
University of South Wales

2053147

A Real-time Control and Modelling System based upon

Logic Simulation

Martin Alfred McCabe. B.Tech., C.Eng., M.I.E.E.

A dissertation submitted to the Council for National

Academic Awards for the degree of Master of Philosophy,

The Polytechnic of Wales

Department of Electrical and Electronic Engineering,

July 1987

Declaration

This dissertation has not been, nor is being currently

submitted for the award of any other degree or similar

qualification.

M. A. McCabe

Acknowledgements

The author wishes to thank the Polytechnic of Wales and

Dr Richard Murray-Shelley for their support for this

project.

In particular, he would like to thank his wife for her

strenuous efforts in the typing and correcting of this

thesis as well as her support throughout the project.

Table of Contents

Synopsis

1 Introduction 1

2 Background 3

3 Suitable languages 5

4 Control language requirements 7

5 Control language Philosophy 9

6 Language structure 12

6.1 Functions 12

6.2 Junctions 13

6.3 Structural example 14

7 Functions and the function list 16

7.1 Input/output definition in the list 17

7.2 Function types 18

8 Building Program 20

8.1 Development environment 21

8.2 Storage requirements 24

8.3 Function entry 24

8.4 Function selection 25

8.5 Function numbering 26

8.6 Drawing connecting wires 26

8.7 Selections after connecting 27

8.8 Program Documentation 28

9 Testing Facilities 30

9.1 Junction Structure 31

10 Monitoring Junctions 33

10.1 On screen junctions 34

10.2 Off screen junctions 34

11 Displaying, changing and blocking junctions

and monitors 36

11.1 Displaying a junctions contents 36

11.2 Changing the actual value 36

11.3 Blocking and unblocking 37

11.4 Test example 37

12 Function Interpreter 39

12.1 Sub-lists 41

12.1.1 Sub-list-1 (last page) 42

12.1.2 Sub-list-2 (last page - 1) 43

13 Multi-plant control 44

13.1 Using offset functions 45

13.2 Designing with Offsets 46

14 Circuit design 49

14.1 Oscillators and Timers 49

14.2 Alarm Detector 50

14.3 Set-Point Calculator 52

14.4 Inputs and Outputs 52

14.5 Distributed Process Control 53

14.6 Remote development 54

14.7 Command Breakdown 57

15 Hardware 59

16 Real-time executive 61

16.1 Existing executives 62

16.2 Executive operation. 63

16.3 Executive implementation. 64

16.4 Task Control 65

16.5 Executive Task Time Control Example 66

16.6 Integrating DOS 67

16.7 Problems with DOS integration 69

17 Other Applications 70

17.1 Control Simulation 70

17.2 Logic Simulation 71

18 Function Characteristics 72

18.1 Digital Logic Functions 73

18.2 Miscellaneous Digital Functions 74

18.3 Analogue Functions 77

18.4 Maths Functions 85

18.5 List Control Functions 88

18.6 Input/Output Functions 90

19 User Interface 92

19.1 Plot Program language selection 94

20 Performance Evaluation 96

References

Appendix A - Development Facilities

Appendix B - Function Diagrams

Appendix C - Program Examples

Appendix D - Builder Screen Displays

Appendix E - Published Papers

Synopsis

This thesis introduces the difficulties encountered

when designing software for real-time process control

applications. The currently available design tools are

discussed and a dual language system is proposed as a

solution.

A novel graphics based programming language and

development environment is described which attempts to

overcome the many restrictions of conventional high level

languages. This language is significantly more reliable

and maintainable than text based languages; this opens up

the possibility for sophisticated process control

programming being undertaken by electronic or process

engineers as well as experienced programmers.

The philosophy and structure of the graphics based

language is discussed along with a description of the

function building facilities, the programming environment

and the extensive tracing and simulation facilities.

Several problems which complicate the task of real-time

software development are introduced such as concurrency,

multi-plant and distributed control. The language system

offers a unique solution to such difficulties which greatly

simplifies the programmers task.

Details of the language functions are given along with

examples of its use and integration with user interfaces.

1 Introduction

The real-time microcomputer control of an industrial

process is a particularly difficult task to undertake. The

requirements for rapid response to external signals and the

often complex graphical operator interfaces demanded by

users results in a severe strain on computer processing

power and programming effort.

The programming task often divides into two parts. One

part must handle the urgent task of monitoring many input

signals and generating control outputs, the other less

urgent part must interface between the parameters

describing and controlling the process, and an operator or

manager who requires this information in its most

convenient form. The main thrust of this research is to

separate these two tasks and provide a novel solution to

the real-time control problems in order to produce flexible

and reliable control software with the minimum of

programming experience and effort.

The solution to be presented provides the following

facilities:-

1. Segregation and isolation of the high priority

real-time control software from the operator interface

without sacrificing inter-task data exchange.

2. A control oriented language with inherent "parallel

processing" and resistance to programming errors.

3. A graphics based design and debug environment to

support the control language.

4. Full on-line facilities for program changes and

monitoring.

- 2 -

2 Background

The current situation with respect to microcomputer

software design for industrial process control is to select

a high level language for the bulk of the project and use

assembly language when speed is important. The high level

language is usually a general purpose one such as "C" or

Pascal, which is capable of almost any programming task but

not very well suited to any particular one relevant to a

control system. Other important ingredients include an

operating environment which is usually a general purpose

real-time executive, and debugging facilities which usually

require an expensive emulator. These development

facilities become progressively more ineffective as the

control task becomes larger and are very cumbersome once

the program is operating in the field.

When control programs require development, the average

industrial control engineer must either make use of a

professional programmer to translate the control strategy

into a conventional text-based language such as "C", or

make use of a relatively limited proprietary language

available from companies such as Burroughs. This second

option offers many of the solutions to the development

problems but suffers from several drawbacks. The most

obvious drawback is that special computers must be used for

program development and for the target computer; other

drawbacks include the relatively powerful but inflexible

language facilities and testing facilities available and

the relatively high cost of the equipment which can usually

only be purchased from one supplier.

- 4 -

3^ Suitable languages

Many programming languages have been developed for both

general purpose use and special purpose use. The first

step in solving the special problems of the process control

engineer was to investigate the suitability of existing

languages.

Most control programs can be divided into two

interactive parts; one section handles the man/machine

interface whilst the other section handles the second to

second plant control. It was evident from examining

several languages that some were very suitable for the

man/machine interface. These include Pascal, Modula 2 and

most general purpose languages but in particular, modern

dialects of Basic. When selecting a language for the plant

control, the choice is severely limited since few languages

include such facilities as 3-term control and filters as

standard and those that do are often dedicated to expensive

proprietary computers which lack the flexibility to

interface to other modern software.

It became very clear early in the project that it must

be accepted that no one single language had all of the

facilities required by the industrial process engineer. It

also became clear that the development of control programs

was the most difficult task since man/machine interfaces

could be relatively easily designed using modern high level

- 5 -

languages.

Before considering the special requirements of the

real-time control section, some explanation is necessary

for the suggestion that the Basic language would be the

most suitable choice for generating a user interface. The

modern Basic language has progressed a long way from its

origins as a simple teaching language. Recent dialects

enable much more structuring to be applied to the design

and are often supplied with the most comprehensive

facilities for graphics displays and user input. One very

important benefit is the ability to run Basic as an

interpreted or compiled language which offers the

convenience of program development using an interpreter but

the speed, once developed, of a compiled program.

Last but not least is the apparent user friendliness

presented by a Basic interpreter which often makes it the

first choice language for non-professional programmers.

This important feature is significant because it is the aim

of the project to produce an environment which allows

program development and modification by process control

engineers who are not necessarily full-time professional

programmers.

- 6 -

4 Control language requirements

Once the software required is divided into two parts, one

of which can be implemented using existing interpreters and

compilers, it becomes necessary to define the requirements

for real-time control program development. These

requirements are outlined below:-

1. A high level for Process control.

2. Impossible to "hang-up" even when incorrectly

programmed.

3. Multi-tasking with dynamic task priorities.

4. Modular development facilities.

5. Built-in functions orientated towards the requirements

of process control.

6. Facility for on-line program changes.

7. Extensive on-line monitoring of plant inputs and

outputs as well as internal program variables.

8. Simulation of plant inputs.

9. Protection of critical outputs to the plant during

on-line fault finding.

10. Simple interfacing to and from the user interface.

11. Simple interfacing to and from remote outstations.

12. Fast execution speed.

Clearly from the above list, no one existing language

will satisfy all of the requirements. The most difficult

requirement which encompasses many items in the above list

is to provide simultaneous program execution, program

changes and program monitoring. Quite apart from actually

providing the facilities, the most important problem is how

to present these powerful facilities to a process control

engineer with as little complexity as possible.

The process control language requirements previously

defined are comprehensive and potentially very difficult to

manage. Conventional languages are largely based on text

which does not reflect program flow very well and does not

include easy monitoring of inputs and outputs. A text

based language can be very difficult to follow unless it is

very well structured, especially when operating in a multi­

tasking environment where task interaction is not always

obvious.

- 8 -

5 Control language Philosophy

It was noted very early on that there was some considerable

similarity between the requirements for a real-time

language and the facilities provided for conventional

electronic hardware development. Electronic circuits are

inherently multi-tasking since they continuously operate.

It is possible to monitor logic states and voltages at any

point using voltmeters without stopping the circuit. The

use of specialised integrated circuits allows modular

development and the concept of a circuit diagram permits

the signal flow to be easily seen.

If software could be designed to simulate the desirable

characteristics of hardware, the problem of multi-tasking

would be effectively solved. The simulation could be

carried further to permit software to be developed by

"drawing" circuits onto a VDU screen and providing

simulated logic probes and digital meter displays for any

junction within the circuit. The analogy could be extended

to include special purpose "Integrated Circuits" simulated

in software for such functions as logic, arithmetic and

control algorithms. Because these functions would be

linked by lines to other functions the signal flow within

the software would be obvious in the same way that

conventional electronic circuit diagrams show the paths for

current flow.

- 9 -

Although simulating an electronic circuit in software

would provide many of the advantages of electronic design,

the problems of electronic design of course need not be

simulated; these include power supplies, noise, signal

loading problems and inserting new components into

operating circuits.

Because the concept of software design using circuit

design techniques is so different from other software

tools, a complete development environment had to be

produced. Before defining the capabilities of such an

environment, however, the actual "circuit" capabilities had

to be defined. This should include the type of functions

available, how they should be connected and how they should

operate to give the illusion of hardware circuits.

Two fundamental elements of this new language could be

identified; the function (equivalent to an Integrated

Circuit) and the junction (equivalent to a circuit

connection). The function had to have a variable number of

inputs and outputs which are connected to the inputs and

outputs of other functions to produce a circuit. All

connections between functions must be made by joining each

input or output to junctions only; this enables all inputs

and outputs to be monitored during execution. Functions

necessary for process control must be able to handle two

types of value; a digital signal and an analogue signal.

Two types of junction are therefore provided; the digital

type can hold either a 0 or 1 and the analogue type can

contain a 16 bit signed integer.

- 10 -

The analogue value limitation of +32767 to -32768 was

made quite intentionally since this seemed to offer the

optimum choice between simplicity, execution speed and the

actual requirements in process control situations. Since

most analogue inputs from industrial sensors do not exceed

a 12 bit integer, there would be an unnecessary overhead if

the precision were to be greater than that finally chosen.

In view of the requirement for precision during a

mathematical scaling process, provision has been made for

some inputs and outputs from mathematical functions to

handle signed 32 bit integers.

- 11 -

6 Language structure

6.1 Functions

Lists of functions are created in memory by a building

program. The function is stored in the list as a function

code to specify the type of function followed by a list of

junction numbers, one for each function input and output.

The list of functions is divided into sections called

pages; this is a convenient way of dividing a large design

into small modules which can be completely displayed on one

screen. There is no practical limit to the number of pages

and the only limitation to the number of functions in a

page is the space available on the VDU screen during the

design of a page.

A built in library of over 40 functions ranging from 2

input AND gates to 3-term controllers is available. To use

a function, it must be drawn onto the VDU screen as part of

a circuit "page" and its inputs and outputs connected to

numbered junctions. Information is transferred from one

function to another by joining the output of one function

to the same junction as the input of the next function.

This is of course the same as conventional hardware logic

design but without any soldering.

Once a function has been entered, it is included into

the function list which is being continuously interpreted.

- 12 -

The interpreter simply works down this list of functions on

a regular time basis (say once every 0.1 seconds) and would

normally interpret every function in that list. Each

function appears to the interpreter as a code to identify

the function type (OR gate, multiplier etc.) followed by a

list of input/output junction addresses in RAM. Data is

taken from the junctions connected to the function inputs,

processed by the specified function program, and the

results written into the junction connected to the function

output.

The function list is a linear sequence of function type

and input/output information. This is divided into

sections or pages for the convenience of displaying on a

VDU. The list is executed regularly (by the interpreter) in

a fixed order from the start to the end. The execution

order is important to ensure that input changes work their

way to the outputs as rapidly as possible and preferably in

one pass of the interpreter through the list. The function

number determines its position within the execution order

for that page.

6.2 Junctions

A junction may be either an analogue or digital type

depending upon the type of data being held. A digital

junction can contain either a 0 or a 1 and would be used

for example, to connect two AND gates together. An

- 13 -

analogue junction can contain an integer between -32768 and

+32767. Each junction is given a reference number which is

used to determine its actual location in memory.

One of the most difficult problems associated with

process control software development is how to test the

program when the software and/or the hardware is incomplete

and few or no hardware inputs/outputs exist. The

consequences of having little control over inputs and

outputs is also very apparent when commissioning or

modifying hardware and software on-site and/or on-line.

This new language system attempts to reduce these

debugging problems by building in a blocking ability into

every analogue and digital junction. Each junction

contains an actual value, a blocked value and a flag to

indicate which value is to be taken as an input to a

function. All function outputs only affect the actual

value stored in a junction. Once the building program

blocks a junction during program development, any function

using this junction for its input data will take the

blocked value rather than the actual value. The blocking

ability not only allows inputs to be simulated but also

allows intermediate connections to be temporarily broken

without disturbing functions using the connection as an

input.

6.3 Structural example

The builder constructs a list of function descriptions in

- 14 -

memory which are executed by the interpreter program. The

format of a function within the list is very simple and may

be illustrated by considering a 2 input AND gate. This

occupies 7 bytes as follows:

1 byte function code for an AND gate,

2 byte "input A" junction address,

2 byte "input B" junction address and a

2 byte "output" junction address.

The junction address is in fact the relative address of

the RAM location used for input or output data. Included

in these digital junction addresses is a reserved bit to

indicate when the data should be inverted before use or

inverted before output. This inversion capability enables

a basic AND gate to be used as a NAND or in fact an OR

gate.

The function list is a continuous linear sequence of

such function descriptions. The interpreter simply works

down this list, reads the next function code and jumps to a

function handling routine determined by that code. The

function handling routine will execute a predetermined

function (in the above case, a digital AND function) using

the data locations specified in the function list. After

executing this function, control is passed back to the

interpreter which proceeds to the next function description

in the list.

- 15 -

7 Functions and the function j.ist

The function list is a single continuous sequence of

function definitions. The list is immediately preceeded in

memory by a page start address table which gives a 2-byte

relative offset from the start of the function list for

each page in the list.

p = number of pages in the system.

s = start address of "page start address table".

address s
address s+2
address s+4
address s+6

address s+(p*2-2)
address s+(p*2)
address s+(p*2+2)

0
page 2 start offset
page 3 start offset
page 4 start offset

page p-1 start offset
page p start offset
start of list offset

start of list

end of list

Each function definition within the list consists of

(2*n+l) bytes where n is the number of input/output

connections to the function.

The first byte is always a code indicating the function

type; each input/output connection is defined in 2 bytes.

The input/output definition is actually the relative

address of the junction used to obtain input information or

to store a result.

- 16 -

7.1 Input/output definition in the list

There are 2 types of input/output definition:

Digital input/output

Bits 0-14 contains the offset address of the

junction relative to the start of the

digital junctions. Bit 15 is set to 1 if

the data is to be inverted.

Analogue input/output

Bits 0-15 contains the offset address of the

junction relative to the start of the

analogue junctions. This will be in

multiples of 5.

The function routine has knowledge of whether the

definition is for an analogue or digital junction. The

order of input/output definitions within a function

definition is chosen for the convenience of the function

program to enable it to execute as fast as possible.

The functions are in general unaware of page

boundaries. The list execution tasks will continue until

the end of the list which is indicated by a function code

of zero.

The only exception to the above is the Constant

function. The 2 bytes following the constant function code

is the constant value and not an input/output definition.

- 17 -

7.2 Function types

The digital functions provided include:

simple logic; 2/4 input AND, OR, EXOR, buffers etc.,

memory functions; flip-flops and latches,

integrator.

Analogue functions are described in the same way except

that the provision for data inversion with an analogue

junction is not included. All analogue functions operate

with integers to 2-byte precision. It is rare that this

limitation becomes a problem in process-control with

sensible number manipulation.

The type of analogue functions provided include:

arithmetic; multiply, divide, square root etc.,

comparisons; equality, greater than etc.,

counters/timers,

data tables,

multiplexers, demultiplexers,

input/output; digital and analogue,

special purpose; 3-term controller, filter etc.

Functions may consist of a mixture of digital and

analogue inputs and outputs. Compare functions for example

use 2 analogue junctions for input data and use a digital

junction for the result.

Although the present list of functions will meet the

- 18 -

demands of many applications, it is possible to extend the

system if other special purpose functions are necessary.

- 19 -

8 Building Program

The building program enables the engineer to build up a

function list which being interpreted in real-time. The

design is drawn onto a VDU screen using block graphics to

represent the functions, junctions and connecting wires. A

keyboard and joystick/mouse are used to select the desired

function and to "wire" it up to junctions on the screen.

The screen positions of the functions, junctions,

connecting wires or indeed any text comments about the

operation of the circuit are determined by the engineer.

The only information required by the interpreter is the

function code and the junction numbers to which each

input/output line connects. The rest of the information

drawn onto the screen is to permit easy understanding of

the circuit and to provide a commented and readable

printout for documentation.

Effectively then, a logic circuit is drawn onto the

screen in a similar manner to hardware design using a CAD

computer.

The action of drawing a circuit onto the screen enters

the function into the function list being interpreted. A

complete sub-circuit can be constructed and saved as a page

onto disk.

Once a page of logic has been constructed, it may be

stored on floppy disk to enable another to be constructed

- 20 -

or loaded from disk. The maximum number of pages that can

be included in a system is largely determined by disk

capacity, but a maximum of between 40 and 60 permits quite

large controllers to be designed. This page information is

not required by the interpreter and so disks need not be

on-line once an application has been fully developed.

Being able to recall and edit pages of logic from the

disk enables a designer to build a library of commonly used

circuits. For example, a set-point ramp generator may be

developed, tested and saved. Any application requiring

this facility will simply necessitate loading this page

into the building program, re-numbering the junctions and

saving as part of the new application.

8.1 Development environment

The program development environment was designed to be

simple with as much in-context assistance given as

possible. The complete development environment operates

concurrently with the execution of the function list but as

an alternative to the user interface program.

Since the building program is essentially a graphics

based CAD system for non-professional programmers it has to

be foolproof in operation with "help" facilities and

prompts. Some form of pointing device was necessary as an

alternative to moving the cursor on the screen using the

keyboard and therefore a joystick was initially selected.

- 21 -

Interfacing with a mouse has subsequently been developed; a

graphics tablet would be possible if desired.

During the initial design phase of the building program

it became necessary to choose the form that the graphics

display should take. There were two choices:-

Full bit mapped graphics display.

Character based graphics display.

Most general purpose CAD computers use a bit mapped

graphics display to enable any shape to be displayed. This

has severe drawbacks in that display update is very

computer intensive and saving such displays requires large

amounts of disk and memory space. These problems are much

more significant if colour is considered desirable.

Because of the above-mentioned problems and the fact

that using say 16 colours is very useful in portraying

large amounts of information successfully, a character

based graphics display was chosen. This is a fast and

efficient graphics system but it places severe limitations

on the shapes of the functions and upon the routes taken by

interconnecting wires on the screen. Both of these

constraints are not as important as they may first appear

since they force a form of standardisation of function

shape and prevent cluttered interconnections on the

screen. The final display used 2000 character cells, 16

foreground, 8 background colours and instant hardware

selection of 4 complete screens at any time.

