used as the characterizing

parameter for crack extension.

2.4.1 The Stress Intensity Factor K Approach

Irwin (4) demonstrated that there are three types of failure

conditions due to a local mode of deformation on the crack plane.

They can be classified as follows :

Mode I - the opening mode (Figure 2.2a)

The displacements of the crack surfaces are perpendicular to

14

the plane of the crack. They are pulled apart in the y-direction, but

the deformations are symmetric about the x-z and x-y plane.

Paris and Sih (5) used the Westergaard method (6) of stress

analysis of cracks to derive the displacement and stress equations

corresponding to the three displacement modes with reference to

Figure 2.3 for notations, the crack tip displacement and stress fields

under plane strain conditions were found to be

K
I ¢ . 0 . 38
o = — CO0S 1 - sin sin —
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1 6] .. 0 . 36
= CcoS 1 +
Oy (—2;‘—)}‘ (0] -2-[ S1n-2-51n—2]
K
I . Q. S] 30
T, = —— Sin 5 C0S 5 COS
Xy (27r) ? 2 2
o, = \)(oX + oy)
Tz Tyz T 0 (2.13)
KI r 2 e 20
U, = ¢ [?ﬁ] cos ?-[1 - 2v + sin 2—]
KI r E 0 20
Uy = [?EJ sin - [2 - 2v - €0S ?-]
w = 0

Mode II - the sliding mode (Figure 2.2b)

The displacements of the crack surfaces are in the plane of
the crack and perpendicular to the leading edge. The two crack
surfaces slide over each other in the x-direction, but the deformations
are symmetric about the x-y plane and anti-symmetric about the x-z

plane. The crack tip displacements and stresses were found to be :
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K
- I1 . 0O 0 30
O T 1 Sin ?-(2 + Cos 5 cos ?—-]
(2mr)
K
o, = I sin %-cos g-cos Eg
y (2mr)?
K
I1 0 . 0 . 30
T, = ———7 COS 1 - sin » sin (2.14)
o, = V (ox + oy)
Tz ® Tyz 70
u,6 = Ell [E—]% sin o [2 - 2v + cos29 ]
X G 2m 2 2
u, = <E££ [E—]% cos 2 (-1 +2v + s1'n2 9-]
y G 2m 2 2
w =0

Mode III - the tearing mode (Figure 2.2c)

Crack surface displacements are in the plane of the crack and
parallel to the leading edge of the crack. The crack surfaces slide
over each other in the z-direction, but the deformations are anti-
symmetric about the x-y and x-z plane. The crack tip displacements

and stresses were found to be
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) K111 0
Ty - T Tod sin 5
(2mr)?
K
II1 0
T = ——>=1 cos
yz (2mr)*® 4
(2.15)
Ox = Oy = OZ = Txy =0

In equations (2.13), (2.14) and (2.15) G = E/2(1+v) is the
shear modulus, E is Young's modulus, v is Poisson's ratio. The polar
coordinate r 1is the radial distance measured from the crack tip and
© is the polar angle. The above equations have been obtained by
neglecting higher-order terms in r . They can be regarded as a good
approximation in the region where r is small compared to other planar
(x-y plane) dimensions such as the crack length. The stresses,
which tend to infinity as r approaches zero (i.e. at the crack tip)
are products of geometrical position (2ﬂr)_% f(0) . The singularity
of the order r_% in the stress-field equations is a controlling
feature in the relationship of stress concentrations to stress

intensity factors.

The parameters KI R KII and KIII are known as the stress

intensity factors corresponding to the three fracture modes. It is
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important to notice that the stress intensity factors are not
dependent on the coordinates, r and © ; they control the intensity
of the stress fields but not the distribution for each mode.
Dimensional considerations of equations (2.13), (2.14) and (2.15)
show that the stress intensity factors must contain the magnitude of
loading factors linearly for linear elastic bodies and must also
depend upon the configuration of the body including the crack size.
Therefore, stress-intensity factors may be interpreted as parameters,
reflecting the redistribution of stress in a body due to the
introduction of a crack. The critical value of the stress-intensity
factor K. 1is considered to be a material property and is termed as

the fracture toughness.

Modes I and II, which are symmetric and skew-symmetric with
respect to the crack plane can be analysed as plane-extensional problems
of the theory of elasticity. Mode III can be regarded as the pure
shear (or torsional) problem. The superposition of these three modes
is sufficient to describe the most general case of crack tip deformation

and stress fields.

2.4.2 The Strain Energy Release Rate {3 Approach

Irwin (4) demonstrated that if a crack is extended by amount "da" ,
the work done by the stress field ahead of the crack when moving
through the displacements corresponding to a crack of length (a + da)
is formally equivalent to the change in strain energy frda , equations

(2.13), (2.74) and (2.15) can be generalized as :



so that the stress intensity factor can be written as :
1
K=o (ma)? £(Mw) (2.16)

where f(a/w) is a dimensionless parameter that depends on the

geometries of the specimen and crack.

Substituting equation (2.16) into (2.11) gives the critical strain

energy
K 2
’Gc = —%— (Plane stress) (2.17)
£ = (]_vZ) K ? (Plane strain)
c E C r
2
_ (1=v7) 2
= K
(2.18)
1-\)2 2

A1 T Mo

where ,&I » & and ’GIII are the energy release rate contributors

II
of Mode I, Mode II and Mode III respectively.

19
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Under linear elastic fracture mechanics conditions the
prediction of crack growth and fracture is the same for both the

energy balance and elastic stress field approaches.

2.5 APPLICATION OF THE FINITE ELEMENT METHOD IN LEFM

A rigorous determination of the crack tip stress intensity factor
requires an exact solution of the elasticity problem formulated for
the cracked structure. Applying the classical theory of elasticity
to actual problems is very difficult to solve. The application of the
boundary-collocation method is also lTimited, due to the inability to
handle problems of a general nature and the need to satisfy convergence
criteria. Numerical techniques such as the finite element method,
although approximate, have been shown to yield satisfactory results
for stress analysis problems in general. The finite element method is
the most appropriate for obtaining approximate stress intensity factors

whenever exact solutions are not available.

The crack tip stress intensity factors can be estimated from

the numerical solution by one of the following approaches :

(a) Energy Release Rate Method

This method requires the computation of total strain energy
from the element stresses and strains. This can be done automatically
and the strain energy included in the output. The energy release rate
of a cracked body loaded by forces P as shown in Figure 2.4 can be

expressed as :
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2
_ P ,oc
4 = 25-(—5) (2.19)
where b 1is the thickness and ¢ (= displacement/Toad) is the

compliance of the body.

The energy release rate is approximated by obtaining energy
values for two slightly different crack lengths, subtracting, and
dividing by the incremental crack length. Since, as previously
stated, the energy release rate is directly related to the stress
intensity factor, it is a simple computation to find K . In theory
this method should not require extremely small elements at the crack

tip, but in practice the element size is important.

(b) The J-integral Method

Rice (7) has shown that the value of the line integral is

J=f (Wdy-T g_)‘: ds) (2.20)
r
where T 1is an arbitrary contour surrounding the crack tip as shown
in Figure 2.5. W is defined as the strain energy density, T is
the traction vector defined according to the outward normal along T

and u is the displacement vector.

Rice (7) has demonstrated that the line integral is proportional
to the square of the crack tip stress-intensity factor. For plane

strain conditions :

K = () (2.21)
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In evaluating the integral of equation (2.20) for the finite
element solution over a path surrounding the crack tip, an estimate
of the crack tip stress-intensity factor can be obtained by using

equation (2.21).

The advantage of this method is that no extrapolations are
required. The accuracy of this method is independent of mesh
configuration and depends only on the accuracy of the evaluation in
evaluating the J-integral. It is also applicable to any crack geometry,
including combined mode loading. The disadvantage is that for a single
element representation it is difficult to estimate the degree of

error in the estimated value.

(c) The Stress Method

The stress approach involves a correlation of the finite element
nodal point stresses with the crack tip stress equations. For plane
strain conditions and making use of the Westergaard (6) stress

equations on the © = 0 plane, equation (2.13) gives

1
- 2
KI = (2mr) oy (2.22)

equation (2.14) gives
: 2.23
KII = (27mr) Tay (2.23)

The validity of the Westergaard stress equations in the finite
element analysis applies to element size r = 0.00la (where a is the

crack length) around the crack tip area.
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Chan et al (8) used a very fine triangular element mesh
in order to produce a better estimate of K . The element size
around the crack tip was in the order of 0.001 of the crack length.
Nodal point stresses in the vicinity of the crack tip were substituted
into equations (2.22) and (2.23) and values of K were evaluated.
Since stresses are derivatives of displacements, there is more

scatter in data point, and the extrapolation is less reliable.

(d) The Displacement Method

The displacement approach for determining the stress intensity
factors is similar to the stress method. The nodal point displacements
are correlated with the Westergaard displacement equations on the

crack surface where © = m . For plane strain conditions

equation (2.13) gives

ent Y
K, = J (2.24)
L 400475
equation (2.14) gives
! U
Ky = X (2.25)
4(1-55)  r?

The Westergaard displacement equations are valid in the finite

element analysis for elements of size r = 0.1a around the crack tip

area.
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The stress-intensity factors K can be evaluated accordingly
by substituting nodal displacements U into equations (2.24) and

(2.25).

Woo et al (9) employed a coarse finite element mesh to
determine the stress intensity factors of a cracked body by using a
conic-section simulation model (10). This method makes use of an
elliptic displacement functions which are satisfied by the introduction
of an equivalent ellipse obtained through simulating the actual crack

surface displacement as a part of a parabola or a hyperbola.

As the finite element method provides better approximate
solutions of finite crack bodies, further study on the application of
finite element method to obtain stress intensity factors 1is made in

Chapter 3.

2.6 APPLICATION OF LEFM TO CEMENTITIOUS MATERIALS

Many different theories have been put forward to explain the
fracture mechanisms in concrete. In recent years attention has been
directed to the application of fracture mechanics to investigate crack
propagation in concrete. Fracture mechanics does not explain the
micro-mechanism of fracture but deals with the relationships between
stress, energy and size of crack, for example, and enables a
quantitative analysis of the failure to be made. Here two categories
of stress failure in concrete-like materials will be discussed. These

are tensile and compressive failure.
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Mode I Failure of Cementitious Materials

Most of the limited research on the application of the energy
concept of fracture'mechanics to concrete, has been carried out
on flexure or tensile specimens. Tensile fracture in concrete is
not limited to one crack, however, but to several of microcracks
which cover the entire highly stressed zone. In this situation the
energy required increases about ten-fold by the newly formed micro-
crack surfaces. This is analogous to the large energy associated
with the plastic deformation of metals. Heterogeneity in concrete
undoubtedly complicates the detailed study of fracture mechanics
insofar as it creates non-uniform energy requirements for crack
propagation. A crack encountering an aggregate particle or an
otherwise “stronger zone may go around it or through it; but in either

event the energy demand is normally increased.

Glucklich (11) has suggested that the energy requirement curve
for crack propagation is not a straight line for concrete, but a
curve with an ascending slope. There is an increase in the energy
demanded as the crack arrest mechanism due to heterogeneity. This corresponds
to the "slow crack growth" stage observed in some experiments. The
crtieria for slow crack growth is that a crack will always propagate

to balance the total energy.

Kaplan (12) was the first to report measurements of fracture
toughness for concrete. He performed experiments on beam flexure
specimens in direct and indirect tension to show that the microcracks

occurred in concrete when loaded.
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Swamy (13) summarised some of the investigators' test

geometries and their calculated fracture toughness values which

can b

criti

e used to compare with other researchers' works.

Visalvamich et al (14) employed four methods to determine the

cal strain energy release rate for a double cantilever beam.

The materials used were mortar, fibre reinforced concrete and

asbes

(a)
(b)
(c)
(d)

propa

tos cement. The four methods used were :

analytical methods to determine the stress intensity factor
the compliance measured strain energy technique

the "quasi-static" energy measuring technique and

the "off-set" fracture energy technique that takes into
consideration the permanent deformation (or offset) at

unloading.

In a linear-elastic body when fracture occurs by unstable crack

gation, the strain energy release rate of the material was

determined using equation (2.19)

2

P dc

= % G@

where

P = applied laod

b = thickness of the cantilever beam
¢ = compliance of the specimen
a = crack length

A& was based on experimentally determined compliance of a specimen.
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Or using (2.17)

where 'GK was based on known K .

For the material showing stable crack propagation, the fracture
energy was evaluated from the "quasi-static" fracture energy method.
This method assumes that when the load is released to zero no

permanent deformation remains. The strain energy was

where D 1is the shaded area of the load-deformation curve shown 1in

Figure 2.6a.

For the material experiencing a slow, stable crack growth and
a significant permanent or residual deformation such as concrete,
the energy required to extend a crack was taken into consideration.
This was done by using the unloading and reloading technique. For
each loading cycle, a straight Tine fitting the reloading path was
drawn. The area under the load-deformation curve and between two
subsequent straight lines, corresponding to the successively recorded

crack lengths, was used to determine the fracture energy

A

UIR = Bda~ (2.27)

where A 1is the shaded area of the 1oad-deformation curve shown in

Figure 2.6b.
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It was concluded that the concepts of Tinear elastic fracture
mechanics were applicable to asbestos cements and plain mortar.
The fracture energigs, determined from the compliance measurement
and from the quasi-static energy technique, underestimated the true
fracture energy of mortar and steel fibre reinforced mortar.
The fracture energy which accounted for the existence of the permanent
deformation at unloading was found to represent the actual energy of
mortar and fibre reinforced concrete.The critical stress intensity

-3/2
factor for plain mortar was determined as 1.3MNm

Mode II Failure of Cementitious Materials

Studies on an experimental determination of fracture toughness
for concrete subjected to a compressive stress field were reviewed

as follows.

Glucklich (11) has indicated that the tensile stresses existing
at the ends of an inclined crack can extend the crack and release
strain energy (see Figure 2.7). These crack extensions will be
parallel to the direction of compression as this is the only direction

without a normal compressive stress.

It has been suggested that the strain energy release rate may
be independent of crack length, in a compressive stress field, so
that the strain energy released by crack formation U is

mba (o )2

_ comp
U= ST (2.28)

where b and a are crack dimensions shown in Figure 2.7.
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Hence

du ™ (9 om )2
Bz = '“f?ﬂ?"Jl_' (2.29)

and with the involvement of crack length.

2 .2 2 2
Ta (ocomp) sin” ¢ cos ¢ (1-v7)

Ec - E

(2.30)

Whether A is independent of crack length or not(equations (2.29)
and (2.30)), it can be shown that in a compressive field, cracks

are inherently more stable than cracks in a tensile field. Further
tensile cracks developed in a compression test are easily arrested
and the tendency is for progressive cracking to occur with increasing
load. Thus, final fracture is delayed by the development of many
cracks parallel to the axis of loading and the stress-strain curve has

a much greater curvature than in a tension test.

Knox (15) performed tests on standard 100mm concrete cubes

under three loading conditions :

(a) hardboard packing

(b) rubber packing and

(c) no packing

These are illustrated in Figure 2.8.

(a) The cube was tested in compression with hardboard packing
interposed between the specimen and the platens of the test

machine. It was found that the path of propagation of the

secondary crack running from the initial crack was dependent
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on tensile opening displacement and shear sliding
displacement, the actual path being a combination of
both modes. If conditions are such that the Mode II
displacement predominates, failure will occur along the
line of the initial crack as shown in Figure 2.8a. The

critical crack inclination was found to be 300.

(b) It was observed that when concrete failed in compression
with rubber strip packing interposed between the specimen
and the machine platens, then a true tensile splitting
mechanism was obtained from the first crack to propagation

(see Figure 2.8b).

(c) It was observed that propagation of the most critical
cracks under Mode I and Mode II conditions occurred when
standard compression tests (with no packing) were used
as shown in Figure 2.8c. The application of increasing
stress caused the formation of numerous stable cracks which
eventually linked up and caused absolute failure of the

specimen.

Desayi (16) investigated the fracture of mortar and concrete
prisms with preformed centrally inclined notch of different depths
and inclinations as shown in Figure 2.9. The prisms were tested
under compression conditions. The fracture toughness of the materials
were determined using the strain energy release rate method. Two
expressions for the strain energy release rate for both crack-

dependent and crack-independent were used. They were :
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For crack-independent, equation (2.29)

wbh
_™ 9%

G =
and

For crack-dependent, equation (2.30)

ma 0C2 sin2 ) cosz¢ (1—v2)
& = E

The critical strain energy release rate ’Gc values of the
prisms were found to be in the range of 0.135 to 0.347 mmN/mm2
for mortar and 0.135 to 0.474 mmN/mm2 for concrete when the crack-
independent 6 equation (2.29) was used. When the crack-dependent
6 equation (2.30) was used, G values were in the range of 0.043

to 0.173 muN/mm® for mortar and 0.054 to 0.232 mmN/mm for concrete.

Desayi concluded that the cracks initiated at the tips of the
notches and propagated in the direction of loading. The ultimate
load and the ultimate strain were found to gradually reduce as the

notch length increased.

Watkins (17) investigated the Mode II shear failure of soil-
cement cubes (Figure 2.10). The numerical analysis was carried out
by the compliance method as proposed by Dixon et al (18). The stress

intensity factor is determined as

K. =21 ayt for 0.3 < <05 (2.31)
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The direct compression test was carried out by loading the
specimen in a direction perpendicular to that of compaction. For

the specimen of H/W = 0.4 and 0.3 < a/w < 0.5, the Kije values

with no correction for slow crack growth were found to be in
_3/2

the range of 0.42 to 0.43 M\ m . The K values by using

IIc

Chisholm and Jones'equation (19) were in the range of 0.42 to
_3/2
0.45 MN m . By using the strain energy release rate method,
_3/2
they were found to be in the range 0.44 to 0.47 MN m

Liu (20) and Watkins et al (21) investigated the fracture
behaviour in a short shear beam in plain concrete. The finite element
method has been employed to analyse the shear behaviour of the test
specimen under in-plane shear conditions. The Mode II stress
intensity factor was determined using the strain energy release rate
method demonstrated by Dixon and Strannigan (18) as

1
2

P_ (wc) (2.32)

= 0.22 EE

Ki1

Details are shown in Figure 2.11.

