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Abstract

The design and analysis of reliable communication networks 

by T. Evans

In this study, a communication network is represented by a 
graph, and the problem of designing a network that will 
operate as reliably as possible is investigated. Failure 
of the network is associated with the removal of a set of 
nodes which disconnects the graph or by the removal of a 
set of edges which disconnects the graph. We are interested 
in finding reliable graphs for which the probability of 
disconnection is as small as possible.

We survey various reliability measures and then deal with 
the design of a reliable communication network based on 
the construction of graphs with the smallest number of 
minimum cut sets. The number of minimum size vertex cut 
sets may give a much better indication of the reliability 
of the graph than the connectivity alone, at least where 
the probability of failure of a vertex is close to 0. 
The determination of the number of minimum size vertex cut 
sets of such a graph is therefore of interest and we 
describe a construction of infinite families of such graphs 
in various cases. These cases are spread through the 

range 3 < k ^ ( where k = connectivity = degree of the graph, |v|= th 
' V ' number of vertices of the graph ) ,

Graphs with the smallest number of minimum cut sets are 
compared with other graphs of optimal connectivity, to 
assess their reliability when other values of the 
probability are considered. These values of the probability 
are; when the probability of failure of a vertex is close 
to 1, when the probability of failure of an edge is close 
to 0, and when the probability of failure of an edge is 
close to 1. In many cases the graphs proved to be highly 
reliable. Consideration is also given to the expected 
number of vertices disconnected from the largest component 
of a graph.
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CHAPTER 1 

Introduction

Many real world situations can conveniently be described 

by means of a diagram consisting of a set of points 

together with lines joining certain pairs of these points. 

Some practical illustrations of these diagrams are 

communication networks, transportation networks, and 

electrical networks. In a communication network for 

example the points might be communication centres with 

lines representing communication links. In such diagrams 

one is mainly interested in whether or not two given points 

are joined by a line; the manner in which they are joined 

is immaterial. A mathematical abstraction of situations 

of this type gives rise to the concept of a graph.

Discrete systems or organized collections of objects are 

frequently encountered, for instance in the networks 

mentioned above and graph theory provides simple techniques 

for constructing models of systems of this kind, and 

powerful methods for their analysis and optimization with 

respect to their ability to function as reliably as possible

Technology today poses a great number of problems that 

require the construction of complex systems through specific 

arrangements of their components. The applications are 

numerous (for example, a railway network or a telephone 

network) and the reliability and availability of 

communication paths between all pairs of centres is a 

primary consideration in such applications.



In this thesis we shall be studying the reliability of 

communication networks but before discussing the problems 

to be dealt with we describe some of the notation and 

definitions from graph theory necessary to describe the 

mathematical model.



1.1 NOTATION

V Vertex set.

E Undirected edge set.

G = G(V,E) Connected graph with vertex set V, 

and edge set E.

|B| The number of elements in the set B,

e Number of elements in E; e=|E|.

v Number of elements in V; v=|v|.

P(v) Degree of a vertex (or valency).

k(G) Vertex connectivity.

X(G) Edge connectivity.

d Diameter of a graph.

r (v) Neighbour set of a vertex v.

K, I Complete graph.

G(V.jV ) Bipartite graph.

K. Complete bipartite graph.

T Spanning tree.

T, ,_ Complexity of a graph.

p Minimum degree of a vertex.m

S Number of vertex cut sets each with
rC

k vertices.

R-, Number of edge cut sets each with 

A edges.



1 . 2 Defini tions

A finite graph G consists of a finite set V of

vertices v , v , v ... v , together with a finite

set E of unordered pairs of vertices. The elements

of E are called edges.

If e is the edge containing vertices v. and v., then
«J

we write e = v.v. and say that v. and v. are adjacent 

and that vertex v. and edge e are incident.

A subgraph of G consists of subsets of V and E which 

form a graph.

A spanning subgraph of G has the same set V of 

vertices as G.

A simple graph is a graph with no loops or multiple 

edges i.e. there are no edges joining vertices to 

themselves and there is at most one edge joining each 

pair of vertices.

A path joining two vertices v. and v. of G is the set 

of vertices and edges in a sequence of succeeding 

incident vertices and edges beginning with v. and 

terminating with v., in which all vertices are 

distinct.

e.g. v.. e , v ... e , v.B i' p' r s' j

The length of a path is the number of edges in it.

A circuit in a graph G is defined in the same way as a path except 

that the initial and terminal vertices coincide.



The complete graph K ,... with JV vertices has every 

two distinct vertices adjacent.

The distance between two vertices is the length of 

a shortest path joining them.

The diameter of a graph is the maximum distance 

between any two vertices.

The degree or valency of a vertex is the number of 

edges incident with that vertex.

A graph is regular of degree k if all vertices have 

the same degree k.

A graph is connected if there is a path existing 

between any two vertices.

A graph G is called k-connected if G has at least 

k+1 vertices and it is impossible to disconnect G 

by removing k-1 or fewer vertices.

The connectivity of G, is defined to be k if G is 

k-connected but not (k+ 1 )-connected.

The vertex connectivity (or just connectivity) of 

a non-complete graph G is the minimum number of 

vertices whose removal together with the edges 

incident to those vertices results in the graph 

being disconnected.

The edge connectivity (or cohesion) of a graph G is 

the minimum number of edges whose removal results 

in a disconnected graph.

5



A spanning tree in G is an edge-subgraph of G which 

has |v|-1 edges and contains no circuits. In a 

spanning tree every vertex in G is incident with at 

least one edge of the tree.

The neighbour set of a vertex v is the set of 

vertices F(v) such that all the vertices of F(v) 

are adjacent to v.

A set Xcv is called a vertex cut set of G if G-X 

is disconnected.

2 V 1 V 3 

a) connected graph

"2 V 3 

(b) disconnected graph

FIG. 1.1 The vertex cut set is l.v }.

A set YcE is called an edge cut set of G if G-Y 

is disconnected.

2 V 3 
(a) connected graph

2 "3 
b) disconnected graph

FIG. 1.2 The edge cut set is {v,v , v,v , V c v 2 » V 2 V 3



A directed graph, G, consists of a set of vertices 

and a set of ordered pairs of vertices called 

directed edges. The edge may be represented by a 

line connecting vertices v. and v., with an 

arrowhead pointing from v. to v.. FIG. 1.3.

FIG. 1.3 A directed graph.

Thus our original definition of a graph can be 

referred to as an undirected graph. There sometimes 

exist 'mixed graphs'.

FIG. 1.4 A mixed graph.

A weighted graph, G, is a graph in which numbers, 

called weights, are associated with the edges 

or vertices.



The minimum length of any circuit in G is known as 

the "girth" of the graph and is denoted by g .

The adjacency matrix of a graph G is the |v| x |vl 

matrix A(G) whose entries a. . are given by

a.. = {1 if v. and v. are adjacent 

{ 0 otherwise

A circulant matrix A (G) is a |V|x |v| matrix such

that row i of A (G) is obtained from the first row
c

of A (G) by a cyclic shift of i-1 steps, so any 

circulant matrix is determined by its first row. 

FIG 1.5 (a).

A circulant graph is a graph G whose adjacency matrix 

A(G) is a circulant matrix. FIG 1.5 (b).

A(G)=S=

011011

101101

110110

011011

101101

110110 

(a)
FIG 1 .5

Any two paths between vertices v. and v. are said 

to edge disjoint if they have no edges in common 

and vertex disjoint if they have no vertices in

common except for v. and v..



1.3 General Discussion of the Problem

Topologically, a communication network may be 

represented by a connected graph, where stations 

(nodes) and links of the network correspond to 

vertices and edges, respectively, of the graph. 

By N(G), we denote a network represented by a 

graph G.

If we think of a graph G as representing a 

communication network, the vertex connectivity 

(or edge connectivity) becomes the smallest number 

of communication stations (nodes) or communication 

links whose breakdown would disrupt communication 

in the system. The higher the vertex connectivity 

and the edge connectivity, the more reliable 

the network.

For example, if a network is modelled by the graph 

in FIG.1.6 it is reasonable to conclude that the 

system is not reliable since removal of the single 

station (node) represented by vertex v breaks 

all communications.

v



In many applications, the vertices of a graph may­ 

be the unreliable elements. For example, in an 

airline network, the vertices represent aiports 

and the edges represent air routes. Suppose the 

network is the subject of an attack aimed at 

disrupting service between various airports. It 

will often be much easier to destroy airports than 

to achieve air superiority to close air routes.

In the design and analysis of communication 

networks, one of the fundamental considerations 

is the reliability, in particular that the stations 

or centres can communicate in case of link or node 

failure. It is clearly more serious for link or 

node failures to isolate half the nodes in the 

network from the other half than one node in the 

network from all the others. Consequently we 

would expect a highly reliable network to reflect 

this property.

In the design of networks that are best with respect 

to node and link failure, the aim is to maximize 

the number of nodes or links that must fail in order 

to disconnect the operation of the network. The 

function of a communication network is to communicate 

between pairs of terminals or stations and it is 

usually required to do this as reliably as possible. 

The most simplistic approach is to regard the 

network as reliable if a communication entered into 

the network at one terminal can actually be routed

10



to the required destination. This corresponds to 

the requirement that the underlying graph of the 

network be connected and it is one of the designers' 

objectives to maximize the number of vertices and 

edges that have to be removed to disconnect the 

graph .

For example, for G FIG.1.7(a), k(G )=2 and for 

G 2 FIG.1.7(b), k(G 2 )=1, although G I and G 2 have 

the same number of vertices and edges.



The difficulty of finding the minimum number of 

vertices and edges of a graph G which if removed 

would disconnect G can easily be seen by considering 

FIG.1.8(a) and FIG.1.8(b). The answer is readily- 

seen once G is redrawn. The removal of either

V 3 or v disconnects G.

12

FIG. 1.8 Two drawings of the same graph.

One objection to using the parameters of edge and 

vertex connectivity is that they fail to 

differentiate between the different types of 

disconnected graphs which result from removing k 

vertices or A edges. It is not the same in practice

12



to isolate a single vertex or to divide the graph 

into two equal components.

If we consider regular graphs in which all vertices 

are of degree P, then such graphs are maximally 

connected if they are P-connected and p-edge- 

connected. If all nodes in a communication or 

computer network are of equal importance, a 

maximally reliable network corresponds to a 

maximally connected regular graph.

Maximally connected graphs having the property that 

their diameters increase very rapidly with the 

number of vertices are undesirable since in large 

networks of this type, the shortest route between 

several pairs of nodes would have to pass through 

many intermediate communication stations. This 

might cause processing and queuing delay associated 

with each node.

More realistically, one might consider that a 

communication in a network system has some probability 

p of accurate reception after passage over a single 

link of the network. Hence if the length of the 

shortest path from start to finish in the network 

is d, then the commodity will be received accurately 

with probability p . Furthermore in data networks, 

the delay is proportional to the length of the path 

being used. From these points of view, it seems 

natural to describe the reliability of the network 

in terms of the diameter of the corresponding graph.

13



Different research workers have suggested different 

reliability measures in their attempts to realize 

maximally reliable communication networks. 

R. S. Wilkov [51] has surveyed these reliability 

criteria and discussed their relevance to different 

applications by pointing out the difficulties and 

limitations associated with each of these reliability 

measures. H. Frank and I. T. Frisch [24] have also 

comprehensively treated these reliability measures.

A recent work by J. C. Bermond, J. Bond, M. Paoli 

and C. Peyrat [2] surveys the results concerning 

diameter and connectivity in graphs and hypergraphs, 

in particular those of some importance for 

communication networks. F. T. Boesch [4] considers 

that the notion of connectivity is one of the most 

important graph theoretic concepts that is useful 

in applications, and investigates the properties 

of some new and important generalizations of 

connectivity.

1 . 4 Graph Theoretic Models

A graph theoretic model G of a system can yield 

many significant properties of the system. Thus, 

if the graph represents a power system, it can be 

be used to determine such factors as the possible 

routes over which power can be sent and the number 

of sub-stations that must be out of use before 

power transmission is interrupted for some users.

14



Suppose we are given a telephone communication 

system in which there are three stations, S , S ? , 

S_ with wire connections between them. Furthermore 

assume that the wire between S. and S. is of length 

2-( i , j ) , has a cost C(i,j), and a. probability p(i,j) 

of normal operation. Also assume that each station 

S. has capacity C(j) and probability p(j) of normal
\j

operation. The system can be represented by a 

weighted graph G shown in FIG. 1.9 where vertex v. 

corresponds to station S. and edge (1,J) corresponds

to the wire between S. and S..

C(2), p(2)0————————*—————————•CO), p(3) 
v ^(2,3) C(2,3) v 

p(2,3)
FIG. 1.9 A weighted graph.

The purpose of the edge and vertex weights is to 

include non-structural information into the graph 

theoretic model of a system. The modelling of some 

physical systems by graphs is quite natural. The 

edges of the graph can represent roads, telephone 

wires, railway lines, airline routes, water, gas 

or oil pipes, in general channels through which 

commodities are transmitted. The vertices of the 

graph can represent communities, road junctions, 

telephone stations, railway depots, airline terminals,

15



water reservoirs, in general, points where flow 

starts, is relayed, or terminates. The following 

examples further illustrate these points.

1.4.1 A traffic network. Let each vertex of a graph

represent a city. Two vertices are connected by 

an edge if there is a road between the corresponding 

cities. A number is associated with each edge to 

indicate the length of the corresponding roads. A 

second weight represents the maximum number of cars 

that can be accommodated per unit length per unit 

time, and a third edge weight could be the 

speed limit.

1 . A . 2 An airline system. Let each vertex of a graph

represent an airport. Two vertices are connected 

by an edge if there is a direct air link between 

the airports. Each vertex of the graph has a 

weight indicating the number of aeroplanes that the 

airport can handle in a given interval of time. 

This vertex weight could be a fixed number if the 

traffic handling capacity of the airport is assumed 

to be constant or it could be a random variable if 

it depends on unpredictable elements such as weather.

1.4.3 A telephone system. Let each vertex of a graph

represent a telephone exchange. Two vertices are 

connected if there is a telephone wire between the 

corresponding telephone exchanges. That is, there 

will be an edge between two vertices if the exchange 

can communicate directly, without any intermediate
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relay exchange. At each telephone exchange there 

will be a limit to the maximum number of messages 

which can be simultaneously transmitted and 

received. This can be included in the model by an 

appropriate vertex weight. The maximum number of 

messages on an edge is determined by the number of 

telephone wires. Each edge could be weighted by 

the maximum number of simultaneous messages that 

can be handled.

1 . A. A An economic model. Suppose we are given a system 

of factories, warehouses, and outlets connected by 

a set of roads, railways, and canals. This system 

can be structurally modelled by a graph with the 

edges representing transportation channels and the 

vertices representing factories, warehouses and 

outlets. In the graph, the factories are source 

vertices, the outlets are terminal vertices. For 

the relay vertices, a single weight representing 

the storage space might be sufficient. A terminal 

vertex could be weighted with numbers which indicate 

the types of commodity which are sold at that vertex 

or the price of each commodity. Typical edge weights 

could be maximum volume per unit time or cost of 

transportation.

The use of graphs as models depends on the nature 

of the physical problems to be solved. Weighted 

graphs are considered when the existence of a path 

between a pair of vertices implies that some amount
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of flow can be transmitted between these two vertices 

The problem of finding the maximum amount of a given 

quantity which can be conveyed between two points 

is known as the Maximum Flow Problem. L. R. Ford 

and D. R. Fulkerson [22] have been among the most 

original and prolific contributors to the development 

of theory of flows in networks. Their work is of 

interest in reliability studies because it can be 

used to determine, for example, the edge and vertex 

connectivity of a graph.

The examples given are sufficient to point out the 

wide range of applications of graph theoretic models 

and the nature of the problems that can be posed. 

Connectivity and maximum flow problems are related 

to a problem of "reliability" and it is the problem 

of calculating and optimizing the reliability of a 

communication network in terms of probability that 

will be the basis for the work in this thesis.

1 . 5 Reliability and the Model

Reliability analysis of communication networks is 

concerned with the dependence of the reliability of 

the network on the reliability of its nodes and links.

Node failures can affect network reliability in two 

ways. First, if a node fails, clearly it cannot 

communicate with any other node in the network. 

Thus if there are N nodes in the network and one 

fails, a minimum of N-1 node pairs cannot communicate
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independent of the network structure. Changing 

the network configuration has no effect on this 

component of network reliability. Another effect 

of node failures is that the failed nodes disrupt 

some otherwise useable communication paths between 

other pairs of nodes. Link failures also affect 

network reliability in the second way.

R. Van Slyke and H. Frank [50] consider networks 

with randomly failing links and nodes and give a 

combinational analysis when all links have equal 

reliabilities, two general simulation methods are 

compared both involving sampling techniques. In 

communication networks randomly distributed natural 

disruptive forces are not ruled out. Therefore, a 

measure of interest is overall reliability, rather 

than the terminal pair reliability, because one is 

interested in knowing the probability of successful 

communication or disconnection between any pair of 

nodes. A number of problems arising in the analysis 

and sythesis of communication networks lead to a 

mathematical model representing a probabilistic 

network. By probabilistic network is meant a 

finite, simple, undirected graph G each of whose 

edges (or vertices) can fail with a given probability 

p (or q), the failure in different edges or vertices 

are assumed to be independent. The assumption of 

independent failures is important because a network 

with links that are topologically separated might 

nevertheless share a common duct in the ground for
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part of their extent, and this would conflict 

with the assumption.

A tree network is the most economical way to connect 

a set of nodes together, if for example we wish to 

build a railway network connecting N given cities 

in such a way that a passenger can travel from any 

city to any other, and we assume for economical 

reasons that the amount of track used must be a 

minimum, then it is clear that the graph formed by 

taking the N cities as vertices and the connecting 

rails as edges must be a tree. FIG. 1.10 shows a 

spanning tree which uses the least amount of track, 

assuming that the distances between the various 

cities are known.

Failures will happen both in nodes and links. 

Careful design and duplication of equipment can 

largely eliminate failure in the nodes, if the cost 

is warranted. Failure of individual links is more 

difficult to avoid, for example, cables can be 

damaged by digging operations.

The function P(G) of a network is defined to be the 

probability of the network being disconnected or 

connected as a function of the probability p of a 

link or q of a node failing. Calculations of network 

reliability should distinguish between node and link 

failures and be based on different failure 

probabilities for these two equipments.
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FIG. 1.10. Spanning tree T of G is the subgraph whose 

edges are e^AB, e^rBD, e_ = DE, e,=BC.
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In general if the graph modelling the network has 

|E| edges and |v| vertices with probability p of 

each edge failing, there are (iE|j ways that exactly

i of the edges can fail, and each such event has

i I El -i probability p ( 1-p) ' ' .

