
BOOK NO: 1818843 Bound by

Abbey
', Bookbinding Co.

116 Cathay! Terrace, Cardiff CF24 4HY
South Wales, U.K. Tel: (029) 2039 5682

www.bookbindersuk.com

NOT TO BE
TAKEN AWAY

Evolutionary Computation and
Experimental Design

Thesis Submitted to the University of Wales for the Degree of

Doctor of Philosophy

By

Meinwen Pryde, B.Eng.
Mechatronics Research Centre
Department of Engineering
University of Wales College, Newport
July 2001

Evolutionary Computation and Experimental Design

Summary

This thesis describes the investigations undertaken to produce a novel hybrid
optimisation technique that combines both global and local searching to produce
good solutions quickly. Many evolutionary computation and experimental design
methods are considered before genetic algorithms and evolutionary operation are
combined to produce novel optimisation algorithms. A novel piece of software is
created to run two and three factor evolutionary operation experiments. A range of
new hybrid small population genetic algorithms are created that contain evolutionary
operation in all generations (static hybrids) or contain evolutionary operation in a
controlled number of generations (dynamic hybrids). A large number of empirical
tests are carried out to determine the influence of operators and the performance of
the hybrids over a range of standard test functions. For very small populations,
twenty or less individuals, stochastic universal sampling is demonstrated to be the
most suitable method of selection. The performance of very small population
evolutionary operation hybrid genetic algorithms is shown to improve with larger
generation gaps on simple functions and on more complex functions increasing the
generation gap does not deteriorate performance. As a result of the testing carried
out for this study a generation gap of 0.7 is recommended as a starting point for
empirical searches using small population genetic algorithms and their hybrids. Due
to the changing presence of evolutionary operation, the generation gap has less
influence on dynamic hybrids compared to the static hybrids. The evolutionary
operation, local search element is shown to positively influence the performance of
the small population genetic algorithm search. The evolutionary operation element
in the hybrid genetic algorithm gives the greatest improvement in performance when
present in the middle generations or with a progressively greater presence. A
recommendation for the information required to be reported for benchmarking
genetic algorithm performance is also presented. This includes processor, platform,
software information as well as genetic algorithm parameters such as population
size, number of generations, crossover method and selection operators and results of
testing on a set of standard test functions.

Evolutionary Computation and Experimental Design

CONTENTS

Page

Summary.. i

Contents.. ii

List of Tables.. viii

List of Figures... xiii

Acknowledgements... xv

Declaration and Statements... xvi

1. Introduction.. 1-1

1.1. Background... 1-1

1.2. Aims of Research... 1-3

1.3. Outline of Thesis... 1-5

2. Review of Experimental Design and Evolutionary Computation.... 2-1

2.1 Experimental Design... 2-1

2.1.1 Introduction... 2-1

2.1.2 Properties of a Good Design............................. 2-2

2.1.3 Review of Experimental Design.......................... 2-3

2.1.3.1 One-at-a-time experimentation................ 2-3

2.1.3.2 Factorial experiments........................... 2-4

2.1.3.3 Fractional factorial experiments.............. 2-5

2.1.3.4 Randomisation and blocking.................. 2-6

n

Evolutionary Computation and Experimental Design

2.1.3.5 Simplex method................................. 2-7

2.1.3.6 Analysis of variance............................ 2-9

2.1.3.7 Taguchi method................................. 2-11

2.1.4 Evolutionary Operation................................... 2-18

2.1.5 Current Experimental Design............................ 2-21

2.2 Evolutionary Computation... 2-22

2.2.1 Introduction.. 2-22

2.2.2 Evolutionary Programming............................... 2-22

2.2.3 Evolution Strategies....................................... 2-23

2.2.4 Simulated Annealing...................................... 2-24

2.2.5 Genetic Programming..................................... 2-26

2.2.6 Genetic Algorithms... 2-28

2.3 Summary of the Selection of Methods for Experimentation.... 2-31

3. Evolutionary Operation and Genetic Algorithms........................ 3-1

3.1 Evolutionary Operation... 3-1

3.1.1 Example.. 3-1

3.1.2 EVOP Philosophy.. 3-10

3.1.3 EVOP Modifications...................................... 3-10

3.1.4 Demise of EVOP and Reasons for its Lack of Use... 3-14

3.1.5 Reviews of EVOP.. 3-15

3.1.6 Current UseofEVOP..................................... 3-17

3.1.7 AutoEVOP.. 3-18

in

Evolutionary Computation and Experimental Design

3.2 Genetic Algorithms... 3-21

3.2.1 Schemata.. 3-22

3.2.2 Generic Genetic Algorithm............................... 3-23

3.2.2.1 Initial population................................ 3-24

3.2.2.2 New population generation.................... 3-24

3.3 Hybrid Genetic Algorithms.. 3-27

3.3.1 Pareto Optimality GAs.................................... 3-28

3.4 Software Selection... 3-31

3.4.1 EVOP Software.. 3-31

3.4.2 GA Software.. 3-32

3.4.3 Criteria for Selection...................................... 3-33

3.5 Summary... 3-33

4. Small Populations and Hybrids... 4-1

4.1 Selection of GA Parameters.. 4-1

4.1.1 Population Size.. 4-1

4.1.2 Coding Alphabet... 4-2

4.1.3 GA and Experimental Design Hybrids.................. 4-2

4.1.4 EVOP and GA Hybrid Method........................... 4-3

4.1.5 Test Functions.. 4-4

4.2 Selection of GA Operators.. 4-4

4.2.1 Population Selection....................................... 4-4

4.2.2 Crossover Operator.. 4-11

IV

Evolutionary Computation and Experimental Design

4.2.3 Mutation Operator... 4-11

4.2.4 Generation Gap... 4-12

4.3 Hybrid Testing... 4-13

4.3.1 Initial Migration and Robustness Testing............... 4-13

4.3.2 The Effect of the Generation Gap........................ 4-15

4.3.2.1 Generation gap with a population of twenty 4-16

4.3.2.1.1 DeJong's first function............. 4-16

4.3.2.1.2 DeJong's second function......... 4-21

4.3.2.1.3 Otherfunctions...................... 4-23

4.3.2.2 The influence of the generation gap......... 4-24

4.3.3 The Effect of a Small Number of Generations......... 4-25

4.3.3.1 DeJong's first function........................ 4-25

4.3.3.2 De Jong's second function..................... 4-27

4.3.3.3 Comparison at ten generations................ 4-28

4.3.4 The Effect of Population Size............................ 4-30

4.4 Summary... 4-31

5. Dynamic Hybrids... 5-1

5.1 Modification of Micro GAs.. 5-1

5.1.1 Selection of Parameters.................................... 5-1

5.1.2 Control of EVOP element................................ 5-2

5.2 Dynamic Hybrid Testing... 5-3

5.2.1 Testing onDe Jong's First Function..................... 5-4

Evolutionary Computation and Experimental Design

5.2.1.1 Hybrid One-GEVO-1......................... 5-4

5.2.1.2 Hybrid Two-GEVO-2........................ 5-5

5.2.1.3 Hybrid Three-GEVO-3....................... 5-6

5.2.1.4 Hybrids Four and Five - GEVO-4 and

GEVO-5... 5-7

5.2.1.5 Hybrids Six and Seven - GEVO-6 and

GEVO-7.. 5-8

5.2.2 Testing on De long's Second Function................. 5-10

5.2.3 Testing on Other Functions.............................. 5-15

5.3 Dynamic Hybrid Influences.. 5-20

5.3.1 Generation Gap... 5-20

5.3.2 Effect of EVOP on Search Movement.................. 5-22

5.3.3 Comparison of Dynamic Hybrids........................ 5-23

5.4 Summary.. 5-25

6. Benchmark Testing and Applications....................................... 6-1

6.1. Benchmarking... 6-1

6.1.1 Benchmarking for GAs.................................... 6-2

6.1.2 Benchmarking for EVOP................................. 6-5

6.2 Testing of GAs... 6-6

6.2.1 Selection of Hybrid GAs for Testing.................... 6-6

6.2.2 Benchmark Functions..................................... 6-7

6.2.3 Performance of Hybrid GAs.............................. 6-9

VI

Evolutionary Computation and Experimental Design

6.3 Applications of Small Population GAs............................ 6-13

6.3.1 Applications for Hybrid GAs............................. 6-14

6.3.1.1 Example implementation...................... 6-15

6.4 Summary... 6-18

7. Conclusions and Further Work.. 7-1

7.1 Conclusions.. 7-1

7.2 Contributions.. 7-6

7.3 Future Work.. 7-8

8. References.. 8-1

9. Bibliography... 9-1

vn

Evolutionary Computation and Experimental Design

LIST OF TABLES

Table Page

2.1. Scheme for one at atime experimentation.................................. 2-4

2.2. An example factorial experiment.. 2-5

2.3. The settings for the eight runs of a 24" 1 fractional factorial............... 2-6

2.4. Principles of ANOVA.. 2-9

2.5. Data set... 2-10

2.6. ANOVA table.. 2-10

2.7. Lg array... 2-15

3.1. Observations and initial calculations for cycle 2.......................... 3-3

3.2. Constants used in EVOP calculations...................................... 3-4

3.3. Calculations for assessing effects... 3-6

3.4. Calculation of effects for cycle 2.. 3-7

3.5. Observations and initial calculations for cycle 3.......................... 3-7

3.6. Calculation of effects in cycle 3... 3-9

4.1. Comparison of a sample of results for a population size of five........ 4-10

4.2. Comparison of a sample of selected results for a population size of

ten... 4-10

4.3. Comparison of a sample of selected results for a population size of

twenty... 4-10

vin

Evolutionary Computation and Experimental Design

4.4. Performance of a standard small population GA on De Jong's first

function at the 30th generation with a population of 20 individuals. 4-18

4.5. Performance of a hybrid GA with a population of 20 on De Jong's

first function at the thirtieth generation.................................. 4-18

4.6. Performance of a standard small population GA on De Jong's

second function at the thirtieth generation with a population of 20

individuals.. 4-21

4.7. Performance of a hybrid GA with a population of 20 on De Jong's

second function at the thirtieth generation.............................. 4-21

4.8. Results obtained on Schwefel's function................................... 4-23

4.9. Results obtained on Rastrigin's function................................... 4-24

4.10. Results obtained on Griewangk's function............................... 4-24

4.11. Performance of a standard small population GA with a population

of 20 on De Jong's first function at generation gap 0.7................ 4-26

4.12. Performance of a hybrid GA with a population of 20 on De Jong's

first function at a generation gap of 0.7.................................. 4-27

4.13. Performance of a standard small population GA with a population

of 20 on De Jong's second function at a generation gap of 0.7...... 4-28

4.14. Performance of a hybrid GA with a population of 20 on De Jong's

second function at a generation gap of 0.7.............................. 4-28

4.15. Performance of a standard small population GA at ten generations.. 4-30

4.16. Performance of ahybrid GA at ten generations......................... 4-30

IX

Evolutionary Computation and Experimental Design

5.1. Initiation of EVOP in hybrids.. 5-3

5.2. Comparison of GEVO-1, hybrid 1 and standard small population GA

with a population often and a generation gap of 0.7.................. 5-5

5.3. Performance of GEVO2 hybrid GA with a population often and a

generation gap of 0.7... 5-5

5.4. Performance of GEVO3 hybrid GA with a population often and a

generation gap of 0.7... 5-6

5.5. Performance of GEVO4 hybrid GA with a population often and a

generation gap of 0.7... 5-8

5.6. Performance of GEVO6 hybrid GA with a population often and a

generation gap of 0.7... 5-9

5.7. Performance of GEVO7 hybrid GA with a population often and a

generation gap of 0.7... 5-9

5.8. Performance of PGA with a population often and a generation gap

of 0.8.. 5-10

5.9. Performance of Hybrid 1 with a population often and a generation

gap of 0.8... 5-11

5.10. Performance of GEVO1 hybrid GA with a population often and a

generation gap of 0.8.. 5-11

5.11. Performance of GEVO2 hybrid GA with a population of ten and a

generation gap of 0.8.. 5-12

x

Evolutionary Computation and Experimental Design

5.12. Performance of GEVO3 hybrid GA with a population often and a

generation gap of 0.8.. 5-12

5.13. Performance of GEVO4 hybrid GA with a population often and a

generation gap of 0.8... 5-13

5.14. Performance of GEVO5 hybrid GA with a population often and a

generation gap of 0.8.. 5-13

5.15. Performance of GEVO6 hybrid GA with a population often and a

generation gap of 0.8.. 5-14

5.16. Performance of GEVO7 hybrid GA with a population often and a

generation gap of 0.8... 5-15

5.17. Performance of GAs on Rastrigin's function with a population of

ten and a generation gap of 0.8... 5-17

5.18. Performance of GAs on Schwefel's function with a population of

ten and a generation gap of 0.8... 5-18

5.19. Performance of GAs on Griewangk's function with a population of

ten and a generation gap of 0.8... 5-19

5.20. Performance of GAs on De long's first function with a population

often... 5-21

5.21. Ranked performance of dynamic hybrids................................. 5-23

5.22. Rank of overall performance by dynamic hybrids...................... 5-24

6.1. Settings tested on the weighted sphere model............................. 6-9

6.2. Summary of results obtained on weighted sphere model................ 6-10

XI

Evolutionary Computation and Experimental Design

6.3. Summary of results obtained on Rastrigin' s function.................... 6-11

6.4. Summary of results obtained on Schwefel's function.................... 6-12

6.5. Summary of results obtained on Greiwangk's function.................. 6-13

6.6 Path representation.. 6-16

xn

Evolutionary Computation and Experimental Design

LIST OF FIGURES

Table Page

2.1. The Taguchi loss function... 2-13

2.2. Order of runs of simple two factor EVOP.................................. 2-19

2.3. Typical individual in a GP population....................................... 2-27

3.1. Five runs of an EVOP cycle... 3-2

3.2. Scheme of letters used in Table 3.3... 3-6

3.3. Rotating square EVOP (ROVOP).. 3-11

3.4. Summary of Simplex EVOP.. 3-13

3.5. Welcome screen from AutoEVOP... 3-19

3.6. Entering of factor names.. 3-20

3.7. Typical cycle sheet.. 3-21

3.8. The language of genetic algorithms... 3-22

3.9. Three dimensional schema... 3-23

3.10. Generic Genetic Algorithm... 3-23

4.1. Test Functions.. 4-5

4.2. Sample comparison of Stochastic Universal Sampling and Roulette

Wheel Selection for a micro-GA with a population of five.......... 4-8

4.3. Sample comparison of Stochastic Universal Sampling and Roulette

Wheel Selection for a micro-GA with a population of ten............ 4-8

xin

Evolutionary Computation and Experimental Design

4.4. Sample comparison of Stochastic Universal Sampling and Roulette

Wheel Selection for a micro-GA with a population of twenty........ 4-9

4.5. The effect of migration rate on the solution found........................ 4-14

4.6. The effect of generation gap on the solutions found..................... 4-15

6.1 Positions of the cities.. 6-16

xiv

Evolutionary Computation and Experimental Design

ACKNOWLEDGEMENTS

I would like to thank the many people who helped me during these studies,

especially my parents for their constant support. My thanks to Hefin, for our

discussions and his supervision of this study, without whom this thesis would not

have been possible. Thank you to Matthew for all the encouragement to keep going.

Finally I must also thank my colleagues in the Department of Engineering for their

support and discussions over many cups of coffee.

Diolch ynfawr i bawb.

xv

Evolutionary Computation and Experimental Design

DECLARATION

This work has not previously been accepted in substance for any degree and is not
concurrently submitted in candidature for any degree.

Signed.. __.. ..vV .^......... .(candidate)

STATEMENT 1

This thesis is the result of my own investigations, except where otherwise stated.

Other sources are acknowledged by footnotes giving explicit references. A
bibliography is appended.

Signed. !^ . .j^A W .,(candidate)

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for photocopying
and for inter-library loan, and for the title and summary to be made available to
outside organisations.

Signed...........'.-,__Y<S. . .\... r.~\ .<..«...... .(candidate)

Date

xvi

Evolutionary Computation and Experimental Design

1. INTRODUCTION

The aim of this chapter is to illustrate the general background to the areas

studied, the aims of the research and to give an outline to the structure of the thesis.

1.1 BACKGROUND

Optimisation is a mature area of research which could be argued to be as old

as life itself, as optimal performance gives the greatest chance of survival.

Optimisation became more formalised with the development of mathematics, yet

some of the more complex real life problems remain impossible to solve using

mathematics. Research continues to push the boundaries of mathematics, but other

research fields use a different approach by applying methods from other subject

areas, such as evolutionary computation.

Experimental design is a more recent subject of primarily the last hundred

years. Firmly grounded in mathematics, particularly statistics, experimental design

was initially a response to the practical problems of agriculture and industrial

chemistry, such as optimising crop or process yield. The requirement was to

determine a method to discover the influence of sometimes uncontrollable

parameters. Experimental design has developed beyond its original fields of

application and has seen a renaissance of interest fuelled by the quality movement in

industry. There are many different methods of experimental design, but all attempt

1-1

Evolutionary Computation and Experimental Design

to discover the influence of parameters to allow for their control and hence the

optimisation of a process.

Evolutionary computation is often perceived as new area of research, but its

roots stem from the 1940's. This perception is probably due to the small amount of

research that continued after a paper published in the late 1960's by Minsky and

Papert (1969) which painted a bleak future for artificial intelligence. The past

decade has seen a tremendous growth in research and applications of evolutionary

computation. The field encompasses many techniques including genetic algorithms,

neural networks, evolutionary strategies and simulated annealing.

Evolutionary operation (EVOP) is a relatively simple experimental design

technique, originally developed for application in the chemical industry in the

1950's. EVOP is a little used technique, possibly due to the large number of

calculations required, to be quickly completed for the originally intended flow line

process applications. EVOP was published decades before the advent of widely

available, low cost, computational power. EVOP is considered as a local search

method as investigations are carried only a small distance from any current point in a

search space.

Genetic Algorithms (GAs) trace their history to the 1970's to the work of

Holland (1992) and are based on Darwins' survival of the fittest theory. GAs are

1-2

Evolutionary Computation and Experimental Design

also an optimisation technique and as the name implies are based on the behaviour

of genes in the natural world. GAs are a global search method that work in a parallel

manner, with potentially many points being investigated simultaneously over a large

area of any search space. GAs have been applied to large space optimisation

problems, such as designing VLSI layouts (Schnecke, 1997) and scheduling (

Yamada and Nakano, 1995).

Combining a local search and global search technique has the potential to

develop an improved search method that is capable of both types of search. It is in

this area of overlap that the studies for this thesis are carried out. By combining

EVOP and GAs it is possible to study the influences on performance and potentially

develop an improved search technique.

1.2 AIMS OF RESEARCH

The aim of this thesis is to investigate the areas of evolutionary computation

and experimental design to determine specific methods that could be combined into

a novel approach for optimisation. The hybrid technique should be a robust method

which can find good, but not necessarily the absolute best, solutions in a

comparatively short length of time, which would increase the potential application

areas of GAs from mainly off-line situations, such as scheduling, to other areas such

as on-line optimisation and machine control.

1-3

Evolutionary Computation and Experimental Design

Therefore the objectives of this thesis are to:

• Investigate evolutionary computation and experimental design to select methods

from each domain to use as a hybrid optimiser with improved performance.

• Develop a deeper understanding of the selected methods.

• Review available software.

• Develop a new piece of software to implement two or three factor EVOP.

• Review the literature to investigate work related to small population GAs.

• Investigate by experiment the most suitable method of selection for small

population GAs.

• Investigate by empirical testing, controllable parameters such as generation gap,

the size of the population and the number of generations, that influence the

performance of a combined hybrid optimiser to establish the best settings for the

hybrid technique.

• Investigate the influence of the EVOP operator to determine if including the

operator at different generations influences the quality of solution found.

• Determine the level of performance of the hybrid optimisation technique by

benchmarking.

• Investigate the difficulties in establishing the exact settings used by authors of

published works.

• Examine the elements that should be included in a GA benchmark and its

potential to establish precisely how operators influence GA performance.

• Consider applications suitable for small population hybrid GAs.

1-4

Evolutionary Computation and Experimental Design

1.3 OUTLINE OF THESIS

The next chapter, chapter two; Review of Experimental Design and

Evolutionary Computation, is an overview of the fields of experimental design and

evolutionary computation. The first area to be examined is experimental design:

The brief introduction concentrates on the main directions of research in this field,

before examining the properties required for a good experimental design. The

fundamental experimental designs and some important features are discussed, before

progressing to some of the more fashionable methods. Although these techniques

have recently risen in prominence they are based on the same principles and often

the same designs as those discussed earlier. The Taguchi method is examined in

detail as it has been offered as a solution to many problems, although not often in

conjunction with evolutionary computation, and offered a potential way forward for

these studies. Evolutionary Operation is the final experimental design technique to

be examined before a review of the current use of experimental design.

The next section of chapter two considers evolutionary computation and

briefly describes the main techniques available, before examining the properties of

all the techniques and selecting two methods to be examined in more detail.

Chapter three, Evolutionary Operation and Genetic Algorithms, is a more

detailed examination of the two methods selected in chapter two, namely

evolutionary operation (EVOP) and genetic algorithms (GAs), the two methods later

1-5

Evolutionary Computation and Experimental Design

used to produce new hybrid methods. Details of applications of these methods are

given and the availability of software discussed. AutoEVOP software created during

the studies for this thesis is then described. A review of genetic algorithm hybrids is

undertaken before describing the selection of software for the hybrid methods tested

in this thesis.

Chapter four, Small Populations and Hybrids, illustrates the processes

undertaken to select suitable operators for the genetic algorithms used in this study

and to show any influences these operators have on hybrid GAs in comparison to

standard small population GAs on a set of test functions. Initial study is devoted to

selecting appropriate parameter values for the GAs, such as the coding alphabet and

the size of populations to be examined. Further consideration is then given to the

classic operators such as selection method, crossover and mutation for these small

population GAs. A range of sets of experiments are undertaken to determine the

influence of these operators, especially population size and generation gap.

Chapter five, Dynamic Hybrids, illustrates the investigations undertaken to

examine the effects of the influence of the EVOP element on the hybrid GAs, using

various standard test functions. Hybrids tested in the previous chapter contained an

element of EVOP which operated from the first to last generations of the GA and are

henceforth referred to as static hybrids. In this chapter EVOP is initiated only for

certain specified generations. As the GA proceeds its characteristics change and

1-6

Evolutionary Computation and Experimental Design

these GAs are referred to as dynamic hybrids. These dynamic hybrids are compared

to each other, to their comparable static hybrid and standard small population GA.

A study is also undertaken into the influence of the generation gap on these dynamic

hybrids.

Chapter six, Benchmark Testing and Application, discusses the benefits and

problems of benchmarking and its applicability to GA and GA hybrid research. The

current use of benchmarking for GAs is then examined, before an illustration of the

investigations undertaken to examine the performance of the hybrid GAs on a range

of further 'benchmark' test functions. The areas of application for small population

GAs are discussed before considering suitable applications for the hybrid GAs

studied in this thesis, illustrated with an example implementation.

Finally chapter seven, Conclusions and Further Work, summarises the

studies carried out, highlighting the contributions made by this work before

discussing how these studies could be extended. Additionally the future possibilities

for GAs, EVOP and benchmarking are considered.

1-7

Evolutionary Computation and Experimental Design

2. REVIEW OF EXPERIMENTAL DESIGN AND

EVOLUTIONARY COMPUTING

The aim of this chapter is to give a brief overview of experimental design and

evolutionary computation. Some of the methods included in these areas are

described with an emphasis placed on evolutionary operation and genetic

algorithms, the main techniques utilised in this thesis.

2.1 EXPERIMENTAL DESIGN

2.1.1 Introduction

There is always room for improvement. Often to gain the knowledge

necessary to improve an industrial process an experiment is conducted, this is the

role of experimental design. Inactive observation of a process does not yield

sufficient information for improvement, as G.E.P. Box is often quoted "To find

out what happens to a system you have to interfere with it (not just passively

observe it)" (Box, 1957). The principles of experimental design are based on the

work of Sir Ronald A. Fisher in the 1920's and 1930's (Fisher (1925) and Fisher

(1935)). Recently interest in experimental design has been revitalised by the

work of Genichi Taguchi (1987), who has brought the design of experiments to a

wider field of engineering.

Experimental design, once thought to be the preserve of laboratory

scientists, transferred a long time ago to the industries of agriculture and

2-1

Evolutionary Computation and Experimental Design

chemistry but did not make significant contributions in other business sectors.

Although experimental design is a well established field it was generally

overlooked by Western manufacturers until the quality of products from the Far

East improved dramatically without the expected large price increase; this

galvanised Western industry into taking action to remain competitive. It was

found that statistical techniques, including experimental design, had aided this

improvement. Ironically it was the ideas of Western statisticians, such as

Deming (Deming, 1950, 1995), that countries such as Japan embraced after the

Second World War, which the West had ignored, that were part of the success

story. The techniques have been further developed by Taguchi (1987) into a

cohesive system for improving products from the design stage onwards, with the

aim of complete customer satisfaction.

Quality of products became increasingly important as availability became

less of an issue. The traditional methods of post-production inspection were not

competitive enough. Experimental design gave the advantage that many

configurations of influential parameters could be tested in a systematic way and

the best selected for production.

2.1.2 Properties of Good Designs

All good experiments are pre-planned and implementation has a well-

defined structure. Planning is a critical part of any experiment and it is often

neglected, (Coleman and Montgomery, 1993). The first stage is to state the

2-2

Evolutionary Computation and Experimental Design

purpose of the experiment in clear terms; for a worthwhile experiment to be

carried out, there needs to be a clear, definable objective. The next step is to

choose which factors, elements of the process such as temperature or machine to

be used, are to be studied and at what levels or settings. A response variable, or

set of variables, that can be accurately measured must also be selected. If careful

thought is given to the preceding stages then selection of a suitable standard

experimental design should be comparatively easy. With planning complete the

experiment can be run then the data analysed. For a well designed experiment

the data analysis involves relatively simple statistical techniques. However, no

amount of elegant statistics can rescue a badly planned experiment. With the use

of computer programs, analysis can be simple and fast. Graphs are potentially

one of the most useful tools at this stage as they allow quick visual interpretation

of results. The final stage is to reach conclusions about the experiment and make

recommendations for possible changes in the process and/or further

experimentation.

2.1.3 Review of Experimental Design

2.1.3.1 One-at-a-time experimentation

The most basic type of experimental design is where one factor at a time

is varied, e.g. in a chemical reaction initially all factors are held constant and the

yield noted. All factors are held constant except the temperature which for the

second experiment is lowered and for the third run the raised, the yield is noted at

all settings. All factors are then reset to the original levels whilst only, say, the

2-3

Evolutionary Computation and Experimental Design

pressure is decreased then increased. This is shown in Table 2.1.

TEMPERATURE

NORMAL

LOW

HIGH

NORMAL

NORMAL

PRESSURE

NORMAL

NORMAL

NORMAL

LOW

HIGH

YIELD

Reading 1

Reading 2

Reading 3

Reading 4

Reading 5

Table 2.1. Scheme for one at a time experimentation.

The experiment will give the effect on the yield of a change in

temperature or pressure, but will give no indication if increasing both together

gives a better yield, i.e. it does not give any interaction effects of the factors and

there is no way of discerning if any changes in yield are due to the different factor

levels or experimental error. The problem of designating the cause of changes

can be overcome by repeating the experiment so that each point in the design

space has at least two readings. This allows for the estimation of errors.

2.1.3.2 Factorial experiments

Factorial experiments offer an improvement on 'one at a time'

experiments as they incorporate the effect of interaction into the design. Here,

using the previous example, trials would be run at low pressure and low

temperature (A); low pressure and high temperature (B); high pressure and low

temperature (C); high pressure and high temperature (D) as shown in Table 2.2

2-4

Evolutionary Computation and Experimental Design

below. This is a two factor (pressure, temperature), two level (low, high)

experiment which has 22 (4) runs. This method is acceptable for low order

experiments but it soon becomes cumbersome with a greater number of factors

and levels, e.g. a three factor, five level experiment would require 3 5 (243) runs.

As the size of the experimental space increases, the cost of running the trials will

increase in terms of time, money and other resources. It may be that the cost of

running the experiment becomes prohibitively expensive and impractical.

TEMPERATURE LOW

TEMPERATURE HIGH

PRESSURE LOW

(A)

(B)

PRESSURE HIGH

(C)

(D)

Table 2.2. An example factorial experiment.

2.1.3.3 Fractional factorial experiments

Fractional factorials were developed to overcome the problems associated

with large experimental spaces. They do not give a blanket coverage of the space

but give a good indication of areas where the yield may increase, with a fraction

of the runs required by a full factorial experiment. Fractional factorials do

however require a more rigorous mathematical approach for their analysis.

Notation for fractional factorials: A^7

where, N =• number of levels

k = number of variables

p = fractional reduction

A 24 full fractional factorial design requires sixteen trials but a half fraction

requires only eight. [(!/2 x 24) = (2' 1 x 24) = 24' 1 = 23 = 8]. Table 2.3 shows the

2-5

Evolutionary Computation and Experimental Design

settings for

of'+'forti

• a 24" 1 fractional factorial experiment using the traditional designations

he higher factor level and '-' for the lower level.