The experimental work confirmed the numerical analysis that
shear failure took place in the specimens with a/w ratio between 0.1
and 0.25 . All specimens failed between the two slots , and a
crushed zone was observed at the crack tip. The KIIC values were

_3/
reported to be in the range 0.50 to 0.55 MN m 2.
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2.7 REVIEW OF THE MODE II COMPACT SHEAR (CS) SPECIMENS

A compact shear (CS) specimen was introduced by Chisholm and
Jones (19) for the $tudy of a Mode II shear failure. The Mode II
stress intensity factors for a pair of "through-the-thickness" edge
cracks in a finite isotropic plate as shown in Figure 2.12. An
elastostatic analysis has been carried out in terms of the complete
Williams (22) stress function employing both even and odd components
and the results of the numerical analysis have been verified by
comparison with a photoelastic analysis. The Williams stress function

x(r,0) which satisfies the biharmonic equation can be expressed as :

<

o m+1 3/oyn _.s2m-3 _
x(r,0) = mil (82,2m-1{rj 2[cos(m Z)Oj (EﬁiT)cos(m+%)®j]}
m+1
+ Bz,zm{rj [cos(m—l)ej - cos(m+1)6j]} (2.33)
m+lre . 3/ .
+ B4,2m—1{rj 2(sin(m- 2)0; - s1n(m+%)ej]}
+ B, , ' [sin(m-1)0; - (1) sin (m1)e)})
4,2m" j J m+T j
where
B2 m the coefficients of the even stress function (opening
mode) series
B4 _— the coefficients of the odd stress function (sliding
mode) series
r,0 = the polar coordinate directions with the origin

located at the crack tip
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the m-th term in the eigen-function expansion

3
"

[«
"

the J-th boundary point

The polar stresses obtained by partial differentiation of

equation (2.33), x(r,0) are given as :

32x
On = (2.34)
0 52
and
_ 9 1 3y
e =" % (r56/
Near the crack tipas r~-0 for 0=0 and m =i
equation (2.34) becomes
=B K 2.35
9% T F21 T (2.35)

The Westergaard equations from equation (2.13) for these conditions

reduce to
Ky
o = | (2.36)
Y (27r)?2
Therefore,
K, = (2m)? B, 1 (2.37)
Similarly,
K.. = (2m)% B (2.38)
11 4,1 .
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In addition, to satisfy the biharmonic equation the Williams'
stress function must satisfy the boundary conditions along the crack
surface. For the problem under consideration the normal and
shearing stresses are zero for 0 = #w , i.e. s and Tro = 0.

The remaining boundary requirements expressed in terms of the stress
function and its normal derivatives are along the boundaries AB ,
BC , CDE and EO'F as shown in Figure 2.13. The undetermined
constants Bi,k with i =2,4 and k =1 to m are obtained by
constructing a matrix of coefficients [(C] from the Williams'

stress function and its normal derivative for each boundary point of

the specimen. It is expressed as :

(€] (8] = (1) (2.39)

The product of this coefficient matrix [C] and a column matrix
[B] of unknown constants is set equal to a column matrix containing
the boundary values for the non-dimensionalised stress function x/P

and its normal derivative. The solution in matrix form is

(8) = (7" (1) (2.40)

The numerical result for h = 2.44cm with W = 9.5cm for a
bilinear centre-line stress distribution is shown in Figure 2.14.

The numerical solution was verified by comparison with a photoelastic
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analysis. The specimen was made of hysol epoxy resin 4290-CPS

with dimensions h = 2.44cm, W = 9.5cm and a/w ratio between 0.4
and 0.8 . It was loaded in a photoelastic experiment to study the
isochromatic fringe patterns resulting from the Mode II crack tip
stress distribution. The results are shown in Figure 2.14. The
experiment verifies the accuracy of the Boundary-collocation solution

for the Mode II stress-intensity factors.

The stress-intensity factor is non-dimensionalized by dividing
1 1
By 1 (2m)2 by oca? where o is the applied stress P/bh . The plot

of Figure 2.14 reveals that for 0.3 < a/w < 0.7 the expression

1 1
p 2 2 1
. _%ﬁ.(%) - oa? (2.41)

is valid to within 2% . Beyond this range a least-squares approach

is necessary to determine the best fit. At an a/w ratio of 0.8

Ky = (1.08) oa? (2.42)

Agarwal et al (23) performed fracture toughness tests in shear
Mode II on short glass fibre composites as shown in Figure 2.15.
Equal and opposite forces parallel to the plane of the crack and
perpendicular to the crack front were applied through the gripping area.
It was found that a large gripping area will give rise to an undesirable
bending moment on the specimen and too small an area will cause crushing.
The critical strain energy release rate 4 values were obtained

Ilc

by the compliance method. The ‘GIIC values were found to be independent

of crack length and were less than half of that in Mode I and Mode IIL.
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This specimen is rejected in this study because it has been
restricted in terms of thickness and gripping area in order to

produce the Mode II displacement condition.

Richard (24) introduced a new compact shear (NCS) specimen
for a pure shear loading test as shown in Figure 2.16 for brittle
materials. A loading frame is used to apply equal and opposite
forces (in tension) to the specimen. The crack Tength has been
limited to 0.55W < a < 0.65W because in this range S is less
than 3% of KII . The author intends to determine the KIIC
values of different brittie materials.

Leslie Banks-Sills et al (25) presented a specimen from which
a narrow region of nearly uniform pure shear can be obtained
under tensile loading as shown in Figure 2.17. It is found from the
finite element analysis that direct stress Oy x is approximately 4%
of the shear stress Oy in the region surrounding the crack.
Photoelastic study shows KII is 140 times larger than KI . The

author concluded that the opening mode in this sample is negligible

and a Mode II deformation is dominant.

This test is not used in this study as the loading frame and the

test specimen are not easily adopted for tests in concrete.

Riddle et al (26) modified the compact shear specimen used by
Jones and Chisholm (27) as shown in Figure 2.18 . The thickness of
the specimen in the crack tip region was one-half of the thickness
of the material in the loading hole region, so that if plastic

deformation occurs in the specimen, it happens in the region near
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the crack tip and not at the loading holes. The KI/KII ratio
varies from 0.3 for the shortest crack to 0.083 for the longest
crack. Stress intensity solutions for the compact shear specimen
were evaluated using a J-integral method and pure Mode II loading
condition was achieved. This method is restricted by the direction

of tensile loading through the loading holes as shown in Figure 2.18.

Anandarajah et al (28) studied the Mode II failures of adhesive
joints with both thin and thick adhesive layers on the compact shear
specimen under tensile load conditions as shown in Figure 2.19.

The compliance method was used to determine the critical strain energy
release rate /GIIC » Which was strongly dependent upon the thickness
of the adhesive layer and the crack length. This compact shear
specimen is not adopted in this study because the Mode II failures

have not been achieved.

Wang et al (29) investigated the fracture behaviour of a random
short fibre sheet moulding compound (SMC) components subjected to pure
shear (Mode II) loading. The uniform shear-stress field in the test
was introduced by clamping the ends of the specimen into the grips
subjected to the tensile Toading as shown in Figure 2.20 for both
centre crack and edge crack. It was concluded that a Mode II shear

loading has been achieved and the K values appeared to be independent

Ilc
of crack configuration and crack lengths.

This test method is not used in this project because the specimen
has been restricted in the ‘'sheet' form and a tensile load load frame

is necessary to achieve the Mode II failure.
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Most of the compact shear specimens discussed have produced
a pure Mode II type of failure. The restrictions are high to achieve
such failure conditions as simple geometries are limited in their
thickness and loading conditions while the complex geometry is
restricted to be tested with an equally complex load frame. Above
all, the specimens were tested in the tensile loading conditions;

which were achieved using specially designed load frames.

The simple compact shear specimen proposed by Watkins (17)
has been adopted for fracture studies in this project because
(a) the specimen can be readily prepared and modified from 100mm
standard cubes and (b) tests are to be carried out under direct

compression load.
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Fig 212 The compact shear specimen &
associated coordinate system

for Modell loading.
( Chisholm & Jones' model [19)

Fig. 213 The stress function for a
bilinear stress along E-F.
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CHAPTER 3

APPLICATION OF THE FINITE ELEMENT METHOD IN LEFM

3.1 INTRODUCTION

The finite element method is based on a technique of minimizing
the total potential energy of an elastic body. The body is divided
into a number of small elements connected at nodal points. In a
plane problem, each node has two degrees of freedom, namely, the
displacements in the x and y directions. The stiffness matrix for
each element must be defined in terms of the strain energy, which
is related to unknown displacements. Therefore it is necessary to
assume a displacement function in terms of the nodal coordinates in
order to construct a stiffness matrix for each element. For plane
elasticity problems there are two formulations commonly in use.

One is derived from a Tinear displacement function and the other from

one of the possible forms of a quadratic function.

The coefficients of the displacement function in both cases are
determined by substituting linear or quadratic functions for the nodal
coordinates in terms of the variables x and y . Since there are
more terms in a quadratic function, an element using this function does
require more nodal points. The quadratic element, therefore, normally
employs nodes at the centre of each side as well as the corner nodes.

Thus a triangular element has six nodes and a quadrilateral element

requires eight.
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The solution process may be divided into three basic stages :

(a) Determination of the stiffness matrix for each element.
This matrix relates each nodal force (a vector) to the
nodal displacement (also a vector) via the element stiffness

matrix.

(b) Combination of the element stiffness matrices into an

overall assemblage stiffness for the complete problem.

(c) Solution of the problem using the overall stiffness matrix
to obtain unknown forces and displacements from the known

boundary conditions.

3.2 THE FINITE ELEMENT PROGRAM

The finite element suite used in this study is PAFEC (Tlevel
5.1) (30). The program is written in FORTRAN language and is
operated on a VAX 11/785 computer. The program is general purpose

for solving both plane stress and plane strain problems.

The suite provides a wide range of element types to solve
various kinds of structural problems. Three related quadrilateral
elements together with 8 noded crack tip elements applied at the
crack tip only (Figure 3.1) are employed to study the mesh size
effects and general capabilities in determining the stress-intensity

factors of a cracked body.
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The element can be generated automatically and is operated

by specifying the element types, spacings and material properties.

Facilities of ,the PAFEC interactive graphic suite also include
comprehensive data checking, mesh correction and display of inter-
mediate results such as distorted shape, principal stresses or

vector contours etc.

The execution procedures of the program are summarised in a

flow chart as shown in Figure 3.2.

3.3 DETERMINATION OF K FROM FINITE ELEMENT SOLUTIONS

A problem inherent in the finite element method is that the
stress intensity factor K is not a direct result of the computations.
Therefore the stress intensity must be indirectly deduced from the
available output. The most commonly accepted method of doing this is
the displacement method. The two displacement approaches demonstrated

by Chan et al (8) and Woo et al (9) will be discussed here in detail.

3.3.1 Chan's Displacement Method

Chan et al (8) employed the Westergaard's displacement equations
to correlate the finite element nodal point displacements. Under
plane strain conditions, equations (2.24) and (2.25) give Mode I and

Mode II stress-intensity factors as

o emte Y
Y A

and
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. (mEE 5;
H 4(1-v7) re

where Ux ’ Uy are the displacements in the x and y directions
respectively, r 1is a distance measured from a crack tip.

If the substituted displacements were the exact theoretical values
then the value of the K* obtained as r approaches zero is the
exact value of K . Since the finite element displacements are
rather inaccurate at an infinitesimal distance from the crack tip,
this Timiting process is not suitable. Instead a tangent extra-

polation of the K* curve is used to estimate the value of K .

Chan et al (8) evaluated the stress-intensity factor for a single
edge-cracked plate using both the finite element method and the
collocation method. The compact tension (CT) geometry is as shown in
Figure 3.3 with a/W = 0.5 and H/W = 0.6 . The finite element curves
were calculated from the displacement analysis using a fine triangular
element mesh with element size r = 0.00la around the crack tip.

The Williams' stress function was used in the collocation process and
the comparison of both methods is shown in Figure 3.4. The element
curve rapidly approaches a constant slope as r/a increases with a
sudden drop near r/a - 0 . This indicates that the displacement
method requires less refinement of element size at the crack tip.

The best estimate of the stress-intensity factor is obtained by
extrapolating the constant slope portion of the K; curve back to the

vertical axis as shown in Figure 3.4.
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A convergence graph of the KI values produced by the finite
element method and the collocation method is shown in Fiqure 3.5.
It can be seen that the agreement between the two methods is very

good.

It is seen that the displacement method can produce a good

estimate of K with a dense element mesh around the crack tip.

3.3.2 Woo's Displacement Method

The conic-section simulation model (9,10) has been used to
compute the stress intensity factors directly from the finite element
analysis. The method makes use of the technique of mapping the
nodal displacement function. A satisfactory finite element method
used to analyse the stress field near a crack tip of an elastic body
should represent the r_% type of elastic stress singularity. Woo
et al (9) employed the conic-section simulation model of the deter-
mination of stress intensity factors using isoparametric finite
element analysis with quarter point singular crack tip elements around

the crack tip.

Figure 3.6 depicts a crack in a semi-infinite plate subjected
to uniform tensile stress % remote from the crack in a direction
inclined at an angle g to that of a crack. The Mode I and Mode II

stress intensity factors are given by

o(ma)?

-
"

(3.1)

KII = T(ﬂa)%
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where o and Tt are the stress components in the region normal

to and along the crack respectively.

The cracked surface displacements under plane stress

conditions were found to be

I !
UX(X,O) = - "—E——OO X (3.2)
%
2 %, x2
U (x,0) = (1-—) (3.3)
y E at

Since the resultant displacements can be considered as the

vectorial sum due to o and t , equations (3.2) and (3.3) give

2
2 1-
U, (x,0) = t—::—a- (1-%) -FHox (3.4)
a
and
1
1-v Z20a x2 *
Uy(X,O) = —-E—- T X * —E- (1 - ;—2-) (3.5)

where the second term of equation (3.5) is positive for the upper

1ip and negative for the Tower 1ip.

Therefore the relative crack surface displacements are given

by
U (x,0) = 3[U_(x,0) -Y,(x,0)
y upper Tower
X2 %
. _ , 0a
Uy(x,O) =2 (1 - ;2) (3.6)

similarly
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%um)=z%w1-?q (3.7)

Substituting for ¢ and Tt from equations (3.6) and (3.7)

respectively, equation (3.1) gives

m
N

)
———7 - — (ma) (3.8)

and

I
=
>< -
—_
>
-
o
~—
m
o=

nTt—t - — (m) (3.9)

Substitution of nodal displacements U} (x,0) and U; (x,0)
into equation (3.8) and (3.9) from the finite element analysis, the
stress intensity factors K* can be obtained. From plots of K* as a
function of x/a , the estimates of the K values are then made by

extrapolating the straight line portion of the K curve to x/a=l.

Woo et al (9) considered an angled edge crack in a finite plate
subjected to uniform in-plane tension (oo) as shown in Figure 3.7.
A conic-section simulation model of crack surface was used in the
finite element analysis. A coarse element mesh has been used and the
smallest element measured at the crack tip was 0.085a (a is the crack
length). Both conventional isoparametric elements and distorted
crack tip elements at the crack tip were employed. The geometric

functions of P = KI/oo(wa) and S = KII/co(na) were compared with
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Wilson's boundary collocation method (31). The convergence of the

values of P and S are shown in Figure 3.8.

The accuracy of the values of P and S determined by the
conic-section method with crack tip elements at the crack tip are
within 5% and 9% respectively of the results reported by Wilson.
The corresponding values obtained by the conventional isoparametric
elements are within 6% and 16% of the Wilson results. This
indicates that the conic-section simulation model can produce better
estimates of KI and KII values with crack tip elements at the

crack tip when a considerably coarser mesh is used.

It is seen that Chan et al (8) used a fine linear element mesh
in a region near the crack tip. The linear dimensions of the
elements were in the order of 0.001 of the crack length. It is
expensive in computer time and data preparation effort to use such
refined meshes. Woo et al (9) used a coarse 8-noded quadrilateral
element mesh together with distorted crack tip elements at the crack
tip. The smallest element used at the crack tip were in the order of

0.085 of the crack length.

It can be concluded that the Woo's method is better than the
Chan's method because a coarse element mesh with crack tip elements
around the crack tip can save computer time and represent the elastic

stress singularity.

Since the Woo's method was not made available when this project

was started, Chan's method was adopted to analyse the 100mm double-
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notched cubes under compact shear loading. Subsequently the
100mm single-notched and 150mm double-notched cubes were

analysed by using the Woo's method of the finite element analysis.
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Fig. 31 Types of quadrilateral finite element
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CHAPTER 4

MATHEMATICAL MODELLING FOR 100mm CS SPECIMENS

USING PAFEC FINITE ELEMENT PROGRAM

4.1 INTRODUCTION

Numerical analyses were made to study the possible Mode II type
of fracture failure for the compact shear (CS) cubes. They were 100mm
double-notched, 100mm single-notched and 150mm double-notched cubes.
Since these cubes were made up of different notch spacing and depth,
it was decided to establish a general model which can accommodate
different geometrical shape as well as fulfilling the load and boundary

conditions.

Chan's displacement approach (equation (2.25)) of the finite
element method was chosen for the initial modelling of a 100mm double-
notched cube. Instead of using a fine triangular element mesh around
the crack tip area, a coarse quadrilateral isoparametric element was
used. The analysis includes modelling the cube mathematically to study
the stress profiles along the line of action of the Toad and to compare
the Mode I and Mode II stress intensity factors under the shear loading
conditions. Comparison was also made to study the accuracy of the
boundary collocation and the two displacement approaches of the finite

element methods used in determining the Mode II stress intensity factors.
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In the modelling of 100mm single-notched, and 150mm
double-notched cubes, Woo's displacement approach (equation (3.9))
was used. Since a coarse quadrilateral isoparametric element mesh
with crack tip elements around the crack tip is recommended, it is
of interest to verify it on the notched cubes. The analyses include
the convergence study of element mesh size, the comparison of the
Mode I and Mode II stress intensity factors and the determination

of the calibration coefficients.

4.2 FINITE ELEMENT MODELLING FOR 100mm DOUBLE-NOTCHED CUBES

The compact shear cubes have three basic geometries with notch
spacing H =50 , 40 and 30mm as shown in Figure 4.1. Each geometry
has eight variations by changing the crack Tength "“a" from a = 25mm

to 60mm in 5mm increments.

A general model was first established by considering a cube
(of H/W = 0.5 , a/w = 035) which was loaded by a compressive force of
1000N at the centre of the top surface as shown in Figure 4.2(a).
The cube is symmetrical about the centre 1ine and a simplified
geometry can thus be obtained by considering one half of the specimen
as shown in Figure 4.2(b). The line of symmetry (or centre line)
was modelled by a series of rollers so that vertical displacements
only were allowed to take place. Vertical restraints were provided
at the support thus assuring the shearing displacements at the crack

tip required for Mode II fracture.
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Initial analysis showed that the top free surface moved
horizontally towards the crack while the support moved horizontally
away from the crack thus producing a three-point bending as shown
in Figure 4.2(c). This was not acceptable under the shear Toading
conditions and horizontal restraints were provided at the top and
bottom corners of the cube as shown in Figure 4.2(d) to prevent the
overlapping of the crack surfaces. This proved satisfactory

(Figure 4.2(e)).