Thus, if R. is the number of ways exactly i edges 

can result in a disconnected graph, then

IP Ip l r, \ IIL i lEl-i
R.Vd-p) |b| X , ._ ,

(probability of) i=0 
disconnection

Where R . = (IE I ) =0 for 1 = 0, 1, . . .X-1 , and X is the 
1 \i /

minimum number of edges which must be removed to 

disconnect the graph. If the graph has |V| vertices, 

it takes at least |v|-1 edges to connect them. Thus 

the maximum value of i to be looked at is | E | - (| V | - 1 ) , 

( to leave a tree ) .

Similarly the probability of disconnection of the 

graph with probability q of each vertex failing is 

given by,

. 
P(G) = V S i q l (1

(probability of) i-k 
disconnection

Where S. denotes the number of ways exactly i 

vertices can result in a disconnected graph, and k 

is the minimum number of vertices which must be 

removed to disconnect the graph, the maximum value 

of i is generally lvl-2.
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In the analysis of communication networks the 

designers will often be interested in two particular 

solutions:

(a) Perfectly reliable nodes and failing links, 

equat ion ( 1a) .

(b) Perfectly reliable links and failing nodes, 

equation (1b).

Case (a) will be of interest in calculating required 

link redundancy in the network, that is, when 

attention is restricted to the reliability of the 

links and their structure.

Case (b) is of interest in calculating the link 

structure required to provide a satisfactory 

protection against node failure, that is, when 

attention is restricted to the reliability of the 

nodes and their communication function.

The analysis of networks in the study will be 

modelled by a probabilistic graph and the graphs 

in the model are such that the nodes (or edges) 

are chosen independently with the same probability 

p(0<p<1). No reference to cost or the relationship 

between the cost and the sum of the lengths of the 

edges are included in the mathematical model.

The network study is based on the work of a number 

of researchers. F. Boesch and R. Tindell [11] 

present results for circulant graphs and their
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connectivities and define super-X circulants to be 

graphs in which every edge cut set with X edges 

isolates a vertex of degree p. F. T. Boesch and 

J. F. Wang [12] determine a lower bound R. for such 

graphs for certain values of i, and point out that 

in order to minimise the probability of disconnection 

(edge failure), one must first maximise X and then

minimise all the R..i

H. Frank [23] has described the problem of finding 

graphs with the minimum probability of disconnection 

if the probability of failure of any vertex is close 

to 0. S. L. Hakimi and A. T. Amin [26] have 

constructed regular graphs of valency k and 

connectivity k in which the vertex cut sets with 

k vertices are vertex neighbour sets. They also 

show that these graphs do not have the smallest 

number of vertex cut sets with k vertices. Further 

work by D. H. Smith [45] has shown how to construct 

infinite families of graphs with the minimum number 

of vertex cut sets with k vertices, spread through 

the range 3 < k . Also dealt with are cases in
e = TvT 1

which k is small and cases with |v|-k small.

In this study, the non-zero dominant terms in 

equations (1a) and (1b) are of interest for either 

vertex or edge failure. For example, for p close 

to 0, later work will show that R, determines the 

behaviour of P(G). Similarly if p is close to 1, 

the last non-trivial term is of interest. This
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terra is simply / |E| \ minus the number of spanning^ivi-,;
trees in the graph. With this motivation the 

investigation aims to identify and compare networks 

which will operate as reliably as possible in the 

presence of vertex and edge failure.
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CHAPTER 2 

Reliability Measures

The design of large scale networks, particularly 

communication networks, usually involves some type of 

reliability considerations. In most cases, the network 

is considered to be failed if it is no longer possible 

to communicate between two nodes. In this Chapter we 

survey some of the important reliability measures.

2. 1 Connectivity (Vertex Connectivity)

A graph G is connected if there exists a path in 

G between any pair of distinct vertices of G; 

otherwise it is disconnected. A connected graph 

has only one component (the graph itself), while 

a disconnected graph has at least two components.

The complete graph K, i with |v| vertices has 

every two distinct vertices adjacent; thus the 

degree of the regular complete graph is |v|-1 and 

it follows that the number of edges will be equal

to I V I ( I V I - 1 ) . The vertex connectivity or simply
2 

connectivity k(G) of a graph with Ivl vertices is

lvl-1 if G is the complete graph and otherwise is 

the minimum number of vertices whose removal 

results in a disconnected graph.

A tree is a connected graph with the minimum number 

of edges. The number of edges is equal to lv|-1 

and for lvl>1, k(G) = 1. Consider the three
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connected graphs of FIG. 2.1. G is a tree, a

minimal connected graph; G_ has no single edge

cut set or single vertex cut set but even so G ?

is clearly not as well connected as G., the complete

graph. Thus intuitively, each successive graph is

more strongly connected than the previous one.

A graph G in which k(G)^k is said to be k-connected.
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FIG. 2.1. Connected graphs 
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It is well known that for a graph G with lv| 

vertices and |E| edges, since every edge in G has 

two end vertices the sum of the degrees of the 

vertices in G equals 2|E|. Thus the average

degree P = 2 IE I . 
IV|

Lemma• The connectivity of a connected graph is 

at most the minimum of the degrees of its vertices

Proof: If P is the minimum degree and v is a ———— m

vertex of degree P , adjacent to vertices v ...v , 

then on removing the vertices v.(i = 1...n) from G, 

v becomes an isolated vertex. I

Given positive integers |v| and JE|, a graph G is 

said to be of optimal connectivity if k(G) is a 

maximum over all graphs with Ivl vertices and |E 

edges. Essential results of interest are contained 

in the work of F. Harary [29] who solved the problem 

of finding the maximum connectivity of any graph 

with a given number of vertices and edges.

Theorem . Among all graphs with Ivl vertices and 

|E| edges, the maximum connectivity is 0 when

|E|<|vl-1 and is 2 |E| when E ^|v|-l.
LlVlJ 

Outline of proof .

To show that the maximum connectivity

when |E|^|v| it is necessary to prove the following,

is \2 |E I Ibrrj

(a) the connectivity of a graph cannot exceed

UlEll

LjvlJ
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(b) there exists a graph G whose connectivity

is 2|E|
LIVU

The proof of (a) uses the lemma that the minimum 

degree of all the vertices of a graph G is an upper 

bound to the connectivity. Hence for a graph G 

which is not regular of average degree p the 

connectivity k < p. If on the other hand, G is a 

regular graph of degree P then k^p.

The proof of (b) is by construction and begins by 

drawing a polygon and labelling its vertices by 

the integers 0, 1, 2, ... |v|-1. Two cases are 

then dealt with, the first considers the average 

degree 2|E| to be an integer S and gives the
TvT

construction separately for even and odd values of 

S. The second case assumes 2 | E I is not an integer 

and begins by constructing a regular graph G with
O

|v| vertices and s|vl edges.
2

The proof is completed using the properties that 

the connectivity of a connected graph is at most 

the minimum of the degrees of its vertices and if 

G. is a spanning subgraph of G, then k(G..)=k(G).

In many design problems, one is interested in the 

reliability between a specific pair of nodes. For 

example, some pairs of nodes may have more critical 

communication needs than other pairs of nodes in 

the network, and hence require a higher degree 

of reliability.
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The idea of local connectivity measures for a 

vertex pair is well known. The local vertex 

connectivity or simply the local connectivity 

k. . is defined as the minimum number of vertices

whose removal breaks all paths between vertices 

i and j (results in v. in one component and v 

in the other) .
j

Considering the graph of FIG. 2.2, v and v form 

a vertex cut set since their removal results in a 

graph with {v , v, , v } in one component and 

{v_, v , v_} in the other. Thus the connectivity

between non adjacent vertices v. and v 0 is 2 because
I o

the vertex cut set results in v in one component 

and v 0 in the other.
a

7 8

(a) connected b) disconnected

FIG. 2.2 A graph with k 10 equal to 2I o

The connectivity of a non complete graph is the 

minimum value of the local connectivity over all 

pairs of vertices. The classic theorem of 

K. Menger [35] states that k. . is equal to the
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maximum number of vertex disjoint paths joining 

i and j.

The starred polygon (or circulant graph) of 

FIG. 2.3, is A-connected. There are four vertex 

disjoint paths between any pair of vertices.

10

FIG. 2.3 Starred polygon (or circulant graph) that is 4-connected,
A set of four vertex disjoint paths between v, and v is

i 4
{V 1 V 3 V 4 } ' {V 1 V 10 V8 V6 VA } ' {V 1 V0 V 9 V 7 V 5 \ } ' {v i V2 V"

2.2 Edge Connectivity (or Cohesion)

The edge connectivity (or cohesion) of a graph G 

is denoted by X and is defined as the minimum number 

of edges whose removal results in a disconnected 

graph. Of interest therefore are graphs in which 

the smallest edge cut set is as large as possible. 

In general the economical design of reliable 

communication networks requires the construction of
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k-connected or k-edge-connected graphs with a 

minimum number of edges for a given number of 

vertices. It is known that for any graph the 

connectivity is less than or equal to the minimum 

vertex degree.

Theorem . In any graph G, kSX^pm .

Proof:

(a) If G is trivial X = O^Pm .

(b) If G is not trivial then the set of edges 

incident with a vertex of degree Pm is a 

p edge cut set of G. Thus XSp.nn m

(c) We prove k^X by induction on X. The

result is true if X=0, since then G must 

be either trivial or disconnected. Suppose 

that it holds for all graphs with X<r, let 

G be a graph with X=r>0, and let e be an 

edge in a r-edge cut set of G. Setting 

G =G-e, we have X(G ) =r-1 and so, by 

the induction hypothesis, k(G..)£r-1.

(d) If G contains a complete graph as a 

spanning subgraph, then so does G and 

k(G)=k(G 1 )^r-1 .

(e) Otherwise, let C be a vertex cut set of 

G with k(G ) elements. Since G -C is 

disconnected, either G-C is disconnected, 

and then k(G)Sk(G 1 )£r-1 .
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(f) Or else G-C is connected and e is an edge 

of a cut set of G-C. In this latter case, 

either |V(G-C)| = 2 and 

k(G) £ iV(G)| -1 = k(G 1 )+lSr.

(g) Or G-C has a 1- vertex cut {v } , implying 

that Co{v} is a vertex cut set of G and

1 =r *

Thus in each case we have k(G)^r=X(G). The result 

follows by the principle of induction. •

We now recall that in any graph G having |E| edges

and |v| vertices and minimum degree p .m

|V|

Y Pi = 2|E|.

1= 1

Hence 2 |E | 2 \v\ p .

or p < 2|E I .
Iv I

Since XSp , m

It follows that k m
Therefore a graph with X= 2 | E | has a maximum value

of X. Furthermore if k = 2j_E I then both k and X
]V 

are maximum.

A maximally connected graph is one in which

k = X = p = 2j_E| . 
V



The design of reliable communication networks is 

based on the node or edge connectivity of the 

corresponding graphs and for this reason we give 

some examples of classes of graphs which are 

maximally connected or have maximum connectivity, 

i.e. for given values of |E| and |v| we have 

maximum connectivity if the smallest vertex cut set 

is as large as possible i.e. k = 2 | E | .

A class of maximally connected regular bipartite 

graphs has been introduced by F. T. Boesch and 

R. E. Thomas [10], These graphs are such that for 

Ivl even, vertex i is adjacent to vertex i+2j-1 

(Mod Ivl) where i^j^p. We note that a bipartite 

graph is one in which the set of vertices V can 

be partitioned into two disjoint sets V and V and 

each edge of the graph joins a vertex in V with a 

vertex in V_. The regular bipartite graph just 

mentioned have a girth of four and a diameter that 

has been shown by R. S. Wilkov [52] to be

approximately | V | + 1 where PX~| is the smallest 
| 2(p-l) |

integer greater than or equal to X. For example 

the 26 vertex regular bipartite graph is shown 

in FIG. 2.4.

F. Harary [29] and S. L. Hakimi [25] have introduced 

a class of maximally connected regular graphs such 

that for even vertex connectivity, vertex i is 

adjacent to vertices i +_ j (Mod |v|), where

1 SJ S £ . 
2
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26 1

25

24.

23

20

19

18
10

1 1

17

16
12

15 14

13 5 7 9 11 13 15 17 19 21 23 25

8 10 12 14 16 18 20 22 24 26

FIG. 2.4. Two constructions of the same maximally 

connected regular bipartite graph with 

26 vertices, k = 4 and d = 5.
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For p odd and |v| even vertex i is also adjacent to

vertex i+ IVI (Mod lv| ) and the diameter has been
2 / x 

found to be [ 1V1 | . This class of graphs is
\2(P-1)/ II constructed by placing the IVI vertices around the

circumference of a circle and joining each vertex 

to the p(for p even) or p-1 (for p odd) other 

vertices nearest to it. If p is odd, each vertex 

is also joined to the one furthest from it.

S. L. Hakimi [25] considered the problem of 

constructing a graph with Ivl vertices and |E| edges 

that has maximum connectivity and in essence restated 

the complete results of F. Harary [29].

T. Sasaki [41] proposed a method of constructing graphs

with connectivity k ( 2Sk = 2JE|^|v|-1j. The method is
\ ~[VT / 

based on the work of S. L. Hakimi [25] maximum

connectivity graph construction.and the k-connected 

bipartite construction of F. T. Boesch and 

R. E. Thomas [10]. T. Sasaki [41] produced a graph 

which is maximally connected and contained a total 

number of spanning trees which for a large scale 

graph (|v|S20) is much larger than those of the 

graph constructed by the method of S. L. Hakimi [25].

S. L. Hakimi and A. T. Amin [26] show how to construct 

graphs with Ivl vertices and |E| edges, whose 

connectivity k = [ 2|E | | ^ 3 and have no more than\~wrj
Ivl minimum vertex cut sets.
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D. H. Smith [45] shows how to construct maximally 

connected graphs with the minimum number of vertex 

cut sets with k vertices (p=k). The various 

infinite families of these graphs have k in the
TvT

range 3 = _k_ < 1 and also deal with the cases k = 3,
I TvT

k = A and IV|- k small.

A graph which has a minimum number of vertex cut 

sets with k vertices and a graph with a maximum 

number of spanning trees are of interest in the 

design of reliable communication networks, in the 

first case the graph G corresponds to a maximally 

reliable network (with respect to vertex failures) 

when the probability q of a vertex failure is small, 

and in the second case the graph G corresponds to a 

maximally reliable network (with respect to edge 

failures) when the probability of an edge failure 

is large.

Examples of the maximally connected graphs derived 

by S. L. Hakimi [25], T. Sasaki [41], S. L. Hakimi 

and A. T. Amin [26], D. H. Smith [45] are illustrated 

in FIGS. 2.5, 2.6, 2.7 and 2.8.

2.3 Network Diameter for Graphs with Optimal Connectivity 

A graph in which k = X=f2JE|] corresponds to a
VTvTV

maximally connected network. However, many of these 

graphs have a very large diameter (d), which we 

recall from Chapter one is the maximum of the lengths 

of the shortest paths between all pairs of vertices
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FIG. 2.5. A maximally connected graph with|V|= 10,

|E|= 20, k = 4, X = A. The number of 

spanning trees = 3025C.
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FIG. 2.6. A maximally connected graph with(v|= 10,

|E|= 20, k = 4, X = 4. The number

of spanning trees = 368604



FIG. 2.7. A maximally connected graph withlvU 12, 

|E|= 24, k = 4, X = 4. Number of minimum 

size vertex cut sets - 9.
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FIG. 2.8. A maximally connected graph with|v|= 10,

|E(= 20, k = A, A = 4. Number of minimum size 

vertex cut sets = 5.
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in the graph. In large networks when N becomes 

much larger than d, the diameter of the graph 

increases very rapidly and the shortest route 

between several pairs of nodes would have to pass 

through many intermediate nodes. This is undesirable 

because of the processing and queuing delay at each 

node. A communication network may be connected 

after some edges fail, but the paths between some 

vertices may be too long to allow adequate 

communication. For example, the attenuation may be 

too large in an analogue voice network, or the delay 

time might be too large in a digital data network. 

Therefore, it is desirable in practice for the graph 

of a communication network to have a reasonably 

small diameter.

Regular graphs having a minimum number of vertices 

|v| and specified girth g, where the girth of a 

graph G is the minimum length of any circuit, have 

been studied by W. T. Tutte [49] who has shown that 

for any regular graph of degree p, girth g, and 

diameter d, g S 2d + 1 and the minimum number of 

vertices |v| is a function of p and g.

The existence of regular graphs of degree p, 

diameter d, and girth g - 2d has been investigated 

by R. R. Singleton [A3]. These graphs, which exist 

for only certain values of p and g, are referred to 

as "Singleton Graphs". Those regular graphs of 

diameter d and girth g = 2d + 1 are known as
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"Moore Graphs". They exist for very few combinations 

of values of p and g, as shown by R.M. Damerell [20J and 

E. Bannai and T. ItoD5D . Singleton and Moore graphs 

meeting the bounds of equations (2a) and (2b) have 

an underlying tree like structure as shown in 

FIG. 2.9.

Minimum |v| = 2(p- 1 ) d -2 , g = 2d (2a) 
(Singleton) p-2 
graphs

Minimum |v| = p(p-1) d -2 , g = 2d + 1 ( 2b) 
(Moore ) p-2 
graphs

We now describe the graphs satisfying equations (2a) 

and (2b) and show how the equations are obtained.

The vertex at the top of the tree, denoted by U , 

can be any node in the graph. It is level 0 in the 

tree. Level 1 consists of the p vertices adjacent 

to vertex U , which we will denote by U , U_,...U

Level 2 consists of p(p-1) vertices derived from the 

vertices in level 1 at a distance of 2 from vertex 

U . Tier i(i<d) consists of p(p-l) 1 " vertices at 

a distance of i from vertex U .

For g = 2d, there are (p-1) vertices at level d. 

Each of these vertices must be adjacent to p vertices
j f\

in level d-1 in order for the p(p-1) vertices in 

level d-1 to be of degree p. Furthermore, any vertex 

in level d cannot be adjacent to two vertices in 

level d-1 that are derived from the same vertex U,,
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Level 0 1 Verte:

Level 1
p vertices

p- 1 ) vertices
Level 2 p(p-1 

vertices

And so on, to level d.

FIG. 2.9 Diagram showing the underlying tree like structure 

of Moore and Singleton graphs.



otherwise a circuit of length 2d-2 would be formed. 

Therefore, every vertex in level d must be adjacent 

to exactly one vertex of level d-1 derived from each 

of the vertices in level 1.

For g = 2d + 1 there are p(p-1) ~ vertices in level 

d connected to the vertices in level d-1 in the 

usual tree like manner. The remaining edges in the 

graph are drawn between pairs of vertices in level d 

in such a way that each vertex derived from vertex U. 

is adjacent to exactly one vertex of level d derived 

from each of the other vertices of level 1.

Graphs with g = 2d and g = 2d + 1 are illustrated in 

FIG. 2.10(a) and (b).

