
THE REMOVAL OF NUMERICAL DRIFT FROM
SCIENTIFIC MODELS

John Collins1,2, Brian Farrimond1,2, David Flower1, Mark Anderson2 and David
Gill3

1SimCon Ltd, Dartmouth, United Kingdom
john.collins@simconglobal.com

2Department of Computing, Edge Hill University, Ormskirk, United Kingdom

mark.anderson@edgehill.ac.uk

3National Center for Atmospheric Research, Boulder, Colorado, USA

gill@ucar.gov

Abstract

Computer programs often behave differently under different compilers or in different computing
environments. Relative debugging is a collection of techniques by which these differences are analysed.
Differences may arise because of different interpretations of errors in the code, because of bugs in the
compilers or because of numerical drift, and all of these were observed in the present study. Numerical
drift arises when small and acceptable differences in values computed by different systems are
integrated, so that the results drift apart. This is well understood and need not degrade the validity of the
program results. Coding errors and compiler bugs may degrade the results and should be removed.
This paper describes a technique for the comparison of two program runs which removes numerical drift
and therefore exposes coding and compiler errors. The procedure is highly automated and requires very
little intervention by the user. The technique is applied to the Weather Research and Forecasting model,
the most widely used weather and climate modelling code.

KEYWORDS
Relative debugging; numerical drift; coding errors; compiler errors

1. INTRODUCTION
The technique of debugging by identifying differences in execution between versions of a
program was introduced by Abramson and Sosic in 1994 and given the name relative debugging
[1][2][3]. A relative debugging system known as Guard was developed that enable users to run
debuggers on several versions of the program simultaneously [4]. Commands are provided that
enable users to identify data structures within the program to have breakpoints set at which the
contents of the data structures are compared, with optional choice of tolerance of insignificant
differences. The user can analyse the differences using text, bitmaps or more powerful
visualisation tools. The system is able to compare versions written in different languages - the
user identifies the data structures to be compared through variable name and location within the
source code files.

The importance of this techniques lies not with the development of new software, but with the
on-going evolution and maintenance of existing software systems [2]. Whilst debugging plays
an important role in the implementation of new systems, the ability to make comparisons
between versions of software, and specifically the data being processed within the code,
provides a powerful mechanism for ensuring that the software is delivering consistent and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edge Hill University Research Information Repository

https://core.ac.uk/display/227101373?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:a.orther@xx.yy.zz
mailto:mark.anderson@edgehill.ac.uk
mailto:gill@ucar.gov

correct results throughout its existence. This is achieved through the comparison of values
between a reference program and a development program (Figure 1).

Figure 1: Relative Debugging [2]

Abramson et al [2] describe the successful application of a relative debugging technique for a
program running in a sequential and a parallel environment. Their technique requires the user to
specify specific data structures to be compared during the different program runs. A difficulty
of the technique is that numerical drift will eventually cause any assertion that the data
structures are similar to fail. Also, there may be appreciable labour in choosing and specifying
the appropriate data structures. Both issues are addressed in the technique described within this
paper.

1.1. Numerical Drift
Numerical drift between runs of the same program in different computing environments occurs
because of the integration of small differences in the results of floating point computations.
These differences are to be expected. There are, at least, three reasons why they should occur:

i. different systems may use different floating point representations for numbers with different
precision. The results of floating point computations are therefore often slightly different.
Differences from this cause are now relatively uncommon because most computers use the same
format of IEEE floating point numbers;

ii. different compilers may make different choices in the order of evaluation of terms in
floating point expressions. The order of evaluation is usually strictly defined by, for
example, the Fortran standard [5]. However, optimising compilers may sometimes violate the
standard in the interests of efficiency;

iii. different compilers may make different choices of variables or quantities to be held in the
processor registers. The processor registers of a typical PC chip are 10 bytes long. Values
written to memory are 8 or 4 bytes long. The additional precision of values held in registers
may be integrated to cause drift.

The objective of this study is to remove numerical drift. Any remaining differences between
environments are likely to be the result of coding or compiler errors.

2. RELATED WORK
The Guard system was developed as a means of implementing automated relative debugging
[2]. The project was driven by the fluid nature of software development for scientific modelling
in which a community contributes towards the on-going development of the model. The
community would generally consist of academics who have a different programming
philosophy from those who program on engineering models [6], and thereby require a
mechanism to ensure that the results generated by incremental changes to the model
implementation do not contain significant differences.