There are two main element geometries in two dimensional
finite element analysis, triangular and quadrilateral. The simplest
three noded triangular element, which has the lowest order of
polynomial function is a constant strain triangle as the strains
can be proved to be constant at every point within the element. The
quadrilateral isoparametric element is one whose boundary surfaces
are defined by polynomials of the same degree as their displacement
expansion. The elements can be linear, quadratic, cubic or even
higher order type. These higher order elements which possess linear,
quadratic and cubic strain within the element respectively, can
produce a more accurate result than the 3 noded constant strain
triangular element. As a comparison of the element type, the number
of constant strain triangular elements needed to give the same accuracy

as the quadrilateral isoparametric element are listed in Table 4.1.

Various types of the gquadrilateral isoparametric elements were
used and comparison of their capabilities in analysing a cracked
body was made. The types of quadrilateral isoparametric elements used

in this study were :
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(a) The Tinear element (Figure 4.3(a)) with only four nodal
points.

(b) The quartic element (Figure 4.3(b)) with seventeen nodes,
four corner nodes, three nodes are along each edge of the
element and one node is located at the centre of the
element.

(c) The quadratic element (Figure 4.3(c)) with eight nodes,
four corner nodes and four mid-side nodes.

(d) The quarter-point (or special crack tip) element (Figure 4.3(d))
with eight nodes. This element can represent a crack
tip singularity of r? of the strain field at the crack tip.
The singularity in this element is achieved by placing the

mid-side nodes near the crack tip at the quarter point.

For an initial model, a coarse mesh with sixty elements was
assembled on a half cube using the above elements and the Mode II
stress intensity factors were calculated for each model. Chan's
displacement equations (2.25) as described in Chapter 3 were used to
estimate the values of stress intensity factors. The result of

this study is tabulated in Table 4.2.

It shows that the highest KII value is obtained by using
17-noded elements and the crack tip elements (used at the crack tip
only) yields a KII value which is 0.5% Tless than the highest KII
obtained. The Towest KII value is 6% smaller than the maximum
value obtained using the 4 noded elements. Although 17 nodal

elements can produce a higher K;; value, they do not possess the
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crack tip singularity of r-é of the strain field at the crack

tip. The result of the K values are practically the same for

II
both 17 noded elements and crack tip elements (used at the crack
tip only). The 17 noded elements have about 2.5 times more

degrees of freedom than the crack tip elements and this means 17

noded elements use more computer time and storage space.

It can be concluded that higher order elements are not
necessarily best. The crack tip elements, (used at the crack tip
only) which can represent the elastic crack tip singularity while
using considerably less computer time are far more preferable
in analysing cracked problems. The crack tip elements used at the crack
tip only together with the 8 noded quadrilateral isoparametric

elements were chosen for all finite element analysis in this project.

4.2.1 A Convergence Study of Element-mesh Size

A convergence study of element mesh size was carried out on
seven mesh-geometries as shown in Figure 4.4. The smallest size of
an element used at the crack tip was about 0.la for 48 , 60 , 72
and 102 element-meshes and about 0.07a for 144 , 168 and 200
element-meshes respectively. Both 8-noded quadrilateral isoparametric
and distorted elements (at the crack tip only) were used in this
analysis. Initially, only 8-noded quadrilateral elements were used
on all the element meshes. Secondly, the elements around the crack
tip were replaced by the distorted elements. The Kjp values were
calculated from the vertical displacements on the crack surface using

Chan's displacement equation (2.25).
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Figure 4.5 shows a typical plot of KII as a function of r/a
for the 60 element-mesh with distorted elements around the crack
tip. An estimate of KII was obtained by extrapolating the straight
line back to the vertical axis. Results of this study are shown

in Table 4.3.

It can be seen from Table 4.3 that the element meshes which
contain distorted elements at the crack tip show a quicker convergence
than those with quadrilateral isoparametric elements only. Figure
4.6 shows a convergence graph for both undistorted and distorted
elements (at the crack tip only) meshes. It is observed that when
using as few as 60 elements (with distorted elements at the crack
tip) there is only a difference of 1.0% in the KII value when

compared to the results from 144 elements.

It can be concluded that using a coarse mesh of 60 quadrilateral
isoparametric elements (with distorted elements at the crack tip)

is sufficiently accurate for the fracture analyses in mind.

4.2.2 Stress Analysis of the Specimen

The boundary conditions for the CS cube (Figure 4.2(d)) has
been shown to be satisfactory in producing vertical displacements
along the crack surface required by the Mode II displacement condition.
Further analysis has been carried out to confirm the dominance of a
Mode II failure by studying the stress distribution along the Tine

of action of the load for a/w = 0.3, 0.35, 0.40 and 0.45 respectively.
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For this a finite element analysis was carried out for each notch
ratio using 8-noded quadrilateral isoparametric elements on a mesh
of 200 elements as-shown in Figure 4.4h. The smallest elements

used around the crack tip were 0.07a.

Numerical values of the nodal direct stresses o, and shear
stresses Txy along the Tine of action of the load obtained by
this finite element analysis are illustrated in Table 4.4. The

compressive stresses are represented by those with negative signs.

The direct and shear stress profiles plotted along the line of
action of the load are shown in Figure 4.7. The magnitude of the
stresses are shown on the horizontal axis and the crack surface is
represented by the vertical axis. Clockwise shear stresses and

direct stresses are shown positive.

A typical profile of the direct stress oy of a/W = 0.3
shows that a maximum direct compressive stress of 20.7kN/m2 is
reached at the very tip of the top notch. This decreases sharply
and reaches zero at a distance about half way between the two crack
tips. The direct stress subsequently changes from a compressive to
a tensile state and reaches a maximum of 19.9kN/m2 at a point which
is very close to the bottom of the crack tip. This high tensile
stress zone at the tip of the bottom notch indicates that a tensile
crack is likely to occur. The direct stress profile indicates that
bending takes place at the tips of the top and bottom notches so
that crack closing and opening occurs at the tips of the top and

bottom notches respectively. (Table 4.4).
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The profile of the shear stress Ty of a/W = 0.35 shows
a maximum value of 23.3kN/m2 at the tip of the top notch.
Again this drops sharply when measured away from the top notch.
At a distance where the direct stress reaches zero the shear
stress levels out at 5.6kN/m2 . It then increases sharply as it
approaches the tip of the bottom notch until it reaches a maximum
value of 27.4kN/m2 . The shear stress profile shows high shear

stresses occur at the tips of the top and bottom notches, thus

encourages shear failure to take place.

Figure 4.7 also shows that similar direct stress and shear
stress profiles are obtained for other notch ratio (i.e. a/W = 0.3,
0.4 and 0.45). It can be seen that both the compressive stress
and shear stress at the top notch increase with increasing notch
depth. The tensile stress and shear stress at the bottom notch also
increase with increasing notch depth, but they discontinue in the
range 0.35 f % < 0.4 . This can be explained that a refinement of
the element mesh at the bottom crack tip may be necessary in order

to get more accurate stress results when the crack depth increases.

To summarise, when the CS cube is loaded bending takes place at
the tips of the top and bottom notches. High compressive bending
stresses at the tip of the top notch occur thus producing a crack
closing action (Table 4.4). Subsequently a maximum shear stress is
produced and plane sliding is encouraged along the line of action of
the load. Mid-way between the two crack tips (i.e. at the neutral

axis of the bending plane), the bending stress is zero and the shear
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stress levels out. At the tip of the bottom notch bending again
takes place and produces a crack opening action. Because of the
horizontal restraints provided at the bottom corner of the cube,
this opening action at the crack tip is stopped and changed into
a hinge-effect. This effect pushes the crack surfaces to overlap
each other and an apparent new crack tip is produced (Table 4.4).
This explains why the maximum tensile bending stress and shear
stress takes place not at the bottom crack tip but at an element
size away from the crack tip. This high tensile stress zone
indicates that a tensile crack may occur at the tip of the bottom
notch but compiete bending cannot take place due to the horizontal
restraint at the bottom corners of the cube. Because of the high
shear stress zones occur at both tips of the top and bottom notches,
plane sliding or shear failure is likely to take place along the

plane of the two vertical notches.

4.2.3 Comparison of the Mode I and Mode II Stress Intensity

For H/W = 0.5, 0.4 and 0.3

In order to investigate whether the Mode II type of failure is
predominant under the CS loading conditions, both Mode I and Mode II
stress intensity factors were calculated and compared. The cubes
have three basic geometries with notch spacings H =50, 40 and
30mm . Each geometry has eight variations by changing the crack
length a = 25mm to a = 60mm in S5mm increments. A constant 60
element mesh with distorted elements at the crack tip was used for

all the finite element analyses. The smallest element size used at
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the crack tip was 0.2a, 0.167a, 0.14a, 0.125a, 0.111a, 0.1la, 0.09a
and 0.083a for the crack length changing from a = 25mm to

a = 60mm in 5mm increments respectively. Eight computer runs
were made for each notch spacing H and a total of 24 computer
runs were carried out. From each computer output the vertical and
horizontal displacements along the crack Uy . Ux were substituted
into Chan's displacement equations (2.24) and (2.25) and the Mode I
and Mode II stress intensity factors wereevaluated. Figure 4.8
shows typical plots of KII against r/a for H = 50 , 40 and 30mm
respectively with a/w = 0.35 . The KII estimates were obtained by
extrapolating the straight line of the curve back to the KII axis.
and K

Table 4.5 shows the K estimates and KII/KI ratios for

I II
various a/W and H/W values. The variations of KII and KII/KI
with a/W are expressed in graphical forms as shown in Figures 4.9

and 4.10 respectively.

Using the 60 element-mesh Figure 4.9 shows all three KII values
increase linearly with increasing a/W values in the range 0.25 <

a/w < 0.45 and discontinue beyond a/w = 0.45.

Figure 4.10 shows the comparison of the KII/KI ratios for
H=50,40 and 30mm with a/W ratios. A1l three K ; /K, plots
increase up to the range 0.25 < a/W < 0.45 , and beyond a/w = 0.45

the sudden discontinuity occurred.

The discontinuity of the curves beyond a/W = 0.45 was caused
by inadequate element mesh near the crack tip. The re-arrangement

of the element mesh was therefore made for crack length larger than
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I and KII

values were obtained. The corrected results are tabulated in

45mm as shown in Figure 4.9 and the corrected K

Table 4.6 and plotted in Figures 4.9 and 4.10. It can be seen
that the K, and KII/KI plots have improved. It is important
to note that a cube with a smaller notch spacing H/W and higher

a/W produces higher KII/KI ratios.

It can be concluded that the Mode II stress intensity
factors are many times higher than the Mode I for a small notch
spacing ratio H/W. (e.q. KII/KI = 124 for H/W = 0.3 , a/W = 0.6).
This indicates that the Mode II type of failure is improving by

reducing the notch spacing H .

4,2.4 Determination of the Calibration Coefficients

of the Mode II Stress Intensity Factors for H/W = 0.5,

0.4 and 0.3

In this section numerical work was carried out to determine
the Mode II calibration coefficients for the 100mm CS cubes with a

notch spacing H = 50 , 40 and 30mm respectively.

The Mode II stress intensity factors for a finite plate is

_ a
ki1 = Y@ K1 (4-1)

where Y(a/W) 1is the calibration coefficient which depends upon
the ratio of crack length to specimen width (a/W), KIIoo , the Mode

II stress intensity factor for an infinite plate is
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1
2

K = 1 (m)

e (4.2)

where "a" 1is the'crack length and the shear stress in an infinite

plate is

P
Too= —B— (43)

where "P" s the applied load as shown in Figure 4.1.

By substituting equation (4.2) into equation (4.1) it becomes

Ky = YR 7, (ma)? (4.4)

and by substituting equation (4.3) into equation (4.4) it becomes

Kpp = Y@) o (ma)? (4.5)

Re-arranging equation (4.1), it can be shown that the calibration

coefficient is

K

) = ﬁ-i—m (4.6)

a
Y(W
The Mode II stress intensity factors KII obtained in previous
sections were substituted into equation (4.6) in order to determine
the calibration coefficients. These are tabulated in Table 4.7 for
various ratios of a/W and H =50 , 40 and 30mm respectively.

An empirical relation between the Y(a/W) values and the a/W ratios
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was obtained using a least square method. Best fit curves are
obtained for Y(a/W) values when 0.25 < a/W < 0.60 and equations
of Y(a/W) expressed in polynomials of powers a/W as shown in

Table 4.8.

The calibration coefficients for H =50 , 40 and 30mm are
shown graphically in Figure 4.11. It is seen that the values of
Y(a/W) for all three notch spacings are almost independent of
crack length when 0.30 < a/W < 0.45 . The calibration coefficient
for notch spacing is therefore reduced to a single value as shown

in Table 4.8.

The Mode II stress intensity factors for the specific geometries
were obtained by substituting the calibration coefficients into
equation (4.4).

1
2

Kir = Y(a/W) 1 (ma) (4.7)

I1

The corresponding Mode II stress intensity factors are summarised

in Table 4.8, they are

P 1
H=5Omm KII =1.19 B (ma)? (4.8)
H=40mm K, =1.02 P (ra)? (4.9)
i1 - 1% gy '
- P 3
H=30mm Ky = 0-89 g (ma) (4.10)
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4.2.5 Comparison of the Boundary Collocation Method

to the Finite Element Methods

The capability of the displacement finite element method used
by Chan et al (8) and Woo et al (9) as described in Chapters 2
and 3 respectively were compared by analysing a notched cube of
H/W = 0.5 wunder a load of 1000N as shown in Figure 4.12(a).
Since there was no exact solution to compare the results, the
expression derived by Chisholm and Jones (19) was used as a collocation
process. Equation (2.41) gives the Mode II stress intensity factor

for a compact shear specimen as

1 1
_ PW? ,a,%
Kip = (@

The notation is illustrated in Figure 4.12(b).

The corresponding values of KII were obtained by substituting
various ratios of a/W into equation (2.43). Subsequently, the
calibration coefficients Y(a/W) were obtained by using equaticn
(4.6) as illustrated in Table 4.9. The finite element analysis for a

cracked body from Chan's method (eq. (2.25)) gives

o
(e

o ente %
- 1
T 4009 r?

The notation is illustrated in Figure 4.12(c).

For the two finite element analyses, a constant mesh of sixty
8-noded quadrilateral isoparametric elements with crack tip elements

at the crack tip was used. The smallestelement used at the crack tip
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was 0.2, 0.167, 0.14, 0.125, 0.111, 0.1, 0.09 and 0.083 of

the crack length a = 25, 30, 35, 40, 45, 50, 55 and 60mm
respectively. The‘KII estimates and the calibration coefficients
Y(a/W) obtained by Chisholm and Jones' method, Chan's method and
Woo's method are tabulated in Tables 4.9 and 4.10 respectively.

Results of K,; and Y(a/W) are shown graphically in Figures 4.13

II

and 4.14 respectively. Figure 4.13 shows that the K., values

II
obtained by the finite element methods are of similar values to
those obtained by the boundary collocation method. Figure 4.14

shows the three calibration coefficient plots.

The Y(a/W) values obtained by the finite element methods
using Chan's and Woo's approach are about 6% and 4% larger
respectively than the collocative value and there is only 4%
difference between the two finite element methods when 0.3 < a/W < 0.45.
Woo's finite element method appears to be more desirable in this
analysis because (a) it has been shown that relatively coarse mesh
could be used to obtain reasonably accurate results by using the
elliptical displacement function and (b) the crack tip singularity

is modelled by using distorted elements at the crack tip.

4.2.6 Conclusions

The 100mm compact shear cube with a pair of double notches
at the top and bottom faceswas modelled. Because of symmetry about
the centre line, only one half of the cube was analysed. The centre
line of the cube was replaced by a series of rollers and horizontal

restraints were provided at the top and bottom corners of the cube.
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In the finite element analysis, four element types have been
studied for the half cube of notch spacing H = 50mm and notch
depth a = 35mm . They were 4-noded, 8-noded, 17-noded elements
and distorted elements used at the crack tip together with the
8-noded elements. It was found that distorted elements (used at
the crack tip only) were more preferable than other elements in
analysing crack problems because they can represent the crack tip
singularity of r-% of the strain field (by moving their mid-side
nodes to the quarter point positions), they also use less computer

time.

Seven element meshes were constructed for a convergence study
of element mesh for the half cube (because of symmetry one half of
the cube was used) and the total number of elements used varied from
483 to 200 . Two combinations of element types were used.
Initially 8-noded quadrilateral isoparametric elements were used on
the meshes and secondly distorted elements were used at the crack
tip. In both cases, the KII values converge with 144 elements.
It seems reasonable to use the 60 element mesh when compared with
the 144 element mesh because (a) it is economical to use less elements
and (b) it is sufficiently accurate when the difference in the KII
value is only 1.0% .

Analysis was carried out to study the stress distribution along

the line of action of the load under the CS load condition. The

A 2, . .
maximum direct compressive stress (o = 20.7 KN/m~) 1is obtained at
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the top notch, the stress decreases to zero half way between the
notches and reaches a maximum in tension (o = 19.9kN/m2) at the
bottom notch. This tensile stress zone at the tip of the bottom
notch indicates that a tensile crack is 1ikely to occur. The

shear stress reaches a maximum of T = 23.3 kN/m2 at the top notch
and reduces to a minimum T = 5.6 kN/m2 mid-way between the notches
before reaching another maximum 1 = 27.4 kN/m2 at the bottom
notch. The high tensile stress and shear stress at the tip of the
bottom notch indicate that fracture is initiated by the development

of tensile stress, but rapidly changes to a shear type of failure.

Further analysis was carried out to support the claim of a
Mode II failure under the CS loading by comparing the KI and KII
values. The CS cubes have a notch spacing H = 50, 40 and 30mm
and the crack length varies from a = 25mm to a = 60mm in S5mm
increments. 8 computer runs were made for each notch spacing,
a total of 48 computer runs made to obtain the KI and KII values
for the CS cubes. It was found that the KII values are many times

higher than the K, as H/W ratio decreases and a/W 1increases

I
(e.g. KII/KI = 124 for H/W = 0.3, a/W = 0.6). It can be concluded
that a Mode II type of failure is improving by reducing the notch

spacing H .

Calibration coefficients were determined for the 100mm CS
cube with notch spacings of H =50, 40 and 30mm and expressed
in a polynomial of powers a/W when 0.25 < a/W < 0.6 . Simplified

calibration coefficients were obtained by averaging the Y(a/W)
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values since they were independent of a/W ratios when

0.3 < a/W < 0.45 .