Moore Graphs . g = 2d + 1 .

Let U. (i=0, 1,...d) be the number of vertices at 

a distance i from vertex U at level 0.

Then U = 1, U 1 = P

and U. = P (P- 1 I 1 ' 1

Hence d d

\ U ± = |V| = 1 + P \ (P-1) 1 ' 1

1=0 1=1

Thus we can write |v|= 1+PS where S = a( 1-r n ) , the
1-r

sum of a geometric progression, with a = 1, r=p-1

Therefore | v| = 1 +PS = 1 + p-p(p-1) d = P(P-1) d -2 _
2-P P-2
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g=2d+1,d=2,p=3.

Level 0

Level 1

Level d

g = 2d, d = 2, p = 3 .
Level 0

Level 1

(a) Level d

FIG. 2.10 Graphs with girth g = 2d, and g = 2d + 1 .
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Singleton Graphs . g = 2d

i ^ d ~ 1 
At level d, U = ( P-1 )

Therefore |v|= 1 + . . . P ( P- 1 } X " 1 + . . . ( p- 1 ) d ~ 1 i<d

= p + p(p-1 )+p(p-1) +...p(p-1) d 2 (a)

Multiplying (a) by (p-1) gives, 

{lvl-1(p-1) d ~ 1 }(P-D =P(P-1)+P(P-1) 2 +... p(p-1

Subtracting (a) and (b) we have,

= p- P (p-1) d - 1

v|= P -p( P -i

(2-p

d " 1
(2-p

(2-p

2-p

V I= 2(p-1 ) d -2 
(P-2)

R. S. Wilkov [53] has demonstrated that Moore and 

Singleton graphs are maximally connected regular 

graphs of minimum diameter. R. S. Wilkov [52] also 

shows that the known graphs illustrated by 

F. T. Boesch and R. E. Thomas [9] and S. L. Hakimi 

[25] with number of vertices |v| and a maximum even

connectivity of k = p have a diameter d = I VI whereas
P 

from equation (2b)

|v|= P(P-1) d -2 and for p greater than 2 
P-2
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this is approximately

Thus d is approximately log | V | which grows much slower with
log p

|v| than does |v| .

Unfortunately, Moore and Singleton graphs constitute 

only a small class of regular graphs of maximum node 

connectivity and minimum diameter. The 26 vertex 

Singleton graph of degree 4 and girth 6 obtained by 

R. S. Wilkov [52] is shown in FIG. 2.11 together with 

a table of results comparing the diameters of 

differently constructed graphs FIG. 2.12. The known 

diameter graphs in the table are those constructed 

by F. T. Boesch and R. E. Thomas [9] and S.L. Hakimi 

[25], the improved diameter graphs are those 

constructed by R. S. Wilkov [52].

Recent work by U. Schumacher [42] has utilized the 

tree like structure of Moore and Singleton graphs. 

In this work k-connected graphs are generated which 

have a minimum number of edges and a diameter which 

is twice as large as the theoretical minimum. This 

problem in terms of a communication network 

corresponds to designing a network with minimum costs 

and minimum transmission delay in which switching 

nodes are equally weighted.
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26

25

20

19

17

16 13

12

10

1 1

FIG. 2.11 Singleton graph with a connectivity of 

diameter of 3, girth 6 and degree 4.
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Vertices

10

14

20

24

28

30

10

16

18

20

22

26

32

42

40

62

50

1 14

Connectivity

3

3

3

3

3

3

4

4

4

4

4

4

4

5

6

6

7

8

Edges

15

21

30

36

42

45

20

32

36

40

44

52

64

105

120

186

175

456

Diameter 
( Known )

3

4

5

6

8

8

3

4

5

5

6

7

8

6

7

1 1

5

15

Diameter 
( Improved )

2

3

3

4

4

4

2

3

3

3

3

3

4

3

3

3

2

3

FIG. 2.12 Table comparing the diameters of maximally 

reliable graphs.
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S. V. Trufanov [48] has given a method for reducing 

the diameter of the maximally connected graphs 

introduced by F. Harary [29] and S. L. Hakimi [25]. 

In the construction of such graphs of even degree p, 

S. V. Trufanov [48] suggests that the p-2 vertices 

on the circumference of a circle connected to each 

vertex i be chosen in such a way that the maximum 

distance from vertex i to any other vertex is 

minimised. When p is odd, this same rule is to be 

followed after vertex i has been joined to vertex

i+IV| (Mod (V|). 
2

For the graph with 26 vertices of connectivity 4, 

vertex i is furthest from vertex i+13 on the 

circumference of the circle. For all i, the distance 

between vertices i and i+13 is minimised by also 

connecting vertex i to vertices i +_ 1 . The resulting 

graph is shown in FIG. 2.13(b). It is vertex 

symmetric and is found to have a diameter of only 4, 

compared with a diameter of 7 for the equivalent 

graph in FIG. 2.13(a).

A minimum (d, k, p) graph is one which is regular of 

diameter d, connectivity k, degree p and contains a 

minimum number of vertices lv|. The study of this 

class of graphs has been pioneered by V. Klee and 

H. Quaife [33] who have noted that such graphs have 

application in the design of reliable communication 

networks. When the value of p is 3, the graphs are 

called cubic graphs.
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1 2

25

a) Maximally connected graph |v| = 26, |E = 52, d = 7, k = 4

21

20

19
10

18
1 1

17
12

13

(b) Modified maximally connected graph with |v| = 26, 
|E|= 52, d = 4, k = 4.

FIG. 2.13 Comparison of graphs with 26 vertices and 

diameters equal to 7 and 4.
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V. Klee and H. Quaife [33] classified and enumerated 

all minimum (d, 1, 3) graphs and minimum (d, 2, 3) 

graphs. B. Myers [36] subsequently reviewed their 

work through systematic mathematical theorems and 

lemmas and provided some new insights into the 

general (d, k, p) graph problem.

The minimum number of vertices in a (d, 3, 3) graph 

with specified diameter d<5 has been determined by 

B. Myers [37] who also shows how to construct all 

such minimum graphs. The complete graph K is the 

unique (1, 3, 3) graph, it has a diameter of 1 and 

therefore each pair of its points must be adjacent 

i.e. the graph must be complete. The only complete 

graph that is regular of degree 3 is K shown in 

FIG. 2.14, the number of vertices JV| being equal 

to 3d + 1 = 4.

The only minimum (2, 3, 3) graphs are shown in 

FIG. 2.15 and the only minimum (3, 3, 3) graphs 

are shown in FIG. 2.16.

The minimum number of vertices in a (4, 3, 3) graph 

is 3d = 12. There are thirty-one such graphs of 

diameter d = 4, each with |v|= 3d = 12, examples of 

these graphs are shown in FIG. 2.17(a), (b), (c) 

and (d ) .
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FIG. 2.14 The K graph with |v| = 3d + 1 , this is the 

unique (1, 3, 3) graph.
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FIG. 2.15 Two minimum (2, 3, 3) graphs with a minimum 

number of vertices |V| equal to at least 3d 

when d is even.
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(a)

b)

FIG. 2.16 Two minimum (3, 3, 3) graphs with minimum 

Ivl = 3d - 1 .
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(d)

FIG. 2.17 Examples of the structure of minimum 

(4 , 3 , 3) graphs.
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Total Isolation or Independence Number

Another measure of reliability that has been 

suggested by A. T. Amin and S. L. Hakimi [1] is 

the total number of vertices which must fail to 

give a graph consisting of only isolated vertices. 

The relevant graph parameter is called the 

independence number which we now define.

A set SC V is called an independent set of G if no 

two vertices in S are adjacent in G. An independent 

set S is a maximum independent set of G if 

|S n ls|S|, where S is any independent set of G. The 

number of vertices in a maximum independent set of 

a graph G is called the independence number of G

and is denoted by 8(G). Consider the graph shown 

in FIG. 2.18.

FIG. 2.18

Let V = v 2 , v 3 and E =

YcV separates two non-adjacent vertices in G if in 

V-Y there exists no path from v. to v . Let
1 J

Y = {v 2 , v^}, then V-Y ={v 1 , v 3 l.

i.e. V-Y consists of isolated vertices.
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Let S = V-Y, YCV denote the maximum subgraph of G 

containing vertices not in Y. Let YCV be such that 

V-Y consists of isolated vertices. Thus a set 

YCV is a minimum set with the property that V-Y 

consists of isolated vertices if and only if V - Y 

is a maximum independent set of G. A network N(G) 

is optimally reliable in their sense if the 

independence number 3(G) is the minimum possible over 

all graphs with |v| vertices and |E| edges.

It may be noted that in a communication network N(G), 

failure of such a set Y results in complete disruption 

of communication. In this sense, the reliability of 

network N(G) corresponds to the size of the minimum 

such set in the graph G.

Consider the graphs G and G ? in FIG. 2.19. Each of 

the graphs has the same number of vertices and edges.

Moreover k(G ) = k(G 2 ) = 3 while 6(0.,) = 3 and B(G 2 ) = 2; 

thus the corresponding network N(G ? ) is more reliable 

than the network N(G).

A. T. Amin and S. L. Hakimi [1] considered the problem 

of finding the minimum value of the independence 

number 3(G) given the optimal connectivity k^a,

number of vertices |v|, number of edges |E | = I V I a
2 

for given values of a and Ivl. They give a complete

solution for the case where |EJ is odd. For the case 

of |E| even, they give a partial solution.
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FIG. 2.19 Two graphs with different independence numbers

6(G = 3, 3(G. = 2.
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2 . 5 Probability of Connection

One common definition of the reliability of a graph 

is the probability that the graph is connected 

given the probability that an edge or a vertex is 

operating or failed under the assumption that 

edges or vertices fail independently. A further 

assumption is that either all vertices or edges 

are perfectly reliable. We firstly consider graphs 

with perfectly reliable vertices and unreliable 

edges and then graphs with perfectly reliable edges 

and unreliable vertices.

A comprehensive study has been made by A. K. Kelmans 

[32] of maximally reliable networks whose links 

fail independently with equal probability. In this 

study it was assumed that the vertices of the graph 

G were perfectly reliable and all edges failed 

independently with the same probability p. As a 

measure of reliability, he considered the probability 

P (G) that the graph G was a connected graph. The 

connection probability P (G) for a graph G with|E|
o

edges and | V I vert ices is given by : -

\ i I E I - i 
(Probability of Connection) = / Tl-p) p

Where T. denotes the number of connected spanning 

subgraphs of G consisting of exactly i edges.
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Alternatively ,

P (G) |E| . || . c ,— i ,1 E I -i
(Probability of) 1 ) i p ( p; 

Connection ._,

where R. denotes the number of disconnecting 

subgraphs containing exactly |E|-I edges and A is 

equal to the edge connectivity. 

Thus ,

|E| i lEl ir> / /i \ \— T-I -L / * - \ I *-* I -1-P d (G)

(Probability of Disconnection) ~ . ,i = A

For values of p close to 1 ,

P /»~i\ lUtl^P' P 
( (j I ~ I V I - 1

(Probability of Connection)

where T, . is the number of spanning trees in the

graph.

When p is close to 0,

(Probability of Connection)

where R, is the number of cut sets containing X
A

edges .

It follows that for values of p close to 1, since
I Vl -1 

P (G) the probability of connection ~ T, . (1-p)

p'~ .a maximally reliable network is one with a maximum 

number of trees.

For p close to 0, P (G) the probability of 

connection ~ 1 - R,p , and the best graph with|E
A
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edges and|V I vert ices has a minimum number of cut

sets R, of size X.

A. K. Kelmans [32] has shown that there exists two

graphs G 1 and G 2 such that P (G ) < P (G ) for

values of p close to 0 and P (G ) > P (G ) for
w I C £-

values of p close to 1. Thus the structure of 

maximally reliable graphs depends on the value of 

the edge failure probability, this will be 

illustrated in section 2.6, FIG. 2.23.

In the event that all edges are perfectly reliable 

and all vertices are likely to fail independently 

with probability q, then the probability of 

disconnection P (G) is given by:

lvl-2 . Ivl-i 
P d (G) = y S.q^l-q)

(Probability of Disconnection) r~^

where S. denotes the number of disconnectedi

subgraphs of G resulting from the removal of 

exactly i vertices, k = vertex connectivity.

The probability of connection P (G) is given by:

Ivl-2 . IV l-i
P (G) V S.q 1 ( 1-q) 
c r 1 _ l_ i

( Probability of Connection) i = k

When q is close to 0,

kq ,
(Probability of Connection)

and a maximally reliable graph has a maximum vertex 

connectivity. Therefore for small values of q, the
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best graph with Ivlvertices andlE edges has a 

minimum number of vertex cut sets of size k.

It has been shown by H. Frank [23] that for q close 

to 0, the complete bipartite graph with|V | vertices 

in one subset and |v| >|V | vert ices in the other has 

a larger connection probability than any other 

graph of connectivity Iv^l having no more than|V||vJ 

edges. The bipartite class of optimal graphs also 

have the additional property that the minimum size 

cut sets can only isolate a single vertex.

Consider the regular graph G with I V|vert ices 

divided into r classes such that IV I= ru. Each 

class contains exactly (|v| - k ) vertices and k the 

vertex connectivity = (r-1)u. Then two vertices 

are adjacent in G if and only if they belong to 

distinct classes. Such a graph is called a complete 

r-partite graph. F. T. Boesch and A. Felzer [5] 

generalizing a result of H. Frank [23], have shown 

that such graphs have the minimum number of distinct 

vertex cut sets among all regular graphs of degree 

p =k with the number of verticesiv = (|V|- k )r. 

Ching-Shui Cheng [18] has also shown that regular 

complete multipartite graphs have the maximum 

number of spanning trees among all the simple 

graphs with the same numbers of vertices and edges. 

The networks of such graphs are therefore desirable 

from probabilistic reliability considerations.
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A. K. Kelmans [32] has shown that in a graph G given 

the edge failure probability p, number of edges|E|, 

number of vertices|v|, and specified degree of 

reliability R , then:

|E|the number of edges required ^ I V I ln_j_V
= ~T]lnp|

and there exists a value |v j for which R(G) ^ Rm m

whenever I V IS I V (. In addition the average degree of

each vertex must be greater than or equal to In IVI
lln p|

otherwise the probability that the graph is 

connected will decrease as the number of vertices 

increase, regardless of the structure of the graph.

The probability of disconnection of a graph G is

minimised over all graphs with kl VI edges if G is
2

regular with degree p = k and S, (the number of 

vertex cut sets with k vertices) is minimised.

D. H. Smith [453 has shown that in many cases it is 

possible to construct a graph with the minimum 

number of vertex cut sets with k vertices. From a 

practical point of view this solution is open to 

the criticism that although the probability of 

disconnection is minimised, when disconnections do 

occur a rather large number of vertices may be 

isolated. Depending on the application, it might 

be more sensible to require that the expected 

number of vertices disconnected from the largest 

remaining component of the graph (or isolated if 

all components are isolated vertices) be minimised. 

This will be dealt with in Section 2.8 and Chapter 8.
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2.6 Complexity (or the number of spanning trees)

Given any connected graph G, we can choose a 

circuit and remove one of its edges, the resulting 

graph remaining connected. We repeat this 

procedure with one of the remaining circuits, 

continuing until there are no circuits left. The 

graph which remains will be a tree which connects 

all the vertices of G; it is called a spanning 

tree of G. The total number of spanning trees in 

a graph is called the complexity denoted by T, , . 

An example of a graph and three of its spanning 

trees is shown in FIG. 2.20.

It is evident that a spanning tree represents a 

minimum set of edges which preserves the 

connectedness of a graph. This concept is in a 

sense complementary to that of a proper cut set of 

edges (which is a minimum set of edges whose 

removal disconnects some vertices from others). 

These notions are related by the following theorem,

Theorem; In a connected graph, every cut set of 

edges has at least one edge in common with every 

spanning tree.

Proof; Let Y be a cut set of edges of a graph G 

and let T be a spanning tree of G. Then, if Y did 

not contain at least one edge from T, the removal 

of Y from G would not separate G into two or more 

components. H
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FIG. 2.20. Illustration of a graph G and three of its 

spanning trees.
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The suggestion to classify the "connectedness" of 

a graph by the complexity i.e. the number of 

spanning trees is of interest because the number 

can be calculated for any graph. Many methods are 

known for calculating the number of spanning trees 

(or complexity T, ) of a regular graph, but for 

a given number|v|of vertices and a given degree p 

it appears to be a rather difficult question to 

find which graphs have maximum complexity. It is 

known that _1_ M V.I p V is an upper bound for the

complexity of a regular graph, N. Biggs [3] pp36-38

For the complete graph K|.i, the complexity T. 

equals |v| and its proof may be found in 

R. J. Wilson [54] pp 50-52. Further examples of 

complexity calculations are given below.

Let G be a regular graph with degree p and |v| 

vertices. The spectrum of a graph G is the set of 

numbers which are eigenvalues of A(G), together 

with their multiplicities (m^) as eigenvalues (X^) 

of A(G) .

/* », ••• x s-,\
Spectrum (G) =1 I

\ 1 m. ... m Q1 '
I o — I

Then the complexity of G is given by N. Biggs [3] 

as ,

r=
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An important result which can be used to calculate 

the number of spanning trees in any connected 

simple graph is stated below, it is known as the 

matrix tree theorem, and its proof may be found in 

F. Harary [29].

Theorem Let G be a connected simple graph with

vertex set V and let A m a i .) be the |V|x IV

matrix in which a.. = p(v.), a.. = -1 if v. and v. 

are adjacent and a. . = 0 otherwise. Then the 

number of spanning trees of G is equal to the

cofactor of any element of A .m

We now show how to calculate the complexity of a 

simple graph G using each of the methods mentioned 

previously. The graph G used in the example is 

shown in FIG. 2.21.

FIG. 2.21

The graph is complete, therefore

V -1
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This method uses the eigenvalues of the 

adjacency matrix A(G).

0111

1011

1101
A(G) =

1 1 1 0

Characteristic equation |A(G)-Xl|= 0

giving

= 0

-X

1

1

1

1

-X

1

1

1

1

A

i

1

1

1
-X

From which X

Thus TI|V|-

= -1, -1, -1, 3

lvl-1
r =1 r 

- { (3+1 ) (3+1)(3+1) } = 16

Am

(c) Using the matrix tree theorem, we have

3 -1 -1 -1

-1 3 -1 -1

-1 - 1 3 -1

-1 -1 -1 3

I... = cofactor of any element of A =16 1 v i — i m —

The sixteen spanning trees calculated in this 

example are shown in FIG. 2.22.

In Section 2.5 we have indicated that when 

considering probabilistic reliability criteria the 

calculation of the complexity of a graph is of
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K

FIG. 2.22. Illustration of the 16 spanning trees of 

the graph G of FIG. 2.21 .
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interest when p the probability of failure of an 

edge is close to 1 (assuming the edges fail 

independently). For p close to 0 the smallest 

number of minimum size edge cut sets is important. 