TRIAL

1

2

3

4

5

6

7

8

A

-

+

-

+

-

+

-

+

B

-

-

+

+

-

-

+

+

C

-

-

-

-

+

+

+

+

D

-

+

+

-

+

-

-

+

Table 2.3. The settings for the eight runs of a 2 " fractional factorial

2.1.3.4 Randomisation and blocking

According to statistical practice the order of the runs should be planned so

that it does not influence the test results. To eliminate the problem of

environmental factors, such as machine warm up, machine operator etc.

randomisation is introduced as protection against the inaccuracies that can occur

due to these nuisance variables. Randomisation can be restricted to suit the

experiment and there are randomisation tables available to assist the choice of

trial order. In practice it is often not possible to randomise an experiment due to

set up times and associated increases in costs. However Taguchi (1987), see also

section 2.1.3.7, does not consider the randomisation of runs to be important. If it

is costly to change factor levels the Taguchi method advocates that in this

situation it is best not to randomise the trials as this can lead to erroneous results.

2-6

Evolutionary Computation and Experimental Design

Blocking is another method of reducing experimental error which '...can

eliminate the effects of extraneous variations and inhomogeneities in the

experimental material and the environment and, hence, improve the efficiency of

...' the designs (Bisgaard, 1994). If there is a large, unavoidable variation from

one end of the experimental space to the other then this method, first used by

Fisher (1925) for agricultural experiments, is available to reduce the errors this

causes. The experimental units are divided into small blocks by a factor,

background or nuisance variable, such as time, location of trial, machine,

operator or batch of raw materials used. Randomised block design is used when

there are more than two factors and one background variable for defining the

blocks. Each factor level must occur an equal number of times in each block, if

there are only two factor levels then this type of design is called a paired

comparison experiment. However, factor levels do not have to occur an equal

number of times in each block in an incomplete block design. Blocking also has

the advantage that if a mistake is made then only the block of trials which

contains the mistake needs to be re-run, not the whole experiment.

Randomisation and blocking are important concepts in traditional experimental

design and descriptions are to be found in most in experimental design texts,

such as Montgomery (1991), Hicks (1982) and Box et al (1978).

2.1.3.5 Simplex method

The simplex method is a response surface method used for the study of

mixtures. Simplex progresses to the optimum by moving away from the worst

2-7

Evolutionary Computation and Experimental Design

recorded point of the triangular experimental region. It is different from factorial

designs in that it is the proportions of the mixture under study that are important

and not the amount. The total amount of mixture should remain constant.

Introductions to the simplex method can be found in Cornell (1990) and

Montgomery (1991). Much of the early work was carried out by Scheffe (1958)

who introduced the simplex lattice designs that are still in use today, where the

points of experimentation are evenly spread over the design space. A regular

simplex design has all sides of equal length, to support a model of degree m in q

components over the {q,m} lattice. The points of experimentation should be

evenly spaced at (m+\) points for values of zero to one for each component

proportion.

The points of experimentation do not have to be restricted to those

recommended by the lattice design. The two main strategies for choosing

experimental points are the distance based strategy and using optimal design

criterion. The lattice design is an example of the distance based strategy where

the vertices are used for some of the points and the rest are spread evenly across

the design space. An example of optimal design is D-optimality which selects

points in the design space so that in the response surface model the variance of

the regression coefficients are minimised. Experimentation does not have to

cover the entire design region, it can be restricted by design or through practical

constraints. Simplex was designed for experimentation with mixtures and as

such is excellent within this domain, e.g. the determination of the formulation of

2-8

Evolutionary Computation and Experimental Design

a household product (Heinsman and Montgomery, 1995) and vinyl car seat

covers (Nachtshiem et al, 1990). The best designs are always domain specific,

incorporating knowledge of that area.

2.1.3.6 Analysis of variance

Analysis of data is always needed no matter which experimental method

is used. One of the most common methods used is analysis of variance

(ANOVA). It is a technique for estimating how much of the total variation in a

set of data can be attributed to one or more assignable causes of variation, the

remainder, not attributable to any assignable cause, being classed as the residual

or error variation. It also provides a test of significance and gives a measure of

confidence in the data results. The principles of ANOVA are expressed in Table

2.4.

Source of variation
Between means of
batches
Between samples
within batches
Analytical Error
Total

Degree of freedom
(b-1)

b(k-l)

bk(n- 1)
bkn-1

Sum of squares*
knS(yb -y)2

nX(y-yb)2

£(y-ys)2
S(y-y)2

Mean square and quantity estimated
(MS)2 — a02 + nai2 + kna22

(MS)! — CT02 + IK7, 2

(MS)0 — CT02

KEY b= batches
k = samples
n = no. of repetitions

y = trial data
MS = mean square

a02 = variance of analytical error
CT] 2 = variance of sampling
CT2 2 = variance between batches

* In practice it is more convenient to calculate the sum of squares from the sample and the batch
totals (Ts, Tb), e.g. sum of squares between batches = Z(Tb - T) / kn,

sum of squares between samples = Z(Ts - Tb) / n

Table 2.4. Principles of ANOVA.

2-9

Evolutionary Computation and Experimental Design

Degrees of freedom gives a measure of the amount of information that

can be determined from a set of data. For example, if a factor has three levels

then the first level can be compared with the other two levels but not itself, so it

would have two degrees of freedom. The sum of squares is a measure of the

deviation of the experimental data from the mean value of the data, summing

each squared deviation emphasises the total deviation. Variance measures the

distribution of the data about the mean of the data.

A mean square is a sum of squares divided by its degree of freedom,

which gives an unbiased estimate of a population variance.

A simple example of ANOVA (Hicks, 1982), is given below in Table 2.5

and Table 2.6. The aim is to determine if there is a difference in weight loss

between materials when under controlled use. Let the factors studied be A, B, C

and D and the readings are weight loss in grams.

FACTOR
RUN1
RUN 2
RUN 3
RUN 4

A
1.93
2.38
2.20
2.25

B
2.55
2.72
2.75
2.70

C
2.40
2.68
2.31
2.28

D
2.33
2.40
2.28
2.25

Table 2.5. Data set.

Source of variation
Between ABCD
Error
Total

Degrees of freedom
(4-1)= 3
(4(4-l))=12
(3+12)= 15

Sum of squares
0.5201
0.2438
0.7639

Mean square
0.1734
0.0203

Table 2.6. ANOVA table.

2-10

Evolutionary Computation and Experimental Design

With this analysis complete further investigation of the results can be

carried out, such as the F-test or Scheffe test etc. For the above example, using

the F-test;

Fn 2 = 0.1734 =8.53
0.0203 Equation 2.1

using statistical tables, widely available in most statistics text books, the

hypothesis that there is considerable difference between average wear resistance

of the materials is rejected.

2.1.3.7 Taguchi method

Much of the recent explosion of interest in quality topics, particularly in

manufacturing, can be attributed to the work of Genichi Taguchi (1987). His

work is based on the quality control principles promoted by Western statisticians

such as Deming (1950 and 1960). Quality was taken one step forward by placing

it further back in the production cycle meaning that quality could be monitored

during manufacture and not as traditionally done after production, allowing more

timely intervention if necessary. These principles provided the foundation for the

work of Taguchi, who placed quality earlier in the product life cycle, at the

design stage. Quality is now often routinely considered from the inception of the

design through all manufacturing stages to the customer.

The philosophy of Taguchi can be expressed as: after Roy (1990)

• Quality should be designed into a product not inspected in;

from design to customer, summarised as "Right first time, right every time".

2-11

Evolutionary Computation and Experimental Design

• There should be minimum deviation from the target value;

the further from the target value the greater the loss and the worse the

performance, which is expressed mathematically by the quadratic loss

function

• The cost of quality should be considered system wide and in monetary terms;

if a product is not of target quality then there are system wide losses to be

considered including the cost of scrap, re-work, warranty repairs and

others such as the cost in terms of market share loss due to customer

dissatisfaction.

To achieve the desired quality Taguchi developed his method which consists of

three stages:

• System design. Choice of factors to be studied and their working levels.

• Parameter design. Selects the best factor levels.

• Tolerance design. Fine tuning of factor levels to their optimum.

Engineers tend to think of tolerances and targets in terms of technical

specifications such as metres, Angstroms, kg/m, but management think in

monetary terms. Taguchi links the two by expressing quality in financial terms.

If a product's quality characteristic is not on target then there is an associated

loss. This is best described with the aid of a diagram, see Figure 2.1. It is quite

probable that the quadratic loss function is not a precise description of the loss

but it has been demonstrated to be adequate, especially since it is difficult to find

2-12

Evolutionary Computation and Experimental Design

the data for more complex, accurate models. The mathematical expression used

to describe the loss function is:

Equation 2.2

Equation 2.3

for a single product L(Y) = k (Y - Y0)2

for multiple samples L(Y) = k (MSD)

where Y = observed quality characteristic

Y0 = target value for quality characteristic

k = constant

MSD = mean squared deviation of the quality characteristic from the

target value

MSD varies depending on whether a specific target value, the smallest or largest

possible value is the optimum.

Loss

I I I
LSL T USL

KEY Traditional unacceptable quality
~ Loss function
T Taguchi target specification

Figure 2.1. The Taguchi loss function.

LSL lower specification limit
USL upper specification limit

2-13

Evolutionary Computation and Experimental Design

Starting a Taguchi experiment usually involves a brainstorming session.

At this stage all aspects of the experiment should be discussed by a team of

people from all the departments involved throughout the life of the product, e.g.

from design, production and marketing, and a chairperson. At least one team

member should be trained in Taguchi methods and the meeting held, preferably,

on neutral ground. The discussion brings in process knowledge at an early stage

of the experiment and a multi-disciplinary team is established.

Once it has been decided which factors are to be studied and in which

range, an experimental design can be selected. There are an almost limitless

number of factorial designs but Taguchi defined a set of useful fractional

factorials, called orthogonal arrays, and standardised a method of analysis.

Hence Taguchi experiments have a reproducibility, Taguchi has "...simplified

and standardised the fractional factorial designs in such a manner that two

engineers conducting tests thousands of miles apart, will always use similar

designs and tend to obtain similar results." (Roy, 1990). These designs are often

wrongly attributed to Taguchi himself; most of them are traditional designs, e.g.

Lig is a 2 15 " 11 due to Finney and Ls2 is due to Fisher, for more examples see Box

et al (1988). If the chosen number of factors and levels do not fit into a standard

array then the design can be modified to accommodate them, e.g. see Shoemaker

and Kacker (1988). Orthogonality means that for each pair of columns all

combination of factor levels occur an equal number of times. An example of an

orthogonal array is Lg, as shown in Table 2.7.

2-14

Evolutionary Computation and Experimental Design

Note that Taguchi uses T to represent the lower level of the factor and '2' to

represent the factor at the higher level, compared to the traditional use of '-' and

TRIAL
1
2
3
4
5
6
7
8

FACTORS
A

1
1
1
1
2
2
2
2

B
1
1
2
2
1
1
2
2

C
1
1
2
2
2
2
1
1

D
1
2
1
2
1
2
1
2

£
1
2
1
2
2
1
2
1

F
1
2
2
1
1
2
2
1

G
1
2
2
1
2
1
1
2

Table 2.7. Lg array.

The factors should be assigned to suitable columns. Orthogonal arrays

work well when there is minimum interaction between factors, i.e. the factors are

independent and have a linear effect.

Noise factors need to be identified and included in the experiment. This

is done with outer arrays. If there is a large amount of noise present then

repetition can help the elimination of its effects. As with all other experimental

designs the principles of randomisation apply. Once complete, analysis of the

results is needed. Here Taguchi allows the use of standard analysis such as main

effect analysis and ANOVA if a standard design has been used, with no

repetitions and no interaction effects. For other situations Taguchi has developed

signal to noise ratio analysis. This ratio, measured in decibels, is given by:

S/N Ratio = -10 logic (MSD) Equation 2.4

2-15

Evolutionary Computation and Experimental Design

and can be used for all situations as the calculation of MSD (mean squared

deviation of the quality characteristic from the target value) depends on the

desired outcome. The aim is always to find the largest signal to noise ratio (S/N).

Taguchi experimenters often use ANOVA to study the influential factors

and plots of marginal means to use a 'pick the winner' approach. This method

requires the input of engineering knowledge before optimum settings are

selected. If the settings were not part of the original experiment then a

confirmation run is carried out.

The Taguchi method is a very useful tool, but it is not a panacea and it

does have limitations. The method assumes that there is a priori knowledge

about interactions, that they are linear and there are no interactions between

design and noise factors. Taguchi's reasoning is that if the main effects are

controlled, then interactions resulting from those main effects will also be

controlled. Problems can arise when unknown interactions are present which can

lead experimenters to inaccurate conclusions (Hurley, 1994). Although

brainstorming is a very positive aspect of this method it leads to a large single

experiment, there is no build up of knowledge as with smaller sequential

experiments. Linear graphs used to assign factors to columns can lead to

inefficient designs as the aliasing is not clear (McGovern 1994a and McGovern

1994b). An alias occurs when an effect cannot be distinguished from another

effect in the design. Taguchi's 'pick the winner' can fail to find the optimum

2-16

Evolutionary Computation and Experimental Design

solution even with a full factorial. The signal to noise ratio is an important

concept in Taguchi methods but has been widely criticised, e.g. Montgomery

(1991), Box (1988), Pignatiello and Ramberg (1991), Tribus and Szonyi (1989),

as being inefficient and complex. Classical experimental design often attains the

same or better results more clearly (Lucas, 1994). Simpler treatment of the data

is recommended such as separation of the mean and standard deviation and use

of data analytic methods (Vining and Myers, 1990). The Taguchi method is not

statistically advanced and has been criticised as such by statisticians but it is

practical and as Pignatiello and Ramberg (1991) point out ".... a method that is

understood by a team may be a better choice than one that is slightly more

statistically efficient yet only understood by a few." Also as a defence and

explanation of Taguchi methods:

"They are based on the design of experiments to provide near
optimal quality characteristics for a specific objective. They are
often demeaned by academia for technical deficiencies which are
improved by using response surface methodology. Unfortunately
most of those who demean Taguchi methods have missed the whole
point. Taguchi methods are not a statistical application of designs
of experiments. Taguchi methods include the integration of
statistical design of experiments into a powerful engineering
process."

(Unal and Dean, 1995).

Positive aspects of the Taguchi method include the brainstorming session

as it brings together a team of people and pools their knowledge. Teamwork and

involvement of all levels of employee is a critical factor in many of the successful

experimental design methods. The gathering of as much relevant information

before experimentation reduces the problem that the best time to design an

2-17

Evolutionary Computation and Experimental Design

experiment is when it is complete. Perhaps the most significant contribution of

Taguchi is the fact that he simplified experimental design and popularised it.

This can be seen by the large number of papers, books and webpages published

about the method, its applications and modifications, e.g. (Kacker and

Shoemaker, 1986), (Phadke, 1986), (Greenall, 1989), (Hamada, 1990), (Roy,

1990), (Vinning and Myers,1990), (Freeny and Nair, 1992), (Hamada, 1995).

2.1.4 Evolutionary Operation

Evolutionary operation (EVOP) is a simple factorial based experiment

that was developed by Box (1957) in the late fifties, for application in the

chemical industry. Although not strictly evolutionary in the currently understood

sense, EVOP was an early version of a search technique based on natural

processes (Goldberg, 1988b). EVOP was designed to be a simple and systematic

method for continuous on-line improvement of a process, to be performed by the

plant operatives. By methodically changing the operating parameters of a

response, the surface can be plotted, giving a greater understanding of the process

and hence the optimum operating conditions. The parameters should only be

altered by small amounts so as not to greatly disturb the process, but this means

that the experiment needs to be repeated several times before determining if a

parameter has a significant effect. Based on simple factorial designs of

experiments, EVOP is a fairly simple method of experimentation and the results

are easy to display graphically.

2-18

Evolutionary Computation and Experimental Design

For example, factors A and B are considered to influence the profitability

of a process, so an EVOP experiment is drawn up to optimise these factors. The

current operating conditions are as shown as 1 in Figure 2.2. The amount by

which a factor should be changed can be difficult to determine as this change

should be small enough so as not to greatly disturb the process yet large enough

for any effect to be analysed.

Higher

FACTOR A

Lower

Lower Higher

FACTORS

Figure 2.2. Order of runs of simple two factor EVOP.

The experiment is run in cycles, each cycle consists of five experiments,

or runs, which are shown in Figure 2.2. After completion of the second cycle

there is sufficient information to be statistically analysed to test if changing the

level of a factor significantly affects the process. The experiment is run

continuously until a factor is shown to influence the process. One phase is then

said to be complete and the operating conditions are moved in the direction of the

improved yield, often using the most promising point from the last phase as the

central point of the new phase. A general rule of EVOP is that at least two points

2-19

Evolutionary Computation and Experimental Design

in the new phase cycle should have been part of the previous phase cycle, this

prevents the process from rapidly moving into a much less profitable region.

Box described this continuous movement as the evolutionary part of EVOP.

There have been several modifications to EVOP, e.g. Rotating Square EVOP,

Random EVOP (Lowe, 1964) and the most popular modified version Simplex

EVOP (Lowe, 1964), (Lowe, 1974) but the original version seems to be the most

widely used (Hunter and Kittrell, 1966).

EVOP is a simple method of process improvement, yet it has not been

extensively used. One of the original reasons for managements' reluctance to

implement EVOP (Hahn and Dershowitz, 1974) was its then revolutionary

approach in promoting discussion groups including both operators and managers

(Chatto and Kennard, 1961), (anonymous, 1961). This practise, is now widely

accepted, largely due to the quality movement of the recent decade and the

influence of Taguchi (1987). EVOP actively disturbs a process which could be

seen as currently satisfactory (Lowe 1974), and although the ultimate aim is

process improvement many plants were not prepared to risk producing sub

standard product whilst actively seeking greater understanding of the process

(Hunter, 1989). Probably the main argument against EVOP when it was

originally published was the amount of paperwork involved with the highly

repetitive calculations. EVOP appears to have almost died out before the advent

of relatively cheap computing power, which coupled with current shop floor data

collection techniques could totally automate the process. Integrating with an

2-20

Evolutionary Computation and Experimental Design

expert system or rule-base could automate the system further. The main

optimisation argument against EVOP is that it is a local search technique and as

such it can get trapped in local minima. EVOP is not capable of global search.

Despite these shortcomings there are many examples of EVOP being used

as originally intended in the chemical and process industries (Carleysmith, 1994),

(Floudas and Anastasiadis, 1988), (Muraki et al, 1986), (Barnett, 1960) and a

small amount of literature available on EVOP being used in other industries (Box

and Draper, 1969), e.g. die casting (Chen, 1989). EVOP is mentioned in the new

automotive industry standard QS-9000, indicating that its potential has been

recognised by the three main automotive producers in the USA, Ford, Chrysler

and General Motors, yet there seems to be little current use of this simple but

effective technique. A more detailed explanation of EVOP can be found in

Chapter 3.

2.1.5 Current Experimental Design

As discussed earlier in section 2.1.1. experimental design has experienced

a renaissance in the last two decades. It has become more widely known and

applied in a much wider variety of industries than the traditional chemical and

process industries. There is a large volume of literature relating to experimental

design and more general quality issues. Probably due to the emergence of global

quality standards, such as ISO9000, there has been an increase in interest of

quality issues in general, experimental designs and other techniques that can help

2-21

Evolutionary Computation and Experimental Design

companies achieve the required quality levels. Unfortunately the quality

movement of the Eighties did not bring with it a panacea to industry's ills and the

philosophy of the Nineties appears to be that of down-sizing and re-engineering.

Many of the methods used are still valid useful tools for quality improvement and

maintenance as product quality has become less of an issue and more of an

expectation.

2.2 EVOLUTIONARY COMPUTATION

2.2.1 Introduction

Artificial intelligence (AI) is a large field which is currently experiencing

much growth, after decades of often widely unnoticed progress. Evolutionary

computation consists of many areas including genetic algorithms, evolutionary

strategies, evolutionary programming, simulated annealing and genetic

programming. All of these methods use evolution as a paradigm, but in different

ways. There follows a brief overview of some of the methods included in the

field of evolutionary computation.

2.2.2 Evolutionary Programming

Evolutionary programming (EP) was developed in the mid sixties in

America by L. Fogel et al (1966), see Fogel, D.B., (1994) for a list of early

papers. EP did not try to directly emulate the human brain, as much previous

work had tried to do, but to model the process of evolution. EP initially assumes

2-22

Evolutionary Computation and Experimental Design

that the region is bounded but afterwards this restriction is lifted. Unlike other

evolutionary computation methods such as genetic algorithms and evolutionary

strategies, EP uses only mutation as an operator. This is the main 'biological'

difference of EP. Each parent in a population is mutated once to produce an

equal number of offspring. The entire population of parents and offspring is

ranked according to fitness and then the fittest are selected to become the next

population. This is subject to the constant population size constraint.

2.2.3 Evolution Strategies

Evolution strategies (ES) were developed in Germany by Schwefel (1965)

and Rechenberg (1973). Mutation is the main search operator and children can

be formed by either of two different recombination mechanisms; randomly select

two parents to produce a new string; genes can be taken from the entire

population to form a new individual. Selection is completely deterministic and

extinctive, no probabilities of reproduction are used and only the best offspring

are selected. The population size is restricted.

Originally ES had one parent for each child as in Renchenbergs' (1+1)-

ES. Both parents and children competed for survival and the poorest solutions

discarded. Problems with this method include slow convergence due to the

constant step size and it has the brittleness of a search that moves from point to

point, meaning that it can become trapped in local minima. Renchenberg

proposed the first multi-membered ES, (u+l)-ES, in which children were

2-23

Evolutionary Computation and Experimental Design

produced from more than one parent. Each time the child replaces the worst

parent solution in the population, similar to the Simplex method mentioned

previously. This form of ES was not widely used but it formed the basis for the

later work of Schwefel (1975), who proposed using multiple parents (u) and

children (A,) in the (ju+A,)-ES and the (jj.,k)-ES. In (u.+A,)-ES all solutions compete

for survival whereas in (^,A,)-ES only the children compete.

ES is still an area of active research. Introductory information can be

found in Back and Schwefel (1993), Fogel, D.B., (1994) and journals such as

Evolutionary Computation (De long, 1993).

2.2.4 Simulated Annealing

Simulated annealing (SA) originates from the work of Kirkpatrick et

al.(1983). The original work was in a 1982 IBM research report RC9355,

according to van Laarhoven and Aarts (1987), but it was given a wider audience

a year later in Kirkpatrick et al.(1983). SA is drawn from thermodynamics where

annealing is the process of heating a solid to a high temperature, such that the

molecules have a high energy. The solid is then cooled slowly until the

molecules reach a low energy ground state to give a very pure crystal. Cooling is

done slowly so that thermal equilibrium can be maintained. If cooling is done

too quickly, the effect is known as tempering or quenching, the outside of the

solid cools much faster than the centre which gives rise to large internal forces

and faults in the lattice structure.

2-24

Evolutionary Computation and Experimental Design

At each temperature the solid is allowed to reach thermal equilibrium,

which can be characterised by the Boltzmann distribution. The probability of

being in a state with energy E is given by:

Pr{E = £}=_!_. exp -E

Z(T) kBT Equation 2.5

where T = temperature,

kD = Boltzmann constant
D

Z(T) = normalisation or partition factor

The solid is then cooled again and the process repeated until the

molecules form a lattice as the minimum energy state is reached.

"Simulated annealing is a stochastic computational technique derived

from statistical mechanics for finding near globally-minimum-cost solutions to

large optimization problems." (Davis, 1987). The parallels with physical

annealing are as follows, the energy function becomes the objective or cost

function, C, temperature becomes the control parameter, c, the lower the energy

the better the solution. The parallel with thermal equilibrium is achieved by the

Monte Carlo method which is also known as the Metropolis algorithm. A small

disturbance is given to a random particle, configuration, and the change in energy

states compared. If the new state has a lower energy then it is accepted as the

new state. The system evolves to a state of thermal equilibrium and the

2-25

Evolutionary Computation and Experimental Design

probability of states approaches the Boltzmann distribution. In SA terms this

means a sequence of Metropolis algorithms are evaluated at a series of decreasing

values of the control parameter. The process continues until equilibrium is

reached and the probability distribution of the configurations approaches the

Boltzmann distribution, given by:

Pr {config.=l} = qi(c) = 1 . exp -C(i)
Q(c) c Equation 2.6

'Cooling' is carried out and the process repeated until 'freezing' occurs,

where the change in the cost parameter, c, is virtually non existent and near the

optimum solution. As with annealing SA needs a schedule to determine at which

temperatures the solid should be held and the duration.

The need to maintain thermal equilibrium means that annealing is

inherently slow, but parallel processing can speed up simulated annealing to

acceptable times. SAs have been applied to many areas including computer

design, image segregation and restoration, the travelling salesman problem and

artificial intelligence, for example see (Bonomi and Lutton, 1984), (Kirkpatrick

et al. 1983), (Davis, 1987) and (Van Laarhoven. and Aarts, 1987).

2.2.5 Genetic Programming

Genetic programming (GP) is based on the principles of natural selection

or Darwinism and genetic operators, which is similar to the basis of GAs, but the

2-26

Evolutionary Computation and Experimental Design

paradigm is applied specifically to the creation of computer programs. GP is

sometimes referred to as 'automatic programming' (anonymous, 1999) as the

populations of GP consists of sets of programs that are candidate solutions and

the final 'solution' is a program rather than a encoded string. This form negates

the need for much pre and post processing of inputs and outputs of a GP. A

typical individual is shown in figure 2.3.

Figure 2.3. Typical individual in a GP population (representing x + y/z)

The programs are composed from elements in a function set and a

terminal set. The function set typically comprises of the operators that generate

the model, i.e. the functions label the internal points of the parse trees

representing a program in the population, e.g. in figure 2.3 the function set would

include '+' and '/'. The terminal set comprises of the terminal, or leaf, nodes in

the parse trees that represent the programs in the population, e.g. in figure 2.3 the

terminal set would include 'x', 'y' and 'z'. The terminal set may compromise of

variables, as shown above, but may also include constants and functions that

have no arguments.

2-27

Evolutionary Computation and Experimental Design

The fitness of individuals in the population is evaluated in terms of

performance in the required problem environment and the fittest individuals will

have a higher probability of surviving and reproducing.

There is often a form of elitism where the fittest individual programs are

retain by replicating the individuals into the new generation. The other method

of producing a new generation is by crossover. Crossover is implemented by

taking a randomly selected sub-tree of a fitness selected individual and

exchanging that sub-tree with another in another individual. The newly formed

generation is then evaluated for fitness before reproduction is repeated, until a

predetermined end point, such as level of fitness or number of iterations.

Traditionally GP does not usually use the mutation operator (Koza, 1992),

unlike GAs and in sharp contrast with EP. When mutation is applied within GP

it is generally with a low probability rate and it can be used at various levels, e.g.

a sub-tree of a program is deleted and replaced by a new randomly grown sub

tree (Fernandez, 2000) or mutation could be carried out on only one node of a

tree solution. (Alvarez, 2000).

2.2.6 Genetic Algorithms

Genetic algorithms (GAs) stem from the work of John Holland (1992)

originally published in 1975. Like EVOP, GAs are based on the principles of

natural evolution, but more closely follow what the currently understood method

2-28

Evolutionary Computation and Experimental Design

of natural reproduction but at a genetic rather than species level. Unlike EVOP,

GAs are a robust, global search method. GAs vary from most traditional search

methods in that they search a population of points in parallel rather than

exploring from a single point, they do not need any apriori knowledge of the

problem, use probabilistic rather than deterministic rules and usually work on a

set of encoded rather than real world variable values.

Information about the environment is encoded as a string, traditionally in

binary form. The search usually starts from a series of random points and the

fitness of the solutions at these points is evaluated using an objective function.

The next generation is produced using three main operators; selection, crossover

and mutation. There are many methods of selecting which parent strings should

enter the mating pool: Techniques include roulette wheel selection where the

fittest solutions are given the highest probability of reproduction; elitism

strategies where the fittest solutions are guaranteed passage into the next

generation; methods based on ranking the comparative fitness of the solutions on

sliding scales.

Once selection is completed formation of the next generation can take

place. Reproduction is implemented using crossover. One point crossover is the

simplest form; two parent strings are 'cut' at the same point along their length

and the 'tails' swapped, making two new strings. Variations include two point

crossover and uniform crossover where templates are used (Syswerda, 1989).

2-29

Evolutionary Computation and Experimental Design

One important concept with crossover is schemata. These are short parts of the

string which are highly fit, they are also known as building blocks as it is the aim

to retain these highly fit blocks within strings in the next generation.

Mutation is the final main operator. It usually occurs with a very low

probability, one in a thousand say. Mutation changes the value of a bit in the

string, e.g. 0 to 1 or vice versa for binary strings, and is known as the GA

'insurance policy' as it is always possible to reach any part of the search space

whatever the starting points. There are many alternatives to determine if newly

generated 'child' strings should join or replace the current population. The new

population is then evaluated. If the number of generations allowed is not

exceeded and the solution generated is not suitable, the new population is then

used to create the next generation.

The interest in GAs is reflected in the increasing amount of work

published, for surveys see (De long, 1993, Srinivas and Patnaik, 1994,

Caponnetto et al, 1993), the ever increasing number of evolutionary computation

conferences and in the publication, since 1993, of the journal titled Evolutionary

Computation. There are also many sites on the Internet devoted to evolutionary

computation, for example The Hitch Hiker's Guide to Evolutionary Computation

(Heittkotter and Beasley, 2000).

2-30

Evolutionary Computation and Experimental Design

GAs are excellent global search methods but convergence can be a

problem as can the inability to converge on a solution. Having located a highly

fit region, GAs can have problems locating a local optimum. It is the inability to

search effectively at a local level that is a major drawback of GAs. Work has

been carried out in this area (Kwong et al, 1995), and research into hybridising

GAs with other search techniques (Kido et al, 1993), especially local search

methods, for example (Renders and Bersini, 1994). The work in this thesis will

address this issue, but in contrast with the papers cited above, by using small

population GAs.

