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Evolutionary Computation and Experimental Design

Summary

This thesis describes the investigations undertaken to produce a novel hybrid 
optimisation technique that combines both global and local searching to produce 
good solutions quickly. Many evolutionary computation and experimental design 
methods are considered before genetic algorithms and evolutionary operation are 
combined to produce novel optimisation algorithms. A novel piece of software is 
created to run two and three factor evolutionary operation experiments. A range of 
new hybrid small population genetic algorithms are created that contain evolutionary 
operation in all generations (static hybrids) or contain evolutionary operation in a 
controlled number of generations (dynamic hybrids). A large number of empirical 
tests are carried out to determine the influence of operators and the performance of 
the hybrids over a range of standard test functions. For very small populations, 
twenty or less individuals, stochastic universal sampling is demonstrated to be the 
most suitable method of selection. The performance of very small population 
evolutionary operation hybrid genetic algorithms is shown to improve with larger 
generation gaps on simple functions and on more complex functions increasing the 
generation gap does not deteriorate performance. As a result of the testing carried 
out for this study a generation gap of 0.7 is recommended as a starting point for 
empirical searches using small population genetic algorithms and their hybrids. Due 
to the changing presence of evolutionary operation, the generation gap has less 
influence on dynamic hybrids compared to the static hybrids. The evolutionary 
operation, local search element is shown to positively influence the performance of 
the small population genetic algorithm search. The evolutionary operation element 
in the hybrid genetic algorithm gives the greatest improvement in performance when 
present in the middle generations or with a progressively greater presence. A 
recommendation for the information required to be reported for benchmarking 
genetic algorithm performance is also presented. This includes processor, platform, 
software information as well as genetic algorithm parameters such as population 
size, number of generations, crossover method and selection operators and results of 
testing on a set of standard test functions.
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1. INTRODUCTION

The aim of this chapter is to illustrate the general background to the areas 

studied, the aims of the research and to give an outline to the structure of the thesis.

1.1 BACKGROUND

Optimisation is a mature area of research which could be argued to be as old 

as life itself, as optimal performance gives the greatest chance of survival. 

Optimisation became more formalised with the development of mathematics, yet 

some of the more complex real life problems remain impossible to solve using 

mathematics. Research continues to push the boundaries of mathematics, but other 

research fields use a different approach by applying methods from other subject 

areas, such as evolutionary computation.

Experimental design is a more recent subject of primarily the last hundred 

years. Firmly grounded in mathematics, particularly statistics, experimental design 

was initially a response to the practical problems of agriculture and industrial 

chemistry, such as optimising crop or process yield. The requirement was to 

determine a method to discover the influence of sometimes uncontrollable 

parameters. Experimental design has developed beyond its original fields of 

application and has seen a renaissance of interest fuelled by the quality movement in 

industry. There are many different methods of experimental design, but all attempt

1-1
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to discover the influence of parameters to allow for their control and hence the 

optimisation of a process.

Evolutionary computation is often perceived as new area of research, but its 

roots stem from the 1940's. This perception is probably due to the small amount of 

research that continued after a paper published in the late 1960's by Minsky and 

Papert (1969) which painted a bleak future for artificial intelligence. The past 

decade has seen a tremendous growth in research and applications of evolutionary 

computation. The field encompasses many techniques including genetic algorithms, 

neural networks, evolutionary strategies and simulated annealing.

Evolutionary operation (EVOP) is a relatively simple experimental design 

technique, originally developed for application in the chemical industry in the 

1950's. EVOP is a little used technique, possibly due to the large number of 

calculations required, to be quickly completed for the originally intended flow line 

process applications. EVOP was published decades before the advent of widely 

available, low cost, computational power. EVOP is considered as a local search 

method as investigations are carried only a small distance from any current point in a 

search space.

Genetic Algorithms (GAs) trace their history to the 1970's to the work of 

Holland (1992) and are based on Darwins' survival of the fittest theory. GAs are

1-2
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also an optimisation technique and as the name implies are based on the behaviour 

of genes in the natural world. GAs are a global search method that work in a parallel 

manner, with potentially many points being investigated simultaneously over a large 

area of any search space. GAs have been applied to large space optimisation 

problems, such as designing VLSI layouts ( Schnecke, 1997) and scheduling ( 

Yamada and Nakano, 1995).

Combining a local search and global search technique has the potential to 

develop an improved search method that is capable of both types of search. It is in 

this area of overlap that the studies for this thesis are carried out. By combining 

EVOP and GAs it is possible to study the influences on performance and potentially 

develop an improved search technique.

1.2 AIMS OF RESEARCH

The aim of this thesis is to investigate the areas of evolutionary computation 

and experimental design to determine specific methods that could be combined into 

a novel approach for optimisation. The hybrid technique should be a robust method 

which can find good, but not necessarily the absolute best, solutions in a 

comparatively short length of time, which would increase the potential application 

areas of GAs from mainly off-line situations, such as scheduling, to other areas such 

as on-line optimisation and machine control.

1-3
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Therefore the objectives of this thesis are to:

• Investigate evolutionary computation and experimental design to select methods 

from each domain to use as a hybrid optimiser with improved performance.

• Develop a deeper understanding of the selected methods.

• Review available software.

• Develop a new piece of software to implement two or three factor EVOP.

• Review the literature to investigate work related to small population GAs.

• Investigate by experiment the most suitable method of selection for small 

population GAs.

• Investigate by empirical testing, controllable parameters such as generation gap, 

the size of the population and the number of generations, that influence the 

performance of a combined hybrid optimiser to establish the best settings for the 

hybrid technique.

• Investigate the influence of the EVOP operator to determine if including the 

operator at different generations influences the quality of solution found.

• Determine the level of performance of the hybrid optimisation technique by 

benchmarking.

• Investigate the difficulties in establishing the exact settings used by authors of 

published works.

• Examine the elements that should be included in a GA benchmark and its 

potential to establish precisely how operators influence GA performance.

• Consider applications suitable for small population hybrid GAs.

1-4
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1.3 OUTLINE OF THESIS

The next chapter, chapter two; Review of Experimental Design and 

Evolutionary Computation, is an overview of the fields of experimental design and 

evolutionary computation. The first area to be examined is experimental design: 

The brief introduction concentrates on the main directions of research in this field, 

before examining the properties required for a good experimental design. The 

fundamental experimental designs and some important features are discussed, before 

progressing to some of the more fashionable methods. Although these techniques 

have recently risen in prominence they are based on the same principles and often 

the same designs as those discussed earlier. The Taguchi method is examined in 

detail as it has been offered as a solution to many problems, although not often in 

conjunction with evolutionary computation, and offered a potential way forward for 

these studies. Evolutionary Operation is the final experimental design technique to 

be examined before a review of the current use of experimental design.

The next section of chapter two considers evolutionary computation and 

briefly describes the main techniques available, before examining the properties of 

all the techniques and selecting two methods to be examined in more detail.

Chapter three, Evolutionary Operation and Genetic Algorithms, is a more 

detailed examination of the two methods selected in chapter two, namely 

evolutionary operation (EVOP) and genetic algorithms (GAs), the two methods later

1-5
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used to produce new hybrid methods. Details of applications of these methods are 

given and the availability of software discussed. AutoEVOP software created during 

the studies for this thesis is then described. A review of genetic algorithm hybrids is 

undertaken before describing the selection of software for the hybrid methods tested 

in this thesis.

Chapter four, Small Populations and Hybrids, illustrates the processes 

undertaken to select suitable operators for the genetic algorithms used in this study 

and to show any influences these operators have on hybrid GAs in comparison to 

standard small population GAs on a set of test functions. Initial study is devoted to 

selecting appropriate parameter values for the GAs, such as the coding alphabet and 

the size of populations to be examined. Further consideration is then given to the 

classic operators such as selection method, crossover and mutation for these small 

population GAs. A range of sets of experiments are undertaken to determine the 

influence of these operators, especially population size and generation gap.

Chapter five, Dynamic Hybrids, illustrates the investigations undertaken to 

examine the effects of the influence of the EVOP element on the hybrid GAs, using 

various standard test functions. Hybrids tested in the previous chapter contained an 

element of EVOP which operated from the first to last generations of the GA and are 

henceforth referred to as static hybrids. In this chapter EVOP is initiated only for 

certain specified generations. As the GA proceeds its characteristics change and

1-6
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these GAs are referred to as dynamic hybrids. These dynamic hybrids are compared 

to each other, to their comparable static hybrid and standard small population GA. 

A study is also undertaken into the influence of the generation gap on these dynamic 

hybrids.

Chapter six, Benchmark Testing and Application, discusses the benefits and 

problems of benchmarking and its applicability to GA and GA hybrid research. The 

current use of benchmarking for GAs is then examined, before an illustration of the 

investigations undertaken to examine the performance of the hybrid GAs on a range 

of further 'benchmark' test functions. The areas of application for small population 

GAs are discussed before considering suitable applications for the hybrid GAs 

studied in this thesis, illustrated with an example implementation.

Finally chapter seven, Conclusions and Further Work, summarises the 

studies carried out, highlighting the contributions made by this work before 

discussing how these studies could be extended. Additionally the future possibilities 

for GAs, EVOP and benchmarking are considered.

1-7



Evolutionary Computation and Experimental Design

2. REVIEW OF EXPERIMENTAL DESIGN AND 

EVOLUTIONARY COMPUTING

The aim of this chapter is to give a brief overview of experimental design and 

evolutionary computation. Some of the methods included in these areas are 

described with an emphasis placed on evolutionary operation and genetic 

algorithms, the main techniques utilised in this thesis.

2.1 EXPERIMENTAL DESIGN 

2.1.1 Introduction

There is always room for improvement. Often to gain the knowledge 

necessary to improve an industrial process an experiment is conducted, this is the 

role of experimental design. Inactive observation of a process does not yield 

sufficient information for improvement, as G.E.P. Box is often quoted "To find 

out what happens to a system you have to interfere with it (not just passively 

observe it)" (Box, 1957). The principles of experimental design are based on the 

work of Sir Ronald A. Fisher in the 1920's and 1930's (Fisher (1925) and Fisher 

(1935)). Recently interest in experimental design has been revitalised by the 

work of Genichi Taguchi (1987), who has brought the design of experiments to a 

wider field of engineering.

Experimental design, once thought to be the preserve of laboratory 

scientists, transferred a long time ago to the industries of agriculture and

2-1
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chemistry but did not make significant contributions in other business sectors. 

Although experimental design is a well established field it was generally 

overlooked by Western manufacturers until the quality of products from the Far 

East improved dramatically without the expected large price increase; this 

galvanised Western industry into taking action to remain competitive. It was 

found that statistical techniques, including experimental design, had aided this 

improvement. Ironically it was the ideas of Western statisticians, such as 

Deming (Deming, 1950, 1995), that countries such as Japan embraced after the 

Second World War, which the West had ignored, that were part of the success 

story. The techniques have been further developed by Taguchi (1987) into a 

cohesive system for improving products from the design stage onwards, with the 

aim of complete customer satisfaction.

Quality of products became increasingly important as availability became 

less of an issue. The traditional methods of post-production inspection were not 

competitive enough. Experimental design gave the advantage that many 

configurations of influential parameters could be tested in a systematic way and 

the best selected for production.

2.1.2 Properties of Good Designs

All good experiments are pre-planned and implementation has a well- 

defined structure. Planning is a critical part of any experiment and it is often 

neglected, (Coleman and Montgomery, 1993). The first stage is to state the

2-2
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purpose of the experiment in clear terms; for a worthwhile experiment to be 

carried out, there needs to be a clear, definable objective. The next step is to 

choose which factors, elements of the process such as temperature or machine to 

be used, are to be studied and at what levels or settings. A response variable, or 

set of variables, that can be accurately measured must also be selected. If careful 

thought is given to the preceding stages then selection of a suitable standard 

experimental design should be comparatively easy. With planning complete the 

experiment can be run then the data analysed. For a well designed experiment 

the data analysis involves relatively simple statistical techniques. However, no 

amount of elegant statistics can rescue a badly planned experiment. With the use 

of computer programs, analysis can be simple and fast. Graphs are potentially 

one of the most useful tools at this stage as they allow quick visual interpretation 

of results. The final stage is to reach conclusions about the experiment and make 

recommendations for possible changes in the process and/or further 

experimentation.

2.1.3 Review of Experimental Design 

2.1.3.1 One-at-a-time experimentation

The most basic type of experimental design is where one factor at a time 

is varied, e.g. in a chemical reaction initially all factors are held constant and the 

yield noted. All factors are held constant except the temperature which for the 

second experiment is lowered and for the third run the raised, the yield is noted at 

all settings. All factors are then reset to the original levels whilst only, say, the
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pressure is decreased then increased. This is shown in Table 2.1.

TEMPERATURE

NORMAL

LOW

HIGH

NORMAL

NORMAL

PRESSURE

NORMAL

NORMAL

NORMAL

LOW

HIGH

YIELD

Reading 1

Reading 2

Reading 3

Reading 4

Reading 5

Table 2.1. Scheme for one at a time experimentation.

The experiment will give the effect on the yield of a change in 

temperature or pressure, but will give no indication if increasing both together 

gives a better yield, i.e. it does not give any interaction effects of the factors and 

there is no way of discerning if any changes in yield are due to the different factor 

levels or experimental error. The problem of designating the cause of changes 

can be overcome by repeating the experiment so that each point in the design 

space has at least two readings. This allows for the estimation of errors.

2.1.3.2 Factorial experiments

Factorial experiments offer an improvement on 'one at a time' 

experiments as they incorporate the effect of interaction into the design. Here, 

using the previous example, trials would be run at low pressure and low 

temperature (A); low pressure and high temperature (B); high pressure and low 

temperature (C); high pressure and high temperature (D) as shown in Table 2.2
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below. This is a two factor (pressure, temperature), two level (low, high) 

experiment which has 22 (4) runs. This method is acceptable for low order 

experiments but it soon becomes cumbersome with a greater number of factors 

and levels, e.g. a three factor, five level experiment would require 3 5 (243) runs. 

As the size of the experimental space increases, the cost of running the trials will 

increase in terms of time, money and other resources. It may be that the cost of 

running the experiment becomes prohibitively expensive and impractical.

TEMPERATURE LOW

TEMPERATURE HIGH

PRESSURE LOW

(A)

(B)

PRESSURE HIGH

(C)

(D)

Table 2.2. An example factorial experiment.

2.1.3.3 Fractional factorial experiments

Fractional factorials were developed to overcome the problems associated 

with large experimental spaces. They do not give a blanket coverage of the space 

but give a good indication of areas where the yield may increase, with a fraction 

of the runs required by a full factorial experiment. Fractional factorials do 

however require a more rigorous mathematical approach for their analysis. 

Notation for fractional factorials: A^7

where, N =• number of levels

k = number of variables 

p = fractional reduction

A 24 full fractional factorial design requires sixteen trials but a half fraction 

requires only eight. [( !/2 x 24) = ( 2' 1 x 24) = 24' 1 = 23 = 8]. Table 2.3 shows the
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settings for

of'+'forti

• a 24" 1 fractional factorial experiment using the traditional designations 

he higher factor level and '-' for the lower level.

TRIAL

1

2

3

4

5

6

7

8

A

-

+

-

+

-

+

-

+

B

-

-

+

+

-

-

+

+

C

-

-

-

-

+

+

+

+

D

-

+

+

-

+

-

-

+

Table 2.3. The settings for the eight runs of a 2 " fractional factorial

2.1.3.4 Randomisation and blocking

According to statistical practice the order of the runs should be planned so 

that it does not influence the test results. To eliminate the problem of 

environmental factors, such as machine warm up, machine operator etc. 

randomisation is introduced as protection against the inaccuracies that can occur 

due to these nuisance variables. Randomisation can be restricted to suit the 

experiment and there are randomisation tables available to assist the choice of 

trial order. In practice it is often not possible to randomise an experiment due to 

set up times and associated increases in costs. However Taguchi (1987), see also 

section 2.1.3.7, does not consider the randomisation of runs to be important. If it 

is costly to change factor levels the Taguchi method advocates that in this 

situation it is best not to randomise the trials as this can lead to erroneous results.
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Blocking is another method of reducing experimental error which '...can 

eliminate the effects of extraneous variations and inhomogeneities in the 

experimental material and the environment and, hence, improve the efficiency of 

...' the designs (Bisgaard, 1994). If there is a large, unavoidable variation from 

one end of the experimental space to the other then this method, first used by 

Fisher (1925) for agricultural experiments, is available to reduce the errors this 

causes. The experimental units are divided into small blocks by a factor, 

background or nuisance variable, such as time, location of trial, machine, 

operator or batch of raw materials used. Randomised block design is used when 

there are more than two factors and one background variable for defining the 

blocks. Each factor level must occur an equal number of times in each block, if 

there are only two factor levels then this type of design is called a paired 

comparison experiment. However, factor levels do not have to occur an equal 

number of times in each block in an incomplete block design. Blocking also has 

the advantage that if a mistake is made then only the block of trials which 

contains the mistake needs to be re-run, not the whole experiment. 

Randomisation and blocking are important concepts in traditional experimental 

design and descriptions are to be found in most in experimental design texts, 

such as Montgomery (1991), Hicks (1982) and Box et al (1978).

2.1.3.5 Simplex method

The simplex method is a response surface method used for the study of 

mixtures. Simplex progresses to the optimum by moving away from the worst
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recorded point of the triangular experimental region. It is different from factorial 

designs in that it is the proportions of the mixture under study that are important 

and not the amount. The total amount of mixture should remain constant. 

Introductions to the simplex method can be found in Cornell (1990) and 

Montgomery (1991). Much of the early work was carried out by Scheffe (1958) 

who introduced the simplex lattice designs that are still in use today, where the 

points of experimentation are evenly spread over the design space. A regular 

simplex design has all sides of equal length, to support a model of degree m in q 

components over the {q,m} lattice. The points of experimentation should be 

evenly spaced at (m+\) points for values of zero to one for each component 

proportion.

The points of experimentation do not have to be restricted to those 

recommended by the lattice design. The two main strategies for choosing 

experimental points are the distance based strategy and using optimal design 

criterion. The lattice design is an example of the distance based strategy where 

the vertices are used for some of the points and the rest are spread evenly across 

the design space. An example of optimal design is D-optimality which selects 

points in the design space so that in the response surface model the variance of 

the regression coefficients are minimised. Experimentation does not have to 

cover the entire design region, it can be restricted by design or through practical 

constraints. Simplex was designed for experimentation with mixtures and as 

such is excellent within this domain, e.g. the determination of the formulation of
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a household product (Heinsman and Montgomery, 1995) and vinyl car seat 

covers (Nachtshiem et al, 1990). The best designs are always domain specific, 

incorporating knowledge of that area.

2.1.3.6 Analysis of variance

Analysis of data is always needed no matter which experimental method 

is used. One of the most common methods used is analysis of variance 

(ANOVA). It is a technique for estimating how much of the total variation in a 

set of data can be attributed to one or more assignable causes of variation, the 

remainder, not attributable to any assignable cause, being classed as the residual 

or error variation. It also provides a test of significance and gives a measure of 

confidence in the data results. The principles of ANOVA are expressed in Table 

2.4.

Source of variation
Between means of 
batches
Between samples 
within batches
Analytical Error
Total

Degree of freedom
(b-1)

b(k-l)

bk(n- 1)
bkn-1

Sum of squares*
knS(yb -y)2

nX(y-yb )2

£(y-ys )2
S(y-y)2

Mean square and quantity estimated
(MS)2 — a02 + nai2 + kna22

(MS)! — CT02 + IK7, 2

(MS)0 — CT02

KEY b= batches
k = samples
n = no. of repetitions

y = trial data
MS = mean square

a02 = variance of analytical error 
CT] 2 = variance of sampling 
CT2 2 = variance between batches

* In practice it is more convenient to calculate the sum of squares from the sample and the batch 
totals (Ts, Tb), e.g. sum of squares between batches = Z( Tb - T ) / kn,

sum of squares between samples = Z( Ts - Tb ) / n

Table 2.4. Principles of ANOVA.
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Degrees of freedom gives a measure of the amount of information that 

can be determined from a set of data. For example, if a factor has three levels 

then the first level can be compared with the other two levels but not itself, so it 

would have two degrees of freedom. The sum of squares is a measure of the 

deviation of the experimental data from the mean value of the data, summing 

each squared deviation emphasises the total deviation. Variance measures the 

distribution of the data about the mean of the data.

A mean square is a sum of squares divided by its degree of freedom, 

which gives an unbiased estimate of a population variance.

A simple example of ANOVA (Hicks, 1982), is given below in Table 2.5 

and Table 2.6. The aim is to determine if there is a difference in weight loss 

between materials when under controlled use. Let the factors studied be A, B, C 

and D and the readings are weight loss in grams.

FACTOR
RUN1
RUN 2
RUN 3
RUN 4

A
1.93
2.38
2.20
2.25

B
2.55
2.72
2.75
2.70

C
2.40
2.68
2.31
2.28

D
2.33
2.40
2.28
2.25

Table 2.5. Data set.

Source of variation
Between ABCD
Error
Total

Degrees of freedom
(4-1)= 3
(4(4-l))=12
(3+12)= 15

Sum of squares
0.5201
0.2438
0.7639

Mean square
0.1734
0.0203

Table 2.6. ANOVA table.
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With this analysis complete further investigation of the results can be 

carried out, such as the F-test or Scheffe test etc. For the above example, using 

the F-test;

Fn 2 = 0.1734 =8.53
0.0203 Equation 2.1

using statistical tables, widely available in most statistics text books, the 

hypothesis that there is considerable difference between average wear resistance 

of the materials is rejected.

2.1.3.7 Taguchi method

Much of the recent explosion of interest in quality topics, particularly in 

manufacturing, can be attributed to the work of Genichi Taguchi (1987). His 

work is based on the quality control principles promoted by Western statisticians 

such as Deming (1950 and 1960). Quality was taken one step forward by placing 

it further back in the production cycle meaning that quality could be monitored 

during manufacture and not as traditionally done after production, allowing more 

timely intervention if necessary. These principles provided the foundation for the 

work of Taguchi, who placed quality earlier in the product life cycle, at the 

design stage. Quality is now often routinely considered from the inception of the 

design through all manufacturing stages to the customer.

The philosophy of Taguchi can be expressed as: after Roy (1990) 

• Quality should be designed into a product not inspected in;

from design to customer, summarised as "Right first time, right every time".
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• There should be minimum deviation from the target value;

the further from the target value the greater the loss and the worse the 

performance, which is expressed mathematically by the quadratic loss 

function

• The cost of quality should be considered system wide and in monetary terms; 

if a product is not of target quality then there are system wide losses to be 

considered including the cost of scrap, re-work, warranty repairs and 

others such as the cost in terms of market share loss due to customer 

dissatisfaction.