FIG. 2.23(a) and FIG. 2.23(b) compares two graphs 

with the same number of vert ices IVI and edgesJEJ 

and shows by calculating the complexity and listing 

the edge cut sets that one graph is better than 

the other for p close to 0, and worse when p is 

close to 1.
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(a)

better for large p 

T(v( _ 1 = 32, X = 2, R
X = 4

better for small p 

T| V |_ 1 = 30, X = 2, R X = 3

FIG. 2.23. Two graphs with different reliability 
characteristics, both having 6 vertices 
and 8 edges.



Calculation of the complexity ( Tj , _ ) of the graph in 

FIG. 2.23(a)

m

4 -1-1-1-1 0

•1 2 0 0 0-1

-1 0 2 0 0-1

• 1 0 0 2 0-1

-1 0002-1

0 -1-1-1-1 4

T,... , = cofactor of any element of A =32 |V| -1 m —

For FIG. 2.23(a),

R, = Number of edge cut sets with X edges = J14,46}, 

{12,26}, {13,36}, {15,56}. 

X = 2, R, = 4
—— ^ ——

Calculation of the complexity (T, . ) of the graph in 

FIG. 2.23(b)

3-1-1-1 0 0

- 1 2-1 0 0 0

-1-1 3 0 0-1

-1 0 0 3-1-1 

0 0 0-1 2-1 

0 0-1-1-1 3

m

Ti | = cofactor of any element of A m = 30

For FIG. 2.23(b),

R, = Number of edge cut sets with X edges =

{45,56}, {14,36}.

X = 2 R =

{12,23},
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2.7 (k, k+1 )-Connected Graphs

The neighbour set of a vertex v is the set of 

vertices F(v) that are adjacent to v. A k-connected 

graph is said to be (k, k+1)-connected if every 

vertex cut set with k vertices is the neighbour set 

of a vertex. A k-edge-connected graph is 

(k, k+1 )-edge-connected if the set of edge cut sets 

of size k is the set of all sets of edges incident 

with a single vertex.

We note that the above definition of a (k, k+1}- 

connected graph is neither a necessary nor a 

sufficient condition for a graph to have the 

minimum number of vertex cut sets which are 

neighbour sets of vertices which is very much less 

than |V|. (k, k+1 )-connected graphs have been 

constructed for each (|v|,k) by S. L. Hakimi and 

A. T. Amin [26] .

The number of vertex cut sets of size k in a graph 

of connectivity k has been used as a measure of 

network reliability. Let G be a regular graph with 

|v| vertices, degree p = k, connectivity k, and with 

the minimum number of vertex cut sets with k vertices 

D. H. Smith [45] has shown how to construct infinite 

families of such graphs in various cases.

We note that since, for any graph G, k ^ A and G is 

said to be k-connected if the connectivity ^ k and
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G is said to be k-edge-connected if A S k, also 

P = k, then k-connected Zy k-edge-connected.

Theorem If G has degree p = k > 3 and is (k, k+1)- 

connected then G is (k, k+1 )-edge-connected.

Note If the graph G has p = k = 3 then there is a 

graph shown in FIG. 2.24 which is a counter example, 

it is (3,A)-connected but not (3 , A )-edge-connected.

FIG. 2.24. A graph which is (3 , 4 )-connected but not 
(3,4)-edge-connected.

Proof Since connectivity ^ edge connectivity ^ minimum 

valency G has edge connectivity k. Let E be an edge 

cut set of G with k edges. Let V be the set of 

vertices of one component of G-E and let V,, be the 

set of vertices of G that are not in V... Suppose 

that E is not the set of edges incident with a 

single vertex. Then the ends of the edges of E 

are all distinct or if two edges share an end v, 

then v together with a set consisting of one end

77



from each remaining edge, will be a vertex cut set 

with less than k vertices. Now choose two vertices 

of V that are ends of edges of E and thek-2 

vertices that are ends of edges of E and in V but 

not adjacent to either of the two vertices chosen 

from V.J. This is a vertex cut set that is not the 

neighbour set of a vertex unless G is the graph of 

FIG. 2.2k. •

Examples of (k, k+1)-connected graphs are shown in 

FIG. 2.25U) and FIG. 2.25(b).

Using a famous result of L. R. Ford and D. R. 

Fulkerson [22] known as the maximum-flow, minimum- 

cut theorem we describe and illustrate how to make 

use of a flow algorithm for measuring in a graph 

G,

(i) edge connectivity,

(ii) vertex connectivity,

(iii) (k, k+1)-edge-connectivity.

Before dealing with these cases we briefly discuss 

the notion of network flows.

Given a digraph G = G(V,E) we define a flow in G to 

be a function 0 which assigns to each arc e of G 

a non-negative real number f (called the flow in e), 

in such a way that (i) for any arc e, f S c (where 

c is a non-negative real number called the capacity 

of the arc , i.e. the maximum permissible value of 

the flow in the edge), (ii) with respect to the
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_k _ _5 
V|" 8

Number of vertex cut 
sets = 6

5,6) -connected

(a

k _ 3 
V| = 8

Number of vertex 
cut sets = 8

(3 , A)-connected

FIG. 2.25. Two diagrams showing (k, k+1 )-connected graphs
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graph G the out- flow and in- flow of any vertex 

(other than the source S or sink t) are equal. 

This means that the flow in any arc cannot exceed 

its capacity, and that the total flow into any 

vertex (other than S or t) is equal to the total

flow out of it. It follows that the amount flowing out of 5 

equals the amount flowing into t and this is called the value of the flow. 

The capacity of a cut is defined to be the sum of

the capacities of the forward arcs of the cut. We shall

be concerned with those cuts whose capacity is as 

small as possible i.e. the minimal cuts. The 

maximal flow is defined as a flow whose value is 

as large as possible.

Theorem In any digraph^ the value of any maximal flow

is equal to the capacity of any minimal cut. The

proof of this maximum-flow, minimum-cut theorem is

found in R. J. Wilson [54] pp 133-134. .

A displacement graph G(f) associated with a flow 

f on a graph G is the graph with the vertices as 

in G and arcs determined as follows. For each 

arc e. of G, G(f) has (i) a normal arc e. + which 

has the same initial and terminal endpoints as e.^ 

and (ii) a reverse edge e. which has the same 

endpoints as e. but the opposite orientation. 

The capacities of e. + and e.~ which are denoted by 

c. + and c.~ respectively are defined by,

c. + = c. - f. ) 
1 i X ) (i = 1, 2, ... |E|)

f ) c. = f. }
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A flow-augmenting circuit f of a displacement
ac

graph G(f) is defined as a circuit which travels 

along e = (v v ) but not e ~ = (v c v,) and whose
* L O F o L

edges all have non-zero capacities. The arc

e r = ' V t V S^ is called the return arc of G and has 

infinite capacity. FIG. 2.26(a),(b},(c) and (d) 

illustrates a graph G, its displacement graph G(f) 

and a flow-augment ing circuit associated with G(f). 

The significance of flow-augmenting circuits is 

given in the following theorem.

Theorem A flow f on a digraph G is a maximal flow if 

and only if G(f) does not contain any flow-augmenting 

circuits.

The proof of the theorem is given by B. Carre [16] 

pp 207-208.

To obtain the augmented flow g f if G(f) contains 

flow-augmenting circuits, we modify the flow f as 

follows: for each normal edge e. on f we
1 3. C

increase the flow in the corresponding edge e. on

G by the capacity of f , and for each reverse edgea c

e.~ of f we decrease the flow in e. on G by the 
i ac i

capacity of f, , FIG. 2.26(d).
3 C

In our discussion on flows, we have shown that for 

any flow f on a digraph G, it is possible to determine 

from G(f) whether or not the flow is maximal. It 

has also been demonstrated that if f is not a 

maximal flow, we can construct a flow of larger

1



value by repetition of our flow-augmentation graph 

to yield a maximal flow in a finite number of steps. 

We illustrate this by examining the three cases 

previously mentioned.

1) Edge Connectivity Apply the maximum flow

algorithm to pairs of vertices S, t in a graph 

G with c. = 1 on all edges. Value of maximum 

flow = capacity of minimum cut = edge connectivity 

with respect to S, t.

Edge connectivity of G = minimum (edge connectivity)
S, t (with respect to )

( S, t )

D. J. Kleitman [34] indicates that( I V|]separate
V 2 ) 

verifications of maximum flow values is highly

inefficient, and is impractical in large graphs. 

In his correspondence, he points out several 

results that greatly reduce the number of 

verifications necessary to solve the problem 

just described. In our cases we limit the work 

to a demonstration in each case to one pair of 

vertices S and t.
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Graph G with return edge e t , S ) having c =00 

v ,

Capacity/flow graph, each edge of G except those at S and t 

is replaced by two edges as shown each edge having a 

capacity of 1 and zero flow.

FIG. 2.26
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(c)

G(f

Displacement graph G(f) for simplicity zero flows for each

omitted, i.e. c . + = c.-f. = 1, c.~ = 

G(f) has flow-augmenting circuits (f

edge have been omitted, i.e. c . + = c.-f. = 1, c = f =
i 11 i i

0 (omitted } .

ac 
'3*5

V 1 V 2>' V 2V'
• (V 6 V 1

6 V 1 or f ac

ac 
v ),

Augmented flow graph g »
3.1

FIG. 2.26 (Cont'd)
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Let v v = S , t

Undirected graph 
G

Capacity/flow 
graph

c= 1 , f = 0 

10

b)

FIG. 2.27
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Displacement graph 
G(f )

t v

Augmented flow 
graph f

d L-

d)

FIG. 2.27 (Cont'd
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Displacement graph 
G( f )

FIG. 2.27 (Cont'd). Diagrams showing the flow-graphs 

required to find a maximal flow between a pair of vertices 

S,t in an undirected graph G.

The displacement graph shown in FIG. 2.27(e) does not contain 

any flow-augmenting circuits, the flow depicted in 

FIG. 2.27(d) is a maximal flow = 4 (values of flow in 

edges incident at S or t) therefore edge connectivity with 

respect to S,t = 4.
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2) Vertex Connectivity We describe a basic method 

for finding the vertex connectivity of a graph 

G, by testing each vertex pair v ,v and
O b

obtaining the minimum value of k . We also
O L

use the following theorem.

Theorem The number of vertices k in the
o t

smallest S-t vertex cut set is equal to the 

maximum number of vertex disjoint S-t paths.

The proof of this theorem is given by H. Frank 

and I. T. Frisch [24] Chapter 7 pp 304.

Our method proceeds as follows:

(a) Change each undirected edge into two 

directed edges which will have equal 

capacity FIG. 2.28(a).

(b) Change each vertex into an edge joining 

two vertices (other than S and t) as 

shown in FIG. 2.28(b) .

(c) Put a capacity of 1 on each edge such as 

(v v ) and <» on all the other edges, 

connect vertices as illustrated in the 

graph of FIG. 2.28(c). We note that in 

a graph G modified as given every vertex 

disjoint path is edge disjoint.

The maximum flow S to t = capacity of minimum

cut = number of edges such as (v-^' which

disconnect S,t = k_. , the number of vertices in
O L

a minimum vertex cut set disconnecting S,t.
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Vertex connectivity of G = minimum (vertex connectivity
S,t (with respect to S,t

(c)

FIG. 2.28 Diagrams illustrating the modified undirected 

graph required when finding k ~
o L
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(k, k+ 1 )-edge-connected

Let S,t be a pair of vertices in a graph G. 

We define a pair of S-t bypass edges as 

follows:

Let v,w be vertices adjacent to S,t respectively 

and let e be an edge incident with v but not 

S, and e~ an edge incident with w but not t. 

We construct a pair of S-t bypass edges by 

inserting new vertices v ̂  , u 1 in the middle 

of e .. , €„ respectively and joining S to v 1 

and u to t respectively FIG. 2.29.

V 1

e 1

FIG. 2.29. Diagram illustrating the introduction 
of two bypass edges Sv and tu.. in a graph G.

Theorem. Let G be a simple undirected regular graph 

with degree p = k that is k-connected and k-edge- 

connected. Then G is (k, k+1 ) -edge-connected if 

and only if for every pair S,t of vertices and 

every pair of S,t bypass edges the graph we obtain 

by adding these bypass edges has the property that 

S,t are (k+1)-edge-connected (i.e. we need to remove 

at least k+1 edges to disconnect S and t).
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Proof: Insert a capacity of 1 on each edge. For 

any pair S,t of vertices the maximum S-t flow in 

G is k.

We must show,

A) G is not (k, k+1)-edge-connected H^ there 

is a pair of bypass edges which do not 

increase flow.

B) G is (k, k+1)-edge-connected *> every 

pair of bypass edges increases flow.

A(i) Let C (X=k) be a k-edge cut set meeting 

neither S nor t nor any vertex adjacent to 

either S or t, FIG. 2.30.

Let v,, v „, ... v be a path with v. = S, 

vn = t.

Any path from S to t must contain some edge 

of every cut set.

Thus if all edges of a cut set were deleted 

from the graph, there would be no path from 

S to t and the maximal flow value for the 

new graph (now in its component parts) 

would be zero. This is true in the case 

A(i) with the bypass edges at S and t, 

i.e. bypass edges cannot increase flow. 

Therefore G is not (k, k+1 )-edge-connected 

there exist bypass edges which do not 

increase flow.
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denotes edge of k-edge cut set C

denotes bypass edge

FIG. 2.30. Diagram illustrating the 

construction of a pair of S-t bypass edges.

A(ii) Let C be a k-edge cut set meeting neither
rC

S nor t but with an edge incident with a 

vertex adjacent to S or t, FIG. 2.31(a).

If V..V, e C , Sv does not increase flow and
I c. K

Sv, vv ? are two edges of a path from S to t.

Since any path from S to t must contain some 

edge of every cutset, the path containing
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Consider the introduction of a bypass edge Sv where v is a 
new vertex and also a bypass edge at t, Fig. 2.31 (b)

(b)

denotes edge of a k-edge cut set C 

denotes bypass edge

FIG. 2.31 
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Sv, vv 2 also contains one of the edges 

Ck -{v 1 v} i.e. removal of Ck disconnects G.

Therefore bypass edge cannot increase flow. 

Similarly the bypass edge to t does not 

increase flow.

Therefore G is not (k, k +1 )-edge-connected 

^y there is a pair of bypass edges which 

do not increase flow.

A(iii) Suppose that some but not all edges incident 

with S are in the k-edge cut set C., 

FIG. 2.32.

denotes an edge of a k-edge cut set C

denotes a bypass edge

FIG. 2.32



Let the edges of the cut set C incident
K

with S be denoted by Sv , Sv , ... Sv . and 

the edges not in the cut set but incident 

with S be denoted by Sv . , Sv . , ... Sv .
J "*" I J + *- ^

Then Sv , Sv , ... Sv are edges of a
J ' ' J "*" £- ri

path containing some edges of C -{Sv , Sv ,
K. I C-

... Sv }. The bypass edge introduced at S 

also lies on a path containing C -{Sv , Sv ,
rC I *—

... Sv.}. If the cut set edges are removed
J

then no path exists and there can be no flow, 

Thus the introduction of bypass edges at S 

and t will not increase the flow.

Therefore G is not (k, k+1 )-edge-connected 

S there is a pair of bypass edges which 

do not increase flow.

B) Suppose the graph G is (k, k+1)-edge- 

connected FIG. 2.33.

There are only two minimum cut sets at S 

or t represented by Sv , Sv , ... Sv k or 

tu., tu_, ... tu respectively.

Let the bypass edges introduced at S and t 

be denoted by Sv R+1 and tu k+1 - If the cut 

set of C edges is removed there exists a
l£

path Svk+1 , v k+1 v k+2 , ... u k+1 t joining 

S and t and such a path must contain some 

edge of every cut set. Therefore, by the 

maximum flow, minimum cut theorem the
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denotes an edge of a k-edge cut set C

— ——A denotes a bypass edge

FIG. 2.33

bypass edges must be members of the cut set 

otherwise the graph is disconnected. Thus 

the bypass edges increase the flow.

Therefore G is (k , k+1 )-edge-connected

every pair of bypass edges increases 

flow. •

A graph is (k, k+j)-connected if it has 

connectivity k, has a vertex cut set with
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k + j vertices and all vertex cut sets W 

with|w|< k+j have the property that G-W 

has at most one component which is not an 

isolated vertex. FIG. 2.3Ma) and (b) 

illustrates diagramatically a graph which 

is (k, k+j)-connected and a graph which is 

not (k, k + j)-connected .

A graph is (k, k+j)-edge-connected if it 

has edge connectivity k, has an edge cut 

set with k+j edges and all edge cut sets 

P with |P|< k+j have the property that 

G-P has at most one component which is not 

an isolated vertex. These definitions are 

discussed further in Chapter six.
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Vertex cut set
with 

k+j vertices

(a) (k, k+j)-connected graph

Vertex cut set
with 

k+j vertices

(b) graph is not (k, k+j)-connected

FIG. 2. 34
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2.8 The Expected Number of Vertices Disconnected

The probability of disconnection of a finite, simple, 

undirected graph G is given by,

lvl-2 . , W | . 
R d (G) _ V S^ 1 ! 1-q) 1 V| " X

(Probability of Disconnection) i=k

Where $ i denotes the number of vertex cut sets with 

i vertices, q is the probability of failure (removal 

with its incident edges) of each vertex. Assume 

that failure of vertices are independent. For small 

values of q the probability R ri ( G ) is minimised over

all graphs with kIv|edges if G is regular of degree
2

p = k and S. is minimised. The work of S. L. Hakimi 

and A. T. Amin [26] gives the construction of regular 

graphs of degree p = k and connectivity = k in which 

the vertex cut sets with k vertices are vertex 

neighbour sets. These constructions however do not 

have the smallest number of vertex cut sets with k 

vertices. D. H. Smith [45] has shown that in many 

cases it is possible to construct a graph with the 

minimum number of vertex cut sets with k vertices.

The application of the above solution to communication 

networks although desirable from the point of view 

of minimising R d (G) the probability of disconnection, 

does have the disadvantage that when in practice 

node failures do occur a rather large number of nodes 

may become isolated. It might therefore be more 

appropriate to require that the expected number of
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vertices disconnected from the largest remaining 

component of the graph (or isolated if all 

components are isolated vertices) be minimised.

Let G be a graph with degree p = k, connectivity = k 

and suppose there are C vertex cut sets with r 

vertices. Let N . be a vertex cut set with r 

vertices (i = 1, 2, ... C ) and suppose that N . 

disconnects exactly V . vertices from the largest 

component of G-N . (or V . = the number of isolated 

vertices in G-N . if all components are isolated 

vertices). Then the expected number of vertices 

disconnected form the largest component (or left 

isolated if all components are isolated vertices) 

is E v where,

Iv! c
E V =

i= 1

Since each vertex can be disconnected by at least 

one vertex cut set with k vertices the minimum value 

of the coefficient of q k (1-q)' V '~ k is |v|but to attain 

this minimum we require not just that all vertex 

cut sets of size k be vertex neighbour sets but also 

the stronger condition that if V is a vertex cut set 

of size k then G-V has at most one component that is 

not an isolated vertex.