Another problem with GAs is the amount of time it can take to arrive at

an acceptable solution. This is due to the size of the population, which is often

quite large, and the number of generations needed. Reducing the population

speeds up the creation of a new generation but not as much of the search space is

covered. There appears to be very little work published in this area

(Krishnakumar 1989, Reeves, 1993), and this thesis investigates this issue.

2.3 SUMMARY OF THE SELECTION OF METHODS FOR

EXPERIMENTATION

Experimental design is well established but often only used to its full

potential in its originally intended fields such as industrial chemistry. There is a

movement to encourage exploitation of these methods in the industrial scenario

2-31

Evolutionary Computation and Experimental Design

(Hamada, 1995).

The simplex method gives good final results but moves around a search

space quickly and is prone to give sub-standard answers during the search, which

could potentially be costly for industrial applications. The Taguchi method has

some flaws, but the concepts and philosophy are sound, as discussed in section

2.1.3.7. These methods were felt to be too complex to allow significant savings

in genetic algorithm run-time, but Taguchi has proved the positive aspects of

experimental design for industrial use.

EVOP is simple effective method which suffers from a lack of use and

current research, but does offer a potential for improving a genetic algorithm

search without costly increases in run-time or processing power.

Evolutionary Programming and Evolutionary Strategies are both forms of

genetic computation, but have not been researched to the same extent as genetic

algorithms and industrial applications are not as abundant. Simulated Annealing

is based on thermodynamics, and the literature indicated it as an effective but

inherently slow method, therefore unsuitable for on-line applications. Genetic

programming is used for very specific applications in the generation of software

code.

Genetic Algorithms are becoming an established field, with much active

2-32

Evolutionary Computation and Experimental Design

research. Although there are many papers published on GAs relatively few are

published in the area of hybrid GAs. To produce a fast, robust optimisation

method, with both global and local search capabilities, GAs and EVOP were

chosen for further study to produce a hybrid GAs that is reliable and yet quick, to

be applicable and attractive to industry to use on-line. These techniques, their

positive and negative aspects and the software available to implement the

searches are discussed in further detail in the next chapter, chapter three.

2-33

Evolutionary Computation and Experimental Design

3. EVOLUTIONARY OPERATION & GENETIC

ALGORITHMS

The aim of this chapter is to give a deeper understanding of evolutionary

operation and genetic algorithms, the two methods selected as discussed in

chapter two, which are to produce new hybrid methods. Details of applications

of these methods are given and the availability of software discussed. A review

of genetic algorithm hybrids is then undertaken before describing the selection of

software for the hybrid methods tested in this thesis.

3.1 EVOLUTIONARY OPERATION

3.1.1 Example

As discussed previously in chapter two Evolutionary Operation (EVOP)

is a simple factorial experimentation technique developed by George Box in the

late 1950's. Initially intended for use in the chemical process industry, EVOP

has since been applied to other industries, such as die casting (Chen, 1989).

EVOP is designed for continuous on-line improvement to be implemented by the

plant operatives. The method continuously searches the local response surface

area by altering the process parameters by small amounts, hence not greatly

disturbing the process or producing sub-standard products.

The EVOP method will now be described through an example.

Information in Barnett (1960) has been modified to provide the example which is

3-1

Evolutionary Computation and Experimental Design

based on the study of the yield of a chemical process. The important factors are

thought to be temperature and pressure. The experiment is run in cycles, in this

case each cycle consists of five runs, as shown in Figure 3.1.

Higher

Pressure

Lower

Lower Higher

Figure 3.1. Five runs of an EVOP cycle.

h

5 3

1

2 4
Temperature^

In an EVOP experiment the cycle is repeated until there is a significant

improvement in yield due to one or more of the factors being studied, at this

stage one phase is said to be complete. The next phase of cycles is then started,

usually with the improved yield setting being used as the centre point for the new

design. If after a pre-determined number of runs there is no significant

improvement in the yield then the experiment should be halted as studying other

factors may be more productive.

The amount of information generated by the first cycle is insufficient to

calculate the standard deviation and to indicate any significant factors. For this

reason the first cycle (N=l) of the example is considered complete and the data

from that cycle inserted as previous cycle information in the table for the second

cycle (N=2) as shown in Table 3.1.

3-2

Evolutionary Computation and Experimental Design

Cycle 2 (N = 2)

Operating Conditions

Sum from previous cycle

Av. From previous cycle

New Observations

Differences

New sum

New average

1

9.38

9.38

7.92

+ 1.46

17.30

8.65

2

6.66

6.66

8.40

-1.74

15.06

7.53

3

11.04

11.04

8.83

+2.21

19.87

9.94

4

9.04

9.04

8.25

+0.79

17.29

8.65

5

9.48

9.48

9.96

-0.48

19.44

9.72

Range of new observations = |+2.21| + |-1.74| = 3.95
Table 3.1. Observations and initial calculations for cycle 2.

Operating conditions correspond to those defined in Figure 3.1. The

fourth row of Table 3.1 shows the readings for the current cycle. The fifth row is

the difference between the observed reading and the average readings of previous

cycles; care should be taken with the signs, as this basic mistake has been found

in published papers. The last two rows show the new sum of observations and

the new average, these then form the second and third rows of the table for the

next cycle. The constants used for the calculation of the standard deviation and

error limits are shown in Table 3.2. These constants are used to simplify the

calculation for standard deviation based on the range of the observations. This

provides an unbiased estimate of a. With a sample size of more than ten 'the

efficiency of the range method falls off (Box and Draper, 1969), but by

randomly dividing the sample up into subsamples of ten or less and using the

average of ranges, an estimate of a can be found. The usual estimate has a slight

bias. Derivation of the constants can be found in Box and Draper (1969) or

derived using standard statistical tables.

3-3

Evolutionary Computation and Experimental Design

N

2

3

4

5

6

7

8

K

0.30

0.35

0.37

0.38

0.39

0.40

0.40

L

1.96

1.33

1.09

0.95

0.85

0.78

0.72

M

1.76

1.19

0.96

0.85

0.76

0.70

0.65

Table 3.2. Constants used in EVOP calculations

Calculation of standard deviation:

Previous sum = 0

New sum (for cycle 2) = Range of new observations x K
= 3.95x0.30
= 1.185

New sum all cycles = Previous sum + New sum (for cycle 2)
= 0 + 1.185

= 1.185

New average = New sum / (N-l)
= 1.185 / (2-1)

= 1.185

Previous average (for cycle 1) = 0

3-4

Evolutionary Computation and Experimental Design

Calculation of 95% error limits:

For new averages and effects = L x New sum

=1.96*1.185
= ±2.32

For change in mean effect — MX New sum

= 1.76 x 1.185
= ±2.09

To determine the effects of factors the observations of a cycle are entered

into rows 1 and 2 of an EVOP table following the scheme of Table 3.3: The

letters correspond to Figure 3.2. To calculate the effects of factors A, B,

interaction AB and a positive change in mean effect the first two rows are added

together to produce row 3. For a negative change in mean effect the centre point

reading is multiplied by four and entered in that column at row 3. For each effect

the largest and smallest totals in row 3 are determined and each smaller total is

placed in row 4 directly below the larger total. The difference in these totals is

then calculated by subtracting the value in row 4 from the value in row 3, the

answer being placed directly below in row 5. For factors and interaction effects

the values in row 5 are divided by two and the answer placed directly below in

row 6. For changes in mean effect the value in row 5 is divided by four and the

answer placed directly below in row 6. Whether the effect is positive or negative

is determined by the column of the sixth row value.

3-5

Evolutionary Computation and Experimental Design

Higher

FACTOR A

Lower p ————

R Q

N

P S

FACTOR B.
Lower

Figure 3.2. Scheme of letters used in Table 3.3.

Row Number

1

2

3

4

5

6

Effec

+

R

Q

R + Q

tof A

P

S

P + S

Effec

+

Q

S

Q + S

tofB

R

P

R + P

Effect

+

Q

P

Q + P

of AB

R

S

R+S

Effect of C

+

P + S

R + Q

P +S+ R+ Q

:IM

N

x4

4(N)

Table 3.3. Calculations for assessing effects.

Returning to the example experiment, the effect of pressure, see Table

3.4, can be calculated by comparing the average readings taken at the lower

pressure, positions 2 and 4, with those at the higher pressure, positions 3 and 5 of

the cycle, see Figure 3.1 and Table 3.1. Comparing the differences in the sums at

the lower and higher positions indicates the magnitude of the effect. For each

factor in Table 3.4 the positive effect is the left hand column. For the change in

mean effect the sum of the readings of the four outer points (2,3,4,5) are

compared to the central point reading multiplied by four. It can be seen in table

3.4 that none of the values of the effects are larger than the error limits, ±2.32 for

3-6

Evolutionary Computation and Experimental Design

temperature and pressure effects or ±2.09 for the change in mean. Therefore

another EVOP cycle should be run. The results of the next cycle are shown in

table 3.5.

Calculation of effects:

Row

1

2

3

4

5

6

Effec

+

9.94

8.65

18.59

17.25

1.34

+0.67

tof A

7.53

9.72

17.25

Effec

+

9.94

9.72

19.66

16.18

3.48

+ 1.74

tofB

7.53

8.65

16.18

Effect

+

7.53

9.94

17.47

of AB

8.65

9.72

18.37

17.47

0.90

-0.45

Effect c

+

18.59

17.25

35.84

34.60

1.24

+0.25

BfCIM

8.65

x4

34.60

KEY A = pressure AB = interaction of temperature and pressure

B = temperature CIM = total change in mean
Table 3.4. Calculation of effects for cycle 2.

Cycle3 (N = 3)

Operating Conditions

Sum from previous cycles

Av. From previous cycles

New Observations

Differences

New sum

New average

1

17.30

8.65

9.34

-0.69

26.64

8.88

2

15.06

7.53

8.53

-1.00

23.59

7.86

3

19.87

9.94

10.66

-0.72

30.53

10.18

4

17.29

8.65

8.52

+0.13

25.81

8.60

5

19.44

9.72

9.53

+0.19

28.97

9.66

Range of new observations = |+0.19| + |-1.00| = 1.19

Table 3.5. Observations and initial calculations for cycle 3.

3-7

Evolutionary Computation and Experimental Design

There is a need to calculate a new standard deviation and error limits based on

the new observations

Calculation of standard deviation:

Previous sum =1.185

New sum (for cycle 2) = Range of new observations x K
= 1.19x0.35
= 0.417

New sum all cycles = Previous sum + New sum (for cycle 3)
= 1.185 + 0.417
= 1.602

New average = New sum / (N-l)
= 1.602 / (3-1)
= 0.801

Previous average (for cycle 2) =1.185

Calculation of 95% error limits:

For new averages and effects = L x New sum
=1.33x0.801
= ±1.065

For change in mean effect = MX New sum
= 1.19x0.801
= ±0.953

3-8

Evolutionary Computation and Experimental Design

To be significant the effects of temperature and pressure need to be

greater than ±1.065 and the change in mean effect greater than ±0.953. It can be

seen in Table 3.6 the effect B, temperature, is significant as +1.69 ±1.065 does

not equal or include zero in its range. This indicates that a higher temperature

would produce a better yield. One phase is now complete.

Calculation of effects:

Row

7

2

3

4

5

6

Effec

+

10.18

8.60

18.78

17.52

1.26

+0.63

tofA

7.86

9.66

17.52

Effec

+

10.18

9.66

19.84

16.46

3.38

+ 1.69

tofB

7.86

8.60

16.46

Effect

+

7.86

10.18

18.04

of AB

8.60

9.66

18.26

18.04

0.22

-0.11

Effect (

+

18.78

17.52

36.30

35.52

0.78

+0.15

jfCIM

8.88

x4

35.52

KEY A = pressure

B = temperature

AB = interaction of temperature and pressure
CIM = total change in mean

Table 3.6. Calculation of effects in cycle 3.

Traditionally at this point an EVOP committee, consisting of plant

operators, process specialists and statisticians, would meet to discuss the findings

and decide upon the factors and settings to be studied in the next phase. An

application algorithm could be devised to speed up this step, but the EVOP team

should still met periodically to review progress. As with other factorials the

3-9

Evolutionary Computation and Experimental Design

order of runs should be random, but sometimes the nature of the process forces a

particular order, this should be taken into account when analysing the data. If all

the points around the centre indicate a drop in yield then this part of the

experiment should be regarded as accomplished, as the local maximum has been

reach, and new ideas should be explored. EVOP is designed to be continuously

in operation, so should never be regarded as complete.

3.1.2 EVOP Philosophy

EVOP, like the more modern Taguchi method, also encompasses the

ethos of teamwork as well as the experimental and statistical elements.

Awareness of EVOP should be throughout the company from shop floor

operators to the highest level of management. This viewpoint that all levels of

employees should regularly participate in process improvement was

revolutionary when first introduced; contemporary managers are usually more

familiar with multilevel communication and an inter-disciplinary team approach.

3.1.3 EVOP Modifications

There are three notable modifications to EVOP, although none appear to

have been as widely used as the original design. Lowe (1964) discusses all three,

rotating square EVOP (ROVOP), random EVOP (REVOP) and simplex EVOP.

"ROVOP attempts to eliminate uncertainty because of the size of the

variant used." (Lowe 1964). The initial experimental design is a 2N factorial with

a centre point. For each complete cycle the variant, or factor, step size is

3-10

Evolutionary Computation and Experimental Design

enlarged by V2 and the design rotated by 45°. This is shown in Figure 3.3 below,

the internal square represents the first cycle and the outer, the second rotated and

enlarged cycle.

Higher

FACTOR A

Lower
FACTOR B.

Lower Higher
Figure 3.3. Rotating square EVOP (ROVOP).

The design is rotated and enlarged in this manner until a direction of

improved yield is indicated. The experiment is then moved in this direction. At

least two points of the new design should have previously been explored, and the

size of this new cycle is at least a factor of V2 smaller than the previous design.

Once straddling an optimum, the design can be reduced in size to minimise factor

variation, whilst allowing process information to be generated. This method

claims to cover a response surface more rapidly than EVOP and the starting

levels of the factors are not important, but a more complex analysis using

multiple regression is required where all factors must be quantitative. For more

than three factors the design becomes complex.

Another proposed variation of EVOP is random EVOP (REVOP). It is

designed for experimentation with a large numbers of factors with unknown

3-11

Evolutionary Computation and Experimental Design

relationships and forecasting reactions. The choice of data points is random and

the step size is kept at 20% of the range of the factor under investigation. If there

is an improvement then the next step is taken in the same direction. If there is no

improvement then a new set of random points is chosen. The advantages of this

method is that any number of factors can easily be incorporated and the

calculations are very simple. There are many disadvantages including the

random movement of the design, factors must be quantitative, the step lengths

may not be practical, there is no separation of effects from the factors and no

response surface can be built from this method.

The final, most popular modification is Simplex EVOP, first presented by

Spendley et al (1962). This method was developed from a desire to speed up

EVOP and to execute it on a computer: it should be noted that this paper was

published in 1962 when computers were not as powerful or as widely available.

Rather than a sequence of full factorials a succession of regular simplex designs

are used. A more detailed description of the simplex method can be found in

section 2.1.4. of this thesis. Simplex EVOP can be summarised as shown in

figure 3.4.

Once simplex EVOP has found an optimum it will circle around a fixed optimum

or follow a continuously moving optimum. Benefits of this method include the

use of only the most recent and therefore most relevant data, continuous

movement so false moves are quickly corrected and the method does not require

complex mathematics, merely comparison of data to reject the worst

3-12

Evolutionary Computation and Experimental Design

Make three initial observations

Eliminate the worst observation

Make another single observation in the most favourable direction

move after every subsequent observation by rejecting the worst point,

unless

another observation is too old, then renew this observation,

or

the move means returning to a previous point, then move to next most

favourable direction.

Figure 3.4. Summary of Simplex EVOP

point. The method has drawbacks in that the factors must be quantitative, the

factor variants must be of equal interest to the experimenter, which is not always

the case, to ensure a regular simplex and finally a suitable partition can be very

difficult. Factors can easily be added, but deleting a factor in a running simplex

EVOP is not possible, a new experiment must be started.

A move is made after every observation and "Thus the simplex approach

is more dynamic and also less conservative (and often less informative) than the

classical factorial approach." (Hahn and Dershowitz, 1974). Simplex EVOP can

be rotated "...and in the presence of error and without replication it is the most

efficient design." (Lowe, 1964).

3-13

Evolutionary Computation and Experimental Design

3.1.4 Demise of EVOP and Reasons for its Lack of Use

Although EVOP is relatively simple in implementation and avoids

complex statistics, it requires a large number of repetitive calculations. In the

1950's and early 1960's, when EVOP was introduced, the calculations were

probably seen as a laborious task by any process supervisor designated to

perform them. The advent of powerful, relatively cheap computing power now

allows the calculations to be performed automatically. Automated shop floor

data collection can reduce the task even further so that all that is required is

periodic discussion of the results. But as J.S. Hunter (1989) pointed out " EVOP

has not become an active weapon in the armoury of many of today's quality

experts", this he attributed to the complexity of EVOP procedures and the need

for "an active mind set", not passive observation of the process. The main

advantage of EVOP is that it advocates minimum disruption of the output. It

could be applied to more factors, although traditionally it was restricted to three

as it relied heavily on visualisation and studying more factors can obscure

interaction effects. Again computer software can help to overcome this problem.

Although not conventionally directly linked to process improvement, employee

and managerial participation can mean that communication is improved and

employees feel that their opinions are valued. Conversely if the experiment does

not produce an improvement in the process it could affect the morale of

participants who may then see EVOP as a worthless exercise, and hence place

barriers to further EVOP experimentation.

3-14

Evolutionary Computation and Experimental Design

3.1.5 Reviews of EVOP

A good introduction to EVOP, indications of suitable applications and its

place on the shop floor are given in Chatto and Kennard (1961). EVOP is

recommended for investigating processes where there is a lack of theoretical

knowledge and "Therefore the real advantage of the technique is that it promotes

a new way of thinking, and utilizes to its fullest extent the human factor."

(anonymous, 1961). The argument behind this statement is that processes and

factors may change, but workers are still required and they are more effective

and capable if they are accustomed and receptive to change. EVOP training

programmes also reinforce this as employees see an investment in themselves as

well as the process. Hunter and Kitrell (1966) in their review of EVOP

publications identified three major overlapping areas; methodology, applications

and modifications. There are many references to applications of EVOP, e.g. at

ICI and American Cyanamid Company, but it reinforces the opinion that

although EVOP has been used in the chemical industry, there is very little

evidence of its application to other areas.

Hahn and Dershowitz (1974) describe high volume processes with

relatively long run times, easily varied factors, which are quick to stabilise after

disturbance and where the potential benefits are thought to be large, as the most

suitable for EVOP. Also needed is knowledge of the important factors and a

clear definition of the response to be maximised. A brief survey was also

presented of the nature and extent of EVOP in industry. It showed that EVOP

was not as widely used as it could be. Reasons given included that it was not

3-15

Evolutionary Computation and Experimental Design

seen as profitable to vary process factors, a general 'reluctance to perturb the

manufacturing process' and 'political reasons'. Hahn and Dershowitz (1974)

concluded, as Hunter (1989), that EVOP could be much more widely applied.

Lowe (1974) comments on possible reasons for the lack of EVOP applied in

industry. It was found that there was a reluctance by supervisors to accept

disturbances to their processes when there is any chance of sub-standard product

resulting. Also supervisors viewed their experience more valuable than

statistical testing. Lowe also gave examples of, and discussed EVOP and

simplex EVOP, and to explain their merits: "What should be realized is that, for

every process working at less than theoretical yield, some improvement is

possible and evolutionary operation studies are the most painless ways of

exploring the possibilities."

Box, the originator of EVOP, has expressed opinions about the

modifications to his original method (Box and Draper, 1969). ROVOP is

designed to be used when the EVOP team is too cautious and conservative in its

choice of factor levels, but Box maintains that it is best to use standard EVOP

and leave the team to freely choose their next move. EVOP is probably slower

than ROVOP which could easily be implemented as a computer program because

it has well defined rules. REVOP is dismissed as "...Our own experience

suggests that there is very little to recommend this procedure..." as it is very

difficult to change more than three factors in a phase and visualisation is

impossible, which breaks the EVOP philosophy of simplicity. Simplex EVOP is

recommended for numerical optimisation but not process optimisation. The lack

3-16

Evolutionary Computation and Experimental Design

of repetition means that significant effects cannot be found to enable a greater

understanding of the process. Box indicates the mechanical nature of the

decision making, discarding the worst point to determine the next experimental

area, without "scientific feedback", i.e. often valuable comments from the EVOP

team, also disputed is the claim that simplex EVOP is quicker than standard

EVOP.

3.1.6 Current Use of EVOP

EVOP appears to be an under used technique. There is evidence of its use in

the chemical industry, but little elsewhere, see section 3.1.1. EVOP was a

method before its time in many respects. The repetitive nature of the method

seems to have contributed to its demise alongside the management—worker team

approach, which would now be seen as a positive aspect of the method and

repetitive calculations are the ideal work of computers.

Until very recently there was no commercially available software to be

found. This may change with the introduction of QS-9000, the quality standard

for the automotive industry, created by the 'big three' producers in the USA,

Ford, Chrysler and General Motors, for all their suppliers of production and

service parts and materials world-wide. For design suppliers, both classical and

Taguchi experimental design techniques are required skills. For all suppliers,

continuous improvement is an expected company culture as is knowledge of

various techniques to accomplish this, including EVOP, which are listed in the

current edition of Quality System Requirements QS-9000.

3-17

Evolutionary Computation and Experimental Design

EVOP is taught as part of some undergraduate courses, such as Industrial

Statistics courses, but this is far from the ideal envisaged by Box that EVOP

should be taught to every undergraduate engineer. There are short courses run on

EVOP, such as 'EVOP: designed experiments for operating processes' by J.S.

Hunter based at Princeton University. The emergence of EVOP as a topic could

be in part due to QS-9000 and the greater prominence that experimental design

now plays in industry. EVOP is also very briefly mentioned in recent

publications such as Breyfogle (1999) in relation to six sigma and Park (1996) in

relation to robust design.

3.1.7 AutoEVOP

At the time of initial implementation, no EVOP software could be located

and all published work with worked examples of EVOP that was located, such as

Barnett (1960), Box and Draper (1969) and Chen (1989) used hand filled

worksheets. In response to the lack of software and to give a greater

understanding of the technique, a new piece of software, AutoEVOP, was created

as part of this study.

Initially a program was developed to run a two factor EVOP experiment

in the C++ language. This gave an awareness of the difficulties of translating

statistics into code. It became clear that EVOP would lend itself very easily to a

spreadsheet application. Two and three factor EVOP programs have been

written on Excel spreadsheets. Excel was chosen as a base application as it is

widely available and used. All that is required to carry out the EVOP experiment

3-18

Evolutionary Computation and Experimental Design

is an understanding of the method and basic computer literacy. The initial screen

seen by the user is shown in Figure 3.5. The second screen is used once the

factors have been chosen. They are entered in the appropriate boxes, a table

gives a description of the settings, see Figure 3.6. The experiment is run and the

readings entered in the appropriate spaces, either manually or by automatic

interface. Once two runs are complete and the data entered, AutoEVOP will give

advice. Either to continue with the experiment or if a factor has been determined

as significant recommend the best course of action, e.g. stop the current

experiment and start a new one, see Figure 3.7. Locked cells in the spreadsheet

prevent accidental damaged to the program by the user, allow data to be entered

only in certain cells and prevent malicious hacking of the code. With appropriate

automatic data collection, the EVOP experiment could become totally automatic.

: AutoEVOP ' :^\
AUTOMATED EVOLUTIONARY OPERATION

" This software takes you through, the steps to successfully analyse data
from a. two facto* EVOP experiment. Follow the instructions on eachpage.

AutoEV OP wiH tell you if any fertors need adjusting.

|]y[ejnwe±i. May 1996

sis click on "FACTORS" tab.:,, iif:;;:: ,.., |

Figure 3.5. Welcome screen from AutoEVOP.

3-19

Evolutionary Computation and Experimental Design

For ease of use the interface is designed so that the user may only enter

data into cells that are highlighted in blue and all user entered text appears as

blue. For the screen shown in Figure 3.6, the user has entered 'temperature' and

'pressure' as the factors to be studied. These are the only cells available for the

user to enter information.

Please enter the names of your factors.
^^^^^H

[Factor A temperature

[Factor B pressure

K.*vto values used in tables

pressure
pressure

LOW
HIGH

temperature
LOW

2
4

temperature
HIGH

5
3

Current Operating Condition

Please click <m tab "CYCLE 1" to continue.
B^^^^^^^B

Figure 3.6. Entering of factor names.

In Figure 3.7 the user, or data entry device, may only insert data in the

readings cells, also highlighted with blue text. The readings entered have

produced a "Stop" situation and a positive interaction effect has been indicated.

All cells that require user data to be entered are in blue and all action statements

are highlighted in red which gives a simple interface for users. Interested parties

can study the black text in the grey areas for further information if required.

3-20

Evolutionary Computation and Experimental Design

Cycle Number 2 ^^^1 Please enter your cycle 2 readings

Operating Conditions Readings Differences New Sum New Average
16.85
15.93
16.21
16.47
18.55

Standard Deviation
of new averages

0.37

95% Error Limits (+/-)
new averages (also new effects)
total chanae in mean effect fcim

Factor temperature pressure
0.45

Effect If none

If no "STOP!" messages appeared run CYCLE3 and click on tab
Flse, change factor settings. Click on "HELP" tab if necessa

Figure 3.7. Typical cycle sheet.

3.2 GENETIC ALGORITHMS

Genetic algorithms (GAs) as stated earlier in chapter two, are

based on natural genetics. The biological inspiration of GAs is reflected in the

language used. A brief explanation of some of the terms (Goldberg, 1988, Fogel,

D.B., 1994) is given below in Figure 3.8.

The GA is different from most traditional search methods in that the

search is carried out from a population of points rather than from a single point.

No a priori knowledge of the problem is required, probabilistic rules are used as

opposed to deterministic, and the manipulation is usually carried out on encoded

rather than real world variable values. GAs are a robust method of improvement.

They work by blindly searching a population of points on a surface, but in a more

3-21

Evolutionary Computation and Experimental Design

efficient manner than pure random search methods or hill climbing methods

which proceed step by step to a better adjacent space. Information is encoded in

a string, traditionally in binary form. Strings are usually made up of many

shorter sections each containing information about a factor.

Natural Genetic Algorithm

chromosome string
gene feature, character
allele one of two alternative forms of a gene
locus string position
genotype structure
phenotype expressed behavioural traits
epistasis non linearity
schemata string over an extended alphabet
pleitropy a single gene may affect several phenotypic traits
polygeny a single characteristic may be determined by many genes

Figure 3.8. The language of genetic algorithms.

3.2.1 Schemata

Schemata are subsets of the design space which have attributes in

common, e.g. in three dimensional space (x, y, z) a schemata could be: (1, *, *),

where * represents a wild card. All points lying on the line 1 on the x axis would

be part of the schemata set, e.g. the points (1, 2 ,3) and (1,2, 1) would be part of

the subset but the point (2, 1, 1) would not, see Figure 3.9.

The complete set of tuples belonging to (1, *, *) is called the set of

schemata. "Schemata provide a basis for associating combinations of attributes

3-22

Evolutionary Computation and Experimental Design

with potential for improving current performance." (Holland, 1992). Schemata

can be regarded as building blocks for GA strings. The best solutions contain the

best schema, so early identification of good schema could allow best solutions to

be found more quickly.

0,0,1

0,0,0

1,1,0

0,1,0
Figure 3.9. Three dimensional schema.

3.2.2 Generic Genetic Algorithm

A generic GA is listed in Figure 3.10, which outlines the basic steps of a

GA. These steps will then be explained in more detail in the following sections.

Problem identified

Objective function (description of problem space)

^Candidate solution population

Decode (to give fitness value for each solution) then re-code

Generate new population (by applying GA operators)

Decode (to give fitness value to each solution) then re-code

If suitable solution or predefined number of generations produced stop,

else go to *

Figure 3.10. Generic Genetic Algorithm.

3-23

Evolutionary Computation and Experimental Design

3.2.2.1 Initial population

GAs are parallel search methods, so at any given time the GA has a

group of possible solutions to a problem. This group of solutions is known as a

population. GA populations tend to change as the GA progresses, as natural

populations change over time.

An initial GA population of points is usually chosen randomly. Other

methods for initial population selection include using known best solutions from

historical data, but this requires that the problem has been solved previously.

There is a small amount of research into other methods of selecting initial

populations such as selecting individual solutions in the search space using an

algorithm based on the Taguchi method (Lee and Rowlands, 1998).

A GA can take an excessive amount of time to find a feasible solution if

the initial population is randomly selected, but if historic best known solution

data is used then there is a risk of forcing the search to converge prematurely.

3.2.2.2 New population generation

The initial population is measured by a fitness function. The fitness

function describes the search space and from this the best solutions can be

selected. As stated earlier GAs are suited to problems with unknown search

spaces and finding a suitable fitness function can be problematic.

GAs can be distinguished from other search methods by its operators.

3-24

Evolutionary Computation and Experimental Design

The three most common operators are selection, crossover and mutation. The

most basic method is known as the roulette wheel method. This gives parents

with a higher fitness value a greater chance of selection to produce children.