The screen limitations imposed restrictions upon how

- 22 -

function inputs and outputs could be drawn connected to

junctions. Only horizontal and vertical lines are possible

with a fixed minimum distance between adjacent lines. All

of this is drawn by the program with the user simply

guiding the desired connecting line around the screen.

This semi-automatic routing of interconnections is not only

much more straightforward to implement, but ultimately also

more visually correct than a full auto-routing system.

The interface between the development environment and

the software designer was given considerable thought. It

was finally designed as a command driven system with full

prompting during commands. This type of interface uses one

line only of the display which permits a single screen to

be used for circuit display and command input. Pressing a

single letter initiates one of more than 20 commands which

then proceed by asking a series of questions until the

desired action is complete. At all times data entry is

verified. At any time a command may be terminated by

pressing the ESC key which returns the program back to

waiting for a command. It was decided that any action,

including aborting a command, which caused a significant

loss of data should then give an option not to continue.

All commands are executed concurrently with any other

update actions. If monitoring of junction contents on the

screen is taking place then this will continue at all

times.

- 23 -

8.2 Storage requirements

A system suitable for industrial process control should not

rely upon mechanical storage for its normal execution. The

development environment which is not used during normal

process control execution does however depend upon disk

storage. All information which is only required for

development is stored on disk and is recalled whenever a

new page of functions is loaded. This information includes

screen information and junction monitor information. The

actual function information which will be inserted into the

function list is also saved onto disk but only has

significance when a system is loaded initially.

Facilities were provided for loading, saving, erasing

and copying pages of functions as well as loading in a

completely new list of functions to develop an alternative

application. Protection features have been included to

prevent unintentional loss of information and changes

within a page.

8.3 Function entry

Functions are drawn onto the screen in a suitably large

free area by selecting the desired function either from a

full page list or by typing in all or part of its name. A

sequence of questions is then asked which positions the

functions within the execution order within a page and

- 24 -

guides the user towards connecting every input and output

to a valid analogue or digital junction. It is not

possible to carry out any other operation until a function

is completely drawn and connected. Once complete, the

function is placed into the function list without stopping

or slowing down the execution of the function list to

enable program changes to be made on-line.

8.4 Function selection

A function may be selected using one of 2 methods:

1. Typing the function name in response to the "Name of

function" question. Only part of a name has to be

given since a search is made of the list of function

names for a match between the name entered and all or

part of each function name; the first match found will

decide the function. For example, typing "and" will

select a "2 I/P and" function since this is a match and

it occurs before "4 I/P and" and "sample and hold".

2. Pressing the <enter> key in response to the "Name of

function" question will display a complete list of

functions available. To select a function, enter the

number of the function which is displayed to the left

of the name.

- 25 -

8.5 Function numbering

Each function is assigned a reference number which is

displayed in a different colour at the bottom right of the

function; this number indicates the execution order of the

function in the function list. Normally, functions are

numbered in a logical order from input to output such that

an input signal is processed as fast as possible (i.e. one

scan of the function list) to give a new output.

A function may be inserted into a page as the last

function executed by responding to the "Enter the function

execution order" question with the <enter> key. A function

may be inserted between existing functions by entering the

desired reference number. If a function is inserted into a

page containing other functions then the reference numbers

are incremented for every function after the new one.

8.6 Drawing connecting wires

Once a function has been drawn onto the screen and

numbered, it must be completely wired up before any other

operation can be performed. Each input/output connection

of the function must be joined by a line to an appropriate

junction (analogue or digital); the connection order is

from the top to the bottom and from the left to the right

of the function. A flashing "diamond' shape indicates the

input/output function point currently being connected.

- 26 -

A line is drawn by positioning the cursor and pressing

any key except <Esc>, <j> and <d>. A line is automatically

drawn from the last line end to the cursor subject to the

following rules:

a line will first of all continue in its original

direction as far as necessary.

The additional section of line can have a maximum of

one corner. An exception is the very first section of

line connected to the function which may have two

corners under certain circumstances.

The new line may cross over an existing line or

character but it may not cross over more than one

adjacent line or character.

If a blockage is detected (i.e. more than one adjacent

line or character, a function, junction, monitor or

word), a Beep will sound and no line will be drawn.

An input/output point on a function is considered

connected when it is linked into the correct type of

junction.

8.7 Selections after connecting

If the input/output connection is to a digital junction

then an option is given to invert the connection or not.

The constant function is the only function which is not

completely connected by linking to junctions. This

- 27 -

function requires a constant value to be entered in decimal

or hex in response to the appropriate question presented

after connecting the functions' only input/output point.

The format of the number displayed in the function is the

same as the format that was used to enter the number (i.e.

decimal or hex).

8.8 Program Documentation

Projects using conventional text based languages must be

supported by extensive documentation and flowcharts. The

graphics based language described here greatly reduces the

need for extensive documentation due to ones ability to

understand more from a picture indicating signal flows than

a page of text. It is possible to compare a page of

interconnected functions to a flowchart which of course

implies that the design can be accomplished at a higher

level than a general purpose text language.

In order to enhance the usefulness of the page display

as a fully documented program, facilities were added to the

building program to allow text to be entered in any

available foreground and background colour, even flashing

text. This text is simply part of the picture seen by the

user and forms no active part in the control software.

In addition to text, graphics characters can also be

included. This enables not only comments to be added to a

page of functions but also complete pages of comment. This

- 28 -

latter extension can produce complete mimic panel type

pictures showing a block graphics picture of an industrial

plant with the addition of important parameter or alarm

displays as discussed later under junction monitors.

Several commented displays of this type can form the first

form of assistance to the process control engineer when the

control software does not give the correct response in some

circumstances after installation.

It should be noted that a page is an arbitrary divider

of functions in the function list. A page need not contain

any functions but can still be loaded as normal from disk

storage. One recommended use for the first page in a

system is for a list of contents for all other pages in the

system. This would take the form of a text only display

showing the use of each page.

- 29 -

9 Testing Facilities

Testing and fault finding are perhaps the most important

aspects of designing a good program. Most languages allow

programs to be designed using powerful facilities but

largely neglect the important task of providing test

facilities.

The majority of process control computers will have

their software modified after installation. This situation

can create many problems which do not arise during the

initial design:-

1. The computer to be modified may not be able to be taken

off-line completely.

2. Control outputs may have to be tested without actually

sending these signals to the plant being controlled.

3. Inputs have to be simulated when they may be being held

in one state by sensors.

4. Conventional program debugging usually requires the

program to stop temporarily whilst variables are

examined and changed.

To overcome these problems, extensive testing

facilities have been incorporated into the design

environment to assist in the initial design phase as well

as when problems are encountered or when changes are

necessary after installation.

- 30 -

9.1 Junction Structure

Junctions are not just simple locations in RAM and do not

act like variables in a text based language. Junctions are

specially structured memory locations which hold 3 items;

an actual value, a blocked value and a blocked flag.

Actual value A function always outputs to the actual

value part of a junction. A function will

take the actual value as an input unless the

blocked flag is set.

Blocked value If the blocked flag is set to 1 then this

value will be used as input data to a

function.

Blocked flag Set to 1 if a junction is blocked.

There are 2 types of junctions which share the above

structure but differ in the maximum size of the value:

Digital Junctions

These occupy 1 byte each and contain a value

of 0 or 1. Bit 0 is the actual value, bit 1

is the blocked value and bit 2 is the

blocked flag.

Analogue Junctions

These occupy 5 bytes each and contain a

value between -32768 and +32767 stored as a

2 byte signed integer. The first byte is

- 31 -

the blocked flag (only bit 0 is used for

this purpose); bytes 1 and 2 contain the

actual value and bytes 3 and 4 contain the

blocked value. The numbers are stored least

significant byte first.

- 32 -

10 Monitoring Junctions

A monitor is a real-time display of a junctions' contents,

both actual and blocked. Any junction may be monitored in

the masterstation or any outstation.

The display may be in decimal or hex; this is selected

using the output radix toggle (<i» command when the cursor

is over the monitor value block or the monitor junction

number. A decimal number is displayed as a signed value

with up to 5 digits; a hex number is displayed as an

unsigned value between OH and FFFFH. The <i> command

operates as a toggle between decimal and hex.

Up to 20 junctions may be monitored on the screen at

any one time. These may display the contents of junctions

on the screen or may be monitor-junctions set up to display

the contents of junctions off the screen.

Both types of junction monitor display share a common

format to display the actual and blocked junction

contents. The values are contained within an inverse video

block 2 lines high by 1 wide for a digital junction and by

6 wide for an analogue junction. The top line contains the

actual value and the bottom line the blocked value. If the

bottom line is empty, the junction is not blocked.

If an attempt is made to display more than 20 monitors,

a warning message is given.

- 33 -

10.1 On screen junctions

Typing <m> with the cursor over a junction or junction

number when the main command prompt is displayed will

define a new monitor displaying that junctions contents.

The program will prompt for the cursor to be moved to the

display position for that monitor which will be displayed

when a key is pressed. As is usual with all display

positioning, the monitor block will be positioned with its

top left corner on the cursor position; a warning message

is given if there is not enough free screen space for the

monitor in the chosen position.

10.2 Off screen junctions

To display the contents of a junction not on the screen,

type <m> with the cursor over an empty section of screen in

response to the main command prompt. This will define a

new monitor consisting of a monitor junction, monitor

junction number and monitor value block; The monitor

junction and number are not the same as normal junctions

and cannot be connected to functions.

The program first of all requests the outstation

containing desired junction and then proceeds to request

the junction type and number in the same manner as placing

a normal junction on the screen using the <j> command. The

final prompt is the same as given when monitoring an

- 34 -

on-screen junction. An off screen junction monitor number

has a prefix to indicate the outstation relevant to that

monitor. The prefix 'm' indicates masterstation and the

letters 'A' to 'z' indicate outstations.

- 35 -

11 Displaying, changing and blocking junctions and monitors

The contents of a junction cannot be displayed or changed

without the junction being present on the screen as either

a connectable junction or a monitor junction.

11.1 Displaying a junctions contents

The monitor (<m>) command is used to continuously display

the contents of a junction. If the contents of a junction

is required without continuous monitoring, the cursor may

be positioned over the required junction or junction number

and the <?> key pressed. The junction contents will be

displayed on the bottom prompt line and will remain there

without being updated until a new command is given.

11.2 Changing the actual value

The actual contents of a junction can be changed by

positioning the cursor over the required junction point or

a junction monitor and pressing <c>. The program will

prompt for a new actual value which, for an analogue

junction, may be entered as up to 5 decimal digits with a

leading -ve sign if required or as up to 4 hex digits

followed by <h>.

- 36 -

11.3 Blocking and unblocking

The blocked contents of a junction can be changed by

positioning the cursor over the required junction point,

junction number or junction monitor block and pressing .

The program will prompt for a new blocked value which, for

an analogue junction, may be entered as up to 5 decimal

digits with a leading -ve sign if required or as up to 4

hex digits followed by <h>. Pressing <enter> only in

response to the prompt will clear the blockage from that

junction.

All junctions may be unblocked using the junction reset

command (<r>) and the junction unblock command (<u>).

11.4 Test example

A simple example will illustrate this versatility.

A section of the control program is checking several

digital inputs being in an alarm state. If so, then

an alarm siren should sound.

To test this program on-line, the output junction

corresponding to the siren could be blocked to an off state

to avoid unnecessary alarms. This junction is also

displayed on the logic diagram drawn on the VDU screen.

Combinations of the relevant digital inputs may then be

- 37 -

blocked into alarm states and the effect upon the output

observed by watching the actual junction value

corresponding to the siren on the screen.

All of this may be done without leaving the keyboard

and screen and in confidence that any input can be

simulated and checked whilst maintaining outputs, driving

motors and valves for example, in a safe condition.

The ability to simultaneously observe the dynamic

contents of up to 20 selected junctions is a very powerful

debugging aid. When a page is displayed on the screen, the

contents of one or more junctions can be displayed in

real-time in their correct circuit locations; other

junctions not on the current page display can also be

observed.

- 38 -

12 Function Interpreter

The function interpreter task will normally run

continuously. The linear function list is interpreted from

the beginning until the end at a fixed frequency. The time

interval between beginning each scan of the list is

determined by the contents of a reserved junction (Analogue

Junction 1); the contents of this junction gives the list

period in units of 1/600 seconds. When this junction

contains 0, the list will be executed every 0.1 seconds.

When this junction is forced to 0, the list will not be

executed.

If the list is still being interpreted when another

list execution is demanded then the interpreter will begin

interpreting the list from page 1 immediately after

completing the present list scan in an attempt to catch up

and synchronise again. If the contents of Analogue

junction 1 does not allow enough time for the interpreter

to get through all of the function list, a "catch-up

counter" is updated to control how many complete list

executions must be performed before the list is

synchronised again.

The system is therefore tolerant of occasional long

list execution times without internal clocks or counters

becoming incorrect. The building program allows the

catch-up counter and the actual list execution time to be

- 39 -

displayed so that the designer can measure quite accurately

how heavily loaded the computer is.

The function interpreter task is one of many tasks

which operate under a prioritised task scheduler to be

described later. If the list is being interpreted too

often, at no time will any other task actually stop. The

effect of allowing more time to be given to the function

interpreter task (which must have the highest priority) is

simply to slow down other tasks such as the builder program

and junction monitor updates.

The function interpreter itself is a very simple task.

A pointer is maintained which points to the next item in

the list to be interpreted. The interpreter simply reads

the contents of the list pointed to by this pointer and

uses the value obtained as an index into a list of function

routine addresses. It is the responsibility of each

function to use the information held after the function

code in the list and return back to the interpreter once

the function is complete. The coding of the functions is

very important and must follow the following rules:-

1. Return with the list pointer to the next function to be

interpreted, under all circumstances.

2. Execute as fast as possible.

3. Be tolerant to all combinations of input values and

always produce predictable results.

4. Be re-entrant; this means that internal values which

must be maintained between different executions of a

- 40 -

function in a particular position in the list, cannot

be held in simple variables. Junctions will have to be

specified for such value storage.

These rules, once understood, do not create serious

programming problems since the function is a small

self-contained module which can be easily tested. Once

developed a function need not be modified again and adds to

the list of available functions for all future

development. This results in much more reliable software

since for all applications, functions can be used but not

modified without the use of other development equipment.

12.1 Sub-lists

With many industrial control situations, the major part

of the control will tolerate a delay of say 0.2 seconds

maximum between an input change causing an output to

change. This means that the bulk of the process control

circuit can exist in the main list of functions executing

at the default period of 0.1 seconds as previously

described. Sometimes however, a faster response time of

several milliseconds is required to one or more particular

inputs. To accommodate this, a group of reserved pages

within the function list are executed by the interpreter at

a programmable rate which may be as frequent as lOOHz or

greater. Obviously the number of functions that can be

included within these pages has to be limited at high

- 41 -

execution rates so that the main function list can be fully

executed in the given time interval. Fortunately, in

practice, many process control applications do not require

excessive quantities of high speed control logic.

12.1.1 Sub-list-1 (last page)

When a non zero number is put into analogue junction 2, a

task is enabled which will commence execution of the list

from the start of the last page at an intervals determined

by the contents of analogue junction 2.

When analogue junction 2 contains 0 or is blocked to 0,

the last page sub-list is disabled and will not operate.

This sub-list is useful when some operations need to be

carried out more often than the period of execution of the

main function list (e.g. counting pulses). Care must be

exercised to prevent this sub-list from using an excessive

amount of time; this sub-list must only contain enough

functions to do the required operation and must not be

executed more often than is necessary.

To prevent the main list also executing the last page,

a jump function may be added at the end of the penultimate

page which jumps out of the function list (Jump to last

page + 1).

The last page sub-list has the highest priority of the

sub-lists and consequently is most suited to the fastest

execution time required in a system.

- 42 -

12.1.2 Sub-list-2 (last page - 1)

When a number is put into analogue junction 3, a task is

enabled which will commence execution of the list from the

start of the penultimate page at an intervals determined by

the contents of analogue junction 3. The operation and

requirements of this sub-list are the same as the last page

sub-list.

To prevent this task overunning into the last page, a

Jump to the (last page + 1) function can be added at the

end of the (last page - 2).

This sub-list has a lower priority than the last page

sub-list and is suited to tasks such as analogue input's

with slow conversion times.

- 43 -

13 Multi-plant control

Often an application demands the control of several similar

items of plant. One could simply design the logic for one

item and repeat it for the others but this is inefficient

for many reasons. If logic is repeated, errors can made

more easily and changes are more difficult to implement.

Special purpose functions are provided which permit

pages of logic to be called as subroutines; this is of

little use however if the same data is being processed each

time through the subroutine. Before calling a subroutine

to control another similar item of plant, an offset

function should be executed which will cause a programmable

number to be added to every subsequent junction reference

number until a new offset function is executed or the

function list re-started. Each run through a subroutine

can be organised so that a different block of junctions is

accessed.

A practical application would be the control of 20

conveyors; the design can be implemented and tested for one

item with the control functions terminated by a "Return"

function. Twenty subroutine functions, each preceded by

offset functions, will duplicate the control for each

conveyor using data unique to each conveyor.

- 44 -

13.1 Using offset functions

Offset functions when used with Jump and Subroutine

functions enable the programmer to easily control more than

one similar item of plant without duplicating the control

functions used for one item of plant.

When the function list begins execution each time,

there are no offsets on any junction type, i.e. all

junction reference numbers address the specified junction.

When an offset function is encountered, the contents of the

junction attached to that function is added to every

junction reference number of the junction type specified by

the offset function chosen. This enables a page of

functions which constitute a subroutine to be called

several times with a new offset function between each call

to the subroutine. With careful choice of offsets, each

execution of the subroutine will operate with different

input's and output's; this enables many similar processes

to be controlled using one subroutine with as many

subroutine calls and offsets as required.

It is necessary to define a block of junctions for each

item of plant and to make careful note of these areas. The

offset functions are very powerful programming aids but

great care must be taken when they are used. It is a good

practice to enter the offset functions that restore the

offsets to zero before entering the other offset functions

and subroutines. This may prevent accidental execution of

- 45 -

functions with unwanted offsets.

When an offset is added to a junction reference number,

the resultant junction number is not checked for limits.

This is desirable to optimise for speed but it is also

possible to write to a junction that is outside the memory

assigned for that junction type. This would have possibly

dangerous consequences and great care must be exercised

when using offsets.

Offset functions present in the main function list will

have no effect upon the operation of the sub-lists. The

sub-lists may incorporate offset functions if necessary.

As with the main list, sub-lists always begin execution

with all offsets at zero.

When designing a control system that includes similar

blocks of control functions (e.g. the control of 4 vessels

or 20 conveyors), the design should as far as possible be

implemented and tested for one item with the control

functions entered as a subroutine. Once the junction usage

is known for this subroutine, a safety margin can be added

and offset functions included along with more subroutine

calls to control the additional items.

13.2 Designing with Offsets

When an offset function is executed the functions following

do not access the junctions specified on the screen

display. To overcome the considerable monitoring and debug

- 46 -

problems created by this mismatch, an offset command <o> is

provided to compensate for the difference between displayed

junction contents and actual junction contents being

referenced by the functions.

Pressing <o> when the main command prompt is displayed

will result in two questions being asked. The first

requests an offset to be used when displaying digital

junctions and the second questions requests the offset for

analogue junctions. Pressing <0> <CR> or <CR> only will

clear the offset facility; pressing <ESC> will leave the

offset value unchanged. The current offsets used within

the display of a page are indicated on the main command

prompt line.

A non zero offset results in that offset number being

added to every junction number of that type on the screen

and the result used as the junction number to display.

For example, if an offset function producing a digital

offset of 500 is executed before the function being

displayed on a screen page, then all digital junctions

being displayed will not normally correspond to those

actually being referenced. A digital junction 10 connected

to a function results in junction 510 being accessed by

that function. If junction 10 is displayed using a monitor

or the <?> command then the contents of junction 10 are

displayed, not the contents of 510. If the <o> command is

used to set a digital page offset of 500 then the junction

contents being displayed will be 510 even though the screen

still shows a junction number 10.