The implemented system was successful in the hands of those users familiar with the code and
likely causes of error. However, it suffered from a number of drawbacks which the system
described in this paper aims to overcome. It has been argued that the automation in the Guard
system is somewhat limited [7], in that Guard is deployed to perform comparisons. Further
extensions have been proposed which extend the functionality to backtrack and re-execute code
[8][9].

In looking for possible bugs, the user declares assertions to specify which data structures to
monitor and where in the code they are to be compared (Abramson et al. 1995). The point in the
code where a comparison is made that result in significant differences is unlikely to be the point
where the differences are being generated. If differences are indeed detected then further work
is required to pin down the cause of the differences, for example by introducing further
monitoring points. The user's experience and intuition are required to make the detection of the
location of the generation of differences efficient. Visualisation tools are used to help the user
interpret and identify the cause of differences in these circumstances.

The differences may be spurious; for example, the result of numerical drift between the
executions of the two versions. Valid discounting of the effects of numerical drift depends on
the experience of the user. In contrast the system described in the current paper automatically
removes the effect of numerical drift.

Later improvements to the Guard system (given the name DUCT) have focussed on attempting
to automate the creation of assertions aimed at identifying the cause of differences[10][11]. The
variables that are used to generate the values in the variable under investigation are recognised
as the source of the differences. They are automatically identified and chains of preceding
variable assignments that contribute to the values they hold when being used to modify the
target variable are created. From these chains, further assertions are generated. Although this
technique moves the user to the source of the generation of differences it still depends on the
user's intuition regarding potential data structures where differences might occur. A technique
that systematically examines every variable's assignment is capable of detecting differences
caused by errors not expected by the user. This would be a full automation of the procedure
rather than the hybrid presented by DUCT. The system described in this paper provides such a
technique by identifying automatically the locations in the code where all significant differences
are generated.

The Guard system is able to compare programs written in different languages because the user
explicitly identifies the data structures in each to be compared and where in their source code
files to compare them. The system described in this paper works only for programs written in
Fortran since it depends upon a semantic analysis and automatic code modifications provided by
the tool kit, WinFPT .

An alternative relative debugging project, HPCVL [7], has considered the limitations in Guard
relating to the identification of equivalent variables in the reference and development programs.
As identified, the variable names may differ between the two versions of the code which would
make the comparison difficult, if not impossible. In order to overcome this, a template which
adopted a labelling mechanism was implemented. This required the source code to be manually

amended to include calls to library functions which could be included or removed by pre-
processing the code. Whilst this provides a powerful means by which two programs can be
compared, even should they be written in different languages, it does have the limitation that the
source code needs to be manually amended and also an acknowledged issue that the processing
may require a large amount of disk space [7].

Guard, DUCT and HPCVL represent important developments in relative debugging. However,
each has limitations in terms of implementation or functionality. HPCVL required users to
manually instrument source code to function and DUCT is not a fully automated system. The
relative debugging techniques previously described by Abramson, Sosic and Watson [3] and in
the related studies are labour intensive. It is not practicable to apply such techniques to large
scientific modelling software, such as the WRF model considered in this paper. These earlier
techniques require deep knowledge of the target program, intuition and some luck to succeed in
identifying areas where problems are likely to occur. There is a danger that the users will only
find the errors they expect to find and will miss the unexpected, such as compiler errors and
differences. The technique described here is able to look for differences in the entire program,
even programs as large as WRF, with no need for manual intervention. It is also able to monitor
execution coverage automatically so that test runs can be fine-tuned to maximise coverage of
the code as it is debugged.

The functionality of Guard is centred on comparison of versions of programs. In any non-trivial
program which integrates floating point values, numerical drift will cause the results from
different systems to diverge. Meaningful comparisons between runs can only be made if this
drift is removed. It is therefore essential that this issue is addressed. The technique described
here removes numerical drift.

3. WEATHER RESEARCH AND FORECASTING MODEL
WRF, the Weather Research and Forecasting code developed at UCAR is arguably the most
important computer program ever written [12]. It is the most widely used modelling code to
inform international climate change policy, to which over 100 Billion US Dollars has been
committed to date.