Probability of individual selection = individual fitness
total population fitness

This method of selection for reproduction can be paralleled with Darwin's

survival of the fittest. Parent strings are crossed over to produce 'children'.

There are several methods of crossover the simplest being one point crossover.

Parents Children

00110|10 0011001

10011|01 1001110 | denotes the crossover point.

To enable schemata to be preserved, especially in longer more practical

strings, two point crossover was introduced. Bold type indicates schemata and |

crossover points.

Parents Children

1001|1101|0110 100110110110

1100|1011|0111 110011010111

3-25

Evolutionary Computation and Experimental Design

Sometimes it is not possible to preserve the schemata with two point

crossover. Uniform crossover can be used and a template placed over the strings

to determine the crossover points.

Parents Template Children

01001101110 11011000111 00001101010

10010111010 11010111110

The most suitable crossover method is problem dependent. It is also closely

related the type of coding used for the chromosomes as some crossover methods

can produce illegal children or eliminate strong schema.

The other common GA operator is mutation. This is usually activated

only at a very low rate, e.g. one per thousand. Mutation creates variation, can

move GAs out of sub-optima and prevent premature convergence. Theoretically

at any time during a GA search any point of the search space can be reached via

mutation, this has given rise to mutation being referred to as the GA insurance

policy. Mutation is also present in nature.

A highly fit individual can eliminate all other weaker strings in a few

generations. If all the strings have very close fitness values, the fittest do not

have a much greater chance of proceeding to the next generation. To alleviate

these problems the fitness values can be scaled by linear normalisation. This is

done by ranking all the strings in order of their fitness values. The fittest string is

3-26

Evolutionary Computation and Experimental Design

given a predetermined value and all other strings are then given uniformly

decreasing values according to their rank. This has the effect of spreading out

the values and hence giving the fittest strings the best chance of survival, but not

eliminating the possibility of other strings reproducing.

While a highly fit individual can be dominant, it is also feasible that it

may be eliminated due to the probabilistic nature of selection. It is possible to

preserve the fittest string(s) for reproduction by use of the elitism operator, to

ensure that the current best solutions survive.

There is great potential for using GAs in optimisation and as yet there has

been relatively little work or hype about this area (anonymous, 1993). There are

many papers available in conference proceedings such as The International

Conference on Genetic Algorithms held every two years since 1985 or the

Congress on Evolutionary Computation. There are journals published in this

area including Evolutionary Computation and IEEE Transactions on

Evolutionary Computation.

3.3 HYBRID GENETIC ALGORITHMS

Pure GAs are a blind search technique which means that they are good at

solving many problems, but it is this generality that counts against them when

solving specific problems. Adapting GAs to suit a problem or incorporating

domain knowledge can successfully overcome this, but domain knowledge is

3-27

Evolutionary Computation and Experimental Design

often not available. Combining two or more techniques to obtain the best facets

of each is know as hybridisation. There are many examples of hybridised GAs

being used to successfully solve problems e.g. (Davis, 1987, Wienholt, 1993). A

large amount of work has been carried out combining GAs and neural networks,

for examples see (Thierens et al, 1993), (Alba et al, 1993) or (Bishop et al,

1993). GAs have even been used to improve GAs (Friesleben and Hartfelder,

1993). Many other methods such as tabu search and simulated annealing, have

been hybridised, examples of hybridised GAs can be found in (Winter et al 1995)

and (Renders and Bersini, 1994).

3.3.1 Pareto Optimally GAs

Pareto optimality GAs are a form of multi-objective GAs. A definition of

Pareto Optimality is given in Mason et al (1998): "The solution to a multi-

objective problem is, as a rule, not a particular value, but a set of values of

decision variables such that, for each element set, none of the objective functions

can be further increased without a decrease of some of the remaining objective

functions (every such value of a decision variable is referred to as Pareto-

optimal)." or more simply defined in Principia Cybemetica Web (2000) as : the

"best that can be achieved without disadvantaging at least one group."

There are several different approaches to combining Pareto optimality

into a GA. The GA can be initially run conventionally to produce a generation of

individuals. The Pareto optimality element then determines a set of dominant

values from this population. A decision then needs to made as to how to carry

3-28

Evolutionary Computation and Experimental Design

these 'superior' individuals forward into the next generation (Sail and Youssef,

1999). The 'Pareto individuals' could be designated a higher probability of

entering the mating pool, or by the use of an elitism operator. A variant of binary

tournament selection can be used to incorporate Pareto optimality into a GA

(Louis, 1997). Murata and Ishibuchi, (1995) present MOGA which includes

Pareto and 'uses a weighted sum of multiple objective functions to combine them

into a scalar fitness function' where the weights are randomly specified for each

selection operation. An elitism strategy is utilised to retain the best individuals.

(Ishibuchi and Murata, 1996) propose a hybrid algorithm based on

MOGA (Ishibuchi and Murata, 1995) in which a local search procedure is

applied to each solution generated by the GA and 'the choice of the final solution

is left to the decision maker's preference'. If all local neighbours of each GA

solution are examined then a large part of the computation time is spent on local

search. The proposal is then to only look at 'k' solutions, where 'k' is chosen by

hand. The paper concludes that the number of local search carried out had a

large effect on the efficiency of the algorithms and the best results were obtained

with random real number weights assigned to the criteria.

One advantage of this method is that 'Pareto-optimal selection also

eliminates the need to combine disparate criteria into a single fitness criteria as is

usual in genetic algorithms (Louis, 1997). Only two criteria are combined in

Louis and Rawlins, (1993) since as the number of criteria increases the possible

combinations rise combinatorially. A Pareto GA is applied to the design of

3-29

Evolutionary Computation and Experimental Design

satellite constellations in Mason et al, (1998), which also comments on the

requirement for a priori knowledge in this case. An example of a Pareto-optimal

GA for flow shop scheduling with three criteria, makespan, tardiness and total

flowtime, is presented in Ishibuchi and Murata (1995). Ishibuchi and Murata

(1996) also lists other papers with extension of GAs to multi-objective

optimisation. Pareto optimality is examined in relation to genetic programming

in Langdon (1995) which concludes 'that smaller evolutionary steps might aid

GP in the long run'.

The GA hybrids presented in this thesis also combine global and local

search as do the Pareto-optimality GAs. In this thesis the local search element is

carried out by EVOP on each of the individual GA solutions. Due to the small

populations of the hybrids in this thesis the required additional running time did

not pose a problem. Pareto-optimality GAs look to combine many objectives

into a single measure and locally search in the most promising direction, then

often use elitism to retain the best individuals. The EVOP-GA hybrids presented

in this thesis search with a single objective, but could be extended by careful

construction of the objective function to include multi-objectives. The approach

taken in this thesis echoes the 'keep-it-simple' philosophy of EVOP, with the

added, and intended, benefit of fast run-times.

3-30

Evolutionary Computation and Experimental Design

3.4 SOFTWARE SELECTION

3.4.1 EVOP Software

There is little information available on EVOP software. It is possible that

some companies using EVOP have written in-house software, but until very

recently commercial EVOP software was not available.

Two experimental design software packages that incorporate EVOP have

been located, both include Simplex EVOP. MultiSimplex offer the

MultiSimplex package running as an 'add on' to Excel version 5 or higher. The

Statistics Department at Leeds University developed PEXLAB, PLanning

Experiments LABoratory which is a Fortran?? program which was available for

evaluation by ftp only.

EVOP as discussed earlier in section 3.1, is a little used technique and it

is unsurprising that there appears to be a very small amount of software

available. None of the occurrences of EVOP found in the literature referred to

using software and some presented results were on hand filled EVOP sheets.

MultiSimplex promotes the inclusion of EVOP but the actual software only

allows Simplex EVOP. The emergence of QS-9000 as an automobile industry

standard which includes EVOP as a process improvement technique could induce

more commercial EVOP software packages. EVOP is a simple technique which

can be written into a spreadsheet as demonstrated by the new work in section

3.1.7. but commercially available software would lead to greater use of the

technique.

3-31

Evolutionary Computation and Experimental Design

3.4.2 GA Software

Artificial intelligence software is a rapidly expanding area with many

commercial packages now available. At the point in this study where software

was required, GA software was available from commercial sources, such as

Evolver from Pallisade which runs in Excel spreadsheets, but these were not very

flexible. There was no choice as to the type of GA, e.g. steady state or not. If

not an option on the user screen, then changing some parameters could involve

delving into the code of the programme, which in itself is not a simple task to

draw up from behind the user interface. At the time of selecting suitable

software Evolver was a beta release and testing revealed that it was not reliable

on Windows 3 .x. Many GA packages are freely available on the internet and a

large proportion are a result of academic research, such as Mattlib, but they are

also often shareware complete with programming bugs. Many have quite

demanding minimum requirements for both PC processor and programming

knowledge of specific languages. The main drawback to most of these packages

was that the software which had most potential for this study consisted of lengthy

code which was usually not documented and with sparse commentary in the

code. This made de-bugging and altering the code to suit this study a potentially

monumental task. The third category of GA software consists mainly of research

institute based written software for which there is a nominal charge, but the code

is generally more reliable than the freeware and support is also often available.

A list of software available at the time of software selection for this study can be

found in Heittkotter and Beasley (2000).

3-32

Evolutionary Computation and Experimental Design

3.4.3 Criteria for Selection

GAs can be run extremely quickly on large machines which are highly

parallel but this is not what is readily available in industry. GAs must reach an

acceptable answer quickly on an average machine for their use in industry to

greatly increase. Industry is more likely to use a GA that runs on less expensive,

or existing equipment and software. As the thrust of this study was to combine

the local and global search capabilities of EVOP and GAs to produce an optimal

performance in a relatively short time, this was the main restriction on the choice

of software to used for the hybrid GAs proposed for this thesis. The criteria for

selection was that the GA could run on a relatively small machine with

acceptably priced software and the EVOP element be included by a relatively

small amount of programming.

Matlab is a commonly used software system with full documentation,

support available from Math Works and discussion groups on the internet. The

Matlab GA Toolbox from Sheffield University was selected as it runs on widely

used platforms and does not require more than an 'average' PC.

3.5 SUMMARY

Evolutionary Operation (EVOP) and Genetic Algorithms (GAs), the two

methods selected in chapter two, have been examined in greater detail so that

new forms of optimisers which combine both global and local search may be

produced for this study.

3-33

Evolutionary Computation and Experimental Design

A review of the literature gave details of published hybrid GAs, including

those featuring Pareto-optimality, combining local and global searching, to place

in context the new hybrid methods from this thesis that are based on GAs and

EVOP. The availability of software for both EVOP and GAs is then discussed.

Due to the lack of EVOP software available, also to give an understanding the

programming required for EVOP, AutoEVOP software created for this study is

described. Finally, a summary is presented of the process of selection of

software for the hybrid methods created and tested in this thesis in the next two

chapters.

3-34

Evolutionary Computation and Experimental Design

4. SMALL POPULATIONS AND HYBRIDS

The aim of this chapter is to illustrate the processes undertaken to select suitable

operators for the genetic algorithms used in this study and to show any influences

these operators have on hybrid GAs in comparison to standard microGAs on a set of

test functions. Initial study is devoted to selecting appropriate parameter values for

the GAs, such as the coding alphabet and the size of populations to be examined.

Further consideration is then given to the classic operators such as selection method,

crossover and mutation for these small population GAs. A range of sets of

experiments are undertaken to determine the influence of these operators, especially

population size and generation gap. These experiments will allow for optimum

combination of the global and local search capabilities of the two chosen methods.

4.1. SELECTION OF GA PARAMETERS

4.1.1 Population Size

As the intention of the study was to produce a search method that combined

both local and global search, that could be used in on-line situations it was necessary

to have a small population GAs to ensure minimal computational time. There

appears to be no widely accepted definition of 'small' with respect to genetic

algorithm population size. As populations of only a few hundred are regarded small

by some, the thirty strings or less per generation which are used for the experiments

4-1

Evolutionary Computation and Experimental Design

described here would be widely accepted as a small population. A few published

results suggest "that population sizes as small as thirty are quite adequate in many

cases. Nevertheless, little has been published that is relevant to really small

populations" (Reeves, 1993). Arabas et al (1994) states that population size is

important, yet "the knowledge about proper selection of GA parameters is still only

fragmentary and has rather empirical background". Tests were therefore carried out

with populations from as large as thirty to as small as five.

4.1.2 Coding Alphabet

There is still debate as to the best alphabet to use with GAs and good results

have been obtained with real numbers and q-ary alphabets. Binary coding was

selected for the experimental GAs as it has been shown by Reeves (1993) that the

minimum population size for binary coded strings is much less than for q-ary

alphabets. Krishnakumar (1989) also concluded that binary is the best form of

coding with small populations. Binary coding also means that the EVOP element of

the hybrid GAs discussed in chapter three can be easily incorporated, since the step

size is restricted to the inversion of a single binary number and not an arbitrarily

selected step size as for a real or q-ary number.

4.1.3 GA and Experimental Design Hybrids

"Simply taking a small population size and letting them converge is certainly not

useful" (Krishnakumar, 1989). The similarities and differences between

4-2

Evolutionary Computation and Experimental Design

experimental design and GAs are explored in Reeves and Wright (1995) which

concludes that GAs and the experimental design method studied could both

potentially benefit from combining certain aspects of each of the methods. There is

literature such as Davis (1993), Renders and Bersini (1994) and Zalzala and Fleming

(1997), which discuss combining GAs with hill climbing methods. EVOP is a little

used method of experimental design which could be compared to a single stepping

multi-directional hill climber and could provide an efficient constituent of a hybrid

GA.

4.1.4 EVOP and GA Hybrid Method

The GA element of the hybrids in this study were created as M x N matrices,

where M represents the length of the chromosomes and N the size of the population.

The format of a chromosome is similar to those described in section 3.2. After an

evaluation of the child population the EVOP element is added by multiplication of

the GA matrix with a suitably sized binary matrix, with zeros and ones placed to

create the effect of EVOP on the GA chromosomes. If the chromosome is split into

many sections representing different elements, the EVOP matrix must be created to

change each section. The effect of 'stepping' in different directions and then

moving in the best direction is achieved by multiplying the GA matrix with various

forms of the EVOP matrix and retaining the best solution with an elitism operator.

4-3

Evolutionary Computation and Experimental Design

4.1.5 Test Functions

The functions used to test the GAs in this study were chosen as they often appear

in the literature as a standard test functions. Published results appear for larger

population and generation GAs than those tested here, but using standard functions

allows for comparison with existing and future works. The set of functions include

De Jong's first and second functions from De Jong's traditional suite of test

functions, Schwefel's, Rastrigin and Griewangk's functions. This suite consists of

five functions which vary greatly from the relatively simple first function to the

more complex spaces of the later functions. The functions used in this study are

described in figure 4.1 by their mathematical functions and illustrated by two

dimensional Matlab plots.

4.2 SELECTION OF GA OPERATORS

4.2.1 Population Selection

A selection method suitable for small population GAs was required. There is

very little literature available on GAs with populations as small as those proposed.

Roulette wheel selection (RWS) is a common method where the probability of a

string being selected for inclusion in the mating pool is proportional to its fitness.

With very small populations, although there is always the possibility of any

individual being selected, there is a risk of domination by one or a few individuals

4-4

Evolutionary Computation and Experimental Design

De Jong's first function:

f(x) = Zx2

Minimum at x = 0

Schwefel's function:

Minimum at x = 420.9687

Griewangk's function:
f(jc) = Z_Xi_ - 7TCOS (j:,

4000

Minimum at x = 0

De Jong's second function:
(Rosenbrock's valley)
f(x) = SlOO.OcH-, -x,) + (1 -jc,)

Minimum at x = 0

Rastrigin's function:
f(x) = lOn + S(jc/2 - 10cos(27uc,))

Minimum at x = 0

Figure 4.1 Test Functions

4-5

Evolutionary Computation and Experimental Design

which are much fitter leading to early convergence, due to the smaller number of

'choices' on the roulette wheel.

Stochastic universal sampling is a suitable technique for selection as it has zero

bias due to individuals being selected entirely on their position in the population.

Stochastic Universal Sampling (SUS) is sometimes known as systematic sampling.

The initial sample from a population is chosen at random. In some instances this

may be restricted to the first X members of a sample, where X represents one nth of

the population and n is the number of population members required for the sample.

The distance to the next member of the population to be included in the sample is

randomly selected. Again restrictions can be applied to this scalar if a certain

frequency of sampling is required. The distance to the next and all subsequent

sample members is the same as the distance between the first and second members

of the sample.

The program code for stochastic universal sampling and roulette wheel selection

is very compact. The SUS code contains one more line of executable code than the

roulette wheel method code, so the time needed to execute the GA program is not

greatly affected by this choice.

4-6

Evolutionary Computation and Experimental Design

Testing was carried out on the standard small population GAs to ascertain the

most suitable method. "Standard small population GAs are as defined earlier in

section 4.1.1. Tests were run on micro-GAs with populations of five, ten and

twenty. Preliminary testing showed that 'best' solutions were reached usually within

the first twenty generations. Therefore the GAs were stopped after thirty

generations. Each test was repeated at least one hundred times. For the results

shown in figure 4.2 the test function used was De long's first function where the

known solution is zero. Each generation completely replaced the previous one.

Crossover was single point. Figures 4.2 to 4.4 each show three separate sets of one

hundred runs at the above settings.

For all population sizes the mean output of both RWS and SUS were similar. As

the population size increases the SUS is more clearly shown as a consistently better

method. A similar pattern emerged for the maximum output, i.e. worst case, output.

Although a more mixed set of results were obtained for the minimum output

achieved, it can be clearly seen that for a population of twenty SUS gives optimum

results on a par with those obtained by RWS.

4-7

Evolutionary Computation and Experimental Design

6 -,

5 -

4 -
<^-

OJ

§ 3 -*QO
o

2 -

1 -

0 -

Comparison of SUS and RWS
Population: 5

, —— __^^ ————— ̂ ^
XKXXXXXXXXXXXXXXXXXXXXXXX

"""*•-•

n-n-D-n-n-n-n-a-p-n-D-n-n-n-a-n-p-n-D-n-n-a-n-p-n-n-n-n-n-n

1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 14 1 5 16 17 1 8 19 20 21 22 23 24 25 26 27 28 29 30

Generation

—— 4 —— sus max

—— X —— sus mean

—— • —— sus min

- - -O- - • rws max

- - a - -rws mm

Figure 4.2. Sample comparison of Stochastic Universal Sampling and Roulette
Wheel Selection for a micro-GA with a population of five.

6 -

5 -

4 -
tsi
u

CQ
o 3 -
DOo _]

~) _

I

0 -

Comparison of SUS and RWS
Population size: 10

O - O - O
^-— -^*^i O - Q - O - O - O - ^ - ^ - O - O - O -O-O-O-O- O - O -^-O-O'O-O-O"O"O"O"O- O^p ****"*""*"""'*""™""™"""""""

-D-n-o-D-n-D-n-n-n-n-n-D-a-o-n-n-n-n-a-a-p-n-D-n-n-n
• • • • •

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Generation

—— • —— sus max

—— • —— sus mm

- - •<> - - rvvs max
- - -X- - - rws mean

- - D - -rws min

Figure 4.3. Sample comparison of Stochastic Universal Sampling and Roulette
Wheel Selection for a micro-GA with a population often.

4-8

Evolutionary Computation and Experimental Design

Comparison of SUS vs RWS
Population: 20

5 -

4 -

1 -

xl*-x-x-x-x-x-xx-x-xxxx-x-x-x-x-x-x-x-xxxxx-x

b-n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

generation

Figure 4.4. Sample comparison of Stochastic Universal Sampling and Roulette
Wheel Selection for a micro-GA with a population of twenty.

Collation of the results of these tests also revealed that SUS is a more robust

method than RWS in that in the majority of cases it was found that there was less

variation between the best and worst solutions using the SUS selection method.

These tests were repeated as many as thousand times in sets of one hundred and

although the actual values obtained varied slightly the general trends were identical.

A sample of summarised results is shown in tables 4.1, 4.2 and 4.3.

As a result of these tests and other sample experimentation with large population

GAs, SUS was selected as the sampling method for use with future experimental

GAs.

4-9

Evolutionary Computation and Experimental Design

Generation
5
10
15
20
25
30

Max
5.354116
5.354116
5.354116
5.354116
5.354116
5.354116

sus
Mean

4.211948
4.211051
4.211051
4.211051
4.211051
4.211051

Min
1.563142
1.485148
1.485148
1.485148
1.485148
1.485148

Max
5.342308
5.342308
5.342308
5.342308
5.342308
5.342308

RWS
Mean

4.521769
4.516849
4.516849
4.516849
4.516849
4.516849

Min
3.22004
3.22004
3.22004
3.22004
3.22004
3.22004

Table 4.1 Comparison of a sample of results for a population size of five.

Generation
5
10
15
20
25
30

Max
4.760520
4.757428
4.757428
4.757428
4.757428
4.757428

SUS
Mean

3.758525
3.678901
3.678497
3.678497
3.678497
3.678497

Min
0.398789
0.398789
0.398789
0.398789
0.398789
0.398789

Max
4.924986
4.894780
4.894780
4.894780
4.894780
4.894780

RWS
Mean

3.968418
3.911647
3.908215
3.908215
3.908215
3.908215

Min
0.813762
0.813762
0.813762
0.813762
0.813762
0.813762

Table 4.2 Comparison of a sample of selected results for a population size often.

Generation
5
10
15
20
25
30

Max
4.52954
4.332893
4.332893
4.332893
4.332893
4.332893

SUS
Mean

3.295254
3.057405
3.02555
3.025082
3.025027
3.025027

Min
1.861187
0.654061
0.654061
0.654061
0.654061
0.654061

Max
4.760384
4.719604
4.719604
4.719604
4.719604
4.719604

RWS
Mean

3.596094
3.481652
3.477431
3.478151
3.478151
3.478151

Min
1.608304
0.654061
0.654061
0.654061
0.654061
0.654061

Table 4.3 Comparison of a sample of selected results for a population size of twenty

4-10

Evolutionary Computation and Experimental Design

4.2.2 Crossover Operator

Single point crossover was initially chosen for testing with relatively short

strings. Since the overall aim of is to produce a fast GA the approach to

programming was to use programs with concise code to enable faster processing

times. Single point crossover being the simplest option also corresponded with the

general philosophy of the testing to keep the search algorithm as streamlined as

possible. A search of literature revealed no clearly superior crossover method for

small population GAs.

Although multi-point crossover has the potential to cover more of the search

space, in conventional GAs it does not generally lead to early convergence (Sait and

Youssef, 1999). As a rough guide to speed of operation, the code for single point

crossover is three lines of code to be compiled compared to forty four lines for

multi-point crossover with the software used for testing. As a fast GA was the

objective, the crossover method with the least code to be compiled was selected, so

multi-point crossover was excluded from the initial experiments.

4.2.3 Mutation Operator

The third classic GA operator, mutation, was turned off for these

experiments. To have an effect with small populations the mutation rate would need

to be greatly increased from the usual rate of one in thousands to one in hundreds or

tens. However, at this level it could have the effect of turning the search into a

4-11

Evolutionary Computation and Experimental Design

random walk. As described in section 3.2.2.2, mutation is often used as a GA

'insurance policy' so that at any stage of the search it is possible to reach the entire

search space. With small populations, mutation has little influence, but with the new

experimental GAs no area of the search space is excluded due to the EVOP element.

4.2.4 Generation Gap

Generation gap determines the proportion of population to be reproduced.

For example, with a population of 100 and a generation gap of 0.7, once selection

and crossover have taken place there will be 70 new individuals in the population of

100 in the new generation. With the software used it is possible to have an

increasing population with this operator, but this option was not utilised to restrict

the execution time of the GA.

It was noted that steady-state GAs have faster processing times than

conventional GAs as relatively few new strings need to be stored at each generation.

Due to this potential time saving the influence of the generation gap was extensively

tested on the new GAs and the standard small population GAs. De long's first test

function was used as the objective function for the initial tests as the ideal solution is

known and the function is relatively simple. The tests on generation gap will be

discussed in sections 4.2.4 and 5.3.1.

4-12

Evolutionary Computation and Experimental Design

4.3 HYBRID TESTING

4.3.1 Initial Migration and Robustness Testing

Migration, or the Island model (Georges-Schleuter, 1992) divides a single

population into a number of sub-populations. Each sub-population behaves as a

'normal' GA but periodically individuals move or migrate from one sub-population

to another. Migration can increase diversity in GAs and has been shown to improve

results in some cases (Miihlenbein et al, 1991), (Starkweather et al, 1990). Small

population GAs are prone to stagnation due to the low number of strings available

for breeding. It was decided to examine if the benefits obtained in the literature

could be achieved for very small populations and a comprehensive set of

experiments was conducted.

For these experiments robustness of the algorithm is defined as the range of

solutions found by the hybrid over fifty runs at identical initial experimental settings.

Figure 4.5 shows the influence of the migration rate on finding a good solution and

the robustness of the settings. Figure 4.5 was generated using De long's first test

function in two dimensions and with the generation gap set so that each generation

completely replaces the last one. Clearly the best solutions are found at 50%

migration rate, but the robustness of the hybrid is best at a migration rate of 30%. A

comparative study was carried out using a small population standard GA. For all

cases the best solutions found by the hybrid were better than those found by the

standard GA.

4-13

Evolutionary Computation and Experimental Design

The Effect of Migration

4 , ——— .
3.5

3
f 2.5-
1 2
"3> i 5 .
J 1 -

0.5
0 - ———————— , ———————— , ———————— , ———————— ,

^^.^......^.^.......^.^.^..

iR

10 20 30 40 50
Migration rate

ate

————— Best solution found

— — — — Average range of
solutions

standard small population
GA

Figure 4.5. The effect of migration rate on the solution found.

A further investigation was carried out at migration rates of 30% and 50% as

these gave the worst and best solutions respectively. Results of this investigation are

shown in Figure 4.6. The diagram shows the effect of the generation gap at

migration rates of both 30% and 50% and the range of solutions found. There is an

almost direct inverse correlation between robustness and finding an optimal solution

at both migration rates. At a migration rate of 30% with a generation gap of one the

hybrid is robust, but the solutions found are not optimal, yet the better solutions are

found with a generation gap of between 0.6 and 0.8 where the hybrid is least robust.

At a migration rate of 50% the value of the best solution found oscillates as the

generation gap increases. At all settings for generation gap at both migration rates

tested the best solutions found by the hybrid are an improvement on those found by

the standard small population GA.

4-14

Evolutionary Computation and Experimental Design

The Effect of the Generation Gap
————— Best solution found at 50%

migration
— — — Average range of solutions at

50% migration
——0——Best solution found at 30%

migration
— 4- — Average range of solutions at

30% migration

0.2 0.4 0.6 0.8

Generation Gap

Figure 4.6. The effect of generation gap on the solutions found.

4.3.2 The Effect of Generation Gap

If 'breeding' of the population results in fewer new individuals than in the

original population, then the fractional difference between the new and old

populations is known as the generation gap (DeJong and Sarma, 1993).

Following the initial testing with migration that included some study of the

generation gap, a more comprehensive set of tests were carried in order to identify

effects due to the setting of the generation gap. For all experiments each GA,

standard or hybrid, was executed one hundred times. Although the software used for

the experiments randomly generates the first population, the random number

generator used in the code for the programs is not truly random, but pseudo random

numbers between zero and one are generated in a set order. To overcome any bias

that this may introduce into the results the entire set of experiments were listed and

4-15

Evolutionary Computation and Experimental Design

assigned a random order in which to be run, this meant that no two runs of a GA

experiment with the same settings would have the same starting points. Perhaps

more importantly, the comparative standard small population GA were run in

exactly the same order, thus they were provided with the exactly same starting points

as the hybrid GAs.

4.3.2.1 Generation gap with a population of twenty

The first set of collated results are for a population size of 20 chromosomes.

The main investigation was to survey any effect of the generation gap, but for each

experimental configuration the solutions found at generation 5, 10, 15, 20 and 30

were recorded. Although widely accepted that if a GA is allowed to run to

convergence over many generations good solutions are found, the literature did not

indicate the differences found between relatively small generation numbers.

4.3.2.1.1 De Jong's first function

Initially the GAs were tested on De Jong's first function. It was found for

both the standard microGA and the hybrid GA that after thirty generations the

recorded results show that there is a general trend of greater improvements to the

initial population as the generation gap increases for a population of 20

chromosomes. A summary of these results is shown in tables 4.4 and 4.5. This

general trend of improvement was also found for De Jong's second function, see the

next section, 4.3.2.1.2.

4-16

Evolutionary Computation and Experimental Design

The following tables of experimental data, e.g. tables 4.4 and 4.5, show the

summarised comparative performance of the GAs under test. For each setting of the

GA parameters the experiment was run one hundred times, each run starting at a

random population as explained in section 4.3.2. The solutions found at the end

point of the GA run, and in some subsequent tables at certain generations of the

search, were compared with those generated for the initial population. This

demonstrates if the GAs are producing improvements in the solutions found and

allows comparison of the effects of the different settings.

The left-hand side of the table shows how many of the one hundred runs

produced final solutions that were worse, showed no change or an improvement on

the initial random population. The right-hand side of the table details how great the

improvements were of those solutions on the left-hand side of the table that proved

to be better than the initial population. This quantification gives a clearer indication

of the amount improvement gained by particular settings. The three categories that

are listed on the right-hand side of the tables are '30% better', '50% better' and

'70% better'. Percentages are used to allow comparison between the results

produced on different test functions, where the range of values of x differ, see figure

4.1 and section 4.1.5. The layout of tables of experimental data described above is

applicable to all tables from 4.4 to 4.16.