Finally, the capability of the displacement finite element
method used by Chan et al (8) and Woo et al (9) was compared with
the boundary collocation method used by Chisholm and Jones (19).
This was-done so by analysing a notched cube of notch spacing
H = 50mm under a compressive load of 1000N . The results show

that a good correlation is obtained using Woo's method.

4,3 FINITE ELEMENT MODELLING FOR 100mm SINGLE-NOTCHED CUBES

It has been shown in Section 4.2.3 that a possible "pure" Mode
II type of failure will occur if the notch spacing is reduced to
H=0. An attempt was therefore made to model a cube which has a
single notch 10mm deep on the top surface and a single notch 30mm
deep on the bottom surface as shown in Figure 4.15(a). The cube
was loaded by a compressive force P = 1000N as shown in Figure 4.15(b).
The deformed cube showed that a considerable amount of vertical
displacement took place along the bottom notch indicating that a

Mode II type of failure is possible under this loading and configuration.

4.3.1 A Convergence Study of Element-mesh Size

A convergence study of element mesh size was carried out on four
mesh geometries as indicated in Figure 4.15 for 100 , 240 , 640 and

1040 element-meshes.



80

The 8-noded quadrilateral isoparametric elements with
distorted elements at the crack tip were used in this study. The
smallest size of an‘element used at the crack tip was 0.33a ,
0.16a , 0.08a and 0.04a for 100 , 240 , 640 and 1040 element-
mesh respectively (where a is the crack length). The KII

values were calculated from the vertical displacements on the bottom

notch using Woo's displacement equation (3.9).

Figure 4.16 shows a typical plot of KII as a function of

x/a for the 240 element-mesh. An estimate of K is obtained

II
by extrapolating the straight 1ine of the plot (at x/a = 0 and

x/a = 0.45) to x/a =1 .

Results for other element-meshes are shown in Table 4.11 and
plotted in Figure 4.17. It is seen that the curve converges at a

-3/
value of K = 3.91Nmm 2 where the mesh contains 640 elements.

II
It was observed that when using the 240 element-mesh there was only
a difference of 1.1% in the KII value when compared to the
result from 640 element-mesh. The 240 element-mesh with distorted
elements at the crack tip was therefore sufficient for the finite

element modelling of the 100mm single-notched cube.

4.3.2 Comparison of the Mode I and Mode II Stress Intensity Factors

An investigation was made to study the significance of a Mode II
type of failure for the single-notched cube in compression as shown
in Figure 4.15(a) by comparing both the Mode I and Mode II stress
intensity factors. The cube has eight variations by changing the

crack length a from a = 25mm to 60mm in 5mm increments.
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A constant 240 element mesh with distorted elements at the

crack tip was used for all the finite element analysis. The
smallest element used at the crack tip was 0.2a , 0.167a , 0.143a ,
0.125a , 0.111a , 0.1a and 0.083a for the crack length a =25 ,
30,3 ,40 , 45 , 50 , 55 and 60mm respectively. A total of

8 computer runs were carried out for all.

From each computer output the vertical and horizontal
displacements along the bottom notch were substituted into Woo's
equations (3.8) and (3.9) respectviely so that the Mode I and Mode
Il stress intensity factors were evaluated. Results of the KI s
a

and KII/KI when 0.25 < 7 < 0.6 are summarised in Table 4.12.

K W

I1
Variation of Kt estimates and KII/KI ratios with different
a/M  ratios are shown graphically in Figures 4.18 and 4.19
respectviely. Figure 4.18 shows that the KII estimates increase
linearly with the increasing a/W ratios. This indicates that a
Mode II type of failure is dominant as the notch depth increases.
Figure 4.19 shows that the KII/KI plot increases non-linearly with
the increasing a/W ratios. Because the KII/KI ratio is not
significantly high (e.g. KII/KI =12 for a/W = 0.6) when compared
with the double-notched cube of H/W = 0.3 1in Section 4.2.4 where
KII/KI = 124 for a/W = 0.6 , the existing model of 100mm single—
notched cube has failed to achieve a pure Mode II type of failure.
Nevertheless, the analysis was continued to evaluate the calibration
coefficients in the determination of the stress intensity factors in

order to complete the study of this 100mm single-notched cube.
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4.3.3 Determination of the Calibration Coefficients of

the Mode Il Stress Intensity Factors

The calibration coefficients Y(a/W) were obtained as
described in Section 4.2.5 using equation (4.6), the Y(a/W) values
were obtained and tabulated in Table 4.12. Figure 4.20 shows the
Y(a/W) values were dependent on the a/W ratios. An empirical
relation between the Y(a/W) values and the a/W ratios was
obtained by using a least square method. Best fit curve was obtained
for Y(a/W) values when 0.3 < a/W < 0.45 and equation of VY(a/W)

expressed in polynomials of powers a/W 1is shown in Table 4.12.

when 0.3 < a/W < 0.45 , the calibration coefficients

2
6.062 - 9.192 (%) + 7.6 (%) (4.11)

Y(p)

=|

Substituting equation (4.11) into (4.4) and (4.7) gives the Mode II

stress intensity factor as

K = Y - P (na)

2BW

=

4.3.4 Conclusions

A single-notched cube was designed to produce a "pure" shear
type of failure. The initial study showed that a coarse mesh of
240 elements with crack tip elements at the crack tip was sufficient
to model the cube when Woo's displacement equation was used as there
was a difference of only 1.1% in the Kit value when using 640

element mesh.
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The comparison of the KII and KI values when

0.25 < a/W < 0.60 showed that KII was not significantly higher
than KI at a/W = 0.6 (KII/KI = 12) when compared to double -
notched cube (of H/W = 0.3 , a/W = 0.6 , KII/KI = 124). As a high
KII/KI ratio is expected for a "pure" shear type of failure,

the 100mm single-notched cube failed to achieve this condition.

In the completion of the study on 100mm single-notched cubes,
the calibration coefficients were evaluated and found to be
dependent of a/W ratios. A least square method was used to
evaluate the equation of the calibration coefficient expressed in

polynomials of powers a/W when 0.3 < a/W < 0.45 .

4.4 FINITE ELEMENT MODELLING FOR 150mm DOUBLE-NOTCHED CUBES

The study of 100mm compact shear (CS) cubes under the Mode II
type of failure was completed with decreasing notch spacing and
increasing notch depth. It was found that a significant Mode II
type of failure improved by reducing the notch spacing H and

increasing the notch depth a .

An attempt was made to study the 150mm compact shear cubes
with proportional configuration to the 100mm compact shear cubes
and examine whether similar conclusions can be shown between the two
cubes that a Mode II failure is dominant with smaller notch spacing

H and deeper notch depth a .
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The 150mm double-notched cubes have three basic geometries
with notch spacing H = 80 , 60 and 40mm. Each geometry has
eleven variations by changing the lower notch depth a from
a =30mm to 80mm in 5mm increments. The upper notch depth is

always kept at 15mm .

4.4.1 A Convergence Study of Element-mesh Size

The CS cube shown in Figure 4.21(a) was loaded by a compressive
force P = 1000N . Because of symmetry, only one half of the cube
was used and vertical restraints were provided at the support thus
assuming the shearing displacements at the crack tip required for
Mode II fracture. The cube deformed in an identical manner to a

100mm CS cube.

A convergence study of element mesh size was carried out on
six mesh geometries as indicated in Figure 4.21. These are 180 ,
240 , 294 , 490 , 686 and 930 element meshes. The 8-noded
quadrilateral isoparametric elements with distorted elements at the
crack tip were used in this study. The smallest size of an element
used at the crack tip was O.11a for 180 and 240 element meshes
0.055a for 294 , 490 and 686 element meshes and 0.027a for 938
element mesh. The K;; values were calculated from the vertical
displacements on the bottom notch using Woo's displacement equation

(3.9).
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Figure 4.22 shows a typical plot of KII as a function of
x/a for the 294 element mesh. An estimate of Kip 1S obtained
by extrapolating the straight line of the plot to x/a =1 .

Results for the element meshes are tabulated in Table 4.13
and shown graphically in Figure 4.23. It is seen that the curve
converges at a value of KII = 1-868Nmm-3/2 where the mesh
contains 686 elements. It was observed that when Qsing the 294
element mesh there was only a difference of 1.5% 1in the KII
value when compared to the result from a 686 element mesh. The
294 element mesh with distorted elements at the crack tip was

sufficient for the finite element modelling of the 150mm double-

notched cubes.

4.4.2 Comparison of the Mode I and Mode Il Stress Intensity Factors

For H/W = 0.53, 0.4 and 0.26

An investigation was made to study the significance of a Mode II

type of failure for the 150mm double-notched cube in compression

by comparing both the Mode I and Mode II stress intensity factors.

The cubes have three basic geometries with notch spacing H = 80 ,

60 and 40mm. Each geometry has eleven variations by changing the
crack length a = 30mm to 80mm in O5mmm increments. A constant

294 element-mesh with distorted elements at the crack tip was used

for all the finite element analysis. The smallest element used at

the crack tip was 0.083a , 0.071a , 0.063a , 0.056a , 0.05a , 0.045a ,

0.042a , 0.038a , 0.036a , 0.033a and 0.031a for crack length
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a=230mm to a =80mm in 5mm increments respectively. A total

of 33 computer runs were carried out.

From each computer output the vertical and horizontal
displacements along the bottom notch were substituted into Woo's
equations (3.8) and (3.9) respectively, so that the Mode I and
Mode II stress intensity factors were evaluated. Figure 4.22 shows

typical plots of K against x/a for H/W = 0.53 , 0.4 and

II

0.26 vrespectviely. Table 4.14 shows the KI and KII

and KII/KI ratios for variows H/W and a/W ratios. The

estimates

variations of KII and KII/KI with various a/W ratios are shown

graphically in Figures 4.24 and 4.25 respectively.

Figure 4.24 shows all three KII plots increasing linearly
with increasing a/W values and also shows that the plot with a
wider notch spacing ratio H/W produces higher KII values than

the one with a smaller H/W ratio.

Figure 4.25 shows the comparison of KII/KI ratio for various
a/W ratios. It is seen that all three KII/KI plots increase
non-linearly with the increasing a/W ratio, thus indicating a
Mode II type of failure is dominant as the notch depth increases.
It is also seen that a smaller H/W ratio produces a higher KII/KI
ratio. In the case of H/W = 0.26 and a/W = 0.53 , KII/KI reaches
infinity. This result is extremely encouraging because it implies

a pure shear type of failure occurs for the 150mm double-notched

cube of H/W = 0.26 and a/W = 0.53 .



87

By comparing the KII/KI ratios between 150mm and 100mm
CS cubes for various H/W and a/W ratios (Table 4.14 and Table
4.6), it is observed that a KII/KI ratio of 150mm CS cube is
about 1.5 times larger than 100mm CS cube for H/W = 0.53 and
1.8 times larger for H/W = 0.4 . For H/W = 0.26 the KII/KI
ratio of 150mm CS cube is about 3 times larger than the 100mm
CS cube where 0.2 < % < 0.35 and increases rapidly to infinity
at a/W = 0.53 .

It can be concluded that the 150mm double-notched cubes are
more suitable to achieve a Mode II‘type of failure than the 100mm
double-notched cubes because KII/KI ratios of 150mm cubes are
significantly higher than those of 100mm cubes when compared with
the same notch spacing and depth ratios. A "pure" shear failure condition

may be - achieved when the notch spacing ratio H/W = 0.26 and

notch depth ratio a/W = 0.53 .

The KII stress intensity factors were found to be :
= = [2.35-2.93(3)+2.99(2 “\p 2
H = 80mm Kip = (2.35-2. 3(+2-99(y) Jgp(ra)?  (4.12)
_ a a 2 p 1
H = 60mm Kpp = (1-91-2.35(3)42.36(%) Jgrima)®  (4.13)
H = 40mm Kyp = (1.67-2.76(3)+3 30(2)2]P (ra)?  (4.14)
= 11 ' SOy W :
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4.4.3 Determination of the Calibration Coefficient of Mode II

Stress Intensity Factors for H/W = 0.53, 0.4 and 0.26

The calibration coefficients were determined by using equation
(4.6) as described in Section 4.2.5 and the results are tabulated
in Table 4.15 for various a/W ratios and H/W ratios. The
calibration coefficients Y(a/W) are shown graphically in Figure
4.26. It is seen that the Y(a/W) values for the three notch
spacing H/W ratios do not produce smooth curves. This indicates
that the constant 294 element mesh used for all analyses needs to
be refined in order to produce better plots of Y(a/W) , these

Y(a/W) values being independent of a/W ratios.

An empirical relation between the Y(a/W) values and the
a/W ratios was obtained by using a least square method. Best fit
curves for Y(a/W) values when 0.3 < a/W < 0.53 for H/W = 0.53 ,
0.4 and 0.26 respectively and equations of Y(a/W) expressed

in polynomials of powers a/W are shown in Table 4.16.

4.4.4 Conclusions

It can be concluded that a 294 element-mesh is the best
choice to analyse the 150mm half cube when 8-noded quadrilateral
isoparametric elements with crack tip elements at the crack tip are
used. Because (a) it is economical to use less elements and
(b) it is sufficiently accurate when the difference in the KII

value is 1.5% when a 686 element-mesh is used.
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The comparison of KII/KI ratios with various H/W and a/W
ratios indicates that the KII/KI ratio increases rapidly with the
decrease of H/W and increase of a/W ratios. In the case of
H/W = 0.26 and a/W = 0.53, KII/KI reaches infinity. This implies
that a "pure" Mode II failure may be obtained for 150mm CS cube

with smaller notch spacing and deeper notch depth.

The calibration coefficients for the three notch spacings of
the 150mm CS cubes were not constant when 0.20 < a/W < 0.53
and a refined element mesh is therefore necessary in order to produce

Y(a/W) values which should be independent of a/w ratios.

It can be concluded that the 150mm double-notched cubes
are more suitable to achieve a Mode II failure than the 100mm
double-notched cubes because higher KII/KI values are obtained

when using the same notch spacing and depth ratios.
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Fig. 41 Configuration for the

double-nofched cubes
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Fig 42 The deformed shape of the CS cube

with and without horizontal restraints.
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(a) linear (c ) quadratic

crack tip
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.. -

(b) quartic (d) quarter-point
: (crack tip element)

Fig. 43 Types of quadrilateral isoparametric element.
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Fig 4-8 Variation of KII with r/a
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Fig 411 Calibration coefficients in Mode 1I
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Fig. 416 Variation of KII with x/a
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Fig. 418 Variation of KII with a/W
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Fig. 424 Variation of KII values with a/W
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Fig. 426 Calibration coefficients in Mode II
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Quadrilateral isoparametric | Equivalent number of constant
Element type strain friangular element
w Linear 8
ﬂ Quadratic 16
D Cubic 32

Table 41 Comparison of quadrilateral elements with
triangular elements
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P =1000 N
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| l | -Lm
B
PIZT H =50 mm
ELEMENT TYPE NODES |DEGREE K1
OF
FREEDOM | (N ma
Linear 102 149 2340
( &4 nodes)
« ¢ Quartic 588 1064 2480
-—s—v (17 nodes)
| Quadratic 246 418 2-380
. ( 8 nodes)
. 114 -point
at
| crack tip 246 L18 2:468
- ( 8 nodes)

Table 42

Comparison of the quadrilateral isoparametric

elements in terms of KII values for

60 element mesh (H/W =05 and a/W=0-35)
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P=1000 N

(S
— S
PI2 P12
H=50mm
Kn (Nmm
Number of 8-noded quadrilateral 8 -noded quadrilateral
elements isoparamefric element | isoparametric elements
(distorted elements at
the crack tip)
L8 2-358 2448
60 2-380 2-468
72 2:390 2458
102 2417 2:482
144 2494 2- 494
168 2- 494 2-494
200 2-494 2- 494

Table 43  The convergence study of element meshes
(100 mm cube H/W=05, a/W=035)
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1P=1000N
| 11
W=100 mm
| ol
ol |ty e
H=50 mm H=40 mm H=30mm
a KL KL K
W KII KI KT KII KI < KII KI q
(Nmi Y (N mad (N mi> 2] (N mar>'} (Nmid Y (N mm3'y
025 | 2141 0-216] 9.9 1-839 | 0185 9.9 | 1-590 0132 | 120
0-:30 | 2:329| 0-214] 10-9 | 1993} 0170 11-7 1-733] 0114 | 152
0-35 2-468 0-198| 12-5 | 2142| 0152 144 1860 0-093| 20-0
0-40 | 2-656) 0169 157 2:280] 0124 184 | 1-972| 0-066( 299
0-45 1| 2.786| 0162 172 2-4161 0112 | 216 2-085 0-054| 386
0-50 2930 0185| 158 2530 0134 189 2180 | 0-074 | 295
0-55 31001 0173 178 2:670] 0116 230 2300 0056 | 411
0-60 3250 0169 | 204§ 2-820( 0106 266 2140 0-047| 513

Table 4SEstimates of KI,KII and KII/KI for various alW
100 mm double-notched cube —

60 element mesh
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T
w=100 mm
| W[ §}
PI2 L—H—-"1PIZ
H=50 mm H= 40 mm H=30mm
a KIL KIL KIL
w KII KI Kl KII KI K1 KII KI Kl
N v mid2) TES A Y mm‘3’2) N o2 (v midd)
0-25 | 2-141, 0-216| 9-9 | 1-839| 0-18S| 99} 1590|0132} 12-0
0-30 | 2:329| 0-214] 10-9 | 1993}, 0-170} 11-7 | 17731 0114} 15- 2
0-35 | 2:468! 0198 12-5| 214210152 14-1 | 1-860{0-093| 200
0-40 | 2-656| 0-169| 15-7 | 2-280| 0-124 | 18-4 | 1-972} 0-066| 29-9
0-45 | 27861 0162 17-2 | 2-416] 0-112| 21-6 | 2-085| 0-054| 38- 6
0-50 | 2-820| 0-148) 19-1 2-500. 0-078: 321 21201 0031 | 68- 4
0-55 13-050| 0-118| 258 | 2:620| 0-065{ 40-3 | 2-300| 0-021|109-5
060 |3-250] 0-104| 31-3 | 2:820] 0-060| 470 | 2-480| 0-020| 1240

Table 46 Estimates of KI, KII and KII/KI
100 mm double-notched cube —

when

for various al/W
60 element mesh

050 <& < 060

W




122

{P=1000N | P=1000N }P =1000N
| B | l r 1
Finite element
method (eq.225) |
L I
pal —— T2 | pr2f — Tpi2 P2 | Tpi2
H=S0 mm H= 40 mm H=30mm
a 2 _KIL _KII
a 2 Klw=T(Ta) KII Y= P KII Y(%)-Knm KII Y(%):;%
(N "";‘3’2) (Nmn;m) (Nmm2 ) { Nmn?Blz)
25 025 | 0-886 221461 1 2:416 | 1839 | 2076 1590 | 1-795
30 | 0-30 0-971 2-329 | 2-399 1-993 | 2:053 1733 | 1-785
35 | 035 1-049 2-468| 2:353| 2142| 2042 1860 1773
40 | 040 1121 2-656 | 2-369 2280 2034 1972 1759
45 | 045 1-189 2786 | 2343 | 2:416| 2032 2085| 1754
50 | 050 1-253 2-820 | 2-251 2:5001 1-995 2120 | 1692]
55 | 055 1-314 3:050 | 2321 2:620| 1994 2300 1750
60 | 0:60 1-373 3-250 | 2:367 2:820| 2-:054] 2480 | 1806

Table 47 Y(-&,—) & KII values for
H= 50, 40, & 30 mm.
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P=1000 N |P=1000N P=1000N
= I : | _Lm { i I : [
Finite element| €
method 9 8
(eq225) | 7L ‘ | | | |
P12l g P12 PI2 TH"_—": o mfpiz P12 ?H ':3—0*‘m£|>/2
a Calibration coefficients
W a, . KII
Y (W ) = Lo (T a)¥2
0- 25 2- 416 2-076 1795
0-30 2-399 2- 053 1-785
0-35 2-353 2- 042 1-773
0-40 2369 2-034 1-759
0- 45 Z2-3473 2-032 1- 754
0-50 2- 251 1- 995 1- 692
0- 55 2-321 1. 994 1 - 750
0-60 2-367 2- 054 1-806
Range The least square method

8 )=-17557+ . a
Y(w] 7557 278786(w)

Y{Q )=065+2510
(w] + L%)

2.)1=0-98+7-08 (-8
Y(w) 0-98 706(w)

-17824-70 (& )2 16152 (& 12 ~19.62(8 2
025 < -2-<0-60 3 3 §_3
W +5957113(& ) + 48587 (3; ) +16-85 (1)
- 696-64 (3 )4
69664 ()
+383:59 (i X
Average value
0-30 <2 <045 a) -2 a) =2 04 a)=1177
W Y (8 =237 Y (g Yig)
Mode Il stress intensity factor

Kil= 119 _P_(ma)"”
BW

K11=1-02 P (a)"
Bw

K1I=089 P (T a)"”
Bw

Table 48

for H=50, 40 & 30

Y(-%) values in polynomial & simplified forms

mm
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and finite element methods for

H="50 mm.