To achieve the desired quality Taguchi developed his method which consists of 

three stages:

• System design. Choice of factors to be studied and their working levels.

• Parameter design. Selects the best factor levels.

• Tolerance design. Fine tuning of factor levels to their optimum.

Engineers tend to think of tolerances and targets in terms of technical 

specifications such as metres, Angstroms, kg/m, but management think in 

monetary terms. Taguchi links the two by expressing quality in financial terms. 

If a product's quality characteristic is not on target then there is an associated 

loss. This is best described with the aid of a diagram, see Figure 2.1. It is quite 

probable that the quadratic loss function is not a precise description of the loss 

but it has been demonstrated to be adequate, especially since it is difficult to find
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the data for more complex, accurate models. The mathematical expression used 

to describe the loss function is:

Equation 2.2 

Equation 2.3

for a single product L(Y) = k ( Y - Y0 )2 

for multiple samples L(Y) = k (MSD)

where Y = observed quality characteristic

Y0 = target value for quality characteristic

k = constant 

MSD = mean squared deviation of the quality characteristic from the

target value

MSD varies depending on whether a specific target value, the smallest or largest 

possible value is the optimum.

Loss

I I I 
LSL T USL

KEY Traditional unacceptable quality
~ Loss function
T Taguchi target specification

Figure 2.1. The Taguchi loss function.

LSL lower specification limit 
USL upper specification limit
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Starting a Taguchi experiment usually involves a brainstorming session. 

At this stage all aspects of the experiment should be discussed by a team of 

people from all the departments involved throughout the life of the product, e.g. 

from design, production and marketing, and a chairperson. At least one team 

member should be trained in Taguchi methods and the meeting held, preferably, 

on neutral ground. The discussion brings in process knowledge at an early stage 

of the experiment and a multi-disciplinary team is established.

Once it has been decided which factors are to be studied and in which 

range, an experimental design can be selected. There are an almost limitless 

number of factorial designs but Taguchi defined a set of useful fractional 

factorials, called orthogonal arrays, and standardised a method of analysis. 

Hence Taguchi experiments have a reproducibility, Taguchi has "...simplified 

and standardised the fractional factorial designs in such a manner that two 

engineers conducting tests thousands of miles apart, will always use similar 

designs and tend to obtain similar results." (Roy, 1990). These designs are often 

wrongly attributed to Taguchi himself; most of them are traditional designs, e.g. 

Lig is a 2 15 " 11 due to Finney and Ls2 is due to Fisher, for more examples see Box 

et al (1988). If the chosen number of factors and levels do not fit into a standard 

array then the design can be modified to accommodate them, e.g. see Shoemaker 

and Kacker (1988). Orthogonality means that for each pair of columns all 

combination of factor levels occur an equal number of times. An example of an 

orthogonal array is Lg, as shown in Table 2.7.
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Note that Taguchi uses T to represent the lower level of the factor and '2' to 

represent the factor at the higher level, compared to the traditional use of '-' and

TRIAL
1
2
3
4
5
6
7
8

FACTORS
A

1
1
1
1
2
2
2
2

B
1
1
2
2
1
1
2
2

C
1
1
2
2
2
2
1
1

D
1
2
1
2
1
2
1
2

£
1
2
1
2
2
1
2
1

F
1
2
2
1
1
2
2
1

G
1
2
2
1
2
1
1
2

Table 2.7. Lg array.

The factors should be assigned to suitable columns. Orthogonal arrays 

work well when there is minimum interaction between factors, i.e. the factors are 

independent and have a linear effect.

Noise factors need to be identified and included in the experiment. This 

is done with outer arrays. If there is a large amount of noise present then 

repetition can help the elimination of its effects. As with all other experimental 

designs the principles of randomisation apply. Once complete, analysis of the 

results is needed. Here Taguchi allows the use of standard analysis such as main 

effect analysis and ANOVA if a standard design has been used, with no 

repetitions and no interaction effects. For other situations Taguchi has developed 

signal to noise ratio analysis. This ratio, measured in decibels, is given by: 

S/N Ratio = -10 logic (MSD) Equation 2.4
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and can be used for all situations as the calculation of MSD (mean squared 

deviation of the quality characteristic from the target value) depends on the 

desired outcome. The aim is always to find the largest signal to noise ratio (S/N).

Taguchi experimenters often use ANOVA to study the influential factors 

and plots of marginal means to use a 'pick the winner' approach. This method 

requires the input of engineering knowledge before optimum settings are 

selected. If the settings were not part of the original experiment then a 

confirmation run is carried out.

The Taguchi method is a very useful tool, but it is not a panacea and it 

does have limitations. The method assumes that there is a priori knowledge 

about interactions, that they are linear and there are no interactions between 

design and noise factors. Taguchi's reasoning is that if the main effects are 

controlled, then interactions resulting from those main effects will also be 

controlled. Problems can arise when unknown interactions are present which can 

lead experimenters to inaccurate conclusions (Hurley, 1994). Although 

brainstorming is a very positive aspect of this method it leads to a large single 

experiment, there is no build up of knowledge as with smaller sequential 

experiments. Linear graphs used to assign factors to columns can lead to 

inefficient designs as the aliasing is not clear (McGovern 1994a and McGovern 

1994b). An alias occurs when an effect cannot be distinguished from another 

effect in the design. Taguchi's 'pick the winner' can fail to find the optimum
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solution even with a full factorial. The signal to noise ratio is an important 

concept in Taguchi methods but has been widely criticised, e.g. Montgomery 

(1991), Box (1988), Pignatiello and Ramberg (1991), Tribus and Szonyi (1989), 

as being inefficient and complex. Classical experimental design often attains the 

same or better results more clearly (Lucas, 1994). Simpler treatment of the data 

is recommended such as separation of the mean and standard deviation and use 

of data analytic methods (Vining and Myers, 1990). The Taguchi method is not 

statistically advanced and has been criticised as such by statisticians but it is 

practical and as Pignatiello and Ramberg (1991) point out ".... a method that is 

understood by a team may be a better choice than one that is slightly more 

statistically efficient yet only understood by a few." Also as a defence and 

explanation of Taguchi methods:

"They are based on the design of experiments to provide near 
optimal quality characteristics for a specific objective. They are 
often demeaned by academia for technical deficiencies which are 
improved by using response surface methodology. Unfortunately 
most of those who demean Taguchi methods have missed the whole 
point. Taguchi methods are not a statistical application of designs 
of experiments. Taguchi methods include the integration of 
statistical design of experiments into a powerful engineering 
process."

(Unal and Dean, 1995).

Positive aspects of the Taguchi method include the brainstorming session 

as it brings together a team of people and pools their knowledge. Teamwork and 

involvement of all levels of employee is a critical factor in many of the successful 

experimental design methods. The gathering of as much relevant information 

before experimentation reduces the problem that the best time to design an
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experiment is when it is complete. Perhaps the most significant contribution of 

Taguchi is the fact that he simplified experimental design and popularised it. 

This can be seen by the large number of papers, books and webpages published 

about the method, its applications and modifications, e.g. (Kacker and 

Shoemaker, 1986), (Phadke, 1986), (Greenall, 1989), (Hamada, 1990), (Roy, 

1990), (Vinning and Myers,1990), (Freeny and Nair, 1992), (Hamada, 1995).

2.1.4 Evolutionary Operation

Evolutionary operation (EVOP) is a simple factorial based experiment 

that was developed by Box (1957) in the late fifties, for application in the 

chemical industry. Although not strictly evolutionary in the currently understood 

sense, EVOP was an early version of a search technique based on natural 

processes (Goldberg, 1988b). EVOP was designed to be a simple and systematic 

method for continuous on-line improvement of a process, to be performed by the 

plant operatives. By methodically changing the operating parameters of a 

response, the surface can be plotted, giving a greater understanding of the process 

and hence the optimum operating conditions. The parameters should only be 

altered by small amounts so as not to greatly disturb the process, but this means 

that the experiment needs to be repeated several times before determining if a 

parameter has a significant effect. Based on simple factorial designs of 

experiments, EVOP is a fairly simple method of experimentation and the results 

are easy to display graphically.
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For example, factors A and B are considered to influence the profitability 

of a process, so an EVOP experiment is drawn up to optimise these factors. The 

current operating conditions are as shown as 1 in Figure 2.2. The amount by 

which a factor should be changed can be difficult to determine as this change 

should be small enough so as not to greatly disturb the process yet large enough 

for any effect to be analysed.

Higher

FACTOR A

Lower

Lower Higher 

FACTORS

Figure 2.2. Order of runs of simple two factor EVOP.

The experiment is run in cycles, each cycle consists of five experiments, 

or runs, which are shown in Figure 2.2. After completion of the second cycle 

there is sufficient information to be statistically analysed to test if changing the 

level of a factor significantly affects the process. The experiment is run 

continuously until a factor is shown to influence the process. One phase is then 

said to be complete and the operating conditions are moved in the direction of the 

improved yield, often using the most promising point from the last phase as the 

central point of the new phase. A general rule of EVOP is that at least two points
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in the new phase cycle should have been part of the previous phase cycle, this 

prevents the process from rapidly moving into a much less profitable region. 

Box described this continuous movement as the evolutionary part of EVOP. 

There have been several modifications to EVOP, e.g. Rotating Square EVOP, 

Random EVOP (Lowe, 1964) and the most popular modified version Simplex 

EVOP (Lowe, 1964), (Lowe, 1974) but the original version seems to be the most 

widely used (Hunter and Kittrell, 1966).

EVOP is a simple method of process improvement, yet it has not been 

extensively used. One of the original reasons for managements' reluctance to 

implement EVOP (Hahn and Dershowitz, 1974) was its then revolutionary 

approach in promoting discussion groups including both operators and managers 

(Chatto and Kennard, 1961), (anonymous, 1961). This practise, is now widely 

accepted, largely due to the quality movement of the recent decade and the 

influence of Taguchi (1987). EVOP actively disturbs a process which could be 

seen as currently satisfactory (Lowe 1974), and although the ultimate aim is 

process improvement many plants were not prepared to risk producing sub 

standard product whilst actively seeking greater understanding of the process 

(Hunter, 1989). Probably the main argument against EVOP when it was 

originally published was the amount of paperwork involved with the highly 

repetitive calculations. EVOP appears to have almost died out before the advent 

of relatively cheap computing power, which coupled with current shop floor data 

collection techniques could totally automate the process. Integrating with an
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expert system or rule-base could automate the system further. The main 

optimisation argument against EVOP is that it is a local search technique and as 

such it can get trapped in local minima. EVOP is not capable of global search.

Despite these shortcomings there are many examples of EVOP being used 

as originally intended in the chemical and process industries (Carleysmith, 1994), 

(Floudas and Anastasiadis, 1988), (Muraki et al, 1986), (Barnett, 1960) and a 

small amount of literature available on EVOP being used in other industries (Box 

and Draper, 1969), e.g. die casting (Chen, 1989). EVOP is mentioned in the new 

automotive industry standard QS-9000, indicating that its potential has been 

recognised by the three main automotive producers in the USA, Ford, Chrysler 

and General Motors, yet there seems to be little current use of this simple but 

effective technique. A more detailed explanation of EVOP can be found in 

Chapter 3.

2.1.5 Current Experimental Design

As discussed earlier in section 2.1.1. experimental design has experienced 

a renaissance in the last two decades. It has become more widely known and 

applied in a much wider variety of industries than the traditional chemical and 

process industries. There is a large volume of literature relating to experimental 

design and more general quality issues. Probably due to the emergence of global 

quality standards, such as ISO9000, there has been an increase in interest of 

quality issues in general, experimental designs and other techniques that can help
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companies achieve the required quality levels. Unfortunately the quality 

movement of the Eighties did not bring with it a panacea to industry's ills and the 

philosophy of the Nineties appears to be that of down-sizing and re-engineering. 

Many of the methods used are still valid useful tools for quality improvement and 

maintenance as product quality has become less of an issue and more of an 

expectation.

2.2 EVOLUTIONARY COMPUTATION

2.2.1 Introduction

Artificial intelligence (AI) is a large field which is currently experiencing 

much growth, after decades of often widely unnoticed progress. Evolutionary 

computation consists of many areas including genetic algorithms, evolutionary 

strategies, evolutionary programming, simulated annealing and genetic 

programming. All of these methods use evolution as a paradigm, but in different 

ways. There follows a brief overview of some of the methods included in the 

field of evolutionary computation.

2.2.2 Evolutionary Programming

Evolutionary programming (EP) was developed in the mid sixties in 

America by L. Fogel et al (1966), see Fogel, D.B., (1994) for a list of early 

papers. EP did not try to directly emulate the human brain, as much previous 

work had tried to do, but to model the process of evolution. EP initially assumes
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that the region is bounded but afterwards this restriction is lifted. Unlike other 

evolutionary computation methods such as genetic algorithms and evolutionary 

strategies, EP uses only mutation as an operator. This is the main 'biological' 

difference of EP. Each parent in a population is mutated once to produce an 

equal number of offspring. The entire population of parents and offspring is 

ranked according to fitness and then the fittest are selected to become the next 

population. This is subject to the constant population size constraint.

2.2.3 Evolution Strategies

Evolution strategies (ES) were developed in Germany by Schwefel (1965) 

and Rechenberg (1973). Mutation is the main search operator and children can 

be formed by either of two different recombination mechanisms; randomly select 

two parents to produce a new string; genes can be taken from the entire 

population to form a new individual. Selection is completely deterministic and 

extinctive, no probabilities of reproduction are used and only the best offspring 

are selected. The population size is restricted.

Originally ES had one parent for each child as in Renchenbergs' (1+1)- 

ES. Both parents and children competed for survival and the poorest solutions 

discarded. Problems with this method include slow convergence due to the 

constant step size and it has the brittleness of a search that moves from point to 

point, meaning that it can become trapped in local minima. Renchenberg 

proposed the first multi-membered ES, (u+l)-ES, in which children were
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produced from more than one parent. Each time the child replaces the worst 

parent solution in the population, similar to the Simplex method mentioned 

previously. This form of ES was not widely used but it formed the basis for the 

later work of Schwefel (1975), who proposed using multiple parents (u) and 

children (A,) in the (ju+A,)-ES and the (jj.,k)-ES. In (u.+A,)-ES all solutions compete 

for survival whereas in (^,A,)-ES only the children compete.

ES is still an area of active research. Introductory information can be 

found in Back and Schwefel (1993), Fogel, D.B., (1994) and journals such as 

Evolutionary Computation (De long, 1993).

2.2.4 Simulated Annealing

Simulated annealing (SA) originates from the work of Kirkpatrick et 

al.(1983). The original work was in a 1982 IBM research report RC9355, 

according to van Laarhoven and Aarts (1987), but it was given a wider audience 

a year later in Kirkpatrick et al.(1983). SA is drawn from thermodynamics where 

annealing is the process of heating a solid to a high temperature, such that the 

molecules have a high energy. The solid is then cooled slowly until the 

molecules reach a low energy ground state to give a very pure crystal. Cooling is 

done slowly so that thermal equilibrium can be maintained. If cooling is done 

too quickly, the effect is known as tempering or quenching, the outside of the 

solid cools much faster than the centre which gives rise to large internal forces 

and faults in the lattice structure.
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At each temperature the solid is allowed to reach thermal equilibrium, 

which can be characterised by the Boltzmann distribution. The probability of 

being in a state with energy E is given by:

Pr{E = £}=_!_. exp -E

Z(T) kBT Equation 2.5

where T = temperature,

kD = Boltzmann constant
D

Z(T) = normalisation or partition factor

The solid is then cooled again and the process repeated until the 

molecules form a lattice as the minimum energy state is reached.

"Simulated annealing is a stochastic computational technique derived 

from statistical mechanics for finding near globally-minimum-cost solutions to 

large optimization problems." (Davis, 1987). The parallels with physical 

annealing are as follows, the energy function becomes the objective or cost 

function, C, temperature becomes the control parameter, c, the lower the energy 

the better the solution. The parallel with thermal equilibrium is achieved by the 

Monte Carlo method which is also known as the Metropolis algorithm. A small 

disturbance is given to a random particle, configuration, and the change in energy 

states compared. If the new state has a lower energy then it is accepted as the 

new state. The system evolves to a state of thermal equilibrium and the
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probability of states approaches the Boltzmann distribution. In SA terms this 

means a sequence of Metropolis algorithms are evaluated at a series of decreasing 

values of the control parameter. The process continues until equilibrium is 

reached and the probability distribution of the configurations approaches the 

Boltzmann distribution, given by:

Pr {config.=l} = qi(c) = 1 . exp -C(i)
Q(c) c Equation 2.6

'Cooling' is carried out and the process repeated until 'freezing' occurs, 

where the change in the cost parameter, c, is virtually non existent and near the 

optimum solution. As with annealing SA needs a schedule to determine at which 

temperatures the solid should be held and the duration.

The need to maintain thermal equilibrium means that annealing is 

inherently slow, but parallel processing can speed up simulated annealing to 

acceptable times. SAs have been applied to many areas including computer 

design, image segregation and restoration, the travelling salesman problem and 

artificial intelligence, for example see (Bonomi and Lutton, 1984), (Kirkpatrick 

et al. 1983), (Davis, 1987) and (Van Laarhoven. and Aarts, 1987).

2.2.5 Genetic Programming

Genetic programming (GP) is based on the principles of natural selection 

or Darwinism and genetic operators, which is similar to the basis of GAs, but the
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paradigm is applied specifically to the creation of computer programs. GP is 

sometimes referred to as 'automatic programming' (anonymous, 1999) as the 

populations of GP consists of sets of programs that are candidate solutions and 

the final 'solution' is a program rather than a encoded string. This form negates 

the need for much pre and post processing of inputs and outputs of a GP. A 

typical individual is shown in figure 2.3.

Figure 2.3. Typical individual in a GP population (representing x + y/z)

The programs are composed from elements in a function set and a 

terminal set. The function set typically comprises of the operators that generate 

the model, i.e. the functions label the internal points of the parse trees 

representing a program in the population, e.g. in figure 2.3 the function set would 

include '+' and '/'. The terminal set comprises of the terminal, or leaf, nodes in 

the parse trees that represent the programs in the population, e.g. in figure 2.3 the 

terminal set would include 'x', 'y' and 'z'. The terminal set may compromise of 

variables, as shown above, but may also include constants and functions that 

have no arguments.
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The fitness of individuals in the population is evaluated in terms of 

performance in the required problem environment and the fittest individuals will 

have a higher probability of surviving and reproducing.

There is often a form of elitism where the fittest individual programs are 

retain by replicating the individuals into the new generation. The other method 

of producing a new generation is by crossover. Crossover is implemented by 

taking a randomly selected sub-tree of a fitness selected individual and 

exchanging that sub-tree with another in another individual. The newly formed 

generation is then evaluated for fitness before reproduction is repeated, until a 

predetermined end point, such as level of fitness or number of iterations.

Traditionally GP does not usually use the mutation operator (Koza, 1992), 

unlike GAs and in sharp contrast with EP. When mutation is applied within GP 

it is generally with a low probability rate and it can be used at various levels, e.g. 

a sub-tree of a program is deleted and replaced by a new randomly grown sub 

tree (Fernandez, 2000) or mutation could be carried out on only one node of a 

tree solution. (Alvarez, 2000).

2.2.6 Genetic Algorithms

Genetic algorithms (GAs) stem from the work of John Holland (1992) 

originally published in 1975. Like EVOP, GAs are based on the principles of 

natural evolution, but more closely follow what the currently understood method
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of natural reproduction but at a genetic rather than species level. Unlike EVOP, 

GAs are a robust, global search method. GAs vary from most traditional search 

methods in that they search a population of points in parallel rather than 

exploring from a single point, they do not need any apriori knowledge of the 

problem, use probabilistic rather than deterministic rules and usually work on a 

set of encoded rather than real world variable values.

Information about the environment is encoded as a string, traditionally in 

binary form. The search usually starts from a series of random points and the 

fitness of the solutions at these points is evaluated using an objective function. 

The next generation is produced using three main operators; selection, crossover 

and mutation. There are many methods of selecting which parent strings should 

enter the mating pool: Techniques include roulette wheel selection where the 

fittest solutions are given the highest probability of reproduction; elitism 

strategies where the fittest solutions are guaranteed passage into the next 

generation; methods based on ranking the comparative fitness of the solutions on 

sliding scales.

Once selection is completed formation of the next generation can take 

place. Reproduction is implemented using crossover. One point crossover is the 

simplest form; two parent strings are 'cut' at the same point along their length 

and the 'tails' swapped, making two new strings. Variations include two point 

crossover and uniform crossover where templates are used (Syswerda, 1989).
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One important concept with crossover is schemata. These are short parts of the 

string which are highly fit, they are also known as building blocks as it is the aim 

to retain these highly fit blocks within strings in the next generation.

Mutation is the final main operator. It usually occurs with a very low 

probability, one in a thousand say. Mutation changes the value of a bit in the 

string, e.g. 0 to 1 or vice versa for binary strings, and is known as the GA 

'insurance policy' as it is always possible to reach any part of the search space 

whatever the starting points. There are many alternatives to determine if newly 

generated 'child' strings should join or replace the current population. The new 

population is then evaluated. If the number of generations allowed is not 

exceeded and the solution generated is not suitable, the new population is then 

used to create the next generation.

The interest in GAs is reflected in the increasing amount of work 

published, for surveys see (De long, 1993, Srinivas and Patnaik, 1994, 

Caponnetto et al, 1993), the ever increasing number of evolutionary computation 

conferences and in the publication, since 1993, of the journal titled Evolutionary 

Computation. There are also many sites on the Internet devoted to evolutionary 

computation, for example The Hitch Hiker's Guide to Evolutionary Computation 

(Heittkotter and Beasley, 2000).
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GAs are excellent global search methods but convergence can be a 

problem as can the inability to converge on a solution. Having located a highly 

fit region, GAs can have problems locating a local optimum. It is the inability to 

search effectively at a local level that is a major drawback of GAs. Work has 

been carried out in this area (Kwong et al, 1995), and research into hybridising 

GAs with other search techniques (Kido et al, 1993), especially local search 

methods, for example (Renders and Bersini, 1994). The work in this thesis will 

address this issue, but in contrast with the papers cited above, by using small 

population GAs.

Another problem with GAs is the amount of time it can take to arrive at 

an acceptable solution. This is due to the size of the population, which is often 

quite large, and the number of generations needed. Reducing the population 

speeds up the creation of a new generation but not as much of the search space is 

covered. There appears to be very little work published in this area 

(Krishnakumar 1989, Reeves, 1993), and this thesis investigates this issue.