D. H. Smith [44] indicates that the graphs constructed

by S. L. Hakimi and A. T. Amin [26] have the smallest

value of E for some sufficiently small probability
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q of vertex failure. However this result does not 

tell us how small q must be. For practical values 

of q it may be better to attempt to minimise the 

first few coefficients of

C r
Y v ri » say for r = k, k+1, ... k+j. 
i = 1

D. H. Smith [44] attempts to solve this problem by 

constructing (k, 2k-2)-connnected graphs (i.e. (k, k+j 

connected graphs with j = k-2), and states that the 

graphs of S. L. Hakimi and A. T. Amin [26] are not 

(k, 2k-2)-connected. We require regular graphs with 

Ivlvertices, degree p = k, connectivity = k, which 

have vertex cut sets with 2k-2 vertices and such that 

the only vertex cut sets V with less than 2k-2 

vertices have the property that G-V has at most one 

component that is not an isolated vertex. The

definition of (k, 2k-2)-connected requires k S | vj .
2

This will be dealt with further in Chapter eight.
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CHAPTER 3

Some standard graphs and their importance for network 

reliability .

The problems discussed in this thesis involve the construction 

of graphs with a given number of vertices and edges which are 

optimal with respect to some measure of reliability. Such 

problems are normally easier if the number of edges is such 

that the graph can be regular in which case the optimal 

graph is normally regular.

For practical purposes the best way to proceed when the 

number of edges does not allow a regular graph is to construct 

an optimal regular graph using as many edges as possible and 

to insert the remaining edges afterwards. It appears that it 

is not normally too difficult to insert these edges in such 

a way that an optimal or near optimal graph is obtained. 

For this reason the emphasis of this work is on the 

construction of regular optimal graphs.

In this chapter we consider regular graphs which are of 

interest in the field of network reliability because of 

their connectivity properties. The three classes of graphs 

dealt with are circulant graphs, graphs obtained using 

Construction A, and bipartite graphs.

All have regularity, not only in that the vertices of the 

graph have the same degree, but in the pattern of edge 

connection; for example in the bipartite graph shown in 

FIG. 3.1 any pair of vertices in|v Jhas common adjacency

with exactly one vertex in|V |.
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FIG. 3.1

This principle is used in practical telecommunications; we can 

think of |v | as a set of switches each of which has access 

to only two out of three switches |v I (or by a simple 

extension, to two out of four).

3.1 Circulant Graphs (or Circulants)

Circulant graphs (or circulants) are a class of 

graphs that have desirable connectivity and edge 

connectivity properties and are consequently 

important in network reliability studies.

We recall from Chapter one that a circulant graph is 

a graph G whose adjacency matrix A (G) is a circulant
O

matrix, and a |v| x |v| matrix A (G) is obtained from
O

the first row of A (G) by a cyclic shift of i-1 steps
O

and so any circulant matrix is determined by its 

first row.

From the fact the adjacency matrix is a symmetric 

matrix with zero entries on the main diagonal, if 

the first row of the adjacency matrix of a circulant 

graph is [a^ a 2> ... aj v |], then a 1 = 0 and
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S i " a |v|-i + 2 (2 = i =lv|). If the first row of the

adjacency matrix of a circulant graph G is

[0, a 2 , ... ajy|]> then the eigenvalues of G are,

X
p _

r=0, 1, ...|V-1

where w = exp j 2lli J N . Biggs [3] 
\ |v I / pp 15-16

Let G be a graph with degree p = k with |v| vertices 

and let

/ k x , ••• V,x
Spec. G = I I 

\ 1 m ... m- /
I O ~ I

Then the complexity of G is given by,

S-1 
Complexity (Tlwl J _ n TT (k _ x } ™r( , _ 1 ) _ ^ TT

"
11 r= 1

where X ^ k r

The complexity is of interest in our study because 

it enables us to compare graphs when the probability 

of edge failure p is large.

Hi I -f |E|\ - T, - , this is explained as follows

Number of spanning trees = Number of sets of |v|-1 

edges which leave the graph connected.

= Number of sets of |v|-1 edges - number of sets of 

|V|-1 edges which disconnect the graph.

= f |E| | - number of edge cut sets of size |v|-1



Thus the number of edge cut sets of size|v|-1

= ( I E I ] - complexity . Q 
\ |V|-1 /

We recall that the probability of disconnection of 

a graph P d (G), where p is the probability of edge 

failure is given by,

.
(Probability of disconnection) . , 1i = A

where R. = the number of edge cut sets of size i

i.e. P d (G)

(Probability of disconnection)

R n X ( 1 ni |E|- X + R n X+1 < 1 rJE| ~ ( X + 1 )
n -, p ( I -p ) + n •, . p (l-pj +...

-1. . n JE| - 
( 1 " P) 2 P ( 1 - P

...RI.-IP 1 .We note thatR. -I |E| ] R _/ I E I \ 
|E| IEI-IVU2 {M_ m + 2) 9 R |E|-IV| + 3 ( |E| _,V|+3U

( \ 
I „ do not depend on the choice of graph. 

\K\) 7

Thus the term R |E| _ |v , + 1 P |E|-'V I +1 ( 1 - p ) M - 1

is significant and for p large we require to make this term as small 

as possible in attempting to minimise ? (G) the 

probability of disconnection of the graph.

FIG. 3.2, FIG. 3.3, and FIG. 3.4 give examples of 

circulant graphs with different constuct ions . The 

figures illustrate the varying calculated values 

obtained for the eigenvalues, complexity and number 

of edge cut sets withlEl-lv +1 edges respectively. 

By comparing the values of R|£, _ ^ +1 for the three 

examples given, choosing the smallest value of

105



^ITTI hri 1 we are able to say approximately that IH - |V| + i

the graph in FIG. 3.4 is the more reliable graph 

in the sense that the probability of disconnection 

P,(G) is minimised when p the probability of edge 

failure is close to 1.
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Construction |v| = 12, k = 4, k = 2 r , ( v v . ) e E ( G )

if (i-j) = m (mod |v where 2 m ^ r.

1 1

10

A (G) = [0 1 1 0 0 0 0 0 0 0 1 1]

Spectrum of G = I 

T,,,, , = 248832,

4
1

1+/3 
2

0 -/3+1 
3 2

E - V +1
2247312 .

FIG. 3.2. A graph G with the maximum connectivity, 

F. Harary [29].
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Construction |V| = 12, k = 4, (v.v.)eE(G) if j = i+p(mod| V|)

p = 1, 2, ... r , except when |v|-4 ^ 6 and is even, in

which case p = 1, 2, ... r-1. Let k = 2r +2 for k even,

and k = 2r +1 if k is odd (v.v.)eG if j = i + (I V ! -3) (mod V I)
1 J 2 

when k = 4*|v|-4 k even. A

1 1

10

A (G) = [0 1 0 0 1 0 0 0 1 0 0 1]
C

-2 -1-/3 
2 2Spectrum of G =

/3-1 0 2 
232

^ = 3.71718 x 10 5 , B |E| _ |v , + = 2.124426 x 10 b .

FIG. 3.3. A graph with no more than |v| minimum vertex cut 

sets, S. L. Hakimi and A. T. Amin [26].
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Construct ion I V I = 12 » k = 4, v i v.eE(G) if li-j! = 1 or 3

10

A (G) = [0 1 0 1 0 0 0 0 0 1 0 1]

Spectrum of G =
1
2

/3 
2

0
2

- 1
2

V -1 405600 , Ri E - V +1

-4 
1

2090544

FIG. 3.4. A graph G which is (k, k+1 )-connected, 

D. H. Smith [45].
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Recently J. Provan and M. Ball [39] have shown that 

the calculation of P d (G), belongs to the class of 

problems for which there is no known efficient 

algorithm. We mention the importance of finding 

graphs which maximise X for a given value of|V and 

(Eland also minimise FL the number of edge cut sets 

of size X, thus enabling P d (G ) to be minimised.

A class of graphs which achieve maximum connectivity 

was found by F. Harary [29]. The example shown in 

FIG. 3.5 illustrates that the shortest path length 

between some vertices in a Harary graph can be rather 

large. This, as indicated previously may result in 

intolerable queuing delays at certain nodes in a 

communication or computer network and is undesirable. 

We note also that the example contains a large 

number of minimum size vertex cut sets.

At this point to be more concise in our description 

of circulant graphs we assume the vertices of a 

graph are labelled 0, 1, 2, ...|v|-1 and refer to 

the circulant graph as C,v) ( v 1 , v 2 , ... Vg) or briefly

Chrl (v.) where 0 < v, < ... v < IVI +1 has i ± v , 
|V| i 1 o ——^~ '

i ± v 0 , ... i ± v Q (modlv!) adjacent to each vertex i. 
2 o

It is of practical interest to note that the graphs 

of F. Harary [29] can have quite large diameters if 

Ivlis large and S is small. It is possible that 

other circulants can be used to construct smaller
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diameter graphs for the same value of S. An example 

is the circulant C 18 <1,8,> shown in FIG. 3.6. In 

addition to the diameter it is of interest in the 

design of reliable networks to investigate the 

connectivity of circulants, FIG. 3.8 shows a 

circulant which is regular of degree p = 8, but the 

vertex connectivity k is equal to 6.

The determination of simple, necessary and sufficient 

conditions for a circulant to have maximum vertex 

connectivity is complex and is generalized by 

F. Boesch and R. Tindell [11] who give results when 

the vertex connectivity k is equal to p the degree 

of a regular graph and when k < p or X < p. The 

results are given in a main theorem which we state 

below,

Theorem. The circulant C,|<v.>, 1 S i ^ S, satisfies 

k < p if and only if for some proper divisor m of |V|, 

the number of distinct positive residues of the 

numbers v 1 , v 2 , ... v g , I V I-Y S , I V I-Y S _ 1 , ...Iv|-v 1 

is less than the minimum of m-1 and pm. The proofnn
is given by F. Boesch and R. Tindell [11].

A simple condition which is known to be sufficient 

but not necessary for a circulant to have maximum 

connectivity is given by F. Boesch and A. Felzer [6]. 

They define a convex circulant to be one in which

v - v S v -v (1 ^ i S S-1), and that when 
i+1 i i+2 i+1

v = 1 and <v.> is convex then k = p. However
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convexity is not necessary as illustrated by the 

graph- in FIG. 3.7.

Theorem A convex circulant C, . <1, v , ... v 0 > is
IV | d. o

regular of degree p = 2S and as k = X = 2S.

The proof is given by F. Boesch and A. Felzer [6].

The earliest results on the connectivity of circulant 

graphs is due to F. Harary [29] who showed that 

C, , ( 1 , 2, ... S) , has k = X = p = 2 |E|.
v

Recent work by F. T. Boesch and J. F. Wang [12] 

give the conditions for a circulant to be (k, k+1)- 

edge-connected, they also determine R., the number 

of edge cut sets of size i (where i > X) for the 

graphs of F. Harary [29].

Theorem Let G = C|v| ( 1 ' 2 ' ' ' ' S J ' 2 = S < '!)' and 

R be an edge cut set. If|R|= i and X s i < 4S-3

then R isolates exactly one vertex and R. =(|E|-2S)|,
1 \ i-2S /' '' 

wherelElis the number of edges,Ivlthe number of

vertices in a graph G, and R. is the number of edge 

cut sets of size i.

The proof of this theorem is given by F. T. Boesch 

and J. F. Wang [12] who conclude that any regular 

graph with degree p = 2S, and with IVI vert ices will

have R. > (|E|-2S ) .... as this lower bound counts
1 = \i-2S / ' ' 

only those edge cut sets of size i which are obtained

from edge incident sets at vertices.
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17

15

12

10

FIG. 3.5. Illustration that the shortest path length

between some points in a Harary graph can be 

rather large.
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17

15

12

10

FIG. 3.6. Illustration of a circulant graph with |v| = 18,

|E|= 36, k = 4 and diameter = 4.
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14

13,

1 1

10

FIG. 3.7. Example of a graph C ,< 1, 5, 7> with k = p, 

which is not a convex circulant.
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14

10

FIG. 3.8 Example of a circulant C 1 _<1, 4, 5, 6> with

p = 8, k = 6, e.g. {1, 4, 6, 9, 11, u} is a

vertex cut set .
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3 . 2 A General Construction

Construction A

Let G be a graph with vertices v , v „ , ... v , ,. 

Replace each vertex v. by m vertices v.

(j - 1, 2, ... m) . Vertices v. ., v are adjacenti j § n
if and only if vertices v., v are adjacent in G^. 

This new graph G ? has mn vertices.

FIG. 3.9(a) and (b) shows a graph G I and the graph 

G,, obtained by applying Construction A.

We recall that a k-connected graph is said to be

(k, k+1 ) -connected if every vertex cut set with k

vertices is the neighbour set of a vertex.

Lemma If the graph G I is (k, k+ 1 ) -connected then 

the graph G ? of Construction A is (mk, mk+ 1 ) - 

connected. If G I has S vertex cut sets with k 

vertices then G has S vertex cut sets with mk 

vertices .

Proof if G. has minimum size vertex cut sets of 

the form A = {v a , ... v g } then the minimum size 

vertex cut sets of G 2 are of the form 

B = Iv. -•- v, ... v. ... v 6n !. If A is theam
neighbour set of v ± then B is the neighbour set of

v . for each j ( j = 1 , 2 , . . . m ) . • i J

We now make a general comparison between the graphs 

withlvtvertices which are (k, k+ 1 ) -connected and

1 17



FIG. 3.9. Diagrams illustrating the application 

of Construction A.

1 18



graphs constructed with m|V| vertices which are 

(mk, mk-i-1)-connected (i.e. using Construction A). 

Also given are numerical examples illustrating the 

calculation of the eignevalues, complexity and edge 

cut sets of size |E | -|V I+ 1 .

A general comparison between graphs with|v|vertices 

which are (k, k+1 )-connected denoted by G,, and 

graphs obtained using Construction A which are 

(mk, mk+1)-connected denoted by G ? .

Let A(Gp) be the adjacency matrix of the graph G ? 

and A(G.) the adjacency matrix of the graph G..

Then A(G 2 ) has blocks A(G 1 i = 1, 2 , 3, ... m

j = 1, 2, 3 . . . m

A(G.

A(G 1 )

| A(G 1

A(G

A(G 1 _]

Let X be the eigenvalues of A(G 2 ) where 

r = 1, 2, 3, ... m x IV^ .

Now if X is an eigenvector of AtG^,

A(G 1 )X r = X r X r

X = eigenvalues of the matrix A(G.j), 

r = 1 , 2, 3, . . . IvJ

X = the column vector x xr / I \
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Partitioning of A(G 2 ) gives,

A(G A(G

A(G A(G

X r

X r

=

mA(G 1 )X 

mA(G 1 )X r

mX

r = 1, 2, 3, . . . |V

i.e. to each eigenvector of A ( G . ) corresponding to 

X there is an eigenvector of A ( G ? ) corresponding to 

mX . A(G,) has eigenvectors corresponding to|V.| 

eigenvalues .

Similarly ACG.) has m|v | eigenvalues , we know|V | 

eigenvalues and require the remaining |v A ( m- 1 ) 

eigenvalues of A(G ). We look at the independent 

eigenvectors of A(G ? ) which exist for X =0.

A(G A(G

A(G A(G

X r
-X

r

0

= 0

-X
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Where X

1

0

and -X

In general the eigenvectors corresponding to 

X =0 can be found from,

1

0

. 1 

0

0

1

0

0
- 1

0

Therefore \ r of G 2 = 

and 0, I V | ( m- 1 ) times

0

0

0

0

0

0

of G I (r = 1, 2,
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Calculations of the eigenvalues, complexity and 

edge cut sets of size |E| - |v| +1 for the graphs in 

FIG. 3.9.

A(G

0

1

1

1 1

0 1

1 0

Characteristic equation | A ( G ,, ) - X I | =

giving -X 1 1

1 -X 1

1 1 -X

from which

= 0

X 3 - 3X - 2 = 0

X = 2, -1, -1 r=(1,2,

Complexity 
of G 1

= T, V|-1
k-X

r=

IV|-1 ~ ^ x 3 x 3 = 3. 

Number of edge cut sets of size |E| - Ivl +1

IE... - T|v|-i = 3 - 3 =

011011011 

101101101 

110110110 

011011011 

A(G ? ) = I 101101101 

110110110 

011011011 

101101101 

110110110
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Partitioning A(G 2 ) gives,

A(G.

A(G

A(G

A(G

A(G

A(G

A(G

A(G

A(G

where

A(G

Thus,

A(G A(G

0 1 1

1 0 1

1 1 0

A(G

AtG

A(G

3A(G 1 )x r 

3A(G 1 )x r 

3A(G 1 )x r

The eigenvalues of k(G ) are A = 2, -1, -1,

(r = 1 , ... | V

Some of the eigenvalues of A(G_) are 3A ,

i.e. A of A(G r <?. r = 1, 2, . . . |V

= 3(2), 3(-1 ) , 3{ -1 ) 

= 6, -3, -3.

A(Gp) has m|V I eigenvalues and we know |V | 

eigenvalues of A(G_). To find the remaining 

|v |(m-1) eigenvalues for A(G 2 ) we look at the 

independent eigenvectors of A(G ) corresponding

to A =0. r
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A(G 0 )X = X X 2 r r r

011011011

101101101

110110110

011011011

101101101

110110110

011011011

101101101

110110110

We are able to find 6 independent eigenvectors 

corresponding to X =0, these are,

1

0

0

- 1

0

0

0

0

0

= 0

1

0

0

- 1

0

0

0

0

0

1

0

0

-1

0

0

0

0

0

0

1

0

0

- 1

0

0

0

0

0

0

1

0

0

-1

0

0

0

1

0

0

0

0

0

-1

0

0

0

1

0

0

0

0

0

- 1

0

0

0

1

0

0

0

0

0

- 1

The eigenvalues of A(G_) are, 

6, -3, -3, 0(6 times).

Complexity 
of G = J_

V. k '

r= 1
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where =9, k = 6.

T |V 2 I -1 = -1 x 9 x 9 x (6) 6 419904 .

Number of edge cut sets of size JE I - |v I +1

|E 

Ej -|V
<- <

T V 2 ( -1 - 4. 19904 x 10

1800171 .

Calculations of the eigenvalues, complexity and 

edge cut sets of size |E| - |v| +1 for the graphs 

shown in FIG. 3.11.

A(G.