{P=1000N_ €
el 1T 17 =
2 Boundary Finite element| Finite element
. collocation method (eq.229| method (eq. 3.9)
] ° .
L) Fol; method (eq241)
H=50mm
a | KilelolMa ] KI a,_ KII K1l a,_ KII KII il
a =L
W i = Rile | Y *Rile i
VI /N P 3 (N 3’2 N midl?)
25 {025 0-886 2:000) 2-257 | 2141 | 2:416 | 2:068 | 2-334
30 |0-30 | 0-971 2191 2-256 | 2-326| 2:399 | 2:275 | 2-343
35 ]0-35 | 1-049 2:-366| 2-255 | 2-468| 2-353 | 2- 44LB | 2-334
40 |0-40 | 1-121 2-530|2-257 | 2-656 | 2-367 | 2581 | 2302
45 10-45 | 1-189 2:683 | 2:257 | 2-786 | 2-343 | 2-746 | 2:310
50 |0-50 | 1-253 2:828 | 2-:257 | 2820 | 2251 {3020 | 2410
55 {055 | 1-314 2-966| 2-257 | 3050 | 2-321 | 3-:230 | 2-458
60 (060 | 1373 3-098 | 2-.256 | 3:250 | 2-367 | 33540 | 2-578
Table 49 KII & Y(%) values by the boundary collocation
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lP=1OOONA
1
o| Boundary Finite element Finite element
Wl Collocation method method met hod
=z
| |] 2 2 -
- o (eq. 2°41) (eq.2:25) (eq. 39 )
H=50 mm
a Calibration coefficients
W Q. KII
YW= Toimai™
_0-25 2257 2-416 2 ‘334
0-30 2256 2- 399 2 - 343
| 0-35 2-255 2- 353 2 - 334
0-40 2257 2-369 2 - 302
0-45 2257 2 343 2 - 310
- 0-50 2-257 2 251 2 - 410
0-55 2 - 257 2 -3 2 - 458
0-60 2256 2 - 367 2 -578
Range The least square method

81)=229-0 a
Y(w) 2:29 027(w]

4 9)=- 57+ -86 (A
Y(w )=-175-57+2787 Bé(w)

1-107.01-1574.95 (&
Y(w)—102 01 157495(w )

2
. a
- 066 (3 )2 -1782670 (& 1 + 10146 ZLE W 3
0‘25$Q_g 060 a 3 a .3 - 341095 —W-)
W - 0:53(4;) +5957113 (1) +63133_30(%)4
- 6105304 & )°
+ 2413342 ( )0
W
Average value
0:30< & <0 ay - 9. ay -7 ay. .
g <045 Y(&) =226 V(g =237 (g =232
Modell stress intensity factor

442 P 12
KII=1-13 BW(TTa)

> P 112
KI1I=119 W (Ta)

KIl=116 _'3_.WHTcn”2

Table 410 Y(«&-) values in polynomial & simplified forms

for H=50 mm by the boundary collocation

& finite element methods.




P=1000 N
!
' Ry
W =100
o
1
tp - 1000N
KIT  (Nmm™)
Number of| 8 - noded quadrilateral
elements | isoparametric elements
(distorted elements at
the crack tip)
100 3-783
240 3868
640 3:910
1040 3-910

126

Table 411 The convergence study of element meshes

(a/W =0-30)
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&P:1000N

-F
Finite element method )
(eq 39) W10
L]
Tp- 100N
4 Kie=tma] kI KI1 KL fy@ - _KI
W KI W (Mol
N2 N2 (Nmid')
0-25 0-886 0-648 3682 57 4-156
0-30 0- 971 0-600 3-868 65 3984
0-35 1- 049 0-540 3-975 7:4 3-789
0-40 1-121 0-459 4-022 88 3-588
0-45 1-189 0-426 4125 9-7 3469
050 1-253 0-409 4261 10-4 3-401
0-55 1- 314 0-395 4 - 384 -1 3-336
0-60 1- 373 0-389 4-500 16 3-277
Range Calibration coefficients
The least Qv b
030<%< 045 |square method Y( )= 6062 -9192 (%) +7v600(9)
The least Y(Q) = 0-638+44-379(8) - 1871 800 ’
Y55 & <060fsquare method ¥ +308-716 (%)3-‘%;9 696 (3) W
Mode Il stress infensity factor
_y@y P 12
KII_Y(W) 78w (na)
Table 4-12 Estimates of KI, KII, KII/KI & Y(a/W)

for various al/W
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P=1000N
g T T e
S T
o
=z
Ll e

pr2} —— tp2
H=80 mm

KIT (Nmm™3
Number of | 8 -noded quadrilateral
elements | Isoparamefric elements
(distorted elements at
the crack tip)
180 1790
240 1-810
294 1-841
490 1-848
686 1-869
938 1869
Table 413 The convergence study of element meshes

for 150 mm cube (a/W=03)



150 mm

W=

129
]
H=80 mm H=z 60 mm H=40mm
% KII | KI —KL%— KII | KI —%— KII | KI -%I
N o> AN o 312 (N a2 2 fiNme 33 (N a2 (N mm 32
0-20 | 1-630{ 0-145| 11- 2 | 1-330| 0100 13-3| 1:090| 0-065| 168
023 | 1:680| 0-128| 13-1 | 1-380| 0-090| 15-3 | 1-100| 0-048] 22-9
0-26 | 1-800| 0-120] 15-0 | 1-430| 0-083| 17-2| 1-180| 0-033| 358
0-30 | 1-841} 0118 15- 6| 1-480{ 0078 | 190 | 1-190] 0-030| 39-7
033 | 1-900| 0108] 17- 6 | 1-580 0-068| 23-2| 1-200{ 0-020| 60-0
036 | 1-950| 0-100| 19-5 | 1-600| 0- 062 258 | 1300|0012 {1130
0-40 | 2-010| 0-095| 21-2 | 1-650| 0-:050| 330 1-320{0-007 | 1833
0-43 | 2-100{ 0- 090 23-3 | 1-700| 0-045| 37-8 | 1-370] 0-004 | 342°5
046 | 21401 0-080 | 269 | 1:720| 0:035 49-1 | 1520 0-002 {8000
050 | 2250 0-:075 | 30-0 | 1780 0:027| 509 | 1:530| 0-001 {12750
053 | 2-300| 0-070| 329 | 1900| 0-:023 | 826] 1550 | 0000 | O

Table 414 Estimates

of KI, KII/KI

for various al/W
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| P =1000 N | P=1000N } P=1000N
£ ] T 1  —
Finite elemet R
me thod "
=
(eq. 39 ) |
P m— PP przl = tp12 pr2 1 PI2
) H=80 mm H=60 H= 40
I
12
4 |Klleo=T(Ma] KII Y(d)= KIf k1 Y@ Kll a)-KIL
a W W KIL. Q)= L ‘KII Y( ) il
(N mr;13/2) (Nmr?\alzl (Nmmal2 ) (Nmn;3/2)
30 {020 0-431 1-630| 3-782 1] 1330 3-086 1090 2529
35 0-23 0-4 66 1-680 3-605 1-380 | 2-961 1100 | 2-361
40 | 026 0498 1-800] 3-614 1-430 2-871 1180 | 2-369
45 0-30 0-528 1-841) 3-487 1480 2-803 1190 2:254
50 0-33 0-557 1900 3-411 1-580 | 2837 1-200( 2154
55 0-36 0-584 1-950| 3-339 1600 2740 1-300 | 2226
60 | 0-40 0- 610 2-:010| 3295 1-650| 2705 1320 2164
65 0-43 0-635 2100 | 3-307 1700 26771 1-370| 2157
70 0-46 0-659 2-140 3-247 1720 | 2:610 1520 2-307
75 0-50 0-682 2-250 3-299 1-780 2-:610 1-530 | 2-243
80 053 0-705 2-300 3-262| 1900 2:695 | 1550 2:199
S

Table 415

Y(a/W) & KII values for H=80, 60 & 40 mm.
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1P=1oooi }|P=1000 N } P=1000N
g1 T in | I 1
Finite element § 1;
method -
(eq 39) z ic
P2l oo Thra pral, = Thr2 Pz 1, F 2 Ten
. Calibration coefficients
W Y (@)= KII
W -[mm'u)UZ
0-20 3-782 3-086 2529
0-23 3-605 2- 961 2361
0-26 3- 614 2- 871 2-369
0-30 3-487 2-803 2-254
0-33 3- 411 2- 837 2- 154
0-36 3- 339 2- 740 2- 226
0-40 3- 295 2- 705 2-164
0-43 3-307 2-6717 2- 157
0- 46 3- 247 2- 610 2- 307
0-50 3-299 2-610 2- 243
0-53 3-262 2-695 2-199
Range The least square method
Y(Q)-A7O 586(0) Y(u) 3-82- A69(°) Y(u) 333- 552(‘1)
+5- 98(—4 +4-71 (W) +b: 60(9-)
Mode II stress intensity factor
0'30S%<0'53 112 112
KIL=Y( G (Ta)™ | KIN=Y(d) B )] kIl Y(ﬂ)-z-%,nr

Table 416 Y(&

W

) values in polynomial & simplified forms

for H=80, 60 & 40 mm
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CHAPTER 5

AN EXPERIMENTAL INVESTIGATION INTO THE MODE II

FRACTURE TOUGHNESS OF MORTAR AND SOIL-CEMENT

5.1 INTRODUCTION

The application of fracture mechanics to the Mode I type of
failure of concrete and cement composites has recently received
considerable attention. Most of these investigations have been
directed towards the determination of the fracture toughness of
cementitious materials failing in tension and specimens with
preformed notches. A considerable amount of work has also been
done in studying the Mode II type of failure in cementitious
materials as these materials are generally weak in shear. Debatable
results, however, have been reported from these studies. Some
investigations have concluded that linear elastic fracture mechanics
is applicable to cementitious materials because the fracture
toughness of these materials is independent of crack growth and
specimen size. Others concluded that it is not applicable because

the fracture toughness of such materials is dependent on notch size.

The aim of this study is to determine a suitable test geometry
and consequently the fracture toughness, Kiic, in the shear mode
of failure for mortar and soil-cement. The KIIC values were
determined using both the stress intensity factor K approach and
the strain energy release rate & approach. These are subsequently

compared with other reported results.



The experimental work was divided into the following

test series.

Development of test equipment in compression

Test series one

Test series two

Fracture tests on mortar cubes using
compressive platens made in the
Department of Civil Engineering and
Building, The Polytechnic of Wales.
Using the INSTRON compressive platens

and a simply designed load rig.

Determination of fracture toughness

Test series three

Test series four

Test series five

Test series six

100mm double-notched mortar cubes using
the INSTRON compressive platens and the
load rig.

100mm single-notched mortar cubes using
the INSTRON compressive platens.

100mm double-notched soil-cement cubes

using the INSTRON compressive platens and

the load rig.

133

100mm single-notched soil-cement cubes using

the INSTRON compressive platens
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5.2 GENERAL PROPERTIES OF MORTAR AND COMPACT SHEAR

FRACTURE TEST PROCEDURES

Preparation of mortar

Mortars can be considered as composite materials in which
sand particles are embedded in a matrix of hardened cement paste.
The matrix composition of mortar used in this study was 1:3:0.45

(cement:sand:water) and the mix was

cement = 10 Kg
sand = 30 Kg
water = 45 Kg

In order to maintain the same quality of mortar the following
mixing procedures were adopted. The sand and cement were dry mixed in
a 0.05 cubic metre pan mixer for one minute to ensure a thorough
mix. The required amount of water was added gradually and mixed for

a further two minutes.

100mm mortar cubes were prepared by placing the mortar into
100mm concrete cube moulds in two layers, each layer received one
minute of compaction on a vibrating table. The specimens were

stripped from the moulds after 24 hours and cured in water at a

constant temperature of 22°C for 28 days.

Cylinders 150mm diameter x 300mm were cast vertically in
three layers and each layer received one minute of compaction on

a vibrating table. The specimens were cured as before.
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General properties of mortar

The general properties of the mortar used in this study
were determined by finding the bulk density, compressive strength

and static modulus of elasticity.

The bulk densities of the 100mm mortar cubes were found by
weighing the cubes both in air and water using the following

expression :

(cube mass in air)x(water density)

bulk density =
(cube mass in air)-(cube mass in water)

42 cubes which were taken in random from different mixes were
tested and the results are shown in Table 5.2. The average density
was taken as 2164.3Kg/m3 and the difference between the highest

and lowest density was only 8% indicating that the quality of

the mortar was fairly constant.

The compression tests on 100mm mortar cubes were carried out
in an Avery-Denison 7226 testing machine. All the cubes were tested

2/5. according to

at a compression rate of 150kN/mm or 0.25N/mm
BS1881 (32). Results of the test are shown in Table 5.2 and

the average compressive strength was 41.83MN/m2.

Standard cylinders (150mm diameter x 300mm high) were tested
in an Avery testing machine to determine the static modulus of
elasticity according to BS1881 (33). The average modulus of

elasticity of mortar was taken as 33330 N/nm?(see Table 5.2).
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Insertion of notches

For compact shear fracture test purposes, the 100mm mortar
cubes were pre-notched (after 48 hours of curing) using a Clipper
Masonry saw fitted with a 253mm diameter diamond-edge steel blade

as shown in Plate 5.1. The notches were found to be 3mm wide.

The general configuration of the double-notched cube is shown
in Figure 5.1 with the notch spacing H = 50 , 40 and 30mm. For
each notch spacing, the notch depths on the upper surface were
kept at 10mm and the notch depends on the lower surface were
varied from 30mm to 45mm in 5mm dincrements. The single-
notched cubes which have only one notch on both the upper and lower

surfaces were prepared in the same manner as the double-notched cubes.

Compact shear fracture tests

The trial tests on 100mm mortar cubes and prisms with various
notch depths and spacings were carried out in the Avery testing

machine.

The compact shear fracture tests on 100mm double and single-notched
cubes were carried out in the INSTRON 1251 materials testing
machine. This is an electro-hydraulic closed-1oop servo system
consisting of three main units : a loading frame, an electronic
control and measurement monitoring console and a hydraulic power pack.
The Toad capacity is 100kN for the dynamic testing mode. A1l the
tests were carried out at nominal room temperature using displacement

control in the dynamic testing mode. The specimens were positioned
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between the platens as shown in figure 5.1. The top platen was
stationary while the bottom platen(which has a maximum stroke
of 15mm) moved at a constant rate of 0.003mm/s upwards. The
results of the compressive load against the displacement of the

bottom platen were recorded autographically.

5.3 TRIAL TESTS ON 100mm MORTAR CUBES AND PRISMS

Research work in the Mode II shear type of failure of a
double-notched cube has been initiated in the Department of Civil
Engineering, Polytechnic of Wales. The present work is based on
the initial study of finite element analysis on cubes with various
notch spacings and depths. Before full scale experiments were
carried out to verify the findings of the finite element analysis,
trial tests were carried out to investigate if the shear type of
failure occurred on the modified cubes and prisms. All the tests

were carried out in the Avery testing machine.

Table 5.3a shows the failure patterns of the cubes with
various notch arrangements. Drawings 1 to 3 show the cube with a
single notch on opposite surfaces with the compressive load
perpendicular to the notch depths. Drawing 1 shows a failure pattern
with a crack joining the tips of the notches. Finite element
analysis has to be employed to judge if the Mode II shear failure is
dominant. Drawings 2 and 3 show complex failure patterns and shear

failure was ruled out in this notch arrangement.
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Drawings 4 and 5 show the cubes with a pair of double notches

on opposite surfaces and the compressive load was perpendicular

to the notch depth. No significant Mode Il shear failure patterns
were recorded in this notch arrangement.

Drawings 6 to 8 show the cubes with a single notch and the
compressive load was in line with the notch depth. Crack patterns
were recorded with different support conditions. Finite element
analysis is necessary to study the mode of failure of these cubes,

because the cubes were assumed to be under 3-point bending.

Table 5.3b shows the failure patterns of 100 x 100 x 250mm mortar
prisms. Drawing 9 shows a prism with a single notch on one surface
and the compressive 1oad was in line with the notch depth. The
prism was supported by two circular bars in order to initiate a
crack from the notch tip. Finite element analysis has to be used
to finalise the result.