WRF is almost completely written in Fortran 95. The code can be built for a range of
architectures, from a single serial processor to very large multi-processor systems and with
varying patterns of shared memory. Parts of the code are modified by the build procedure to
adapt the target architecture. The Fortran code for a serial single processor system occupies
360,410 lines. There is extensive use of Fortran 90 modules which encapsulate different areas of
the computational process.

The WRF code is divided into three layers [12]. The Mediation layer describes a grid which
represents an area of the Earth's atmosphere. The Model layer describes the physics of the
atmosphere, and deals with issues such as mass flow, radiation, chemistry and effects at the land
and sea surface. The middle layer (the Driver layer) is concerned with distributing data between
the different processors and threads in the target architecture. The data structures in the top two
layers are mostly large hierarchies of Fortran 95 derived types, some with their own overloaded
operators. The data structures in the physics layer are mostly simple arrays of native Fortran
types. The translation takes place in the middle layer. This architecture has implications for the
analysis technique described in this paper.

The version of WRF used in the study was 3.1.

4. WINFPT TOOLKIT
The tool used to insert the trace statements into the source code is WinFPT. WinFPT is written
and maintained by two of the authors. It analyses Fortran codes in the same way as a compiler,
and stores an internal representation of the code, including comments and formatting
information. A full static semantic analysis is carried out, and the tool therefore identifies the
data types and other attributes of all variables, and the intents (Whether input, output both or
neither) of all sub-program arguments. The trace statements are inserted into the code by
modifying the internal representation. A new version of the code is generated from the internal
representation. Processing of WRF by WinFPT takes about four minutes on a typical PC. The
process is fully automated.

The trace file generation is handled by a small Fortran library linked with the modified code.
Tools were also written to handle the large trace data files.

5. REMOVAL OF NUMERICAL DRIFT
The technique is as follows:

a) statements are added to the code to capture every quantity produced as the result of a
computation. This process is entirely automatic, and is carried out by the WinFPT tools
described above. The statements inserted are subroutine calls. The results, a trace of the
program flow and all intermediate data, are captured to a text file;

b) the code is run in the first computing environment, and the trace file is generated;

It is possible to run the program in the second environment, to generate a second file and to
compare the two traces. This was the original intention of the authors. The results show a very
large number of differences as a result of numerical drift and are almost impossible to analyse.
Instead:

c) the program is run in the second environment, but the subroutines which captured the trace
data in the first run are used to read the original trace file. The values computed are compared
with the values read from the first run. There are four possible consequences:

1. the results are identical. No action is taken;

2. the results are similar (The criteria for similarity are passed as parameters to the
program). The values computed are overwritten by the values read from file from the
first trace. This prevents numerical drift;

3. the results are significantly different. The values and the point in the code where the
difference occurred are recorded for investigation. The value computed is overwritten
by the value from the first run so that the analysis may continue;

4. the program follows a different path through the code. The difference is recorded and
the run halts. At present the situation is not recoverable.

5.1 Modifications to the Code
Subroutine calls are inserted automatically into the code to capture or to compare the trace data.
For example, a code fragment from WRF

REAL, PARAMETER :: karman = 0.4

rdt = 1.0 / dtpbl

DO k = 1, kte

 sigmaf(k-1) = znw(k)

ENDDO

sigmaf(kte) = 0.0

is modified to:

REAL,PARAMETER :: karman = 0.4

CALL trace_start_sub_program('ACMPBL',6914)

rdt = 1.0/dtpbl

CALL trace_r4_data('RDT',rdt,38749)

DO k = 1,kte

 CALL trace_i4_data('K',k,38750)

 sigmaf(k-1) = znw(k)

 CALL trace_r4_data('sigmaf(k-1)',sigmaf(k-1),38751)

ENDDO

sigmaf(kte) = 0.0

CALL trace_r4_data('sigmaf(kte)',sigmaf(kte),38752)

There is a separate data trace subroutine for each primary data type. The arguments are a string,
which records the variable assigned, including the field and array indices if any, the variable
itself and a unique integer identifier which is used to locate the statement in the code. This
identifier is used to check that the same path is followed through the code on each run.