- 47 -

If a sequence of pages operate as a subroutine which is

called several times with different offsets set by offset

functions then each execution will operate upon a different

group of junctions. This is like a procedure using local

variables but with the facility to still pass and return

any value(s) to other parts of the function list. The <o>

command enables the operator to examine each execution of

this procedure or subroutine without changing the monitor

displays or calculating the actual junctions being

referenced.

All actions upon junctions affected by a non-zero

screen offset will take the offset into account. This

includes all of the commands to change and block an

individual junction value but not the commands to list (and

unblock) all junctions or the junction cross reference

command.

The offset command affects only the monitors on a page

which display values in the oustation being displayed.

Monitors of other junctions not in the current outstation

will be unaffected.

It is possible to monitor a junction which, combined

with an offset/ refers to a junction outside of the allowed

junction data base. This will be indicated by a flashing

actual value monitor or an off-line message.

When a page is saved, the offset status is also saved

and will be automatically restored on reloading.

- 48 -

14 Circuit design

The design of programs using functions is much closer to

hardware design than conventional software design. There

are several characteristics of this system which must be

understood before successful designs can be produced.

1. All functions are periodically executed unless

specifically skipped using Jump type functions.

2. Functions are executed in page order and in numerical

order within a page.

3. All junctions contain zero when the system is started

and must be loaded with a value if a constant is

required.

Because this system is so different from other

languages, several example designs will be explained as

illustrations of the techniques developed. These are of

course only trivial designs, a more comprehensive practical

design is given in Appendix C.

14.1 Oscillators and Timers

There are no specific timer functions in the system. A

timer can be produced by connecting the output from an

oscillator into a counter in much the same way that

- 49 -

oscillators drive digital divider circuits for hardware

design.

Oscillators can be easily produced giving a variety of

frequencies which are directly related to the execution

rate of the function list. One of the simplest oscillators

is an inverter, (a buffer function with its output

inverted) with its input connected to the same junction as

its output. This is shown on page 4 of appendix C. The

period of oscillation for such a circuit is twice the

function list execution period.

A simple variable frequency oscillator can be produced

using the digital integrator function connected as shown on

page 4 of appendix C. The period of oscillation for this

circuit is twice the function list execution period

multiplied by the integration constant.

A typical control system would have several junctions

whose contents oscillated at frequencies such as 0.5HZ and

IHz. These junctions can be joined to the inputs of counter

functions to create any number of timers. Timers may be

cascaded to form timer circuits having any duration in

seconds, minutes, hours, days or years. Page 5 of appendix

C shows 3 cascaded counters forming a 24-hour real-time

clock with reset facility.

14.2 Alarm Detector

Alarm conditions within a process control system are very

- 50 -

important. Many different signals may cause an alarm

condition to occur and these conditions must usually be

scanned on a regular basis alongside all other control

activities. This type of requirement can be systematically

handled in a straightforward way using the scanner

function. An example alarm detect circuit is shown on page

21 in appendix C which also includes protection against

transient alarm conditions if necessary. The scanner

function is an example of a sophisticated function mainly

designed for a single application. It allows any number of

digital junctions to be scanned to produce an alarm code if

one is set. The disable facility allows alarm states to be

accepted one at a time and any further alarm codes will

then appear. Obviously there is a built in priority in

that junctions with lower numbers will be detected first

and if a more urgent alarm condition is detected, it will

be reported in preference to an existing alarm code.

The exclusive OR functions used to produce the alarm

junctions themselves are being used as digital

comparators. In this example, alarms are produced if the

feedback signals from valves do not agree with control

signals being sent to the valves both in their open and

closed position.

The timer circuit prevents alarms being generated

whilst valves are moving.

- 51 -

14.3 Set-Point Calculator

Many processes require ramp functions to be generated. An

example may be to produce a steadily rising temperature

from an initial valve to a final valve over a period of

minutes. This type of calculation often arose in the

Authors' experience with Malting Kiln controllers where

temperature set-point ramps and dwells were being generated

over long periods to ultimately control gas burners.

Page 22 of appendix C shows a circuit which will

produce a set-point output for positive or negative ramps

or dwells. The time left input would come from a

programmable down counter which is loaded with the stage

duration at the start of a stage in the process. Any

parameter may be changed at any time and the correct

set-point is automatically calculated.

Such a circuit could be entered in a single page and

then executed as a subroutine. The use of subroutines and

offset functions allows the calculator to be used for

simultaneous control of many concurrent ramp and dwell

processes.

14.4 Inputs and Outputs

Programs can be tested successfully without actual inputs

and outputs by blocking input junctions and monitoring

output junctions. At this stage there need be no

- 52 -

consideration given to how these signals will actually be

brought into or out of the computer.

Interfacing to the "outside world" is accomplished by

input and output functions which have to be specific to the

actual input/output hardware used. The type of functions

necessary include such facilities as 16 bit digital input

and output and analogue input. Examples of these functions

have been developed specifically for the IBM PC/AT

microcomputer and bus interface cards but of all of the

functions in the system, these would have to be changed for

use with practical isolated inputs and outputs.

All inputs and outputs are via analogue junctions.

Most digital inputs and outputs are however required as

single bit quantities in digital junctions. Inputs placed

into an analogue junctions by input functions can be

divided into sixteen digital junctions using the data

divider function. Sixteen digital junctions can be

assembled into one analogue junction using the logic

assembler function. This composite analogue value can then

be output using the analogue output function. Examples of

input and output can be found in Appendix C pages 3 and 40.

14.5 Distributed Process Control

The initial phase of the project developed a single

computer language and development environment suitable for

large and small control problems. Many large control

- 53 -

systems however, require intelligent outstations joined by

telemetry links to a masterstation. This type of system

can be very difficult to design due to different and often

smaller computers being used at the outstation compared

with the central station. There is rarely a unified

development approach, and this can make such systems

expensive to develop and install.

Because the heart of the new language is an

interpreter, the function list is computer independent. A

system in the form of a function list could be developed on

one computer and then transported without change to another

totally different computer. The only requirement of the

target computer would be a suitable real-time executive and

function interpreter. Once these have been developed,

applications in the form of function lists can be

transported from computer to computer without change.

This portability aspect of the language is a very

powerful feature that will allow future improvements in

computers without discarding existing designs and

techniques.

14.6 Remote development

A typical large process control system will consist of a

relatively powerful central computer or master station and

several smaller intelligent outstations scattered around

the factory or plant. Intelligent outstations imply that

- 54 -

they function as controllers for local inputs and outputs

but obtain control information in the form of set-points

and remote variables over the telemetry link.

The most convenient way to develop such a system is to

give the masterstation facilities for remote program

development such that the masterstation user can

simultaneously develop and test programs for the

masterstation and any outstations. These facilities have

been included as features of the new language.

Communications between the masterstation and the

outstation fall into two categories:-

1. Regular information exchange for control purposes.

2. Requested information exchange for development

purposes.

Since the status of a system is determined by the

contents of junctions, control information can be exchanged

by exchanging junction contents between the masterstation

and the outstation. This would take the form of allocating

a group of analogue junctions in the outstation and

transmitting their contents to the masterstation on a

regular basis. Similarly, a group of analogue junctions in

the masterstation would be transmitted to the outstation.

In this way/ a gateway or window is produced between the

masterstation and the outstation. Information can be sent

and received by simply placing values into the junctions

assigned to the gateway; a separate telemetry task would

handle the actual communications. Suitable telemetry

- 55 -

systems exist operating upon continuous or change of state

principles, but this has no direct effect upon the

principles and applications of junction exchange.

During remote program development, many additional

details need to be communicated between the masterstation

and the outstation. This information is not strictly

required in real-time although delays would make

development tedious. All of the development facilities can

be broken down into the following fundamental requirements

of the function list and junction data base.

System information

* number of pages in the list

* number of free bytes in the function list

* number of analogue junctions

* number of digital junctions

Timer information

* main list current execution time

* main list maximum execution time

* main list catch-up counter

* sub-list 1 catch-up counter

* sub-list 2 catch-up counter

Read from specified digital junction

Read from specified analogue junction

Write to specified digital junction

Write to specified analogue junction

- 56 -

Search specified page in function list for specified

junction usage.

- Replace existing page of functions with new functions

held in a buffer.

These requirements are divided into eight high level

request functions which are requested by the building

program regardless of whether development is of the

masterstation or the outstation. At all times the

masterstation has control over information request, the

outstation simply accepts data or replies to data

requests.

14.7 Command Breakdown

A control system must be designed to include outstations

when the software is initially configured. If outstations

are present then many of the builder program commands ask

additional questions to request the desired outstation to

operate upon. Apart from this additional question, there

is no difference between local development and remote

outstation development.

Originally, the action of updating on-screen monitors

was handled by junction contents requests made by the

building program. This was built into the building program

as a non time sliced task which allowed for continuous

update during all commands. When the outstation facilities

were added, the time delay added due to junction contents

- 57 -

requests being made over a communications link slowed down

all builder facilities. To overcome this, monitor updates

in both the main screen, and the window screen were still

handled by the builder, but the junction contents were

obtained by a separate task on the main task executive.

This allowed the builder to continue at full speed despite

communications delays.

Because of the presence of communications links, other

problems could be encountered. The most serious problem

occurs when there is a break in communications when for any

reason an outstation is taken off line. All of the

communications commands check for this and report when an

off line condition occurs. This will result in the off

line condition being reported in the building program

dialogue, and will cause a change in colour of the relevant

monitor display.

It was central to the design concepts of remote program

development that the system should be uniform. To this

end, no limits have been placed upon which junction in a

system can be monitored or changed even when displaying

monitors from a different outstation. It is therefore

possible to add a function into for example, outstation A,

and simultaneously see the effects in outstation B,

outstation C, and the masterstation.

- 58 -

15 Hardware

This project was envisaged to be applicable to a wide range

of situations. Obviously, aspects such as performance,

cost and hardware availability have to be considered, but

most importantly, anything developed must be expandable

from an inexpensive computer for simple simulation, to a

full and powerful computer used to control a large control

situation.

Fundamentally, the language is interpreted, which

requires a more powerful computer than otherwise to achieve

a satisfactory speed of operation. The complete system is

also very large in memory requirements (well over 100K

bytes of code), which precludes easy implementation on

anything smaller than a 16-bit computer.

The requirements for colour block graphics in a

computer which may require future upgrading, pointed

towards using a personal computer within a range of

compatible machines. The obvious choice was the IBM PC

which could later be upgraded to machines based upon the

80286 and 80386 microprocessors if more speed was

required. The development was all carried out using an

8086 based IBM compatible computer which was also used as

the target for the developed software. This configuration

allows easy upgrade to more powerful computers and

computers with memory management for large industrial

- 59 -

applications.

Great efforts were made to use the standard colour

graphics IBM PC type configuration without any form of

hardware modification. This ensures that the greatest

barrier to program portability is as small as possible.

The minimum configuration necessary is as follows:-

IBM PC/AT or compatible

Colour graphics adaptor and display

IBM/Epson compatible parallel printer

PCDOS or MSDOS operating system

To make use of standard software running alongside the

new language required that the PCDOS operating system and

IBM PC BIOS remain unmodified. To make the language system

run concurrently alongside an unmodified PCDOS based

computer proved to be one of the most difficult aspects of

the entire project.

- 60 -

16 Real-time executive

The heart of the software is a prioritised time slice

real-time multi tasking executive. The requirements of

such an executive can be summarised as follows.

1. "Concurrent" execution of a number of tasks.

2. One or two tasks operating system dependent.

3. Ability to allocate different percentages of the CPU

time to each task.

4. Ability to dynamically deactivate tasks and change

their CPU percentage use.

5. Ability to relinquish and exit a task under the control

of the task.

6. The executive must take the initiative to switch tasks

if the tasks themselves do not relinquish or exit.

7. Handling of high speed tasks with frequencies of around

5ms. This enables functions to handle fast inputs

without resorting to special drivers written in another

language.

To give some indication of what this executive had to

do, the following is a minimum list of tasks to be run:-

1. PCDOS operating system (as a task)

2. Building program

3. Function List (high priority)

- 61 -

4. Sub-lists (highest priority)

5. Monitor updates

If processing time is short, the list tasks must take

priority since they are executing the control algorithms.

An executive had to be developed which allows this priority

without completely depriving the other tasks of all

computer time.

16.1 Existing executives

Some real-time executives do exist which will do some of

the things required. They usually do not provide the

following features:-

1. Fine control of task execution time and priorities.

Most executives operate on a fixed 50Hz task switching

rate which is too slow for real-time process control.

2. Management of tasks which are not well behaved. That

is, tasks may revector interrupts or access hardware

directly. This is true for many of the current

compilers, interpreters and application programs and

would lock out an unwary executive.

3. Fast task switching. Executives sometimes provide many

facilities which are rarely used; this slows down task

switching and is exaggerated by the first item above.

Executives designed for 8 bit microcomputers are

unsuitable in that their addressing range is insufficient

- 62 -

for sophisticated tasks. The two larger tasks require in

excess of 100K bytes each and this will only rise in the

future.

16.2 Executive operation.

The complete software system is divided into a series of

modules or tasks. Each task is assumed to be running at

the same time as the other tasks and requires its own

stack.

The most significant problem however, was implementing

the Building program and another operating system

(PCDOS/P1SDOS) as tasks. Both of these assume that they are

the only tasks in the computer; PCDOS/MSDOS is a single

tasking operating system and the Building program was

designed using a compiler which assumed the presence of

PCDOS/MSDOS.

There were two possible implementations:-

1. A simple "round robin" executive program can run

through a table of tasks giving complete control to

each task in turn. It is the responsibility of the

task to return control back to the executive at regular

intervals to enable other tasks to run.

2. An interrupt driven executive which relies upon a

regular timer interrupt (say 600 times per second) to

asynchronously break execution of one task and resume

execution of the next.

- 63 -

The round robin executive is relatively easy to write

and would be less susceptible to programming errors. its

success however relies upon every task relinquishing

control on a regular basis back to the executive; this

requirement would be impossible to satisfy when running

existing single task PCDOS/MSDOS programs.

The interrupt driven executive has the considerable

advantage of allowing single task programs to be run,

without modification, in a multitasking environment. The

penalty for this is a more complex executive and the

provision of a separate high priority interrupt. Previous

experience with a round robin type executive confirmed the

desirability of an interrupt driven executive and so this

was developed.

16.3 Executive implementation.

The following list itemises the implementation of the real

time executive.

1. Each task has its own stack.

2. When a task is not running, the stack contains all of

the processor registers and the address of the next

instruction once the task resumes.

3. Several tables keep track of the tasks as follows:

3.1. location of top of stack.

3.2. Task maximum execution time before relinquish.

- 64 -

3.3. Task execution timer.

4. To initialise a task, its stack area must be loaded

with initial register contents and the task start

address.

5. To allow execution of a task, its Task execution timer

must be loaded with the maximum execution time

required.

6. To prevent task execution, the appropriate task

execution timer is set to 0.

This implementation was aimed at supporting the

language and its development tools. It was not intended to

be a general purpose executive with extensive resource

allocation, memory management and data access control.

16.4 Task Control

It is not normally necessary to remove a task altogether

since they can be effectively eliminated by preventing

their execution. This gives a very simple method of task

switching without complex task manipulation.

The complexity of often installing new tasks is not

required but the ability to exit a task to avoid time

wasting when there is nothing more to do is very

necessary. A task can prematurely relinquish control to

the main executive by simply "faking" the timer interrupt

using a subroutine call. This prevents time wasting when a

- 65 -

task is waiting for another event to occur.

If the task sets its own task execution timer to zero

before relinquishing, it is effectively disabling itself.

Dynamic priorities can be allocated by manipulating the

table of maximum execution times.

16.5 Executive Task Time Control Example

An interrupt rate of about 600Hz was chosen as a compromise

between time wastage due to frequent task switching and the

ability to handle one or two short duration tasks often.

The following example shows how task priority is

handled without locking out less urgent tasks. Assuming a

SOOHz interrupt rate for the executive, a total of 4 tasks

and the following maximum execution time table:

TASKl DW 100

TASK2 DW 2

TASK3 DW 10

TASK4 DW 10

Task 1 has the ability to run for 100/500 seconds or

200mS before control is removed. This will give

approximately 100/122*100% of the CPU time to that task

which gives it the highest priority. If Task 1 does not

require this amount of processor time, it can relinquish

back to the executive anytime before the 200mS is up.

Task 2 has the lowest priority and cannot run for more

than 4 ms at a time.

- 66 -

Tasks 3 and 4 have equal priority and cannot run for

more than 20mS at a time.

At an instant in time, the task execution timers may be

as follows:

TASK1 DW 25

TASK2 DW 2

TASK3 DW 0

TASK4 DW 10

This shows that task 1 is active and is 25% of its way

through its allotted 200mS time slot. Task 3 has been

disabled and will not run until a non zero value is loaded

into this table. Note that no task is ever locked out;

less urgent tasks simply run slower when more urgent tasks

require more time.

16.6 Integrating DOS

A disk operating system (PCDOS/MSDOS in this case) can be

run as one task. If the DOS is not re-entrant, as is the

case with MSDOS and PCDOS, then it is not possible to run

the same DOS as more than one task to create a multitasking

DOS.

This application requires 2 DOS tasks in addition to

the 6 other non DOS tasks. The following two different

approaches are possible:-

1. Two tasks running the same DOS but never concurrently.

- 67 -

Switching from one DOS task to the other occurs in a

synchronous way which enables the complete graphics

screen to be saved and a copy restored for the new DOS

task. This enables two DOS programs to reside in

memory and execution to be switched by a command from

the keyboard.

2. Two tasks running the same DOS concurrently. This

requires an additional screen and keyboard and

additional DOS handling routines for these devices.

During task switching, the vectors for the appropriate

screen and keyboard driving routines are inserted into

the operating system. This permits 2 users to access

the same computer at the same time (multi-user) while

other tasks are also running (multi-tasking).

A design decision was made very early on to run the

Building program or the operating system alone but never

both. To run both simultaneously would require re-writing

the BIOS and operating system to be re-entrant as well as

providing an additional keyboard and screen. This decision

greatly simplified the problems and allowed the use of an

unmodified operating system and a standard computer.

This decision can be defended by recognising that

development of the function list using the Building program

is a separate activity from developing the operator

interface. The operator interface would be developed using

existing languages and debugging tools which can run under

PCDOS/MSDOS. Switching from this development to the

- 68 -

Building program was implemented by detecting the pressing

of a "hot key" inside the keyboard interrupt handler

(Control L was used for this purpose).

16.7 Problems with DOS integration

A standard version of MSDOS or PCDOS was used on a standard

unmodified computer. This creates significant problems:

1. Conflict with the timer interrupt. This interrupt is

already in use and had to be integrated and speeded up

without changing real-time clocks and general operating

system timers.

2. Re-vectoring of interrupts (in particular, the timer

interrupt) by application programs running under DOS.

Considerable effort was given to this since it is

common practice for applications programs to revector

interrupts for their own purposes and even resetting

the interrupt rate for the timer. This of course will

have disastrous consequences for the real-time

executive.

3. Memory allocation. Loading and running programs under

a single task operating system usually means the task

assumes it has the entire memory of the computer at its

disposal. This is not the case with multi-tasking

systems.

- 69 -

17 Other Applications

The main use for this project is for real-time process

control of actual industrial plant. This does not mean

however that there are no other suitable areas for its use

which fall mostly in the field of simulation.

17.1 Control Simulation

Because of the extensive ability to change inputs and

monitor outputs, it is possible to set up and test

controllers without actual inputs and outputs. It is also

possible to simulate the operation of a particular process

with for example, filter, pure time delay and arithmetic

functions and attempt to control this process simulation

with other functions, for example, a 3-term controller.

Obviously the process simulator and the controller itself

need not be linear and could easily interact with other

programs running under the operating system task.

To assist in the development of functions, a full

graphics plotting program was designed to allow the

simultaneous display of any junction contents against

time. This program effectively acted as a 3 pen chart

recorder with facilities for changing scales, junctions

plotted and resolution. A brief description of the program

- 70 -

is given later.

The use of plant simulation and the plotting program

means that an unmodified IBM PC computer can be used to

test control algorithms.