0111

1011

1101

1110

Characteristic equation |A(G_)-Xl| = 0

giving -X

1 

1 

1

1

-X

1

1

1 

1

-X

1

1 

1 

1

-X

= 0

from which X = -1, -1, -1, 3 (r=1,2, ... |V

Complexity 
of G^

Ivl
:-V

x

Number of edge cut sets of size |E| - |v| +1

- 16 = A
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A(G

011101110111

101110111011

110111011101
111011101110

011101110111

101110111011

110111011101

111011101110

011101110111

101110111011

110111011101

111011101110

Partitioning A(G ) gives,

A(G

A(G 3 

A(G

A(G.

A(G.

A(G.

A(G.

where

A(G.

A(G 3 ) A(G 3

0111

1011

1100

1110

Thus ,

A(G.

A(G.

A(G.

A(G.

A(G.

A(G.

A(G.

A(G.

A(G.

X r

X r

X r

3A(G 3 )x r

= 3A(G 3 )x r

3A(G 3 )x r

Thus some of the eigenvalues of A(G^) are 

3A r 3A 2 , 3A 3 , 3A A giving X r = -3, -3, -3, -9

A(G.) has ralV-l eigenvalues, we knowlV 3 l 

eigenvalues of A(G,). To find the remaining 

|V I (m-1) eigenvalues for AIG^) we find the
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independent eigenvectors of A(G ) corresponding

to X = 0.

A ( G . ) X = A X 4 r r r

We are able to find |v.j| (m-1) i.e. 8 independent 

eigenvectors corresponding to A =0, these are,

1

0

0

0

-1

0

0

0

0

0

0

0

0

1

0

0

0

- 1

0

0

0

0

0

0

0

0

1

0

0

0

-1

0

0

0

0

0

0

0

0

1

0

0

0

- 1

0

0

0

0

1

0

0

0

0

0

0

0

- 1

0

0

0

0

1

0

0

0

0

0

0

0

- 1

0

0
_ _

0

0

1

0

0

0

0

0

0

0

-1

0

0

0

0

1

0

0

0

0

0

0

0

- 1

The eigenvalues of A(G.) are,

-3, -3, -3, -9, 0(8 times).

Complexity _ T
-. _, — 1 Iof G V -1 iv,7T (k-A ) k^A 

r r
r= 1

Where |V | =12, k = 9.

Complexity 1 x 12 , x 9 s = 6 . 1987278 x 10 » 
of G^ 12 ———————————————

Number of edge cut sets of size |E| - Ivl + 1

t? IE | T- T 54 \ - 6.1987278 x 10 
43 }

8.9524125 x 10 i o
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FIG. 3.11
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3. 3 Bipartite graphs of optimal complexit y

A bipartite graph is defined in Chapter 2, Section 2.2; 

this class of graphs is important in our discussion 

because the bipartite graphs have optimal connectivity 

also the complexity of a bipartite regular graph is 

an upper bound if the graph is a bipartite distance 

regular graph of diameter three. This class of 

graphs is therefore of interest in our reliability 

studies when p the probability of edge failure is 

close to 1 .

Before dealing with distance regular graphs we now 

give a number of general properties of bipartite 

graphs. In the complete bipartite graph, each 

vertex V is adjacent to every vertex in V and 

vice versa. FIG. 3.12 illustrates a complete 

bipartite graph.

FIG. 3.12
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The number of edges in the complete bipartite graph 

is |E| r Iv^lv^. F. T. Boesch and R. E. Thomas [10] 

show that this graph is of optimal connectivity if 

and only if the vertex sets V 1 and V 2 are equal. 

K. W. Cattermole [17] applies the optimal connectivity 

concept to bipartite networks and exhibits a rather 

large class of optimal bipartite graphs and gives a 

number of examples of the relationship between the 

graph and practical telecommunications networks. 

For example a telephone exchange contains a large 

number of switches, at least some tens of thousands 

of contacts arranged in some hundreds of blocks or 

groups. The interconnection of these blocks is known 

as trunking. Exchange trunking can be represented by 

the bipartite graph.

A bipartite graph contains no odd circuits and the 

spectrum of the complete bipartite graph Ki M. i is:-
1 V j> I 1 v ~ I

Spectrum K| y || v |_ / ^IV^V^ 0 -^IV^V^N

\ 1 IV.,1 + |V 2 | -2 1 '

N. Biggs [3] p. 50

N. Biggs [3] p. 50 shows that if the bipartite graph 

G has an eigenvalue X of multiplicity m(X), then 

-X is also an eigenvalue of G and m(-X) = m(X). It 

follows that in a regular graph of degree P = k that 

since k is an eigenvalue, then we have the eigenvalues 

of the adjacency matrix of the bipartite regular graph 

G are k, -k, X^, -X^ ... X p , -X p where r = |v|-2
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A distance regular graph, with diameter d is defined 

as a regular connected graph with degree p = k with 

the following property. There are natural numbers

b 0 = k, b r ... b d-1 c 1 = 1, c 2 , ... c d ,

such that for each pair (u,v), of vertices satisfying 

Z(u,v) = j (where Z(u,v) is called the distance 

between u and v) 

we have,

(1) the number of vertices in G. (v) adjacent to 

uisC. ( i S j S d) .
«J

(2) the number of vertices in G. ,(v) adjacent to

u is b . '( 0 S J S d-1 ) .

where we define G.(v) for any connected graph G, and 

each v in V to be

G . ( v) = {ueV Z( u v) = i}

where 0 ^ i ^ d, and d is the diameter of G. 

G(v) = {v}, and V is partitioned into the disjoint 

subsets G (v), ... G,(v), for each v in V. Small 

graphs can be partitioned in this manner by arranging 

their vertices in columns, according to distance from 

an arbitrary vertex v. For example, K~ 3 is displayed 

in this way in FIG. 3.13

FIG. 3.13. Example of a distance regular graph,
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We now find an upper bound for the complexity of a 

bipartite regular graph and show that this bound 

is attained by bipartite distance regular graphs of 

diameter 3.

For a regular graph,

Complexity, T( y ( _ 1 __V ~\ k _ x ^ kAp

|v| M r=1

for the regular bipartite graph this gives, 

Complexity, T, , =1 (k + k}(k + X ) (k-X } . . . (k + X )(k-X
|V|-1 |y-j I' ^

S (k 2 -xp
r= 1

NowYx r = 0, and ^X* = 2\E\ N. Biggs [3] p. 13 

for the regular bipartite graph, we have

2|E| = £xj,

•'+X*+A'1 + ...Ag +

_S 

"r= 1

Tf

= k 2 + k 2 + X* + X*

2k 2 +2 ) A r

i.e.

E| = k 2 + Y X^
_S 

r= 1

Theorem The complexity, T, • , of a finite, simple, 

connected, undirected, bipartite regular graph with 

|v| = 2S + 2 vertices, |E| edges, degree p = k is 

given by,

13A



( \ s ( S-t-1 ) k 2 - |E| \ with equality if and 
S /

only if G has exactly A distinct eigenvalues 

k, -k, Yf -Y.

Proof Applying the arithmetic-geometric mean 

equality to

T, v| _, = IVl-^k-fJ^d,' - X-)

gives,

g 
T. , ?U / 1 \ \SVl-i ij^y X = 1 <x'-^)

s
Now |E| = k 2 + \ X 2

we can write,

.S
sk 2 - > ^x; xs

,-S
Substituting for \ X 2 gives,

^— r= 1 r

with equality if and only if all X 's are equal.

If G is a distance regular graph with diameter d 

then G has just d+1 distinct eigenvalues [20]. 

Consequently we have equality in the theorem on 

complexity if G is a bipartite distance-regular 

graph of diameter three. Two infinite families of 

bipartite distance-regular graphs of diameter three

are ,
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1) G has vertices V {i= 1 , 2 , ...k+1) and

V 2i (i= 1 ,2, . . .k+1 ) with V joined to all 

V 2j (j*i) .

2) G is the point-line graph of a protective 

plane of order k-1.

As a consequence of the theorem on complexity we 

conclude that in terras of reliability the bipartite 

distance regular graphs of diameter three have the 

smallest probability of disconnection in the 

presence of edge failures, (when the probability of 

failure of an edge is sufficiently large), of all 

bipartite graphs with the same number of vertices 

and edges.

We now give a definition of a symmetric balanced 

incomplete block design. This corresponds to a 

bipartite distance regular graph of diameter three. 

We give an example in which we can see that a 

bipartite distance regular graph of diameter three 

with |v| vertices and degree p = k corresponds to a 

symmetric block design with parameters v , v , k , k , d 

where |v| = 2v, k = k.

Definition A balanced incomplete block design is an 

arrangement of v distinct objects into b blocks such 

that each block contains exactly k distinct objects, 

each object occurs in exactly r different blocks, 

and every pair of distinct objects a^ a. occurs 

together in exactly £ blocks.
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A block design is called symmetric if v - b (and so, 

also k = r) .

Definition The point-block graph has vertices 

corresponding to the points and to the blocks of 

a symmetric balanced incomplete block design. A 

point vertex is joined to a block vertex if and 

only if the point is contained in the block.

FIG. 3.1Ma) and FIG. 3.1Mb) show examples of a 

symmetric block design and the corresponding bipartite 

distance regular graph of diameter three. Necessary 

conditions for the existence of symmetric balanced 

incomplete block designs and a table containing 

sporadic examples is given by M. Hall [27]. Many 

later examples of symmetric block designs are known.
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For v = b = 5, r r k = 4, £ = 3;

B.

B,

B

0 

0 

0 

0

1

1 
1
2

3 

2

2 

2

3 

4

3

3 

4 

4 

1 

4

(b)

IV| = 2v
k = k

FIG. 3.14
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CHAPTER 4



CHAPTER 4

Graphs Which Are Optimal With Respect To Small Probability 
Of Vertex Failure

We consider finite, simple, undirected, regular graphs with 

(V[vertices, degree p = k and connectivity = k. Such 

graphs exist for all |V|, k and constructions are given by 

F. Harary [29]. In particular we show how to generate 

various infinite families of maximally reliable graphs as

given by D. H. Smith [45] with k_ in the range _3 < _k
|V| "8 = |V| '

which are optimal in the sense that they contain the 

smallest number of minimum vertex cut sets. This means 

that they are optimal when q (the probability of failure 

of a vertex) is close to 0.

We define an equivalence relation ~ on the vertices of a 

graph G by u~v if and only if T(u) = T(v). If E y denotes 

the equivalence class containing vertex u then we construct 

a graph G in which the vertices represent the equivalence 

classes and vertices representing E , E are adjacent if 

and only if there exists aeE , beE such that a, b are 

adjacent in G. We then label the vertices of G, the 

label of a vertex being the number of vertices in the 

equivalence class. We shall refer to G as the base graph 

of G as shown in FIG. 4.1.

Given a graph G we shall study the question of when the vertices 

can be labelled with integers in the range 1 to k so that properties

( a ) to ( e ) on page 140 can be satisfied. The graph G has the

following properties:
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(a) For any vertex U L of G, the sum of the labelled 

vertices which form a vertex neighbour set is 

equal to k .

(b) The sum of the labelled vertices u in any vertex
Li

cut set of G is ^ k .

(c) G is connected.

(d) If the neighbour set of a labelled vertex u is
Li

equal to the neighbour set of a labelled vertex 

v, then u = v .
Li i_i LJ

(e) The labelled graph G has no vertices of degree 1 

unless G. is K (the complete bipartite graph).
I K K

We now give a further discussion of the properties (a) to

The sum of the labelled vertices in any vertex neighbour

set Hv,) of a vertex v is equal to k. This is L 1-j

illustrated in FIG. 4.2 and any graph G I generated will 

have degree p = k.

140



u~v if and only if T(u) = T(v

FIG. A. 1
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The sum of the labelled vertices of the vertex
neighbour set T(v r ) = 3k 3k k kL T + T + 8 + 8 = k

FIG. 4.2

142



It follows that in a labelled graph and the regular 

graphs generated that the minimum number of vertices in 

a vertex cut set is equal to k, the degree of a vertex 

and hence the connectivity is equal to k. For any vertex 

cut set the number of vertices in that cut set is greater 

than or equal to k.

The diagram in FIG. 4.3 illustrates that if F(u T
J_j

then u. = v .
Li Li

FIG. 4.3 

If a labelled vertex v has valency 1 then the number of
Li

vertices adjacent to a vertex v in G., is equal to k, and 

any other vertex u in G ̂ adjacent to T(v) has T(u) = T(v) 

Hence G is K kk - FIG. 4.4 illustrates the final property 

that G has no vertices of valency 1 unless G I is & kk -
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Labelled graph G 

with degree = 1

K kk 

k = 2



An example of a graph G I obtained from a labelled graph 

G is given in FIG. 4.5.

Labelled graph G

k = 4

FIG. 4.5

The lists of graphs available have been examined by D.H. Smith [45] 

e.g. graphs with at most six vertices, illustrated by F. Harary [29]
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Each graph in the list is checked to see if it can be labelled in accordance

with the conditions ( a ) to ( e ).

The class of graphs under consideration in this chapter have R minimum

vertex cut sets with k vertices. The values of R, dealt with are,k '

6 .

R k = 1,

If a graph is found that saLisfies

the labelling conditions then the graph is constructed and 

the actual number R of minimum vertex cut sets recorded.
K

If the graph that is found has R S 6 and no graph with
K

the same number of vertices and the same degree with a 

smaller value of R has appeared elsewhere in the search
ri

then the graph has the minimum number of minimum vertex 

cut sets. For the cases R = 7 and R = 8 some short cut
K rC

methods were used to avoid considering large numbers of 

graphs and the list is not complete for R = 8.

The graphs shown in FIG. 4.6 and FIG. 4.7 are graphs taken 

from those illustrated by F. Harary [30] and they are used 

as examples to show the procedure adopted for each graph 

in the list.
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FIG. 4.6

Let the vertices of the graph be labelled a, B, y» <$ > £ and 

P.

We form an equation for each vertex by considering the 

vertices adjacent to that vertex. The following equations 

are obtained,

p ^ 

a +

a +

Al 4-

r

Y

3

e

y 
P

+ y

_i_ £+ 0

+ Y

i x+ 0

4- c

- K

= k

- lr

______ ^ |

------(3

__--__( A

( &

Solving the equations, from (1), (2), (3) and (6

a = B, c = 6
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We can therefore write,

a + Y + y = k

2a + 6 = k

Y + 6 = k

U + <5 = k

Thus yj = Y

giving a + 2Y = k

and since 2a + 5 = k

and Y + 6 = k

We have y - 2 a.

giving a + 4a = k

i.e. a = _k
___ 5

From equations (2) and (5)

3a + y = k

U + 6 = k

Therefore 6 = 3a = 3k
5

Thus a = _k, y = 2k, M = 2k, 8 = k_, 6 = 3k, £ = 3k 
555555

Applying the properties (a) to (e) to this example we find 

that property (b) cannot be satisfied because the cut set 

{M,Y! gives,

Y + y = 4_k which is not a cut set greater 
5

than or equal to k. Hence this graph is not considered 

because there is a cut set which is too small.
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Let the vertices of the graph be labelled a, 3, y, 5 and y, 

The following equations are obtained,

y + 6 = k -_____( 1 )

a + y = k

5 + 6 = k

y + y = k

5 + a = k

From (1) and (4) y + B = y + y

B = y

Similarly a = y, y = 6, 8 = a. 

Thus by substituting in equations (1) to (5), we have,

______(2)

______( 3)

--____(4) 

______( 5)

Applying the properties (a) to (e) to this example we find 

that all properties are satisfied and the graph is 

constructed.
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We now give a complete list of the infinite families of 

graphs generated. For R 27 there is a complete list of
rv

the families with the smallest number of cut sets with|V|

vertices, some infinite families are included for R = 8
k

but the list is not complete. The families of graphs 

generated are shown in FIG. 4.8 to FIG. A.22.
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Case A k_ J_, 
|V|= "2 Number of vertex cut sets 

R k = 2.

G = K
kk Number of vertex cut sets which are 

vertex neighbour sets = 2.

1 1

L 22

'44

FIG. 4.8
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Case B k 2,ivr 3 Number of vertex cut sets 
R k = 3

G = K k_, k_, k_ 
222

Number of vertex cut sets 
which are vertex neighbour 
set s = 3.

1 1 1

/' 

»• k = 2

v

L 222 k =

FIG. A.9
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Case C k Number of vertex cut sets

G = K
— > ii» ii' ii 
3333

Number of vertex cut sets 
which are vertex neighbour 
sets = A.

1111 k = 3

'2222 k = 6

FIG. A. 10
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Case D k
V

2_ 
5

Number of vertex cut sets
R, = 5

G = Construction A 
applied to the 
pentagon with 
m = _k 

2

Number of vertex cut sets 
which are vertex neighbour 
sets - 5.

m = 1 k = 2

m = 2 k = 4

10

FIG. A. 1 1
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Case E
VI- 5

Number of vertex cut sets 
R - 5

G = K,
9 9 9"A "A "4 A" Number of vertex cut sets 

which are vertex neighbour 
sets = 5.

11111 k =

'22222
k =

FIG. A. 12
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Case F k_ _ _5 
|V|= 8

G consists of a pentagon
with each vertex labelled
k_ together with one vertex
5
labelled 3k adjacent to

5 
every vertex of the pentagon

Number of 
cut sets 

R,

vertex

= 6k
Number of vertex 
cut sets which are 
vertex neighbour 
sets = 6.

k_
5

k = 5

FIG. A. 13
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Case G k_
V

5
6

G = K,
k_, k_, _k, k., k_ 

555555

lumber of vertex cut sets
R k = 6

Number of vertex cut sets 
which are vertex 
neighbour sets = 6.

111111 k = 5

'222222
k = 10

12

FIG. 4.14 
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Case H k_ 
V

Number of vertex cut sets
R, = 7

G has vertices V Q ,
v i v. are adjacent if |i-j| 

or 3 (mod 7); then apply

Construction A with m = k_"4

= 1
Number of vertex cut sets 
which are vertex neighbour 
sets = 7.

G, m = 1 k =

FIG. 4.15
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Case I k_ 
V 1 1

G has vertices v 0
w 2 with v i v . adjacent if|i-j|= 1 

(mod 5); w , w adjacent; and v.w. 
adjacent for each i, j (i=0, 1,

j=1, 2} .

Number of vertex cut 
sets

R, = 7

Number of vertex cut 
sets which are vertex 
neighbour sets - 7.

Each v. is labelled
k and each w. is labelled 3k ._ 
8 8

FIG. A. 16
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Case J
,v

G

_6 " 7

= K

6 6 6 6 6 6* 6

Number of vertex cut sets 
R k = 7

Number of vertex cut sets 
which are vertex 
neighbour sets = 7.