5.2 Criteria for Similarity
Values from the two runs may differ as a result of numerical drift, and no report is made if they
are sufficiently similar. The criteria for similarity are controlled as follows:

i. logical and integer values are required to match exactly;

ii. character values may be required to match, but it was found that there are relatively few
character computations in the codes which have been analysed, and most of these are file names
which are expected to differ, Provision is therefore made to ignore character variables;

iii. real and complex values are required to differ by less than a percentage difference passed as
a parameter to the modified program. In the study of WRF, this criterion was set to 0.1%.
However, values close to zero are likely to generate large percentage differences by chance.

Therefore values were also considered to be similar if they differed by less than an absolute
criterion, also passed as a parameter. In the study of WRF this was set to 1.0E-10.

5.3 Trace Files

The trace is written to a single ASCII file. The records, which record the data assignments,
contain the identifier number, the descriptive string and the value. Values are written in a
consistent format, irrespective of the Fortran kind of the data type in order that runs using
different data kinds may be compared. Records are also written to mark the entry to and return
from each routine.

The trace files are large. A file produced by a very short run of WRF may be of the order of 30
gigabytes. These files are too large to be handled by most text editors, and special tools were
written to extract data from them. The files are also slow to produce. The present
implementation of the technique requires the code to be run serially, on a single processor, and
the run speed is of the order of ten times slower than the serial un-modified code.

6. WRF CASE STUDY
WRF may be run as a single processor serial program under Linux. Differences are observed
between the output data generated by runs under GNU gfortran and Intel ifort . Some
differences are due to numerical drift, but the technique also reveals coding and compiler errors.
Three examples of the findings are described below.

6.1 Preparing WRF for Analysis
The build procedure for WRF modifies the code, and generates code automatically to adapt to
different computing environments. Code is modified by the sed stream editor and by the cpp C
pre- processor. This is necessary because the code must be optimised for different parallel
architectures with different arrangements of shared memory. WinFPT cannot analyse the
distributed code because it cannot interpret the cpp directives or anticipate the modifications
made by sed. The WRF build procedure was therefore interrupted to capture the post-
processed Fortran 95 files for analysis. A modified version of the build procedure was written
to complete the build from the post-processed files.

6.2 Case 1: An Uninitialised Variable
The WRF code was processed to insert the trace statements, built with gfortran and a short run
was made. The code was rebuilt with ifort and run again. The first difference reported is:

!*** Trace value error:

!Value computed: 148443456

!Trace file line: 24468 NEW_DOMDESC = 538976288

The value computed for NEW_DOMDESC by:

ifort is 148443456

gfortran is 538976288

The identifier, 24468, is used to identify the statement in the code where the variable was
assigned. The statement is a subroutine call, and the variable should be assigned as an
INTENT(INOUT) argument. However, it is never initialised and is not written to in the routine.

This is a coding error. The variable is used in the subsequent code. However it is not clear that
it has any significant effect on the program results.

6.3 Case 2: A Coding Error, a Compiler Bug and a Poor Fortran 95 Language
Feature

The comparison ifort run halts with the report:

!*** Trace error at start of sub-program: ESMF_TIMECOPY

!Trace file line: 9608 STOPTIME = 0

ifort starts execution of the subroutine esmf_timecopy.

gfortran does not.

1) The Coding Error

The subroutine esmf_timecopy is in esmf_time.f90 in the MODULE esmf_timemod. It is used
to overload the assignment of variables of the derived type esmf_time. The code is:
!===

!

! ESMF Time Module

 module ESMF_TimeMod

!

!===

 :

! !PRIVATE TYPES:

 private

!---

! ! ESMF_Time

 :

!---

!BOP

! !INTERFACE:

 interface assignment (=)

! !PRIVATE MEMBER FUNCTIONS:

 module procedure ESMF_TimeCopy

! ! DESCRIPTION:

! This interface overloads the = operator for the

! ESMF_Time class

!

!EOP

 End interface

!

!--

There are many calls, but they are written as assignment statements. For example:
clockint%currtime = starttime

The coding error is that there is a leading PRIVATE statement in the module esmf_clockmod.
esmf_timecopy is declared public, and is therefore visible when the module is used. However,
ASSIGNMENT(=) is not declared public. Therefore the overloading of the operator should not
be exported.