Drawings 10 to 13 show the prisms with a pair of double-notched

on both the upper and lower surfaces and the compressive load was in
line with the notch depths. A1l the prisms failed with broken
supports and no cracks were recorded joining the upper notches to
the lower notches expected in this arrangement for a Mode II shear

failure.

It can be concluded from the trial tests that the cubes shown
in Table 5.3a appeared to produce desirable shear patterns for

the Mode II type of failure except for the cubes with double notches
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on opposite faces (drawings 4 and 5). Finite element analysis
is necessary in order to obtain more information on whether a
Mode II failure occurs. Likewise encouraging results were
obtained from the prisms with one notch (shown in Table 5.3b).
Again this is dependent on more numerical ana]ysfs before
constructive conclusions can be drawn. This is not the case for
the double-notched prisms which appeared to be broken at the

supports when loaded.

5.4 DEVELOPMENT OF TEST EQUIPMENT

5.4.1 Test Series One - using Departmental made Compressive Platens

The aim of this work was to determine whether the test

equipment was suitable to produce a Mode II type of shear failure.

The tests were carried out in the INSTRON testing machine
using the compressive platens which were made in the Department of
Civil Engineering, Polytechnic of Wales (see Figure 5.1).
Displacement control in the dynamic testing mode was used. The
100mm mortar cubes used in the test included those with notch
spacing H = 50 , 40 and 30mm . For each notch spacing, the lower

notch depth was varied from 30mm to 45mm in 5mm increments.

Discussion of test results

In the compact shear fracture tests on 100mm mortar cubes
with notch spacing H = 50 , 40 and 30mm and various lower notch
depths, four types of failure pattern were recorded during the

tests. They were as follows :
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(a) A small inclined crack first formed at the tip of a
lower notch. This crack grew both in size and in length
with increasing Toad until failure took place when the

cube was split into two parts (Figure 5.2(a).

(b) A small inclined crack was located at the tip of a
lower notch and propagated with increasing load. When
failure occurred two cracks were found on the cube which
was split into three parts. One of the cracks originated
from the initial inclined crack, the other started from
the tip of the lower notch and finished at the tip of the

upper notch (Figure 5.2(b).

(c) A small inclined crack formed at the tip of a lower notch.
The crack grew in size and length with the increase of
load. When failure occurred the cube was broken into two
parts connecting the tips of the upper notch and the lower
notch (opposite to the one with an inclined crack,

Figure 5.2(c)).

(d) A small inclined crack formed at the tip of a lower notch;
The crack grew in length and size as the load increased.
When failure occurred the cube was broken into three parts
which showed the shear cracks started from the tips of the
lower notches and finished at the tips of the upper notches
(Figure 5.2(d)). This type of failure was called double

shear because two shear cracks were formed during testing.
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Table 5.4 shows the details of the geometries and types of
failure of the mortar cubes. The majority of the cubes failed
in a similar manner to the split cube condition where the cubes
were split into two halves and only 9.2% failed with double
shear cracks under the shear loading condition. During the
course of the tests, it was noticed that the compressive platens,
manufactured in the Department, failed to provide an even Joad
onto the cube, because once the upper and lower compressive
platens were set parallel to each other, they would remain so,

but the cubes did not always have absolutely parallel surfaces.

A typical plot of the compressive load against displacement
for the cubes with double shear cracks is shown in Figure 5.3.
The first peak on the trace shows a sudden'pop-in'load P]
which showed the displacement increasing under decreasing load.
The second peak represents the failure load. It is noticed that
this load-displacement plot of mortar cubes has some similarity
to the stress-strain curve of mild steel under tensile test and
the load-displacement curve of the compact shear cube was taken as
analogous to the one with compact tension specimen. The optimum
load was determined by connecting the 5% secant Tine to the curve

(indicated P ) in Figure 5.3) as recommended by the

(connected
ASTM (34).

The Mode II fracture toughness values were determined using
equations (4.8-4.10) obtained from the finite element analysis as

summarised in Table 5.5. Since 9.2% of the test failed with double
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shear cracks, these results only provide a record of the

test but do not have any significant value. It can be concluded
that Mode II type of failure was not achieved under this load
arrangement, mainly because the Departmental made compressive

platens were not able to provide even load on cube surfaces.

5.4.2 Test series two - using INSTRON compressive platens

The aim of this test was to improve the test equipment in
order to produce Mode II type of failure for mortar cubes.
It was shown in Test series one that the Departmental made
compressive platens failed to provide even load and horizontal
restraints were recommended at the cube supports in order to

~

eliminate the "split-cube" condition.

These platens were replaced by two 300mm diameter steel INSTRON
compressive platens which were specially purchased for this project
(see Figure 5.4). Each platen is bolted to the main loading frame
of the INSTRON testing machine. These platens not only provide
secure surfaces, they can also be tilted individually to provide
parallel surfaces to the cubes. A simply designed rig was also used
in this test series to provide horizontal restraints at the cube
supports (see Plate 5.3). The rig is made of five parts as numbered
in Figure 5.4 and an isometric view of it is also shown. Part 2
can be adjusted for different notch spacings by sliding through the

slots of parts 3 and 4.
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The tests were again carried out using displacement control

in the dynamic testing mode at a compression rate of 0.003mm/s.

Discussion of test results

Work was carried out to test CS cubes for notch spacing
H = 50mm with the notch depth varying from 30mm to 45mm in 5mm
increments. 12 mortar cubes were tested for each notch depth,
a total of 48 cubes tested in all. Two types of failure were
recorded. These were single shear (Figure 5.2(c))and double shear
(Figure 5.2(d)) as summarised in Table 5.6. Around 60% of the
cubes failed with double shear cracks. The load-displacement
curves were plotted autographically with loads P] (pop-in) and Pmax
(at failure) recorded. Figure 5.5 shows a typical load-displacement
curve for a mortar cube with notch spacing H = 50 and notch depth

a = 30mm.

As described in Test series one, the corrected load P(5%)
was used as the critical load in the determination of fracture
toughness. The stress intensity factor K approach and the strain
energy release rate & approach were employed in the determination

of fracture toughness values for mortar.

For the stress intensity factor K approach, fracture toughness
values were evaluated using equation (4.8) obtained from the finite

element analysis.

-

IT ~ "° 7 BW
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where P is the P(5%). Other notations are shown in Figure
5.2(e). The fracture toughness values KIIC for various notch
ratios a/W are tabulated in Table 5.7.
For the strain energy release rate 4 approach, fracture
toughness values were evaluated from the equation
6E 2
‘u Oz (5.1)

_\))

where G energy release rate

WD
A

WD

work done during crack propagation

(area under P(5%) of the load-displacement curve)

>
1}

crack surface area
= 2(BxW) (see Figure 5.2(e))
E = Young's modulus

= 10000N/mm2 (This value was taken prior experimentally
determined E was available)

v = Poisson's ratio

0.25

The fracture toughness values were determined and tabulated in
Table 5.7 for mortar cubes using the K approach and the & approach.
A comparison of the results obtained by the two methods show that the

K values by the finite element method are 26% to 38% larger than

those obtained by the energy method.
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It can be concluded from this test series that the cubes
failing in double shear improved from 9.2% in test series one to
60% in this test series using the INSTRON compressive platens

and the simply designed load rig.

The fracture toughness values were determined using both
the stress intensity factor K approach (finite element method)
and the strain energy release rate £ approach. The results show
a 26% to 38% difference in fracture toughness values between the
two methods. This high percentage difference may be explained

as follows :

(a) The corvected load P(5%) which is obtained by drawing a 5%
secant line in a load-displacement curve is widely
recommended as the critical load for a compact tension
specimen, but may not be applicable to the load-displacement
curves of a compact shear specimen because the failure
mechanism in compression is more complicated than in tension.
The 'pop-in' load P] on the load-displacement curve when an
inclined crack is formed may be used as the critical load
in the determination of fracture toughness because this
represents the appearance of the first crack.

(b) The Young's Modulus E was assumed to be 10000N/mm2 in the
analyses. Since the energy method is directly influenced by

this value, tests are recommended to determine the E value

experimentally.
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(c) The specimen geometry of notch spacing H = 50mm used
in this test 'may not be the best geometry to produce
Mode II type of failure. Therefore different notch

spacings and depths need to be tested.

5.5 DETERMINATION OF FRACTURE TOUGHNESS FOR 100mm DOUBLE-

NOTCHED MORTAR CUBES - TEST SERIES THREE

Tests were carried out on mortar cubes with notch spacing
H =50, 40 and 30mm. For each notch spacing, the lower notch
depth was varied from 30mm to 45mm in 5mm increments. 12 cubes
were used per notch depth, a total of 144 tested in all. The
displacement control in the dynamic testing mode of the INSTRON
testing machine was used with the compression rate kept at

0.003mm/s.

Fracture toughness values of the above specimen geometries were
determined by the stress intensity factor K approach (finite
element method) and the strain energy release rate & approach. The
evaluations were based on the'pop-in’]oad Py and the failure load
P and the results were compared using the equation derived

max
by Chisholm and Jones (19).
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Discussion of test results

For all the tests, 58% failed in double shear for notch spacing
H=50m , 80% for H=40 mm and 100% for H = 30 mm. For a
double shear failure, it was observed that a hairline inclined crack
first developed at one of the bottom notches corresponding to the
"pop-in' Tload P] (Figure 5.6) and subsequently the shear cracks,
parallel with the line of loading, developed rapidly before sudden

catastrophic failure (P Plate 5.4 shows the typical crack

max) )
patterns of the cubes and Plate 5.5 shows a typical crack surface

of a cube.

The fracture toughness values of the specimens were determined
using the stress intensity factor K approach (Finite Element Method
FEM) and the strain energy release rate .6 approach (EA) based on

the load-displacement curves.

There is considerable difficulty in understanding the fracturing
process in compression and it is known that fracture energy calculated
under load-displacement curves without accounting for testing machine
and sample stiffness characteristics, can lead to unrepresentative
results. Two interpretations of the load P from the load-displacement
curve were used in the determination of the fracture toughness values
in order to clarify the fracturing process in compression. They were
P] and Pmax . Py represents the 'pop-in' load Py when the first
crack occurs and PmaX represents the maximum failure Toad when

extensive micro-cracking occurs beyond P] . In view of the difficulties
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where an energy approach is used, three interpretations of the
load-displacement curves were used and the basic concepts used in

evaluation of fracture toughness are summarised in Table 5.8.

Using Py ('pop-in' load)

In the EAT method, the strain energy release rate was calculated
using the energy approach outlined in Section 5.4.2 where the area

under the 'pop-in' load P] was used to determine the work done.

In the EA2 method, the area under the initial non-linear part
of the plot was disregarded because it reflects machine/specimen
interaction and the work done under this part of the curve does not
contribute to the fracturing process. The work done used in fracture
toughness calculation was obtained by measuring the area under the

linear part of the plot.

In the EA3 method, the work absorbed by the testing machine
based on its stiffness characteristics was evaluated and the strain
energy release in EAl accordingly reduced. The stiffness, k , of the

testing machine is defined by

P
k =’a (5°2)

where P is the load applied to the testing machine and d s
the deformation of the testing machine when load P 1is applied.
The stiffness of the testing machine determines the work absorbed of

the machine when the specimen is compressed a distance d

1 5.3
ECM = 5 P d (5.3)
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from eq. (5.2) into (5.3) gives

~lo

Substituting d =

02
ECM = —-Z'E

To obtain the strain energy release of a sample the total strain

energy release was reduced by this amount

EA3 = EAl - ECM

The fracture toughness values calculated for the three geometries
using the finite element solution and the three energy approaches
using the load P1 are summarised in Table 5.9. As can be seen 100%
double shear was achieved only for those samples with a notch spacing
of H = 30mm. 80% of the cubes failed in double shear for H = 40mm
and about 58% for H = 50mm . The remainder of samples failed in
single shear or another mechanism. These resulﬁs confirm the
conclusions drawn from the finite element analysis that with decreasing
notch spacing H and increasing a/W ratio, the shear failure
mechanism assumes greater significance. The results of Table 5.10
are also shown graphically in Figures 5.7, 5.8 and 5.9 for H/W = 0.5 ,

0.4 and 0.3 respectively.

Figure 5.7 (H/W = 0.5) shows a non-conclusive trend. In view
of the fact that as many as 42% of specimens were wasted during

testing, this group was not of practical use.
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Figures 5.8 and 5.9 (H/W = 0.4 and 0.3 respectively)
clearly indicate that when the correction for machine specimen
interaction (EA2) “and particuiarly the correction for machine
stiffness characteristics (EA3) was applied, a close correlation
was achieved between the fracture toughness values predicted by the

finite element method and the experimental values.

The fact that the experimental values obtained by EA3 are
very consistent is encouraging as the fracture toughness value should
be independent of specimen geometry. It is evident from these
graphs that more flexible specimens required a smaller correction
for the machine stiffness characteristics and therefore these are

more suitable for the experimental determination of fracture toughness.

Since no other results are available for these geometries
the boundary collocation equation derived by Chisholm and Jones,
equation (2.41), was used to compare the results with those obtained
using the finite element method. Table 5.11 shows the results for
cubes with H = 30mm . The fracture toughness values are in good
correlation between the twe methods and identical results are obtained

for notch ratio a/W = 0.35 .

The fracture toughness values obtained for the specimen geometry
with notch spacing H = 30mm and notch depth a = 45mm can be
summarised as follows. The fracture toughness value KIIC based on
the stress intensity factor approach was found to be 1.9 M m ,

the K based on the strain energy release rate approach was found

Ilc
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_3/

to be in the order of 1.78 to 2.09 M\ m 2 and the fracture
..3/

toughness based on the Chisholm and Jones' equation was 1.55 MN m 2.

Desayi (16) reported fracture toughness values obtained from the
centrally located inclined crack for prisms in compression which are in
the range of 1.03 to 9.27 MN m-3/2 for mortar and 3.65 to
10.84 MN m-3/2 for concrete. These results correspond to those

obtained in this study.

It can be concluded that a linear elastic fracture mechanics
is applicable to this material because both the stress intensity
factor approach and the strain energy release rate approach yield

similar K values when correction is applied to experimental

Ilc
results for the machine/specimen interaction or the machine stiffness

characteristics.

Using P failure load

(max)

The latent strength of the cubes after the initial 'pop-in'

load P, were estimated using equations (4.8-4.10) and the energy

1

approaches as described previously. The failure load P was

(max)
used in equations (4.8-4.10) and the three energy approaches described
in Table 5.8 were used except the work done was obtained by measuring

the area under P(max) of the load-displacement curve for all cases.

Since cubes with spacing H = 30mm produced 100% failure in
double shear, the latent toughness of this geometry were obtained

and tabulated in Table 5.12. It is seen that large differences in



152

latent toughness KLT values were obtained using the EAl and

EA2 methods. Good correlation was obtained between the finite
element method and the EA3 method. This result shows that more
flexible specimens required a smaller correction for the machine
stiffness characteristics and therefore these are more suitable for

the experimental determination of Tatent toughness.

The latent toughness values found from the finite element

method using P were compared with those using the boundary

(max)
collocation formula, eq. (2.43), derived by Chisholm and Jones.
Table 5.13 shows the results obtained from both methods. It can be

seen that a good correlation between the KLT values were obtained.

The latent toughness values obtained for the specimen geometry
with notch spacing H = 30mm and notch depth a = 45mm can be
summarised as follows. The latent toughness value KLT bas?g/on the
stress intensity factor approach was found to be 6.72 MN m 2 R
the K based on the strain energy release rate approach was found

LT -
3/2

to be in the order of 6.42 to 8.47 M m and the KLT based

-3/
on the Chisholm and Jones equation was 5.47 MN m 2

These results
indicate that both the stress intensity factor approach and the

strain energy release rate approach yield similar KLT values when
correction is applied to experimental results for the machine/

specimen interaction or the machine stiffness characteristics.

Table 5.14 shows the results of applied load and fracture
toughness and latent toughness values for the specimen geometry of

notch spacing H = 30mm using both the load at 'pop-in® and at
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failure P respectviely. It can be seen that the latent

(max)
toughness values KLT based on the finite element method and the
EA3 method using Prax Were about 3 times Targer than the
fracture toughness KIIC using P] while the failure load Pmax
was about 3 times the 'pop-in' load P] . This indicates that
the critical fracture toughness when the first crack occurs at
the notch tip and the latent toughness at failure when extensive
micro-cracking occurs correspond to the same order of the load at

‘pop-in' and at 'failure’.

5.6 DETERMINATION OF FRACTURE TQUGHNESS FOR 100mm SINGLE-NOTCHED

MORTAR CUBES - TEST SERIES FOUR

Tests were carried out on 100mm mortar cubes with one notch
on both the upper and lower surfaces. The upper notch depth was
kept at 10mm and the lower notch depth varied from 30mm to 45mm
in 5mm increments. 12 cubes were tested per notch depth, a total
of 48 cubes in all. The INSTRON compressive platens were used with
displacement control in the dynamic testing mode. The compressive
rate kept at 0.003mm/s . Plate 5.6 shows the test arrangement of

a single notched mortar cube.

Fracture toughness values of the single notched cubes were
determined using the stress intensity factor K approach (finite
element method) and the strain energy release rate & approach.
The evaluations were based on the 'pop-in' load P] of the load-

displacement curves.
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Discussion of test results

Details of the test results of single notched mortar cubes
with various notch depths are shown in Table 5.15. Failure was
achieved for 92% of cubes with notch ratio a/W = 0.3 ardd 0.45 ,
about 75% for a/W = 0.35 and 0.4. The remainder of the cubes
failed with a crushed support surface. These results contradict
the conclusion drawn from the finite element analysis for single
notched cubes that with increasing a/W ratio the shear failure

mechanism assumes the greater significance.

Observations were made for the cubes which failed in single
shear and the corresponding load-displacement curves were recorded
autographically. It was observed that a hairline crack, parallel
with the line of action of load, developed at the tip of the upper
notch corresponding to the 'pop-in' load P] . Subsequently another
hairline crack developed at the tip of the bottom notch. When sudden
catastrophic failure occurred it was found that the cube was broken
in two from the tip of the upper notch to the Tower notch tip.

Plate 5.7 shows the cubes after failure for various notch depth

ratios.

The fracture toughness values KIIC were obtained using the
finite element method (FEM) and the three energy approaches (EA) as
disucssed in Section 5.5. In the finite element method, the fracture
toughness values were calculated by substituting the 'pop-in' load P]
into equation (4.11). (See Table 5.8).