4-17

Evolutionary Computation and Experimental Design

Generation
Gap
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Worse
47
20
21
14
7
4
3
4
5
1

No. ofG
No change

6
9
4
2
4
0
4
3
1
1

As compare
Better

47
71
75
84
89
96
93
93
94
98

d to initial p
30% better

2
6
12
12
25
20
22
27
25
24

opulation
50%better

1
1
3
4
5
4
12
12
10
8

70%better
0
1
1
2
2
2
4
3
4
6

Table 4.4. Performance of a standard small population GA on De Jong's first
function at the thirtieth generation with a population of 20 individuals.

Generation
Gap
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Worse
41
20
22
17
9
11
7
7
3
1

No. of G
No change

1
1
2
4
2
0
1
3
1
1

As compare
Better

58
79
76
79
89
89
92
90
96
98

d to initial p
30%better

3
11
11
15
22
19
25
25
22
29

opulation
50%better

0
5
1
7
8
4
11
5
8

11

70%better
0
2
0
2
2
1
6
0
1
2

Table 4.5. Performance of a hybrid GA with a population of 20 on De Jong's first
function at the thirtieth generation.

The results were filtered to show the chromosomes that showed the most

improvement (any improvement, greater than 50% and greater than 70%) over the

initial population for all test functions. The greatest improvement for both test

4-18

Evolutionary Computation and Experimental Design

functions was at a generation gap setting of 0.7, especially for the hybrid. This

could also be seen across the generations with the results sampled at generation 10,

15 and 20.

Regression analysis was used to study the relationship between the

performance of the hybrids and the generation gap. Regression analysis of the

results with at least a 50% improvement after thirty generations showed that the

visual trend could be described as follows:

Standard Small Population GA: y= \.2x- 0.5

Hybrid: j = 0.9*+1.1

where x is generation gap and y is percentage improvement on initial population,

which gives:

Standard Small Population GA: R2 = 71%

Hybrid: R2 = 53%

R2 is the value derived by standard regression analysis and shows the

strength of the relationship between the variables in the equations, in this case

percentage improvement and generation gap. The calculated values show that for

the standard small population GA, 71% of the improvement is due to the generation

gap. The influence is not as strong on the hybrid GA, but this is expected as there is

a greater random element due to the use of EVOP and the 'peak' at a generation gap

of 0.7. Visually, there appeared to be little improvement between the recorded

4-19

Evolutionary Computation and Experimental Design

results after thirty generations compared to those recorded after twenty generations.

Regression analysis of the results obtained after twenty generations gave the

following:

Standard Small Population GA: R2 = 70%

Hybrid: R2 = 60%

Analysing the difference between the results obtained after thirty generations

compared to those for twenty generations the change was less than 0.002%. The

analysis suggests that extrapolation, i.e. increasing the generation gap, would give

better results but that of course is not possible as a generation gap cannot be greater

than the original population, with these steady state GAs. However, it underlines the

general concept of the more generations a GA has the better the answer.

For a standard small population GA, the generation gap clearly has an

influence. Although the regression value obtained did not shown perfect correlation,

a positive relationship was shown despite the naturally random nature of GAs. The

effect of the generation gap is less apparent with the hybrid GA but this was

expected due to the nature of the EVOP element.

4-20

Evolutionary Computation and Experimental Design

4.3.2.1.2 De Jong's second function

Once again there was a distinct trend of improvement in the results obtained

as the generation gap increased. The results shown in tables 4.6 and 4.7, exhibit a

much greater improvement than that seen during testing on De Jong's first function.

Generation
Gap
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Worse
31
34
35
19
10
10
8
5
7
1

No. ofG
No change

12
6
3
4
1
2
1
4
4
3

As compan
Better

57
60
62
77
89
88
91
91
89
96

e<i to initial p
30%better

48
52
65
64
69
63
72
72
65
73

opulation
50%better

41
48
58
57
63
56
65
67
61
71

70% better
34
40
50
46
57
51
60
64
55
68

Table 4.6 Performance of a standard small population GA on De Jong's second
function at the thirtieth generation with a population of 20 individuals.

Generation
Gap
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Worse
35
37
36
19
7
16
17
8
5
1

No. ofG
No change

2
0
0
1
1
2
0
3
2
1

As compare
Better

63
63
64
80
92
82
83
89
93
98

d to initial p
30%better

48
50
71
63
65
65
69
73
62
72

opulation
50%better

42
45
60
56
61
59
63
64
55
71

70%better
35
38
53
49
56
52
59
63
51
67

Table 4.7 Performance of a hybrid GA on De Jong's second function at the thirtieth
generation with a population of 20 individuals.

4-21

Evolutionary Computation and Experimental Design

Calculated in exactly the same manner as section 4.3.2.1.1, regression

analysis of the results with at least a 50% improvement after thirty generations

showed that the visual trend could be described as follows:

Standard Small Population GA: y = 2.6x + 44.6

Hybrid: y = 2.2* + 45.3

where x is generation gap and y is percentage improvement on initial population,

which gives

Standard Small Population GA: R2 = 75%

Hybrid: R2 = 61%

This shows that for the standard small population GA 75% and for the hybrid 61%

of the improvement is due to the generation gap. The analysis was also completed

for the results obtained after twenty generations, which gave the following

coefficients of determination:

Standard Small Population GA: R2 = 69%

Hybrid: R2 = 60%

These coefficients both show a correlation between improved results and the

generation gap.

4-22

Evolutionary Computation and Experimental Design

4.3.2.1.3 Other functions

Due to the small improvements gained between the twentieth and thirtieth

generations further results were obtained at twenty generations, then analysed. Both

the standard small population GA and the hybrid GA were tested on the other three

functions in the test suite: Rastrigin's, Schwefel's and Griewangk's functions, see

section 4.1.5. The results of these tests did not show a similar trend to that identified

for the two traditional De Jong functions. The hybrid tested with Schwefel's

function demonstrated that the generation gap had little influence on the results. For

both Rastrigin's and Griewangk's functions analysis shows that the generation gap

does not have a much influence on the results. The standard small population GA

showed little correlation with Schwefel's function and very weak correlation for the

other functions, which again demonstrates that the generation gap has little influence

on the results obtained. Results of the tests using the standard small population GA,

population of 20, at the twentieth generation are shown in tables 4.8, 4.9 and 4.10.

Generation
Gap
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Worse
21
24
28
34
43
43
45
46
45
49

No. ofG
No change

9
7
15
5
2
3
3
4
5
1

As compare
Better

70
69
57
61
55
54
52
50
50
50

d to initial p
30%better

2
1
0
0
0
0
0
0
0
0

opulation
50%better

0
0
0
0
0
0
0
0
0
0

70% better
0
0
0
0
0
0
0
0
0
0

Table 4.8. Results obtained on Schwefel's function.

4-23

Evolutionary Computation and Experimental Design

Generation
Gap
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Worse
19
18
8
9
5
3
1
1
1
0

No. ofG
No change

8
4
15
8
10
8
6
5
3
0

As compan
Better

73
78
77
83
85
89
93
94
96
100

Si1 to initial p
30% better

7
8
6
9
13
20
14
21
26
27

opulation
50%better

5
1
3
4
2
10
8

11
11
13

70%better
2
0
0
1
1
2
4
3
3
7

Table 4.9. Results obtained on Rastrigin's function.

Generation
Gap
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Worse
11
22
12
12
2
5
2
2
1
1

No. ofG
No change

10
9
14
8
8
6
8
5
7
7

As compare
Better

79
69
74
80
90
89
90
93
92
92

d to initial p
30%better

11
10
14
9
18
20
22
26
16
26

opulation
50%better

3
8
10
3
11
13
13
18
12
20

70%better
2
4
9
3
7

11
10
14
7
13

Table 4.10. Results obtained on Griewangk's function.

4.3.2.2 The influence of the generation gap

These results lead to the conclusion that the influence of the generation gap

depends on the search space so, no single setting of the generation gap can be

recommended as superior for all cases. As the best solutions were found with higher

4-24

Evolutionary Computation and Experimental Design

generation gap settings for some functions and for other functions high generation

gap settings gave comparably good solutions with no degradation in performance as

the setting increased, a higher generation gap would be recommended in all cases.

The peaks in performance found at 0.7 for the hybrid indicate that this setting would

be recommended as a starting point for an empirical search for small population

GAs and their hybrids. Large generation gaps are also recommended for standard

population GAs (De Jong and Sarma, 1993).

4.3.3 The Effect of a Small Number of Generations

Traditional GAs have many hundred or thousand generations and most

published works relate to these type of GAs. Some work has been published on

standard small population GAs, sometimes referred to as microGAs (Krishnakumar,

1989), as discussed earlier in Section 4.1 where the view that a population of thirty

individuals is a small population was stated. Literature stating the effects of very

few generations was limited, so an investigation into the effect of a small number of

generations was undertaken. Initial testing was carried out using De Jong's first

function using both a standard small population GA and a hybrid.

4.3.3.1 De Jong's first function

With a population of twenty individuals the most change is seen in the first

ten generations. After five generations there are often a few individuals which give

worse solutions than the original population, with the hybrid GA finding only

4-25

Evolutionary Computation and Experimental Design

marginally fewer worse solutions compared to the standard small population GA.

As expected the standard small population GA had more individuals that recorded

no change from the initial population than the hybrid. This is more noticeable with

fewer generations, i.e. five or ten generations.

As stated in section 4.3.2.1.1, results were collated and filtered to show how

many individuals had improved, by 30% or more, 50% or more and 70% or more

than the initial population. This obviously gave many more results to be assessed

but a clearer picture of the GA performance was obtained. Trials were run at all

generation gaps but the sample results in tables 4.11 and 4.12 were obtained at a

generation gap 0.7. Although both types of GA recorded similar numbers of

improved individuals, the hybrid showed more individuals with a greater

improvement.

Generation
5
10
15
20
30

Worse
7
3
3
3
3

No. ofG
No change

11
5
4
4
4

As compart
Better

82
92
93
93
93

e«1 to initial p
30%better

10
19
22
22
22

opulation
50%better

6
11
11
12
12

70%better
1
3
3
4
4

Table 4.11. Performance of a standard small population GA with a population of 20
on De Jong's first function at a generation gap of 0.7.

4-26

Evolutionary Computation and Experimental Design

Generation
5
10
15
20
30

Worse
16
9
7
7
7

No. of G.
No change

2
1
1
1
1

4s compare
Better

82
90
92
92
92

d to initial p
30%better

13
22
25
25
25

opulation
50%better

2
8
10
11
11

70%better
1
3
4
6
6

Table 4.12. Performance of a hybrid GA with a population of 20 on De Jong's first
function at a generation gap of 0.7.

4.3.3.2 De Jong's second function

The general trend with different numbers of generations were as expected in

almost all cases, especially with fewer generations as illustrated in tables 4.13 and

4.14. The hybrid gave a larger number of results which were actually worse than the

original population. The hybrid also produced fewer individuals which had not

changed from the initial population. Unfortunately, there was no mechanism to

check if the individuals were unchanged or if the individuals were the result of

breeding. This showed that the populations of the hybrid were more mobile than

those of the standard small population GA: Generations subsequent to the initial

population contained more new individuals in the hybrid than in the standard small

population GA. Generally the fewer generations, the greater the difference in

performance between the hybrid and the standard small population GA, although

there was an underlying trend of an improvement in performance as the number of

generations increased. However, the improvement between generations was less

4-27

Evolutionary Computation and Experimental Design

between generation 20 and 30 and the majority of GAs found good solutions within

ten generations. Sample results are shown in tables 4.13 and 4.14.

Generation
5
10
15
20
30

Worse
13
11
8
8
8

No. ofG.
No change

11
1
1
1
1

4s compan
Better

76
88
91
91
91

s<1 to initial p
30%better

62
67
72
72
72

opulation
50%better

46
60
65
65
65

70%better
44
57
59
60
60

Table 4.13. Performance of a standard GA with a population of 20 on De Jong's
second function at a generation gap of 0.7.

Generation
5
10
15
20
30

Worse
21
16
17
17
17

No. ofG
No change

1
0
0
0
0

As compan
Better

78
84
83
83
83

£«i to initial p
30%better

62
65
69
69
69

opulation
50%better

53
59
63
63
63

70%better
50
55
58
59
59

Table 4.14. Performance of a hybrid GA with a population of 20 on De Jong's
second function at a generation gap of 0.7.

4.3.3.3 Comparison at ten generations

As the performance of GAs with only five generations gave some erratic

results, it was concluded that the smallest number of generations that gave a

consistent good performance was ten. To further investigate the effect of very small

numbers of generations the hybrid and standard small population GA were tested

4-28

Evolutionary Computation and Experimental Design

across the three functions: Rastrigin, Schwefel and Griewangk. As summary of

these results are shown in tables 4.15 and 4.16.

For Rastrigin's function the hybrid consistently proved to have a more

mobile population which was manifested by producing more individuals that were

worse than the original population, especially for generation five, along with

showing fewer static solutions, except for when the generation gap was set at 1.0.

The hybrid regularly gave more solutions with the greatest improvement from the

initial population. Generally the hybrid gave the best performance on this function

with a population often.

Schwefel's function again showed that the hybrid population was more

mobile with fewer individuals with no change from the initial population and more

that were worse, especially within the first five generations. With the generation gap

set between 0.1 and 0.2 although the hybrid found more improved solutions, the

standard small population GA found the best solutions. Otherwise the trend was for

the hybrid to find more improved solutions but neither GA making large

improvements to the initial population.

The hybrid population again tended towards greater movement when tested

on Griewangk's function. The hybrid occasionally did not find as many of the best

solutions as the standard small populations, but the best solutions found by the

4-29

Evolutionary Computation and Experimental Design

hybrid were of equal quality to those found by the standard small population GA.

Generally, the hybrid found more improved solutions.

The hybrid generally, with a few exceptions, for all functions was more

mobile and gave improved results. Indicative sample results are shown in tables

4.15 and 4.16. These sample results were obtained at a generation gap of 0.7, but

the study included trials at all generation gap settings.

Function
Schwefel
Rastrigin

Griewangk

Worse
45

1
2

No. ofG
No change

3
6
8

As compan
Better

52
93
90

e<i to initial p
30% better

0
14
22

opulation
50%better

0
8

13

70%better
0
4
11

Table 4.15. Performance of a standard small population GA at ten generations.

Function
Schwefel
Rastrigin

Griewangk

Worse
37
7
9

No. ofG
No change

3
2
3

As compare
Better

60
91
88

d to initial p
30%better

0
16
21

opulation
50%better

0
10
13

70%better
0
4
10

Table 4.16. Performance of a hybrid GA at ten generations.

4.3.4 The Effect of Population Size

With only five generations the hybrid did not perform as well as the standard

small population GA. Although it found fewer improved solutions, the solutions

4-30

Evolutionary Computation and Experimental Design

found were of equal quality as those found by the standard small population GA.

The hybrid was also shown to be more mobile for GAs with ten generations.

Generally, the hybrid outperformed the standard small population GA, with an

exception at a generation gap of 0.2 and a marginally worse performance at 0.8.

With twenty generations the hybrid consistently outperformed the standard small

population GA. As expected the hybrid population was more mobile.

The greater the population size the better the results found. With a small

number of generations this became more important. Populations of five generally

gave much poorer results, due to the lack of time to search a large number of points

in the search space. A population of twenty individuals gave better results than

populations with ten individuals.

4.4 SUMMARY

Stochastic universal sampling has been shown to be more robust than the

traditional roulette wheel selection method, and capable of obtaining comparably

good solutions. To maintain fast running of the hybrid the simplest crossover

method, single point, was used. Mutation was disabled for these small population

GAs as the accepted usual rates of one in thousand(s) would have little effect on

small populations running only to a few generations. To increase the mutation rate

for it to have an effect would risk turning the search into a random walk. For the

4-31

Evolutionary Computation and Experimental Design

hybrid, the EVOP element increased the amount of search space that could be

reached by the GA and thus compensating for the mutation rate being turned off.

Steady state population sizes were used so as not to increase running time of the

GAs.

Migration rate was shown to have a bimodal influence on the performance of

the small population GAs. Generation gap was extensively tested and was shown to

affect the solutions found: although seemingly dependant on the search space, the

higher generation gaps generally showed improved solutions. The influence of the

generation gap was not as strong for the hybrid as the standard small population GA.

Results indicate that a generation gap of 0.7 is to be recommended as a search

starting point for small population GAs and their hybrids, as good solutions were

found with this setting on many function spaces. This recommendation fits with De

Jong's studies (Goldberg, 1988b) on larger populations that concluded that non-

overlapping generations perform better in most off-line optimisation situations, but

on-line performance 'is not severely degraded by using smaller generation gaps'. A

population size of five gave erratic results, but a population of ten gave much better

results with this trend increasing as the population size increased for both the hybrid

and the standard small population GA. Solutions found improved as the number of

generations increased. Five generations did not give very good results but it was

noted that most movement occurred in the first ten generations. A population size of

4-32

Evolutionary Computation and Experimental Design

ten is therefore recommended as it gives good results, without the time penalties

associated with the larger population size of twenty which was also studied.

This chapter has concentrated on the settings of operators for the genetic

algorithms used in this study, investigating the influences these operators on small

population GAs and their EVOP hybrids. The combination of the global and local

searches of GAs and EVOP has been shown to improve the performance of very

small population hybrid GAs. The EVOP element is present in all generations of the

hybrids investigated in this chapter, further investigation to examine the effects of

the influence of the EVOP element on the hybrid GAs is presented in the next

chapter.

4-33

Evolutionary Computation and Experimental Design

5. DYNAMIC HYBRIDS

The hybrid GAs tested in the previous chapter contained an element of EVOP

which operated from the first to last generations of the GA and are henceforth

referred to as static hybrids. The aim of this chapter is to illustrate the investigations

undertaken to examine the effects of the influence of the EVOP element on the

hybrid GAs, using various standard test functions. In this chapter EVOP is initiated

only for certain specified generations, such that the GA proceeds its characteristics

change and these GAs are referred to as dynamic hybrids. These dynamic hybrids

are compared to each other, to their comparable static hybrid and standard small

population GA. The influences of the global and local search elements of the

hybrids will be considered. A study is also undertaken into the influence of the

generation gap on these dynamic hybrids.

5.1. MODIFICATION OF MICRO GAs

5.1.1 Selection of Parameters

Each hybrid was run one hundred times, due to the probablistic nature of

GAs, to overcome any bias that could be introduced by a small number of trials.

Stochastic universal selection is used for all hybrids tested here as it has been shown

to be a preferred method of selection for small population GAs as explained in

Chapter 4. This set of hybrids were run for twenty generations as the earlier hybrid

trials had shown that this setting gave acceptable results. With this small number of

5-1

Evolutionary Computation and Experimental Design

generations the run time for the GAs is kept to a minimum. Single point crossover

was used as this is the simplest method with the least computational demands and

hence running time. A population size of ten was used as this was shown in the

previous chapter to give good results.

5.1.2 Control of EVOP Element

As discussed in Chapter 3, EVOP is really a local search method whereas

GAs are regarded as global search methods due their parallel search technique.

Previous hybrids discussed in Chapter 4, combined EVOP with a standard small

population GA to search the problem domain. GAs initially search large areas of the

problem space, but methods such as EVOP are better at searching small areas. To

capitalise on the strengths of both methods, experiments were conducted with

hybrids which varied from pure GA to GAs with elements of local search. The

initial expectation was that improved performance would be gained by tuning the

hybrid from a pure GA to a GA with EVOP as the search proceeded; the EVOP

element being restricted to the later generations of the hybrid. The GA conducts the

initial search to find the most promising regions (Renders and Bersini, 1994), which

are then more closely investigated by the EVOP element. This can be achieved by

inserting a simple variable test in the GA code so that EVOP is only executed when

a certain condition is met, for example, "EVOP to be present only after ten

generations", provided that a variable has been allocated to count the number of

generations.

5-2

Evolutionary Computation and Experimental Design

5.2 DYNAMIC HYBRID TESTING

To determine the influence of the EVOP, several hybrids were created, as

shown in table 5.1, with EVOP only present during later generations, initial

generations or EVOP initiated with increasing regularity as the generations

increased.

Hybrid

GEVO-1

GEVO-2

GEVO-3

GEVO-4

GEVO-5

GEVO-6

GEVO-7

Generations EVOP initiated

>15

>10

>5 and<16

2, 6,7, 11,12,13, 17,18,19,20

5, 10,11, 14,15,16, 18,19,20

<6

<11
Table 5.1. Initiation of EVOP in hybrids.

The first two hybrids (GEVO-1 and GEVO-2) were designed to show any

effect on the solutions found with EVOP being introduced towards the final

generations of the GA. GEVO-3 was designed to show the impact of introducing

EVOP only in the middle generations of the search. The effect of gradually

introducing increasing amounts of local search was investigated using GEVO-4 and

GEVO-5. GEVO-6 and GEVO-7 were to investigate the effect including a local

search element only in the early part of the algorithm. All hybrids were tested using

5-3

Evolutionary Computation and Experimental Design

the five traditional functions at generation gaps varying from 0.6 to 1.0 as previous

experimentation (see section 4.3.2) had indicated that better results could be

obtained by using higher generation gaps. This means that this set of experiments

consisted of 17,500 trials of various hybrid GAs, which were then compared to

standard small population GAs and to the hybrids tested in the previous chapter.

5.2.1 Testing on De Jong's First Function

5.2.1.1 Hybrid One - GEVO-1

The first comparisons were made with a generation gap setting of 0.7. As

with the first type of static hybrid (Hybrid 1) this dynamic hybrid GA (GEVO-1)

was much more mobile than the standard small population GA (PGA) but not as

mobile as the initial static hybrids. GEVO-1 found more improved solutions than

the standard small population GA, on a par with those found in the previous chapter.

GEVO-1 found the solutions with the greatest improvement on the initial population

as shown below in table 5.2. GEVO-1 found approximately the same number of

improved solutions as the comparable static hybrid (Hybrid 1), both of which were

better than the standard small population GA. GEVO-1 gave fewer solutions that

were worse than the initial population, yet found more of the best solutions. The

format of tables 5.2 to 5.20 follows the format described in section 4.3.2.1.1.

5-4

Evolutionary Computation and Experimental Design

GA
GEVO-1
Hybrid 1
PGA
GEVO-1
Hybrid 1
PGA
GEVO-1
Hybrid 1
PGA
GEVO-1
Hybrid 1
PGA

Generation
5
5
5
10
10
10
15
15
15
20
20
20

Worse
7
16
10
5
13
8
5
12
8
12
12
7

No. ofG
No change

14
3

20
9
2
12
9
2
12
2
2
12

As com]
Better

79
81
70
86
85
80
86
86
80
86
86
81

)!ared to initi
30%better

2
5
2
5
6
6
7
6
6
7
6
6

al populatio
50%better

0
1
0
2
1
0
3
1
0
3
1
0

n
70%better

0
0
0
1
0
0
1
0
0
1
0
0

Table 5.2. Comparison of GEVO-1, hybrid 1 and standard small population GA
with a population often and a generation gap of 0.7.

5.2.1.2 Hybrid Two - GEVO-2

The second dynamic hybrid (GEVO-2) also changed from pure GA to GA

with EVOP as the generations increased. Compared to GEVO-1, EVOP was

introduced earlier after generation ten, rather than after generation fifteen. Although

individual trials were different, the aggregated results which are in classified ranges

rather than specific numbers, shown below in table 5.3, show no difference from

those achieved using the first dynamic hybrid, GEVO-1, shown in table 5.2.

Generation
5
10
15
20

Worse
7
5
5
12

No. ofC
No change

14
9
9
2

rAs com
Better

79
86
86
86

P a red to initia
30%better

2
5
7
7

1 population
50%better

0
2
3
3

70%better
0
1
1
1

Table 5.3. Performance of GEVO2 hybrid GA with a population often and a
generation gap of 0.7.

5-5

Evolutionary Computation and Experimental Design

The results indicated that the averaged similarities are due to the small

population size and few number of generations in these hybrid GAs. A further brief

study with much larger populations and the EVOP being introduced to generations

much further apart, did show a difference, but the difference between these small

hybrids was not sufficient to detect any improvement.

5.2.1.3 Hybrid Three - GEVO-3

The first two dynamic hybrids were used to investigate the effect of

introducing EVOP to a GA search during the last few generations. Although

counterintuitive, the third dynamic hybrid (GEVO-3) is a valid test hybrid as it is

designed to show if changing the search method from GA to combined GA with

EVOP, then back to GA, influences the solutions. Results obtained using this hybrid

are shown in table 5.4.

Generation
5
10
15
20

Worse
7
12
11
11

No. ofG
No change

14
2
2
2

rAs com
Better

79
86
87
87

p ared to initia
30%better

2
5
7
7

1 population
50%better

0
2
3
3

70%better
0
1
1
1

Table 5.4. Performance of GEVO3 hybrid GA with a population often and a
generation gap of 0.7.

5-6

Evolutionary Computation and Experimental Design

As expected the third hybrid gave a similar performance to the first two

dynamic hybrids in the first five generations as all three were purely GA at this

stage. For generations ten and fifteen GEVO-3 found more solutions that were

worse than the initial population than the other dynamic hybrids, but only a couple

of the strings remained unchanged. GEVO-3 found marginally more improved

solutions than any of the other GAs, hybrid or standard small population. This result

is most probably due to EVOP being introduced earlier in the search than the

previous dynamic GAs. It was therefore decided that further investigation into early

introduction of EVOP was required before a more general statement can be made.

5.2.1.4 Hybrids Four and Five - GEVO-4 and GEVO-5

These two hybrids will be discussed together as both were used to investigate

the effect of using EVOP in increasing numbers of generations as the GA proceeds.

With GEVO-4 the EVOP element is quickly introduced in the second generation for

one generation, then four generations later for two generations, then four generations

later for three generations and finally four generations later for four generations. For

GEVO-5 the EVOP element is not introduced until the fifth generation for one

generation, then activated for the tenth and eleventh generations, fourteenth,

fifteenth and sixteenth generations and finally in the eighteenth, nineteenth and

twentieth generations. The summarised results from running these dynamic hybrid

GAs at a generation gap of 0.7 is shown in table 5.5.

5-7

Evolutionary Computation and Experimental Design

Generation
5
10
15
20

Worse
15
10
10
10

No. ofG
No change

3
2
2
2

rAs com
Better

82
88
88
88

P ared to initia
30%better

2
4
6
6

1 population
50%better

0
1
2
2

70%better
0
0
0
0

Table 5.5. Performance of GEVO-4 hybrid GA with a population often and a
generation gap of 0.7.

Both dynamic GAs gave similar results, which when averaged and collated

into ranges produced almost identical results. As with the other hybrids tested in

this section, both GEVO-4 and GEVO-5 were more mobile than the standard small

population GA. This mobility resulted in more chromosomes giving worse solutions

than the initial population than for any of the other dynamic hybrid GAs. Also

GEVO-4 and GEVO-5 produced the least number of chromosomes with no change

compared to any of the other dynamic hybrid GAs. The number of chromosomes

with no change from the initial population was comparable to those hybrids with

EVOP introduced from the first generation. This style of hybrid GA with EVOP

only present in selected generations gave the greatest number of improved solutions

in all generations although it did not give solutions with the greatest improvement.

5.2.1.5 Hybrids Six and Seven - GEVO-6 and GEVO-7

As hybrids had been designed to test the effect of introducing EVOP to later

generations and selected generations throughout, it was considered appropriate to

also test the effect of introducing EVOP only to the early generations of the hybrid

GA. This would give a clearer understanding of the influence of the local EVOP

5-8

Evolutionary Computation and Experimental Design

element on the overall search. GEVO-6 is a GA that uses EVOP in generations one

to five only and for GEVO-7 EVOP is present only for generations one to ten.

Results of the testing of GEVO-6 and GEVO-7 are shown below in table 5.6 and 5.7

respectively.

Generation
5
10
15
20

Worse
20
17
17
17

No. ofG
No change

2
1
1
1

JAs com
Better

78
82
82
82

P ared to initia
30%better

2
5
5
6

il population
50%better

0
1
1
1

70%better
0
1
1
1

Table 5.6. Performance of GEVO-6 hybrid GA with a population often and a
generation gap of 0.7.

Generation
5
10
15
20

Worse
23
18
16
16

No. ofG
No change

9
5
5
5

>As com
Better

68
77
79
79

P ared to initia
30%better

2
5
5
5

1 population
50%better

0
0
0
0

70%better
0
0
0
0

Table 5.7. Performance of GEVO-7 hybrid GA with a population often and a
generation gap of 0.7.

Although for the number of solutions found that were worse than the original

population, with both GEVO-6 and GEVO-7, the figures indicate a poor

performance compared to the other dynamic hybrids in this section. It should be

noted that the number of solutions is similar to those recorded for the original static

hybrid (Hybrid 1). There is no significant difference between these hybrids and

other GAs in the number of solutions found that appeared in the original population.

5-9

Evolutionary Computation and Experimental Design

Neither of these dynamic hybrids, GEVO-6 and GEVO-7 performed well in finding

improved solutions. GEVO-6 with EVOP used only to generation five, gave better

results than GEVO-7 with EVOP in generations one to ten. Despite the better

performance, the results from GEVO-6 were only marginally better than those

obtained with a standard small population GA. These results confirm that

combining EVOP with a GA purely in the initial generations is detrimental to the

search.

5.2.2 Testing on De Jong's Second Function

As with previous hybrids, these dynamic hybrids were also tested on further

test functions including De Jong's second test function. For reference, the results

from the comparable standard small population GA (PGA) are shown in table 5.8

and the static hybrid (Hybrid 1) in table 5.9. The dynamic hybrids tested are those

listed earlier in table 5.1. Table 5.10 shows the results of testing GEVO-1 on De

Jong's second test function.