2) The Compiler Bug

This code works as intended under ifort because of a bug in the ifort compiler. ifort exports the
use of the SUBROUTINE esmf_timecopy to overload assignment when it exports the routine
itself. It should not[5]. The code works as written under gfortran, not as intended.

3) A Poor Language Feature

This is a serious failure in the Fortran 95 language. If an error occurs in the coding of an
INTERFACE ASSIGNMENT (=) statement, as occurred here, then the values of the variables
on which the overloaded assignment is intended to operate are simply, and silently copied.

6.4 Case 3: Different Orders of Computation (Not an Error)
The trace report is:
!*** Trace sequence error:

!Sequence number reached: 2632

!Trace line: 44475387 2444 Start sub-program:

! WRF_PUT_DOM_TI_INTEGER

44475387 2632 Start sub-program: USE_PACKAGE

gfortran called wrf_put_dom_ti_integer

ifort called use_package

The code here is:
IF ((use_package(io_form)==io_netcdf) .OR. &

 (use_package(io_form)==io_phdf5) .OR. &

 (use_package(io_form)==io_pnetcdf)) THEN

 CALL wrf_put_dom_ti_integer(fid,'SURFACE_INPUT_SOURCE', &

 surface_input_source,1,ierr)

Both gfortran and ifort are optimising compilers. Both will evaluate each alternative of the .OR.
clause and will stop evaluation as soon as one is true. The Fortran standard explicitly states that
the order of evaluation is not defined by the language in this context [5]. The gfortran compiler
evaluated the first sub-clause first. The ifort compiler did not, and therefore invoked the
function use_package again.

This is not an error, provided that the function involved has no side effects (which is the case
here). However, it is not a good idea to have an undefined pattern of program flow, and the trace
analysis traps it.

The present library routines halt the program when the program flow in the second run differs
from that in the first. The code was therefore modified for future runs:

i_use_package = use_package(io_form)

IF ((i_use_package==io_netcdf) .OR. &

 (i_use_package==io_phdf5) .OR. &

 (i_use_package==io_pnetcdf)) THEN

 CALL wrf_put_dom_ti_integer(fid,'SURFACE_INPUT_SOURCE', &

 surface_input_source,1,ierr)

6.5 Further Analysis of WRF
A coverage analysis of the WRF code indicated that only 18% of the code was visited in the
runs which were analysed. This is to be expected. In a single WRF run, only one of 14 possible
physics regimes is selected, and the atmospheric physics code is the largest part of the program.
The intention of future work on the project is to analyse all of the physics code. There are also
many static analyses carried out by WinFPT which expose features in the code which should be
corrected.

7. IMPLICATIONS FOR WRF
The WRF modelling system is complex and exploits many Fortran capabilities that permit
compile-time checking, such as modules and interfaces. The code is largely Fortran compliant,
which is gauged by the number of successful compiler ports: IBM xlf, PGI, Intel, gfortran, g95.
While the architecture of the WRF model is sound, over the years capabilities and code have
been added through accretion by many different developers and contributors of the modelling
community. The complicated nature and background of the source code means that the software
has accumulated inconsistencies and inefficiencies with respect to the strict Fortran standards.

The initial tangible benefit that the WinFPT analyses provide is run-time stability. The FPT
group is working on identifying coding errors in the WRF model. For example, they have
already identified improper usages of an overloaded "=" when ESMF calls are made, and a
returned value into a parameter. These errors constitute the visible portion of the iceberg for
unknown, lurking bugs that could trigger failed forecasts for no apparent reason. These
problems are also likely to be a source of different behaviour when running on different
machines, such as when porting from one OS/compiler to another. Just as the WRF community
greatly benefits from having thousands of users investigate the code and identify problems in
the physical parameterization schemes, so the community will also benefit from having a tool
that identifies (for later correction) errors in the Fortran code which will reduce the exposure to
model failures.

With the broad usage of the WRF code across many different hardware and software systems,
the intercomparability of model results becomes tantamount. Here also the WinFPT tool is able
to provide a solution by allowing a fine-grained granularity comparison of results while the
model is integrating.