The work done obtained for the 3 energy approaches (EA) was based

on measuring the area under the ‘pop-in' load Py - Corrections were
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made on the load-displacement curves for the effect of machine
specimen interaction (EA2) and machine stiffness characteristics
(EA3). The corresponding KIIC values are tabulated in Table
5.16 and shown graphically in Figure 5.10. Table 5.16 shows

that the best results were obtained for the notch ratio a/W = 0.3.
These inconsistent results confirm the findings from the finite
element analysis that this geometry failed to produce the shear

type of failure and most probably the mixed mode of failure is

taking place.
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5.7 GENERAL PROPERTIES OF SOIL-CEMENT AND COMPACT SHEAR

FRACTURE TEST PROCEDURES

The aim of this work was to determine the general properties

of soil-cement which is generally weak in shear.

Preparation of soil-cement

The cement stabilized soil used in this work was termed soil-
cement. The soil was a red marl (Keuper) from Leckwith, Cardiff,
South Wales. The marl had been dried in the oven and pulverised into
a powder form and 8% by weight of ordinary Portland cement was
added. Since moisture content is an important factor in soil properties

it was necessary to determine the moisture content.

The standard Proctor compaction test was used to determine the
optimum dry density and moisture content of the soil-cement according
to BS1924 (35). The details of the test are summarised in Table 5.17
and 5.18. Fiqure 5.11 shows the plot of dry density against moisture
content and the optimum moisture content was found to be 16.6% at a

dry density of 1.78 (Mg/m>) as tabulated in Table 5.19(a).

In order to maintain consistency the following mix procedures

were adopted :



red marl : 4 Kg
cement (8%) : 0.32 Kg
water (18%) - : 4.32 x 0.18 = 0.778 Kg
Time (minute) Mix condition
dry mix 2 low speed
1 blended
2 low speed
wet mix 1 blended
2 low speed
1 blended

The required amount of red marl and cement were placed into the
bowl of a soil mixer and thoroughly blended together as shown in
the above table. The required amount of water was then gradually
added while the mixer was operating at a low speed. The soil-cement
was mixed and blended for the time scale shown in order to achieve a

thorough mix.

The correct mixing of this material was an important element of
the sample preparation and in particular the control of moisture
content had an important bearing on the quality of compaction in the
samples. In fact 18% by weight of water was used instead of 16.6%

(as was determined) in order to allow for loss of moisture.

157



158

Compaction

The soil-cement was compacted in standard 100mm concrete
cube moulds with a "collar", made by removing the base from another
mould attached to the top by means of two "G" clamps. The soil -
cement was broken up into granular form before being carefully
placed into the bottom of the mould. This first procedure proved
to be of vital importance since Tumps of the material at the bottom
of the mould did not compact well. The cubes were filled and hand
compacted gently with a 5mm diameter steel bar in five equal layers
(Plate 5.8) A 100mm square x 300mm Tong piece of timber was then
placed onto the top of the material and struck with a 4.5Kg rammer
falling from a height of 500mm. 12 , 15 ,18 and 20 blows were
tried initially to determine the best compaction. Plate 5.9 shows
the compaction with the 4.5Kg rammer. It was found that the cubes
were under-compacted after 12 and 15 blows because uneven surfaces
were found on the cube. Whereas 20 blows was found to over-compact
as hair cracks were found on the cubes. It was found that 18 blows
gave the best compaction when the cube surfaces were found to be

smoothly finished with no hair cracks.

Another attempt was made to produce a constant compaction by
using a "Kango 900" demolition hammer which gives 2000 blows/min.
(Plate 5.10). It was found that 15 seconds operating time was as
good as 18 blows by a 4.5Kg rammer. This compaction method speeded
up the operation considerably. After the compaction the collar was
removed and the extra material was levelled off with a spatula

(Plate 5.11).
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Curing

It is known that moisture content control during curing
is extremely important if the material is to obtain its maximum
strength. Therefore precautions were taken to control the moisture
content. The soil-cement cubes in their moulds were enclosed in
sealed polythene bags for 24 hours. The moulds were stripped and
the cubes were first wrapped in cling film then in tin foil and

sealed in polythene bags for 28 days.

General properties of soil-cement

The compressive strength of 100mm soil-cement cubes were
found using the Avery Denison 7226 testing machine. All the cubes
were tested at a compression rate of 80KN/mm or 0.13N/mm2/s.
The average compressive strength was 4.96 MN/m2 as shown in Table
5.19(a). The elastic modulus and Poisson's ratio were taken as 1200 N/mmz)

and 0.25 .

Insertion of notches

For compact shear fracture test purposes, the 100mm soil-
cement cubes were notched(after 21 days of curing) using a circular
lathe mounted with a diamond edge cutting blade. This enables the
insertion of slots (2mm wide) to be controlled to the desired degree

of accuracy. Plate 51 shows the lathe machine.

Compact shear fracture tests

The compact shear fracture tests on 100mm double-notched and

single-notched cubes were carried out in the INSTRON 1251 testing
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machine using displacement control in the dynamic testing mode.
INSTRON compressive platens were used for both double and single-
notched cubes. The Toad rig was used for double-notched cubes

only.

5.8 DETERMINATION OF FRACTURE TOUGHNESS FOR 100mm DOUBLE-NOTCHED

SOIL-CEMENT CUBES - TEST SERIES FIVE

Tests were carried out on cubes with notch spacing H = 50 ,
40 and 30mm. For each notch spacing, the upper notch depths were
kept at 10mm and the lower notch depth varied from 30mm to 45mm
in 5mm increments. 8 cubes were used per notch depth, a total of

96 cubes.

Fracture toughness values of the above geometries were determined
using the stress intensity factor K approach (finite element
method) and the strain energy release rate & approach. The
evaluations were based on the 'pop-in' load P] and the results

were compared using the equation derived by Chisholm and Jones (19).

Discussion of test results

Details of the test results of double-notched cubes are shown
in Table 5.20. 59% failed in double shear for notch spacing H = 50mm,
75% for H = 40mm and 100% for H = 30mm . These results confirm
the conclusions drawn from the finite element analysis that with
decreasing notch spacing H and increasing a/W ratio, the shear

failure mechanism assumes greater significance.
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For a double shear failure it was observed that a hairline
inclined crack first developed at one of the bottom notches
corresponding to the ‘pop-in' load P] (Figure 5.12) and
subsequently the shear cracks, parallel with the line of loading,
developed very steadily but slowly. After failure occurred, the
cubes were found to be greatly deformed but intact. The load-
displacement curve shows a gradual decrease in load after the peak
Toad (Figure 5.12).

Plate 5.13 shows the cubes after failure for various notch depths.

The fracture toughness values KIIC were obtained using the
finite element method (FEM) and the three energy approaches (EA)
as discussed in Section 5.5 where the 'pop-in' load Py was used in

all cases. The corresponding K values for the specimen geometries

IIc
are tabulated in Table 5.21 and shown graphically in Figures 5.13,

5.14 and 5.15 for H = 50mm, 40 and 30mm respectively.

It can be seen in Figure 5.13 (H/W = 0.5) that the K values

IIc
obtained using the energy approaches are smaller than those when
the finite element method is used. Since only 59% of specimens

failed in double shear, this group is not of practical use.

Figure 5.14 (H/W = 0.4) shows that similar KIIC values are
obtained using the EA1 and EA3 methods. The best correlated
result between the finite element method and the EA1l and EA3 methods
was obtained when the notch depth ratio a/W = 0.4 . The fracture

toughness value KIIC based on the stress intensity factor was found



162

'3/2

to be 0.43 MN m , the K based on the strain energy

IIc
release rate approach was found to be in the order of 0.37 to

0.42 MV m 2 .

Figure 5.15 (H/W = 0.3) shows good correlation in fracture
toughness values are obtained when the finite element method and
the EA1 and EA3 methods are used. The most suitable geometry

for shear fracture test was found to be of notch depth ratio

a/W = 0.35 . The fracture toughness value KIIC based on the
-3/

stress intensity factor approach was found to be 0.43 MN m 2 s

the KIIC based on the strain energy release rate approach was

found to be in the order of 0.40 to 0.44 MN m- 2 . Since no
other results are available for these geometries for comparison,

the boundary collocation equation (2.41) derived by Chisholm and
Jones (19) was used to compare the KIIC values with those obtained
using the finite element method. Table 5.22 shows the fracture
toughness values were in good correlation between the two methods
and identical results were obtained for a notch depth ratio

a/M = 0.35 .

It can be concluded from these tests that good correlation was
obtained between the finite element method and the EAl and EA3
methods in the determination of fracture toughness values based on
the 'pop-in' load P, . The K;. values were underestimated when
the EA? method was used. This indicated that the correction was

not necessary for the machine/specimen interaction because the fracture

behaviour was not significantly masked by the experimental set up.
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5.9 DETERMINATION FRACTURE TOUGHNESS FOR 100mm

SINGLE-NOTCHED SOIL-CEMENT - TEST SERIES SIX

Tests were carried out to test 100mm soil-cement cubes with
one notch on both the upper and Tower surfaces. The upper notch
was kept at 10mm and the lower notch depth varied from 30mm to
45mm in 5mm increments. 7 cubes were used per notch depth, a
total of 28 1in all. The INSTRON compressive platens were used

with displacement control in the dynamic testing mode at a compression

rate of 0.003 mm/s.

Fracture toughness values were determined using the stress
intensity factor K approach (finite element method) and the strain

energy release rate &  approach.
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Discussion of test results

Details of the .test results of the single-notched soil-cement
cubes with various notch depths are shown in Table 5.23. 100%
shear failure was achieved for a notch depth ratio of a/W = 0.3
and 0.45 , 86% for a/W =0.35 and 0.40 . According to the
finite element analysis, the shear failure mechanism was not
significantly increased with increasing a/W ratio. The experimental
results confirm this statement and it can be concluded that this

test geometry is not suitable for the Mode II shear test.



165

150 x 150

/ Hydraulic grip

—_—

-—x

<§\//}
S

Compressive

/. s

2] = S5
oI\ T
W = 100
H -
|
Zie //4—12 et 150 x150

___UN1_.’
N
N\
N

_

Vs 4—‘
LA
7\

A ——.luk_

o

N

@75
Section A-A

Fig 51 Test series one

The hydraulic gripped compressive
platens of the fracture test arrangement



U U
(ai Tension |
U

(c )-Single shear

166

|

(b) Tension & éingle
shear

|

(d) Double shedr

Y 10mm
—]l_

(e)

Fig.5:2 Types of failure
of the tested cubes.
Test series one



190

180

1%

130

20

10

167

Oouble shear at

1 ]:10 peak load Ppqy
P1 Plcorrected)
W B
Pmax
+
| _10:30
- l .
H=50
a/lwW=0-3
Hiw=0-5
P1
—___’ /
Secant line
5% slope
1 T T T T ] i T T T T T T T T T \
0-0625 01250 0-1875 0- 2500 03125 0-3750 04375 0-5000 05625

Fig 53 Test series one
Load -displacement curve.

Displacement (mm)



168

juawabuoJiu §say 3unyd0uy 3y 4O
By pooy auy pup suayoid aalsssudwod NOYISNI a4l 4G Dig

" uBjDid BAISSAIOWO) UOLYSU]
by buipoo| 34§ 40 M3IA Jruyawos| uy

G

S SF - .

e < y
TR _x /t_ _ g _‘\

=]
4100 71 W

® ® © ®

-3
w

= -

o——l

. ) » W o0t @ ‘ T
uayoid aaissasdwoy uoJjsug



120 4

1104

Load (kN )

100

=
<
i

L= -3
(=3
1

70

60 |

50

40
30
20 4

10

169

max

10

a=30

H=50

a/wWw=0-3
HIW= 0-5

N

P1

AN

Pmax

0

¥ T

00625

T T

01250

T

T T T T T T

0-1875 0-2500 03125 03750

Fig. 556 Test series two

Load - displacement curve.

T I T

04375 0-5000

Displacement (mm)

T

05625



170

JAINI }juswalv)dsIp- poo]
33Jy4 sauas js3 9.5 Dy

(ww) juawalrn|dsig
52950 00050 SLEYO 0SLED SZiE0 00sZ0 SL8lL0 0sZL 0 SZ90-0
1 i i L | 1 S G | { l i § i |
\\
d
COtoE )
_ H
oo T[T ]
0\ O - I
M )
0l L 1
T

o]

Sl

0¢

T4

Ot

SE

0%

pooT

(NY)



171

(sagny JojJow )

M/D U}l S3NJDA I JO UOIJDIJDA @34y} S3IJ3s 4s3] -G by

M
D
590 040 S €0 0€ 0
{ | | | @
K’ N/
- Eva
— MR
AR
o T IT 1 £VI —x—
M M vy —e—
S0 = -— ", ———
o 4 . H l'VvV'3
T W3Id —+—

~ St

02

(500 NWD 1D



172

(sagn) Jojlow)
M/D Y4im S3N|DA IIIY JO UOIJDIIDA :33JY4 $a103s s3] 8¢ Dig

M
° 5%-0 090 S€0 0€-0
1 1 ] ] \N\
X/
N s VI
ol [T 1 £V —x—
_ M V3 —o—
ot L 707 V3 —o—
T WId —+—

01

S

0¢

S

0-€

{ w J
216 NW) I[IM



173

(sagny Jojlow)

w  M/D UpiA S3MDA J[IY 4o UOIYDIIDA 33Uy SALBS 453 ¢S Bl
D
590 0%0 SEQ 0€-0
| ] ! ] \«
N \ X
7 4 Ev3 1T/X
nrllllllllllllllllllll!> o Aul/I///////////////////m
o lv3
oT [T T £V —x—
" .M (V3 —o—
L €0 = 7 VI —o—
T pa— W3id —s—

01

Sl

0-2

5

0-€

S-¢

WNKW) LN

Zle-

(



174

(sagny  Jpjuow)
M M/D U4tm S3NjDA 3][M JO UOIJDIIDA : Jnojy S3ids 4s3] (. big
0 590 040 S€-0 0€0

1 1 1 1

~

o E
g RE
o= V3
Was
9§
P . EV3 —x—
% (V3 —0O—
N 8 LY3 —o—
£ prem Sl W34 —+—

LN
mM

(779 NW) 211X




20

175

1-9 4

(Mgim3)
3 >

Dry density

—_
o~

15

Soil - cement (8 % cement)

Optimum dry density

b - e e e e e . et e e e e e e e o e e e e n . = m— e e = - = —

T4 4
13 |
12
1
. 166
10 —Jr /
4, , T T T T T T T T T T T T T
13 15 17 19 21 23 25 27

Moisture content (%)

Fig. 511 Plot of dry density—moisture content
of soil-cement
(4-S Kg rammer method)



176

9AJNI JUsWalD|dsIp-poo)
3N} s3las ysa) 7L.G by

(WW) wawadndsig

005+  SLet 0SZl STl 0004 5ig0  0SL0 5290 0050 SLE0 0520 ST 0
A
-4
- 9
r8
/
d -0l
(4uawar-yios)
A
FE
go=L0 BT = |
H "
3 =
0= B 3
£0= 3 L. 3
Jﬁ.nu. | | -

91l

poo

(NX)



177

S-0=M/H 40§ M/D U}iM S3NJDA DIIH 40 UOIYDIIDA

(seqnly Juawal

~|10s)

3Al} s3143s s3] £lg By

~

M

wool

S0

IIB

50

A

(776 NW) 1D




178

9.0=M/H J0j M/O UjiM S3NDA I} JO UOI4DIIDA

(S3gnN)  JU3Wad-]I0S)

aAly  s3143s ysay 1S by

M
D 570 040 SE0 0 -0
1 | | | \\e 0
+ + REE] * -~ <4
= 01
=
2
=z
w_
w
H m £EvV3 —x
2 x " -
» " 7Yy —o—
S 0= o V3 —o
lrllb w . . . - —_—
4.0 | ] W34 +




179

(S3gn3y  Juawad-Jios)

€0 =M/H Joj M/D U4iM S3NJDA DJIM JO UOHDIIDA : 3Al4 S3W3S 4s3] gIq biyg

.$ SY-0 0%-0 Se0 0€-0
| 1 | | _<
JAE] £V3
+ NEF I
V3
EV3 —x—
FITT]IE " V3 —o—
pli P W33 —+

S0

O .