Generation
5
10
15
20

Worse
9
9
9
8

No. ofC
No change

14
11
11
11

JAs com
Better

77
80
80
81

P ared to initia
30% better

49
56
55
55

1 population
50%better

39
49
49
49

70% better
30
41
42
42

Table 5.8. Performance of PGA with a population often and a generation gap of
0.8.

5-10

Evolutionary Computation and Experimental Design

Generation
5
10
15
20

Worse
27
24
24
24

No. ofG
No change

3
2
2
2

rAs com
Better

70
74
74
74

P ared to initia
30%better

42
50
51
51

1 population
50%better

35
39
40
40

70%better
29
33
34
34

Table 5.9. Performance of Hybrid 1 with a population often and a generation gap of
0.8.

Generation
5
10
15
20

Worse
12
9
9
17

No. ofG
No change

11
8
8
0

rAs com
Better

77
83
83
83

P ared to initia
30%better

54
60
60
60

1 population
50%better

46
48
48
52

70%better
37
37
37
36

Table 5.10. Performance of GEVO-1 hybrid GA with a population often and a
generation gap of 0.8

As with previous tests GEVO-1 found more solutions that were worse than

the original population but the chromosomes that showed no change were fewer than

the standard small population GA. GEVO-1 found more improved solutions than

either Hybrid 1 or PGA. The solutions it found were of a better quality than Hybrid

1 but not quite as good as the standard small population GA, as demonstrated by the

percentage improvements shown on the right-hand side of the tables.

The results for GEVO-2 are shown in table 5.11. As expected the results for

generations five and ten are exactly the same as those for GEVO-1, as the hybrid

GAs are identical to this point, however the results then diverge. GEVO-2 finds

more solutions that are worse than the original population and has fewer

chromosomes with no change. This is especially apparent in generation 15: EVOP

5-11

Evolutionary Computation and Experimental Design

is introduced in generation 16 for GEVO-1 and generation 11 for GEVO-2. GEVO-

2 finds one less improved solutions than GEVO-1 but they are of a comparable

quality.

Generation
5
10
15
20

Worse
12
9
18
18

No. ofG
No change

11
8
0
0

rAs com
Better

77
83
82
82

P ared to initia
30%better

54
60
59
59

1 population
50% better

46
48
51
51

70%better
37
37
36
36

Table 5.11. Performance of GEVO-2 hybrid GA with a population often and a
generation gap of 0.8

GEVO-3 again has a mobile population, but although it gives fewer

improved solutions than other GAs, the improved solutions are of a superior quality

when compared to the static hybrid or standard small population GA. For the

particular set of runs illustrated in table 5.12, movement in the population is almost

complete by generation ten.

Generation
5
10
15
20

Worse
11
14
14
14

No. ofG
No change

18
5
5
5

rAs com
Better

71
81
81
81

P ared to initia
30%better

56
62
62
62

il population
50%better

43
54
54
54

70%better
35
45
45
46

Table 5.12. Performance of GEVO-3 hybrid GA with a population often and a
generation gap of 0.8

5-12

Evolutionary Computation and Experimental Design

Over the large set of trials for the hybrids which combine increasing EVOP

in the GA as the generations increase (GEVO-4 and GEVO-5) individual runs

differed but gave identical results when averaged and collated into ranges as shown

in tables 5.13 and 5.14. As discussed in section 5.2.1.4. this is due to the small

number of individuals in a population and the relatively few generations.

Generation
5
10
15
20

Worse
19
14
14
14

No. ofG
No change

0
0
0
0

rAs com
Better

81
86
86
86

P ared to initia
30%better

53
62
63
63

1 population
50%better

49
53
53
53

70%better
36
37
37
37

Table 5.13. Performance of GEVO-4 hybrid GA with a population often and a
generation gap of 0.8.

Generation
5
10
15
20

Worse
19
14
14
14

No. ofC
No change

0
0
0
0

rAs com
Better

81
86
86
86

P ared to initia
30% better

53
62
63
63

1 population
50%better

49
53
53
53

70% better
36
37
37
37

Table 5.14. Performance of GEVO-5 hybrid GA with a population often and a
generation gap of 0.8.

Despite the averaging of results masking some of the features of the hybrids,

particularly GEVO-4 and GEVO-5, it was considered important that a large number

of runs were necessary for each trial due to the probablistic nature of GAs, as

discussed in section 5.1.1. But to analyse this data set of four thousand individual

5-13

Evolutionary Computation and Experimental Design

numbers some form of aggregation was necessary. Also it was vital that each trial

was arranged and analysed in an identical manner to allow fair comparisons.

The results show that both of these dynamic hybrids have mobile

populations, with both GEVO-4 and GEVO-5 registering no chromosomes that have

not changed from the initial population. The tables show that these hybrids found

more improved solutions than either the standard small population GA or Hybrid 1.

However these hybrids show slightly fewer of the most improved solutions.

The remaining two dynamic hybrids, GEVO-6 and GEVO-7, were designed

to test the effect of only utilising EVOP during the first few generations, as

described in table 5.1. GEVO-7 has a more mobile population than GEVO-6, but

finds fewer improved solutions, as shown in tables 5.15 and 5.16. GEVO-6

outperformed both the standard small population GA and Hybrid 1 in terms of the

quality of the improved solutions found.

Generation
5
10
15
20

Worse
16
14
15
15

No. ofC
No change

4
5
5
5

JAs com
Better

80
81
80
80

P ared to initia
30%better

54
62
61
61

1 population
50%better

42
54
54
54

70% better
33
44
44
45

Table 5.15. Performance of GEVO6 hybrid GA with a population often and a
generation gap of 0.8.

5-14

Evolutionary Computation and Experimental Design

Generation
5
10
15
20

Worse
23
19
19
19

No.ofG
No change

3
3
3
3

rAs com
Better

74
78
78
78

P ared to initia
30%better

50
55
56
56

1 population
50%better

36
42
42
42

70%better
25
34
35
35

Table 5.16. Performance of GEVO7 hybrid GA with a population often and a
generation gap of 0.8.

Generally these dynamic hybrids gave a performance, which if judged solely

on number of improved solutions would indicate a relatively poor performance.

However, further analysis of the results show that the dynamic hybrids consistently

gave a greater number of superior solutions in the early generations and

outperformed the comparable static hybrid in nearly all cases.

5.2.3 Testing on Other Functions

To complete this set of tests the dynamic hybrids were tested on the other

three functions in De Jong's traditional test suite: Rastrigin's function, Schwefel's

function and Griewangk's function. The results for each function are collated into a

table with the solutions found at generations five, ten, fifteen and twenty for each of

the seven dynamic hybrids, the comparable static hybrid (Hybrid 1) and standard

small population GA (PGA). The seven dynamic hybrids are those described in

table 5.1 and discussed in the previous two sections, 5.2.1 and 5.2.2. On the

following pages are the results in tables 5.17, 5.18 and 5.19 for Rastrigin's function,

Schwefel's function and Griewangk's function respectively.

5-15

Evolutionary Computation and Experimental Design

The GAs recorded in table 5.17 were tested on Rastrigin's function. In

general all of the GAs performed well with over 80% of chromosomes returning

improved values. However, apart from GEVO-6 the dynamic hybrids returned

slightly fewer improved solutions, but of those improved solutions the dynamic

hybrids gave more solutions with a greater improvement. The higher mobility of the

dynamic hybrid populations initially appeared to be a disadvantage when looking at

whether the population had deteriorated, remained unchanged or improved, but

closer examination revealed that the dynamic hybrids found more of the higher

quality solutions.

Schwefel's function was the subject of the test for the GAs in table 5.18.

None of the GAs tested gave a particularly good performance, with no GA finding a

solution with an improvement of greater than 30%. The dynamic hybrids did not

find as many improved solutions as either the standard small population GA or the

static hybrid. The improved solutions found by the dynamic hybrids were of a

similar quality to the other GAs but many of the population literally disappeared

down Schwefel's dips as this function is particularly deceptive to local search

algorithms. The dynamic hybrids gave a poor performance but the best solutions

found were as good as those found using the other GAs.

The final set of tests for these dynamic hybrids was on Griewangk's function

and the results are shown in table 5.19. In contrast to the previous (Schwefel's)

5-16

Evolutionary Computation and Experimental Design

GA
PGA
PGA
PGA
PGA
Hybrid 1
Hybrid 1
Hybrid 1
Hybrid 1
GEVO-1
GEVO-1
GEVO-1
GEVO-1
GEVO-2
GEVO-2
GEVO-2
GEVO-2
GEVO-3
GEVO-3
GEVO-3
GEVO-3
GEVO-4
GEVO-4
GEVO-4
GEVO-4
GEVO-5
GEVO-5
GEVO-5
GEVO-5
GEVO-6
GEVO-6
GEVO-6
GEVO-6
GEVO-7
GEVO-7
GEVO-7
GEVO-7

Generation
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20

Worse
3
1
1
1
6
6
6
6
13
8
7
10
9
6
12
12
4
10
10
10
15
10
10
10
16
13
13
13
8
4
4
4
19
13
13
13

No. ofG
No change

6
5
5
5
1
1
1
1

12
9
9
4
9
5
1
2
10
3
3
3
6
6
6
6
5
5
5
5
2
2
2
2
3
4
4
4

rAs compare
Better

91
94
94
94
93
93
93
93
75
83
84
86
82
89
87
86
86
87
87
87
79
84
84
84
79
82
82
82
90
94
94
94
78
83
83
83

:d to initial p
30%better

12
21
21
21
12
19
19
19
32
41
43
41
20
32
33
7

24
39
39
41
20
25
25
26
19
27
30
30
27
44
44
44
21
34
35
35

opulation
50% better

7
11
11
11
7
10
10
10
15
20
21
19
8
12
13
3
14
19
20
20
6
7
7
7
6
13
14
14
10
19
20
20
11
17
18
18

70%better
1
3
3
3
3
4
4
4
5
8
8
9
2
4
4
1
6
8
9
9
1
1
1
1
3
7
7
7
3
9
9
9
4
9
10
10

Table 5.17. Performance of GAs on Rastrigin's function with a population often
and a generation gap of 0.8.

5-17

Evolutionary Computation and Experimental Design

GA
PGA
PGA
PGA
PGA
Hybrid 1
Hybrid 1
Hybrid 1
Hybrid 1
GEVO-1
GEVO-1
GEVO-1
GEVO-1
GEVO-2
GEVO-2
GEVO-2
GEVO-2
GEVO-3
GEVO-3
GEVO-3
GEVO-3
GEVO-4
GEVO-4
GEVO-4
GEVO-4
GEVO-5
GEVO-5
GEVO-5
GEVO-5
GEVO-6
GEVO-6
GEVO-6
GEVO-6
GEVO-7
GEVO-7
GEVO-7
GEVO-7

Generation
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20

Worse
41
46
46
46
40
44
44
44
79
83
84
82
84
86
91
91
80
87
88
89
84
90
90
90
85
88
89
89
83
85
85
85
86
89
89
89

No. ofG
No change

6
4
4
4
2
2
2
2
10
8
8
3
5
6
2
2
8
2
1
1
1
0
0
0
2
2
2
2
4
3
3
3
2
3
3
3

As compare
Better

53
50
50
50
58
54
54
54
11
9
8
15
11
8
7
7
12
11
11
10
15
10
10
10
13
10
9
9
13
12
12
12
12
8
8
8

d to initial p
30%better

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

opulation
50% better

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

70% better
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Table 5.18. Performance of GAs on Schwefel's function with a population often
and a generation gap of 0.8.

5-18

Evolutionary Computation and Experimental Design

GA
PGA
PGA
PGA
PGA
Hybrid 1
Hybrid 1
Hybrid 1
Hybrid 1
GEVO-1
GEVO-1
GEVO-1
GEVO-1
GEVO-2
GEVO-2
GEVO-2
GEVO-2
GEVO-3
GEVO-3
GEVO-3
GEVO-3
GEVO-4
GEVO-4
GEVO-4
GEVO-4
GEVO-5
GEVO-5
GEVO-5
GEVO-5
GEVO-6
GEVO-6
GEVO-6
GEVO-6
GEVO-7
GEVO-7
GEVO-7
GEVO-7

Generation
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20

Worse
3
2
2
2
5
3
3
3
10
8
8

20
6
3
12
12
11
10
10
10
14
10
10
10
16
13
13
13
17
16
16
16
15
12
12
12

No. ofG
No change

7
5
5
5
5
4
4
4
15
11
11
2
11
8
4
4
9
2
2
2
7
6
6
6
4
5
5
5
2
2
2
2
2
2
2
2

As compare
Better

90
93
93
93
90
93
93
93
75
81
81
78
83
89
84
84
80
88
88
88
79
84
84
84
80
82
82
82
81
82
82
82
83
86
86
86

•d to initial p
30%better

20
26
26
26
16
25
25
25
42
47
47
46
38
48
47
47
45
56
56
56
32
44
45
45
39
43
43
43
35
44
44
44
46
51
51
51

opulation
50%better

14
17
18
18
13
17
18
18
24
35
35
33
21
34
31
31
28
39
39
39
19
28
30
30
22
27
27
27
21
31
31
31
30
42
42
42

70%better
9
13
14
14
9
11
11
11
14
20
20
18
14
18
20
20
15
19
19
19
7
16
17
17
14
21
21
21
13
22
22
22
19
25
25
25

Table 5.19. Performance of GAs on Griewangk's function with a population often
and a generation gap of 0.8.

5-19

Evolutionary Computation and Experimental Design

function, all GAs gave good results, this is despite Griewangk's function also

containing many deceptive local minima. The populations of the dynamic hybrids

again gave the most solutions which were worse than the initial population but

generally found improvements for more than 80% of the solutions. The standard

small population GA and the static hybrid both found the highest number of

improved solutions, yet all the dynamic hybrids gave a higher number of solutions

with greater improvement. This indicates a higher quality to the population of

solutions found by the dynamic hybrids.

5.3 DYNAMIC HYBRID INFLUENCES

5.3.1 Generation Gap

As with the static hybrids in chapter four, the dynamic hybrids were tested

over several generation gaps to determine if this setting could affect the solutions

found. After previous testing and discussion in section 4.3.2.2 the trials for the

dynamic hybrids were conducted over a generation gap of 0.6 to 1.0.

Table 5.20 shows the results obtained from trials using GEVO-1 on De

Jong's first function with a population of ten individuals. Mathematical analysis

showed that there is no clear correlation between generation gap and improvement in

solutions found, although there is a distinct peak at a generation gap of 0.8. This

conclusion is in contrast to the findings for the standard small populations discussed

5-20

Evolutionary Computation and Experimental Design

in section 4.3.2.2 where there was a relationship between generation gap and quality

of solutions found. The changing nature of the EVOP element in these dynamic

hybrids is shown to influence performance more than generation gap, which is

demonstrated by these results.

Gap
0.6
0.6
0.6
0.6
0.7
0.7
0.7
0.7
0.8
0.8
0.8
0.8
0.9
0.9
0.9
0.9
1.0
1.0
1.0
1.0

Generation

5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20
5
10
15
20

Worse

12
11
9
10
7
5
5
12
8
6
5
7
5
5
5
16
4
4
4
11

No. ofG
No change

14
5
5
1

14
9
9
2
8
5
5
1

18
14
14
2
14
14
14
5

.As compare
Better

74
84
86
89
79
86
86
86
84
89
90
92
77
81
81
82
82
82
82
84

:d to initial p
30%better

3
6
7
7
2
5
7
7
8
13
13
13
2
4
5
5
7
9
9
9

opulation
50%better

0
0
1
1
0
2
3
3
0
1
1
2
0
0
1
1
1
2
2
2

70%better
0
0
0
0
0
1
1
1
0
1
1
1
0
0
0
0
1
1
1
1

Table 5.20. Performance of GAs on De long's first function with a population of
ten.

Since De long's first function has a smooth surface area and is the simplest

function in the test suite, the lack of correlation found would indicate that no

correlation would be found on the more complex surfaces of the other test functions.

5-21

Evolutionary Computation and Experimental Design

An extensive set of tests were not carried out on the other test functions as a sample

of trials indicated that there was indeed no correlation.

5.3.2 Effect of EVOP on Search Movement

Several hybrids were created to determine any effect the inclusion of EVOP

at various stages of the GA may have on the solutions found. As expected the

dynamic hybrids had more mobile populations than the standard small population

GAs, but generally the populations were less mobile than those of the static hybrids

which included EVOP in all generations. This shows clearly that the EVOP element

is affecting the performance of the hybrid GAs and the tests show that the presence

of EVOP in a GA gives it more mobility.

The two hybrids with EVOP active only the later generations, GEVO-1 and

GEVO-2, gave similar results. Both of these hybrids generally gave more improved

solutions than either the standard small population GA or the static hybrid and those

improved solutions were typically of a higher quality.

EVOP was only activated for the middle generations of GEVO-3 and this

influence could be clearly seen on De Jong's first test function. The population was

more mobile in generation ten and fifteen than the other generations with no EVOP

present which resulted in marginally more improved solutions being found.

5-22

Evolutionary Computation and Experimental Design

The other dynamic hybrids generally gave good performances with mobile

populations which may not find as many improved solutions, but those found were

generally of equal or better quality.

5.3.3 Comparison of Dynamic Hybrids

To compare the performance of the dynamic hybrids, each was ranked for its

performance on the test functions which is shown in table 5.21. The ranking of the

hybrids were then combined to give an overall rank which is shown in table 5.22.

As can be seen in table 5.22 the dynamic hybrids GEVO-3 and GEVO-4

gave the best performances. GEVO-3 contains EVOP from generation six to fifteen

and GEVO-4 contains EVOP in generations two, six, seven, eleven, twelve, thirteen,

seventeen, eighteen, nineteen and twenty, so both contain a local search element in

ten of the twenty generations.

Rank
1
2
3
4
5
6
7

Function
De Jong 1 De Jong 2 Rastrigin Schwefel Griewangk
GEVO-4/5

-
GEVO-3
GEVO-2
GEVO-1
GEVO-6
GEVO7

GEVO-4/5
-

GEVO-1
GEVO-2
GEVO-3
GEVO-6
GEVO7

GEVO-6
GEVO-3
GEVO-1
GEVO-2
GEVO-4
GEVO-7
GEVO-5

GEVO-1
GEVO-6

GEVO-3/4
-

GEVO-5
GEVO-7
GEVO-2

GEVO-3
GEVO-7
GEVO-2
GEVO-4
GEVO-6
GEVO-5
GEVO-1

Table 5.21. Ranked performance of dynamic hybrids.

5-23

Evolutionary Computation and Experimental Design

Rank
1
2
3
4
5
6
7

Hybrid
GEVO-3/4

-
GEVO-1
GEVO-5
GEVO-6
GEVO-2
GEVO-7

Table 5.22. Rank of overall performance by dynamic hybrids.

GEVO-2 also contains EVOP in ten of the twenty generations but ranks

much lower in sixth place. The main difference between this hybrid and the best

performers is that the EVOP is present in the last ten generations. This implies that

introducing EVOP earlier into the GA givers better results, whereas it is often

assumed that a search should change from global GA to local (Goldberg, 1988(b),

Renders and Bersini, 1994).

The relatively poor performance of GEVO-6 and GEVO-7 indicate that

EVOP is of little value if only used in the early stages of the search. GEVO-2 is

perhaps one of the more surprising results as the similar hybrid GEVO-1 ranks third

whereas GEVO-2 ranks sixth. This indicates that EVOP does have a value as the

search progresses, but as earlier discussion concludes, early introduction of EVOP

with some EVOP in the later stages is the best combination. EVOP does not need to

be present in every generation of the GA but its presence enhances the quality of the

solutions found.

5-24

Evolutionary Computation and Experimental Design

5.4 SUMMARY

Experimentation has shown that the generation gap has little influence on

these dynamic hybrids. As discussed earlier in Chapter 4, the generation gap was

shown to have an influence on the simpler functions for the standard small

population GA, but this influence was much less apparent with the static hybrids.

This was attributed to the presence of EVOP. Since EVOP is also present in these

dynamic hybrids but in a less stable manner, the influence of the generation gap has

been overpowered by the influence of EVOP.

By comparison of the dynamic hybrids to both the standard small population

GAs and the static hybrids, it was demonstrated that the EVOP local search element

influences the mobility of the search. EVOP was shown to make the search more

active, ensuring even with small populations and few generations that there is

greater change from one generation to the next. This is why the static hybrids where

more mobile than the dynamic hybrids which contained less EVOP.

The performance of several different dynamic hybrids were compared over

the five test functions used throughout these studies to determine the optimum

combination of local and global, EVOP and GA, search. The results demonstrated

that using the EVOP local search only in the early generations was not of value. The

best performing hybrids had EVOP present in half of their generations, but rather

than running the global GA search then introducing the local EVOP search, the best

5-25

Evolutionary Computation and Experimental Design

combination included an early introduction of EVOP with some EVOP also present

in the later generations. EVOP does not need to be present in all generations of the

search, but its presence enhances the quality of solutions found.

The limited availability of published works for comparison of the small

population hybrids tested in both this and the previous chapters, coupled with the

lack of detailed breakdown of conclusions drawn from many experiments, for direct

evaluation led to the consideration of the value of benchmarking for GAs, which is

explored in the next chapter.

5-26

Evolutionary Computation and Experimental Design

6. BENCHMARK TESTING AND APPLICATIONS

The aim of this chapter is to discuss the benefits and problems of benchmarking

and its applicability to GA and GA hybrid research. The current use of

benchmarking for GAs is then examined, before an illustration of the investigations

undertaken to examine the performance of the hybrid GAs on a range of further

'benchmark' test functions. The areas of application for small population GAs are

discussed before potential applications for the hybrids tested in this study are

considered and implementation illustrated by an example.

6.1 BENCHMARKING

Benchmarking has recently become a prominent issue for the manufacturing

sector, although the practice of benchmarking has been conducted for many years in

some form in most sectors of industry. The increased acceptance, or in some cases

insistence for companies to perform to International Standards, such as the

ISO 14000 series or QS9000, has raised awareness of the need to measure

performance. Standards often state actual values or specific dimensions that must be

achieved for a product to be certified as reaching the required standard. External

auditing ensures that the records and methods of measurement meet the required

regulations.

6-1

Evolutionary Computation and Experimental Design

However many standards, more especially those published recently, e.g.

ISO9000 series, do not state a specific dimension or value to be attained but specify

a process for monitoring, maintaining and auditing records. The move to more

comprehensive performance measurement by industry, fuelled by the 'quality

movement', has led to a wider interest in benchmarking, as measured performance

does not indicate the relative position of a company or its product(s) in the market

place unless a comparison is made to competitors. Unfortunately as industrial

competitors are obviously in competition with each other, there is a great

unwillingness to share information on performance. This is one of the great hurdles

facing benchmarking in many areas. Another area of concern is that all data must be

comparable, accurate, reliable and auditable, since it is highly unlikely that a single

person has collected or been able to fully audit all the data. Another issue is the fact

that no two manufacturing units are exactly the same, prohibiting absolute direct

comparisons.

6.1.1 Benchmarking for GAs

These problems also face the GA research community. Although academia

has a greater tendency to share information than industry there is no widely accepted

standard benchmark for GAs. As described earlier in Chapter 4, the best known

'benchmark' for GAs is De Jong's test suite of five functions (De Jong, 1975) which

have been widely used and appear in some of the works which provide the

foundations to many people's interest in GAs, such as Goldberg (1988b). The

6-2

Evolutionary Computation and Experimental Design

functions provided an early base for GA performance comparison, but as GA

research has matured and the applications have become more complex and diverse,

these functions are no longer as prominent as they once were. Although

understanding of GAs has progressed there is no definitive method of producing a

competent GA. By not comparing a large amount of work, i.e. benchmarking, the

GA community may be neglecting an area which could lead to a better

understanding of how GA parameters influence performance.

A GA benchmark would require a range of functions at a set number of

dimensions. In addition to these standard functions, it would be useful to study a

range of application domain specific functions where applicable. The travelling

salesman problem (TSP) is perhaps one of the best known examples of a GA

benchmark test. Most fields of engineering have standard problems which students

and practitioners regard as fundamental or contain the essence of an area of study.

For example, scheduling has standard problems (Zalzala and Fleming, 1997, Muth

and Thompson, 1963) such as the 3 x 3, 10 x 10, 20 x 20, M x N etc. where M is the

number of machines and N is the number of jobs.

A GA benchmark would require more than a set of standard functions for

testing, as there are many other influences on GA performance. As well as the

quality of an answer, the time taken to reach a solution is also important to industry.

The importance of the speed of a GAs varies with the application, but a wider range

6-3

Evolutionary Computation and Experimental Design

of uses would be possible if GAs were generally faster in implementation. Little

published work gives information regarding the time taken to find a good or optimal

solution or to complete a certain number of generations.

GA run time is also heavily influenced by the computer processor, platform

and software used. It would be impractical for a benchmark to insist on a particular

type of computer processor to be used at a certain speed or operating system, as the

standard would soon be obsolete due to the rate of progress in computing science.

Indeed the work for this study has been carried out on four different desktop PCs,

two laptops and four different operating systems. Similarly, insistence on using

particular software would restrict innovation. A standard method of reporting,

which includes time taken, type of processor, software and the minimum computing

requirements as well as the important issue of algorithm performance, such as

quality of results found, would allow researchers to begin to compare their GAs.

The above details coupled with more widely published information on GA

parameters such as population size, crossover operator or selection operator used

could lead to a deeper understanding of GAs. There would be a wider industrial

acceptance to use GAs if there is an audited body of evidence of the control

parameters of GAs, as industrial investment money is often tightly wrapped in

caution. The general public tend to believe that computers and software should be

logical, repeatable and find 'the' answer every time and anything which does not,

6-4

Evolutionary Computation and Experimental Design

cannot therefore be reliable. One of the greatest hurdles for GAs is the

psychological problem of being able to accept that the computer will find a good

solution in a manner that is not exactly repeatable and that the computer may not

find 'the' best answer every time.

In an ideal world there would be anonymous comparative studies to

determine influences on GAs collected in a database, but this is probably infeasible

due to many factors including funding issues. The onus is therefore on individual

researchers or research groups to publish detailed findings to help with an

understanding of GAs that could reach further than their own specific areas of

research.

6.1.2 Benchmarking for EVOP

EVOP is an experimental design method that prescribes a method of

calculating an answer. The only area where differences may occur is in the step

size. Companies wishing to ensure that all plants use the same parameters could

issue guidelines, such as Ford, General Motors and Chrysler who set out how to

conduct an EVOP experiment in a QS-9000 handbook. As there are no other factors

that can be changed to influence an EVOP experiment there is not a great need to

benchmark the process. This is not to say that individual areas of application of the

6-5

Evolutionary Computation and Experimental Design

method cannot be benchmarked but that the methodology itself does not require a

benchmark.

6.2 TESTING OF GAs

The hybrid GAs in this thesis were tested on a range of functions for which

some standard data had been collated. Lazauskas (1999) lists several well known

functions such as Rastrigin's and the weighted sphere functions along with the mean

number of function evaluations required to attain 'roughly three digit accuracy'.

Although only limited data is available from Lazauskas (1999) it is one of the few

information sources that states GA results rather than benchmarking the actual test

functions. Unfortunately the listed results were for large population algorithms, so it

is not possible to make a direct comparison to the small population hybrid GAs

studied in this thesis. However, since the functions are benchmarked it is valid to

test the hybrid GAs created during this study to ascertain their performance.

6.2.1 Selection of Hybrid GAs for Testing

Three GA hybrids from the previous two chapters were selected for testing

on this extended range of functions. The first hybrid is a static hybrid, referred to as

EVOS, with a generation gap of 0.7, a population of twenty individuals and running

to twenty generations. The other two hybrids are dynamic hybrids referred to as

GEVO-3 and GEVO-4 in chapter five, as these two hybrids gave the best

6-6

Evolutionary Computation and Experimental Design

performances of all the dynamic hybrids tested over the range of functions. Both of

these GAs are also tested with population sizes of twenty individuals and run to

twenty generations. EVOP was added to these dynamic hybrids in the manner

specified in section 5.2, which related to hybrids with no more than twenty

generations. As the hybrids were to be tested with many more generations, these

schemes were extended. GEVO-3, which has EVOP after the first and before the

last five generations in a twenty generation hybrid, was redefined as having EVOP

in the middle 50% of generations. GEVO-4, which has a scheme of more EVOP

gradually being invoked, was extended in the same pattern and after the one

hundredth generation every generation would contain EVOP. To complete the set of

GAs a standard small population GA was also tested. This GA has a population of

twenty with a generation gap of 1.0, referred to as SPGA.

6.2.2 Benchmark Functions

Four functions were selected from Lazauskas (1999), as the other functions

were incompletely described. The benchmark functions were:

1. The Weighted Sphere Model „ -5.12<Xi < 5.12

'=' at n = 3 and n = 30

global minimum = 0 at x; = 0)

which is 'considered easy for GAs' although at n = 3 the best GA listed was

a traditional GA which took 805 evaluations to reach roughly three digit accuracy

6-7

Evolutionary Computation and Experimental Design

and for n = 30 a traditional GA reached a solution of approximately 5.0 after 25000

evaluations.

2. Rastrigins' Function /(x) = „ * ^ + ^ (xf - A * cos(2ar,))

-5.12<Xj<5.12

A=10.0 (global minimum = 0 at X; = 0)

which is 'considered as difficult for most methods'. This is one of the

functions extensively used in the previous two chapters. Lazauskas (1999) reports

that three GAs reached a solution of 0.9 with between 3608 and 9900 evaluations at

n=20. Others GAs failed to reach this level of accuracy but a traditional GA reached

a solution of 45.0 after 25,000 evaluations.