8. CONCLUSIONS
The technique described isolates coding and compiler errors which lead to differences in
performance when the same program is run in different computing environments. It has the

advantage that it is highly automated, and requires very little human intervention. However, it
is computationally intensive, and currently requires code to be run serially on a single processor.

Initial investigation making use of the techniques described has enabled a number of issues to
be discovered. These issues can be related to coding in the model and the compilers used to
build the code. The paper discusses three findings from the experiments that have been
performed. These represent important validation of this technique, and the intention of the
project is to apply the technique to include broader coverage of the WRF model code.

The initial experiments have focussed on single processor builds of the WRF model. By
making use of alternative test suites, it is envisaged that coverage of the WRF code will be
significantly increased from the 18% which has currently been achieved. However, this could
be further improved by expanding the experimentation to also include multiprocessor builds.
One aim of future work on the project is to investigate the combination of aspects of this
technique and the relative debugging techniques developed by Abramson et al. [2] to analyse
runs made on multiprocessor systems.

The technique described here offers the possibility of a new phase in software development in
which software validation can be enhanced by comparing execution on different compilers to
track down bugs that would be difficult or impossible to detect otherwise. This is especially
useful where immature compilers are involved.

REFERENCES
[1] D. Abramson and R. Sosic. A debugging and testing tool for supporting software evolution.

Automated Software Engineering: An International Journal, 3(3/4):369–390, August (1996).

[2] D. Abramson, I. Foster, J. Michalakes and R. Sosic. Relative debugging and its application to the
development of large numerical models. In Proceedings of the 1995 ACM/IEEE conference on
Supercomputing, ACM, New York, Article 51.(1995)

[3] D. Abramson, R. Sosic, C. Watson, "Implementation techniques for a parallel relative
debugger," Parallel Architectures and Compilation Techniques, 1996., Proceedings of the 1996
Conference on , vol., no., pp.218-226, Oct (1996)

[4] Abramson D., Foster, I., Michalakes, J. and Sosic R., “Relative Debugging: A New
Methodology for Debugging Scientific Applications”, Communications of the Association for
Computing Machinery (CACM), Vol 39, No 11, pp 67 - 77, Nov (1996).

[5] ANSI, Programming Language Fortran 90, X3.198-1992, American National Standard Institute
(1992).

[6] Easterbrook S.M, Johns T.C., Engineering the Software for Understanding Climate Change,
Computing In Science and Engineering, Nov (2009)

[7] Liu, G., Schmider, H.L., and Edgecombe, K.E.. A Data Identification Scheme for Automatic
Relative Debugging. In Proceedings of the 2004 International Conference on Parallel Processing
Workshops (ICPPW '04). IEEE Computer Society, Washington, DC, USA, 247-253, (2004)

[8] Matthews, G., Hood, R., Johnson, S., and Leggett, P.. Backtracking and Re-execution in the
Automatic Debugging of Parallelized Programs. In Proceeding of the 11th IEEE International
Symposium on High Performance Distributed Computing, 2002, HPDC-11, (2002).

[9] Matthews, G., Hood, R., Jin, H., Johnson, S., and Ierotheou, C.. Automatic Relative Debugging
of OpenMP Programs Tech. Report NAS-03-014, NASA Ames Research Center, Moffett Field,
California, (2003)

[10] Searle, A., Gough, J. and Abramson, D., “DUCT: An Interactive Define-USE Chain Navigation
Tool for Relative Debugging”, Proceedings of the 5th International Workshop in Automated and
Algorithmic Debugging. 2003. Ghent, Belgium, Sep (2003a).

[11] Searle, A., Gough, J. and Abramson, D, "Automating Relative Debugging," Automated
Software Engineering, International Conference on, p. 356, 18th IEEE International Conference
on Automated Software Engineering (ASE'03), (2003b)

[12] Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W., and Wang, W.:
The Weather Research and Forecast Model: Software Architecture and Performance.
Proceedings of the Eleventh ECMWF Workshop on the Use of High Performance Computing in
Meteorology. Eds. Walter Zwieflhofer and George Mozdzynski. World Scientific, pp 156 – 168,
(2005)

	Computer programs often behave differently under different compilers or in different computing environments. Relative debugging is a collection of techniques by which these differences are analysed. Differences may arise because of different interp...
	Keywords