17.2 Logic Simulation

Since many functions operate in an analogous way to actual

logic devices, networks of such functions could be used to

simulate real digital circuits. Obviously such a

simulation is limited to the functions available, but many

circuits can still be designed and the results either

monitored or plotted using the plotting program described

later. To illustrate the types of circuits possible, the

following list outlines some of the relevant functions:-

1. AND and OR functions (also simulates NOT,NAND,NOR)

2. Flip-Flop function

3. Latch function

4. Comparators

5. Programmable up/down counters

6. Decoder

This type of simulation does not take into account

practical electronics problems such as power supplies,

signal loading or propagation delay, but could be a useful

method for checking simple circuits.

- 71 -

18 Function Characteristics

Functions are defined as a header byte indicating the

particular function followed by a list of 2-byte junction

addresses associated with that function. When a function

executes, the function routine itself reads the addresses

of each of its junctions and uses these to point to data

for use as inputs and to point to junctions to store

results. A function is therefore a well defined program

module which processes data and exits pointing to the next

function in the list to be executed.

Functions can use any mixture of two types of junction;

analogue or digital. Once a function has been designed,

the type of each junction is fixed along with its use.

Function data tables are used to inform the building

program of the shape of a function, which junctions are

digital, which are analogue and where on the shape they are

positioned.

The currently developed functions were selected to

provide sufficient facilities for most process control

tasks without providing specialist functions which could be

easily generated by combining a few simpler functions.

Throughout the design, the functions were made as flexible

as possible so that a particular function could have many

uses. The AND function for example could be used as a

NAND, OR, NOR or any permutation of inverted inputs and

- 72 -

outputs.

All functions contained extensive error detection. All

input data is checked for valid range and all inputs

produce predictable outputs.

The following sections describe the operation and use

of the functions developed so far. Appendix B includes a

diagram for each function as it is drawn on the VDU

screen.

18.1 Digital Logic Functions

The most basic functions required for process control tasks

are those which process digital inputs and produce outputs

which depend upon logical combinations of these inputs.

The AND function is provided in 2 or 4 input form; any

other number of inputs can be produced by chaining together

several AND functions and connecting unused inputs to logic

one.

Because any connection to a digital junction can be

inverted, the AND function can be configured as an OR

function by inverting all inputs and outputs. This has the

conceptual problem of not "looking like" an OR to most

people so an OR function was also provided in a 2 or 4

input form.

A buffer function was included to allow junctions to be

copied with or without inversion into another junction.

Again, a 2 input AND could have been used for this but it

- 73 -

was such a common requirement that the clarity of a

dedicated buffer function was deemed worthwhile.

A 2 input exclusive OR function was included since it

provided a compact way of comparing two digital values.

This is very useful when, for example, feedback signals

from a valve positioner must be compared with the control

output to check for correct valve operation. The most

common use for this function is therefore in alarm

detection circuits.

The flip-flop function is a simple single bit memory

device with set and reset inputs. It operates in much the

same way as an SR flip-flop I.e. with the exception that

the undefined state when both the set and reset inputs are

active (logic 1), causes the output to be reset to logic 0.

As with its hardware equivalent, the output remains

unchanged when both the set and reset are at logic 0.

The latch function is a simple digital switching

function. The data input is transferred to the output only

when the control input is active otherwise nothing is

done. Since a junction retains the value last written into

it, this is another form of memory device.

18.2 Miscellaneous Digital Functions

This group of functions basically process digital

information but in a more complex way than the simple

digital logic group. They all include one or more analogue

- 74 -

junctions to either control digital data or produce digital

data.

The integrator function can be defined as follows; if

the input is not the same as the output for (integrator

constant) scans of the function then the input is

transferred to the output. The actual count junction

contains the running count value which is decremented to

zero.

In use, the integrator function would normally have a

constant loaded into the integrator count junction and the

actual count junction would be otherwise unused. The

effective action is to delay the change in the output until

the input is consistently present for the integrator

constant number of times through the function. This

provides a very useful filter for noisy digital inputs, the

degree of filtering being set by the contents of the

integrator constant junction.

The scanner function scans down (max) consecutive

digital junctions starting at the junction connected to the

input. The output is reset to 0 and the number of input

detected junction is reset to 0 unless otherwise stated as

follows:

1. If an input junction contains zero then the

corresponding disable junction is set to zero; scanning

continues.

2. If an input junction contains 1 and the corresponding

disable junction contains 0 and the accept input

- 75 -

contains 1 then the corresponding disable junction is

set to 1 and scanning continues.

3. If an input junction contains 1 and the corresponding

disable junction contains 0 and the accept input

contains 0 then the output is set to 1 and the input

junction number relative to the first input junction is

put into the number of input detected junction. No

more inputs are scanned.

4. If an input junction contains 1 and the corresponding

disable junction contains 1 then scanning continues.

This function is primarily provided to scan a

consecutive list of digital alarm junctions and report when

one is in an alarm condition. The input junctions must be

ordered in alarm priority; the number of input detected

junction is set to a non-zero value once an alarm

condition, which has not been accepted, has been found.

This value can be passed to an alarm display program to

produce a message to an operator.

A series of alarm conditions can be handled by this

function. The most urgent, non-accepted alarm will be

reported; any less urgent alarms being reported after

accepting the current alarm.

The only input and output functions available transfer

into and out of analogue junctions. Digital inputs and

outputs are usually collected into groups of 8 or 16 by the

hardware and must be ultimately input and output in these

groups by the software. To read digital inputs into

- 76 -

digital junctions requires two separate functions. The

first is an input function to bring normally 16 digital

inputs into one analogue junction. The second, a data

divider function, divides the binary contents of the input

junction into 16 consecutive digital output junctions. The

first output junction contains the least significant bit of

the input junction.

In a similar way, digital outputs are generated by the

control program as separate digital junctions. The logic

assembler function combines the contents of 16 consecutive

digital junctions into the analogue output junction. The

least significant bit of the output junction comes from the

first input junction. Once combined, an output function

may be used to drive the actual hardware outputs.

The final function in this group is the decoder

function. This takes an analogue junction and uses its

value to set one out of a consecutive list of digital

junctions. To be precise, limit consecutive outputs are

reset to 0 except for the one corresponding to the number

held in the input junction. If the input is greater than

the contents of the limit junction then there will be no

change in any outputs.

18.3 Analogue Functions

This is the largest group of functions and contains some of

the most sophisticated functions. They are characterised

- 77 -

by handling analogue junctions as inputs but most will

still use digital junctions to control the operation of the

function and produce logical outputs.

Three compare functions are provided; these test for

(i) A equals B,

(ii) A greater than B,

(iii) A greater than or equal to B.

By inverting the outputs of these three functions, the other

compare requirements can be provided:-

(iv) A not equal to B,

(v) A less than or equal to B,

(vi) A less than B.

As always, an output of logic 1 is regarded as true.

Three counter functions are also provided. These are

extremely versatile functions which may be used as timers,

counters or waveform generators. The counters differ in

the test used to compare the elapsed count junction

contents with the set count junction contents; this test

can be one of the three compare options as described

earlier for the compare functions.

Before examining the usefulness of the functions, their

operation must first of all be defined. All of the three

counters will increase the elapsed count junction value, if

the up input junction contains 1, or decrease, if the up

input junction contains 0, by one each time a positive

transition (0 to 1) occurs on the input. The

last-input-store is used to determine when a positive

- 78 -

transition occurs.

If the reset input is set to 1 then if the up junction

contains 1 the elapsed count is reset to 0 or if the up

junction contains 0 the elapsed count is loaded with the

contents of set count.

If the counter is counting up then the output will be 0

unless elapsed count is equal to the set count when it will

be 1.

If the counter is counting down then the output will be

0 unless the elapsed count is set to zero.

At this point, assuming the counter is counting up, one

of the three compare tests is performed and if the

comparison is true, the output is set to 1, otherwise 0. If

the counter is counting down, then the comparison is

between the elapsed count and zero which will set the

output as true otherwise the output is reset to 0.

If a fixed frequency oscillator is connected to the

input of a counter, a timer function is created. If the

output is connected back to the same junction as the reset

input, the timer will automatically reload and begin

again. If the counter/timer is allowed to free run, the

elapsed count junction value will "end stop" at either

-32768 if counting down or +32767 if counting up.

The counter functions may be used as general purpose

edge triggered programmable up/down counter/timers,

one-shot timers, ramp generators or sequence controllers.

Obviously, several counter functions may be cascaded to

produce a multistage counter/timer counting to almost any

- 79 -

value in any chosen units. For example, hours:minutes,

day:month:year, feet:inches and many others.

The switch function is a straightforward analogue

equivalent to the digital latch function; as such it shares

the same characteristics.

The multiplexer function is basically a data selector.

The contents of the select input determines which one of

the inputs will be transferred to the output. If the

contents of the select junction equals zero or is greater

than 10 then the output is not changed.

This function is valuable in processes which step

through many stages with different control parameters for

each stage. The stage number (from a stage counter) is

connected to the select input to give the desired data on

the output of the multiplexer. Multiplexers can be

combined to give 20, 30 or even more ways by adding

functions which subtract 10 between one select input and

the next.

The demultiplexer function is the opposite to the

multiplexer. The contents of the input junction are copied

into the output junction specified by the contents of the

count junction. A count value of 1 will transfer the input

to the output junction defined in the function; a count

value of n will transfer the input to the output junction

number + (n - 1).

No transfer will occur if the count junction contains 0

or greater than the contents of the limit junction.

The PID Controller function is a complete three term

- 80 -

digital controller function. It would normally be used

with a subtract function on its front end to calculate the

error input value from an actual value and a set point

value. The facilities include differential, integral and

proportional gain inputs as well as a dead-band control.

The control algorithm uses the well recognised

approximations to differentiation and integration in the

discrete time domain. The equation realised in the

function is:-

dV = P[(En - En-1) + lEn + D((En-En-l) - En-1 + En-2)]

Where dV = change in output value

P = proportional gain

I = integral

D = differential

En = present error

En-1 = previous error

En-2 = previous to previous error

In order to allow more precise control of the P,I and D

terms, these are stored in analogue junctions and are

assumed to be to 2 decimal places. Using this scaling and

rearranging the equation to simplify the mathematics

produces the form of the equation actually implemented in

assembly language.

Vn = Vn-1 + P/100[D*(En - 2*En-l + En-2) + (100 + I)En - 100En-l]

where Vn = new positional output

Vn-1 = previous positional output

The ranges of the various values associated with the three

- 81 -

term controller function are as follows:

Error input +/- 32767 range

Positional output +/- 32767 range

Proportional gain +/- 327.67

integral +/- 327.67 sees/list rate

differential +/- 1 / 327.67 sees/list rate

dead band +/- 32767 in units of input

Differential time constant = D * dT / 100 Sees,

Integral time constant = (dT /I) * 100 Sees

Where dT = list period.

list rate = the number of times the function is

executed per second.

The error input would normally come from a subtract

function which calculates (Set_point - Measured_input).

Non-linear controllers can be generated by operating upon

this error term before it is passed into the PID function.

If the dead band value is greater than the error input,

an error value of zero is used by the PID function. If

this is not the case, the dead band value is subtracted

from the error magnitude to produce the error used in the

calculation.

The outputs labelled -1, -2 and f are used for

temporary storage by the function; they are not normally

connected to any other function. The outputs -1 and -2

hold the previous error and the error before that

respectively. The output "f" holds a signed fractional

output after correcting for rounding in the positional

- 82 -

output.

The output and all internal calculations are limited

upon overload. The output saturates at about +/- 32767 and

no integral windup is produced.

An incremental type output can be produced by loading

zero into the PID output and the n f" output immediately

before executing the PID function. A 2-term controller can

be formed by setting the differential gain to zero.

The filter function provides spike rejection and a

first order digital filter on an analogue input value. The

first operation is to apply the following digital filter

algorithm to the new input value.

Ln = ((T/10000) * Ln-1) + ((1 - T/10000) * I)

where I = input value

Ln = new last output value

Ln-1 = previous last output value

T = "time constant" stored to 4 decimal places

The actual time constant is related to the value T in the

time constant junction by

(T/10000) * dt
Time constant = -- seconds

1 - (T/10000)

where dt is the function list execution period in seconds.

Rather than the new value Ln being directly transferred to

the output junction, a simple spike rejection algorithm is

applied. The value Ln is rounded and copied into the

output junction only if the absolute difference between the

new value and the last output is less than the contents of

- 83 -

limit the junction.

If the limit value is less than or equal to zero then

the above spike rejection algorithm is not performed and Ln

is rounded and copied directly into the output junction.

If a positive limit value is used then the output will

not be updated until the filtered value falls within a band

around the existing output; the width of this band being

+/- limit.

To preserve accuracy, the value of Ln is calculated to

32 bit precision and is saved to that precision between

function executions in the L.S. and M.S. last output

junctions attached to the function.

An improved algorithm for spike rejection and filter

operation has been investigated and tested. This has been

described in a paper by the author.

The delay function produces a pure time delay between

its input junction and its output junction. The time delay

in units of the list period is determined by the contents

of the junction connected to the T input. The input

junction is the first of (T) + 1 consecutive analogue

junctions which are used to store the input samples before

being fed to the output. The sequence of (T) + 1 junctions

starting at the input junction is in effect a tapped delay

line.

If (T) is greater than 100, the function will have no

effect and the output is not changed. If (T) is less than

or equal to zero, the output is set to the input with no

delay.

- 84 -

18.4 Maths Functions

A few mathematical operations are commonly required in

process control applications but many more may be required

on rare occasions. The fundamental mathematical operation

such as add, subtract, multiply and divide have been

provided as functions along with conversion between binary

and decimal. A general purpose define function is provided

for less common calculations. In general, most

mathematical operations use signed 2 byte integer values

which limit accuracy to between +32767 and -32768. All

possible overflow and underflow conditions are trapped by

the functions and result in outputs limiting to +32767 or

-32768 rather than an unpredictable output value.

The add function and the subtract function are

straightforward signed arithmetic calculators whose outputs

are limited to +32767 or -32768 upon overflow or

underflow.

The abs subtract function calculates the difference

between the two input values as well as producing a sign

indicator into a digital junction. The -ve result junction

will contain logic 1 if input B is greater than the value

of input A.

The multiply function and the divide function differ

from other maths functions in that they can handle numbers

having 32 bit precision. The multiply function produces a

- 85 -

32 bit result and the divide function will take this 32 bit

result as one of its inputs. This expansion to 32 bit

precision allows accurate scaling of values to take place

by first multiplying by a constant and then dividing by

another constant. Without this, scaling of the form shown

below could be very inaccurate,

output = input * X/Y

Because analogue inputs often have to be scaled by

non-integer constants, the ability to retain the

intermediate calculated value of a scaling operation to its

full precision minimises any errors.

If only 16 bit numbers are required, the most

significant output of the multiply function can be ignored

and the most significant input A to the divide function can

be set to 0.

The divide function is more complex in its operation

than the multiply function. Signed division is performed

of a 32-bit number A by a 16-bit number B giving a 16-bit

result. Division by 0 or a result larger than a signed

integer will give a result and remainder of either 32767 or

-32768.

The remainder ALWAYS has the same sign as A. This

condition will require consideration when a remainder is

generated since there are mathematically 2 correct

result/remainder combinations possible.

There is often a requirement to handle Binary Coded

Decimal (BCD) numbers particularly with respect to inputs

- 86 -

and outputs. Some input devices present their values in

parallel BCD form which will require the dec to bin

function to convert a 4 digit packed BCD input to a binary

output suitable for other analogue functions

The complementary bin to dec function will convert a

binary number into a packed 4 digit BCD number in its

output junction. Since this function would commonly be

used to interface to a 7 segment LED type display, a method

for leading zero suppression was included. The input is

converted to Binary-Coded-Decimal packed into the output

junction as 4 digits. The contents of the leading-zero

junction is inserted in place of leading zero's in the

output.

An -ve input is converted to +ve. An input greater than

9999 is still converted but the most significant digit is

lost.

The define function provides provides one of a

miscellaneous set of arithmetic conversions which is

specified by the contents of the function-type junction.

The function types may be expanded but include:

- 87 -

function type

0

1

2

3

4

5

6

7

8

function

no action

SIN

COS

TAN

ARC TAN

natural LOG

exponent

square root

read memory

input range

+/- 3.100 rad

+/- 3.100 rad

0 - 1.560 rad

+/- 320.00

1 - 32000

0 - 4.500

0 - 32000

0 - 65535

output range

+/- 1.0000

+/- 1.0000

+/- 320.00

0 - 6.300 rad

0 - 4.500

1 - 32000

0 - 180.00

0 - 65535

18.5 List Control Functions

Normally all functions in the function list are executed in

order on a periodic basis. It is possible, and sometimes

desirable, to break this linear operation and conditionally

skip some functions, or execute a group of functions as a

subroutine.

The jump forward function takes 2 parameters, a digital

control input and a page number input. If the control

junction contains zero or the contents of page-number is

less than or equal to the current page or greater than the

maximum number of pages + 1 then no action is taken by this

function.

If the control junction contains 1 then the next

function to be executed will be the first function in the

specified page.

If the control junction contains 1 and the contents of

- 88 -

the page-number junction equals the maximum number of pages

+ 1 then the current execution of the main list is

terminated.

The subroutine function may be used in conjunction with

the return function to execute the same group of functions

several times. If the control junction contains zero or

the contents of page-number is less than or equal to the

current page or greater than the maximum number of pages or

subroutines are already nested 10 deep then no action is

taken by this function.

If the control junction contains 1 then the next

function to be executed will be the first function in the

specified page.

The return function has only one control input and will

only have an effect within a subroutine. If the control

junction contains zero or if there was no previous

subroutine function which has not been returned then no

action is taken by this function.

If the control junction contains 1 then the next

function to be executed will be the function just after the

last subroutine function executed.

The digital offset function and the analogue offset

function are primarily used for multi-plant control as

described in section 13. The contents of the offset-value

junction will be added to all digital/analogue junction

reference numbers of every function after this function

until either another digital offset function is executed or

the main list terminates.

- 89 -

18.6 Input/Output Functions

Only the basic hardware input and output functions have

been developed. The input functions enable the input from

a specified 8 bit port (1 byte input function) and the

input from a specified 16 bit port (2 byte input

function). The 1 byte output function puts the least

significant 8-bits of the value junction into the specified

port, and the 2 byte output function puts the entire

16-bits of the value analogue junction into the specified

port.

Combinations of these 4 functions allow most inputs and

outputs to be handled. Special input/output requirements,

for example, to handle a multichannel analogue input

system, would require dedicated driver functions to be

written. This is the area where the software is very

dependent upon the hardware being used.

Two other functions exist within this group. The

constant function puts a signed decimal or hex number into

an analogue junction. This function is unusual in that it

is the only function to contain data as part of the

function definition. Constant values are created by

placing a number into a junction by the constant function;

this junction can then be used as a constant by other

functions.

The BASIC array function is specifically designed to

- 90 -

directly access arrays of numbers set up within a

concurrently executing program running under the Microsoft

Basic Interpreter. This function is able to access a

specified single dimension integer array defined in the

Basic interpreter program. A Basic program must dimension

suitable arrays; no action is taken by this function if

suitable arrays have not been defined.

An array number of n (less than 256) will access the

n'th integer array to be dimensioned in the Basic program.

The contents of (entry) element will be placed in the

output.

If the write control input is set to 1, the input is

put into the array and also placed into the output.

If the array number is greater than 255 then the

contents of the array number junction is considered to

contain the address of an array in the data segment. This

allows data arrays to be manipulated by the functions

without access to a Basic program.

- 91 -

19 User Interface

The interface between the computer and the user exists at

two distinct levels. The "programmers' view of the control

system is provided by the building program which allows any

part of the control system to be monitored and changed.

The user or operators view of the control system must be at

a much higher level without the detailed low level

abilities provided by the building program. This operator

interface must reflect the application and provide

facilities such as parameter display and change using

parameters familiar to the operator.

Although this project does not attempt to develop an

operator interface, it must provide facilities to allow

another program to request and modify parameters held in

junctions. Partly to test this ability and to provide a

convenient method for testing functions and systems, a

multi-trace plotting program was developed to run as an

operator interface.

The plot program provides an on-screen, 3 parameter

plot of value against time in much the same way as a

conventional hardware plotter. Any combination of 3

analogue or digital junctions can be plotted simultaneously

in real-time with control over the value and the time

axis.

The plot program has the following features:-

- 92 -

1. Display of up to 3 junction values using different

colours for each plot.