3. Schwefels' Function

-500 < Xj < 500

V=418.9829 (global minimum = 0 at x; = 420.9687)

which is a difficult function as the 'second best' minimum is a long way

from the global minimum and some algorithms can become trapped in the wrong

region. This function is also one used extensively in the previous two chapters. This

function was tested at n=10, with Lazauskas (1999) reporting GAs requiring

approximately 100,000 or 200,000 evaluations to reach three digit accuracy.

6-8

Evolutionary Computation and Experimental Design

4. Griewangks Function

-600 < Xi < 600
= i + — - r cos

MOOO if

(global minimum = 0 at x; = 0)

No description is given of this function, but it has many local minima and only four

sets of records are listed. A two dimensional plot of this function can be seen in

chapter 4, section 4.4.1.

The results reported in Lazauskas (1999) for each function raises the

question of the starting points or seeding of the initial populations, which could also

be stated in a GA benchmark: A standard set of random numbers, from the standard

tables published in many mathematical text books or how seeding was achieved.

Seeding is an area of active research, e.g. Lee and Rowlands (1998).

6.2.3 Performance of Hybrid GAs

For the weighted sphere model, the four GAs were tested at the settings

shown in table 6.1. n is as specified in section 6.2.2. A summary of the results

obtained on this model are given in table 6.2.

Setting
1
2
3
4

N
3
3

30
30

Number of generations
20
800
20
800

Table 6.1. Settings tested on the weighted sphere model

6-9

Evolutionary Computation and Experimental Design

Setting

1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4

GA

GEVO-3
GEVO-4
EVOS
SPGA

GEVO-3
GEVO-4
EVOS
SPGA

GEVO-3
GEVO-4
EVOS
SPGA

GEVO-3
GEVO-4
EVOS
SPGA

Best soluti
Overall

2.024101
1.932815
2.063431
6.949797
1.618897
2.163712
2.322033
2.488694
1.131182
2.245126
2.526541
6.938774
2.040263
1.525893
1.574880
6.860670

on found:
in last generation

2.024101
1.932815
2.063431
6.949797
1.775366
2.163712
2.322033
2.488694
1.407389
2.245126
2.526541
6.938774
2.040263
1.525893
1.574880
6.860670

Time for 100
runs (seconds)

36.14
59.81
58.50
61.08

1606.20
2650.40
2317.20

588.31
36.20
58.99
58.77
58.44

1599.60
2663.80
5723.60
3119.50

Table 6.2. Summary of results obtained on weighted sphere model.

The benchmarks available stated for n=3 (settings 1 and 2) that a traditional

GA took 805 evaluations to reach three digit accuracy. None of the hybrids

managed to find the optimum, but GEVO-4 gave the best performance with only

twenty generations and the standard small population GA the worst performance.

When the GAs were run to eight hundred generations the performance of GEVO-4

and EVOS deteriorated slightly, although both recorded a better result than the

standard small population GA and GEVO-3 gave the best performance.

6-10

Evolutionary Computation and Experimental Design

At n=30 GEVO-3 and GEVO-4 again gave the best performances, with

GEVO-3 returning the fastest times. Increasing the number of generations improved

the performance of the standard small population GA (SPGA). The performance of

the hybrids varied but did not show a great difference for the time spent running the

extra generations. The benchmark reached the minimum after 40,000 evaluations,

but since the philosophy of the hybrids is simplicity and speed they were not

evaluated at this number of generations.

For Rastrigin's function at n=20, as specified in section 6.2.2, GEVO-3 gave

the best performance in the quickest time. The results given in table 6.3 reinforce

those findings stated in chapter five, where GEVO-3 gave a much better

performance than GEVO-4. GEVO-3 gave a performance that was better than those

cited in the benchmark in fewer generations, twenty compared to over six thousand,

but the other hybrids did not achieve as good solutions. Perhaps the most significant

figure is the speed of operation of GEVO-3. GEVO-3 was more than two and half

times faster than the other hybrids, and completed one hundred run in less than

seventy five percent of the time taken by the standard small population GA (SPGA).

GA

GEVO-3
GEVO-4
EVOS
SPGA

Best solut
Overall

0.2058439
2.762299
2.762300
2.047870

on found:
in last generation

0.205843
2.762299
2.762300
2.047870

Time for 100
runs (seconds)

28.62
75.36
76.19
39.71

Table 6.3. Summary of results obtained on Rastrigin's function.

6-11

Evolutionary Computation and Experimental Design

Schwefel's sine root function was tested at n=10. One benchmark GA

quoted 100,000 evaluations to reach the global minimum and the other at 8699

evaluations, although the optimum was not found in four out of fifty runs. The

results reflect the difficulty in optimising Schwefel's function with the second best

minima distance from the global minimum. This challenge was also reflected in the

results reported in section 5.2.3. This function at greater values of n often requires

more than a million iterations to reach the global minimum with three digit accuracy.

Table 6.4 shows the results obtained by the hybrids on Schwefel's function.

GA

GEVO-3
GEVO-4
EVOS
SPGA

Best solut
Overall
2.54285
2.37426
2.54285
2.67640

on found:
in last generation

2.92150
2.97632
2.97633
3.13214

Time for 100
runs (seconds)

37.24
58.11
62.72
27.52

Table 6.4. Summary of results obtained on Schwefel's function.

Table 6.5 shows the results obtained on Griewangk's function with n=10.

The benchmark GAs are reported to take approximately 100,000 evaluations to

reach 0.1 with a standard GA, with a revolutionary GA "doing better". Another

GA (Muhlenbein et al, 1991) is quoted to find the minimum to three digit accuracy

in 59,520 evaluations. GEVO-3 and GEVO-4 gave similar performances, with both

the standard small population GA and the static hybrid returning better performances

in table 5.19 on Griewangk's function. The standard small population GA gives the

6-12

Evolutionary Computation and Experimental Design

best performance in the shortest time for twenty generations, although no GA finds

the minimum. The results stated in table 6.5 are for the first one hundred runs

recorded for each hybrid. Further testing produced slightly different results, but

there was no improvement in the best solutions found. The repeating of 2.00432

suggests that the hybrids became trapped at this value.

GA

GEVO-3
GEVO-4
EVOS
SPGA

Best solut
Overall
2.00432
2.00432
2.00432
1.10433

on found:
in last generation

2.00432
2.00432
2.00432
1.10433

Time for 100
runs (seconds)

38.44
59.98
59.82
25.65

Table 6.5. Summary of results obtained on Greiwangk's function.

6.3 APPLICATIONS OF SMALL POPULATION GAs

Applications of traditionally sized GAs continue to grow in many different

fields from circuit design to medicine. Research regarding small population GAs or

micro GAs is on a much smaller scale, e.g. Goldberg (1989) and Goldberg et al.

(1991) considered the sizing of populations. The relatively small amount of work

published regarding the theory of small population GAs is reflected in published

work regarding application of this technique. Reeves (1993) discuss the theory of

small population GAs and suggests possible applications such as engineering design

where the effect of a given number of parameters has to be determined by

6-13

Evolutionary Computation and Experimental Design

experiment and current methods, such as design of experiments, make simplifying

assumptions. Small population GAs are suggested as a possible replacement for

moderately sized design of experiment techniques. Dozier et al. (1994) used small

population GAs to solve the N-Queens problem, where the challenge is to place N

Queens on a N * N chessboard so that they cannot attack each other. Chen and Wu

(1998) used relatively small population GAs for channel and data estimation, but the

GAs run to thousands of generations.

6.3.1 Applications for Hybrid GAs

Hybrid GAs could potentially be used in areas that standard GAs have

proved to be useful and there are many example applications of larger population

hybrid GAs reported in recent conferences. The very small hybrid GAs studied here

could also potentially be used in these areas and where time constraints currently

make traditional GA application impractical.

Industry is yet to be widely convinced of the value of genetic algorithms or

evolutionary computation in general (Poli, 1999). The small amount of work

currently relating to small population GAs will hinder their adoption in the

workplace.

Applications suitable for the hybrid GAs studied in this thesis include small

scheduling or re-scheduling problems, e.g. a factory schedule completed by a

6-14

Evolutionary Computation and Experimental Design

standard large population GA on a weekly or daily basis, but if say 10% of the

workforce phone in sick half an hour before the start of a shift and there is not

sufficient time to run the full GA, potentially a hybrid small GA could be used to

optimise a small portion of the schedule.

Monitoring a poorly or vaguely understood manufacturing process or

machine with varying output is often monitored using design of experiments but this

makes assumptions about the interactions of the parameters. Hybrid GAs could be

used in this application especially if the parameters are constantly changing. This

second suggestion is potentially the easier to code and test, providing a suitable

machine and process is found.

6.3.1.1 Example implementation

To demonstrate that it is possible to apply a hybrid GA to an optimisation

problem, sample tests were carried out and a small demonstration of implementing a

hybrid GA is given below using a version of the travelling salesman problem.

The travelling salesman problem is generally the problem of determining a

route for a salesman to visit each of N cities with given positions (xt, >>i) once, and

only once, before returning to the home (start) city. This problem is NP-complete

and so the implementation of a hybrid GA is demonstrated with a small number of

cities, although it is possible to increase the number of cities for these hybrid GAs.

6-15

Evolutionary Computation and Experimental Design

For this simple demonstration there are four cities, A, B, C and D, with the

co-ordinates as shown in figure 6.1.

A (0,0)

Figure 6.1 Positions of the cities.

Although real value representation is better suited to this particular problem

with large values of N (number of cities), it is merely being used as a demonstration

of implementation with an extremely low value of N, so binary representation is

used, as discussed in Chapter 4. The path is represented in chromosomes of eight

bits length as shown in figure 6.2. The first two bits represent the position of city A

in the path, the second two bits the position of B in the path etc.

Chromosome

City

Position in path

1 1

A

third

0 1

B

first

0 0

C

start

1 0

D

second

Table 6.6 Path representation

6-16

Evolutionary Computation and Experimental Design

Although in the initial population the two 'start' bits could be viewed as

redundant, in future generations they will retain the start points and so information

will not be lost. With this form of representation several cities could be allocated to

the same position in the path. This is overcome by using the left side of the

chromosome as dominant. The position of city A in the path will always be as

described by the chromosome, if city B is allocated the same position in the path as

city A then the position will increase by one, a parallel with the operation of EVOP.

If city C is allocated the same position as any of the previous cities then the position

is increased by one, if this position is also occupied, then the original position of C is

decreased by one, if this position is also occupied then the step size is increased and

the method repeated until C is allocated a position in the path. This pattern also

reflects the operation of EVOP and is continued until all cities have been allocated a

position in the visit path.

The hybrids were capable of finding the optimum path for low numbers of

cities (ten or less) but as the number of cities increased the representation becomes

more inefficient. The principle of operation works but real valued representation is a

more efficient method and these hybrids are not designed or expected to solve large

problem spaces. As discussed in section, 6.3 small population GAs are not

applicable for problems, such as the travelling salesman problem, that suit large

population GAs. The main reason for this test was to demonstrate that the combined

method could be applied to other domains than those demonstrated earlier.

6-17

Evolutionary Computation and Experimental Design

6.4 SUMMARY

Currently there is only a small number of benchmarks available and these are

for large population GAs. The hybrid GAs tested here showed varying degrees of

success, but it is difficult to give an accurate reflection of their performance as they

were not "like for like" tested with other small population or hybrid GAs.

Benchmarking of GAs has great potential to widen the understanding of the theory

of the operators used by GAs provided a standard reporting format is adopted.

It is recommended that a GA benchmark would include a range of standard

test functions, such as the De long test suite, at set dimensions and where applicable

domain specific functions, such as the M x N scheduling problems. In addition to

the settings used for the GA parameters, including population size, number of

generations, crossover method, selection operators etc., a benchmark would also

require a report on the computer processor, platform and software used and run

times of the algorithms.

Small population GAs command only a small proportion of the research in

the GA community and the number of applications reflects this. These GAs have

potential some areas of application, but they may become more applicable if

interaction of GA operators becomes better understood. The suggested

benchmarking process could address this issue.

6-18

Evolutionary Computation and Experimental Design

7. CONCLUSIONS AND FURTHER WORK

7.1 CONCLUSIONS

The review of evolutionary computation and experimental design, in chapter

two, identified genetic algorithms (GAs) and evolutionary operation (EVOP) as

optimisation techniques that could be combined to develop a hybrid method which

incorporates both global and local search ability. Further study of these techniques

gave an understanding of their operation and parameters that could influence their

performance.

An investigation into the software available to implement GAs and EVOP,

described in chapter three, revealed that the newer technique, GAs, had many

suitable software programs available either commercially or as development tools.

The older technique of EVOP was only available in a couple of experimental design

packages and solely as Simplex EVOP. An initial program was written in C++ for

two factor EVOP. Analysis of the C++ programming process indicated that EVOP

could be implemented on a spreadsheet. Two and three factor EVOP can now be

carried out on the new software developed for this study, AutoEVOP, a program

running in Microsoft Excel. Writing this program indicated that the algorithm could

be encoded onto a relatively small computer chip with appropriate sensors or

actuators for an inexpensive on-line automatic process optimiser. Due to the

objective of creating a relatively fast optimisation technique with the potential to be

7-1

Evolutionary Computation and Experimental Design

applied in an industrial setting, the criteria for selecting the software included the

requirement for any software to run on a 'standard' PC. A technique that requires

expensive equipment or is time consuming is less likely to be used or developed, as

demonstrated with the history of the EVOP method. The GA Toolbox was selected

as it was inexpensive software that was flexible for experimentation yet ran in a

widely available environment, Matlab, which runs on standard PCs with a Windows

operating system.

The next step was to choose appropriate settings for the GA. This was discussed

and results of experiments presented in chapters four and five. Binary had been

shown to be the best form of coding for small population GAs and was used here as

it also enabled a guaranteed step size for the EVOP element of the proposed hybrids.

Any resulting algorithm was required to quickly reach a solution, so small

population GAs with thirty or less individuals per generation were selected as the

base for the new hybrids. The EVOP element was included as it would assist with

preventing the small population GAs from prematurely converging. Testing of the

new hybrids and conventional small population GAs was on a set of well known and

documented functions that covered various types of search space from smooth

simple curves to more complex spaces with many local minima.

As little literature exists relating to suitable settings for the very small population

GAs studied in this thesis, a range of tests were undertaken which determined that

7-2

Evolutionary Computation and Experimental Design

stochastic universal sampling was a more suitable selection method than the

traditional roulette wheel tournament. As the initial chromosomes were relatively

short, single point crossover was selected. The simplest method of crossover

reflected the EVOP philosophy and was quickly executed as code. As the

population contained a small number of individuals, mutation operating at normal

rates of one in a thousand or greater would have very little effect. Greatly increasing

the mutation rate would risk turning the search into a random walk, so this operator

was switched off. The EVOP adds an element of controlled mutation, so reducing

the risks associated with not using mutation. The hybrid GAs outperformed the

standard small population GAs and gave results in a much quicker time than

standard large population GAs.

A set of experiments were conducted to determine any influence on the

performance of the GAs by the value of the generation gap. Testing was carried out

on the complete set of functions, but initially concentrating on the first two functions

as they are the simpler spaces which allowed a clearer picture of the behaviour of the

GAs. Generation gap, although dependent on search space, influenced the

performance of the GAs. Improved solutions were generally found with higher

generation gaps. The results of the empirical testing led to the recommendation that

a generation gap of 0.7 should be used as a starting point for experimentation with

small population GAs and their hybrids. All of the above experiments were also

carried out with various population sizes. GAs with a larger population size giving,

7-3

Evolutionary Computation and Experimental Design

as expected, the best results, although this naturally increased the required run time.

For all types of GA tested a population of five individuals was too small to produce

acceptable results. Most further experimentation was carried out with populations of

twenty individuals as these GAs were capable of improving the solutions found, yet

were small enough to have a quick run time.

As previous testing had demonstrated that the addition of EVOP can improve the

solutions found by a small population GA, further testing was carried out in chapter

five to determine the influence of EVOP and if its presence was of greater

importance in particular generations. Several hybrids with EVOP present in various

combinations of the generations were tested. As anticipated these particular hybrids,

referred to as dynamic hybrids, were not as mobile as the static hybrids with EVOP

in all generations, but more mobile than the standard small population GAs. The

hybrid GA with EVOP present in the middle generations and another with EVOP

present in progressively more generations gave the best results of the dynamic

hybrids tested. The results demonstrated that combing EVOP only in the early

generations of a GA is of little value. Convention would suggest that the search

should change from global to local as it progresses, but these tests show that the

hybrids give better solutions with the early introduction of EVOP and some present

in later generations. EVOP does not need to be present in every generation of the

GA but its presence enhanced the quality of the solutions found. With the dynamic

7-4

Evolutionary Computation and Experimental Design

hybrids the influence of the generation gap was less significant, as it was

overpowered by the influence of EVOP.

The experimentation undertaken raised the issue of benchmarking GAs which is

discussed in chapter six. Although the hybrid GAs in this thesis had been tested on a

range functions commonly found in the literature, publishing of this type of results

information is not as common as it once was. This may be due to traditional style

GAs now being used for applications, but important theory as to the precise nature

of the influence of GA operators remains unknown and may remain so unless

comparative testing, benchmarking, is undertaken.

To enable an understanding of the parameters which should be included in any

future GA benchmark some of the better hybrids developed earlier in this study were

benchmarked on a range of further functions. The study gave an indication of the

difficulties in obtaining benchmark information or comparable results from more

than one publication. The hybrids were tested on specific functions and timed for

one hundred runs. The testing resulted in the following recommendation for a GA

benchmark: standard set of test functions, such as De long's suite, additional

application specific functions where appropriate; processor; platform; software used;

as well as the traditional GA operator settings such as population size, number of

generations, crossover operator and selection methods. A more detailed and

7-5

Evolutionary Computation and Experimental Design

consistent method of reporting would enable a database of cross referenced works to

be established to aide a deeper understanding of the influence of GA parameters.

7.2 CONTRIBUTIONS

This thesis investigated the areas of evolutionary computation and experimental

design to determine a novel method which combines both global and local search

capabilities to find good, but not necessarily the best answer in a short length of

time. To meet this objective there were several stages to the research which

included the contributions described below.

A new piece of software named AutoEVOP was developed to implement two or

three factor EVOP running on Microsoft Excel. Users can manually enter the names

of the factors to be studied and the software will indicate the settings required to

complete an EVOP experiment. Readings from the experiments are then entered

and AutoEVOP will indicate if further experimentation is required or if a stop

condition has been reached.

Several new GA - EVOP hybrids, which contain elements of global and local

search, were created for this study. Static hybrids combined GA and EVOP

searching in all generations, whereas the dynamic hybrids contained EVOP in a

controlled number of generations.

7-6

Evolutionary Computation and Experimental Design

For very small populations, twenty or less individuals, stochastic universal

sampling was demonstrated to be the most suitable method of selection, rather than

the more traditional roulette wheel selection method. The performance of very small

population EVOP hybrid GAs was shown to improve with larger generation gaps on

simple functions and on more complex functions increasing the generation gap does

not deteriorate performance. As a result of the testing carried out for this study a

generation gap of 0.7 was recommended as a starting point for empirical searches

using small population GAs and their hybrids. Due to the changing presence of

EVOP, the generation gap has less influence on dynamic EVOP — GA hybrids

compared to the static hybrids.

The EVOP local search element was shown to positively influence the

performance of the small population GA search. The EVOP operator in the hybrid

GA gave the greatest improvement in performance when present in the middle

generations or with a progressively greater presence.

A recommendation of the information required to be reported for benchmarking

GA performance is also presented. This includes processor, platform, software

information as well as GA parameters such as population size, number of

generations, crossover method and selection operators and results of testing on a set

of standard test functions.

7-7

Evolutionary Computation and Experimental Design

7.3 FUTURE WORK

The range of applications for standard large population GAs continues to grow,

but the acceptance of GAs in industry as an optimiser will be hindered until there is

a greater understanding of the elements that control GA performance. Small

population GAs are a niche area of GAs and as yet have limited application, but as

understanding of GAs expands smaller populations have the potential to become the

norm as large time consuming populations testing vast areas of the search space

become unnecessary.

The current lack of use of the original EVOP technique could be due to the

technique requiring a large number of repetitive calculations which prevented its use

before the advent of widely available computing power in the form of the desktop

PC. EVOP continues to have a small presence in many experimental design books,

but despite being included in QS-9000 it continues to be under utilised. This may

remain the case unless large manufacturers insist rather than suggest suppliers use

EVOP or EVOP is coupled with modern shop floor data collection techniques and

possibly integrated with expert systems and / or fuzzy logic rule bases.

The work carried out for this study should be extended by further testing of the

hybrid GAs to establish the most efficient crossover operator. The hybrids would

benefit from further evaluation on actual applications, although small population

GAs currently have a very restricted repertoire, as discussed earlier. An evaluation

7-8

Evolutionary Computation and Experimental Design

of the criteria used to determine the suitability of a problem for GAs would be

useful. Matlab is a useful tool and found in universities across the world but it is not

as common in industry. The code for the hybrids could also be written in another

language such as C or C++ which is commonly found in industry to allow

experimentation on real industrial data without the need for re-entering large

amounts of data. Although this study concentrated on small population GAs it

would be interesting to apply the EVOP hybridisation technique to other

applications using large population GAs.

7-9

Evolutionary Computation and Experimental Design

8. REFERENCES

ALBA, E.; ALDANA, J. F., and TROYA, J. M. 1993. Genetic Algorithms as

Heuristics for Optimizing ANN Design. Artificial Neural Networks and Genetic

Algorithms, Proceedings of the International Conference. Innsbruck, Austria; 1993.

Wein, Austria: Springer Verlag. pp683-690.

ALVAREZ, L.F. 2000. Application of Genetic Programming to the Choice of a

Structure of Multipoint Approximations, http://www.student.brad.ac.uk/lfalvere/

papers/issmo/issmo.htm (accessed December 2000)

anonymous. 1961. Evolutionary Operation in Plant-Scale Experiments. An attitude

or a technique? Industrial and Engineering Chemistry, 53, pp36A-41 A.

anonymous. 1999. What is Genetic Programming? http://www.genetic-

programming.com/gpanimatedtutorial.html (updated October 1999)

ARABAS, J.; MICHALEWICZ, Z., and MULAWKA, J. 1994. GaVaPS - a

Genetic Algorithm with varying Population Size. Proceedings of the First IEEE

Conference on Evolutionary Computation: IEEE World Congress on Computational

Intelligence, 27th June 1994. Orlando, Florida. New Jersey, Piscataway. pp 73-78.

BACK, T. and SCHWEFEL, H-P. 1993. An Overview of Evolutionary Algorithms

for Parameter Optimization. Evolutionary Computation. 1(1), pp 1-23.

8-1

Evolutionary Computation and Experimental Design

BARNETT, E. H. 1960. Introduction to Evolutionary Operation: a method for

increasing Industrial Productivity. Industrial and Chemical Engineering. 52(6),

pp500-503.

BISGAARD, S. 1994. Blocking generators for small 2Ak-p designs. Journal of

Quality Technology. 26(4), pp288-296.

BISHOP, J. M., BUSHNELL, M. J., USHER, A., and WESTLAND, S. 1993.

Genetic Optimisation of Neural Network Architectures for Colour Recipe

Prediction. Artificial Neural Networks and Genetic Algorithms, Proceedings of the

International Conference, Innsbruck, Austria. Wein, Austria: Springer Verlag.

pp719-725.

BONOMI, E., LUTTON, J-L. 1984. The N-city traveling salesman problem:

statistical mechanics and the Metropolis Algorithm. SIAMReview. 26(4), pp551-

569.

BOX, G. E. P. 1957. Evolutionary Operation: a method for increasing Industrial

Productivity. Applied Statistics, The Journal of the Royal Statistical Society, Series

C. VI(2),pp81-101.

BOX, G. E. P. 1988. Signal to Noise Ratios, Performance Criteria, and

Transformations. Technometrics. 30(1), pp 1-40.

8-2

Evolutionary Computation and Experimental Design

BOX, G. E. P., BISGAARD, S. and FUNG, C. 1988. An Explanation and Critique

of Taguchi's contribution to Quality Engineering. Quality and Reliability

Engineering International, 4(2), pp 121 -131.

BOX, G. E. P. and DRAPER, N. R. 1969. Evolutionary Operation: a Statistical

Method for Process Improvement. New York, London: J.Wiley and Sons.

BOX, G. E. P., HUNTER, W.G. and HUNTER, J.S. 1978. Statistics for

experimenters: an introduction to design, data analysis and model building. New

York, USA: J. Wiley & Sons. pp362-373.

BREYFOGLE, Forrest, W. III. 1999. Smarter Solutions Using Statistical Methods.

New York, USA: J. Wiley & Sons.

CAPPONETTO, R., FORTUNA, L., GRAZIANI, S., and XIBILIA, M. G. 1993.

Genetic algorithms and applications in system engineering: a survey. Transactions

of the Institute of Measurement and Control, 15(3), pp!43-156.

CARLEYSMITH, S.W. 1994. Industrial Fermentation Control: What's driving

progress? Proceedings of the Second Conference on Advances in Boichemical

Engineering. Institution of Chemical Engineers, pp 45-7. ISBN: 085295333X.

CHATTO, K. A. and KENNARD, R. W. 1961. Evolutionary Operation in Plant-

Scale Experimerts - the Simplified Concepts. Industrial and Engineering Chemistry,

8-3

Evolutionary Computation and Experimental Design

53, pp42A-45A.

CHEN, H.P. 1989. A Practical Approach for using Design of Experiment in Die

Casting. North American Die Casting Association 15th International Die Casting

Congress and Exposition; 16th October 1989, St Louis, MO., USA. Paper no. G-

T89-123.

CHEN, S., and WU, Y. 1998. Maximum Likelihood Joint Channel and Data

Estimation Using Genetic Algorithms. IEEE Transactions on Signal Processing. 46

(5). pp 1469 -1473.

COLEMAN, D. E. and MONTGOMERY, D. C. 1993. Systematic Approach to

Planning for a Designed Industrial Experiment. Technometrics, 35(1), ppl-12.

CORNELL, J. A. 1990. Experiments with Mixtures: Designs, Models, and the

Analysis of Mixture Data. 2nd edn. New York: J.Wiley and Sons.

DA VIS, L. 1987. Genetic Algorithms and Simulated Annealing. London: Pitman.

1987.

DAVIS, L. 1991. Bit-climbing, Representational Bias and Test Suite Design.

Proceedings of the Fourth International Conference on Genetic Algorithms, pp!8-

23.

8-4

Evolutionary Computation and Experimental Design

DE JONG, K. 1975. Analysis of the behaviour of a class of genetic adaptive

systems, PhD Thesis, University of Michigan.

DE JONG, K. 1993. Editorial Introduction. Evolutionary Computation. 1(1), pp iii-

v.

DE JONG, K. and SARMA, J. 1993. Generation Gaps Revisited In: Whitley, L.D.

ed. Foundations of Genetic Algorithms 2, Morgan Kaufmann, also at www.gmu.edu

DEMING, W.E. 1950. Some theory sampling. New York/London:

Wiley/Chapman and Hall.

DEMING, W.E. 1960. Sample design in business research. New York / London:

Wiley.

DEMING, W.E. 1995. Four Days with Dr. Deming. Reading, Massahusetts:

Addison-Wesley.

DOZIER, G., BOWEN, J. and BAHLER, D. 1994. Solving Small and Large Scale

Constraint Satisfaction Problems Using a Heuristic-Based Microgenetic Algorithm.

Proceedings of the first IEEE Conference on Evolutionary Computation, Orlando,

Florida, USA. IEEE Neural Networks Council: IEEE.

FERNANDEZ, J. 2000. The GP Tutorial.

8-5

Evolutionary Computation and Experimental Design

http://www.geneticprogramming.com/Tutorial/index.html (updated June 2000).

FISHER, R. A. 1925. Statistical Methods for Research Workers. Edinburgh:

Oliver and Boyd.

FISHER, R. A. 1935. The Design of Experiments. Edinburgh: Oliver and Boyd.

FLOUDAS, C. A. and ANASTASIADIS, S. H. 1988. Synthesis of Distillation

Sequences with Several Multicomponent Feed and Product Streams. Chemical

Engineering Science, 43(9), pp2407-2419.

FOGEL, D.B. 1994. An Introduction to Simulated Evolutionary Operation. IEEE

Transactions on Neural Networks, 5(1), pp3-14.

FOGEL, L. J., OWENS, A. J. and WALSH, M. J. 1966. Artificial Intelligence

through Simulated Evolution. New York, USA: John Wiley and Sons.

FREENY, A. E. and NAIR, V. N. 1992. Robust Parameter Design with

Uncontrolled Noise Variables. Statistica Sinica. 2, pp. 313-334.

FRIESLEBEN, B. and HARTFELDER, M. 1993. Optimisation of Genetic

Algorithms by Genetic Algorithms. Artificial Neural Networks and Genetic

Algorithms, Proceedings of the International Conference. Innsbruck, Austria. Wein,

Austria: Springer Verlag.

8-6

Evolutionary Computation and Experimental Design

GEORGES-SCHLEUTER, M. 1992. Comparison of local mating strategies in

massively parallel genetic algorithms In: MANNER, R. and MANDERICK, B., eds.

Parallel Problem Solving from Nature 2. Amsterdam: North Holland, pp 553-562.