2.3 SUMMARY OF THE SELECTION OF METHODS FOR 

EXPERIMENTATION

Experimental design is well established but often only used to its full 

potential in its originally intended fields such as industrial chemistry. There is a 

movement to encourage exploitation of these methods in the industrial scenario
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(Hamada, 1995).

The simplex method gives good final results but moves around a search 

space quickly and is prone to give sub-standard answers during the search, which 

could potentially be costly for industrial applications. The Taguchi method has 

some flaws, but the concepts and philosophy are sound, as discussed in section 

2.1.3.7. These methods were felt to be too complex to allow significant savings 

in genetic algorithm run-time, but Taguchi has proved the positive aspects of 

experimental design for industrial use.

EVOP is simple effective method which suffers from a lack of use and 

current research, but does offer a potential for improving a genetic algorithm 

search without costly increases in run-time or processing power.

Evolutionary Programming and Evolutionary Strategies are both forms of 

genetic computation, but have not been researched to the same extent as genetic 

algorithms and industrial applications are not as abundant. Simulated Annealing 

is based on thermodynamics, and the literature indicated it as an effective but 

inherently slow method, therefore unsuitable for on-line applications. Genetic 

programming is used for very specific applications in the generation of software 

code.

Genetic Algorithms are becoming an established field, with much active

2-32



Evolutionary Computation and Experimental Design

research. Although there are many papers published on GAs relatively few are 

published in the area of hybrid GAs. To produce a fast, robust optimisation 

method, with both global and local search capabilities, GAs and EVOP were 

chosen for further study to produce a hybrid GAs that is reliable and yet quick, to 

be applicable and attractive to industry to use on-line. These techniques, their 

positive and negative aspects and the software available to implement the 

searches are discussed in further detail in the next chapter, chapter three.
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3. EVOLUTIONARY OPERATION & GENETIC 

ALGORITHMS

The aim of this chapter is to give a deeper understanding of evolutionary 

operation and genetic algorithms, the two methods selected as discussed in 

chapter two, which are to produce new hybrid methods. Details of applications 

of these methods are given and the availability of software discussed. A review 

of genetic algorithm hybrids is then undertaken before describing the selection of 

software for the hybrid methods tested in this thesis.

3.1 EVOLUTIONARY OPERATION 

3.1.1 Example

As discussed previously in chapter two Evolutionary Operation (EVOP) 

is a simple factorial experimentation technique developed by George Box in the 

late 1950's. Initially intended for use in the chemical process industry, EVOP 

has since been applied to other industries, such as die casting (Chen, 1989). 

EVOP is designed for continuous on-line improvement to be implemented by the 

plant operatives. The method continuously searches the local response surface 

area by altering the process parameters by small amounts, hence not greatly 

disturbing the process or producing sub-standard products.

The EVOP method will now be described through an example. 

Information in Barnett (1960) has been modified to provide the example which is
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based on the study of the yield of a chemical process. The important factors are 

thought to be temperature and pressure. The experiment is run in cycles, in this 

case each cycle consists of five runs, as shown in Figure 3.1.

Higher 

Pressure

Lower

Lower Higher 

Figure 3.1. Five runs of an EVOP cycle.

h

5 3

1

2 4
Temperature^

In an EVOP experiment the cycle is repeated until there is a significant 

improvement in yield due to one or more of the factors being studied, at this 

stage one phase is said to be complete. The next phase of cycles is then started, 

usually with the improved yield setting being used as the centre point for the new 

design. If after a pre-determined number of runs there is no significant 

improvement in the yield then the experiment should be halted as studying other 

factors may be more productive.

The amount of information generated by the first cycle is insufficient to 

calculate the standard deviation and to indicate any significant factors. For this 

reason the first cycle (N=l) of the example is considered complete and the data 

from that cycle inserted as previous cycle information in the table for the second 

cycle (N=2) as shown in Table 3.1.
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Cycle 2 (N = 2)

Operating Conditions

Sum from previous cycle

Av. From previous cycle

New Observations

Differences

New sum

New average

1

9.38

9.38

7.92

+ 1.46

17.30

8.65

2

6.66

6.66

8.40

-1.74

15.06

7.53

3

11.04

11.04

8.83

+2.21

19.87

9.94

4

9.04

9.04

8.25

+0.79

17.29

8.65

5

9.48

9.48

9.96

-0.48

19.44

9.72

Range of new observations = |+2.21| + |-1.74| = 3.95 
Table 3.1. Observations and initial calculations for cycle 2.

Operating conditions correspond to those defined in Figure 3.1. The 

fourth row of Table 3.1 shows the readings for the current cycle. The fifth row is 

the difference between the observed reading and the average readings of previous 

cycles; care should be taken with the signs, as this basic mistake has been found 

in published papers. The last two rows show the new sum of observations and 

the new average, these then form the second and third rows of the table for the 

next cycle. The constants used for the calculation of the standard deviation and 

error limits are shown in Table 3.2. These constants are used to simplify the 

calculation for standard deviation based on the range of the observations. This 

provides an unbiased estimate of a. With a sample size of more than ten 'the 

efficiency of the range method falls off (Box and Draper, 1969), but by 

randomly dividing the sample up into subsamples of ten or less and using the 

average of ranges, an estimate of a can be found. The usual estimate has a slight 

bias. Derivation of the constants can be found in Box and Draper (1969) or 

derived using standard statistical tables.
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N

2

3

4

5

6

7

8

K

0.30

0.35

0.37

0.38

0.39

0.40

0.40

L

1.96

1.33

1.09

0.95

0.85

0.78

0.72

M

1.76

1.19

0.96

0.85

0.76

0.70

0.65

Table 3.2. Constants used in EVOP calculations

Calculation of standard deviation:

Previous sum = 0

New sum (for cycle 2) = Range of new observations x K
= 3.95x0.30 
= 1.185

New sum all cycles = Previous sum + New sum (for cycle 2)
= 0 + 1.185 

= 1.185

New average = New sum / (N-l) 
= 1.185 / (2-1) 

= 1.185

Previous average (for cycle 1) = 0
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Calculation of 95% error limits:

For new averages and effects = L x New sum

=1.96*1.185
= ±2.32

For change in mean effect — MX New sum

= 1.76 x 1.185 
= ±2.09

To determine the effects of factors the observations of a cycle are entered 

into rows 1 and 2 of an EVOP table following the scheme of Table 3.3: The 

letters correspond to Figure 3.2. To calculate the effects of factors A, B, 

interaction AB and a positive change in mean effect the first two rows are added 

together to produce row 3. For a negative change in mean effect the centre point 

reading is multiplied by four and entered in that column at row 3. For each effect 

the largest and smallest totals in row 3 are determined and each smaller total is 

placed in row 4 directly below the larger total. The difference in these totals is 

then calculated by subtracting the value in row 4 from the value in row 3, the 

answer being placed directly below in row 5. For factors and interaction effects 

the values in row 5 are divided by two and the answer placed directly below in 

row 6. For changes in mean effect the value in row 5 is divided by four and the 

answer placed directly below in row 6. Whether the effect is positive or negative 

is determined by the column of the sixth row value.
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Higher

FACTOR A

Lower p ————

R Q

N

P S

FACTOR B.
Lower

Figure 3.2. Scheme of letters used in Table 3.3.

Row Number

1

2

3

4

5

6

Effec

+

R

Q

R + Q

tof A

P

S

P + S

Effec

+

Q

S

Q + S

tofB

R

P

R + P

Effect

+

Q

P

Q + P

of AB

R

S

R+S

Effect of C

+

P + S

R + Q

P +S+ R+ Q

:IM

N

x4

4(N)

Table 3.3. Calculations for assessing effects.

Returning to the example experiment, the effect of pressure, see Table 

3.4, can be calculated by comparing the average readings taken at the lower 

pressure, positions 2 and 4, with those at the higher pressure, positions 3 and 5 of 

the cycle, see Figure 3.1 and Table 3.1. Comparing the differences in the sums at 

the lower and higher positions indicates the magnitude of the effect. For each 

factor in Table 3.4 the positive effect is the left hand column. For the change in 

mean effect the sum of the readings of the four outer points (2,3,4,5) are 

compared to the central point reading multiplied by four. It can be seen in table 

3.4 that none of the values of the effects are larger than the error limits, ±2.32 for
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temperature and pressure effects or ±2.09 for the change in mean. Therefore 

another EVOP cycle should be run. The results of the next cycle are shown in 

table 3.5.

Calculation of effects:

Row

1

2

3

4

5

6

Effec

+

9.94

8.65

18.59

17.25

1.34

+0.67

tof A

7.53

9.72

17.25

Effec

+

9.94

9.72

19.66

16.18

3.48

+ 1.74

tofB

7.53

8.65

16.18

Effect

+

7.53

9.94

17.47

of AB

8.65

9.72

18.37

17.47

0.90

-0.45

Effect c

+

18.59

17.25

35.84

34.60

1.24

+0.25

BfCIM

8.65

x4

34.60

KEY A = pressure AB = interaction of temperature and pressure

B = temperature CIM = total change in mean 
Table 3.4. Calculation of effects for cycle 2.

Cycle3 (N = 3)

Operating Conditions

Sum from previous cycles

Av. From previous cycles

New Observations

Differences

New sum

New average

1

17.30

8.65

9.34

-0.69

26.64

8.88

2

15.06

7.53

8.53

-1.00

23.59

7.86

3

19.87

9.94

10.66

-0.72

30.53

10.18

4

17.29

8.65

8.52

+0.13

25.81

8.60

5

19.44

9.72

9.53

+0.19

28.97

9.66

Range of new observations = |+0.19| + |-1.00| = 1.19 

Table 3.5. Observations and initial calculations for cycle 3.
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There is a need to calculate a new standard deviation and error limits based on 

the new observations

Calculation of standard deviation:

Previous sum =1.185

New sum (for cycle 2) = Range of new observations x K
= 1.19x0.35 
= 0.417

New sum all cycles = Previous sum + New sum (for cycle 3)
= 1.185 + 0.417 
= 1.602

New average = New sum / (N-l) 
= 1.602 / (3-1) 
= 0.801

Previous average (for cycle 2) =1.185

Calculation of 95% error limits:

For new averages and effects = L x New sum
=1.33x0.801 
= ±1.065

For change in mean effect = MX New sum
= 1.19x0.801 
= ±0.953

3-8



Evolutionary Computation and Experimental Design

To be significant the effects of temperature and pressure need to be 

greater than ±1.065 and the change in mean effect greater than ±0.953. It can be 

seen in Table 3.6 the effect B, temperature, is significant as +1.69 ±1.065 does 

not equal or include zero in its range. This indicates that a higher temperature 

would produce a better yield. One phase is now complete.

Calculation of effects:

Row

7

2

3

4

5

6

Effec

+

10.18

8.60

18.78

17.52

1.26

+0.63

tofA

7.86

9.66

17.52

Effec

+

10.18

9.66

19.84

16.46

3.38

+ 1.69

tofB

7.86

8.60

16.46

Effect

+

7.86

10.18

18.04

of AB

8.60

9.66

18.26

18.04

0.22

-0.11

Effect (

+

18.78

17.52

36.30

35.52

0.78

+0.15

jfCIM

8.88

x4

35.52

KEY A = pressure

B = temperature

AB = interaction of temperature and pressure 
CIM = total change in mean

Table 3.6. Calculation of effects in cycle 3.

Traditionally at this point an EVOP committee, consisting of plant 

operators, process specialists and statisticians, would meet to discuss the findings 

and decide upon the factors and settings to be studied in the next phase. An 

application algorithm could be devised to speed up this step, but the EVOP team 

should still met periodically to review progress. As with other factorials the
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order of runs should be random, but sometimes the nature of the process forces a 

particular order, this should be taken into account when analysing the data. If all 

the points around the centre indicate a drop in yield then this part of the 

experiment should be regarded as accomplished, as the local maximum has been 

reach, and new ideas should be explored. EVOP is designed to be continuously 

in operation, so should never be regarded as complete.

3.1.2 EVOP Philosophy

EVOP, like the more modern Taguchi method, also encompasses the 

ethos of teamwork as well as the experimental and statistical elements. 

Awareness of EVOP should be throughout the company from shop floor 

operators to the highest level of management. This viewpoint that all levels of 

employees should regularly participate in process improvement was 

revolutionary when first introduced; contemporary managers are usually more 

familiar with multilevel communication and an inter-disciplinary team approach.

3.1.3 EVOP Modifications

There are three notable modifications to EVOP, although none appear to 

have been as widely used as the original design. Lowe (1964) discusses all three, 

rotating square EVOP (ROVOP), random EVOP (REVOP) and simplex EVOP.

"ROVOP attempts to eliminate uncertainty because of the size of the 

variant used." (Lowe 1964). The initial experimental design is a 2N factorial with 

a centre point. For each complete cycle the variant, or factor, step size is
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enlarged by V2 and the design rotated by 45°. This is shown in Figure 3.3 below, 

the internal square represents the first cycle and the outer, the second rotated and 

enlarged cycle.

Higher 

FACTOR A

Lower
FACTOR B.

Lower Higher 
Figure 3.3. Rotating square EVOP (ROVOP).

The design is rotated and enlarged in this manner until a direction of 

improved yield is indicated. The experiment is then moved in this direction. At 

least two points of the new design should have previously been explored, and the 

size of this new cycle is at least a factor of V2 smaller than the previous design. 

Once straddling an optimum, the design can be reduced in size to minimise factor 

variation, whilst allowing process information to be generated. This method 

claims to cover a response surface more rapidly than EVOP and the starting 

levels of the factors are not important, but a more complex analysis using 

multiple regression is required where all factors must be quantitative. For more 

than three factors the design becomes complex.

Another proposed variation of EVOP is random EVOP (REVOP). It is 

designed for experimentation with a large numbers of factors with unknown
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relationships and forecasting reactions. The choice of data points is random and 

the step size is kept at 20% of the range of the factor under investigation. If there 

is an improvement then the next step is taken in the same direction. If there is no 

improvement then a new set of random points is chosen. The advantages of this 

method is that any number of factors can easily be incorporated and the 

calculations are very simple. There are many disadvantages including the 

random movement of the design, factors must be quantitative, the step lengths 

may not be practical, there is no separation of effects from the factors and no 

response surface can be built from this method.

The final, most popular modification is Simplex EVOP, first presented by 

Spendley et al (1962). This method was developed from a desire to speed up 

EVOP and to execute it on a computer: it should be noted that this paper was 

published in 1962 when computers were not as powerful or as widely available. 

Rather than a sequence of full factorials a succession of regular simplex designs 

are used. A more detailed description of the simplex method can be found in 

section 2.1.4. of this thesis. Simplex EVOP can be summarised as shown in 

figure 3.4.

Once simplex EVOP has found an optimum it will circle around a fixed optimum 

or follow a continuously moving optimum. Benefits of this method include the 

use of only the most recent and therefore most relevant data, continuous 

movement so false moves are quickly corrected and the method does not require 

complex mathematics, merely comparison of data to reject the worst
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Make three initial observations

Eliminate the worst observation

Make another single observation in the most favourable direction

move after every subsequent observation by rejecting the worst point,

unless

another observation is too old, then renew this observation,

or

the move means returning to a previous point, then move to next most

favourable direction.

Figure 3.4. Summary of Simplex EVOP

point. The method has drawbacks in that the factors must be quantitative, the 

factor variants must be of equal interest to the experimenter, which is not always 

the case, to ensure a regular simplex and finally a suitable partition can be very 

difficult. Factors can easily be added, but deleting a factor in a running simplex 

EVOP is not possible, a new experiment must be started.

A move is made after every observation and "Thus the simplex approach 

is more dynamic and also less conservative (and often less informative) than the 

classical factorial approach." (Hahn and Dershowitz, 1974). Simplex EVOP can 

be rotated "...and in the presence of error and without replication it is the most 

efficient design." (Lowe, 1964).
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3.1.4 Demise of EVOP and Reasons for its Lack of Use

Although EVOP is relatively simple in implementation and avoids 

complex statistics, it requires a large number of repetitive calculations. In the 

1950's and early 1960's, when EVOP was introduced, the calculations were 

probably seen as a laborious task by any process supervisor designated to 

perform them. The advent of powerful, relatively cheap computing power now 

allows the calculations to be performed automatically. Automated shop floor 

data collection can reduce the task even further so that all that is required is 

periodic discussion of the results. But as J.S. Hunter (1989) pointed out " EVOP 

has not become an active weapon in the armoury of many of today's quality 

experts", this he attributed to the complexity of EVOP procedures and the need 

for "an active mind set", not passive observation of the process. The main 

advantage of EVOP is that it advocates minimum disruption of the output. It 

could be applied to more factors, although traditionally it was restricted to three 

as it relied heavily on visualisation and studying more factors can obscure 

interaction effects. Again computer software can help to overcome this problem. 

Although not conventionally directly linked to process improvement, employee 

and managerial participation can mean that communication is improved and 

employees feel that their opinions are valued. Conversely if the experiment does 

not produce an improvement in the process it could affect the morale of 

participants who may then see EVOP as a worthless exercise, and hence place 

barriers to further EVOP experimentation.
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3.1.5 Reviews of EVOP

A good introduction to EVOP, indications of suitable applications and its 

place on the shop floor are given in Chatto and Kennard (1961). EVOP is 

recommended for investigating processes where there is a lack of theoretical 

knowledge and "Therefore the real advantage of the technique is that it promotes 

a new way of thinking, and utilizes to its fullest extent the human factor." 

(anonymous, 1961). The argument behind this statement is that processes and 

factors may change, but workers are still required and they are more effective 

and capable if they are accustomed and receptive to change. EVOP training 

programmes also reinforce this as employees see an investment in themselves as 

well as the process. Hunter and Kitrell (1966) in their review of EVOP 

publications identified three major overlapping areas; methodology, applications 

and modifications. There are many references to applications of EVOP, e.g. at 

ICI and American Cyanamid Company, but it reinforces the opinion that 

although EVOP has been used in the chemical industry, there is very little 

evidence of its application to other areas.

Hahn and Dershowitz (1974) describe high volume processes with 

relatively long run times, easily varied factors, which are quick to stabilise after 

disturbance and where the potential benefits are thought to be large, as the most 

suitable for EVOP. Also needed is knowledge of the important factors and a 

clear definition of the response to be maximised. A brief survey was also 

presented of the nature and extent of EVOP in industry. It showed that EVOP 

was not as widely used as it could be. Reasons given included that it was not
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seen as profitable to vary process factors, a general 'reluctance to perturb the 

manufacturing process' and 'political reasons'. Hahn and Dershowitz (1974) 

concluded, as Hunter (1989), that EVOP could be much more widely applied. 

Lowe (1974) comments on possible reasons for the lack of EVOP applied in 

industry. It was found that there was a reluctance by supervisors to accept 

disturbances to their processes when there is any chance of sub-standard product 

resulting. Also supervisors viewed their experience more valuable than 

statistical testing. Lowe also gave examples of, and discussed EVOP and 

simplex EVOP, and to explain their merits: "What should be realized is that, for 

every process working at less than theoretical yield, some improvement is 

possible and evolutionary operation studies are the most painless ways of 

exploring the possibilities."

Box, the originator of EVOP, has expressed opinions about the 

modifications to his original method (Box and Draper, 1969). ROVOP is 

designed to be used when the EVOP team is too cautious and conservative in its 

choice of factor levels, but Box maintains that it is best to use standard EVOP 

and leave the team to freely choose their next move. EVOP is probably slower 

than ROVOP which could easily be implemented as a computer program because 

it has well defined rules. REVOP is dismissed as "...Our own experience 

suggests that there is very little to recommend this procedure..." as it is very 

difficult to change more than three factors in a phase and visualisation is 

impossible, which breaks the EVOP philosophy of simplicity. Simplex EVOP is 

recommended for numerical optimisation but not process optimisation. The lack
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of repetition means that significant effects cannot be found to enable a greater 

understanding of the process. Box indicates the mechanical nature of the 

decision making, discarding the worst point to determine the next experimental 

area, without "scientific feedback", i.e. often valuable comments from the EVOP 

team, also disputed is the claim that simplex EVOP is quicker than standard 

EVOP.

3.1.6 Current Use of EVOP

EVOP appears to be an under used technique. There is evidence of its use in 

the chemical industry, but little elsewhere, see section 3.1.1. EVOP was a 

method before its time in many respects. The repetitive nature of the method 

seems to have contributed to its demise alongside the management—worker team 

approach, which would now be seen as a positive aspect of the method and 

repetitive calculations are the ideal work of computers.

Until very recently there was no commercially available software to be 

found. This may change with the introduction of QS-9000, the quality standard 

for the automotive industry, created by the 'big three' producers in the USA, 

Ford, Chrysler and General Motors, for all their suppliers of production and 

service parts and materials world-wide. For design suppliers, both classical and 

Taguchi experimental design techniques are required skills. For all suppliers, 

continuous improvement is an expected company culture as is knowledge of 

various techniques to accomplish this, including EVOP, which are listed in the 

current edition of Quality System Requirements QS-9000.
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EVOP is taught as part of some undergraduate courses, such as Industrial 

Statistics courses, but this is far from the ideal envisaged by Box that EVOP 

should be taught to every undergraduate engineer. There are short courses run on 

EVOP, such as 'EVOP: designed experiments for operating processes' by J.S. 

Hunter based at Princeton University. The emergence of EVOP as a topic could 

be in part due to QS-9000 and the greater prominence that experimental design 

now plays in industry. EVOP is also very briefly mentioned in recent 

publications such as Breyfogle (1999) in relation to six sigma and Park (1996) in 

relation to robust design.

3.1.7 AutoEVOP

At the time of initial implementation, no EVOP software could be located 

and all published work with worked examples of EVOP that was located, such as 

Barnett (1960), Box and Draper (1969) and Chen (1989) used hand filled 

worksheets. In response to the lack of software and to give a greater 

understanding of the technique, a new piece of software, AutoEVOP, was created 

as part of this study.

Initially a program was developed to run a two factor EVOP experiment 

in the C++ language. This gave an awareness of the difficulties of translating 

statistics into code. It became clear that EVOP would lend itself very easily to a 

spreadsheet application. Two and three factor EVOP programs have been 

written on Excel spreadsheets. Excel was chosen as a base application as it is 

widely available and used. All that is required to carry out the EVOP experiment
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is an understanding of the method and basic computer literacy. The initial screen 

seen by the user is shown in Figure 3.5. The second screen is used once the 

factors have been chosen. They are entered in the appropriate boxes, a table 

gives a description of the settings, see Figure 3.6. The experiment is run and the 

readings entered in the appropriate spaces, either manually or by automatic 

interface. Once two runs are complete and the data entered, AutoEVOP will give 

advice. Either to continue with the experiment or if a factor has been determined 

as significant recommend the best course of action, e.g. stop the current 

experiment and start a new one, see Figure 3.7. Locked cells in the spreadsheet 

prevent accidental damaged to the program by the user, allow data to be entered 

only in certain cells and prevent malicious hacking of the code. With appropriate 

automatic data collection, the EVOP experiment could become totally automatic.