2. Display using the 4 colour medium resolution screen or

the 2 colour high resolution screen.

3. The X span can be set in units of the function list

execution period.

4. The Y axis upper and lower limits can be set for

analogue junction display.

5. The display can be cleared and the beginning of a plot

synchronised to a change in value in one of the

junctions being plotted.

6. Any junction can have its actual value changed.

7. A title line can be defined to replace the list of

command options line. The screen can then be printed

on a standard dot matrix printer with the different

colours being represented by different dot patterns

making up the lines of the plot.

The interaction between the plot program and the user

is similar to the function building program. All commands

are initiated by pressing one letter or number key; any

further information is prompted for by an appropriate

message printed on the bottom line of the display.

The plotting of values to the screen is synchronised to

the execution rate of the function list. This is achieved

by adding a function which simply puts a logic 1 into

digital junction 9. The plot program waits until it detects

a logic 1 in this junction and then clears it to logic 0

- 93 -

and plots the contents of the 3 junctions onto the screen.

This technique ensures that the most efficient use is made

of the screen without losing any changes in the value

contained in a junction.

The plotting program enabled the operation of the

functions to be accurately monitored in time and proved to

be invaluable when testing complex functions such as the

3-term controller.

19.1 Plot Program language selection

During this project, compiled Basic was used as the high

level language with any low level routine written in 8086

assembly language. The choice of high level language was

made mainly from the point of view of availability and the

provision of suitable language facilities for graphics.

After the plot program was developed using compiled

Basic, a Turbo Pascal compiler was purchased. This version

of Pascal provided sufficient graphics facilities to permit

a second version of the plot program to be written in

Pascal. This would allow a direct comparison to be made

between the two languages with particular interest in their

relative speeds of execution. The pascal version was

designed to provide identical facilities to the Basic

version so that a direct comparison could be made.

When the two versions were compared with respect to

their speeds of plotting, the Basic version executed about

- 94 -

twice as fast as the Pascal version. This speed difference

in favour of the Basic program was interesting but probably

said more about the particular compilers used than any

fundamental speed differences between the two languages.

Nevertheless, this comparison along with inspecting the

actual assembly language produces by the Basic compiler

proved that the original language choice was satisfactory

from an execution speed point of view.

When comparing the source code for the Basic and the

Pascal versions, the actual length of the Pascal program

was nearly three times the Basic source program length.

This fact however, along with the use of named procedures

and local variables resulted in a more understandable

Pascal listing as compared with the rather compressed and

difficult to follow Basic listing.

- 95 -

20 Performance Evaluation

The design of the complete language system was orientated

towards its use as a real-time control language in the real

world. It is very important that real-time events should

be responded to quickly without obvious side effects such

as the slowing down of operator interfaces or other aspects

of the control system.

The design of the function interpreter, the functions

themselves and the real-time executive were optimised for

maximum speed of execution. Assembly language was used for

these three sections of the program and a great deal of

effort was put into optimising the assembly language code

to increase execution speed. Since the function building

program is a lower priority task than the control tasks,

compiled Basic was used for ease of development and

portability.

In order to be able to estimate the performance of the

language, several measurements were taken to determine how

long various parts of the program took to execute,These

measurements were all taken on an IBM AT computer running

at 6 MHz; this is certainly not the fastest possible

machine that can run the system but it does represent a

practical compromise between cost and speed.

The first performance parameter measured was the

overhead imposed by the real-time executive alone. To

- 96 -

measure this overhead, a system was set up using no

functions and a simple assembly language timing program was

run under the operating system. The time taken by this

timing program alongside the executive was compared with

running the same program on the same computer running PCDOS

alone. From these two measurements, the percentage of

microcomputer time used by the real-time executive with all

tasks enabled but not executing functions was determined to

be 7.3%.

Because the functions are interpreted, their speed of

execution has a major impact upon the size of control

system that can be run. In some cases the actual execution

time taken by a function depends upon the contents of

junctions connected to that function. For example, if the

reset input on a counter function is set to logic 1, the

function will take different actions to those performed if

the reset input is set to logic 0.

The execution times for the most commonly used

functions were measured using a more direct method than

that used to estimate the overhead of the real-time

executive. The building program provides a command

(command T) which displays the list period in units of

milliseconds. A group of functions was built in an

otherwise empty system to permit a function to be executed

100 times. The time taken by these functions alone was

measured using the T command and subtracted from the time

displayed when a function to be tested was added within the

loop. This gives a sufficiently accurate execution time

- 97 -

for a function which includes any overhead in scanning down

the list of functions. The approximate execution times for

some of the functions running on a 6MHz IBM AT computer are

as follows:-

Function Type Execution Time (microseconds)

2 i/p and 40

flip-flop 40

integrator 85

compare = 50

counter = 100 to 125

switch 25 to 40

multiplexer 50

PID controller 225

filter 140

add 50

multiply 60

divide 90

bin to dec 90 to 175

digital offset 25

2 byte input 35

constant 17

Some of the above functions do not have a fixed execution

time. This is because functions such as the counter or the

switch perform different actions depending upon the

contents of one or more junctions.

It is difficult from these figures alone to estimate

the overall efficiency of this language. To give some idea

- 98 -

of execution time in a practical system, the list period

for all of the pages shown in Appendix C is less than

4.5mS. This indicates that in normal process control

situations, the execution speed is more than sufficient.

The only times when a faster execution speed would be

necessary is when very many fast events (less than 10ms

response time required) must be handled or if the control

system is very large. Many fast events may have to be

handled by a dedicated assembly language written task

running under the real-time executive but this should

always be avoided if possible.

A very large control system could be divided up into

sections relating to the response time required and each

section run at different rates. Alternately, a more

reliable system may be generated by running parts of the

control system on separate intelligent outstations linked

to a masterstation. This would not only increase the

maximum size of system but would also increase the overall

reliability.

One final method of increasing the speed and size of

control system possible is to use a faster microcomputer.

The figures for execution speed were taken using a 6 MHz

IBM AT computer which uses an 80286 microprocessor. The

same software can be run on the more recent and powerful

80386 computers which would improve the overall speed of

everything by a factor of between 3 and 5.

- 99 -

References

1. Wyss, C. R. "A Conceptual Approach to Real-Time

Programming", pp 452-462.: Byte May 1983.

2. EEUA "Guide to the engineering of microprocessor based

systems for Instrumentation and control". Engineering

Equipment Users Association 1981.

3. IBM "PC Technical Reference". IBM Corporation 1983.

4. IBM "BASIC Reference". IBM Corporation 1984.

5. IBM "Disk Operating System Technical Reference". IBM

Corporation 1984.

6. Rector, R. and Alexy, G. "The 8086 Book".

Osborne/McGraw Hill 1980.

7. Transmitton Ltd. "Energy Savings and Control in

Malting". Symposium: June 1981.

8. McCabe, M. A. "Microflex Process Control System

Handbook". Transmitton Ltd.: August 1981.

9. Roach, N. "Concurrent Programming". EXE Vol 1 Issue 7

pp 12-22. : 1986.

10. King, R A. "The IBM PC-DOS Handbook". Sybex: 1983.

11. Norton, P. "Inside the IBM PC". R. J. Brady: 1983.

12. Cargill, C.G. "Interfacing Microsystems with people".

Colloquium "The engineering of industrial

Microprocessor-based systems - the users' point of

view". March 1981.

13. Negretti and Zambra. "MPC80 Specification TS 7399-23".

1982.

14. GEC Industrial Controls Limited. "GEM 80 T100". 1981.

15. Foxboro. "Display Block Configuration". September

1983.

16. McDermott, R. M. "The design of an advanced Logic

Simulator", pp 398-426.: Byte April 1983.

Appendix A

Development Facilities

This appendix defines the setup and use of the full

real-time system; this includes the format, function and

use of all commands within the building program.

Table of Contents

1 Entry and exit 1

1.1 Signing on 2

1.2 Quiting 3

2 Wrong commands and mistakes 4

3 Cursor movement 4

3.1 Using the keyboard 5

3.2 Using a joystick/mouse 5

4 Outstations 6

5 Loading pages 6

5.1 What is loaded? 7

5.2 Using pages from a library 8

6 Saving pages 8

6.1 What can be saved? 9

7 Erasing pages 9

8 Loading a new function list 10

9 Window into another page 10

10 Inserting junctions 11

11 Inserting functions 12

11.1 Function selection 12

11.2 Function numbering 13

11.3 Drawing connecting wires 14

11.4 Commands available when connecting

functions 15

11.5 Selections after connecting 15

12 Inserting comments 16

12.1 Changing colours 16

13 Monitoring junctions 18

13.1 On screen junctions 19

13.2 Off screen junctions 19

14 Offsets 20

15 Displaying, changing and blocking junctions

and monitors 22

15.1 Displaying a junctions contents 22

15.2 Changing the actual value 23

15.3 Blocking and unblocking 23

16 Renumbering junctions 24

17 Junction cross referencing 24

18 Clearing all junctions 25

19 Changing and rewiring functions 26

19.1 Changing inversions 26

19.2 Changing the execution order 27

19.3 Changing the constant function value 27

19.4 Changing a connection 27

20 Deleting 28

20.1 Deleting functions 29

20.2 Deleting junctions 29

20.3 Deleting junction numbers 30

20.4 Deleting monitors 30

20.5 Deleting characters and words 30

21 Printouts 31

21.1 Page printouts 31

21.2 Cross reference printouts 32

22 Blocked junction information 32

23 List execution information 33

23.1 list execution times 33

23.2 List catch-up counters 33

23.3 Function list page length 34

24 Memory display 34

25 Colour - monochrome displays 35

Appendix A

Development Facilities

1 Entry and exit

When a system is initialised, the function lists are loaded

into the masterstation and, if relevant, the outstations.

Control is then returned to DOS which is then operating as

a task under the main task executive. A batch file may be

used to initiate a power up sequence and if required, the

Basic interpreter may be loaded and automatically start a

Basic program. If an attempt is made to break a Basic

program without being signed on with an access code greater

than 2, it is ignored. A valid sign on code must be given

to gain entry into the development program; an incorrect

code will return the operator back to the Basic program.

A typical MSDOS batch file which enables a system to

load and execute a Basic program called EXAMPLE.BAS could

be:

BUILDER

INIT

BASICA EXAMPLE

If only one VDU is in the system, the engineer must

press <control-l> to switch between Basic and the

- Al -

development program; a correct sign-on code must be given

before program changes can be made.

1.1 Signing on

In a single VDU system, the operator is taken into the

development program by pressing <control-l>; <control-l>

will also return back to Basic/DOS. The first action within

the development program must be to sign on.

There may be many sign on codes in an application; each

sign on code is associated with an access code between 1

and 3 (or 9 for debug access). This access code determines

the facilities available under a particular sign on code as

outlined below:

Access code 1 Commands H, I, L, M, O, Q, T f D r (list

only), W, X, ?, text entry.

Access code 2 As code 1 and commands B, C (actual value

only), D (comments and monitors only), R.

Access code 3 As code 2 and commands A, C, D, E, F, J, K,

N, P, S.

Access code 9 As code 3 and commands (for debug purposes

only) G, V, Y, Z.

To summarise:

Access code 1 Permits pages and junctions to be displayed

only.

Access code 2 Also permits junction contents to be

- A2 -

changed.

Access code 3 Also permits functions to be changed and

saved and the BASIC interpreter program to

be stopped and changed.

The sign on code may consist of up to 40 alphanumeric

and punctuation characters and is not echoed on the

screen. The codes themselves are stored in a simple text

file called SIGNON.DAT held on the system disk. This file

may be edited to contain one access code and sign on code

per line - there is no limit to the number of codes in

use.

After successfully signing on, the date, time and sign

on code of the user is recorded in a text file called LOGIN

on the system disk.

1.2 Quiting

When the main command prompt is displayed, a user may quit

the development program by typing <q>. The user is given

the opportunity to not quit and to save the current page if

it has not been saved. After successfully quiting, the

date and time is recorded in a text file called LOGIN on

the system disk and the user is returned to the Basic

program/DOS.

Note that monitors present on the screen are still

updated even when the operator is not signed on. A page

containing important monitors may be left on the screen

- A3 -

after quiting which provides a simple display which may be

viewed by an operator but not changed.

2 Wrong commands and mistakes

Most commands may be aborted by pressing <Esc>; this will

restore the situation just prior to entering the command.

If this action causes a significant loss of data (such as

during the entry of a function) then an option is given to

the user to not abort. If an abort is requested after

deleting something/ then the abort command is refused (for

example, after deleting a function connection where an

abort would leave the function incompletely connected).

When invalid commands or data are entered, a short

"beep" is sounded as a warning.

During data entry, the delete key may be used to delete

the last character entered. If more characters are entered

than the program expects in the reply, all characters are

deleted and a "beep" is sounded. If a number is requested,

pressing a non-numeric character will have no effect.

3 Cursor movement

The keyboard and/or the joystick/mouse may be used to move

- A4 -

the cursor on the screen; the cursor cannot be moved beyond

the screen boundaries. In general, anything that is to be

placed onto the screen is positioned with its top left

corner on the cursor position.

3.1 Using the keyboard

The following keys move the cursor:

up arrow up one character

down arrow down one character

left arrow left one character

right arrow right one character

home top left corner of the screen

End bottom right corner of the screen

3.2 Using a joystick/mouse

The joystick/mouse may be used to move large distances on

the screen. If cursor movement keys are pressed, the

joystick/mouse no longer represents the true position of

the cursor; the joystick/mouse will regain control again

once it is moved.

- A5 -

4 Outstations

If the system has been configured to contain outstations

then there will at times be additional questions to select

the outstation to be used for a particular command. The

system held in memory in the same computer as the

development DRAW program is designated the Masterstation;

other systems which communicate over a link are called

outstations and are individually identified by a single

letter from 'A' to the maximum number of installed

outstations.

If during communications with an outstation a reply is

not received from that outstation then the outstation is

regarded as off-line. In most instances this will not

cause any loss of data at the masterstation or any mismatch

of list data between the masterstation and the outstation

except in some unavoidable and rare circumstances when a

non-reversable change is made that cannot be communicated

down to the outstation.

5 Loading pages

When the main command prompt is displayed, pressing <1>

will load a new page from disk. If the current page has

- A6 -

not been saved since changes were made to any function,

then a warning message is given and an opportunity to exit

from a page load.

If the selected page does not exist on disk then the

screen is cleared and any new functions entered will be

placed into the selected page of the list. This is the

normal way of beginning a new page.

If any functions are in the list under the selected

page, these are deleted and replaced with the new functions

from disk.

5.1 What is loaded?

There are 4 files on the data (B) disk for each page; these

are as follows where 7? indicates a page number:

PS77.DAT image array of the screen (4050 bytes).

PA77.DAT memory image of SCRN array (4050 bytes).

PM77.DAT memory image of MONITOR array (210 bytes).

This will still be present even if no

monitors were on the screen.

PF77.DAT memory image of page 7? in the function

list. This will not be present if the page

has iiever contained any functions.

If the page is part of an outstation then the file name

will have the outstation letter (A-Z) appended to the end

of the page number.

- A7 -

5.2 Using pages from a library

When a page is loaded, only that page in the function list

is affected. It is possible to load a page from a

different system without deleting part of the current

program provided the selected page is unused. If it is

used, then after loading, the new page can be saved under

its new page number and the displaced page reloaded from

disk.

It is possible to develop a collection or library of

useful pages which may be selectively loaded into a

system. After loading, the junction numbers will have to

be changed to link into the existing function list.

6 Saving pages

Pages may be saved to disk in drive B using command <s>

when the main command prompt is displayed. Normally the

page is saved under the current page number and outstation,

but it is possible to save under another page number for

the purposes of library creation and copying pages.

WARNING - if the page number or outstation is changed

before saving, the functions do not exist in that page in

the current list in memory.

- A8 -

6.1 What can be saved?

Up to 4 files may be saved on disk (see previous subsection

titled "What is loaded?").

If monitors are present on the screen, an option is

given to delete these before saving. If the page is being

saved under a different outstation then the monitors will

be deleted anyway.

A file containing the portion of the function list will

only be saved if there are functions in that page in the

list; if a file containing functions for this page is

already on the disk, it will not be deleted or reloaded.

7 Erasing pages

Typing <e> when the main command prompt is displayed will

erase the current page. The screen will be cleared along

with all monitors and the functions in the current page in

the list will be deleted. Any information held on disk

under the current page is not deleted and may be reloaded

if necessary.

- A9 -

8 Loading a new function list

Typing <n> when the main command prompt is displayed will

erase all pages currently held in the function list and

load a complete new set of pages from disk.

If outstations are present then a sequence of questions

are asked whether to load each particular outstation.

Before loading, the main function list and the

sub-lists are stopped by blocking analogue junctions 1,2

and 3 to zero. To restart the new system, these must be

unblocked using command <u> or by selectively clearing the

blockages using .

9 Window into another page

As well as the current page being displayed, another page

may be loaded and viewed along with its monitors. This

'window' page is selected by pressing <w> when the main

command prompt is being displayed and does not change any

information in the currently active page. The window page

can only be viewed and any changes are not permitted

without first loading it in as an active page.

To load a new window page, select <w> followed by <1>.

This will initiate a sequence of questions to select the

- A10 -

desired page in the same way as active page loading.

Selecting any other command except <1> whilst a window page

is being displayed will be ignored and will cause the

active page to be displayed.

Using the window facility enables up to 40 monitors to

be viewed without reloading pages. The window page can be

any page in any outstation using, if necessary, different

offsets as defined when the page is loaded.

10 Inserting junctions

Typing <j> when the main command prompt is displayed will

place a junction on the screen at the cursor position. It

is not possible to place a junction which is not in the

current outstation being displayed. The following sequence

of questions will be asked:

1. "Type <a> for analogue or <d> for digital junction".

Any other key will give an error message.

2. "Enter analogue/digital junction number". Pressing

<enter> only, will cause the next number after the last

reply to be selected. A warning message is given if

too large a number is entered. Since the warning

message gives the maximum number of junctions of that

type in the system, entering of a large number may be

used to determine the size of the junction data-base in

- All -

any particular system.

3. "Put cursor to display point for junction". The

junction number will be placed on the screen at the

cursor position when any key is pressed. There must be

sufficient empty screen for the number on and to the

right of the cursor. Always try to place the number

close to the associated junction symbol.

11 Inserting functions

Typing <f> when the main command prompt is displayed will

begin a sequence of questions to place a function on the

screen and connect it up to junctions. The function is not

put into the function list for execution until it is

completely wired-up.

11.1 Function selection

A function may be selected using one of 2 methods:

1. Type the function name in response to the "Name of

function " question. Only part of a name has to be

given since a search is made of the list of function

names for a match between the name entered and all or

part of each function name; the first match found will

- A12 -

decide the function. For example, typing "and" will

select a "2 I/P and" function since this is a match and

it occurs before "4 I/P and" and "sample and hold".

2. Pressing the <enter> key in response to the "Name of

function" question will display a complete list of

functions available. To select a function, enter the

number of the function which is displayed to the left

of the name.

11.2 Function numbering

Each function is assigned a reference number which is

displayed at the bottom right of the function; this number

indicates the execution order of the function in the

function list. Normally, functions are numbered in a

logical order from input to output such that an input

signal is processed as fast as possible (i.e. one scan of

the function list) to give a new output.

A function may be inserted into a page as the last

function executed by responding to the "Enter the function

execution order" question with key <enter>. A function may

be inserted between existing functions by entering the

desired reference number. If a function is inserted into a

page containing other functions then the reference numbers

are changed for every function after the new one.

- A13 -

11.3 Drawing connecting wires

Once a function has been drawn onto the screen and

numbered, it must be completely wired up before any other

operation can be performed. Each input/output connection

of the function must be joined by a line to an appropriate

junction (analogue or digital); the connection order is

from the top to the bottom and from the left to the right

of the function. A flashing ^diamond" shape indicates the

I/O function point currently being connected.

A line is drawn by positioning the cursor and pressing

any key except <Esc>, <j> and <d>. A line is automatically

drawn from the last line end to the cursor subject to the

following rules:

a line will first of all continue in its original

direction as far as necessary.

The additional section of line can have a maximum of

one corner. An exception is the very first section of

line connected to the function which may have two

corners under certain circumstances.