Case K k.
i V

G has vertices V Q , v 1 , v 2> v 3> V A

each labelled _k and w , w labelled
A _k; V Q is adjacent to v^ v , v , v

and the following edges are also 

present:

Number of vertex cut
sets R, = 7k

Number of vertex cut 
sets which are vertex 
neighbour sets = 7.

w,

FIG. 4.1.
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Case L _k IV"
14

Number of vertex cut 
sets

G has vertices u labelled 5k ;
9 

v , v ... v labelled _k;
9 w , w labelled 2k ;

1 2 T"

Number of vertex cut 
sets which are 
neighbour sets of 
a vertex = 8.

u is adjacent to v , v v 5 , w^ w 2 and

the following edges are also present:

V 1 V 4 } ' (

V A W 1

w — — w.

FIG. 4.19
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Case M k 
IV

Number of vertex cut 
sets

G has vertices v 0' V 1 
adjacent if |i-

.. v with 

= 1 or 4

(mod 8). Each v. is labelled _k.

Number of vertex cut 
sets which are 
neighbour sets of a 
vertex = 8 .

k = 3

FIG. 4.20
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Case N k_ _ 7 
|V| = 8

G = K,

7 7 7 7 7 7 7 T

Number of vertex cut sets 
R k = 8

Number of vertex cut sets 
which are neighbour sets 
of a vertex = 8.

k = 7

FIG. A.21



Case 0 k _ 3 
|V| = 5

G is obtained by applying 

Construction A to the graph 

of FIG. 4.22

Number of vertex cut sets
R k = 8

Number of vertex cut sets 

which are neighbour sets 

of a vertex = 8.

k = 6

FIG. 4.22
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CHAPTER 5

Comparison Of The Probability Of Connection Of Graphs With 

The Smallest Number Of Minimum Vertex Cut Sets When The 

Probability Of Failure Of A Vertex Is Close To 1

In this Chapter, we consider graphs in which each vertex has 

a probability q of failure. The edges are assumed to be 

perfectly reliable. We examine the class of graphs exhibited 

in the last Chapter, and compare their reliability when the 

probability of failure is close to 1.

H. Frank [23] has described the problem of finding graphs 

with the minimum probability of disconnection if the 

probability of failure of any vertex is sufficiently small 

and shows that several families of complete multipartite 

graphs satisfy this criterion. Dealing with the same problem 

the graphs of D. H. Smith [45] described in Chapter four show 

that in many cases it is possible to construct a larger class 

of optimal graphs with the minimum number of vertex cut sets 

with k vertices.

Given a graph G with Ivl vertices and |E| edges and probability 

of vertex failure q, then the probability of connection P C (G) 

is given by,

(Probability of)
connection i=0

Where D I = the number of sets of i vertices whose removal from 

the graph G leaves connected subgraphs with i V I - i vertices .
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It follows that,

P C (G)

Probability of) , , 3 .
connection +D| V |_ 3 q |V| °(1-q) + D | v |_ 2 q (1-q

It can be seen that for q close to 1, if we consider the 

coefficients D |v| , D |v| _ r D |v| _ 2 , D| v |_ 3 , ... , then 

maximising these values is an important step in finding 

graphs which have a maximum probability of connection and 

in this sense are more reliable.

Consider the term D, ,q' ', for any graph G it follows that

Vi = 1 -

For D I j we have DI V I = |v| the number of vertices in 

the graph.

For Di,,i_p we require two vertices to be left connected, it 

follows therefore that D| v i 2 = I E I» tne number of edges in

the graph i.e. |E| =Iv|p where p = k.
2

In the case of the coefficient D| v , 3 we need the connected 

subgraph with three vertices. The subgraphs left are 

illustrated in FIG. 5.1.
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(b)

(c (d

FIG. 5.1 Illustration of the connected subgraphs containing 

three vertices.

Using the illustrations given in FIG. 5.1 we proceed 

as follows,

D,.., , = Number of triangles + |v|/k\- 3 x number of triangles
I ' \ 2 /
(as each triangle is counted four times by the first two terms

i.e. D | V( _ 3
- 2 x number of triangles.

To maximise D, „._., we therefore require graphs that contain 

no triangles.
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The graph shown in FIG. 5.2 contains no triangles and we use 

this example to show the calculation of the coefficient

D |V|-3 for a non-regular graph.

FIG. 5.2 

0 = 14

i.e. the 14 connected subgraphs with 3 vertices are,

{1, 2, 3}; {1, 2, 4}; {1, 3, 4}; {1, 2, 6};{1, 4, $} ;

{1, 5, 6}; {2, 3, 4}; {1, 3, 6}; {2, 3, 6};{3, 4, 6};

{l, 4, 6}; {3, 4, 5}; {3, 5, 6}; {4, 5, &}.

Following on from the example giving the calculation of

D, I we now explain how the number of triangles for each

case are obtained. The diagrams illustrated in FIG. 5.3

(a) and (b) show a single triangle and a graph obtained from

the single triangle by replacing each vertex by m vertices.
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(a)

FIG. 5.3

Referring to the diagrams in FIG. 5.3(a) and (b) we have, 

1 triangle Z^ m 3 triangles.

i.e. if m = 2, we have 8 triangles for the graph shown in 

FIG. 5.3(b).
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If we now use the base graph in case F in Chapter four as

an example with each vertex labelled k_, then in general
5 

the number of triangles generated in any other graph in

case F can be written as,

Number of triangles = /k. V x number of triangles in the
\5 / base graph

The number of triangles for each base graph is obtained by 

inspection of the base graph and these numbers are then 

used in the general expression for the number of triangles 

in the respective cases of Chapter four using the particular 

vertex label given for each case. The results are given in 

the table of values for D , , in FIG. 5.4.
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Case 

A

B

C

D 

E

F

G

H

I

J

K

L

M

N

0

km
1
2 

2
3 

3
4

2
5
4
5 
5
8 

5
6 
4
7 
8

1 1 
6
7 
4
9 
9
14 

3
8

7
8 

3
5

D lvl

1

1

1

1 

1

1

1

1

1

1

1

1

1

1

1

°|V|-1

Ivl

Iv!

Ivl

Ivl 

Ivl

Ivl

Ivl

|v|

Ivl

Ivl

Ivl

Ivl

Ivl

Ivl

Ivl

°|v|-2

Ivlk
2

Ivlk
2

Ivlk
2

Iv|k 
2

Ivlk
2

Ivlk
2 

IV Ik
2 

Ulk
2 

|v|k
2

Ivlk
2 

Ulk
2 

|V |k
2

Ivlk
2

Ivlk
2

Ivlk
2

D |V|-3 

IvI/kN
\2J

|v|/kV2/ky
\2j \2j 

|v|/k\-8/kV
\2/ \3^

lvl a)
|V |/k\-20/kV

V2/ U/ 
|V |/k\-30/kVV2y \5j
|v|/k\-40/kV

\2/ \5/
IvI/kN-iA/kV

\2/ U/ 
|v|/k\-150/kV

\2/ U/ 
|v l/kN-70/k V

V2; V6/ 
|V|/k\-4/kV

\2/ U/
|v|/k\-184/k\ 3U; V9/
|v|/k\

\2/ 

|v|/k\-112/k\ 3U; v?;
|V|/k\-50/kV\2/ U;

FIG. 5.4
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We use a result given by B. Bollobas [14] corollary 1.6, 

page 297 to compare the optimal value for the number of 

triangles in a graph with the number of triangles in the 

Smith graphs. This result states that; given a graph G 

with |v| vertices and |E| edges then the number of triangles 

(t(G)) in that graph is given by,

t(G) >J\E\ \ /4|E|-|vi 2 \
\ ITvT -

If we let k = a, and |E|= IV|k
TvT ~2~

Then t (G) > k
2 2 3

*( 2]L - *\
6\ a a 2 /

_ _
3a 6a 2

i.e. t(G)2 k x B where B = / J_ - 1
V3a 6a :

Taking the value of ex for each of the graphs in FIG. 4.7 to 

FIG. 4.21 in Chapter four we calculate the value of B and 

hence obtain a general expression for the number of 

triangles in each graph i.e.

3 3

t(G) ^ Bk the optimal graphs being those with t(G) = Bk .

A comparison is then made of the number of triangles in each 

of the graphs listed in the cases A, B, C, ... 0, of 

Chapter four and those graphs giving the optimal value 

t(G) = Bk 3 . The tabulated results also give the percentage 

deviation from the optimal value for each case and are 

shown in FIG. 5.5. The percentage deviation is defined as,

(t(G) Smith-Optimal Value) x 100% 
Optimal Value

The table of results in FIG. 5.6 compares the number of 

triangles in each of forty-six specific circulants with the
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number of triangles in each of the graphs of Smith which 

have the same values of k and Ivl. The circulants in our 

comparison are defined as follows:

Let G be a circulant graph with G = C, ,< a , a , ... a >
2"

where 0< a^< a 2 < ... < a k < ( IVI + 1 ) , has i ± a^ i ± a ,

"2 2

i ± a < (Mod Ivl) adjacent to each point i (i.e. a,=1, a 0
K_ 1 £

2 

etc.) If k is odd we also join vertex i to vertex i + Ivl

The eigenvalues (X.) and the number of triangles t(G) for 

each circulant are obtained using a computer program, the 

value of t(G) being given by,

Ivl
T, 3 (where A. = A .

the graph
1 V" T, 3 (where A. = the eigenvalues of)-T- j A . io / _ i

i= 1

The formula for t(G) is derived by D. M. Cvetkovic, M. Doob, 

H. Sachs [ 19] page 85.

An example of the calculations involved for each graph in 

compiling this table is now given using case D, FIG. A. 10, 

Chapter four and the circulant graph shown in FIG. 5.7.

Smith Graph, Case D, k = 4, |v| = 10 The graph is constructed

using Construction A applied to the pentagon with m = k_. For
2 

this graph t(G) = 0 as shown in the table of values FIG. 5.5,

which gives the general result for the number of triangles 

in the graphs in this case.
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Case

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

km
!
2

2
3

3
4

2
5

4
5

5
8

5
6

4
7

8
1 1

6
7

4
9

9
14

3
8

7
8

3
5

t(G) 
Number of triangles 
Smith graphs

0

0. 125k 3

0. 1481481k 3

0

0. 15625k 3

0. 12k 3

0. 16k 3

0. 109375k 3

0. 1464843k 3

0. 162037k 3

0.03125k 3

0. 1262002k 3

0

0. 1632653k 3

0. 1 1574074k 3

t(G)=Bk 3 
Optimal Value

0

0. 125k 3

0. 1481481k 3

0

0. 15625k 3

0. 1066666k 3

0. 16k 3

0. 0729166k 3

0. 1432291k 3

0. 162037k 3

0

0. 1 152263k 3

0

0. 1632653k 3

0.0925925k 3

Percentage 
deviation

0

0

0

0

0

+ 12.5

0

+ 50

+ 2.27

0

+ 9.5

0

0

+ 25

FIG. 5.5
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k

4

5

6

7

8

4

6

8

6

9

12

4

6

8

8

12

16

5

10

15

,v,

8

10

12

14

16

6

9

12

8

12

16

10

15

20

10

15

20

8

16

24

km
1
2

1
2

1
2

1
2

1
2

2
3

2
3

2
3

3
4

3
4

3
4

2
5

2
5

2
5

4
5
4
5

4
5

5
8

5
8

5
8

Number of 
triangles 
Smith graphs

0

0

0

0

0

8

27

64

32

108

256

0

0

0

80

270

640

15

120

405

Number of 
triangles 
Circulant graphs

8

10

36

42

96

8

30

76

32

1 12

272

10

45

120

80

275

660

16

160

575

FIG. 5.6 
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k

5

10

15

4

8

12

8

16

24

6

12

18

4

8

12

9

18

27

3

6

M

6

12

18

7

14

21

1 1

22

33

7

14

21

9

18

27

14

28

42

8

16

k

5
6

5
6

5
6

4
7

4
7
4
7
8
1 1

8
1 1

8
1 1

6
7
6
7

6
7

4
9
4
9
4
9

9
14

9
14

9
14

3
8

3
8

Number of 
triangles 
Smith graphs

20

160

540

7

56

203

75

600

2025

35

280

945

2

16

54

92

736

2484

0

0

Number of 
triangles 
Circulant graphs

20

160

546

7

84

314

77

659

2284

35

280

952

9

108

403

1 14

1005

3520

0

48

FIG. 5.6 (continued 
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k

9

7

14

21

6

12

m

24

8

16

24

10

20

k 
ffl

3
8

7
8

7
8

7
8

3
5

3
5

Number of 
triangles 
Smith graphs

0

56

448

1512

25

200

Number of 
triangles 
Circulant graphs

191

56

448

1520

30

299

FIG. 5.6 (continued)

It is noted from the table of values in FIG. 5.6 that the 

Smith graphs are better in the sense that the number of 

triangles in each graph is less than or equal to the number 

of triangles in the circulant graph for the same values 

of k and |V | .
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Circulant Graph k = 4, |v| = 10

10

FIG. 5.7

4, -1, -1, -1, -i,JT, v/5", -JT, -^J, o

t(G) = 10.

1= 1
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CHAPTER 6

Comparison of the Probability of Disconnection of Graphs 

When the Probability of Edge Failure p is close to 0

We consider finite, simple, undirected regular graphs in 

which each edge has a probability p of failure. Failures 

of edges are assumed independent. We recall from Chapter 

two, section 2.5 that the probability of disconnection of 

the graph can be written as,

P , ( G ) = \ R . p ( 1 - p )
/

(Probability of) ^~l\ 
disconnection

Where R. is the number of edge cut sets with i edges.

We remarked in Chapter one, section 1.3 that when link 

failures do occur in a network and the network is disconnected 

it is less damaging for one node to be isolated from the rest 

of the network, than for half the nodes to be isolated from 

the other half. This is reflected in the following 

definition:

Definition

A graph is (k, k+j)-edge-connected if it has edge connectivity 

A=k, has an edge cut set with k+j edges and all edge cut sets 

E with |E|<k+j have the property that G-E has at most one 

component which is not an isolated vertex.

We recall from Chapter three, section 3.1, that the number of

edge cut sets R . of size k+j in a regular graph is given by,k + j

R . 2|V| [|E|-k] ; where j < k - 1, 
k+J \ J /
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the lower bound counting only those edge cut sets which are 

obtained from edge cut sets incident at vertices. Equality 

is obtained when the graph is (k, k + j )-edge-connected and 

so the first j coefficients R , R R R ... R

are minimised in the expression for P (G), the probability 

of disconnection.

The reason for considering the values of R . the number of 

edge cut sets with k+j edges, is that the probability of 

disconnection for a network having equal and independent

edge failures can be reduced to finding all the R . values*^ + J
of the corresponding graph. To minimise P (G), one must 

first maximise A and then minimise all the R, ..

We examine the list of Smith graphs given in Chapter four 

and give the general value of j for which each case is 

(k, k+j)-edge-connected. The following definition and 

theorem indicates how these values of j were obtained.

Definition

A graph is (k, k+j)-connected if it has connectivity k, 

has a vertex cut set with k+j vertices and all vertex cut 

sets X with |X|<k+j have the property that G-X has at most 

one component which is not an isolated vertex.

Before giving a theorem which shows the connection between 

the (k, k+j)-connected and (k, k+j)-edge-connected definitions 

we note from Chapter two, section 2.5 that the probability 

of disconnection P (G) for graphs with the probability of 

vertex failure close to 0 is minimised if S the number of 

vertex cut sets with k vertices (k=p=degree) is minimised.
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The Smith graphs give various infinite families of graphs 

with the smallest number of minimum vertex cut sets.

Theorem

Let jSk-2, k^4, and G be a graph with |E| edges (|E|>k+j) 

and with minimum degree k. Then if G is (k, k+j )-connected 

it is (k, k+j)-edge-connected.

We note that the graph of the triangular prism with k=3, 

j=1 illustrated in Chapter two, section 2.7, FIG. 2.25, is 

a counter example to the corresponding result when k = 3 .

T. Evans and D. H. Smith [21] give a proof of the above 

theorem.

We now consider the Smith graphs and examine each case A, B, 

C, ... 0 to determine the value of j for which each case is 

(k, k + j)-connected but not (k, k+j+1 )-connected. An example 

of how the general value of j is obtained for the various 

cases is illustrated as follows:

Case K k = A—— m 9
The vertex cut set V = Iv w w w w oi^ ln the Smith 

graph in Chapter four, FIG. 4.17 gives the disconnected 

graph shown in FIG. 6.1.

FIG. 6.1 
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This disconnected graph shows that the original graph fails 

to be (k, k+j)-connected. The number of vertices in the 

cut set which gives the disconnected graph of FIG. 6.1 is

5k, and no smaller cut sets fail to satisfy the (k, k + j)- 
4 
connected definition. In general the graph in case K is

(k, k+j )-connected for j <; _k.
4

The values of j for which each graph is (k, k+j)-connected 

are tabulated in FIG. 6.2. The theorem then guarantees that 

if k>4 the graph is (k, k+j)-edge-connected for the same 

values of j except in cases A and D which are (k, 2k-2)-edge- 

connected. The results for the value of j for which each 

case is (k, k + j )-edge-connected are shown in FIG. 6.3. These 

values of j show that the number of edge cut sets R. in the 

Smith graphs is minimised, where i = k+j-1, and hence 

minimise the first j coefficients in the expression for 

P,(G) the probability of disconnection of the graph 

(edge failure).

F. T. Boesch and J. F. Wang [12] give results for a special

class of circulants G = C, ,(1, 2, ... S), 2 SS ^j_V_| (having
11 2 

degree p = X = k) as defined in Chapter three, section 3.1,

their work showing that this special class of circulants

not only minimise R-, but all R. for X ^ i ^ 2k - 3 (whereA i
i = the number of edges in an edge cut set). We note from 

the results in FIG. 6.3 that cases A and D of the Smith 

graphs satisfying the (k, k+j)-edge-connected definition 

with j ^ k-2 share with the special class of circulants the 

property that the coefficients R.U^i^2k-3) are minimised. 

For small p the graphs in cases B, C and E to 0 are at least

near optimal with respect to edge failures.
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Case

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

knn

1
2

2
3

3
4

2
5

4
5

5
8

5
6

4
7

8
1 1

6
7

4
9

9
14

3
8

7
8

3
5

Values of j for which graph 
is (k, k + j ) -connected

j^k-2

j^k-2
2

j^k-2
3

j< 3k _ 2~

j^k-2
4

jS3k-2~5~

j^k-2
5

j< 3k _ 2~4~

j^3k-2
8

j< k _ 2~6

j^k4"

j^k
^

j^k
3

j^k-2
7

jS2k-2
3

FIG. 6.2
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A

B

C

D

E

F

G

H
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J

K
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N
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k 
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1
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2
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3
4

2
5

4
5

5
8

5
6

4
7

8
1 1

6
7

4
9

9
14

3
8

7
8

3
5

Values of j for which graph 
is (k, k + j ) -edge-connec ted

j^k-2

j^k-2
2

jSk-2
3

j^k-2

j^k-2
4

jS3k-2
T

j^k-2
5

j<3k-2~4~

j< 3k _2
IT

j^k-2
6

j^k
4

j^k"9

j< k
3

j^k-2
7

j^2k-2
3

FIG. 6.3

185



CHAPTER 7



CHAPTER 7

Comparison of the probability of disconnection of graphs 

with the smallest number of minimum vertex cut sets when 

the probability of failure of an edge is close to 1

In this Chapter consideration is given to finite, simple,

undirected graphs in which each edge has a probability p

of failure. Failures of edges are assumed to be independent

The complexity of a graph as stated in Chapter three is of 

interest because it enables us to compare graphs when the 

probability p of edge failure is close to 1. We minimise 

the probability of disconnection ? d (G) of the graph by 

maximising the value of the complexity ^T, .^j, as given in 

Chapter three, section 3.1.