: AutoEVOP ' :^\ 
AUTOMATED EVOLUTIONARY OPERATION

" This software takes you through, the steps to successfully analyse data 
from a. two facto* EVOP experiment. Follow the instructions on eachpage. 

AutoEV OP wiH tell you if any fertors need adjusting.

|]y[ejnwe±i. May 1996

sis click on "FACTORS" tab.:,, iif:;;:: ,.., |

Figure 3.5. Welcome screen from AutoEVOP.
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For ease of use the interface is designed so that the user may only enter 

data into cells that are highlighted in blue and all user entered text appears as 

blue. For the screen shown in Figure 3.6, the user has entered 'temperature' and 

'pressure' as the factors to be studied. These are the only cells available for the 

user to enter information.

Please enter the names of your factors.
^^^^^H

[Factor A temperature 

[Factor B pressure

K.*vto values used in tables

pressure
pressure

LOW
HIGH

temperature 
LOW

2
4

temperature 
HIGH

5
3

Current Operating Condition

Please click <m tab "CYCLE 1" to continue.
B^^^^^^^B 

Figure 3.6. Entering of factor names.

In Figure 3.7 the user, or data entry device, may only insert data in the 

readings cells, also highlighted with blue text. The readings entered have 

produced a "Stop" situation and a positive interaction effect has been indicated. 

All cells that require user data to be entered are in blue and all action statements 

are highlighted in red which gives a simple interface for users. Interested parties 

can study the black text in the grey areas for further information if required.
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Cycle Number 2 ^^^1 Please enter your cycle 2 readings 

Operating Conditions Readings Differences New Sum New Average
16.85
15.93
16.21
16.47
18.55

Standard Deviation
of new averages 

0.37

95% Error Limits (+/-)
new averages (also new effects) 
total chanae in mean effect fcim

Factor temperature pressure
0.45 

Effect If none

If no "STOP!" messages appeared run CYCLE3 and click on tab 
Flse, change factor settings. Click on "HELP" tab if necessa

Figure 3.7. Typical cycle sheet.

3.2 GENETIC ALGORITHMS

Genetic algorithms (GAs) as stated earlier in chapter two, are 

based on natural genetics. The biological inspiration of GAs is reflected in the 

language used. A brief explanation of some of the terms (Goldberg, 1988, Fogel, 

D.B., 1994) is given below in Figure 3.8.

The GA is different from most traditional search methods in that the 

search is carried out from a population of points rather than from a single point. 

No a priori knowledge of the problem is required, probabilistic rules are used as 

opposed to deterministic, and the manipulation is usually carried out on encoded 

rather than real world variable values. GAs are a robust method of improvement. 

They work by blindly searching a population of points on a surface, but in a more
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efficient manner than pure random search methods or hill climbing methods 

which proceed step by step to a better adjacent space. Information is encoded in 

a string, traditionally in binary form. Strings are usually made up of many 

shorter sections each containing information about a factor.

Natural Genetic Algorithm

chromosome string
gene feature, character
allele one of two alternative forms of a gene
locus string position
genotype structure
phenotype expressed behavioural traits
epistasis non linearity
schemata string over an extended alphabet
pleitropy a single gene may affect several phenotypic traits
polygeny a single characteristic may be determined by many genes

Figure 3.8. The language of genetic algorithms.

3.2.1 Schemata

Schemata are subsets of the design space which have attributes in 

common, e.g. in three dimensional space (x, y, z) a schemata could be: (1, *, *),

where * represents a wild card. All points lying on the line 1 on the x axis would

be part of the schemata set, e.g. the points (1, 2 ,3) and (1,2, 1) would be part of 

the subset but the point (2, 1, 1) would not, see Figure 3.9.

The complete set of tuples belonging to (1, *, *) is called the set of 

schemata. "Schemata provide a basis for associating combinations of attributes
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with potential for improving current performance." (Holland, 1992). Schemata 

can be regarded as building blocks for GA strings. The best solutions contain the 

best schema, so early identification of good schema could allow best solutions to 

be found more quickly.

0,0,1

0,0,0

1,1,0

0,1,0
Figure 3.9. Three dimensional schema.

3.2.2 Generic Genetic Algorithm

A generic GA is listed in Figure 3.10, which outlines the basic steps of a 

GA. These steps will then be explained in more detail in the following sections.

Problem identified

Objective function (description of problem space)

^Candidate solution population

Decode (to give fitness value for each solution) then re-code 

Generate new population (by applying GA operators) 

Decode (to give fitness value to each solution) then re-code 

If suitable solution or predefined number of generations produced stop,

else go to *

Figure 3.10. Generic Genetic Algorithm.
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3.2.2.1 Initial population

GAs are parallel search methods, so at any given time the GA has a 

group of possible solutions to a problem. This group of solutions is known as a 

population. GA populations tend to change as the GA progresses, as natural 

populations change over time.

An initial GA population of points is usually chosen randomly. Other 

methods for initial population selection include using known best solutions from 

historical data, but this requires that the problem has been solved previously. 

There is a small amount of research into other methods of selecting initial 

populations such as selecting individual solutions in the search space using an 

algorithm based on the Taguchi method (Lee and Rowlands, 1998).

A GA can take an excessive amount of time to find a feasible solution if 

the initial population is randomly selected, but if historic best known solution 

data is used then there is a risk of forcing the search to converge prematurely.

3.2.2.2 New population generation

The initial population is measured by a fitness function. The fitness 

function describes the search space and from this the best solutions can be 

selected. As stated earlier GAs are suited to problems with unknown search 

spaces and finding a suitable fitness function can be problematic.

GAs can be distinguished from other search methods by its operators.
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The three most common operators are selection, crossover and mutation. The 

most basic method is known as the roulette wheel method. This gives parents 

with a higher fitness value a greater chance of selection to produce children.

Probability of individual selection = individual fitness
total population fitness

This method of selection for reproduction can be paralleled with Darwin's 

survival of the fittest. Parent strings are crossed over to produce 'children'. 

There are several methods of crossover the simplest being one point crossover.

Parents Children

00110|10 0011001

10011|01 1001110 | denotes the crossover point.

To enable schemata to be preserved, especially in longer more practical 

strings, two point crossover was introduced. Bold type indicates schemata and | 

crossover points.

Parents Children

1001|1101|0110 100110110110

1100|1011|0111 110011010111
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Sometimes it is not possible to preserve the schemata with two point 

crossover. Uniform crossover can be used and a template placed over the strings 

to determine the crossover points.

Parents Template Children

01001101110 11011000111 00001101010

10010111010 11010111110

The most suitable crossover method is problem dependent. It is also closely 

related the type of coding used for the chromosomes as some crossover methods 

can produce illegal children or eliminate strong schema.

The other common GA operator is mutation. This is usually activated 

only at a very low rate, e.g. one per thousand. Mutation creates variation, can 

move GAs out of sub-optima and prevent premature convergence. Theoretically 

at any time during a GA search any point of the search space can be reached via 

mutation, this has given rise to mutation being referred to as the GA insurance 

policy. Mutation is also present in nature.

A highly fit individual can eliminate all other weaker strings in a few 

generations. If all the strings have very close fitness values, the fittest do not 

have a much greater chance of proceeding to the next generation. To alleviate 

these problems the fitness values can be scaled by linear normalisation. This is 

done by ranking all the strings in order of their fitness values. The fittest string is
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given a predetermined value and all other strings are then given uniformly 

decreasing values according to their rank. This has the effect of spreading out 

the values and hence giving the fittest strings the best chance of survival, but not 

eliminating the possibility of other strings reproducing.

While a highly fit individual can be dominant, it is also feasible that it 

may be eliminated due to the probabilistic nature of selection. It is possible to 

preserve the fittest string(s) for reproduction by use of the elitism operator, to 

ensure that the current best solutions survive.

There is great potential for using GAs in optimisation and as yet there has 

been relatively little work or hype about this area (anonymous, 1993). There are 

many papers available in conference proceedings such as The International 

Conference on Genetic Algorithms held every two years since 1985 or the 

Congress on Evolutionary Computation. There are journals published in this 

area including Evolutionary Computation and IEEE Transactions on 

Evolutionary Computation.

3.3 HYBRID GENETIC ALGORITHMS

Pure GAs are a blind search technique which means that they are good at 

solving many problems, but it is this generality that counts against them when 

solving specific problems. Adapting GAs to suit a problem or incorporating 

domain knowledge can successfully overcome this, but domain knowledge is
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often not available. Combining two or more techniques to obtain the best facets 

of each is know as hybridisation. There are many examples of hybridised GAs 

being used to successfully solve problems e.g. (Davis, 1987, Wienholt, 1993). A 

large amount of work has been carried out combining GAs and neural networks, 

for examples see (Thierens et al, 1993), (Alba et al, 1993) or (Bishop et al, 

1993). GAs have even been used to improve GAs (Friesleben and Hartfelder, 

1993). Many other methods such as tabu search and simulated annealing, have 

been hybridised, examples of hybridised GAs can be found in (Winter et al 1995) 

and (Renders and Bersini, 1994).

3.3.1 Pareto Optimally GAs

Pareto optimality GAs are a form of multi-objective GAs. A definition of 

Pareto Optimality is given in Mason et al (1998): "The solution to a multi- 

objective problem is, as a rule, not a particular value, but a set of values of 

decision variables such that, for each element set, none of the objective functions 

can be further increased without a decrease of some of the remaining objective 

functions (every such value of a decision variable is referred to as Pareto- 

optimal)." or more simply defined in Principia Cybemetica Web (2000) as : the 

"best that can be achieved without disadvantaging at least one group."

There are several different approaches to combining Pareto optimality 

into a GA. The GA can be initially run conventionally to produce a generation of 

individuals. The Pareto optimality element then determines a set of dominant 

values from this population. A decision then needs to made as to how to carry
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these 'superior' individuals forward into the next generation (Sail and Youssef, 

1999). The 'Pareto individuals' could be designated a higher probability of 

entering the mating pool, or by the use of an elitism operator. A variant of binary 

tournament selection can be used to incorporate Pareto optimality into a GA 

(Louis, 1997). Murata and Ishibuchi, (1995) present MOGA which includes 

Pareto and 'uses a weighted sum of multiple objective functions to combine them 

into a scalar fitness function' where the weights are randomly specified for each 

selection operation. An elitism strategy is utilised to retain the best individuals.

(Ishibuchi and Murata, 1996) propose a hybrid algorithm based on 

MOGA (Ishibuchi and Murata, 1995) in which a local search procedure is 

applied to each solution generated by the GA and 'the choice of the final solution 

is left to the decision maker's preference'. If all local neighbours of each GA 

solution are examined then a large part of the computation time is spent on local 

search. The proposal is then to only look at 'k' solutions, where 'k' is chosen by 

hand. The paper concludes that the number of local search carried out had a 

large effect on the efficiency of the algorithms and the best results were obtained 

with random real number weights assigned to the criteria.

One advantage of this method is that 'Pareto-optimal selection also 

eliminates the need to combine disparate criteria into a single fitness criteria as is 

usual in genetic algorithms (Louis, 1997). Only two criteria are combined in 

Louis and Rawlins, (1993) since as the number of criteria increases the possible 

combinations rise combinatorially. A Pareto GA is applied to the design of
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satellite constellations in Mason et al, (1998), which also comments on the 

requirement for a priori knowledge in this case. An example of a Pareto-optimal 

GA for flow shop scheduling with three criteria, makespan, tardiness and total 

flowtime, is presented in Ishibuchi and Murata (1995). Ishibuchi and Murata 

(1996) also lists other papers with extension of GAs to multi-objective 

optimisation. Pareto optimality is examined in relation to genetic programming 

in Langdon (1995) which concludes 'that smaller evolutionary steps might aid 

GP in the long run'.

The GA hybrids presented in this thesis also combine global and local 

search as do the Pareto-optimality GAs. In this thesis the local search element is 

carried out by EVOP on each of the individual GA solutions. Due to the small 

populations of the hybrids in this thesis the required additional running time did 

not pose a problem. Pareto-optimality GAs look to combine many objectives 

into a single measure and locally search in the most promising direction, then 

often use elitism to retain the best individuals. The EVOP-GA hybrids presented 

in this thesis search with a single objective, but could be extended by careful 

construction of the objective function to include multi-objectives. The approach 

taken in this thesis echoes the 'keep-it-simple' philosophy of EVOP, with the 

added, and intended, benefit of fast run-times.
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3.4 SOFTWARE SELECTION 

3.4.1 EVOP Software

There is little information available on EVOP software. It is possible that 

some companies using EVOP have written in-house software, but until very 

recently commercial EVOP software was not available.

Two experimental design software packages that incorporate EVOP have 

been located, both include Simplex EVOP. MultiSimplex offer the 

MultiSimplex package running as an 'add on' to Excel version 5 or higher. The 

Statistics Department at Leeds University developed PEXLAB, PLanning 

Experiments LABoratory which is a Fortran?? program which was available for 

evaluation by ftp only.

EVOP as discussed earlier in section 3.1, is a little used technique and it 

is unsurprising that there appears to be a very small amount of software 

available. None of the occurrences of EVOP found in the literature referred to 

using software and some presented results were on hand filled EVOP sheets. 

MultiSimplex promotes the inclusion of EVOP but the actual software only 

allows Simplex EVOP. The emergence of QS-9000 as an automobile industry 

standard which includes EVOP as a process improvement technique could induce 

more commercial EVOP software packages. EVOP is a simple technique which 

can be written into a spreadsheet as demonstrated by the new work in section 

3.1.7. but commercially available software would lead to greater use of the 

technique.
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3.4.2 GA Software

Artificial intelligence software is a rapidly expanding area with many 

commercial packages now available. At the point in this study where software 

was required, GA software was available from commercial sources, such as 

Evolver from Pallisade which runs in Excel spreadsheets, but these were not very 

flexible. There was no choice as to the type of GA, e.g. steady state or not. If 

not an option on the user screen, then changing some parameters could involve 

delving into the code of the programme, which in itself is not a simple task to 

draw up from behind the user interface. At the time of selecting suitable 

software Evolver was a beta release and testing revealed that it was not reliable 

on Windows 3 .x. Many GA packages are freely available on the internet and a 

large proportion are a result of academic research, such as Mattlib, but they are 

also often shareware complete with programming bugs. Many have quite 

demanding minimum requirements for both PC processor and programming 

knowledge of specific languages. The main drawback to most of these packages 

was that the software which had most potential for this study consisted of lengthy 

code which was usually not documented and with sparse commentary in the 

code. This made de-bugging and altering the code to suit this study a potentially 

monumental task. The third category of GA software consists mainly of research 

institute based written software for which there is a nominal charge, but the code 

is generally more reliable than the freeware and support is also often available. 

A list of software available at the time of software selection for this study can be 

found in Heittkotter and Beasley (2000).
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3.4.3 Criteria for Selection

GAs can be run extremely quickly on large machines which are highly 

parallel but this is not what is readily available in industry. GAs must reach an 

acceptable answer quickly on an average machine for their use in industry to 

greatly increase. Industry is more likely to use a GA that runs on less expensive, 

or existing equipment and software. As the thrust of this study was to combine 

the local and global search capabilities of EVOP and GAs to produce an optimal 

performance in a relatively short time, this was the main restriction on the choice 

of software to used for the hybrid GAs proposed for this thesis. The criteria for 

selection was that the GA could run on a relatively small machine with 

acceptably priced software and the EVOP element be included by a relatively 

small amount of programming.

Matlab is a commonly used software system with full documentation, 

support available from Math Works and discussion groups on the internet. The 

Matlab GA Toolbox from Sheffield University was selected as it runs on widely 

used platforms and does not require more than an 'average' PC.

3.5 SUMMARY

Evolutionary Operation (EVOP) and Genetic Algorithms (GAs), the two 

methods selected in chapter two, have been examined in greater detail so that 

new forms of optimisers which combine both global and local search may be 

produced for this study.
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A review of the literature gave details of published hybrid GAs, including 

those featuring Pareto-optimality, combining local and global searching, to place 

in context the new hybrid methods from this thesis that are based on GAs and 

EVOP. The availability of software for both EVOP and GAs is then discussed. 

Due to the lack of EVOP software available, also to give an understanding the 

programming required for EVOP, AutoEVOP software created for this study is 

described. Finally, a summary is presented of the process of selection of 

software for the hybrid methods created and tested in this thesis in the next two 

chapters.
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4. SMALL POPULATIONS AND HYBRIDS

The aim of this chapter is to illustrate the processes undertaken to select suitable 

operators for the genetic algorithms used in this study and to show any influences 

these operators have on hybrid GAs in comparison to standard microGAs on a set of 

test functions. Initial study is devoted to selecting appropriate parameter values for 

the GAs, such as the coding alphabet and the size of populations to be examined. 

Further consideration is then given to the classic operators such as selection method, 

crossover and mutation for these small population GAs. A range of sets of 

experiments are undertaken to determine the influence of these operators, especially 

population size and generation gap. These experiments will allow for optimum 

combination of the global and local search capabilities of the two chosen methods.

4.1. SELECTION OF GA PARAMETERS 

4.1.1 Population Size

As the intention of the study was to produce a search method that combined 

both local and global search, that could be used in on-line situations it was necessary 

to have a small population GAs to ensure minimal computational time. There 

appears to be no widely accepted definition of 'small' with respect to genetic 

algorithm population size. As populations of only a few hundred are regarded small 

by some, the thirty strings or less per generation which are used for the experiments
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described here would be widely accepted as a small population. A few published 

results suggest "that population sizes as small as thirty are quite adequate in many 

cases. Nevertheless, little has been published that is relevant to really small 

populations" (Reeves, 1993). Arabas et al (1994) states that population size is 

important, yet "the knowledge about proper selection of GA parameters is still only 

fragmentary and has rather empirical background". Tests were therefore carried out 

with populations from as large as thirty to as small as five.

4.1.2 Coding Alphabet

There is still debate as to the best alphabet to use with GAs and good results 

have been obtained with real numbers and q-ary alphabets. Binary coding was 

selected for the experimental GAs as it has been shown by Reeves (1993) that the 

minimum population size for binary coded strings is much less than for q-ary 

alphabets. Krishnakumar (1989) also concluded that binary is the best form of 

coding with small populations. Binary coding also means that the EVOP element of 

the hybrid GAs discussed in chapter three can be easily incorporated, since the step 

size is restricted to the inversion of a single binary number and not an arbitrarily 

selected step size as for a real or q-ary number.

4.1.3 GA and Experimental Design Hybrids

"Simply taking a small population size and letting them converge is certainly not 

useful" (Krishnakumar, 1989). The similarities and differences between
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experimental design and GAs are explored in Reeves and Wright (1995) which 

concludes that GAs and the experimental design method studied could both 

potentially benefit from combining certain aspects of each of the methods. There is 

literature such as Davis (1993), Renders and Bersini (1994) and Zalzala and Fleming 

(1997), which discuss combining GAs with hill climbing methods. EVOP is a little 

used method of experimental design which could be compared to a single stepping 

multi-directional hill climber and could provide an efficient constituent of a hybrid 

GA.

4.1.4 EVOP and GA Hybrid Method

The GA element of the hybrids in this study were created as M x N matrices, 

where M represents the length of the chromosomes and N the size of the population. 

The format of a chromosome is similar to those described in section 3.2. After an 

evaluation of the child population the EVOP element is added by multiplication of 

the GA matrix with a suitably sized binary matrix, with zeros and ones placed to 

create the effect of EVOP on the GA chromosomes. If the chromosome is split into 

many sections representing different elements, the EVOP matrix must be created to 

change each section. The effect of 'stepping' in different directions and then 

moving in the best direction is achieved by multiplying the GA matrix with various 

forms of the EVOP matrix and retaining the best solution with an elitism operator.
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4.1.5 Test Functions

The functions used to test the GAs in this study were chosen as they often appear 

in the literature as a standard test functions. Published results appear for larger 

population and generation GAs than those tested here, but using standard functions 

allows for comparison with existing and future works. The set of functions include 

De Jong's first and second functions from De Jong's traditional suite of test 

functions, Schwefel's, Rastrigin and Griewangk's functions. This suite consists of 

five functions which vary greatly from the relatively simple first function to the 

more complex spaces of the later functions. The functions used in this study are 

described in figure 4.1 by their mathematical functions and illustrated by two 

dimensional Matlab plots.

4.2 SELECTION OF GA OPERATORS 

4.2.1 Population Selection

A selection method suitable for small population GAs was required. There is 

very little literature available on GAs with populations as small as those proposed. 

Roulette wheel selection (RWS) is a common method where the probability of a 

string being selected for inclusion in the mating pool is proportional to its fitness. 

With very small populations, although there is always the possibility of any 

individual being selected, there is a risk of domination by one or a few individuals
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De Jong's first function:

f(x) = Zx2

Minimum at x = 0

Schwefel's function:

Minimum at x = 420.9687

Griewangk's function:
f(jc) = Z_Xi_ - 7TCOS ( j:,

4000

Minimum at x = 0

De Jong's second function: 
(Rosenbrock's valley)
f(x) = SlOO.OcH-, -x,) + (1 -jc,)

Minimum at x = 0

Rastrigin's function:
f(x) = lOn + S(jc/2 - 10cos(27uc,))

Minimum at x = 0

Figure 4.1 Test Functions
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which are much fitter leading to early convergence, due to the smaller number of 

'choices' on the roulette wheel.

Stochastic universal sampling is a suitable technique for selection as it has zero 

bias due to individuals being selected entirely on their position in the population. 

Stochastic Universal Sampling (SUS) is sometimes known as systematic sampling.

The initial sample from a population is chosen at random. In some instances this 

may be restricted to the first X members of a sample, where X represents one nth of 

the population and n is the number of population members required for the sample. 

The distance to the next member of the population to be included in the sample is 

randomly selected. Again restrictions can be applied to this scalar if a certain 

frequency of sampling is required. The distance to the next and all subsequent 

sample members is the same as the distance between the first and second members 

of the sample.

The program code for stochastic universal sampling and roulette wheel selection 

is very compact. The SUS code contains one more line of executable code than the 

roulette wheel method code, so the time needed to execute the GA program is not 

greatly affected by this choice.
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Testing was carried out on the standard small population GAs to ascertain the 

most suitable method. "Standard small population GAs are as defined earlier in 

section 4.1.1. Tests were run on micro-GAs with populations of five, ten and 

twenty. Preliminary testing showed that 'best' solutions were reached usually within 

the first twenty generations. Therefore the GAs were stopped after thirty 

generations. Each test was repeated at least one hundred times. For the results 

shown in figure 4.2 the test function used was De long's first function where the 

known solution is zero. Each generation completely replaced the previous one. 