<~

(ZIE‘LU NW) 1M



180

(s3qny }Juawadr-}ios)
M/D UjlM S3NDA J[[) JO UOIDIIDA © XIS S31J3s §sd] 9|5 ‘D

M
D
SY-0 0%0 Se0 0g-0
| L | 1
0
Zv3 . -
TIHT‘I‘||GH Iv3 —a
¥ W3 y
T 04
99 -
BT 1 €V3
. (Vi O
| sl |k el
! r T

(ze NW) 211X



181

sjsaj alnjioyy jo Asowwnsg |-§ 8|qUol
EV3IB LV |0J4U03 'GE'0E=D
RENEE g | wuswmngsg | sueimid vousur | 44 578 e $sleaTies M
payyjou - 3)buis
evV3gevi 1044102 mcwuo._ wu 5% 3 07'5E 06 D Eeww - M ewsa-)ios NI
g b g gy . L . - :
W3 W3 d BWaDIdSId | g5in1d wouysy] payajou-aignog  O°
Ev3ig Ivi 10J4U0) WU Sh B OY'SE'0E = D
LY 3 W34 hd juawadnidsig | suajoid uoJdysu] IDHOU o
paydjou-3jbuig
. — B11 pooT s Ot
€VI% V3 g 10103 . ww SYBOYGEQE= D Wiyt = H JOHON 394yl
IV'3 W34 Juawarmidsig | suaygoyd uodysug Paya4ou- 3)qnog 05
‘d 3 b1y poo fee
VOBV | eny|  touuos ST | wwsngorseoeso wuos =wl on
VI'WI4 d juawaloidsig | sua4oid uodysu] payljou-ajgnoq
sua;o|d e eine 0%y
W3 (% 5-) 10JJU02 PAISS9.dWwo) 3pow U 3% 30728 0e=0 Esoqw- H JDJJOW aup
d juawalnjdsig 1pjuawindag payj jou-a|qnog 05
~J[I¥ UDJgo of[ pa
53S0 SpOUISI wom%_ uoL41puod-poo]  juawsbuoiin-poo] K4jawoap |D1Ja4Dly | S3N1S |sa]




182

Mix proportions by weight

cement:sand :water = 1:3:0-45 Total Average
number
22295 22071 20913 22346 2180-0
21944 20938 22208 20955 21700
22079 20987 22222 20899 21900
Density of | 20619 21152 21608 2180-0 22306
100 mm cubes 20684 20839 2146-0 2180-0 22037 42 216473
(Kg/m3) | 2066:0 20848 21390 21800 22155 cubes
2169-0 21913 2169-1 22071 21833
2162-7 22026 22028 22125 22018
2169-6 21878
4651 4272 4699 4440 4350
4543 4428 4361 4429 4300
Compressive | 48-00 4473 4214 4473 4350
strength of| 35:33 3979 4350 4100 4750
100mm cubeq 37-08 3844 4138 4000  43-08 42 41-83
(MN/mZ) | 3122 3892 4229 4050 4429 cubes
38-83 3970 3593 4505 3943
39-35 4345 4010 4218 4040
3987 4034
Elastic
modulus of
1500 x300mm{ 3368 3354 3236 36-96 3137 7 3333
£ x103 | 3212 3281 cylinders
(N/mm)
Table S2 Properties of mortar at 28 days.
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Percentage of | Weight of water |Increment of

water (%) (g) water (g)
14 453-6 4536
17 550-8 97-2
20 648- 0 97 2
23 745-2 97 2
26 842-4 97-2
29 939-6 972

Table 5-17 Weight of water required for the
Procter compaction test



199

}S3} uoljlodwol 4343014 8Y4 WoJj PauInjqo S3N|DA 8L-G 3)q0}
M+00L _
8- 85 994 SLl 6L 2Ll Ameazv Soor - Kyisuap AuQ
0001 )
L88-L | 9L61 | 920T | L8OT | 6L0T | 6L [(WIBW)  Trmezwrt o Jisusp  ying
L88lL | 916l | 9z0z | L80z | 6407 | 7961 |6 (uezw) jos pajodwor jo ssop
06% | €66% | €90S | 4%0LS | 9605 | 646y |D (zw) llos payoodwod +
3sbg + PINOW JO SSD|
LLOE | LLOE | LLOE | LLOE | LLOE | LLOE |[D (lw) 3sDq + pinow Jo SSO|
o |U-gw, _
8L | 86MT | 0LZZ | L6l | ST9  BLEL | %O00XIEmT7w M uajuey sunysio
2999 | €90€ | LO9E | %87 | 66ZE | OL%E | b(w-gw) j10s AJp JO SSDW
B | 9L L6L Z6S 9€S oLY B(gw-zw) 3JN4sSIoW JO SSDW
LS 19-0% 49y 86EY LY 5€% | b (gw) JAUID4UO) + |10S AJp JO SSDi
YLL9 | 928% | 6L4S | 0€6% | LLLw | Z8% | B (zw)  J3uIDyuOd + jl0S 4OM JO SSDIN
0101 | 866 SLOL | %b9L | W6 76 b (L) J3UIDJUO) JO SSDI
62 92 ¥4 0z Ll 4 J3joM Jo o
8g L X 6l Ll 8 Jaqunu Jauo}uo)




Liquid limit 22- 4 % MC
Plastic limt 152 % MC
Moisture .content 16-6 %

Optimum dry density

178 (Mg/m3)

Elastic modulus

\E'

1200-0 (N/mm3)

Poisson’'s ratio ‘Y’

025

Compressive strength

496 (MN/m?)

(a) General properties

of soil-cement (8 %)
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Method of compaction -
45 Kg Number of Depsufy of 100mm Average
soil-cement cubes
rammer blows ( 8% cement) (kg/ma) (kglrn3)
12 2021 2040 2014 2027 1965 2013
15 2113 2106 2096 2110 2074 2100
2100 2111 2093 2090 2110 2094 2108 2111
2097 2125 2128 2136 2157 2116 2133 2087
2168 2108 2139 2140 2139 2130 2118 2118
18 2167 2161 2172 2170 2080 2141 2059 2132 2109
2064 2095 2092 2102 2113 2082 2095 2089
2085 2079 2082 2078 2108 2107 2109 2058
2083 2054 2120 2042
20 2079 2067 2126 2183 2182 2127
Electrical
Kango 15 2191 2155 2159 2172 2178 217
hammer seconds

(b) Variation of density of 100 mm soil-cement cube with methods
of compaction.

Table 519
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

The main aim of this project was to determine the Mode II
fracture toughness of mortar and soil-cement using both the stress
intensity factor K approach and the strain energy release rate 4

approach. The work was divided into two main areas :

(a) The finite element modelling of 100mm double-notched,

100mm single-notched and 150mm double-notched cubes.

(b) The determination of fracture toughness values for 100mm
double-notched and single-notched cubes in compression using
the INSTRON testing machine. Both mortar and soil-cement

were used.

6.1.1 Finite Element Modelling for 100mm Double-Notched Cubes

In the finite element analysis all the work was carried out on

a VAX 11/785 computer using the PAFEC computer program suite.

The main aim was to model a Mode II type of failure occurring
on a compact shear cube with a pair of double notches on the top
and bottom face. Because of symmetry about the centre line of the

cube, only one half of the cube was represented by a mathematical

213
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model satisfying both the boundary and loading conditions. Four
types of quadrilateral isoparametric elements were compared; they
were 4-noded, 8-noded, 17-noded and distorted elements used at

the crack tip together with the 8 noded elements. It was found
that the latter combination produced sufficiently accurate results
for the desired engineering application. This is because crack
tip elements at the crack tip can represent the elastic crack tip
singularity which is required in the elastic fracture analysis and
have the advantage of using considerably less computer time than

higher order elements.

The convergence study of the stress intensity factor KII
was carried out using several mesh designs and it was found that

the 60 element-mesh produced a desirable accuracy of KII values.

In order to determine which mode of failure is predominant under
the shear load condition, a comparison of the KI and KII values was made.
The compact shear cubes have a notch spacing H =50 , 40 and 30mm
with the upper notch depth being kept at 10mm and the lower notch
depth varies from 25mm to 60mm in 5mm increments. A 60 element-
mesh with crack tip elements at the crack tip was used in the
analysis and a total of 24 computer runs were made. Chan's
displacement equations were employed to evaluate the Ky and KII
values. It was found that the K, values are many times higher

than K; (e.g. KII/KI = 124 for H = 30mm, a = 60mm) when the

1
notch spacing decreases and notch depth increases, thus indicating
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that a Mode II type of failure is predominant

The calibration coefficients for the 100mm compact shear

cubes were determined and the equations for K stress intensity

factors were obtained as follows : .

(a)  H = 50mm Kpp = 119 & (ma)
(b)  H = 40mm Kp = 1.02 g (ma)?
()~ H = 30mm Ky = 0.89 £ (ma)?

6.1.2 Experimental Investigation (mortar)

The compact shear fracture for 100mm double-notched mortar
cubes were conducted in compression. All the fracture tests were
carried out in the INSTRON testing machine using displacement control

mode at a rate of 0.003 mm/s .

The first test series was unsuccessful due to the inadequacy

of both the machine loading platens and the loading rig.

In the second test series the improved experimental set-up has
been used. This consisted of the special INSTRON compressive platens
ensuring the uniform load application and also a simple loading rig

ensuring that the shear loading condition was maintained during testing.
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Double-notched mortar cubes of notch spacing H =50 , 40
and 30mm and the lower notch depth varying from 30mm to 45mm
in 5mm increments were tested; a total of 144 cubes in all.
It was found that 58% of the cubes failed in double shear for
notch spacing H = 50mm , 80% for H = 40mm and 100% for
H = 30mm . The results confirmed the conclusions drawn from the
finite element analysis that with decreasing notch spacing H and
increasing notch depth a the shear mechanism assumes greater
significance. The fracture toughness values were determined using
the stress intensity factor K approach and the strain energy

release rate & approach.

In view of the difficulty in understanding the fracturing
process in compression three interpretations of the load-displacement
curves were used in calculating the fracture energies. They were
EA1 , EA2 and EA3 . 1In the EAl method, the work done was
calculated by measuring the area under the load-displacement curve.
In the EA2 method, the area under the initial non-linear part of
the plot, was disregarded because it reflects machine/specimen
interaction and the work done under this part of the curve does not
contribute to the fracturing process. The work done used in fracture
toughness calculation was obtained by measuring the area under the
linear part of the plot. In the EA3 method, the work done obtained

in the EAl1 method was corrected for the machine stiffness character-

istics.
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It was found that the finite element method and the energy
methods produced similar fracture toughness KIIC when P1 was
used provided corrections for machine/specimen interaction and
machine stiffness characteristics were made. The most suitable

geometry appeared to be of H =30mm and a = 45mm for the Mode

IT shear test. The average KIIC using the finite element method

was found to be 1.9 MN m-3/2 , the KIIC based on the strain
energy release rate was found to be in the order of 1.78 to
2.09 MW m-3/2 and the average KIIC based on the Chisholm and
Jones equation was 1.55 MN m-3/2 . Desayi (16) reported the

fracture toughness values obtained from the centrally located
inclined crack for mortar prisms in compression are in the range of

_3/2

1.03 to 9.37 MN'm which correspond to those obtained in this

study.

Close correlation between the finite element method and the

energy methods was again obtained when failure load Pmax was used

in determining the latent toughness Kt . The avera%e K.t based
-3/
on the finite element method was found to be 6.72 M\ m 2 » the K¢
based on the strain energy release rate was found to be in the order
-3/
2

of 6.42 to 8.47 MN m and the KLT based on the Chisholm and

_3/2
Jones equation was 5.47 MN m .

It was found that the latent toughness Kt based on the
maximum load (at failure) was about three times of the fracture
toughness KIIC based on the 'pop-in' load Py (when the first crack

appeared) using both the finite element method and the EA3 method.



218

The failure load Pmax was also found to be three times the
load P] . This indicates that the critical fracture

toughness K when the first crack occurs at the notch tip and

Ilc
the latent toughness when failure occurs correspond to the same
order of the load at P and at 'failure' P :

1 max

6.1.3 Experimental Investigation (soil-cement)

In the determination of the fracture toughness for 100mm
soil-cement cubes, the same experimental set-up was used as for
mortar. The notches of the cubes were spaced at H =50 , 40 and
30mm and the lower notch depth varied from 30mm to 45mm 1in Smm

increments, a total of 96 cubes were tested.

It was found that 59% failed in double shear for notch spacing
H=50mm , 75% for H =40mm and 100% for H = 30mm. These
results confirmed the conclusions drawn from the finite element
analysis that with decreasing notch spacing H and increasing notch

depth a , the shear failure mechanism assumes the greater significance.

The fracture toughness values were determined using the stress
intensity factor K approach (finite element method) and the strain
energy release rate & approach where the 'pop-in' load P1 was used
in all cases. Three energy approaches were used in the
determination of fracture energy from the load-displacement

curve, they were EA1 , EA2 and EA3 . The work done in the EAl



method obtained by measuring the area under the load-displacement

curve, the work done in the EAZ method was corrected for the
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machine/stiffness interaction and correction was made for the machine

stiffness characteristics in the EA3 method.

It was found that a good correlation in KIIC values was

obtained between the finite element method and the EAl method.

This indicated that correction for the machine/specimen interaction

was not necessary because the specimen geometry was sufficiently

flexible.

The best geometries for the Mode II fracture test appeared to

be of notch spacing H = 30mm , notch depth a = 35mm and H = 40mm ,

a = 40mm . The average fracture toughness K using the finite

Ilc

element method for H = 30mm , a = 35mm was found to be 0.43 MN m

the KIIC based on the strain energy release rate was found to be

in the order of 0.40 to 0.42 MN'm 2 2
-3/
on Chisholm and Jones equation 0.43 MN m 2

, which corresponds to

_3/2

and the average KIIC based

those obtained in this study. For H = 40mm , a = 40mm , the average

-3/
KIIC based on the finite element method was 0.43 MNm 2 , the
KIIC based on the strain energy release rate was in the order of
-3/
0.37 to 0.42 MNm 2 and the average KIIC based on Chisholm
-3/
2

and Jones equation was 0.40 MN m

6.1.4 Finite Element Modelling for 100mm Single-Notched Cubes

It was found in the analysis of double-notched cubes that
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a Mode II type of failure assumes greater significance with
decreasing notch spacing, therefore a single notch of 10mm deep
on the top surface and a single notch of 30mm deep on the bottom

surface of a cube was modelled.

The convergence study of the stress intensity factor KII was
carried out using several mesh designs and crack tip elements (at
the crack tip only) together with 8 noded quadrilateral iso-
parametric elements were used. Woo's Mode II displacement equation
was used to determine KII' It was found that the 240 element-

mesh was sufficiently accurate for the KII value determination.

In order to determine which mode of failure is predominant
under the shear load, a comparison was made to study the KI and

K values. The upper notch depth of the cube was kept at 10mm ,

II
the lower notch depth varied from 25 to 60mm in Smm increments,
a total of 8 computer runs were made. It was found that the KII

values were not significantly larger than KI . The highest KII/KI

= 12 for a/W 0.6 . The calibration coefficients were obtained

0.6 and found to be dependent on a/W ratios.

EA

for 0.25 < a/W

6.1.5 Experimental Investigation (mortar)

Experiments in the determination of fracture toughness for 100mm
single-notched mortar cubes were carried out using the INSTRON
compressive platens. The upper notch which was off-set at 6mm to
the lower notch, was kept at 10mm and the lower notch depth

varied from 30mm to 45mm in 5mm increments, a total of 48

cubes were tested.
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It was found that there was no significant correlation
between the fracture toughness KIIC when the finite element
method and the strain energy release rate were used. Therefore

this geometry was not suitable for the Mode Il fracture test.

6.1.6 Experimental Investigation (soil-cement)

In the determination of fracture toughness for 100mm single-
notched soil-cement cubes, a total of 28 cubes were tested.
It was found that 100% shear failure was achieved for notch depth

ratios a/W = 0.30 and 0.45 and 86% for a/W =0.35 and 0.4 .

It was found that high percentage differences in KIIC values
were obtained between the finite element method and the fracture
energy methods, therefore the single-notched soil-cement cube

were not suitable for Mode II fracture test purposes.

6.1.7 Finite Element Modelling for 150mm Double-Notched Cubes

The main aim was to model a Mode II type of failure occurring
on a 150mm compact shear cube with a pair of double.notches on the
top and bottom surfaces. Because of symmetry about the centre line
of the cube, only one half of the cube was represented by a
mathematical model satisfying both the boundary and loading

conditions.

The convergence study of the stress intensity factor KII was

carried out using several mesh designs and it was found that the 294

element-mesh produced a desirable accuracy of KII value,
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In order to determine which mode of failure is predominant
under the shear load, a comparison was made to study the KI and
KII values. The compact shear cubes have a notch spacing
H=280, 60 and 40mm with the upper notch depth kept at 15mm
and the lower notch depth varied from 30mm to 80mm in 5mm
increments. A 294 element-mesh with crack tip elements at the
crack tip was used in the analysis and a total of 33 computer runs
were made. Woo's displacement equations were employed to evaluate
the K

and KII values. It was found that KII/KI ratio

I
increases rapidly with the decrease of notch spacing H and

increase of notch depth a . In the case of H = 40mm and a = 80mm,
KII/KI reaches infinity. This implies that a "pure" Mode Il type of

failure can be obtained with a smaller notch spacing and a deeper

notch depth of 150mm double-notched cube.

The calibration coefficients for the three notch spacings were
obtained using a least square method and the equations for K,

stress intensity factors were obtained as follows :

2,P !
(a) H = 80mm Kiq = (2.35-2.93(3)+2.99(3) ) grr{ma)?
a a 2 P 3

(b) H = 60mm Ky = (1.91-2.35(F)+2.36 () Jg(ma)?
2yP }

(c) H = 40mm K = [1.67-2.76(%)+3.30(—ﬁ-) Jgp(ma)?
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In conclusion it can be said that the linear elastic fracture
mechanics is applicable to the 100mm double-notched mortar cubes
provided correction is applied to experimental results for the
machine/specimen interaction or the machine stiffness characteristics;
because both the stress intensity factor K approach (finite
element method) and the strain energy release rate & approach

yield very similar fracture toughness for H = 30mm and

KIIc
a = 45mm . The linear elastic fracture mechanics is also applicable
to the 100mm double-notched soil-cement cubes for H = 40mm ,

a =40mm and H = 30mm , a = 35mm with no correction is needed

for the experimental results because the specimen geometries were

sufficiently flexible to produce similar KIIC values when both the

finite element method and the energy methods were used.

6.2 FUTURE WORK

Finite element modelling has been established for the Mode II
type of failure for 100mm double-notched 100mm single-notched
and 150mm double-notched cubes. Experimental works have been done
to verify the finite element analyses on 100mm double-notched and
single-notched cubes, both mortar and soil-cement were used. Most of
the works have shown a good correlation between the finite element
analysis and the experimental verification in the determination of
fracture toughness values. It is considered that further investigations

should be carried out in order to improve the results.
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In the finite element modeiling for 100mm double-notched
cubes it has been shown that the Mode II shear failure assumes the
greater significance with the decrease of notch spacing and
increase of notch depth. Therefore further reduction in notch
spacing H should be carried out for H = 20mm and 10mm , the
upper notch depth should be kept at 10mm for consistency and the
Tower notch depth should have bigger ranges to study the shear effect on

the cube. It is hoped that this would be confirmed in future.

In the finite element modelling for 100mm single-notched
cubes it has been shown that a "pure" shear failure was not
obtained because KII/KI ratio was not significantly high. This
could be the result of inadequate arrangement of the notches since
the upper notch was off-centre at 6mm to the lower notch and a
mixed Mode I and Mode II displacement condition was likely to occur.
The single-notched cube should be re-arranged so that the top notch
is in line with the bottom notch. Again the upper notch depth should
be kept at 10mm and the bottom notch depth should have a bigger
range as in the case of the proposed double-notched cubes so that

direct comparison can be made to these two geometries.

In the finite element modelling of 150mm double-notched
cubes direct stress and shear stress profiles should be plotted along
the line of action of the compressive load for H = 40mm in order to
support the claim of a "pure" shear condition (as has been shown that

KII/KI ratio equals infinity at a = 80mm). It has been shown that
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the calibration coefficients obtained using a constant element-
mesh of 294 elememts of the finite element method scatter when
0.2 < a/W <0.53 for H =280, 60 and 40mm respectviely.
Re-arrangement of element-mesh when the notch depth increases
should be carried out in order to improve the accuracy of the
analyses. Trial tests should be carried out in order to obtain the
range of failure Toads on different notch ratios for further

analysis.

In the experimental works of determining fracture toughness
of mortar and soil-cement, it has been shown that it is rather
easy to prepare and control the quality of mortar but not soil-cement.
Since the desired moisture content and compaction bear an important
structural property on the soil-cement, therefore it is of interest
to use different moisture content and degree of compaction in

comparing the Ki1e value.

For all the energy approaches, the work done under the load-
displacement curves has been measured manually using a planimeter.
The work was time consuming and inaccurate. A data logging system
should be assembled and an associated software programme written to
record the displacement of the loading platen and the load. This will
assist the calculation of the experimental stress intensity factors

as the area under the load-displacement curve can be readily measured.
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