The new line may cross over an existing line or

character but it may not cross over more than one

adjacent line or character.

If a blockage is detected (i.e. more than one adjacent

line or character, a function, junction, monitor or

word), a Beep will sound and no line will be drawn.

- A14 -

An I/O point on a function is considered connected when

it is linked into the correct type of junction.

11.4 Commands available when connecting functions

The commands available during the connection of a function

permit:

new junctions to be inserted (<j>)

a word, monitor, junction or junction number to be

deleted (<d> over a word, monitor, junction or

junction number)

the line drawn so far to be deleted (<d> anywhere

else)

<Esc> gives the option to delete the entire function

drawn so far along with its connections.

Only a junction of the correct type for the I/O

connection may be inserted using the <j> command.

11.5 Selections after connecting

If the I/O connection is to a digital junction then an

option is given to invert the connection or not.

The constant function is the only function which is not

completely connected by linking to junctions. This

function requires a constant value to be entered in decimal

or hex in response to the appropriate question presented

- A15 -

after connecting the functions' only I/O point. The format

of the number displayed in the function is the same as the

format that was used to enter the number (i.e. decimal or

hex).

12 Inserting comments

Characters/ words and graphics symbols may be put onto the

screen by first of all entering the text-entry-mode. To

enter the text-entry-mode from the command-mode, press the

<Ins> key once; press this key again to return to

command-mode. An alternative to the <lns> key is to press

control-w.

In the text-entry-mode, the cursor may be moved in the

usual way; characters are inserted at the cursor position

provided the position is currently occupied by a blank or a

character. Existing characters can therefore be

overwritten if required.

Graphics characters are produced by generating ASCII

codes greater than 127 from the keyboard.

12.1 Changing colours

Comments may be entered using any foreground, background

and surrounding colour combination; foreground colours may

- A16 -

be highlighted and/or flashed.

To change the foreground colour, press control-f in the

text entry mode. The program will prompt for a code number

for the new colour where 0 is black and 7 is white. Add 8

to obtain highlighted versions of these colours. Add 16 to

obtain a flashing character.

To change the background colour, press control-b in the

text entry mode. The program will prompt for a code number

for the new colour where 0 is black and 7 is white.

To change the surround colour, press control-s in the

text entry mode. The program will prompt for a code number

for the new colour where 0 is black and 7 is white. Add 8

to obtain highlighted versions of these colours.

Pressing control-k in the text entry mode will preset

the foreground and background colours to the same colours

used to display monitor actual values. These colours

should be used to display the numerical contents of

constant junctions next to the relevant junction; this

helps in the understanding of circuits.

Pressing control-n in the text entry mode will preset

the foreground and background colours to their normal or

initialised state.

The selected colours will remain in operation for all

comments until they are changed again.

- A17 -

13 Monitoring junctions

A monitor is a real-time display of a junctions' contents,

both actual and blocked. Any junction may be monitored in

the masterstation or any outstation.

The display may be in decimal or hex; this is selected

using the output radix toggle «i>) command when the cursor

is over the monitor value block or the monitor junction

number. A decimal number is displayed as a signed value

with up to 5 digits; a hex number is displayed as an

unsigned value between OH and FFFFH. The <i> command

operates as a toggle between decimal and hex.

Up to 20 junctions may be monitored on the screen at

any one time. These may be displaying the contents of

junctions on the screen or may be monitor-junctions set up

to display the contents of off-screen junctions.

Both types of monitor display share a common format to

display the actual and blocked junction contents. The

values are contained within an inverse video block 2 lines

high by 1 wide for a digital junction and by 6 wide for an

analogue junction. The top line contains the actual value

and the bottom line the blocked value. if the bottom line

is empty, the junction is not blocked.

If an attempt is made to display more than 20 monitors,

a warning message is given.

- A18 -

13.1 On screen junctions

Typing <m> with the cursor over a junction or junction

number when the main command prompt is displayed will

define a new monitor displaying that junctions contents.

The program will prompt for the cursor to be moved to the

display position for that monitor which will be displayed

when a key is pressed. As usual, the monitor block will be

positioned with its top left corner on the cursor position;

a warning message is given if there is not enough free

screen space for the monitor in the chosen position.

13.2 Off screen junctions

To display the contents of a junction not on the screen,

type <m> with the cursor over an empty section of screen

when the main command prompt is displayed. This will

define a new monitor consisting of a monitor-junction,

monitor-junction number and monitor value block; The

monitor-junction and number are not the same as normal

junctions and cannot be connected to functions.

The program first of all requests the outstation

containing desired junction and then proceeds to request

the junction type and number in the same manner as placing

a normal junction on the screen using the <j> command. The

final prompt is the same as given when monitoring an

on-screen junction. An off screen junction monitor number

- A19 -

has a prefix to indicate the outstation relevant to that

monitor. The prefix 'm' indicates masterstation and the

letters 'A' to 'z' indicate outstations.

14 Offsets

When an offset function is executed the functions following

do not access the junctions specified on the screen

display. To overcome the considerable monitoring and debug

problems created by this mismatch, an offset command <o> is

provided to compensate for the difference between displayed

junction contents and actual junction contents being

referenced by the functions.

Pressing <o> when the main command prompt is displayed

will result in 2 questions being asked. The first requests

an offset to be used when displaying digital junctions and

the second questions requests the offset for analogue

junctions. Pressing <0> <CR> or <CR> only will clear the

offset facility; pressing <Esc> will leave the offset value

unchanged. The current offsets used within the display of

a page are indicated on the main command prompt line.

A non-zero offset results in that offset number being

added to every junction number of that type on the screen

and the result used as the junction number to display.

For example, if an offset function producing a digital

offset of 500 is executed before the function being

- A20 -

displayed on a screen page, then all digital junctions

being displayed will not normally correspond to those

actually being referenced. A digital junction 10 connected

to a function results in junction 510 being accessed by

that function. If junction 10 is displayed using a monitor

or the <?> command then the contents of junction 10 are

displayed, not the contents of 510. If the <o> command is

used to set a digital page offset of 500 then the junction

contents being displayed will be 510 even though the screen

still shows a junction number 10.

If a sequence of pages operate as a subroutine which is

called several times with different offsets set by offset

functions then each execution will operate upon a different

group of junctions. This is like a procedure using local

variables but with the facility to still pass and return

any value(s) to other parts of the function list. The <o>

command enables the operator to examine each execution of

this procedure or subroutine without changing the monitor

displays or calculating the actual junctions being

referenced.

All actions upon junctions affected by a non-zero

screen offset will take the offset into account. This

includes all of the commands to change and block an

individual junction value but not the commands to list (and

unblock) all junctions or the junction cross reference

command.

The offset command affects only the monitors on a page

which display values in the oustation being displayed.

- A21 -

Monitors of other junctions not in the current outstation

will be unaffected.

It is possible to monitor a junction which, combined

with an offset, refers to a junction outside of the allowed

junction data base. This will be indicated by a flashing

actual value monitor or an off-line message.

When a page is saved, the offset status is also saved

and will be automatically restored on reloading.

15 Displaying, changing and blocking junctions and monitors

The contents of a junction cannot be displayed or changed

without the junction being present on the screen as either

a connectable junction or a monitor junction.

See the section on junction monitors to toggle the

displayed monitor value between decimal and hex.

15.1 Displaying a junctions contents

To continuously display the contents of a junction, use the

monitor (<m» command. If the contents of a junction is

required without continuous monitoring, position the cursor

over the required junction or junction number and press

<?>. The junction contents will be displayed on the bottom

prompt line and will remain there without being updated

- A22 -

until a new command is given.

15.2 Changing the actual value

The actual contents of a junction can be changed by

positioning the cursor over the required junction point or

a junction monitor and pressing <c>. The program will

prompt for a new actual value which, for an analogue

junction, may be entered as up to 5 decimal digits with a

leading -ve sign if required or as up to 4 hex digits

followed by <h>.

15.3 Blocking and unblocking

The blocked contents of a junction can be changed by

positioning the cursor over the required junction point,

junction number or junction monitor block and pressing

The program will prompt for a new blocked value which, for

an analogue junction, may be entered as up to 5 decimal

digits with a leading -ve sign if required or as up to 4

hex digits followed by <h>. Pressing <enter> only in

response to the prompt will clear the blockage from that

junction.

Note that all junctions may be unblocked using the

junction reset command (<r>) and the junction unblock

command (<u>).

- A23 -

16 Renumbering junctions

A junction number can be changed by positioning the cursor

over the number and pressing <c>; all occurances of the

junction on the screen and in the current page of the list

will be changed.

The program will request a new junction number in the

same manner as inserting a new junction. All occurances of

the old junction number are first of all deleted followed

by prompts to enable the new number to be placed in any

desired free space again, in the same manner as inserting a

new junction.

If a monitor exists for the old junction number then

this will now display the new junction contents.

17 Junction cross referencing

Typing <x> with the cursor over a junction, junction number

or monitor when the main command prompt is displayed will

display a list of functions connected to that junction.

The list is displayed on the prompt line at the bottom of

the screen and will remain until a new command is given.

The list consists of page numbers followed by function

reference numbers within the page. If more connections are

- A24 -

present than can be displayed on one line, a key must be

pressed to display the rest of the connections.

WARNING! Take care with this command since it only

displays actual connections between functions and junctions

and not the implied connections. An implied connection is

one where a function accesses a junction without a direct

connection being shown on the diagram. For example, the

scanner function can scan down a list of many junctions but

only the first junction will be displayed as connected to

the scanner function. Other functions using implied

connections include:

scanner

data divider

logic assembler

decoder

demultiplexer

delay

This command does not take account of screen offsets;

i.e. a screen offset of zero is assumed.

18 Clearing all junctions

Typing <r> when the main command prompt is displayed will

first of all block analogue junctions 1,2 and 3 to disable

the function list and both sub-lists. All other analogue

- A25 -

and digital junctions are then reset to 0 and unblocked.

This command initialises the junctions to their power-on

state and when used with the unblock command (<u>) enables

the system to be restarted as though it had just been

powered up.

If there are outstations in the system then these may

be selected for junction reseting.

19 Changing and rewiring functions

Functions may be changed in a variety of ways as described

below. The change does not actually take effect until it

has been completed.

19.1 Changing inversions

Typing <c> with the cursor over an I/O point on a function

when the main command prompt is displayed will invert the

connection to a digital junction. If the connection is

already inverted then this command will normalise it.

If an attempt is made to invert an analogue junction

connection, a warning message is given.

- A26 -

19.2 Changing the execution order

Typing <c> with the cursor over any part of a function

except an I/O point when the main command prompt is

displayed allows the execution order of that function to be

changed. After entering a new execution order number in

response to the prompt, other functions on the screen are

renumbered as necessary to reflect the functions new

order.

No two functions can have the same number; renumbering

to an existing function number will result in the existing

function and function with numbers above being renumbered

up by one.

19.3 Changing the constant function value

If the change execution order command (<c>) is entered with

the cursor over a constant function, an additional option

is presented which permits the constant function value to

be changed. The entry of the constant value is the same as

given under the subsection "selections after connecting".

19.4 Changing a connection

The operation to change a connection between a function and

a junction is in fact to delete the connecting wire and

- A27 -

reconnect.

Typing <d> with the cursor over any part of a

connecting line when the main command prompt is displayed

will erase that complete line from the screen. The

function I/O point will now flash to prompt for the

function to be reconnected in the same way as entering a

connection for a new function. This operation cannot be

aborted using the <Esc> key.

If a junction is adjacent to a function I/O point then

there is no visible line to delete. In this instance,

position the cursor over the I/O point and type <d>.

When a line which crosses over other lines is erased,

gaps are left in parts of the other lines. The program

will attempt to "repair" the other lines and it will be

successful in virtually all cases. There are some rare

instances where a "repair" results in an incorrect shape

being inserted, particularly at crossed corners of lines

near to junctions. This does not effect the logical

circuit operation and of course, any line may be tidied up

by deleting it and reconnecting to the same junction.

20 Deleting

The <d> command is used to delete a variety of things

depending upon what is under the cursor at the time.

- A28 -

20.1 Deleting functions

Typing <d> with the cursor over any part of a function when

the main command prompt is displayed will erase that

complete function along with its connections from the

screen and the function list. An option to abort from this

command is given before the function is actually deleted.

All of the functions in the page after the deleted

function are renumbered down by one.

20.2 Deleting junctions

Typing <d> with the cursor over a junction point when the

main command prompt is displayed will erase that junction

from the screen. If the junction is physically connected

to a function on the screen then that junction cannot be

deleted and a warning message is given.

If the junction is being monitored then that monitor is

also deleted.

If there is more than one occurance of the junction to

be deleted on the screen and these are close together,

there is no way of knowing which junction number

corresponds to which junction. The program therefore moves

the flashing cursor to each number and prompts to ask

whether to delete it or not. Only one number can be

deleted.

- A29 -

20.3 Deleting junction numbers

Typing <d> with the cursor over a junction number when the

main command prompt is displayed will erase that junction

number from the screen. The cursor must be moved, in

response to the prompt, to the new position for the

number. A junction number cannot actually be deleted from

the screen, only repositioned.

20.4 Deleting monitors

Typing <d> with the cursor over a monitor junction, monitor

junction number or monitor value block when the main

command prompt is displayed will erase that complete

monitor from the screen.

20.5 Deleting characters and words

Typing <d> with the cursor over a character when the main

command prompt is displayed will erase the complete word

containing that character.

Pressing the delete key when the main command prompt is

displayed will erase the single character to the left of

the cursor and move the cursor one position to the left.

- A30 -

21 Printouts

The use of a printer requires the correct control codes for

bold printing and line spacing control being in the DRAW

program and the presence of a printer data file called

"PRINTER.DAT" on the system disk. This file programs the

printer to display the special graphics shapes used in the

screen displays.

When printing graphics on an FX80, the line spacing is

reduced to allow the shapes to join. This also has the

effect of reducing the vertical spacing between comments.

An alternative version of PRINTER.DAT is available for the

IBM Proprinter.

21.1 Page printouts

Typing <p> when the main command prompt is displayed will

send an image of the screen to the printer. An option is

first of all given to cancel the command.

Three blank lines are printed followed by an emphasised

and underlined title giving the page number. After one

further blank line, the 24 lines of screen image is printed

which is finally followed by three blank lines.

- A31 -

21.2 Cross reference printouts

A full junction to function cross-reference printout can be

produced on a printer. Each connected junction of a chosen

type between a specified range of junction numbers is

listed along with its function connections in a similar way

to the single junction cross-reference using the <x>

command.

The selection of the junction range is made by first of

all locating the cursor onto the first junction of the

desired type in the desired range and pressing <a>. The

program will then prompt for the final junction reference

number in the desired range; this will default to the

maximum reference number if either no number is entered or

a number greater than the maximum is entered.

An emphasised title is then printed followed by a list

between the chosen limits. This list exhibits the same

limitations as outlined in the section titled "Junction

Cross Referencing".

22 Blocked junction informatjLon

All blocked junctions can be listed on the prompt line by

typing <u> when the main command prompt is displayed. An

option is given to also clear all blockages as they are

- A32 -

listed. Any key should be pressed in response to the

"<key>" message to allow lists of blocked junctions longer

than the prompt line to be displayed. Pressing the <ESC>

key will abort the search at any point.

23 List execution information

Typing <t> when the main command prompt is displayed will

give information about the operation of the function lists

on the prompt line. There are three groups of information

given which are described below.

23.1 list execution times

The current main list execution period is given in mS to an

accuracy of about +/- 1 timer-interrupt-period (i.e. +/-

1.7mS). This is how long it took to execute the complete

function list the last time it was executed. This may be

used to determine the maximum execution rate that can be

applied to a particular list of functions.

23.2 List catch-up counters

Three numbers are displayed indicating by how many list

periods the system has fallen behind the execution rate set

- A33 -

up by the list-rate-control analogue junctions 1, 2 and 3

These should normally show 0 and sometimes 1; numbers

greater than these indicate that the execution rate has

been set too fast for reliable operation.

23.3 Function list page length

The number of bytes taken up in the function list by the

currently displayed page is shown. This is for general

information only.

24 Memory display

Typing <g> when the main command prompt is displayed will

result in a sequence of questions to select an area of

memory for display.

The first question selects the segment address which

may be entered in decimal or hex. The following characters

will automatically determine and select the following

segments:

<c> <CR> segment address for the Task executive code;

i.e. the TASKS segment.

<d> <CR> the Data segment.

<CR> only will select whatever segment was last

selected.

- A34 -

The second question selects the address within the

selected segment to be displayed.

 <CR> the start of the function page buffer.

<c> <CR> the start of the communications buffer,

OS^DATA.

<a> <CR> the start of the page address offset table

in the masterstation.

<1> <CR> the start of the function list in the master

station.

<CR> only will select the next 16 bytes after the last

selected.

The display will then show the 16 bytes starting at the

selected address in both hex and ASCII.

When a memory display is on the command line, the next

16 locations may be displayed by pressing the <space> key.

25 Colour - monochrome displays

The program is initialised to use a colour display. Pages

stored on disk in monochrome will not be displayed in

colour; likewise, if pages have been stored in colour, they

may cause patterning on a monochrome display.

Typing <y> when the main command prompt is displayed

will toggle between colour and monochrome modes. This does

- A35 -

not affect pages stored on disk or the current display

screen as it only changes the colours used when new

information is added to the screen.

- A36 -

Appendix B

Function Diagrams

This appendix defines the shapes and input/output points

for all of the functions currently developed. The diagrams

are in the same form as displayed on the VDU screen and as

printed out from the building program.

Function Diagrams

A digital I/O point is indicated by a single line

protruding from the function shape (e.g. || or |(-) . The

connection to a digital junction may be inverted if

requ i red .

An analogue I/O point is indicated by a double line

protruding from the function shape (e.g. J| or it) . The

connection to an analogue junction cannot be inverted. A

function using an analogue junction will operate using

signed E-byte arithmetic unless otherwise stated.

DIGITAL LOGIC

Function "buffer"

i nput o u t p u t

Function "2 i/p and"

i nput A

input B
output

Function "A- i/p and"

i nput A
input B
input C
input D

&. output

Function Diagrams

Function "exclusive or"

input A

i nput B

Function "2 i/p or"

input A

input B

Function "4 i/p or"

xor o u t p u t

or

i nput A
i nput B
i nput C
input D

or

Function "flip flop"

reset input

set input

Function "latch"

FF

o u t p u t

o u t p u t

o u t p u t

contro1

i nput ou tput

Function Diagrams

MISCELLANEOUS DIGITAL FUNCTIONS

Function "integrator"

integrator count

i npu t output

ac tua1 count

Function "scanner"

maximum
accept junctions
input to scan

first
i nput

junc t i on

ace max
SCANNER
dis

output

first number of
d i sab le i nput
junction detected

Function "data divider

i nput D/D
fir
16

-st of
output

junc t i ons

- B3 -

Function Diagrams

Function "logic assembler"

first of
16 input
junc t ions

LAS o u t p u t

Function "decoder"

limit

i npu t o u t p u t

Function Diagrams

ANALOGUE FUNCTIONS

Function "compare ="

i nput A

i nput B
o u t p u t

Function "compare >"

i nput A

i nput B
o u t p u t

Function "compare >"

i npu t A

i nput B
o u t p u t

- B5 -

Function

Function "counter ='

set count

reset input

i nput

up input

last input store

o u t p u t

elapsed count

Function "counter >"

i nput

UD inout

r 1
"\
/•

u

set count

Jl——— last input store

output

elapsed count

Function "counter >"

tr o 11 I|_ILA ^

input

un i nou t

r 1
>

u

set count

Ji——— last input store

o u t p u t

elapsed count

Function Disqrsms

Function "switch 1

contro I

i npu t S/W output.

Function "multiplexor"

selec t

i nput
i nput
i nput
i nput
i nput
i nput
i nput
i nput
i nput
i nput

123*
5 >

\?
8
9

!