Crossover was single point. Figures 4.2 to 4.4 each show three separate sets of one 

hundred runs at the above settings.

For all population sizes the mean output of both RWS and SUS were similar. As 

the population size increases the SUS is more clearly shown as a consistently better 

method. A similar pattern emerged for the maximum output, i.e. worst case, output. 

Although a more mixed set of results were obtained for the minimum output 

achieved, it can be clearly seen that for a population of twenty SUS gives optimum 

results on a par with those obtained by RWS.
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Figure 4.2. Sample comparison of Stochastic Universal Sampling and Roulette 
Wheel Selection for a micro-GA with a population of five.
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Figure 4.3. Sample comparison of Stochastic Universal Sampling and Roulette 
Wheel Selection for a micro-GA with a population often.
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Comparison of SUS vs RWS 
Population: 20

5 -

4 -

1 -
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b-n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

generation

Figure 4.4. Sample comparison of Stochastic Universal Sampling and Roulette 
Wheel Selection for a micro-GA with a population of twenty.

Collation of the results of these tests also revealed that SUS is a more robust 

method than RWS in that in the majority of cases it was found that there was less 

variation between the best and worst solutions using the SUS selection method. 

These tests were repeated as many as thousand times in sets of one hundred and 

although the actual values obtained varied slightly the general trends were identical. 

A sample of summarised results is shown in tables 4.1, 4.2 and 4.3.

As a result of these tests and other sample experimentation with large population 

GAs, SUS was selected as the sampling method for use with future experimental 

GAs.
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Generation
5
10
15
20
25
30

Max
5.354116
5.354116
5.354116
5.354116
5.354116
5.354116

sus
Mean

4.211948
4.211051
4.211051
4.211051
4.211051
4.211051

Min
1.563142
1.485148
1.485148
1.485148
1.485148
1.485148

Max
5.342308
5.342308
5.342308
5.342308
5.342308
5.342308

RWS 
Mean

4.521769
4.516849
4.516849
4.516849
4.516849
4.516849

Min
3.22004
3.22004
3.22004
3.22004
3.22004
3.22004

Table 4.1 Comparison of a sample of results for a population size of five.

Generation
5
10
15
20
25
30

Max
4.760520
4.757428
4.757428
4.757428
4.757428
4.757428

SUS 
Mean

3.758525
3.678901
3.678497
3.678497
3.678497
3.678497

Min
0.398789
0.398789
0.398789
0.398789
0.398789
0.398789

Max
4.924986
4.894780
4.894780
4.894780
4.894780
4.894780

RWS 
Mean

3.968418
3.911647
3.908215
3.908215
3.908215
3.908215

Min
0.813762
0.813762
0.813762
0.813762
0.813762
0.813762

Table 4.2 Comparison of a sample of selected results for a population size often.

Generation
5
10
15
20
25
30

Max
4.52954
4.332893
4.332893
4.332893
4.332893
4.332893

SUS 
Mean

3.295254
3.057405
3.02555
3.025082
3.025027
3.025027

Min
1.861187
0.654061
0.654061
0.654061
0.654061
0.654061

Max
4.760384
4.719604
4.719604
4.719604
4.719604
4.719604

RWS
Mean

3.596094
3.481652
3.477431
3.478151
3.478151
3.478151

Min
1.608304
0.654061
0.654061
0.654061
0.654061
0.654061

Table 4.3 Comparison of a sample of selected results for a population size of twenty
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4.2.2 Crossover Operator

Single point crossover was initially chosen for testing with relatively short 

strings. Since the overall aim of is to produce a fast GA the approach to 

programming was to use programs with concise code to enable faster processing 

times. Single point crossover being the simplest option also corresponded with the 

general philosophy of the testing to keep the search algorithm as streamlined as 

possible. A search of literature revealed no clearly superior crossover method for 

small population GAs.

Although multi-point crossover has the potential to cover more of the search 

space, in conventional GAs it does not generally lead to early convergence (Sait and 

Youssef, 1999). As a rough guide to speed of operation, the code for single point 

crossover is three lines of code to be compiled compared to forty four lines for 

multi-point crossover with the software used for testing. As a fast GA was the 

objective, the crossover method with the least code to be compiled was selected, so 

multi-point crossover was excluded from the initial experiments.

4.2.3 Mutation Operator

The third classic GA operator, mutation, was turned off for these 

experiments. To have an effect with small populations the mutation rate would need 

to be greatly increased from the usual rate of one in thousands to one in hundreds or 

tens. However, at this level it could have the effect of turning the search into a
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random walk. As described in section 3.2.2.2, mutation is often used as a GA 

'insurance policy' so that at any stage of the search it is possible to reach the entire 

search space. With small populations, mutation has little influence, but with the new 

experimental GAs no area of the search space is excluded due to the EVOP element.

4.2.4 Generation Gap

Generation gap determines the proportion of population to be reproduced. 

For example, with a population of 100 and a generation gap of 0.7, once selection 

and crossover have taken place there will be 70 new individuals in the population of 

100 in the new generation. With the software used it is possible to have an 

increasing population with this operator, but this option was not utilised to restrict 

the execution time of the GA.

It was noted that steady-state GAs have faster processing times than 

conventional GAs as relatively few new strings need to be stored at each generation. 

Due to this potential time saving the influence of the generation gap was extensively 

tested on the new GAs and the standard small population GAs. De long's first test 

function was used as the objective function for the initial tests as the ideal solution is 

known and the function is relatively simple. The tests on generation gap will be 

discussed in sections 4.2.4 and 5.3.1.
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4.3 HYBRID TESTING

4.3.1 Initial Migration and Robustness Testing

Migration, or the Island model (Georges-Schleuter, 1992) divides a single 

population into a number of sub-populations. Each sub-population behaves as a 

'normal' GA but periodically individuals move or migrate from one sub-population 

to another. Migration can increase diversity in GAs and has been shown to improve 

results in some cases (Miihlenbein et al, 1991), (Starkweather et al, 1990). Small 

population GAs are prone to stagnation due to the low number of strings available 

for breeding. It was decided to examine if the benefits obtained in the literature 

could be achieved for very small populations and a comprehensive set of 

experiments was conducted.

For these experiments robustness of the algorithm is defined as the range of 

solutions found by the hybrid over fifty runs at identical initial experimental settings. 

Figure 4.5 shows the influence of the migration rate on finding a good solution and 

the robustness of the settings. Figure 4.5 was generated using De long's first test 

function in two dimensions and with the generation gap set so that each generation 

completely replaces the last one. Clearly the best solutions are found at 50% 

migration rate, but the robustness of the hybrid is best at a migration rate of 30%. A 

comparative study was carried out using a small population standard GA. For all 

cases the best solutions found by the hybrid were better than those found by the 

standard GA.
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The Effect of Migration
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standard small population 
GA

Figure 4.5. The effect of migration rate on the solution found.

A further investigation was carried out at migration rates of 30% and 50% as 

these gave the worst and best solutions respectively. Results of this investigation are 

shown in Figure 4.6. The diagram shows the effect of the generation gap at 

migration rates of both 30% and 50% and the range of solutions found. There is an 

almost direct inverse correlation between robustness and finding an optimal solution 

at both migration rates. At a migration rate of 30% with a generation gap of one the 

hybrid is robust, but the solutions found are not optimal, yet the better solutions are 

found with a generation gap of between 0.6 and 0.8 where the hybrid is least robust. 

At a migration rate of 50% the value of the best solution found oscillates as the 

generation gap increases. At all settings for generation gap at both migration rates 

tested the best solutions found by the hybrid are an improvement on those found by 

the standard small population GA.
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The Effect of the Generation Gap
————— Best solution found at 50% 

migration
— — — Average range of solutions at 

50% migration
——0——Best solution found at 30% 

migration
— 4- — Average range of solutions at 

30% migration

0.2 0.4 0.6 0.8 

Generation Gap

Figure 4.6. The effect of generation gap on the solutions found.

4.3.2 The Effect of Generation Gap

If 'breeding' of the population results in fewer new individuals than in the 

original population, then the fractional difference between the new and old 

populations is known as the generation gap (DeJong and Sarma, 1993).

Following the initial testing with migration that included some study of the 

generation gap, a more comprehensive set of tests were carried in order to identify 

effects due to the setting of the generation gap. For all experiments each GA, 

standard or hybrid, was executed one hundred times. Although the software used for 

the experiments randomly generates the first population, the random number 

generator used in the code for the programs is not truly random, but pseudo random 

numbers between zero and one are generated in a set order. To overcome any bias 

that this may introduce into the results the entire set of experiments were listed and
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assigned a random order in which to be run, this meant that no two runs of a GA 

experiment with the same settings would have the same starting points. Perhaps 

more importantly, the comparative standard small population GA were run in 

exactly the same order, thus they were provided with the exactly same starting points 

as the hybrid GAs.

4.3.2.1 Generation gap with a population of twenty

The first set of collated results are for a population size of 20 chromosomes. 

The main investigation was to survey any effect of the generation gap, but for each 

experimental configuration the solutions found at generation 5, 10, 15, 20 and 30 

were recorded. Although widely accepted that if a GA is allowed to run to 

convergence over many generations good solutions are found, the literature did not 

indicate the differences found between relatively small generation numbers.

4.3.2.1.1 De Jong's first function

Initially the GAs were tested on De Jong's first function. It was found for 

both the standard microGA and the hybrid GA that after thirty generations the 

recorded results show that there is a general trend of greater improvements to the 

initial population as the generation gap increases for a population of 20 

chromosomes. A summary of these results is shown in tables 4.4 and 4.5. This 

general trend of improvement was also found for De Jong's second function, see the 

next section, 4.3.2.1.2.
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The following tables of experimental data, e.g. tables 4.4 and 4.5, show the 

summarised comparative performance of the GAs under test. For each setting of the 

GA parameters the experiment was run one hundred times, each run starting at a 

random population as explained in section 4.3.2. The solutions found at the end 

point of the GA run, and in some subsequent tables at certain generations of the 

search, were compared with those generated for the initial population. This 

demonstrates if the GAs are producing improvements in the solutions found and 

allows comparison of the effects of the different settings.

The left-hand side of the table shows how many of the one hundred runs 

produced final solutions that were worse, showed no change or an improvement on 

the initial random population. The right-hand side of the table details how great the 

improvements were of those solutions on the left-hand side of the table that proved 

to be better than the initial population. This quantification gives a clearer indication 

of the amount improvement gained by particular settings. The three categories that 

are listed on the right-hand side of the tables are '30% better', '50% better' and 

'70% better'. Percentages are used to allow comparison between the results 

produced on different test functions, where the range of values of x differ, see figure 

4.1 and section 4.1.5. The layout of tables of experimental data described above is 

applicable to all tables from 4.4 to 4.16.
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Generation 
Gap
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Worse
47
20
21
14
7
4
3
4
5
1

No. ofG 
No change

6
9
4
2
4
0
4
3
1
1

As compare 
Better

47
71
75
84
89
96
93
93
94
98

d to initial p 
30% better

2
6
12
12
25
20
22
27
25
24

opulation
50%better

1
1
3
4
5
4
12
12
10
8

70%better
0
1
1
2
2
2
4
3
4
6

Table 4.4. Performance of a standard small population GA on De Jong's first 
function at the thirtieth generation with a population of 20 individuals.

Generation 
Gap
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Worse
41
20
22
17
9
11
7
7
3
1

No. of G 
No change

1
1
2
4
2
0
1
3
1
1

As compare 
Better

58
79
76
79
89
89
92
90
96
98

d to initial p
30%better

3
11
11
15
22
19
25
25
22
29

opulation 
50%better

0
5
1
7
8
4
11
5
8

11

70%better
0
2
0
2
2
1
6
0
1
2

Table 4.5. Performance of a hybrid GA with a population of 20 on De Jong's first 
function at the thirtieth generation.

The results were filtered to show the chromosomes that showed the most 

improvement (any improvement, greater than 50% and greater than 70%) over the 

initial population for all test functions. The greatest improvement for both test
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functions was at a generation gap setting of 0.7, especially for the hybrid. This 

could also be seen across the generations with the results sampled at generation 10, 

15 and 20.

Regression analysis was used to study the relationship between the 

performance of the hybrids and the generation gap. Regression analysis of the 

results with at least a 50% improvement after thirty generations showed that the 

visual trend could be described as follows:

Standard Small Population GA: y= \.2x- 0.5

Hybrid: j = 0.9*+1.1

where x is generation gap and y is percentage improvement on initial population, 

which gives:

Standard Small Population GA: R2 = 71%

Hybrid: R2 = 53%

R2 is the value derived by standard regression analysis and shows the 

strength of the relationship between the variables in the equations, in this case 

percentage improvement and generation gap. The calculated values show that for 

the standard small population GA, 71% of the improvement is due to the generation 

gap. The influence is not as strong on the hybrid GA, but this is expected as there is 

a greater random element due to the use of EVOP and the 'peak' at a generation gap 

of 0.7. Visually, there appeared to be little improvement between the recorded
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results after thirty generations compared to those recorded after twenty generations. 

Regression analysis of the results obtained after twenty generations gave the 

following:

Standard Small Population GA: R2 = 70% 

Hybrid: R2 = 60%

Analysing the difference between the results obtained after thirty generations 

compared to those for twenty generations the change was less than 0.002%. The 

analysis suggests that extrapolation, i.e. increasing the generation gap, would give 

better results but that of course is not possible as a generation gap cannot be greater 

than the original population, with these steady state GAs. However, it underlines the 

general concept of the more generations a GA has the better the answer.

For a standard small population GA, the generation gap clearly has an 

influence. Although the regression value obtained did not shown perfect correlation, 

a positive relationship was shown despite the naturally random nature of GAs. The 

effect of the generation gap is less apparent with the hybrid GA but this was 

expected due to the nature of the EVOP element.
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4.3.2.1.2 De Jong's second function

Once again there was a distinct trend of improvement in the results obtained 

as the generation gap increased. The results shown in tables 4.6 and 4.7, exhibit a 

much greater improvement than that seen during testing on De Jong's first function.

Generation 
Gap
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Worse
31
34
35
19
10
10
8
5
7
1

No. ofG 
No change

12
6
3
4
1
2
1
4
4
3

As compan 
Better

57
60
62
77
89
88
91
91
89
96

e<i to initial p 
30%better

48
52
65
64
69
63
72
72
65
73

opulation 
50%better

41
48
58
57
63
56
65
67
61
71

70% better
34
40
50
46
57
51
60
64
55
68

Table 4.6 Performance of a standard small population GA on De Jong's second 
function at the thirtieth generation with a population of 20 individuals.

Generation 
Gap
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Worse
35
37
36
19
7
16
17
8
5
1

No. ofG 
No change

2
0
0
1
1
2
0
3
2
1

As compare 
Better

63
63
64
80
92
82
83
89
93
98

d to initial p
30%better

48
50
71
63
65
65
69
73
62
72

opulation 
50%better

42
45
60
56
61
59
63
64
55
71

70%better
35
38
53
49
56
52
59
63
51
67

Table 4.7 Performance of a hybrid GA on De Jong's second function at the thirtieth 
generation with a population of 20 individuals.
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Calculated in exactly the same manner as section 4.3.2.1.1, regression 

analysis of the results with at least a 50% improvement after thirty generations 

showed that the visual trend could be described as follows:

Standard Small Population GA: y = 2.6x + 44.6

Hybrid: y = 2.2* + 45.3

where x is generation gap and y is percentage improvement on initial population, 

which gives

Standard Small Population GA: R2 = 75% 

Hybrid: R2 = 61%

This shows that for the standard small population GA 75% and for the hybrid 61% 

of the improvement is due to the generation gap. The analysis was also completed 

for the results obtained after twenty generations, which gave the following 

coefficients of determination:

Standard Small Population GA: R2 = 69%

Hybrid: R2 = 60%

These coefficients both show a correlation between improved results and the 

generation gap.
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4.3.2.1.3 Other functions

Due to the small improvements gained between the twentieth and thirtieth 

generations further results were obtained at twenty generations, then analysed. Both 

the standard small population GA and the hybrid GA were tested on the other three 

functions in the test suite: Rastrigin's, Schwefel's and Griewangk's functions, see 

section 4.1.5. The results of these tests did not show a similar trend to that identified 

for the two traditional De Jong functions. The hybrid tested with Schwefel's 

function demonstrated that the generation gap had little influence on the results. For 

both Rastrigin's and Griewangk's functions analysis shows that the generation gap 

does not have a much influence on the results. The standard small population GA 

showed little correlation with Schwefel's function and very weak correlation for the 

other functions, which again demonstrates that the generation gap has little influence 

on the results obtained. Results of the tests using the standard small population GA, 

population of 20, at the twentieth generation are shown in tables 4.8, 4.9 and 4.10.

Generation 
Gap
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Worse
21
24
28
34
43
43
45
46
45
49

No. ofG 
No change

9
7
15
5
2
3
3
4
5
1

As compare 
Better

70
69
57
61
55
54
52
50
50
50

d to initial p 
30%better

2
1
0
0
0
0
0
0
0
0

opulation 
50%better

0
0
0
0
0
0
0
0
0
0

70% better
0
0
0
0
0
0
0
0
0
0

Table 4.8. Results obtained on Schwefel's function.
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Generation 
Gap
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Worse
19
18
8
9
5
3
1
1
1
0

No. ofG 
No change

8
4
15
8
10
8
6
5
3
0

As compan 
Better

73
78
77
83
85
89
93
94
96
100

Si1 to initial p 
30% better

7
8
6
9
13
20
14
21
26
27

opulation
50%better

5
1
3
4
2
10
8

11
11
13

70%better
2
0
0
1
1
2
4
3
3
7

Table 4.9. Results obtained on Rastrigin's function.

Generation 
Gap
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Worse
11
22
12
12
2
5
2
2
1
1

No. ofG 
No change

10
9
14
8
8
6
8
5
7
7

As compare 
Better

79
69
74
80
90
89
90
93
92
92

d to initial p 
30%better

11
10
14
9
18
20
22
26
16
26

opulation 
50%better

3
8
10
3
11
13
13
18
12
20

70%better
2
4
9
3
7

11
10
14
7
13

Table 4.10. Results obtained on Griewangk's function.

4.3.2.2 The influence of the generation gap

These results lead to the conclusion that the influence of the generation gap 

depends on the search space so, no single setting of the generation gap can be 

recommended as superior for all cases. As the best solutions were found with higher
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generation gap settings for some functions and for other functions high generation 

gap settings gave comparably good solutions with no degradation in performance as 

the setting increased, a higher generation gap would be recommended in all cases. 

The peaks in performance found at 0.7 for the hybrid indicate that this setting would 

be recommended as a starting point for an empirical search for small population 

GAs and their hybrids. Large generation gaps are also recommended for standard 

population GAs (De Jong and Sarma, 1993).

4.3.3 The Effect of a Small Number of Generations

Traditional GAs have many hundred or thousand generations and most 

published works relate to these type of GAs. Some work has been published on 

standard small population GAs, sometimes referred to as microGAs (Krishnakumar, 

1989), as discussed earlier in Section 4.1 where the view that a population of thirty 

individuals is a small population was stated. Literature stating the effects of very 

few generations was limited, so an investigation into the effect of a small number of 

generations was undertaken. Initial testing was carried out using De Jong's first 

function using both a standard small population GA and a hybrid.

4.3.3.1 De Jong's first function

With a population of twenty individuals the most change is seen in the first 

ten generations. After five generations there are often a few individuals which give 

worse solutions than the original population, with the hybrid GA finding only

4-25



Evolutionary Computation and Experimental Design

marginally fewer worse solutions compared to the standard small population GA. 

As expected the standard small population GA had more individuals that recorded 

no change from the initial population than the hybrid. This is more noticeable with 

fewer generations, i.e. five or ten generations.

As stated in section 4.3.2.1.1, results were collated and filtered to show how 

many individuals had improved, by 30% or more, 50% or more and 70% or more 

than the initial population. This obviously gave many more results to be assessed 

but a clearer picture of the GA performance was obtained. Trials were run at all 

generation gaps but the sample results in tables 4.11 and 4.12 were obtained at a 

generation gap 0.7. Although both types of GA recorded similar numbers of 

improved individuals, the hybrid showed more individuals with a greater 

improvement.

Generation
5
10
15
20
30

Worse
7
3
3
3
3

No. ofG 
No change

11
5
4
4
4

As compart 
Better

82
92
93
93
93

e«1 to initial p 
30%better

10
19
22
22
22

opulation 
50%better

6
11
11
12
12

70%better
1
3
3
4
4

Table 4.11. Performance of a standard small population GA with a population of 20 
on De Jong's first function at a generation gap of 0.7.
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Generation
5
10
15
20
30

Worse
16
9
7
7
7

No. of G. 
No change

2
1
1
1
1

4s compare 
Better

82
90
92
92
92

d to initial p
30%better

13
22
25
25
25

opulation
50%better

2
8
10
11
11

70%better
1
3
4
6
6

Table 4.12. Performance of a hybrid GA with a population of 20 on De Jong's first 
function at a generation gap of 0.7.

4.3.3.2 De Jong's second function

The general trend with different numbers of generations were as expected in 

almost all cases, especially with fewer generations as illustrated in tables 4.13 and 

4.14. The hybrid gave a larger number of results which were actually worse than the 

original population. The hybrid also produced fewer individuals which had not 

changed from the initial population. Unfortunately, there was no mechanism to 

check if the individuals were unchanged or if the individuals were the result of 

breeding. This showed that the populations of the hybrid were more mobile than 

those of the standard small population GA: Generations subsequent to the initial 

population contained more new individuals in the hybrid than in the standard small 

population GA. Generally the fewer generations, the greater the difference in 

performance between the hybrid and the standard small population GA, although 

there was an underlying trend of an improvement in performance as the number of 

generations increased. However, the improvement between generations was less
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between generation 20 and 30 and the majority of GAs found good solutions within 

ten generations. Sample results are shown in tables 4.13 and 4.14.

Generation
5
10
15
20
30

Worse
13
11
8
8
8

No. ofG. 
No change

11
1
1
1
1

4s compan 
Better

76
88
91
91
91

s<1 to initial p 
30%better

62
67
72
72
72

opulation
50%better

46
60
65
65
65

70%better
44
57
59
60
60

Table 4.13. Performance of a standard GA with a population of 20 on De Jong's 
second function at a generation gap of 0.7.