In general the complexity of a regular graph G with degree 

p=k is given by,

|V|-1 

T |V|-1 = ,1, J[ (k-X r )
r=1 

where X , \ ^ , ... X^,^ are the eigenvalues of G.

Using the result given in Chapter three, section 3.2 on the 

comparison of (k, k+1)-connected graphs and (mk, mk+1)- 

connected graphs we calculate the complexity of the base 

graph G of each of the graphs of Smith [45] constructed in 

Chapter four, and give a general result for the complexity 

of any of the infinite families of such graphs which are 

spread through the range _3 ^ k < 1 .
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The complexity of the base graph is given by,

7i TT (k-v
r= 1

It follows from Chapter three, section 3.2 that a graph 

obtained by applying construction A with m|v| vertices, 

degree p = mk will have complexity given by,

m|v|-1
T ra |Vl -1 = 1 TTm|V| I l r=1 mk - m r

where A^o for r=|v|, |v|+1, ... m|v|-1

giving, 

m V - 1 ~

ThUS Tm|v|-1

T m |V|m-2 |V| (m-1 
T mUl-1 = m k

The eigenvalues for each of the base graphs G constructed in 

Chapter four are obtained using a computer program and are 

tabulated in FIG. 7.1. These values are then used to 

calculate the complexity of each base graph and also the 

complexity of a number of graphs in each of the cases A, 

B, ... 0, using the general formula,

Tm|v|-1

An example of the calculation of the complexity for the 

graphs in case A for m = 1 to 8 is given below. Similar 

calculations are used for some of the graphs in the other
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cases and these are given with the results for case A 

in FIG. 7.2.

Case A k=1, |v|=2, k = 1 .
TvT 2

m

k

|V|

1

1

2

2

2

4

3

3

6

4 5

4 5

8 10

6

6

12

7

7

14

8

8

16

For the base graph A = 1, -1 .

Thus ^i- 1 = m i" (k~v = ' '
11 II r=0

I V|m-2 . |V | (m-1 ) . 
and using T m ( v ( _ 1 = m' ' k T |v|-1

we obtain the following: 

when

m = 2,

m - 3 ,

m = 4 ,

T m|V|-1 = 2

T m|v|-1 = 3

Tm|vl-1 = 4

= 4 .

A = 81 .

6 3= 4.096 x 10 .

2m - 2 
In general, Tm |V | - 1 = m

In FIG. 7.3 the values of the complexity for some of the 

Smith graphs are compared with the complexity of circulant 

graphs with the same values of k and |v|. The circulant 

graphs have degree P=k and are defined in Chapter three,
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section 3.6. The values of k considered are 4, 5, 6, 7 and 

8 with |v| taking the "values 5, 6, 7, ... 30 for each value 

of k.

The values of the complexity for each circulant graph are 

obtained from a computer program using the eigenvalue and 

complexity equations given in Chapter Three, Section 3.6. 

The maximum value of complexity is of interest and it is 

this value which is noted for each value of k and |V|, 

other values of complexity are obtained depending on the 

construction of the circulant graph. A general illustration 

of the construction of the circulant graphs used and the 

values of the complexity obtained are given in FIG. 7.4 

together with examples of the various circulant constructions 

for k = 4, I V|=9.

We recall from Chapter Two, Section 2.6 that the expression

'iVl-1 ,
1 I V|p V ' is an upper bound for the

TvT V 1V| ~V
complexity of a regular graph. Using this equation an 

upper bound for the complexity of a regualr graph is 

calculated and compared with the values of complexity 

obtained for the Smith graphs having the same values of k 

and |V|. The results are given in FIG. 7.3. Also given 

in FIG. 7.3 is the percentage deviation from the upper bound 

which we define as follows:

Percentage = Smith value of complexity - upper bound x 10Q 
deviation upper bound

A further comparison of the complexity of the Smith graph is 

made if we briefly consider bipartite distance regular graphs 

of diameter 3. A distance regular graph of diameter three
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with |v| vertices and degree p _ k corresponds to a symmetric 

block design with parameters v, v, k, k, £ where |v|=2v, k = k 

These graphs are defined in Chapter Three, Section 3.3, 

together with the equation and proof for the calculation 

of the complexity of such graphs. We now give the necessary 

conditions for a symmetric block design to exist and then 

show by means of examples when such graphs exist and also 

how the complexity of such graphs can be calculated.

Symmetric block designs

|V| = 2v, k = k .

For such a design to exist we must have, 

1 ) ( v-m = k(k-1 ) . 

2) if v is even then n = k-£ is a perfect square.

if v is odd and n = k-& then the equation

2 2 , , x(v- 1 ) /2 n 2 z 2 = nx + (- 1 ) £y

has a solution in integers x, y, z (not all zero).

Example 1 k = 3, (v-m = 6.

If £= 1 , v = 7, IV|= 2v =14 .

If £=2, v=4, IV|=2v=8 .

Graphs with k=3 are (8,3), (14,3)

N.B. If v, v, k, k, Si exists so does v, v, v-k, v-k, v-2k+i.

Example 2 k = 4, (v-m = 12-

If JU 1 , v= 13, |V|=2v = 26 •

If £=2, v=7, IV|=2v=14 •

If <L = 3, v=5, |V| =2v=10 .

Graphs with k = 4 are (10,4), (14,4), (26,4).
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Example 3 k = 5, (v-1)2,= 20

If A =1, v = 21 , |V|=42

If I =2, v=11, |V|=22

If «, =4, v = 6, |V| = 12

Graphs with k = 5 are (12, 5), (22, 5), (42, 5)

The complexity is given by,

T| V . 1 = 2k / (S+1)k g -|E|\ S where |E|=|v|k and S =|v|-21 —— — ~

hence using two values of |v| and k as examples we have,

I ,, I / \ 4 A
lV| = 10, k = 4, T, | = 8 ( 5 x 16 - 20] = A.05 x 10

11 10 ^ 4 J

|V|=22, k = 5, I, | = 10 ( 1 1 x 25 - 5sV 0 & 1.20726 x 10 13 |VM 22 ^—————TO—————)

FIG. 7.5 compares the values of complexity of the symmetric 

block designs with the values obtained for the Smith graphs 

which have corresponding values of k and |v|. FIG. 7.6 

compares the complexity of symmetric block designs or 

bipartite distance regular graphs of diameter three with the 

maximum and minimum values of complexity for the circulant 

graphs discussed earlier in this Chapter.

A study of the results given in the various tables in this 

Chapter show that the values of complexity for many of the 

Smith graphs are equal to or greater than the maximum values 

of the complexity for the corresponding circulant graphs, 

and hence more reliable in the event of failure of edges 

with p close to 1. Case A of the Smith graphs give graphs 

with values of complexity equal to the complexity of optimal 

bipartite distance regular graphs of diameter three where 

they were found to exist with the same values of k and |v|.
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The limited number of graphs compared in these cases show 

the Smith graphs to be as reliable or nearly as reliable 

as the optimal bipartite distance regular graphs of 

diameter three.

Comparing the upper bound values of complexity we find that 

the complexity of a number of the base graphs in the Smith 

cases equal the upper bound value and are therefore highly 

reliable. In many other cases the values of complexity 

were close to the upper bound value.
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Case Degree (k) Number of Vertices Eigenvalues (A

B 2 3 2

- 1

- 1

~2——— ( twice )

( -IT - 1 ), . .—————~————( twice

1

1

1

1

5

- 1 )
2

0

0 

- 1 )

( twice )

2

•3

( twice )

FIG. 7.1 
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Case Degree (k) Number of Vertices Eigenvalues (X )

1 1

5
- 1

- 1

-1

- 1

- 1

0.80194

0.80194

-0.5549:6
-0.55496

-2.24698

-2.24698

2

0

0

0

0

, , . . ( twice )

( -JT - 1 )
2

-3

-3

( twice )

6
- 1

- 1

- 1

- 1

- 1

- 1

FIG. 7.1 (continued



Case Degree (k) Number of Vertices Eigenvalues (X

M

1

1

0.56156

0

0
- 1
-2 

3.56156

9
1

1

0.56156
0
0

0

0

0

0
- 1
-2

3.56156

-5

jr- 1 
jr- 1

-

FIG. 7 . 1 (continued 
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Case Degree (k) Number of Vertices Eigenvalues

7
-1

- 1

- 1

-1

-1

-1

- 1

06 10 6

1

1

0.56156

0

0
- 1

-2

-2 

-3.56156

FIG. 7.1 (continued)
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Degree ( k )

1

2

3

5

6

7

8

2

4

6

8

3

6

2

4

6

8

4

8

5

5

4

8

8

6

4

8

9

3

6

7

6

Number of Vertices Complexity 
( I V| ) (Smith graphs )

2

4

6

10

12

14

16

3

6

9

12

4

8

5

10

15

20

5

10

8

6

7

14

1 1

7

9
18

14

8

16

8

10

1

4

4.096 x 10 3

3.90625 x 10 5

6.0466176 x 10 7

1 .38412 x 10 1 °

4.39804 x 10 12

3

3.84 x 10 2

4. 19904 x 10 5

1.6106 x 10 9

16

8.2944 x 10 4

5

4.096 x 10 A

8. 16293 x 10 9

1 . 12589 x 10 16

1.25 x 10 2

3.2768 x 10 7

2.1025 x 10 A

1 .296 x 10 3

1.183 x 10 3
1 n

7.93897 x 10 U

2.2713 x 10 8

1.6807 x 10 4

1 .248 X 10 4
1 L

2. 14404 x 10
1 1

3.96582 x 10

3.92 x 10 2

4.2138 x 10 1 °

2.62144 x 10 5

2.096641 x 10 6

FIG. 7.2 
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CHAPTER 8

The expected number of vertices disconnected from the 

largest component of a graph

It has been shown in Chapter A that it is possible to construct 

a graph with the minimum number of vertex cut sets with k 

vertices and thus give a reliable network with the minimum 

probability of failure if the probability of node failure 

is close to 0. Although this is desirable from a practical 

point of view this solution is open to the criticism that 

although the probability of failure is minimised, when 

failures do occur a rather large number of nodes may be 

isolated.

It may be preferable to require that the expected number of 

vertices M(G) disconnected from the largest remaining 

component of the graph (or isolated if all components are 

isolated vertices) be minimised. The expected number of 

vertices disconnected is given by, 

UI-2
__^^_ ^

M(G) = y (

i = k

where S. = the number of vertex cut sets with i vertices, 

n. = the number of vertices disconnected from the 

largest component of G-X iv {where X iv is a 

vertex cut set with i vertices (i= 1 , 2 , . . .S i ) } 

or left isolated if all components are 

isolated vertices, 

k = degree = connectivity.
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Since each vertex can be disconnected by at least one vertex 

cut set with k vertices the minimum value of the coefficient 

of q (1-q) is |v| but to attain this minimum we require 

not just that all vertex cut sets with k vertices be vertex 

neighbour sets but also the stronger condition that if |x| 

is a vertex cut set with k vertices then G-|x| has at most 

one component that is not an isolated vertex. The significance 

of this stronger condition is demonstrated by the graph in 

FIG. 8.1. For clarity the bottom diagram in FIG. 8.1 shows 

how the vertices a, b, c, d, e, f, g are connected, we note 

also that,

( a, A adjacent <^ ^> a , A adjacent etc. \ 

a, b adjacent <Z^ a , b adjacent etc./

The graph illustrated in FIG. 8.1 is regular with degree 

p = connectivity = 7, |v| = 22 and the only vertex cut sets 

with 7 vertices are vertex neighbour sets. If X. = A, B, 

C, D, E, F, G then n. =8 and it follows that if the other

vertex cut sets in the graph with 7 vertices are counted and

7 1 5 n. found then the coefficient of q (1-q) is greater than

Ivl.

i.e.
8 + 21(1) = 29 > I V|

i 
n
IV

v= 1

This example shows that the (k, k+j ) -connected definition

stated gives a stronger condition than that given by

S. L. Hakimi and A. T. Amin [26] (see Chapter 2, Section 2.2)

However, the graphs constructed by these authors happen to 

satisfy the stronger condition also (for j=1), but they are

205



FIG. 8.1 

206



not (k, 2k-2) -connected. For practical values of q it may 

be better to try to minimise the first few coefficients

S. r- 1
} n. , say for i = k , k+1, ... k+j-1.

v= 1

A proof that (k, k+j ) -connected graphs minimise these 

coefficients is given as follows: 

VI-2

M(G

X"" ( r-
L— i = k x v=1

If G is (k, k+j)-connected, then

s /|v|-k-i\
Y n. y = |V|{ ._ R J i = k, k+1, ... k + j-

and in general S.. ^^ _ R _

thus each coefficient of q (1-q) is a minimum for 

i = k, k+1, ... k + j- 1 . •

The graphs constructed by S. L. Hakimi and A. T. Amin [26] 

with |v| vertices and |E| edges and having no more than |v| 

minimum vertex cut sets each of which is a neighbour set of 

a vertex have the smallest value of M(G) for some probability 

of vertex failure close to 0.

The definition of a (k, 2k-2)-connected graph requires

k ^ Ul to give a value of j ^ k-2. D. H. Smith [44] 
2

constructs (k, 2k-2)-connected graphs with k ^ |_v| and gives
4
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two constructions and a proof of a theorem for constructing

such graphs. He also states that cases with |v_| < k ^|v_|
4 2

appear to be more complicated to deal with. The constructions 

and a statement of the theorem are now given,

Case 1 k = 2r is even.

Construction A Label vertices 0, 1, 2, ... |v| -1. Vertices 

i and j are adjacent if |i-j| = 1, 3, 5, ... or 2r-1 (mod |v|).

Case 2 k = 2r+1 is odd (so |v| must be even).

Construction B Label vertices 0, 1, 2, ... |v| -1. Vertices 

i and j are adjacent if |i-j| = 1, 3, 5, ... or 2r-1 (mod |v|). 

If i is odd vertex i is also adjacent to i+2r+1 (mod |v|) so 

that if i is even vertex i is also adjacent to vertex 

i-2r-1 (mod |v|) .

Theorem Construction A and Construction B yield graphs that

are (k, 2k-2)-connected if k ^ M .
4

Chapter 6 gives the values of j for which the various Smith 

graphs (Cases A, B, ... 0) are (k, k+j)-connected and the 

number of coefficients of M(G) minimised by those graphs.
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CHAPTER 9 

Conclusions

There has been a considerable amount of work in the area of 

probabilistic analysis of network reliability. In this 

thesis we have analysed the design and reliability of a 

communication network with particular reference to the 

various infinite families of graphs shown in Chapter 4. 

If random factors influence the existence of various vertices 

and edges an important area of investigation is to consider 

which graphs are optimal in the sense that the probability 

of disconnection is minimised or the probability of 

connection is maximised.

In this work we have used the following models for 

reliability,

1) The edges of a graph are assumed to be reliable, and

each vertex is assumed to fail with probability q

close to 0. 

2} The edges of a graph are assumed to be reliable, and

each vertex is assumed to fail with probability q

close to 1 . 

3) The vertices of a graph are assumed to be reliable,

and each edge is assumed to fail with probability p

close to 0. 

A) The vertices of a graph are assumed to be reliable,

and each edge is assumed to fail with probability p

close to 1.
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The graphs constructed in Chapter A have a minimum number of 

vertex cut sets. These various infinite families of graphs 

contain the same number of minimum vertex cut sets 

irrespective ofthe value of k and |v|, providing the ratio

k is the value given for each case and lies in the range 
|V|

J3 2 k < 1 . 
8 |Y|

These graphs are much better than the graphs of S. L. Hakimi 

and A. T. Amin [26] because the minimum number of incident 

vertex cut sets is constant for each particular case and is 

very much less than |v| irrespective of the value of |v|, 

whereas the Hakimi and Amin graphs give the number of 

incident vertex cut sets in a graph to be no more than |v|.

As explained in Chapter 5 finding graphs which have a 

minimum number of triangles is important in the sense that 

such graphs have the largest probability of connection for 

q close to 1. The analysis of the Smith graphs using our 

second model of reliability shows that in all of the Smith 

graphs compared the number of triangles was less than or 

equal to the number of triangles in certain circulant graphs. 

Thus in most cases the Smith graphs have a larger probability 

of connection. Compared with a theorectical lower bound for 

the number of triangles, Cases A, B, C, D, E, G, J, M and 

N achieved this minimum value for their respective values of 

k and |v|.

In the comparison of graphs with edge failures p close to 0 

the Cases A and D of the Smith graphs which satisfy the
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(k, k+j)-edge-connected definition given in Chapter 6 give a 

value of j ^ k-2 which equals the value of j given for a 

special class of circulants, thus minimising the first j 

coefficients R. (where i=k+j-1) in the expression for the 

probability of disconnection. In the remaining cases of 

the Smith graphs i.e. E to 0 and Cases C and D although the 

number of coefficients minimised is less the graphs are at 

least near optimal.

The fourth model of reliability compares the complexity of 

the Smith graphs and circulants using the eigenvalues of 

the various graphs. It is found that in 75% of the graphs 

compared the Smith graphs give the highest value of 

complexity and would therefore be more reliable in the 

event of edge failures when p is close to 1.

Comparison with the optimal bipartite regular graph, i.e. 

the bipartite distance-regular graph of diameter 3 which we 

explain in Chapter 3, Section 3.3 is equivalent to a balanced 

incomplete block design, the results show that some of the 

Smith graphs in Cases A, D and K give values of complexity 

greater than or nearly equal to the values of the balanced 

incomplete block design where they exist.

Compared with the upper bound for the complexity of a 

regular graph, over 70% of the Smith graphs give a value of 

complexity greater than 75% of the upper bound value and in 

a number of graphs in Cases C, E, G and N equality is 

obtained.
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Although we have been dealing with small areas of probability 

i.e. q close to 0, q close to 1, p close to 0, p close to 1 

and realizing that the remaining much larger area of 

probability requires future research, we finally remark 

that this investigation has produced optimal families of 

graphs which are highly reliable when q is close to 0. 

With respect to the other values of probability mentioned 

above the families of graph were in many instances at least 

as reliable and in many other instances more reliable when 

compared with certain standard graphs.
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