1
£
3
•4-

5 MPX
6
7
8
9
10

o u t p u t

Function "demu1tip1exor"

limit

i npu t j

count |

1 im
D/MPX
ct

first output junction

- 87 -

Function Diagrams

Function "PID Controller

error input
DB P
err PI
-i -e

I D
D o/p

f
positional output

Function "filter"

time spike reject
constant limit

i nput
T 1 im

FILTER
last

filtered output

Function "delay 1

L.S.and M.S.
last ou tpu t

delay period

first i nput o u t p u t-

B8 -

Function "add 1

Function Diagrams

MATHS FUNCTIONS

input A

input B
resu1t

Function "subtract'

input A

input B
resu 11

Function "abs subtract"

i npu t

i npu t

i ————— i — v p=> r f=> <=. i i 1

A

B

a -
-!

b

-
i result

Function "multiply"

most significant result
L least significant result

B9 -

Function Diagrams

Function "divide 1

most significant input
least significant input A

input B

ah r
al

V

b

i remainder

- resu 1 t

Function "bin to dec"

leading zero

input
0

BSD o u t- p u t

Function "dec to bin"

i nput DEB o u t p u t

Function "define function"

func t i on type

i nput DFN output

- BIO -

Function E'iaqrams

LIST CONTROL FUNCTIONS

Function "jump fwd"

page number

contra 1

Function "subroutine fwd"

page number

control SUB

Function "return"

contro1 RET

- Bl 1 -

Function Diaqrams

Function "digital offset"

dig
OFF offset value

Function "analogue offset"

an 1
OFF offset value

- B1E -

Function D lagrams

INPUT / OUTPUT FUNCTIONS

Function "1 byte input"

port number
I/P

port contents

Function "2 byte input"

port number
I/P

port contents

Function "1 byte output"

va lue
0/P

port number

Function "2 byte output"

value
0/P
>£# port number

- B13 -

Function Diaarams

Function "BASIC arra Y

array number entry

input o u t p u t

Function "constant"

wr i te

output

Appendix C

Program Examples

This appendix contains actual printouts produced by the

building program. The system printed here contains several

control simulation examples as well as a full traffic light

simulator example.

F
U
N
C
T
I
O
N
S
.

M
a
s
t
e
r
s
t
a
t
i
o
n
,

P
a
g
e

1

I
n
d
e
x

to

P
o
c
e
s
s

C
o
n
t
r
o
l

D
e
m
o
n
s
t
r
a
t
i
o
n

1 E 3 4 5 6 7 B 9 10

1
1

IE 13 14 15 16 17 18 19 2
0

I
n
d
e
x

C
o
n
s
t
a
n
t
s

P
I
A

I
n
i
t
i
a
l
i
s
a
t
i
o
n

O
s
c
i
l
l
a
t
o
r
s

a
n
d

D
i
g
i
t
a
l

E
4

H
o
u
r

C
l
o
c
k

P
I
D

T
e
s
t

P
a
g
e

I n
p
u
t
s

M
a
i
n

R
e
q
u
e
s
t

L
o
g
i
c

P
e
d
e
s
t
r
i
a
n

C
r
o
s
s
i
n
g

L
o
g
i
c

S
u
b
r
o
u
t
i
n
e

c
a
l
l
e
r

L
i
g
h
t
s

s
e
q
u
e
n
c
e

c
o
n
t
r
o
l

s
u
b
r
o
u
t
i
n
e

El

E
E

2
3

E
4

E
5

E
6

2
7 2
8

2
9 3
0

31 3
2

3
3

34 3
5 3
6

3
7 3
8

3
9

A
l
a
r
m

D
e
t
e
c
t
o
r

S
e
t
-
P
o
i
n
t

C
a
l
c
u
l
a
t
o
r

T
r
a
f
f
i
c

L
i
g
h
t
s

M
i
m
i
c

D
i
a
g
r
a
m

D
i
g
i
t
a
l

O
u
t
p
u
t
s

F
U
N
C
T
I
O
N
S
.

M
a
s
t
e
r
s
t
a
t
i
o
n
,

P
a
g
e

B

G
e
n
e
r
a
l

C
o
n
s
t
a
n
t
s

I
/
O

a
d
d
r
e
s
s
e
s

T
i n

ne
rs

1O

C
O

N
S

T
*

S
O 19

ll
am

be
r

t
i m

e

m
a
i
 n

l
i
s
t

s
p
e
e
d

F
U
N
C
T
I
O
N
S
.

M
a
s
t
e
r
s
t
a
t
i
o
n
,

P
a
g
e

3

O
/P >1
6

5
5
A

9
6

F
U
N
C
T
I
O
N
S
.

M
a
s
t
e
r
s
t
a
t
i
o
n
,

P
a
g
e

Il
l/
P

|j

50

1
Q

O
A

J4
ti>

I-

A
n
/n

 *•

1
*
1

^

S
y
n

c

fo
r

p
lo

tt
in

g

1
D

 —
—

 j
1

*
—

 D
9

11 —
—

—
 '1

A
1

5

A
2

0

i—
"—

 Tj

1
H

z
||—

 »—
 -.

J
*
 —

 D
2

r

J
*
 —

—

-1
1

1

-
J

\\
<i

A
6

3

A
6

2

—
—

—
—

 D
5
0

E

a
s
t

re
q

D
5
1

W

e
s
t

re
q

D
5

2

S
o

u
th

re

q

D
5
3

N
o
rt

h

re
q

D
5A

-
P

e
d

re
q

J—

1
5

0

.5

H
r

D
3

3
9

8

A Jn

- J
6;J

3
9
9

F
U
N
C
T
I
O
N
S
.

M
a
s
t
e
r
s
t
a
t
i
o
n
,

P
a
g
e

5

H
o
u
r

C
l
o
c
k

C
o
n
s
t
a
n
t

6
0

10
0 A

S
e
c
o
n
d
s

O
R

*
U

3

1
1
5

,
-
*
U

D
a
y

11
7

P
u
l
s
e
s

S
e
c
o
n
d
s

M
i n
u
t
e
s

F
U
N
C
T
I
O
N
S
.

M
a
s
t
e
r
s
t
a
t
i
o
n
,

P
a
g
e

6

0
-
1
0
0
0

3
0
4

3
0
5

3
0
6

E
9
9

2
9
1

E9
^

S
e
t

p
o
i
n
t

3
0
3
A

A

A

A

A

A

A
3
0
0

A
_

3O
J A-
J

M
p
a
^
u
r
p
>
d

a
3
0
E

b

1
L..

.
-.-

0
|
1
0
|
2
5
|

OJ

5
0
1

j
I

A
A

A
n

n
|i

n
D
B

P
I

D

3
1
0

T
2
9
0

T

l
i
m

e
r
r

P
I
D

o
/
p

>
-A

—
-

-
,

D
E
L
A
Y

:-
.
.
-
A
.
-

.<

F
I
L
T
E
R

-1

-
2

f

2

3
l
a
s
t

^

t .

^
M

V
V

tf
V

i
n
p
u
t

I
I
I

T
1

A

A

A

E
9
E
A

A
2
9
3

3
0
7

3
0
8

3
0
9

1
5
0

D
,

'
4
9
0
A

c
 /
u

8
O
O

5
a
—
—
 : —

3
O
O

10
A

^
P
I
D

T
e
s
t

P
a
g
e

S
/
W

>—

(3

Pe
r
io
d

b
e
t
w
e
e
n

P?
p>
h—
 P
 n
 i

 n
 •h

H
h
^
r
i
n
p
^

&B
,

Ha
ste

rst
ati

on
,

Pag
e

F
U
N
C
T
I
O
N
S
.

M
a
s
t
e
r
s
t
a
t
i
o
n
,

P
a
g
e

1
0

T
R
A
F
F
I
C

L
I
G
H
T
S

C
O
N
T
R
O
L

m
a
x

g
r
e
e
n

t
i
m
e
r
e

71

4
)
—
—
—
—
—
—
—
—
—
—

E
r
e
q

W
r
e
q

7
2

1 7:

r FF
s

5

c r
3

7
7 p

N
S

jr
e
e
r

~e
qd

T

i I

0

7

7
C

—
—

 I?

m
in

g
re

e
n

ti
m

er
^

1 A

Jl
1E

8D

*

r
1

ED
HI

-

ID

*u

9

~s 81 D

5
5

5
6

>S
E

[1
3

=
=

=
1 P

P
..

H
1 —

—
—

—
—

D

*
r

1
aD

-J
|

>
1 D

-*
u

4

75

—
—

 D
7
6

"^
T

"

i
-—

 •—
 =

iv
j

i
i_

i_
 i

i
I

—
 I

i.

re
q
d

1 2
5D

*

r
SD

-I
I

2
lD

_
*

u 1
1

h

1O

D
£

15
6

F
U
N
C
T
I
O
N
S
.

M
a
s
t
e
r
s
t
a
t
i
o
n
,

P
a
g
e

11

EW R
E

N
S

Q
tT

F
l

p
e

d

p
re

q
5A

-
D

o
n

D o
n

1

c

r
F

F
s

1

T

>
0

D
^

>
. I3 1-

f £p.
 _

_
 4 n;

ie
a

L 1, M
 4 J

—
—

—

"> 37

1 *
3

s- «•
& 1

".

&

E

N
S

1

D

9
1
r j. , , D

9
1

;c c3
g

re
e

n

re
q

 '
d

?0

A
ia

li
i9

p
L
*r

1

jlo
p
n

>
*

ID

u
5

EW

to

g
re

e
n

A

5
7

re
q
 *

 d
A

E
O

E

D
-

,
-

",

.9
-'
|

r"
D

II

>
i

ID

*u

6

M AS
S

1
o
 A

DC

T r
s

-D

p
e

d

i L
*

1
E

7

&

—
 D

7
—

—
—

—

R
R

P
P

p
e

d

D
9S

F
U
N
C
T
I
O
N
S
.

M
a
s
t
e
r
s
t
a
t
i
o
n
,

P
a
g
e

13

E
x
e
c
u
t
e

p
a
g
e

15

a
s

a

s
u
b
r
o
u
t
i
n
e
!

t
w
i
c
e
.

2
5
A
<
-

—

s
a
m
e

j
u
n
c
t
i
o
n

-

-
15

di
g

s
e
t

o
f
f
s
e
t
s

f
o
r

2
n
d

e
x
e
c
u
t
i
o
n

1
1
1A

-

cl
ea
r-

o
f
f
s
e
t
s

v
A
—

j
u
n
c
t
i
o
n

n
u
m
b
e
r

7
+
3

c
o
n
t
a
i
n
s

0

s
k
i
p

o
v
e
r

s
u
b
r
o
u
t
 i
n
e

3
0
A
2
0

1
13

2

0
r

1
1

L
I

1
5

-_
-U

-—
—

 !
-
_
^
-

Hi _*JMP

F
U
N
C
T
I
O
N
S
.

fl
as
te
rs
ta
ti
on
.

P
a
g
e

15

N
S

C
O
N
T
R
O
L

(
E
W

o
n

2
n
d

r
u
n
)

a
m
b
e
r

t
i
m
e

A
3
2

g
r
e
e
n

r
e
q
'
d

D

o
n

N
S

<E
W)

9
0
1 _
A

1
2
0

-*

2

a
m
b
e
r

f
r
o
m

g
r
e
e
n

9
8

R
E
D

6
0

n •D 9
9

A
M
B
E
R

_
_
_
n

a
m
b
e
r

f
r
o
m

r
e
d

12
1

f

&

_D

1
2
2

G
R
E
E
N

-D

8
6

r
e
d

o
n
l
y

I
D
—
*
R
E
T

7

s
u
b
r
o
u
t
i
n
e

c
a
l
l
e
d

f
r
o
m

p
a
g
e

13
.

E
x
e
c
u
t
e
d

w
i
t
h

D3
»

Al

o
f
f
s
e
t
s

2
n
d

t
i
m
e
.

F
U
N
C
T
I
O
N
S
.

M
a
s
t
e
r
s
t
a
t
i
o
n
,

P
a
g
e

EO

R
E
/
W

A
t
r
a
f
f
i
c

B
1

i g
h
t
s

R
A

N
/
S

G
t
r
a
f
f
i
 c

1i
 g
h

t
s

m
a
x

g
r
e
e
n

t
i
m
e
r
s

fT

T
R
A
F
F
I
C

L
I
G
H
T
S

R
P
e
d
e
s
t
r
i
a
n

G
c
r
o
s
s
i
 n
g

1
i
g
h
t
s

M
a
i
n

l
i
s
t

r
a
t
e

E
W

N
S

p
e
d
e
s
t
r
 i

 a
n

F
U
N
C
T
I
O
N
S
.

M
a
s
t
e
r
s
t
a
t
i
o
n
,

P
a
g
e

SI

A
c
c
e
p
t

E
O
O
D

I
n
p
u
t

A1
A-

N
u
m
b
e
r

o
f

A
l
a
r
m
s

V
a
l
v
e

1
O
p
e
n

T
e
l
l
b
a
c
k

D

15
0

VI

o
/
p

15
1

V
a
l
v
e

1
C
l
o
s
e

T
e
l
l
b
a
c
k

D 15
E

V
a
l
v
e

P

O
p
e
n

T
e
l
l
b
a
c
k

D
-

15
3

V
2

o
/
p

V
a
l
v
e

S

Cl
os
ej
jX
OR

T
e
l
l
b
a
c
k

D—
—I
I

<*
15

5

A
l
a
r
m

A
l
S
l
T
i
m
e
o
u
t

ac
e

ma
x

S
C
A
N
N
E
R

d
i
s

5

Al
 a
r
m

T
y
p
e

C
o
d
e

L
a
t
c
h

A
l
a
r
m

S
c
a
n
n
e
r

w
i
t
h

F
a
u
l
t

T
i
m
e
o
u
t

F
U
N
C
T
I
O
N
S
.

M
a
s
t
e
r
s
t
a
t
i
o
n
,

P
a
g
e

2
2

I
n
i
t
i
a
l

V
a
l
u
e
A
-

1
1

1

T
i
m
e
l
S
l

L
e
f
t

A

1 11
18

D —

 A-
<

a
h

1
1<

+
A

i

ah

r

11
0

: —
—

 A

F
 i
 n

a

V
a
lu

e

-J
la

L 3

1'

=

N
e
g
a
t
i
v
e

R
a
m
p

I
n
i
t
i
a
l

V
a
l
u
e

>
T

i m
e

1
1
9
S
e
t
-
P
o
i
n
t

S
e
t
-
P
o
 i
nt

C
a
l
c
u
l
a
t
o
r

->
T

i m
e
-
 l
e
f
t

FU
NC
TI
ON
S.

M
a
s
t
e
r
s
t
a
t
i
o
n
,

P
a
g
e

12
0D
-

L
A

S
 1

5
1

A

i
0
/P

S

Masterstation Digital Junction Cross Reference

Digi
Digi
Digi
Digi
Digi
Digi
Digi
Digi
Digi
Digi
Digi
Digi
Digi
Digi
Digi
Digi
Digi
Digi
Di Q
Dig
Dig
Di
Di
Di
Di
Di

9
g
g
g
g

Dig
Di
Di
Di
Di
Di
Di
Di
Di
Di
Di
Di
Di
Di
Di

g
g
g
g
g
g
g
g
g
g
g
g
g
g

Dig

i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

Digi
Di
Di

g
g

Dig
Di
Di
Di
Di
Di

g
g
g
g
g

i
i
i
i
i
i
i
i

tal
tal
tal
tal
tal
tal
tal
tal
tal
tal
tal
tal
tal
tal
tal
tal
tal
tal
tal
ta
ta
ta

1
1
1

tal
ta
ta

1
1

tal
ta
ta
ta

1
1
1

tal
ta
ta
ta

1
1
1

tal
ta
ta
ta
ta
ta
ta
ta
ta
ta
ta
ta

1
1
1
1
1
1
]
1
1
1
1

tal
ta
ta
ta
ta
ta

1
1
1
1
1

1 connected to 3:2 4:1 5:1,3,4 10:2,4,9,10 11:5,6 13:1,4,
2 connected to 4:2 5:1 10:2,4,9,10 11:5,6,7 21:7
3 connected to 4:3
9 connected to 4:1
50 connected to 4:5 10:3
51 connected to 10:3
52 connected to 1O:1
53 connected to 1O:1
54 connected to 10:1,3 11:1
70 connected to 2:1 3:1,2
71 connected to 10:1,5
72 connected to 10:2
73 connected to 1O:1,2
74 connected to 10:3,6
75 connected to 1O:4
76 connected to 10:3,4
77 connected to 10:5,7
78 connected to 10:6,8
79
80
81
82
83
84
86
87
88
89
90
92
93
94
95
98
99
100
103
104
105
106
108
109
111
118
120
121
122
123
125

connected
connec ted
connec ted
connec ted
connec ted
connec ted
connec ted
connec ted
connec ted
connec ted
connec ted
connected
connec ted
connec ted
connec ted
connected
connec ted
connec ted
connec ted
connec ted
connected
connec ted
connec ted
connec ted
connec ted
connected
connec ted
connec ted
connected
connec ted
connected

126 connected
127 connected

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

1
1
0
0

10
10
1
1
1
1
1
1
1
1
1
1
1
1
1

0
0
5
1
0
1
1
1
1
1
1
5
5
5
5
5
5
5
5
5
5

:7
:7
:9
:5
: 1
:6
:6
: 1
: 1
:2
:3
:5
:4
:6
: 1
:2
:3
:2
: 1
: 1
:3
:3
:4
:4
: 1

22:
1
1
1
1

1 :
5:
O:
1 :

10:
1
1

1 :
1 :

,8,11
,8, 11

,9
0
, 10

,2
1 1 1 :3,4
,3,4,5,6
15: 1 ,2,3

,6
,4
,4

,2,3
,4

,2
1,7
2,4 15: 1 ,2,3,5,6 40: 1
4,5,6
4,9 15:5
2,3
2, 10
5,7
7

Masterstation Analogue Junction Cross Reference

Analogue
Ana 1 ogue
Analogue
Analogue
Analogue
Ana logue
Ana logue
Analogue
Analogue
Ana 1 ogue
Analogue
Analogue
Ana logue
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue
Ana logue
Anal ogue
Analogue
Analogue
Analogue
Analogue
Analogue
Ana logue
Ana 1 ogue
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue
Ana 1 ogue
Ana logue
Ana logue
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue
Analogue

1 C£

4 cc
10 c
11 c
12 <
13 c
14 <
15 c
16 t
17 t
18 <
19 (
20 <
24 <
25 <
30 (
31 <
32 i
33 <
50 <
51 i
52 i
53 i
54 i
55 <
56 i
57 i
58 i
60 '
62 <
63 •
90 i
92 i
94 i
96 *
100
101
102
103
104
1 10
11 1
112
113
1 14
115
116
118
119
120
121

connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected
connec ted
connected
connected
connected
connected
connected
connected
connected
connected
connected
connected

to 2:12
to 13:5,6
to 2:21 3:3,4,6 6:6
to 2:2 13:3 22:2
to 2:3
to 2:1,4 13:2
to 2:5 3:1,5,8 21:5
to 2:6 4:2
to 2:7
to 2:8
to 2:9 11 :5
to 2: 10
to 2:11 4:3 11:6
to 13:4
to 2:22 13:1
to 2:17 10:2,4 13:7
to 2:18 10:9,10
to 2:19 15:1
to 2:23
to 4:4,5
to 40:1,2
to 2:20 3:7
to 1O:2
to 10:4
to 10:9
to 10:10
to 11:5
to 11:6
to 15:1
to 4:3

2
13 3 4 4:4
14 3:3,5
15 3:7 40:2
16 3:6,8

to 4
to 2
to 2
to 2
to 2
to 5:1,3
to 5: 1
to 5:3
to 5:4
to 5:4
to 22:1,5,6
to 22:1
to 22:1,3
to 22:2,3
to 22:3,4
to 22:3,4
to 22:4
to 22:4,5,6
to 22:5,7
to 22:6,7
to 22:2

Appendix D

Builder Screen Displays

The function building program includes 2 full screen

displays which can be requested by the user. This appendix

shows a screen copy of these displays.

bu
il
de

r
B

-
Bl
oc
k

a
ju
nc
ti
on
.