Generation
5
10
15
20
30

Worse
21
16
17
17
17

No. ofG 
No change

1
0
0
0
0

As compan 
Better

78
84
83
83
83

£«i to initial p 
30%better

62
65
69
69
69

opulation 
50%better

53
59
63
63
63

70%better
50
55
58
59
59

Table 4.14. Performance of a hybrid GA with a population of 20 on De Jong's 
second function at a generation gap of 0.7.

4.3.3.3 Comparison at ten generations

As the performance of GAs with only five generations gave some erratic 

results, it was concluded that the smallest number of generations that gave a 

consistent good performance was ten. To further investigate the effect of very small 

numbers of generations the hybrid and standard small population GA were tested
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across the three functions: Rastrigin, Schwefel and Griewangk. As summary of 

these results are shown in tables 4.15 and 4.16.

For Rastrigin's function the hybrid consistently proved to have a more 

mobile population which was manifested by producing more individuals that were 

worse than the original population, especially for generation five, along with 

showing fewer static solutions, except for when the generation gap was set at 1.0. 

The hybrid regularly gave more solutions with the greatest improvement from the 

initial population. Generally the hybrid gave the best performance on this function 

with a population often.

Schwefel's function again showed that the hybrid population was more 

mobile with fewer individuals with no change from the initial population and more 

that were worse, especially within the first five generations. With the generation gap 

set between 0.1 and 0.2 although the hybrid found more improved solutions, the 

standard small population GA found the best solutions. Otherwise the trend was for 

the hybrid to find more improved solutions but neither GA making large 

improvements to the initial population.

The hybrid population again tended towards greater movement when tested 

on Griewangk's function. The hybrid occasionally did not find as many of the best 

solutions as the standard small populations, but the best solutions found by the
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hybrid were of equal quality to those found by the standard small population GA. 

Generally, the hybrid found more improved solutions.

The hybrid generally, with a few exceptions, for all functions was more 

mobile and gave improved results. Indicative sample results are shown in tables 

4.15 and 4.16. These sample results were obtained at a generation gap of 0.7, but 

the study included trials at all generation gap settings.

Function
Schwefel
Rastrigin

Griewangk

Worse
45

1
2

No. ofG 
No change

3
6
8

As compan 
Better

52
93
90

e<i to initial p 
30% better

0
14
22

opulation 
50%better

0
8

13

70%better
0
4
11

Table 4.15. Performance of a standard small population GA at ten generations.

Function
Schwefel
Rastrigin

Griewangk

Worse
37
7
9

No. ofG 
No change

3
2
3

As compare 
Better

60
91
88

d to initial p 
30%better

0
16
21

opulation 
50%better

0
10
13

70%better
0
4
10

Table 4.16. Performance of a hybrid GA at ten generations.

4.3.4 The Effect of Population Size

With only five generations the hybrid did not perform as well as the standard 

small population GA. Although it found fewer improved solutions, the solutions
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found were of equal quality as those found by the standard small population GA. 

The hybrid was also shown to be more mobile for GAs with ten generations. 

Generally, the hybrid outperformed the standard small population GA, with an 

exception at a generation gap of 0.2 and a marginally worse performance at 0.8. 

With twenty generations the hybrid consistently outperformed the standard small 

population GA. As expected the hybrid population was more mobile.

The greater the population size the better the results found. With a small 

number of generations this became more important. Populations of five generally 

gave much poorer results, due to the lack of time to search a large number of points 

in the search space. A population of twenty individuals gave better results than 

populations with ten individuals.

4.4 SUMMARY

Stochastic universal sampling has been shown to be more robust than the 

traditional roulette wheel selection method, and capable of obtaining comparably 

good solutions. To maintain fast running of the hybrid the simplest crossover 

method, single point, was used. Mutation was disabled for these small population 

GAs as the accepted usual rates of one in thousand(s) would have little effect on 

small populations running only to a few generations. To increase the mutation rate 

for it to have an effect would risk turning the search into a random walk. For the
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hybrid, the EVOP element increased the amount of search space that could be 

reached by the GA and thus compensating for the mutation rate being turned off. 

Steady state population sizes were used so as not to increase running time of the 

GAs.

Migration rate was shown to have a bimodal influence on the performance of 

the small population GAs. Generation gap was extensively tested and was shown to 

affect the solutions found: although seemingly dependant on the search space, the 

higher generation gaps generally showed improved solutions. The influence of the 

generation gap was not as strong for the hybrid as the standard small population GA. 

Results indicate that a generation gap of 0.7 is to be recommended as a search 

starting point for small population GAs and their hybrids, as good solutions were 

found with this setting on many function spaces. This recommendation fits with De 

Jong's studies (Goldberg, 1988b) on larger populations that concluded that non- 

overlapping generations perform better in most off-line optimisation situations, but 

on-line performance 'is not severely degraded by using smaller generation gaps'. A 

population size of five gave erratic results, but a population of ten gave much better 

results with this trend increasing as the population size increased for both the hybrid 

and the standard small population GA. Solutions found improved as the number of 

generations increased. Five generations did not give very good results but it was 

noted that most movement occurred in the first ten generations. A population size of
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ten is therefore recommended as it gives good results, without the time penalties 

associated with the larger population size of twenty which was also studied.

This chapter has concentrated on the settings of operators for the genetic 

algorithms used in this study, investigating the influences these operators on small 

population GAs and their EVOP hybrids. The combination of the global and local 

searches of GAs and EVOP has been shown to improve the performance of very 

small population hybrid GAs. The EVOP element is present in all generations of the 

hybrids investigated in this chapter, further investigation to examine the effects of 

the influence of the EVOP element on the hybrid GAs is presented in the next 

chapter.
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5. DYNAMIC HYBRIDS

The hybrid GAs tested in the previous chapter contained an element of EVOP 

which operated from the first to last generations of the GA and are henceforth 

referred to as static hybrids. The aim of this chapter is to illustrate the investigations 

undertaken to examine the effects of the influence of the EVOP element on the 

hybrid GAs, using various standard test functions. In this chapter EVOP is initiated 

only for certain specified generations, such that the GA proceeds its characteristics 

change and these GAs are referred to as dynamic hybrids. These dynamic hybrids 

are compared to each other, to their comparable static hybrid and standard small 

population GA. The influences of the global and local search elements of the 

hybrids will be considered. A study is also undertaken into the influence of the 

generation gap on these dynamic hybrids.

5.1. MODIFICATION OF MICRO GAs 

5.1.1 Selection of Parameters

Each hybrid was run one hundred times, due to the probablistic nature of 

GAs, to overcome any bias that could be introduced by a small number of trials. 

Stochastic universal selection is used for all hybrids tested here as it has been shown 

to be a preferred method of selection for small population GAs as explained in 

Chapter 4. This set of hybrids were run for twenty generations as the earlier hybrid 

trials had shown that this setting gave acceptable results. With this small number of
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generations the run time for the GAs is kept to a minimum. Single point crossover 

was used as this is the simplest method with the least computational demands and 

hence running time. A population size of ten was used as this was shown in the 

previous chapter to give good results.

5.1.2 Control of EVOP Element

As discussed in Chapter 3, EVOP is really a local search method whereas 

GAs are regarded as global search methods due their parallel search technique. 

Previous hybrids discussed in Chapter 4, combined EVOP with a standard small 

population GA to search the problem domain. GAs initially search large areas of the 

problem space, but methods such as EVOP are better at searching small areas. To 

capitalise on the strengths of both methods, experiments were conducted with 

hybrids which varied from pure GA to GAs with elements of local search. The 

initial expectation was that improved performance would be gained by tuning the 

hybrid from a pure GA to a GA with EVOP as the search proceeded; the EVOP 

element being restricted to the later generations of the hybrid. The GA conducts the 

initial search to find the most promising regions (Renders and Bersini, 1994), which 

are then more closely investigated by the EVOP element. This can be achieved by 

inserting a simple variable test in the GA code so that EVOP is only executed when 

a certain condition is met, for example, "EVOP to be present only after ten 

generations", provided that a variable has been allocated to count the number of 

generations.

5-2



Evolutionary Computation and Experimental Design

5.2 DYNAMIC HYBRID TESTING

To determine the influence of the EVOP, several hybrids were created, as 

shown in table 5.1, with EVOP only present during later generations, initial 

generations or EVOP initiated with increasing regularity as the generations 

increased.

Hybrid

GEVO-1

GEVO-2

GEVO-3

GEVO-4

GEVO-5

GEVO-6

GEVO-7

Generations EVOP initiated

>15

>10

>5 and<16

2, 6,7, 11,12,13, 17,18,19,20

5, 10,11, 14,15,16, 18,19,20

<6

<11
Table 5.1. Initiation of EVOP in hybrids.

The first two hybrids (GEVO-1 and GEVO-2) were designed to show any 

effect on the solutions found with EVOP being introduced towards the final 

generations of the GA. GEVO-3 was designed to show the impact of introducing 

EVOP only in the middle generations of the search. The effect of gradually 

introducing increasing amounts of local search was investigated using GEVO-4 and 

GEVO-5. GEVO-6 and GEVO-7 were to investigate the effect including a local 

search element only in the early part of the algorithm. All hybrids were tested using
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the five traditional functions at generation gaps varying from 0.6 to 1.0 as previous 

experimentation (see section 4.3.2) had indicated that better results could be 

obtained by using higher generation gaps. This means that this set of experiments 

consisted of 17,500 trials of various hybrid GAs, which were then compared to 

standard small population GAs and to the hybrids tested in the previous chapter.

5.2.1 Testing on De Jong's First Function 

5.2.1.1 Hybrid One - GEVO-1

The first comparisons were made with a generation gap setting of 0.7. As 

with the first type of static hybrid (Hybrid 1) this dynamic hybrid GA (GEVO-1) 

was much more mobile than the standard small population GA (PGA) but not as 

mobile as the initial static hybrids. GEVO-1 found more improved solutions than 

the standard small population GA, on a par with those found in the previous chapter. 

GEVO-1 found the solutions with the greatest improvement on the initial population 

as shown below in table 5.2. GEVO-1 found approximately the same number of 

improved solutions as the comparable static hybrid (Hybrid 1), both of which were 

better than the standard small population GA. GEVO-1 gave fewer solutions that 

were worse than the initial population, yet found more of the best solutions. The 

format of tables 5.2 to 5.20 follows the format described in section 4.3.2.1.1.
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GA
GEVO-1
Hybrid 1
PGA
GEVO-1
Hybrid 1
PGA
GEVO-1
Hybrid 1
PGA
GEVO-1
Hybrid 1
PGA

Generation
5
5
5
10
10
10
15
15
15
20
20
20

Worse
7
16
10
5
13
8
5
12
8
12
12
7

No. ofG 
No change

14
3

20
9
2
12
9
2
12
2
2
12

As com] 
Better

79
81
70
86
85
80
86
86
80
86
86
81

)!ared to initi 
30%better

2
5
2
5
6
6
7
6
6
7
6
6

al populatio 
50%better

0
1
0
2
1
0
3
1
0
3
1
0

n 
70%better

0
0
0
1
0
0
1
0
0
1
0
0

Table 5.2. Comparison of GEVO-1, hybrid 1 and standard small population GA 
with a population often and a generation gap of 0.7.

5.2.1.2 Hybrid Two - GEVO-2

The second dynamic hybrid (GEVO-2) also changed from pure GA to GA 

with EVOP as the generations increased. Compared to GEVO-1, EVOP was 

introduced earlier after generation ten, rather than after generation fifteen. Although 

individual trials were different, the aggregated results which are in classified ranges 

rather than specific numbers, shown below in table 5.3, show no difference from 

those achieved using the first dynamic hybrid, GEVO-1, shown in table 5.2.

Generation
5
10
15
20

Worse
7
5
5
12

No. ofC 
No change

14
9
9
2

rAs com 
Better

79
86
86
86

P a red to initia 
30%better

2
5
7
7

1 population 
50%better

0
2
3
3

70%better
0
1
1
1

Table 5.3. Performance of GEVO2 hybrid GA with a population often and a 
generation gap of 0.7.
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The results indicated that the averaged similarities are due to the small 

population size and few number of generations in these hybrid GAs. A further brief 

study with much larger populations and the EVOP being introduced to generations 

much further apart, did show a difference, but the difference between these small 

hybrids was not sufficient to detect any improvement.

5.2.1.3 Hybrid Three - GEVO-3

The first two dynamic hybrids were used to investigate the effect of 

introducing EVOP to a GA search during the last few generations. Although 

counterintuitive, the third dynamic hybrid (GEVO-3) is a valid test hybrid as it is 

designed to show if changing the search method from GA to combined GA with 

EVOP, then back to GA, influences the solutions. Results obtained using this hybrid 

are shown in table 5.4.

Generation
5
10
15
20

Worse
7
12
11
11

No. ofG 
No change

14
2
2
2

rAs com 
Better

79
86
87
87

p ared to initia 
30%better

2
5
7
7

1 population 
50%better

0
2
3
3

70%better
0
1
1
1

Table 5.4. Performance of GEVO3 hybrid GA with a population often and a 
generation gap of 0.7.
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As expected the third hybrid gave a similar performance to the first two 

dynamic hybrids in the first five generations as all three were purely GA at this 

stage. For generations ten and fifteen GEVO-3 found more solutions that were 

worse than the initial population than the other dynamic hybrids, but only a couple 

of the strings remained unchanged. GEVO-3 found marginally more improved 

solutions than any of the other GAs, hybrid or standard small population. This result 

is most probably due to EVOP being introduced earlier in the search than the 

previous dynamic GAs. It was therefore decided that further investigation into early 

introduction of EVOP was required before a more general statement can be made.

5.2.1.4 Hybrids Four and Five - GEVO-4 and GEVO-5

These two hybrids will be discussed together as both were used to investigate 

the effect of using EVOP in increasing numbers of generations as the GA proceeds. 

With GEVO-4 the EVOP element is quickly introduced in the second generation for 

one generation, then four generations later for two generations, then four generations 

later for three generations and finally four generations later for four generations. For 

GEVO-5 the EVOP element is not introduced until the fifth generation for one 

generation, then activated for the tenth and eleventh generations, fourteenth, 

fifteenth and sixteenth generations and finally in the eighteenth, nineteenth and 

twentieth generations. The summarised results from running these dynamic hybrid 

GAs at a generation gap of 0.7 is shown in table 5.5.
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Generation
5
10
15
20

Worse
15
10
10
10

No. ofG 
No change

3
2
2
2

rAs com 
Better

82
88
88
88

P ared to initia 
30%better

2
4
6
6

1 population
50%better

0
1
2
2

70%better
0
0
0
0

Table 5.5. Performance of GEVO-4 hybrid GA with a population often and a 
generation gap of 0.7.

Both dynamic GAs gave similar results, which when averaged and collated 

into ranges produced almost identical results. As with the other hybrids tested in 

this section, both GEVO-4 and GEVO-5 were more mobile than the standard small 

population GA. This mobility resulted in more chromosomes giving worse solutions 

than the initial population than for any of the other dynamic hybrid GAs. Also 

GEVO-4 and GEVO-5 produced the least number of chromosomes with no change 

compared to any of the other dynamic hybrid GAs. The number of chromosomes 

with no change from the initial population was comparable to those hybrids with 

EVOP introduced from the first generation. This style of hybrid GA with EVOP 

only present in selected generations gave the greatest number of improved solutions 

in all generations although it did not give solutions with the greatest improvement.

5.2.1.5 Hybrids Six and Seven - GEVO-6 and GEVO-7

As hybrids had been designed to test the effect of introducing EVOP to later 

generations and selected generations throughout, it was considered appropriate to 

also test the effect of introducing EVOP only to the early generations of the hybrid 

GA. This would give a clearer understanding of the influence of the local EVOP
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element on the overall search. GEVO-6 is a GA that uses EVOP in generations one 

to five only and for GEVO-7 EVOP is present only for generations one to ten. 

Results of the testing of GEVO-6 and GEVO-7 are shown below in table 5.6 and 5.7 

respectively.

Generation
5
10
15
20

Worse
20
17
17
17

No. ofG 
No change

2
1
1
1

JAs com 
Better

78
82
82
82

P ared to initia 
30%better

2
5
5
6

il population 
50%better

0
1
1
1

70%better
0
1
1
1

Table 5.6. Performance of GEVO-6 hybrid GA with a population often and a 
generation gap of 0.7.

Generation
5
10
15
20

Worse
23
18
16
16

No. ofG 
No change

9
5
5
5

>As com 
Better

68
77
79
79

P ared to initia 
30%better

2
5
5
5

1 population 
50%better

0
0
0
0

70%better
0
0
0
0

Table 5.7. Performance of GEVO-7 hybrid GA with a population often and a 
generation gap of 0.7.

Although for the number of solutions found that were worse than the original 

population, with both GEVO-6 and GEVO-7, the figures indicate a poor 

performance compared to the other dynamic hybrids in this section. It should be 

noted that the number of solutions is similar to those recorded for the original static 

hybrid (Hybrid 1). There is no significant difference between these hybrids and 

other GAs in the number of solutions found that appeared in the original population.
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Neither of these dynamic hybrids, GEVO-6 and GEVO-7 performed well in finding 

improved solutions. GEVO-6 with EVOP used only to generation five, gave better 

results than GEVO-7 with EVOP in generations one to ten. Despite the better 

performance, the results from GEVO-6 were only marginally better than those 

obtained with a standard small population GA. These results confirm that 

combining EVOP with a GA purely in the initial generations is detrimental to the 

search.

5.2.2 Testing on De Jong's Second Function

As with previous hybrids, these dynamic hybrids were also tested on further 

test functions including De Jong's second test function. For reference, the results 

from the comparable standard small population GA (PGA) are shown in table 5.8 

and the static hybrid (Hybrid 1) in table 5.9. The dynamic hybrids tested are those 

listed earlier in table 5.1. Table 5.10 shows the results of testing GEVO-1 on De 

Jong's second test function.

Generation
5
10
15
20

Worse
9
9
9
8

No. ofC 
No change

14
11
11
11

JAs com 
Better

77
80
80
81

P ared to initia 
30% better

49
56
55
55

1 population 
50%better

39
49
49
49

70% better
30
41
42
42

Table 5.8. Performance of PGA with a population often and a generation gap of 
0.8.
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Generation
5
10
15
20

Worse
27
24
24
24

No. ofG 
No change

3
2
2
2

rAs com 
Better

70
74
74
74

P ared to initia 
30%better

42
50
51
51

1 population 
50%better

35
39
40
40

70%better
29
33
34
34

Table 5.9. Performance of Hybrid 1 with a population often and a generation gap of 
0.8.

Generation
5
10
15
20

Worse
12
9
9
17

No. ofG 
No change

11
8
8
0

rAs com 
Better

77
83
83
83

P ared to initia 
30%better

54
60
60
60

1 population 
50%better

46
48
48
52

70%better
37
37
37
36

Table 5.10. Performance of GEVO-1 hybrid GA with a population often and a 
generation gap of 0.8

As with previous tests GEVO-1 found more solutions that were worse than 

the original population but the chromosomes that showed no change were fewer than 

the standard small population GA. GEVO-1 found more improved solutions than 

either Hybrid 1 or PGA. The solutions it found were of a better quality than Hybrid 

1 but not quite as good as the standard small population GA, as demonstrated by the 

percentage improvements shown on the right-hand side of the tables.

The results for GEVO-2 are shown in table 5.11. As expected the results for 

generations five and ten are exactly the same as those for GEVO-1, as the hybrid 

GAs are identical to this point, however the results then diverge. GEVO-2 finds 

more solutions that are worse than the original population and has fewer 

chromosomes with no change. This is especially apparent in generation 15: EVOP
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is introduced in generation 16 for GEVO-1 and generation 11 for GEVO-2. GEVO- 

2 finds one less improved solutions than GEVO-1 but they are of a comparable 

quality.

Generation
5
10
15
20

Worse
12
9
18
18

No. ofG 
No change

11
8
0
0

rAs com 
Better

77
83
82
82

P ared to initia 
30%better

54
60
59
59

1 population
50% better

46
48
51
51

70%better
37
37
36
36

Table 5.11. Performance of GEVO-2 hybrid GA with a population often and a 
generation gap of 0.8

GEVO-3 again has a mobile population, but although it gives fewer 

improved solutions than other GAs, the improved solutions are of a superior quality 

when compared to the static hybrid or standard small population GA. For the 

particular set of runs illustrated in table 5.12, movement in the population is almost 

complete by generation ten.

Generation
5
10
15
20

Worse
11
14
14
14

No. ofG 
No change

18
5
5
5

rAs com 
Better

71
81
81
81

P ared to initia 
30%better

56
62
62
62

il population 
50%better

43
54
54
54

70%better
35
45
45
46

Table 5.12. Performance of GEVO-3 hybrid GA with a population often and a 
generation gap of 0.8
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Over the large set of trials for the hybrids which combine increasing EVOP 

in the GA as the generations increase (GEVO-4 and GEVO-5) individual runs 

differed but gave identical results when averaged and collated into ranges as shown 

in tables 5.13 and 5.14. As discussed in section 5.2.1.4. this is due to the small 

number of individuals in a population and the relatively few generations.

Generation
5
10
15
20

Worse
19
14
14
14

No. ofG 
No change

0
0
0
0

rAs com 
Better

81
86
86
86

P ared to initia 
30%better

53
62
63
63

1 population 
50%better

49
53
53
53

70%better
36
37
37
37

Table 5.13. Performance of GEVO-4 hybrid GA with a population often and a 
generation gap of 0.8.

Generation
5
10
15
20

Worse
19
14
14
14

No. ofC 
No change

0
0
0
0

rAs com 
Better

81
86
86
86

P ared to initia 
30% better

53
62
63
63

1 population 
50%better

49
53
53
53

70% better
36
37
37
37

Table 5.14. Performance of GEVO-5 hybrid GA with a population often and a 
generation gap of 0.8.

Despite the averaging of results masking some of the features of the hybrids, 

particularly GEVO-4 and GEVO-5, it was considered important that a large number 

of runs were necessary for each trial due to the probablistic nature of GAs, as 

discussed in section 5.1.1. But to analyse this data set of four thousand individual
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numbers some form of aggregation was necessary. Also it was vital that each trial 

was arranged and analysed in an identical manner to allow fair comparisons.

The results show that both of these dynamic hybrids have mobile 

populations, with both GEVO-4 and GEVO-5 registering no chromosomes that have 

not changed from the initial population. The tables show that these hybrids found 

more improved solutions than either the standard small population GA or Hybrid 1. 

However these hybrids show slightly fewer of the most improved solutions.

The remaining two dynamic hybrids, GEVO-6 and GEVO-7, were designed 

to test the effect of only utilising EVOP during the first few generations, as 

described in table 5.1. GEVO-7 has a more mobile population than GEVO-6, but 

finds fewer improved solutions, as shown in tables 5.15 and 5.16. GEVO-6 

outperformed both the standard small population GA and Hybrid 1 in terms of the 

quality of the improved solutions found.

Generation
5
10
15
20

Worse
16
14
15
15

No. ofC 
No change

4
5
5
5

JAs com 
Better

80
81
80
80

P ared to initia 
30%better

54
62
61
61

1 population 
50%better

42
54
54
54

70% better
33
44
44
45

Table 5.15. Performance of GEVO6 hybrid GA with a population often and a 
generation gap of 0.8.
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Generation
5
10
15
20

Worse
23
19
19
19

No.ofG 
No change

3
3
3
3

rAs com 
Better

74
78
78
78

P ared to initia 
30%better

50
55
56
56

1 population
50%better

36
42
42
42

70%better
25
34
35
35

Table 5.16. Performance of GEVO7 hybrid GA with a population often and a 
generation gap of 0.8.

Generally these dynamic hybrids gave a performance, which if judged solely 

on number of improved solutions would indicate a relatively poor performance. 

However, further analysis of the results show that the dynamic hybrids consistently 

gave a greater number of superior solutions in the early generations and 

outperformed the comparable static hybrid in nearly all cases.

5.2.3 Testing on Other Functions

To complete this set of tests the dynamic hybrids were tested on the other 

three functions in De Jong's traditional test suite: Rastrigin's function, Schwefel's 

function and Griewangk's function. The results for each function are collated into a 

table with the solutions found at generations five, ten, fifteen and twenty for each of 

the seven dynamic hybrids, the comparable static hybrid (Hybrid 1) and standard 

small population GA (PGA). The seven dynamic hybrids are those described in 

table 5.1 and discussed in the previous two sections, 5.2.1 and 5.2.2. On the 

following pages are the results in tables 5.17, 5.18 and 5.19 for Rastrigin's function, 

Schwefel's function and Griewangk's function respectively.
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The GAs recorded in table 5.17 were tested on Rastrigin's function. In 

general all of the GAs performed well with over 80% of chromosomes returning 

improved values. However, apart from GEVO-6 the dynamic hybrids returned 

slightly fewer improved solutions, but of those improved solutions the dynamic 

hybrids gave more solutions with a greater improvement. The higher mobility of the 

dynamic hybrid populations initially appeared to be a disadvantage when looking at 

whether the population had deteriorated, remained unchanged or improved, but 

closer examination revealed that the dynamic hybrids found more of the higher 

quality solutions.

Schwefel's function was the subject of the test for the GAs in table 5.18. 

None of the GAs tested gave a particularly good performance, with no GA finding a 

solution with an improvement of greater than 30%. The dynamic hybrids did not 

find as many improved solutions as either the standard small population GA or the 

static hybrid. The improved solutions found by the dynamic hybrids were of a 

similar quality to the other GAs but many of the population literally disappeared 

down Schwefel's dips as this function is particularly deceptive to local search 

algorithms. The dynamic hybrids gave a poor performance but the best solutions 

found were as good as those found using the other GAs.

The final set of tests for these dynamic hybrids was on Griewangk's function 

and the results are shown in table 5.19. In contrast to the previous (Schwefel's)
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GA
PGA
PGA
PGA
PGA
Hybrid 1
Hybrid 1
Hybrid 1
Hybrid 1
GEVO-1
GEVO-1
GEVO-1
GEVO-1
GEVO-2
GEVO-2
GEVO-2
GEVO-2
GEVO-3
GEVO-3
GEVO-3
GEVO-3
GEVO-4
GEVO-4
GEVO-4
GEVO-4
GEVO-5
GEVO-5
GEVO-5
GEVO-5
GEVO-6
GEVO-6
GEVO-6
GEVO-6
GEVO-7
GEVO-7
GEVO-7
GEVO-7

Generation
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20

Worse
3
1
1
1
6
6
6
6
13
8
7
10
9
6
12
12
4
10
10
10
15
10
10
10
16
13
13
13
8
4
4
4
19
13
13
13

No. ofG 
No change

6
5
5
5
1
1
1
1

12
9
9
4
9
5
1
2
10
3
3
3
6
6
6
6
5
5
5
5
2
2
2
2
3
4
4
4

rAs compare 
Better

91
94
94
94
93
93
93
93
75
83
84
86
82
89
87
86
86
87
87
87
79
84
84
84
79
82
82
82
90
94
94
94
78
83
83
83

:d to initial p
30%better

12
21
21
21
12
19
19
19
32
41
43
41
20
32
33
7

24
39
39
41
20
25
25
26
19
27
30
30
27
44
44
44
21
34
35
35

opulation 
50% better

7
11
11
11
7
10
10
10
15
20
21
19
8
12
13
3
14
19
20
20
6
7
7
7
6
13
14
14
10
19
20
20
11
17
18
18

70%better
1
3
3
3
3
4
4
4
5
8
8
9
2
4
4
1
6
8
9
9
1
1
1
1
3
7
7
7
3
9
9
9
4
9
10
10

Table 5.17. Performance of GAs on Rastrigin's function with a population often 
and a generation gap of 0.8.
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GA
PGA
PGA
PGA
PGA
Hybrid 1
Hybrid 1
Hybrid 1
Hybrid 1
GEVO-1
GEVO-1
GEVO-1
GEVO-1
GEVO-2
GEVO-2
GEVO-2
GEVO-2
GEVO-3
GEVO-3
GEVO-3
GEVO-3
GEVO-4
GEVO-4
GEVO-4
GEVO-4
GEVO-5
GEVO-5
GEVO-5
GEVO-5
GEVO-6
GEVO-6
GEVO-6
GEVO-6
GEVO-7
GEVO-7
GEVO-7
GEVO-7

Generation
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20

Worse
41
46
46
46
40
44
44
44
79
83
84
82
84
86
91
91
80
87
88
89
84
90
90
90
85
88
89
89
83
85
85
85
86
89
89
89

No. ofG 
No change

6
4
4
4
2
2
2
2
10
8
8
3
5
6
2
2
8
2
1
1
1
0
0
0
2
2
2
2
4
3
3
3
2
3
3
3

As compare 
Better

53
50
50
50
58
54
54
54
11
9
8
15
11
8
7
7
12
11
11
10
15
10
10
10
13
10
9
9
13
12
12
12
12
8
8
8

d to initial p
30%better

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

opulation 
50% better

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

70% better
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Table 5.18. Performance of GAs on Schwefel's function with a population often 
and a generation gap of 0.8.
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GA
PGA
PGA
PGA
PGA
Hybrid 1
Hybrid 1
Hybrid 1
Hybrid 1
GEVO-1
GEVO-1
GEVO-1
GEVO-1
GEVO-2
GEVO-2
GEVO-2
GEVO-2
GEVO-3
GEVO-3
GEVO-3
GEVO-3
GEVO-4
GEVO-4
GEVO-4
GEVO-4
GEVO-5
GEVO-5
GEVO-5
GEVO-5
GEVO-6
GEVO-6
GEVO-6
GEVO-6
GEVO-7
GEVO-7
GEVO-7
GEVO-7

Generation
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20

Worse
3
2
2
2
5
3
3
3
10
8
8

20
6
3
12
12
11
10
10
10
14
10
10
10
16
13
13
13
17
16
16
16
15
12
12
12

No. ofG 
No change

7
5
5
5
5
4
4
4
15
11
11
2
11
8
4
4
9
2
2
2
7
6
6
6
4
5
5
5
2
2
2
2
2
2
2
2

As compare 
Better

90
93
93
93
90
93
93
93
75
81
81
78
83
89
84
84
80
88
88
88
79
84
84
84
80
82
82
82
81
82
82
82
83
86
86
86

•d to initial p 
30%better

20
26
26
26
16
25
25
25
42
47
47
46
38
48
47
47
45
56
56
56
32
44
45
45
39
43
43
43
35
44
44
44
46
51
51
51

opulation 
50%better

14
17
18
18
13
17
18
18
24
35
35
33
21
34
31
31
28
39
39
39
19
28
30
30
22
27
27
27
21
31
31
31
30
42
42
42

70%better
9
13
14
14
9
11
11
11
14
20
20
18
14
18
20
20
15
19
19
19
7
16
17
17
14
21
21
21
13
22
22
22
19
25
25
25

Table 5.19. Performance of GAs on Griewangk's function with a population often 
and a generation gap of 0.8.
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function, all GAs gave good results, this is despite Griewangk's function also 

containing many deceptive local minima. The populations of the dynamic hybrids 

again gave the most solutions which were worse than the initial population but 

generally found improvements for more than 80% of the solutions. The standard 

small population GA and the static hybrid both found the highest number of 

improved solutions, yet all the dynamic hybrids gave a higher number of solutions 

with greater improvement. This indicates a higher quality to the population of 

solutions found by the dynamic hybrids.

5.3 DYNAMIC HYBRID INFLUENCES 

5.3.1 Generation Gap

As with the static hybrids in chapter four, the dynamic hybrids were tested 

over several generation gaps to determine if this setting could affect the solutions 

found. After previous testing and discussion in section 4.3.2.2 the trials for the 

dynamic hybrids were conducted over a generation gap of 0.6 to 1.0.

Table 5.20 shows the results obtained from trials using GEVO-1 on De 

Jong's first function with a population of ten individuals. Mathematical analysis 

showed that there is no clear correlation between generation gap and improvement in 

solutions found, although there is a distinct peak at a generation gap of 0.8. This 

conclusion is in contrast to the findings for the standard small populations discussed
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in section 4.3.2.2 where there was a relationship between generation gap and quality 

of solutions found. The changing nature of the EVOP element in these dynamic 

hybrids is shown to influence performance more than generation gap, which is 

demonstrated by these results.

Gap
0.6
0.6
0.6
0.6
0.7
0.7
0.7
0.7
0.8
0.8
0.8
0.8
0.9
0.9
0.9
0.9
1.0
1.0
1.0
1.0

Generation

5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20

Worse

12
11
9
10
7
5
5
12
8
6
5
7
5
5
5
16
4
4
4
11

No. ofG 
No change

14
5
5
1

14
9
9
2
8
5
5
1

18
14
14
2
14
14
14
5

.As compare 
Better

74
84
86
89
79
86
86
86
84
89
90
92
77
81
81
82
82
82
82
84

:d to initial p 
30%better

3
6
7
7
2
5
7
7
8
13
13
13
2
4
5
5
7
9
9
9

opulation 
50%better

0
0
1
1
0
2
3
3
0
1
1
2
0
0
1
1
1
2
2
2

70%better
0
0
0
0
0
1
1
1
0
1
1
1
0
0
0
0
1
1
1
1

Table 5.20. Performance of GAs on De long's first function with a population of 
ten.

Since De long's first function has a smooth surface area and is the simplest 

function in the test suite, the lack of correlation found would indicate that no 

correlation would be found on the more complex surfaces of the other test functions.
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An extensive set of tests were not carried out on the other test functions as a sample 

of trials indicated that there was indeed no correlation.

5.3.2 Effect of EVOP on Search Movement

Several hybrids were created to determine any effect the inclusion of EVOP 

at various stages of the GA may have on the solutions found. As expected the 

dynamic hybrids had more mobile populations than the standard small population 

GAs, but generally the populations were less mobile than those of the static hybrids 

which included EVOP in all generations. This shows clearly that the EVOP element 

is affecting the performance of the hybrid GAs and the tests show that the presence 

of EVOP in a GA gives it more mobility.

The two hybrids with EVOP active only the later generations, GEVO-1 and 

GEVO-2, gave similar results. Both of these hybrids generally gave more improved 

solutions than either the standard small population GA or the static hybrid and those 

improved solutions were typically of a higher quality.

EVOP was only activated for the middle generations of GEVO-3 and this 

influence could be clearly seen on De Jong's first test function. The population was 

more mobile in generation ten and fifteen than the other generations with no EVOP 

present which resulted in marginally more improved solutions being found.
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The other dynamic hybrids generally gave good performances with mobile 

populations which may not find as many improved solutions, but those found were 

generally of equal or better quality.

5.3.3 Comparison of Dynamic Hybrids

To compare the performance of the dynamic hybrids, each was ranked for its 

performance on the test functions which is shown in table 5.21. The ranking of the 

hybrids were then combined to give an overall rank which is shown in table 5.22.

As can be seen in table 5.22 the dynamic hybrids GEVO-3 and GEVO-4 

gave the best performances. GEVO-3 contains EVOP from generation six to fifteen 

and GEVO-4 contains EVOP in generations two, six, seven, eleven, twelve, thirteen, 

seventeen, eighteen, nineteen and twenty, so both contain a local search element in 

ten of the twenty generations.

Rank
1
2
3
4
5
6
7

Function 
De Jong 1 De Jong 2 Rastrigin Schwefel Griewangk
GEVO-4/5

-
GEVO-3
GEVO-2
GEVO-1
GEVO-6
GEVO7

GEVO-4/5
-

GEVO-1
GEVO-2
GEVO-3
GEVO-6
GEVO7

GEVO-6
GEVO-3
GEVO-1
GEVO-2
GEVO-4
GEVO-7
GEVO-5

GEVO-1
GEVO-6

GEVO-3/4
-

GEVO-5
GEVO-7
GEVO-2

GEVO-3
GEVO-7
GEVO-2
GEVO-4
GEVO-6
GEVO-5
GEVO-1

Table 5.21. Ranked performance of dynamic hybrids.
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Rank
1
2
3
4
5
6
7

Hybrid
GEVO-3/4

-
GEVO-1
GEVO-5
GEVO-6
GEVO-2
GEVO-7

Table 5.22. Rank of overall performance by dynamic hybrids.

GEVO-2 also contains EVOP in ten of the twenty generations but ranks 

much lower in sixth place. The main difference between this hybrid and the best 

performers is that the EVOP is present in the last ten generations. This implies that 

introducing EVOP earlier into the GA givers better results, whereas it is often 

assumed that a search should change from global GA to local (Goldberg, 1988(b), 

Renders and Bersini, 1994).

The relatively poor performance of GEVO-6 and GEVO-7 indicate that 

EVOP is of little value if only used in the early stages of the search. GEVO-2 is 

perhaps one of the more surprising results as the similar hybrid GEVO-1 ranks third 

whereas GEVO-2 ranks sixth. This indicates that EVOP does have a value as the 

search progresses, but as earlier discussion concludes, early introduction of EVOP 

with some EVOP in the later stages is the best combination. EVOP does not need to 

be present in every generation of the GA but its presence enhances the quality of the 

solutions found.
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5.4 SUMMARY

Experimentation has shown that the generation gap has little influence on 

these dynamic hybrids. As discussed earlier in Chapter 4, the generation gap was 

shown to have an influence on the simpler functions for the standard small 

population GA, but this influence was much less apparent with the static hybrids. 

This was attributed to the presence of EVOP. Since EVOP is also present in these 

dynamic hybrids but in a less stable manner, the influence of the generation gap has 

been overpowered by the influence of EVOP.

By comparison of the dynamic hybrids to both the standard small population 

GAs and the static hybrids, it was demonstrated that the EVOP local search element 

influences the mobility of the search. EVOP was shown to make the search more 

active, ensuring even with small populations and few generations that there is 

greater change from one generation to the next. This is why the static hybrids where 

more mobile than the dynamic hybrids which contained less EVOP.

The performance of several different dynamic hybrids were compared over 

the five test functions used throughout these studies to determine the optimum 

combination of local and global, EVOP and GA, search. The results demonstrated 

that using the EVOP local search only in the early generations was not of value. The 

best performing hybrids had EVOP present in half of their generations, but rather 

than running the global GA search then introducing the local EVOP search, the best
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combination included an early introduction of EVOP with some EVOP also present 

in the later generations. EVOP does not need to be present in all generations of the 

search, but its presence enhances the quality of solutions found.

The limited availability of published works for comparison of the small 

population hybrids tested in both this and the previous chapters, coupled with the 

lack of detailed breakdown of conclusions drawn from many experiments, for direct 

evaluation led to the consideration of the value of benchmarking for GAs, which is 

explored in the next chapter.
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6. BENCHMARK TESTING AND APPLICATIONS

The aim of this chapter is to discuss the benefits and problems of benchmarking 

and its applicability to GA and GA hybrid research. The current use of 

benchmarking for GAs is then examined, before an illustration of the investigations 

undertaken to examine the performance of the hybrid GAs on a range of further 

'benchmark' test functions. The areas of application for small population GAs are 

discussed before potential applications for the hybrids tested in this study are 

considered and implementation illustrated by an example.

6.1 BENCHMARKING

Benchmarking has recently become a prominent issue for the manufacturing 

sector, although the practice of benchmarking has been conducted for many years in 

some form in most sectors of industry. The increased acceptance, or in some cases 

insistence for companies to perform to International Standards, such as the 

ISO 14000 series or QS9000, has raised awareness of the need to measure 

performance. Standards often state actual values or specific dimensions that must be 

achieved for a product to be certified as reaching the required standard. External 

auditing ensures that the records and methods of measurement meet the required 

regulations.
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However many standards, more especially those published recently, e.g. 

ISO9000 series, do not state a specific dimension or value to be attained but specify 

a process for monitoring, maintaining and auditing records. The move to more 

comprehensive performance measurement by industry, fuelled by the 'quality 

movement', has led to a wider interest in benchmarking, as measured performance 

does not indicate the relative position of a company or its product(s) in the market 

place unless a comparison is made to competitors. Unfortunately as industrial 

competitors are obviously in competition with each other, there is a great 

unwillingness to share information on performance. This is one of the great hurdles 

facing benchmarking in many areas. Another area of concern is that all data must be 

comparable, accurate, reliable and auditable, since it is highly unlikely that a single 

person has collected or been able to fully audit all the data. Another issue is the fact 

that no two manufacturing units are exactly the same, prohibiting absolute direct 

comparisons.

6.1.1 Benchmarking for GAs

These problems also face the GA research community. Although academia 

has a greater tendency to share information than industry there is no widely accepted 

standard benchmark for GAs. As described earlier in Chapter 4, the best known 

'benchmark' for GAs is De Jong's test suite of five functions (De Jong, 1975) which 

have been widely used and appear in some of the works which provide the 

foundations to many people's interest in GAs, such as Goldberg (1988b). The
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functions provided an early base for GA performance comparison, but as GA 

research has matured and the applications have become more complex and diverse, 

these functions are no longer as prominent as they once were. Although 

understanding of GAs has progressed there is no definitive method of producing a 

competent GA. By not comparing a large amount of work, i.e. benchmarking, the 

GA community may be neglecting an area which could lead to a better 

understanding of how GA parameters influence performance.

A GA benchmark would require a range of functions at a set number of 

dimensions. In addition to these standard functions, it would be useful to study a 

range of application domain specific functions where applicable. The travelling 

salesman problem (TSP) is perhaps one of the best known examples of a GA 

benchmark test. Most fields of engineering have standard problems which students 

and practitioners regard as fundamental or contain the essence of an area of study. 

For example, scheduling has standard problems (Zalzala and Fleming, 1997, Muth 

and Thompson, 1963) such as the 3 x 3, 10 x 10, 20 x 20, M x N etc. where M is the 

number of machines and N is the number of jobs.

A GA benchmark would require more than a set of standard functions for 

testing, as there are many other influences on GA performance. As well as the 

quality of an answer, the time taken to reach a solution is also important to industry. 

The importance of the speed of a GAs varies with the application, but a wider range
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of uses would be possible if GAs were generally faster in implementation. Little 

published work gives information regarding the time taken to find a good or optimal 

solution or to complete a certain number of generations.

GA run time is also heavily influenced by the computer processor, platform 

and software used. It would be impractical for a benchmark to insist on a particular 

type of computer processor to be used at a certain speed or operating system, as the 

standard would soon be obsolete due to the rate of progress in computing science. 

Indeed the work for this study has been carried out on four different desktop PCs, 

two laptops and four different operating systems. Similarly, insistence on using 

particular software would restrict innovation. A standard method of reporting, 

which includes time taken, type of processor, software and the minimum computing 

requirements as well as the important issue of algorithm performance, such as 

quality of results found, would allow researchers to begin to compare their GAs.

The above details coupled with more widely published information on GA 

parameters such as population size, crossover operator or selection operator used 

could lead to a deeper understanding of GAs. There would be a wider industrial 

acceptance to use GAs if there is an audited body of evidence of the control 

parameters of GAs, as industrial investment money is often tightly wrapped in 

caution. The general public tend to believe that computers and software should be 

logical, repeatable and find 'the' answer every time and anything which does not,
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cannot therefore be reliable. One of the greatest hurdles for GAs is the 

psychological problem of being able to accept that the computer will find a good 

solution in a manner that is not exactly repeatable and that the computer may not 

find 'the' best answer every time.

In an ideal world there would be anonymous comparative studies to 

determine influences on GAs collected in a database, but this is probably infeasible 

due to many factors including funding issues. The onus is therefore on individual 

researchers or research groups to publish detailed findings to help with an 

understanding of GAs that could reach further than their own specific areas of 

research.

6.1.2 Benchmarking for EVOP

EVOP is an experimental design method that prescribes a method of 

calculating an answer. The only area where differences may occur is in the step 

size. Companies wishing to ensure that all plants use the same parameters could 

issue guidelines, such as Ford, General Motors and Chrysler who set out how to 

conduct an EVOP experiment in a QS-9000 handbook. As there are no other factors 

that can be changed to influence an EVOP experiment there is not a great need to 

benchmark the process. This is not to say that individual areas of application of the
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method cannot be benchmarked but that the methodology itself does not require a 

benchmark.

6.2 TESTING OF GAs

The hybrid GAs in this thesis were tested on a range of functions for which 

some standard data had been collated. Lazauskas (1999) lists several well known 

functions such as Rastrigin's and the weighted sphere functions along with the mean 

number of function evaluations required to attain 'roughly three digit accuracy'. 

Although only limited data is available from Lazauskas (1999) it is one of the few 

information sources that states GA results rather than benchmarking the actual test 

functions. Unfortunately the listed results were for large population algorithms, so it 

is not possible to make a direct comparison to the small population hybrid GAs 

studied in this thesis. However, since the functions are benchmarked it is valid to 

test the hybrid GAs created during this study to ascertain their performance.