C
-

Ch
an

ge

un

de
r

cu
rs

er
!

ov
er

di
gi
ta
l

I/
O

=
ch
an
ge

ov
er

fu
nc
ti
on

no

=

ch
an
ge

ov
er

ju
nc
ti
on

•
ch
an
ge

ov
er

ju

nc
ti

on

no

=

ch
an
ge

ov
er

mo
ni
to
r

=
de
ci
ma
l

D
-

De
le
te

un

de
r

cu
rs

er
:

de
le
te

fu
nc
ti
on

wi
th

co
nn
ec
ti
on
s,

de
le
te

co
nn
ec
ti
on

an
d

re
co

nn
ec

t,

de
le
te

un

co
nn
ec

te
d

ju
nc

ti
on

,
de
le
te

ju
nc
ti
on

nu
mb
er
,

de
le
te

a

mo
ni
to

r,

de
le
te

co
mm
en
t.

—

Er
as
e

cu
rr

en
t

pa
ge

on

sc
re
en

an

d
in

th
e

li
st

.
E F J K L M Q 8

in
ve
rs
io
n,

fu
nc
ti
on

nu
mb
er
,

ac
tu

al

va
lu
e,

ju
nc
ti
on

nu

mb
er

.?

<>

he

x.

Fu
nc
ti
on

in
se
rt
:

Ju
nc
ti
on

in

se
rt

.
Ki

ll

al
l

mo
ni

to
rs

.
Lo
ad

a

ne
w

pa
ge

an

d
Mo
ni
to
r

a
ju

nc
ti

on
:

on
ly

co
mm
an
ds

""

J
an

d
"D

ar
e

av
ai
la
bl
e

du
ri
ng

in
se
rt
.

co
mp
le
te

fu

nc
ti
on

li

st
,

ov
er

ju
nc
ti
on

=
mo
ni
to

r
ov
er

em

pt
y

sc
re
en

—

mo
ni
to

r
-

Qu
it

-
Sa
ve

cu

rr
en

t
pa
ge

an

d
co
mp
le
te

fu
nc
ti

on

li
mt
.

-
Di
sp
la
y

ju
nc
ti
on

co
nt
en
ts
.

th
is

ju
nc
ti
on
.

of
f

sc
re
en

ju

nc
ti
on

.

Pr
es
si
ng

an
y

pr
in

ta
bl

e
ch
ar
ac
te
r

wi
ll

en
te
r

th
e

ch
ar
ac
te
r

in
pu
t

mo
de
.

'D
el
'

de
le
te
s

ch
ar
ac
te
r

to

le
ft
.

Pr
es
s

CR

to

ex
it

ch
ar
ac
te
r

in
pu
t

mo
de
.

PR
ES

S
'E
sc
'

TO

AB

OR
T

A
CO

MM
AN

D.

Sh
ap
es

dr
aw
n

du
ri
ng

th
e

co
mm
an
d

wi
ll

be

de
le
te
d

fu
nc
ti
on
:

Di
gi
ta
l

Lo
gi
c:

M
is

c.

D
ig

it
a

l:

A
n

a
lo

g
u

e
:

Ma
th
s:

Li
st
:

I
-

Bu
ff
er

2
-

4
-

ex
cl
us
iv
e

or

5
-

7
-
f
l
i
p

fl
op

B
-

9
-

in
te
gr
at
or

10

-

II

-
da
ta

di
vi
de
r

12

-

14

-

c
o
m
p
a
r
e

=

15

-

17

—

c
o
u
n
t
e
r

=

18

-

20

-

sa
mp
le

an
d

ho
ld

21

-

23

-

PI
D

c
o
n
t
r
o
l
l
e
r

24

-

2
i/
p

an
d

2
i/
p

or

la
tc
h

3
-

4
i/
p

an
d

6
-

4
i/
p

or

sc
an
ne
r

lo
gi
c

as
se
mb
le
r

13

-
de
co
de
r

26

-

ad
d

29

-
mu
lt
ip
ly

31

-

bi
n

to

de
c

27

-

30

-

32

-

co
mp
ar
e

>
16

co
un
te
r

>
19

mu
lt
ip
le
xo
r

22
fi
lt
er

25

su
bt
ra
ct

di
vi
de

de
c

to

bi
n

33

-

co
mp
ar
e

>
co
un
te
r

>
de
mu
lt
ip
le
xe
r

BA
SI
C

ar
ra
y

28

-

ab
s

su
bt
ra
ct

34

-

ju
mp

35

-

37

-

di
gi
ta
l

of
fs
et

38

-

In
pu
t/
Ou
tp
ut

En
te
r

fu
nt
io
n

nu
mb
er

3
9
-
1

by
te

in
pu
t

40

-

4
2
-
1

by
te

ou
tp
ut

43

-

su
br
ou
ti
ne

36

an
al
og
ue

of
fs
et

2
by
te

in
pu
t

41

2
by
te

ou
tp
ut

44

de
fi
ne

fu
nc
ti
on

re
tu
rn

an
al
og
ue

in
pu
t

co
ns
ta
nt

Appendix E

Published Paper

This paper was presented at the "EUROCON 84" Conference on

"Computers in Communication and Control"

Brighton, 26th to 28th September 1984.

248

A LOGIC BASED REAL-TIME LANGUAGE SYSTEM FOR PROCESS CONTROL

M A McCabe

The Polytechnic of Wales, UK

INTRODUCTION

The real-time microcomputer control of an industrial
process involves many considerations which make the
software design particularly difficult. There are
usually many signals to be simultaneously monitored
to control outputs which must often respond to these
changes in a short period of time. As well as this
real-time control function, there may be one or more
operator interfaces which must handle complex dis­
plays and receive information usually via keyboards
and switches.

The design of reliable and maintainable software to
perform rapid and simultaneous control as well as
providing an interface to the operator or manager,
is complex and very prone to error. The task can be
simplified by regarding the control section as a sep­
arate task to the man/machine interface and selecting
the most efficient language for each. The two tasks
can run concurrently and communicate via a shared
data base.

An often underestimated fact is that process control
software is not a fixed entity. Industrial processes
often change due to extra equipment being installed
or a revised idea of how the process can be controlled.
The ease by which a program may be reliably changed
and tested on site is reflected in the cost of such
changes and must be considered during the initial
design.

The sustem to be described in this paper seeks to
reduce the software design effort by giving the de­
signer SL combination of two languages which may be
used on-line. In particular, the real-time control
language described offers a novel approach which over­
comes many restrictions of conventional high level
languages and makes use of logic diagrams with power­
ful debug and monitoring features. A subset of this
system has been successfully used for several years;
this paper seeks to outline a graphics based version
which simplifies the conversion from ideas to a com­
puter program.

LANGUAGE SELECTION

The selection of suitable languages is considerably
eased by partitioning the overall task into three
discrete sections as follows:

Operating environment. The operating environment is
a real-time task scheduler which also provides facil­
ities such as power-on system checking and background
RAM/ROM verification. This section is not over-
complex and will remain standard for many applications.
A complied real-time language such as CORAL can be
used but the operating speed of assembly language
coding is better.

Operator interface. The operator interface requires
a language which has versatile display capabilities
and produces code which may be easily changed, pre­
ferably on-line. Execution speed is not a problem
here so an interpreted language could be considered;
this also offers considerable savings in software
development and enhancement. A modern interpreted

BASIC is quite suitable since it is now orientated
towards easily producing interesting displays using
graphics and colour. Despite its critics, BASIC is a
firm favourite with many people because of its program­
ming friendliness and built in "changeability".

Real time control. A language suitable for real-time
control must be able to execute many tasks concurrently
as well as providing seme control over task priority.
A general purpose compiled language could be used but
this would require an experienced programmer for all
but trivial tasks. On-site changes and fault finding
would be very difficult and certainly too time con­
suming for the average process control engineer.

An original logic based language called LOGICON has
been developed by the author to offer the less experi­
enced programner a powerful process control language
based upon familiar logic circuit concepts.

BASIC LANGUAGE

The operator interface is controlled by an enhanced
BASIC interpreter running as a task on a time shared
basis under the control of the task schedular. When
considering operator corrrnunications via a VDU, much of
the time is spent waiting for an input from the key­
board. When displays are required, time, within rea­
son, is not critical. Operating a BASIC interpreter
for these functions on a time shared basis, even with
an 8-bit processor, does not in practice unduly slow
the system from the operators viewpoint.

The BASIC interpreter takes no direct part in the real
time control; its sole task is to receive information
and present information on the screen and via a printer.
Communication with the LOGICAN control program is by
accessing the junction database used by the control
program.

A typical action may be to allow the operator to change
the temperature set-point of a 3-term controller. The
BASIC program would possibly display an option menu
where one option would be to change this temperature.
The option selection and operator input bounds check­
ing would be performed by the BASIC program. The
resulting set-point is passed to the real-time LOGICON
program by loading the number into a mutually agreed
location within the LOGICON junction database. The
LOGICON program will automatically use this new value
as the input to, in this example, its 3-term controller
program.

LOGICON PHILOSOPHY

LOGICON is a real-time semi-compiled language based
upon continuously executing a linear list of software
functions. An on-line building program is run in place
of the BASIC interpreter to build up a coded sequence
of functions which are continuously being executed by
a separate concurrent LOGICON interpreter.

A built in library of about 4O functions ranging fron
2 input AND gates to 3-term controllers is available.
To use a function, it must be drawn onto the VDU sort-on
as part of a circuit "page" and its inputs and outputs
connected to numbered junctions. Information is trims-

249

ferred from one function to another by joining the
output of one function to the same junction as the
input of the next function. This is of course the
same as conventional hardware logic design but with­
out any soldering.

Once a function has been entered, it is included into
the function list which is being continuously inter­
preted. The LOGIOON interpreter simply works down this
list of functions on a regular time basis (say once
every 0.1 seconds) and would normally interpret every
function in that list. Each function appears to the
interpreter as a code to identify the function type
(OR gate, multiplier etc) followed by a list of I/O
junction addresses in RAM. Data is taken from the
junctions connected to the function inputs, processed
by the specified function program, and the results
written into the junction connected to the function
output.

All connections are simply between a function and a
junction. Since a junction is only a RAM location,
all circuit connections may be monitored on line as
a debugging aid.

U3GICON BUILDING PROGRAM

The LOGICON builder enables the engineer to build up
a function list which is interpreted in real-time.
The design is drawn onto a VDU screen using graphics
to represent the functions, junctions and connecting
wires. A keyboard and joystick are used to select
the desired function and to "wire" it up to junctions
on the screen. The screen positions of the functions,
junctions, connecting wires or indeed any text com­
ments about the operation of the circuit are deter­
mined by the engineer. The only information required
by the LOGICON interpreter is the function code and
the junction numbers to which each input/output line
connects. The rest of the information drawn onto the
screen is to permit easy understanding of the circuit
and to provide a commented and readable printout for
documentation„

Effectively then, a logic circuit is drawn onto the
screen in a similar manner to hardware design using
a CAD computer. Two additional items of information
are required to complete a function linkage:

The function reference number. The function list is
a linear sequence of function type and I/O information.
This is divided into sections or pages for the con­
venience of displaying on a VDU. The list is executed
regularly (by the interpreter) in a fixed order from
the start to the end. The execution order is import­
ant to ensure that input changes work their way to
the outputs as rapidly as possible and preferably in
one pass of the interpreter through the list. The
function number determines its position within the
execution order for that page.

The type and reference number of a Junction. A junction
may be either an analogue or digital type depending
upon the type of data being held. A digital junction
can contain either a 0 or a 1 and would be used for
example, to connect two AND gates together. An ana­
logue junction can contain an integer from 0 to over
16 million. Each junction is given a reference number
which is used to determine its actual location in
memory.

The action of drawing a circuit onto the screen does
not in itself enter the functions into the function
list being interpreted. A complete sub-circuit can
be constructed before being included as part of the
function-list which avoids excessive list manipulation
and spurious outputs due to incomplete circuits being
executed.

Once a page of logic has been constructed, it may be
stored on floppy disk to enable another to be con­

structed or loaded from disk. The maximum number of
pages that can be included in a system is largely
determined by disk capacity, but a maximum of between
4O and 60 permits quite large controllers to be de­
signed. This page information is not required by the
interpreter and so disks need not be on-line once an
applications has been fully developed.

Being able to recall and edit pages of logic from the
disk enables a designer to build a library of conmonly
used circuits. For example, a set-point ramp gen­
erator may be developed, tested and saved. Any appli­
cation requiring this facility will simply necessitate
loading this page into the LOGICON building program,
re-numbering the junctions and saving as part of the
new application.

LOGIOON INTERPRETER

The LOGIOON builder constructs a list of function
descriptions in memory which must be executed by the
interpreter program. The format of a function within
the list is very simple and may be illustrated by
considering a 2 input AND gate. This occupies 7 bytes
as follows:

(a) 1 byte function code for an AND gate,
(b) 2 byte "input A" junction address,
(c) 2 byte "input B" junction address and a
(d) 2 byte "output" junction address.

The junction address is in fact the relative address
of the RAM location used for input or output data.
Included in this address is a reserved bit to indicate
when the data should be inverted before use or inverted
before output. This inversion capability enables a
basic AND gate to be used as a NAND or in fact an OR
gate.

The function list is a continuous linear sequence of
such function descriptions. The interpreter simply
works down this list, reads the next function code and
jumps to a function handling routine determined by that
code. The function handling routine will execute a
predetermined function (in the above case, a digital
AND function) using the data locations specified in
the function list. After executing this function,
control is passed back to the interpreter which pro­
ceeds to the next function description in the list.

Function types. The digital functions provided include:

(a) simple logic; 2 or 4 input AND, OR, EXDR, buffers
etc.,

(b) memory functions; flip-flops and latches,
(c) integrator.

Analogue functions are described in the same way except
that the provision for data inversion with an analogue
junction is not included. All analogue functions oper­
ate with integers to 3-byte precision - it is rare that
this limitation becomes a problem in process-control
with sensible number manipulation.

The type of analogue functions provided include:

(a) arithmetic functions; multiply, divide, square
	root etc.,

(b) comparisons; equality, greater than etc.,
(c) counters/timers,
(d) data tables,
(e) multiplexors, demultiplexers,
(f) I/O; digital and analogue with filtering,
(g) special purposes; 3-term controller etc.

Functions may consist of a mixture of digital and ana­
logue inputs and outputs. Compare functions for exam­
ple use 2 analogue junctions for input data and use a
digital junction for the result.

250

Although the present list of functions provided will
meet the demands of many applications, it is possible
to extend the system if other special purpose functions
are necessary.

LDGIOON CIRCUIT DESIGN

Many of the functions operate in an analogous way to
well known logic elements; this enables boolean des­
cription and simplification to be applied prior to
circuit design. Many constraints of hardware logic
design obviously do not exist however, such as fan-
out limitations, power supply loading and additional
component cost. Other hardware problems such as race
conditions are reduced to a predictable effect which
may even be useful„

Consider an oscillator for example - this may be con­
structed by linking the output from an inverter back
to its input. Since the function is executed on a
regular basis, say every 0.1 seconds, then the junc­
tion used as the comnon point between input and out­
put will change state each scan of the functions.
This junction will therefore oscillate with a fre­
quency of 5Hz.

Timing circuits are formed by using this oscillator
junction as an input to a pre-settable up/down count­
er function. Very long programmable time delays may
be produced by cascading counter funtions,

Response time. With many industrial control situa­
tions, the major part of the control will tolerate
a delay of say 0.2 seconds maximum between an input
change causing an output to change. This means that
the bulk of the process control circuit can exist in
the main list of functions as previously described.
Sometimes however, a faster response time of several
milliseconds is required to one or more particular
inputs. To accommodate this, a group of reserved
pages within the function list are executed by the
interpreter at a programmable rate which may be as
frequent as lOCHz or greater. Obviously the number
of functions that can be included within these pages
has to be limited at high execution rates so that the
main function list can be fully executed in the given
time interval. Fortunately, in practice, many process
control applications do not require excessive quantit­
ies of high speed control logic.

Multi-plant control. Often an application demands the
control of several similar items of plant. One could
simply design the logic for one item and repeat it for
the others but this is inefficient for many reasons.
Special purpose functions are provided which permit
pages of logic to be called as subroutines - this is
of little use however if the same data is being pro­
cessed each time through. Before calling a sub­
routine to control another similar item of plant, an
offset function may be executed which will cause a
prograrrmable number to be added to every subsequent
junction reference number until a new offset function
is executed or the function list re-started. Each run
through a subroutine can be organised so that a dif­
ferent block of junctions is accessed.

A practical application would be the control of 20
conveyors; the design can be implemented and tested
for one item with the control functions terminated
by a "Return" function. Twenty subroutine functions,
each preceded by offset functions, will duplicate the
control for each conveyor using data unique to each
conveyor.

LOGICON PROGRAM DEVELOPMENT

One of the most difficult problems associated with
process control software development is how to test
the program when incomplete or no hardware input/output
exists. The consequences of having little control over

inputs and outputs is also very apparent when corrmis-
sioning or modifying hardware and software on-site
and/or on-line.

Junction forcing. The LOGICON system attempts to
reduce these debugging problems by building in a
forcing ability into every analogue and digital junc­
tion. Each junction contains an actual value, a
forced value and a flag to indicate which value is to
be taken as an input to a function. All function out­
puts only affect the actual value stored in a junction.
Once the building program forces a junction during
program development, any function using this junction
for its input data will take the forced value rather
than the actual value.

A simple example will illustrate this versatility:

A section of the control program is
checking several digital inputs
being in an alarm state. If so,
then an alarm siren should sound.

To test this program on-line, the output junction
corresponding to the siren should be forced to an off
state to avoid unnecessary alarms. This junction is
also displayed on the logic diagram drawn on the VDU
screen. Combinations of the relevant digital inputs
may then be forced to alarm states and the effect upon
the output observed by watching the actual junction
value corresponding to the siren on the screen.

All of this may be done without leaving the keyboard
and screen and in confidence that any input can be
simulated and checked whilst maintaining outputs
driving motors and valves, for example, in a safe
condition.

The ability to dynamically observe the contents of
selected junctions is a very powerful debugging aid.
When a page is displayed on the screen, the contents
of one or more junctions can be displayed in real-time
in their correct circuit locations; other junctions not
on the current page display can also be observed.

SUPPORT ENVIRONMENT

There are several programs which must run concurrently
to permit control logic to be entered and tested, as
well as providing an operator interface tailored for
the specific applications. These may be suinnarized as:

(a) LOG-ICON interpreter,
(b) System verification (e.g. ROM/RAM checks),
(c) LOGICON builder and
(d) BASIC interpreter.

The interpreter and system verification programs oper­
ate continuously via the controlling multi-tasking
executive. The BASIC interpreter is also continuously
running and outputs information such as alarm messages
to a screen RAM buffer. If the UOGICON builder is
currently being used then keyboard input is directed
to that program and the visable display is created by
it. After leaving the builder program and returning
to the BASIC applications program, keyboard input is
directed to the BASIC interpreter and the BASIC inter­
preter screen RAM is displayed. The BASIC screen may
now contain information generated whilst the LOGICON
builder was active.

The system verification program consists of program
code sumchecks, function list sumchecks and simple
non-destructive junction data base RAM tests. Any
faults detected will be corrmunicaUxi to the junction
data-base by loading values into reserved junct ions.
If a memory failure still permits the interpreter to
run, then a safe shutdown and alarm may tx> generated
by testing these junctions.

251

CONCLUSIONS

The combination of the K3GICCN process control
language and a standard BASIC interpreter offers
the process control engineer powerful on-line design
and debug tools. Each language is used for the work
for which it is most suited; this avoids the can-
promises necessary when trying to use any single
general purpose language.

The ability of the modern BASIC to produce interest­
ing displays relatively easily and without lengthy
compilations can be used to advantage in many
applications. The presence of an interpreter also
permits enhancements to be included and tested
throughout the life of the equipment without resort­
ing to expensive development systems„

LOG-ICON itself is specifically oriented towards the
demands of industrial process control. The logic
designer is isolated as far as possible from the
complexity of simultaneous real-time control and is
presented with a friendly graphics based program
input and test environment. This contrasts with the
rather stark alphanumeric listings presented by a
more conventional language. The ability to display,
change and monitor a control program in an easily
understood form considerably shortens the time
necessary between formulating a control algorithm
and successful implementation. If, as is often the
case, full input/output hardware is not available,
the control program can still be fully tested with­
out resorting to traditional "boxes of switches and
lights" and time consuming development system
emulation.

REFERENCES

1. EEUA "Guide to the engineering of micropro­
cessor based systems for Instrumentation and
control". Engineering Equipment Users
Association (1981).

2. IBM "PC Technical Reference". IBM Corporation
(1983).