6.2.1 Selection of Hybrid GAs for Testing

Three GA hybrids from the previous two chapters were selected for testing 

on this extended range of functions. The first hybrid is a static hybrid, referred to as 

EVOS, with a generation gap of 0.7, a population of twenty individuals and running 

to twenty generations. The other two hybrids are dynamic hybrids referred to as 

GEVO-3 and GEVO-4 in chapter five, as these two hybrids gave the best
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performances of all the dynamic hybrids tested over the range of functions. Both of 

these GAs are also tested with population sizes of twenty individuals and run to 

twenty generations. EVOP was added to these dynamic hybrids in the manner 

specified in section 5.2, which related to hybrids with no more than twenty 

generations. As the hybrids were to be tested with many more generations, these 

schemes were extended. GEVO-3, which has EVOP after the first and before the 

last five generations in a twenty generation hybrid, was redefined as having EVOP 

in the middle 50% of generations. GEVO-4, which has a scheme of more EVOP 

gradually being invoked, was extended in the same pattern and after the one 

hundredth generation every generation would contain EVOP. To complete the set of 

GAs a standard small population GA was also tested. This GA has a population of 

twenty with a generation gap of 1.0, referred to as SPGA.

6.2.2 Benchmark Functions

Four functions were selected from Lazauskas (1999), as the other functions 

were incompletely described. The benchmark functions were:

1. The Weighted Sphere Model „ -5.12<Xi < 5.12

'=' at n = 3 and n = 30 

global minimum = 0 at x; = 0)

which is 'considered easy for GAs' although at n = 3 the best GA listed was 

a traditional GA which took 805 evaluations to reach roughly three digit accuracy
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and for n = 30 a traditional GA reached a solution of approximately 5.0 after 25000 

evaluations.

2. Rastrigins' Function /(x) = „ * ^ + ^ (xf - A * cos(2ar,))

-5.12<Xj<5.12

A=10.0 (global minimum = 0 at X; = 0)

which is 'considered as difficult for most methods'. This is one of the 

functions extensively used in the previous two chapters. Lazauskas (1999) reports 

that three GAs reached a solution of 0.9 with between 3608 and 9900 evaluations at 

n=20. Others GAs failed to reach this level of accuracy but a traditional GA reached 

a solution of 45.0 after 25,000 evaluations.

3. Schwefels' Function

-500 < Xj < 500

V=418.9829 (global minimum = 0 at x; = 420.9687)

which is a difficult function as the 'second best' minimum is a long way 

from the global minimum and some algorithms can become trapped in the wrong 

region. This function is also one used extensively in the previous two chapters. This 

function was tested at n=10, with Lazauskas (1999) reporting GAs requiring 

approximately 100,000 or 200,000 evaluations to reach three digit accuracy.
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4. Griewangks Function 

-600 < Xi < 600
= i + — - r cos

MOOO if

(global minimum = 0 at x; = 0)

No description is given of this function, but it has many local minima and only four 

sets of records are listed. A two dimensional plot of this function can be seen in 

chapter 4, section 4.4.1.

The results reported in Lazauskas (1999) for each function raises the 

question of the starting points or seeding of the initial populations, which could also 

be stated in a GA benchmark: A standard set of random numbers, from the standard 

tables published in many mathematical text books or how seeding was achieved. 

Seeding is an area of active research, e.g. Lee and Rowlands (1998).

6.2.3 Performance of Hybrid GAs

For the weighted sphere model, the four GAs were tested at the settings 

shown in table 6.1. n is as specified in section 6.2.2. A summary of the results 

obtained on this model are given in table 6.2.

Setting
1
2
3
4

N
3
3

30
30

Number of generations
20
800
20
800

Table 6.1. Settings tested on the weighted sphere model
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Setting

1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4

GA

GEVO-3
GEVO-4
EVOS
SPGA

GEVO-3
GEVO-4
EVOS
SPGA

GEVO-3
GEVO-4
EVOS
SPGA

GEVO-3
GEVO-4
EVOS
SPGA

Best soluti 
Overall

2.024101
1.932815
2.063431
6.949797
1.618897
2.163712
2.322033
2.488694
1.131182
2.245126
2.526541
6.938774
2.040263
1.525893
1.574880
6.860670

on found: 
in last generation

2.024101
1.932815
2.063431
6.949797
1.775366
2.163712
2.322033
2.488694
1.407389
2.245126
2.526541
6.938774
2.040263
1.525893
1.574880
6.860670

Time for 100 
runs (seconds)

36.14
59.81
58.50
61.08

1606.20
2650.40
2317.20

588.31
36.20
58.99
58.77
58.44

1599.60
2663.80
5723.60
3119.50

Table 6.2. Summary of results obtained on weighted sphere model.

The benchmarks available stated for n=3 (settings 1 and 2) that a traditional 

GA took 805 evaluations to reach three digit accuracy. None of the hybrids 

managed to find the optimum, but GEVO-4 gave the best performance with only 

twenty generations and the standard small population GA the worst performance. 

When the GAs were run to eight hundred generations the performance of GEVO-4 

and EVOS deteriorated slightly, although both recorded a better result than the 

standard small population GA and GEVO-3 gave the best performance.
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At n=30 GEVO-3 and GEVO-4 again gave the best performances, with 

GEVO-3 returning the fastest times. Increasing the number of generations improved 

the performance of the standard small population GA (SPGA). The performance of 

the hybrids varied but did not show a great difference for the time spent running the 

extra generations. The benchmark reached the minimum after 40,000 evaluations, 

but since the philosophy of the hybrids is simplicity and speed they were not 

evaluated at this number of generations.

For Rastrigin's function at n=20, as specified in section 6.2.2, GEVO-3 gave 

the best performance in the quickest time. The results given in table 6.3 reinforce 

those findings stated in chapter five, where GEVO-3 gave a much better 

performance than GEVO-4. GEVO-3 gave a performance that was better than those 

cited in the benchmark in fewer generations, twenty compared to over six thousand, 

but the other hybrids did not achieve as good solutions. Perhaps the most significant 

figure is the speed of operation of GEVO-3. GEVO-3 was more than two and half 

times faster than the other hybrids, and completed one hundred run in less than 

seventy five percent of the time taken by the standard small population GA (SPGA).

GA

GEVO-3
GEVO-4
EVOS
SPGA

Best solut 
Overall

0.2058439
2.762299
2.762300
2.047870

on found: 
in last generation

0.205843
2.762299
2.762300
2.047870

Time for 100 
runs (seconds)

28.62
75.36
76.19
39.71

Table 6.3. Summary of results obtained on Rastrigin's function.
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Schwefel's sine root function was tested at n=10. One benchmark GA 

quoted 100,000 evaluations to reach the global minimum and the other at 8699 

evaluations, although the optimum was not found in four out of fifty runs. The 

results reflect the difficulty in optimising Schwefel's function with the second best 

minima distance from the global minimum. This challenge was also reflected in the 

results reported in section 5.2.3. This function at greater values of n often requires 

more than a million iterations to reach the global minimum with three digit accuracy. 

Table 6.4 shows the results obtained by the hybrids on Schwefel's function.

GA

GEVO-3
GEVO-4
EVOS
SPGA

Best solut 
Overall
2.54285
2.37426
2.54285
2.67640

on found: 
in last generation

2.92150
2.97632
2.97633
3.13214

Time for 100 
runs (seconds)

37.24
58.11
62.72
27.52

Table 6.4. Summary of results obtained on Schwefel's function.

Table 6.5 shows the results obtained on Griewangk's function with n=10. 

The benchmark GAs are reported to take approximately 100,000 evaluations to 

reach 0.1 with a standard GA, with a revolutionary GA "doing better". Another 

GA (Muhlenbein et al, 1991) is quoted to find the minimum to three digit accuracy 

in 59,520 evaluations. GEVO-3 and GEVO-4 gave similar performances, with both 

the standard small population GA and the static hybrid returning better performances 

in table 5.19 on Griewangk's function. The standard small population GA gives the
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best performance in the shortest time for twenty generations, although no GA finds 

the minimum. The results stated in table 6.5 are for the first one hundred runs 

recorded for each hybrid. Further testing produced slightly different results, but 

there was no improvement in the best solutions found. The repeating of 2.00432 

suggests that the hybrids became trapped at this value.

GA

GEVO-3
GEVO-4
EVOS
SPGA

Best solut 
Overall
2.00432
2.00432
2.00432
1.10433

on found: 
in last generation

2.00432
2.00432
2.00432
1.10433

Time for 100 
runs (seconds)

38.44
59.98
59.82
25.65

Table 6.5. Summary of results obtained on Greiwangk's function.

6.3 APPLICATIONS OF SMALL POPULATION GAs

Applications of traditionally sized GAs continue to grow in many different 

fields from circuit design to medicine. Research regarding small population GAs or 

micro GAs is on a much smaller scale, e.g. Goldberg (1989) and Goldberg et al. 

(1991) considered the sizing of populations. The relatively small amount of work 

published regarding the theory of small population GAs is reflected in published 

work regarding application of this technique. Reeves (1993) discuss the theory of 

small population GAs and suggests possible applications such as engineering design 

where the effect of a given number of parameters has to be determined by
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experiment and current methods, such as design of experiments, make simplifying 

assumptions. Small population GAs are suggested as a possible replacement for 

moderately sized design of experiment techniques. Dozier et al. (1994) used small 

population GAs to solve the N-Queens problem, where the challenge is to place N 

Queens on a N * N chessboard so that they cannot attack each other. Chen and Wu 

(1998) used relatively small population GAs for channel and data estimation, but the 

GAs run to thousands of generations.

6.3.1 Applications for Hybrid GAs

Hybrid GAs could potentially be used in areas that standard GAs have 

proved to be useful and there are many example applications of larger population 

hybrid GAs reported in recent conferences. The very small hybrid GAs studied here 

could also potentially be used in these areas and where time constraints currently 

make traditional GA application impractical.

Industry is yet to be widely convinced of the value of genetic algorithms or 

evolutionary computation in general (Poli, 1999). The small amount of work 

currently relating to small population GAs will hinder their adoption in the 

workplace.

Applications suitable for the hybrid GAs studied in this thesis include small 

scheduling or re-scheduling problems, e.g. a factory schedule completed by a
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standard large population GA on a weekly or daily basis, but if say 10% of the 

workforce phone in sick half an hour before the start of a shift and there is not 

sufficient time to run the full GA, potentially a hybrid small GA could be used to 

optimise a small portion of the schedule.

Monitoring a poorly or vaguely understood manufacturing process or 

machine with varying output is often monitored using design of experiments but this 

makes assumptions about the interactions of the parameters. Hybrid GAs could be 

used in this application especially if the parameters are constantly changing. This 

second suggestion is potentially the easier to code and test, providing a suitable 

machine and process is found.

6.3.1.1 Example implementation

To demonstrate that it is possible to apply a hybrid GA to an optimisation 

problem, sample tests were carried out and a small demonstration of implementing a 

hybrid GA is given below using a version of the travelling salesman problem.

The travelling salesman problem is generally the problem of determining a 

route for a salesman to visit each of N cities with given positions (xt, >>i) once, and 

only once, before returning to the home (start) city. This problem is NP-complete 

and so the implementation of a hybrid GA is demonstrated with a small number of 

cities, although it is possible to increase the number of cities for these hybrid GAs.
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For this simple demonstration there are four cities, A, B, C and D, with the 

co-ordinates as shown in figure 6.1.

A (0,0)

Figure 6.1 Positions of the cities.

Although real value representation is better suited to this particular problem 

with large values of N (number of cities), it is merely being used as a demonstration 

of implementation with an extremely low value of N, so binary representation is 

used, as discussed in Chapter 4. The path is represented in chromosomes of eight 

bits length as shown in figure 6.2. The first two bits represent the position of city A 

in the path, the second two bits the position of B in the path etc.

Chromosome

City

Position in path

1 1

A

third

0 1

B

first

0 0

C

start

1 0

D

second

Table 6.6 Path representation
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Although in the initial population the two 'start' bits could be viewed as 

redundant, in future generations they will retain the start points and so information 

will not be lost. With this form of representation several cities could be allocated to 

the same position in the path. This is overcome by using the left side of the 

chromosome as dominant. The position of city A in the path will always be as 

described by the chromosome, if city B is allocated the same position in the path as 

city A then the position will increase by one, a parallel with the operation of EVOP. 

If city C is allocated the same position as any of the previous cities then the position 

is increased by one, if this position is also occupied, then the original position of C is 

decreased by one, if this position is also occupied then the step size is increased and 

the method repeated until C is allocated a position in the path. This pattern also 

reflects the operation of EVOP and is continued until all cities have been allocated a 

position in the visit path.

The hybrids were capable of finding the optimum path for low numbers of 

cities (ten or less) but as the number of cities increased the representation becomes 

more inefficient. The principle of operation works but real valued representation is a 

more efficient method and these hybrids are not designed or expected to solve large 

problem spaces. As discussed in section, 6.3 small population GAs are not 

applicable for problems, such as the travelling salesman problem, that suit large 

population GAs. The main reason for this test was to demonstrate that the combined 

method could be applied to other domains than those demonstrated earlier.
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6.4 SUMMARY

Currently there is only a small number of benchmarks available and these are 

for large population GAs. The hybrid GAs tested here showed varying degrees of 

success, but it is difficult to give an accurate reflection of their performance as they 

were not "like for like" tested with other small population or hybrid GAs. 

Benchmarking of GAs has great potential to widen the understanding of the theory 

of the operators used by GAs provided a standard reporting format is adopted.

It is recommended that a GA benchmark would include a range of standard 

test functions, such as the De long test suite, at set dimensions and where applicable 

domain specific functions, such as the M x N scheduling problems. In addition to 

the settings used for the GA parameters, including population size, number of 

generations, crossover method, selection operators etc., a benchmark would also 

require a report on the computer processor, platform and software used and run 

times of the algorithms.

Small population GAs command only a small proportion of the research in 

the GA community and the number of applications reflects this. These GAs have 

potential some areas of application, but they may become more applicable if 

interaction of GA operators becomes better understood. The suggested 

benchmarking process could address this issue.
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7. CONCLUSIONS AND FURTHER WORK

7.1 CONCLUSIONS

The review of evolutionary computation and experimental design, in chapter 

two, identified genetic algorithms (GAs) and evolutionary operation (EVOP) as 

optimisation techniques that could be combined to develop a hybrid method which 

incorporates both global and local search ability. Further study of these techniques 

gave an understanding of their operation and parameters that could influence their 

performance.

An investigation into the software available to implement GAs and EVOP, 

described in chapter three, revealed that the newer technique, GAs, had many 

suitable software programs available either commercially or as development tools. 

The older technique of EVOP was only available in a couple of experimental design 

packages and solely as Simplex EVOP. An initial program was written in C++ for 

two factor EVOP. Analysis of the C++ programming process indicated that EVOP 

could be implemented on a spreadsheet. Two and three factor EVOP can now be 

carried out on the new software developed for this study, AutoEVOP, a program 

running in Microsoft Excel. Writing this program indicated that the algorithm could 

be encoded onto a relatively small computer chip with appropriate sensors or 

actuators for an inexpensive on-line automatic process optimiser. Due to the 

objective of creating a relatively fast optimisation technique with the potential to be
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applied in an industrial setting, the criteria for selecting the software included the 

requirement for any software to run on a 'standard' PC. A technique that requires 

expensive equipment or is time consuming is less likely to be used or developed, as 

demonstrated with the history of the EVOP method. The GA Toolbox was selected 

as it was inexpensive software that was flexible for experimentation yet ran in a 

widely available environment, Matlab, which runs on standard PCs with a Windows 

operating system.

The next step was to choose appropriate settings for the GA. This was discussed 

and results of experiments presented in chapters four and five. Binary had been 

shown to be the best form of coding for small population GAs and was used here as 

it also enabled a guaranteed step size for the EVOP element of the proposed hybrids. 

Any resulting algorithm was required to quickly reach a solution, so small 

population GAs with thirty or less individuals per generation were selected as the 

base for the new hybrids. The EVOP element was included as it would assist with 

preventing the small population GAs from prematurely converging. Testing of the 

new hybrids and conventional small population GAs was on a set of well known and 

documented functions that covered various types of search space from smooth 

simple curves to more complex spaces with many local minima.

As little literature exists relating to suitable settings for the very small population 

GAs studied in this thesis, a range of tests were undertaken which determined that
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stochastic universal sampling was a more suitable selection method than the 

traditional roulette wheel tournament. As the initial chromosomes were relatively 

short, single point crossover was selected. The simplest method of crossover 

reflected the EVOP philosophy and was quickly executed as code. As the 

population contained a small number of individuals, mutation operating at normal 

rates of one in a thousand or greater would have very little effect. Greatly increasing 

the mutation rate would risk turning the search into a random walk, so this operator 

was switched off. The EVOP adds an element of controlled mutation, so reducing 

the risks associated with not using mutation. The hybrid GAs outperformed the 

standard small population GAs and gave results in a much quicker time than 

standard large population GAs.

A set of experiments were conducted to determine any influence on the 

performance of the GAs by the value of the generation gap. Testing was carried out 

on the complete set of functions, but initially concentrating on the first two functions 

as they are the simpler spaces which allowed a clearer picture of the behaviour of the 

GAs. Generation gap, although dependent on search space, influenced the 

performance of the GAs. Improved solutions were generally found with higher 

generation gaps. The results of the empirical testing led to the recommendation that 

a generation gap of 0.7 should be used as a starting point for experimentation with 

small population GAs and their hybrids. All of the above experiments were also 

carried out with various population sizes. GAs with a larger population size giving,
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as expected, the best results, although this naturally increased the required run time. 

For all types of GA tested a population of five individuals was too small to produce 

acceptable results. Most further experimentation was carried out with populations of 

twenty individuals as these GAs were capable of improving the solutions found, yet 

were small enough to have a quick run time.

As previous testing had demonstrated that the addition of EVOP can improve the 

solutions found by a small population GA, further testing was carried out in chapter 

five to determine the influence of EVOP and if its presence was of greater 

importance in particular generations. Several hybrids with EVOP present in various 

combinations of the generations were tested. As anticipated these particular hybrids, 

referred to as dynamic hybrids, were not as mobile as the static hybrids with EVOP 

in all generations, but more mobile than the standard small population GAs. The 

hybrid GA with EVOP present in the middle generations and another with EVOP 

present in progressively more generations gave the best results of the dynamic 

hybrids tested. The results demonstrated that combing EVOP only in the early 

generations of a GA is of little value. Convention would suggest that the search 

should change from global to local as it progresses, but these tests show that the 

hybrids give better solutions with the early introduction of EVOP and some present 

in later generations. EVOP does not need to be present in every generation of the 

GA but its presence enhanced the quality of the solutions found. With the dynamic
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hybrids the influence of the generation gap was less significant, as it was 

overpowered by the influence of EVOP.

The experimentation undertaken raised the issue of benchmarking GAs which is 

discussed in chapter six. Although the hybrid GAs in this thesis had been tested on a 

range functions commonly found in the literature, publishing of this type of results 

information is not as common as it once was. This may be due to traditional style 

GAs now being used for applications, but important theory as to the precise nature 

of the influence of GA operators remains unknown and may remain so unless 

comparative testing, benchmarking, is undertaken.

To enable an understanding of the parameters which should be included in any 

future GA benchmark some of the better hybrids developed earlier in this study were 

benchmarked on a range of further functions. The study gave an indication of the 

difficulties in obtaining benchmark information or comparable results from more 

than one publication. The hybrids were tested on specific functions and timed for 

one hundred runs. The testing resulted in the following recommendation for a GA 

benchmark: standard set of test functions, such as De long's suite, additional 

application specific functions where appropriate; processor; platform; software used; 

as well as the traditional GA operator settings such as population size, number of 

generations, crossover operator and selection methods. A more detailed and
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consistent method of reporting would enable a database of cross referenced works to 

be established to aide a deeper understanding of the influence of GA parameters.

7.2 CONTRIBUTIONS

This thesis investigated the areas of evolutionary computation and experimental 

design to determine a novel method which combines both global and local search 

capabilities to find good, but not necessarily the best answer in a short length of 

time. To meet this objective there were several stages to the research which 

included the contributions described below.

A new piece of software named AutoEVOP was developed to implement two or 

three factor EVOP running on Microsoft Excel. Users can manually enter the names 

of the factors to be studied and the software will indicate the settings required to 

complete an EVOP experiment. Readings from the experiments are then entered 

and AutoEVOP will indicate if further experimentation is required or if a stop 

condition has been reached.

Several new GA - EVOP hybrids, which contain elements of global and local 

search, were created for this study. Static hybrids combined GA and EVOP 

searching in all generations, whereas the dynamic hybrids contained EVOP in a 

controlled number of generations.
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For very small populations, twenty or less individuals, stochastic universal 

sampling was demonstrated to be the most suitable method of selection, rather than 

the more traditional roulette wheel selection method. The performance of very small 

population EVOP hybrid GAs was shown to improve with larger generation gaps on 

simple functions and on more complex functions increasing the generation gap does 

not deteriorate performance. As a result of the testing carried out for this study a 

generation gap of 0.7 was recommended as a starting point for empirical searches 

using small population GAs and their hybrids. Due to the changing presence of 

EVOP, the generation gap has less influence on dynamic EVOP — GA hybrids 

compared to the static hybrids.

The EVOP local search element was shown to positively influence the 

performance of the small population GA search. The EVOP operator in the hybrid 

GA gave the greatest improvement in performance when present in the middle 

generations or with a progressively greater presence.

A recommendation of the information required to be reported for benchmarking 

GA performance is also presented. This includes processor, platform, software 

information as well as GA parameters such as population size, number of 

generations, crossover method and selection operators and results of testing on a set 

of standard test functions.
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7.3 FUTURE WORK

The range of applications for standard large population GAs continues to grow, 

but the acceptance of GAs in industry as an optimiser will be hindered until there is 

a greater understanding of the elements that control GA performance. Small 

population GAs are a niche area of GAs and as yet have limited application, but as 

understanding of GAs expands smaller populations have the potential to become the 

norm as large time consuming populations testing vast areas of the search space 

become unnecessary.

The current lack of use of the original EVOP technique could be due to the 

technique requiring a large number of repetitive calculations which prevented its use 

before the advent of widely available computing power in the form of the desktop 

PC. EVOP continues to have a small presence in many experimental design books, 

but despite being included in QS-9000 it continues to be under utilised. This may 

remain the case unless large manufacturers insist rather than suggest suppliers use 

EVOP or EVOP is coupled with modern shop floor data collection techniques and 

possibly integrated with expert systems and / or fuzzy logic rule bases.

The work carried out for this study should be extended by further testing of the 

hybrid GAs to establish the most efficient crossover operator. The hybrids would 

benefit from further evaluation on actual applications, although small population 

GAs currently have a very restricted repertoire, as discussed earlier. An evaluation
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of the criteria used to determine the suitability of a problem for GAs would be 

useful. Matlab is a useful tool and found in universities across the world but it is not 

as common in industry. The code for the hybrids could also be written in another 

language such as C or C++ which is commonly found in industry to allow 

experimentation on real industrial data without the need for re-entering large 

amounts of data. Although this study concentrated on small population GAs it 

would be interesting to apply the EVOP hybridisation technique to other 

applications using large population GAs.
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