GOLDBERG, D.E. 1988(a). Genetic Algorithms and Rule Learning in Dynamic

System Control. Proceedings of the First International Conference on Genetic

Algorithms and their Applications. 24th July 1988, Carnegie-Mellon University,

Pittsburgh, USA. Hillsdale, New Jersey, USA: Lawrence Erlbaum Associates, pp. 8-

15.

GOLDBERG, D.E. 1988(b). Genetic Algorithms in Search, Optimization and

Machine Learning. Reading, Ma., USA: Addison-Wesley.

GOLDBERG, D.E. 1989. Sizing Populations for serial and parallel genetic

algorithms. Proceedings of the third international conference on genetic algorithms.

San Mateo,Ca: Morgan Kaufmann. pp. 20-29.

GOLDBERG, D.E., DEB, K. and CLARK, J.H. 1991. Genetic Algorithms, Noise,

and the Sizing of Populations. ILLiGAL Report No. 91010.

GREENALL, R. A. 1989. Taguchi Optimisation of the Manufacturing Process for

an Injection Moulded Housing. In: BENDALL, A., DISNEY, J. and PRIDMORE,

W. A., eds. Taguchi Methods: Applications in World Industry. Bedford, UK: IPS

Publications, pp. 295-311.

8-7

Evolutionary Computation and Experimental Design

HAHN, G. J. and DERSHOWITZ, A. F. 1974 Evolutionary Operation today -

some survey results and observations. Applied Statistics, The Journal of the Royal

Statistical Society, Series C. 23(2), pp. 214-226.

HAMADA, M. 1990. Using Statistically Designed Experiments to improve

Reliability and to achieve Robust Reliability. Journal of Quality Technology, 22(1),

pp. 38-45.

HAMADA, M. 1995. Using Statistically Designed Experiments to Improve

Reliability and to Achieve Robust Reliability. IEEE Transactions on Reliability.

44(2), pp. 206-215.

HEINSMAN, J. A. and MONTGOMERY, D. C. 1995. Optimization of a

Household Product Formulation using a Mixture Experiment. Quality Engineering.

7(3), pp. 583-600.

HEITTKOTTER, J. and BEASLEY, D. 2000. Hitch Hiker's Guide to Evolutionary

Computation, Issue 8.1, released 29 March 2000.

http://www.cs.bham.ac.uk/Mirrors/ftp.de.uu.net/EC/clife.htm

HICKS, C. R. 1982. Fundamental Concepts in the Design of Experiments. 3 rd edn.

New York, London: Holt, Rinehart and Winston. pp. 37-38.

HOLLAND, J.H. 1992. Adaptation in Natural and Artificial Systems: an

8-8

Evolutionary Computation and Experimental Design

introductory analysis with applications to biology, control and artificial intelligence.

First MIT Press edn. Cambridge, Ma., USA: MIT Press.

HUNTER, J. S. 1989. Statistical Quality Technology. Industrial Quality and

Productivity with Statistical Methods : A Joint Symposium of The Royal Society and

The Royal Statistical Society. 23rd March 1989. London. The Royal Society, pp.

597-604.

HUNTER, W. G. and KITTRELL, J. R. 1966. Evolutionary Operation: A Review.

Technometrics. 8, pp. 389-397.

HURLEY, P. 1994. Interactions: Ignore Them at Your Own Risk (How Taguchi's

Confirmation Run Strategy Can Lead to Trouble). Quality Engineering. 6(3),

pp.451-457.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. 1998. QS-

9000: quality system requirements. Third edition. Carwin: Essex.

ISHIBUCHI,H., MURATA,T. 1996. Multi-Objective Genetic Local Search

Algorithm. Proceedings of the IEEE International Conference on Evolutionary

Computation, pp. 119-124.

KACKER, R.N. and SHOEMAKER, A.C. 1986. Robust Design: A Cost-Effective

Method For Improving Manufacturing Processes. AT&T TechnicalJournal. 65(2),

8-9

Evolutionary Computation and Experimental Design

pp. 39-50.

KIDO, T., KITANO, H. and NAKANISHI, M. 1993. A Hybrid Search for Genetic

Algorithms: combining genetic algorithms, TABU search and Simulated Annealing.

Proceedings of the fifth international conference on genetic algorithms. p641.

KIRKPATRICK, S., GELATT, C. D. and VECCHI, M. P. 1983. Optimization by

Simulated Annealing. Science. 220, pp. 671-680.

KOZA, J.R. 1992. Genetic Programming: on the programming of computers by

means of natural selection. Cambridge: MIT Press.

KRISHNAKUMAR, K. 1989. Micro-genetic Algorithms for Stationary and Non-

stationary Function Optimization. SPIE, Intelligent Control and Adaptive Systems.

1195, pp. 289-296.

KWONG, S., NG, A.C.L. and MAN, K. F. 1995. Improving Local Search in

Genetic Algorithms for Numerical Global Optimization using Modified GRID-point

Search Technique. First IEE/IEEE International Conference on Genetic Algorithms

in Engineering Systems: Innovations and Applications (GALESIA'95), Halifax Hall,

University of Sheffield, UK. London: IEE. pp. 419-423.

8-10

Evolutionary Computation and Experimental Design

LANGDON, W.B. 1995. Pareto, Population Partitioning, Price and Genetic

Prograrriming.http://www.cs.ucl.ac.uk/staff/W.Langdon/WBL_papers.htnil#Langdo

n:1995:ppp

LAZAUSKAS, L. 1999. Test Functions and Benchmarks.

www.maths.adelaide.edu.au/Applied/llazausk/alife/realfopt.htm. Last updated: 3 rd

March 1999.

LEE, S. and ROWLANDS, H. 1998. Reproduction in Genetic Algorithms using the

Refocusing Operator. Third International conference on Adaptive Computing in

Design and Manufacture. Plymouth, UK. pp 9-12.

LOUIS, S.J. 1997. Comparing Genetic and Other Search Algorithms.

www.cs.unr.edu/~sushil/papers/thesis/thesishtml/node3.html

LOUIS, S.J., RAWLINS, G.J.E. 1993. Pareto Optimality, GA-easiness and

Deception. (Indiana Uni) ppl 18-125 Proc. Fifth International Conference on

Genetic Algorithms, S. Forrest (ed.), Morgan Kaufmann.

LOWE, C. W. 1964. Some Techniques of Evolutionary Operations. Transactions

of the Institute of Chemical Enginners. 42, pp. T334-T344.

LOWE, C. W. 1974. Evolutionary Operation in Action. Applied Statistics, The

Journal of the Royal Statistical Society, Series C. 23(2), pp. 218-226.

8-11

Evolutionary Computation and Experimental Design

LUCAS, J.M. 1994. How to Achieve a Robust Process Using Response Surface

Methodology. Journal of Quality Technology. 26(4), pp. 248-260.

MASON, W.J., COVERSTONE-CARROLL, V., HARTMANN, J.W. 1998.

Optimal Earth Orbiting Satellite Constellations via a Pareto Genetic Algorithm.

AIAA/AAS Astrodyn. Spec. Conf, paper no. 98-4381 (Boston, Mass., Aug. 1998).

MCGOVERN, J.L. 1994(a). A Critique of the Taguchi Approach - Part I: A

Presentation of Some Deficiencies and How These Limit Its Efficiency and Validity.

Journal of Coatings Technology. 66(830), pp. 65-70.

MCGOVERN, J.L. 1994(b). A Critique of the Taguchi Approach - Part I: An

Alternative that is More Efficient. Journal of Coatings Technology. 66(831), pp. 55-

61.

MONTGOMERY, D. C. 1991. Design and Analysis of Experiments. 3 rd edn. New

York: J.Wiley and Sons.

MUHLENBEIN, H., SCHOMISCH, M. and BORN, J. 1991. The Parallel Genetic

Algorithm as a Function Optimizer. Parallel Computing, 17, pp 619-632.

MURAKI, M., KATAOKA, K. and HAYAKAWA, T. 1986. Evolutionary

Synthesis of a Multicomponent Multiproduct Separation Process. Chemical

Engineering Science. 41(7), pp. 1843-1851.

8-12

Evolutionary Computation and Experimental Design

MURATA,T., ISHIBUCHI,H. 1995. MOGArMulti-Objective Genetic Algorithms.

Proceedings of the 2nd IEEE-ICEC International Conference on Evolutionary

Computation, pp.289-294.

MUTH,J.F., THOMPSON, G.L.. 1963. Industrial Scheduling. Prentice-Hall:

Englewood Cliffs, USA.

NACHTSHIEM, C. J., JOHNSON, P. E., KOTNOUR, K. D., MEYER, R. K. and

ZUALKERNAN, I. A. 1990. Expert Systems for the Design of Experiments. In:

GHOSH, S. ed. Statistical design and analysis of industrial experiments. New York:

Marcel Dekker, pp. 109-131.

PARK, S.H. 1996. Robust Design and Analysis for Quality Engineering. Chapman

and Hall: London.

PHADKE, M.S. 1986. Design Optimization Case Studies. AT&T Technical

Journal. 65(2), pp. 51-68.

PIGNATIELLO, J. J. and RAMBERG, J. S. 1991. Top Ten Triumphs and

Tragedies of Genichi Taguchi. Quality Engineering, 4(2), pp 211-225.

POLI, R. 1999. Evolutionary Computation Teaching at Birmingham. Congress on

Evolutionary Computation. 6th-9th July 1999, Washington, USA. IEEE Piscataway.

8-13

Evolutionary Computation and Experimental Design

PRINCIPIA CYBERNETICA WEB, 2000. Web Dictionary of Cybernetics and

Systems: Pareto Optimality, http://pespmcl.vub.ac.be/ASC/PARETO_OPTIM.html

REEVES, C. R. 1993. Using Genetic Algorithms with Small Populations.

Proceedings of the fifth international conference on genetic algorithms, 17th July

1993, Universtiy of Illinois at Urbana-Champaign, San Mateo, Ca: Morgan

Kaufmann, pp. 92-99.

REEVES, C. R. and WRIGHT, C.C. 1995. Genetic Algorithms and Statistical

Methods: a comparison. First IEE/IEEE International Conference on Genetic

Algorithms in Engineering Systems: Innovations and Applications (GALESIA), 12th

September 1995, Halifax Hall, University of Sheffield, UK. London: IEE.

RENCHENBERG, I. 1973. Evolutionsstrategie: Optimierung technischer systeme

nach prinzipien der biolgischen evolution. Stuttgart: Frommann-Holtzboog Verlag

RENDERS, J-M. and BERSINI, H. 1994. Hybridizing Genetic Algorithms with

Hill-Climbing Methods for Global Optimization: Two Possible Ways. Proceedings

of the first IEEE conference on evolutionary computation; 27th June 1994, Orlando,

Florida. NJ: Piscataway, pp 312-317.

ROY, R. 1990. A Primer on the Taguchi Method. New York: Van Nostrand

Reinhold.

8-14

Evolutionary Computation and Experimental Design

SAIT, S.M., YOUSSEF, H. 1999. Iterative Computer Algorithms with Applications

in Engineering: solving combinatorial problems. Los Alamitos, Ca., USA : IEEE

Computer Society.

SCHEFFE, H. 1958. Experiments with Mixtures. Journal of the Royal Statistical

Society B, .20, pp. 344-360.

SCHNECKE, V. 1997. Genetic design of VLSI layouts. In ZALZALA, A.M.S. and

FLEMING, P.J. eds. Genetic algorithms in engineering systems. London: IEE,

pp229-253.

SCHWEFEL, H-P. 1965. Kybernetische evolution als strategic der experimentellen

forschung in der strmungstechnik. Diploma thesis: Technical University of Berlin.

SCHWEFEL, H.-P. 1975. Bindre optimierung durch somatische mutation.

Technical report: Working group of Bionic and Evolution Techniques at the Institute

of Measurement and Control Technology of the Technical University of Berlin and

the Central Animal Laboratory of the Medical High School of Hanover.

SHOEMAKER, A. C. and KACKER, R. N. 1988. A Methodology for Planning

Experiments in Robust Product and Process Design. Quality and Reliability

Engineering International, 4(2), pp 95-103.

SPENDLEY, W., HEXT, G. R. and HIMSWORTH, F. R. 1962. Sequential

8-15

Evolutionary Computation and Experimental Design

Application of Simplex Designs in Optimisation and Evolutionary Operation.

Technometrics, 4, pp. 441-461.

SRINIVAS, M. and PATNAIK, L. M. 1994. Genetic Algorithms: A Survey.

Computer, June 1994 edition, pp. 17-26.

STARKWEATHER, T., WHITLEY, D. and MATHIAS, K. 1990. Optimization

using distributed genetic algorithms. Proceedings of Parallel Problem Solving from

Nature 1, Lecture Notes in Computer Science No 496, Springer-Verlag, pp. 176-185.

SYSWERDA, G. 1989. Uniform Crossover in Genetic Algorithms. Proceedings of

the Third International Conference on Genetic Algorithms, pp. 2-9.

TAGUCHI, G. 1987. System of Experimental Design. American Supplier Institute.

THEIRENS, D., SUYKENS, J., VANDEWALLE, J. and DE NOOR, B. 1993.

Genetic Weight Optimisation of a Feeedfoward Neural Network Controller.

Artificial Neural Networks and Genetic Algorithms, Proceedings of the International

Conference. Innsbruck, Austria. Wein, Austria: Springer Verlag. pp. 658-663.

TRIBUS, M. and SZONYI, G. 1989. An Alternative View of the Taguchi

Approach. Quality Progress, 22(5), pp. 46-52.

UNAL, R. and DEAN, E. B. 1995. Design for Cost and Quality: the Robust Design

8-16

Evolutionary Computation and Experimental Design

Approach, http://akao.larc.nasa.gov/pap/robdes/robdes.html 8th September 1995.,

also In: Journal ofParametrics, 11(1).

VAN LAARHOVEN, P. J. M. and AARTS, E. H. L. 1987. Simulated Annealing:

Theory and Applications. Dodrecht, Holland: D. Reidel Publishing Company.

VINING, G. G. and MYERS, R. H. 1990. Combining Taguchi and Response

Surface Philosophies: a dual response approach. Journal of Quality Technology,

22(1), pp. 38-45.

WIENHOLT, W. 1993. A Refined Gentic Algorithm for Parameter Optimization

Problems. Proceedings of the Fifth International Conference on Genetic Algorithms.

WINTER, G., PERIAUX, J., GALAN, M., CUESTA, P. 1995. Genetic Algorithms

in Engineering and Computational Science. Wiley: Chichester, New York.

YAMADA, T. and NAKANO, R. 1995. A Genetic Algorithm with Multi-step

Crossover for Job-Shop Scheduling Problems. Proceedings of Genetic Algorithms

in Engineering Systems: Innovations and Applications. London, IEE. pp. 146-151.

ZALZALA, A.M.S. and FLEMING, P.J. (eds). 1997. Genetic algorithms in

engineering systems. London: IEE

8-17

Evolutionary Computation and Experimental Design

9. BIBLIOGRAPHY

ABBATTISTA, F. and DALBIS, D. 1996. Improving the Genetic Algorithms by

means of a Cooperative Model. Second On-line Workshop on Evolutionary

Computation, http://www.bioele.nuee.nagoya-u.ac.jp/wec2/. 4-22 March 1996

ACKLEY, D. H. 1987. An Empirical Study of Bit Vector Optimization. In:

DAVIS, L., ed. Genetic Algorithms and Simulated Annealing. London: Pitman.

ALBRECHT, R. F.; REEVES, C. R., and STEELE, N. C. 1993. Introduction.

Artificial Neural Networks and Genetic Algorithms, Proceedings of the International

Conference. Innsbruck, Austria; 1993. Wein, Austria: Springer Verlag.

AMIN, S. and FERNANDEZ-VILLACANAS, J. L. 1997. Dynamic local search.

GALESIA, 2ndIEE/IEEE International Conference on GA Applications. 2nd -4th

September, 1997. University of Strathclyde, Glasgow, UK.

ANDERSON, V. L. and MCLEAN, R. A. 1974. Design of experiments: a realistic

approach. New York: Marcel Dekker.

anonymous. 1996. Design of Experiments For Processing Industries.

http://www.sme.org/conf/quality/doeprdbr.html. (8th September 1996).

9-1

Evolutionary Computation and Experimental Design

anonymous. 1996. Combinatorial and Real Function Optimisation.

http://iridia.ulb.ac.be/projects/combi.html. (accessed 5th March 1996).

ANTHONY, J. and KAYE, M. 1998. Key Interactions. Manufacturing Engineer.

June 1998. pp!36-138.

BACK, T., HAMMEL, U. and SCHWEFEL, H-P. 1997. Evolutionary

Computation: Comments on the History and Current State. IEEE Transactions on

Evolutionary Computation. 1(1), pp3-17

BACK, T., RUDOLPH, G. and SCHWEFEL, H-P. Evolutionary Programming and

Evolution strategies: Similarities and Differences. The Second Annual Conference

on Evolutionary Programming; San Diego, California, USA. ppl 1-22.

BAKER, J. E. 1987 Reducing Bias and Inefficiency in the Selection Algorithm.

Proceedings of the Second International Conference on Genetic Algorithms. 28th

July 1987. MIT, USA. New Jersey, USA: Lawrence Erlbaum Associates, pp!4-21.

BATES, A. 1995. Within your grasp: better plant performance and major savings.

Works Management. 48(9), pp 16-17.

BERSINI, H. and SERONT, G. 1992. In Search of a Good Evolution-Optimization

Crossover. Personal Communication from Hugues Bersini.

9-2

Evolutionary Computation and Experimental Design

BERSINI, H. and VARELA, F. 1993. The Immune Learning Mechanisms:

Reinforcement, Recruitment and their Applications. IRIDIA, Universite Libre de

Bruxelles Internal report: TR/IRIDIA/93-4. Personal Communication from Hugues

Bersini.

BOX, G. E. P. 1966. Use and Abuse of Regression. Technometrics. 8(4), pp625-

629.

CARLSON, S.E., SHONKWILER, R. and MICHAEL, I. 1993. A Comparative

Evaluation of Search Methods Applied to Catalog Selection. Proceedings of the

International Conference on Genetic Algorithms, 17th July 1993, University of

Urbana-Champaign USA. San Mateo, Ca. USA: Morgan Kaufmann. p630.

CHEN, W-H. and TIRUPATI, D. 1995. On-line Quality Management: Integration

of Quality Inspection and Process Control. Production and Operations Management,

4(3), pp242-262.

CHIPPERFIELD, A., FLEMING, P., POHLHEIM, H. and FONSECA, C. 1993.

Genetic Algorithm Toolbox for use with Matlab User's Guide vl.2.

CLEVELAND, G.A. and SMITH, S.F. 1989. Using Genetic Algorithms to

Schedule Flow Shop Releases. Proceedings of the International Conference on

Genetic Algorithms 1989; pp 160-169.

9-3

Evolutionary Computation and Experimental Design

COWLEY, P. and PEARCE, R. 1997. Assessment of Applications for

Optimisation using a Genetic Algorithm. GALESIA, 2nd IEE/IEEE International

Conference on GA Applications. 2nd -4th September, 1997. University of

Strathclyde, Glasgow, UK.

DE FALCO, I., DEL BALIO, R., DELLA CIOPPA, A. and TARANTINO, E. 1992.

A Comparative Analysis of Evolutionary Algorithms for Function Optimisation.

WEC2 - 2nd Online Workshop on Evolutionary Computing; 4th-22nd March 1992,

http://www.bioele.nuee.nagoya-u.ac.jp/wec2/papers/p018.html; (3 rd April 1996).

DE JONG, K. 1985. Genetic Algorithms: a 10 year perspective. Proceedings of the

First International Conference on Genetic Algorithms and their Applications, 241

July 1985, Carnegie-Mellon University, Pittsburgh, USA. Hillsdale, New Jersey,

USA: Lawrence Erlbaum Associates Publishers, pp 169-177.

DE JONG, K. and SPEARS, W. On the State of Evolutionary Computation: pp618-

623.

DEHNAD, K. (ed). 1989. Quality control, robust design, and the Taguchi method.

Pacific Grove, Calif. USA: Wadsworth & Brooks/Cole Advanced Books &

Software.

DEMING, W.E. 1986. Out of the crisis: quality, productivity and competitive

position. Cambridge: Cambridge University Press.

9-4

Evolutionary Computation and Experimental Design

DIMOPOULOS, C. and ZALZALA, A.M.S. 2000. Recent Developments in

Evolutionary Computation for Manufacturing Optimisation: problems, solutions and

comparisons, www (accessed August 2000).

DORIGO, M., MANIEZZO, V. and COLORNI, A. 1996. The Ant System:

Optimization by a colony of cooperating agents. IEEE Transactions on Systems,

Man, and Cybernetics - Part B. 26(1), ppl-13.

DOWSLAND, K. A. 1996. Genetic Algorithms - a tool for OR? Journal of the

Operational Research Society. 47, pp550-561.

EVOSTIM. 2000. The State of the Art in Evolutionary Approaches to Timetabling

and Scheduling.

www.dai.ed.ac.uk/daidb/people/homes/emmah/REPORT/draftsc/draftsc.html

(accessed 1 st September 2000).

FOGEL, D.B. 1991. System Identification through Simulated Evolution: a Machine

Learning Approach. Needham Heights, Ma.,US A.: Ginn Press.

FOGEL, D.B. 1995. Evolutionary Computation: Toward a New Philosophy of

Machine Intelligence. Piscataway, NJ., USA: IEEE Press.

9-5

Evolutionary Computation and Experimental Design

FUJIMOTO, H., LIAN-YI, C., TANIGAWA, Y. and IWAHASHI, K. 1995. FMS

Scheduling by Hybrid Approaches using Genetic Algorithm and Simulation. First

IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems:

Innovations and Applications (GALESIA'95), 12th-14th September 1995, Halifax

Hall, University of Sheffield, UK. London: IEE. pp. 442 - 447.

GONZALEZ, B., TORRES, M., and MORENO, J. A. 1995. A Hybrid Genetic

Algorithm Approach for the "No-Wait" Flow Shop Scheduling Problem. Genetic

Algorithms in Engineering Systems: Innovations and Applications.

GREFENSTETTE, JJ. 1986. Optimization of Control Parameters for Genetic

Algorithms. IEEE Transactions on Systems, Man and Cybernetics, SMC-16(1), pp.

122-128.

GREFENSTETTE, J.J. 1987. Genetic Algorithms and their Applications.

Proceedings of the Second International Conference on Genetic Algorithms. 28

July 1987. MIT, Cambridge, USA. New Jersey, USA: Lawrence Erlbaum

Associates.

HAJELA, P. and LIN, C-Y. 2000. Real Versus Binary Coding in Genetic

Algorithms: A Comparative Study. Computational Engineering using Metaphors

from Nature. Edinburgh: Civil-Comp Press, pp. 77-83.

HAMMERSTROM, D. 1993. Neural Networks at Work. IEEE Spectrum. June

9-6

Evolutionary Computation and Experimental Design

edition, pp.26-32.

HAYKIN, S.S. 1994. Neural Networks: A Comprehensive Foundation. New York,

USA: MacMillan.

HEBB, D. O. 1949. The organization of behaviour: a neuropsychological theory.

New York, London: Wiley.

HEITKOTTER, J. and BEASLEY, D. 1995. Hitch Hiker's .Guide to Evolutionary

Computation. (Issue 3.4). (www release 11 th December 1995)

HOPFIELD, J. J. 1982. Neural Networks and Physical Systems with Emergent

Collective Computational Abilities. Proceedings of the National Academy of

Sciences. 79, pp. 2554-2558.

HOUCK, C.R., JOINES, J.A. and KAY, M.G. A Genetic Algorithm for Function

Optimization: A Matlab implementation, www.ncsu.edu (accessed August 2000).

IMAM, M.H. and AL-SHIHIRI, M..A. 2000. A Primitive Crossover for Improving

the Reliability of Genetic Algorithms for Structural Optimization. Computational

Engineering using Metaphors from Nature. Edinburgh: Civil-Comp Press, pp. 91-

97.

KEANE, A. J. 1993. Structural Design for Enhanced Noise Performance Using

9-7

Evolutionary Computation and Experimental Design

Genetic Algorithm and other Optimization Techniques. Artificial Neural Networks

and Genetic Algorithms, Proceedings of the International Conference. Innsbruck,

Austria. Wein, Austria: Springer Verlag. pp. 536-543.

LANE, R. and OCHILTREE, B. C. 1989. Simplex Optiomisation Technique for

Development of Rubber Formulations. Plastics and Rubber International. 14, pp.

28-32.

LANGERMAN FALSE SWARZBERG, S., SERONT, G. and BERSINI, H. 1994.

S.T.E.P.: The Easiest Way to Optiomize a Function. Proceedings of the First IEEE

Confernece on Evolutionary Computation. Orlando, Florida, USA. IEEE. pp. 519-

524.

LIPPMANN, R. P. 1987. An Introduction to Computing with Neural Nets. IEEE

ASSP Magazine. April 1987 edition, pp. 4-22.

LINDFIELD, G. and JOFIN, P. 1995. Numerical Methods using Matlab.

Chichester: Ellis Horwood. pp 284-294.

LOGAN, B. and POLI, R. 1996. Route planning with GA*. 1st Online Workshop

on Soft Computing, 19th August 1996. http://www.bioele.nuee.nagoya-u.ac.jp/wscl/.

MAHFOUD, S.W. Crossover Interactions Among Niches. First IEEE Conference

on Evolutionary Computation, World Congress on Computational Intelligence,

9-8

Evolutionary Computation and Experimental Design

University of Illinois at Urbana-Champaign Internet report, pp. 188-193.

MAHFOUD, S.W. Genetic Drift in Sharing Methods. First IEEE Conference on

Evolutionary Computation, World Congress on Computational Intelligence,

University of Illinois at Urbana-Champaign Internet report, pp. 67-72.

MINSKY, M. L. and PAPERT, S. 1969. Perceptrons: an Introduction to

Computational Geometry. Cambridge, Ma.,US A., London: MIT Press.

MITCHELL, M. 1996. Recent Papers by Melanie Mitchell.

http://www.santefe.edu/~mm/paper-abstrats.html. (created: 1 st November 1996).

MITCHELL, M. and HOLLAND, J.H. 1993. When Will a Genetic Algorithm

Outperform Hill Climbing? Proceedings of the fifth international conference on

genetic algorithms, and at http://www.santafe.edu/~mm/paper-abstracts.html#ga-

hillc. (accessed 10th October 1996).

MCCULLOCH, W. S. and PITTS, W. A. 1943. Logical Calculus of the Ideas

Imminent in Nervous Activity. Bulletin of Mathematical Biophysics. 5, pp. 115-133.

PATTON, R. J., CHEN, J. and LIU, G. P. 1995. Robust Fault Detection of

Dynamic Sytems via Genetic Algorithms. First IEE/IEEE International Conference

on Genetic Algorithms in Engineering Systems: Innovations and Applications

(GALESIA'95), Halifax Hall, University of Sheffield, UK. 12th September 1995.

9-9

Evolutionary Computation and Experimental Design

London: IEE.

PHADKE, M.S. 1989. Quality Engineering using Robust Design. Englewood

Cliffs, NJ, USA: P T R Prentice Hall.

PHAM, D. T. and OZTEMEL, E. 1995. An integrated neural network and expert

system tool for statistical process control. Part B, Journal of Engineering

Manufacture, 209(B2), pp. 91-97.

POLI, R. and LOGAN, B. 1992. Evolutionary Computation Cookbook: Recipes for

designing New Algorithms. 2nd Online Workshop on Evolutionary Computation, 4th

— 22nd March 1992, http://www.bioele.nuee.nagoya-u.ac.jp/wec2/papers/d020.html.

PRYDE, M. and ROWLANDS, H. 1997. GAEVO - Genetic Algorithms with

Evolutionary Operation First European Conference on Intelligent Management

Systems in Operations. 25th - 26th March 1997. University of Salford, UK

REES, D.G. 1989. Essential Statistics. 2nd edn. London: Chapman and Hall.

REEVES, C. R. 1995. Modern Heuristic Techniques For Combinatorial Problems.

London: McGraw-Hill.

RIBEIRO-FILHO, J. L., TREVLEAVEN, P. C. and ALIPPI, C. 1994. Genetic

Algorithm Programming Environments. Computer. June 1994 edition, pp. 28-43.

9-10

Evolutionary Computation and Experimental Design

ROY, R. and PARMEE, I. C. 1996. Adaptive Restricted Tournament Selection and

a Local Hill Climbing Hybrid for the Identification of Multiple "Good " Design

Solutions. Second On-line Workshop on Evolutionary Computing, 4th -22nd March

1996, http://www.bioele.nuee.nagoya-u.ac.jp/wec2/

ROY, R. CAVE, P. and PARMEE, I. 1994. Artificial Neural Networks and

Taguchi's Methodology to Model a Complex Non-Linear System. Proceedings of

ACEDC'94, 1994; Plymouth, pp 114-116.

RUMMELHART, D. E., MCLELLAND, J. L. and THE POP RESEACH GROUP.

1986(a). Parallel Distributed Processing: Explorations in the Micro structure of

Cognition; Vol. 1: Foundations. Cambridge, Ma., USA, London: MIT Press.

RUMMELHART, D. E., MCLELLAND, J. L. and THE PDF RESEACH GROUP.

1986(b). Parallel Distributed Processing: Explorations in the Microstructure of

Cognition; Vol. 2: Psychological and Biological Models. Cambridge, Ma., USA.,

London: MIT Press.

SINGH BAICHER, G. and TURTON, B.C.H. 2000. Comparative study for

optimisation of causal IIR perfect reconstruction filter banks. Congress on

Evolutionary Computation 2000 (CECOO) volume 2, 16th to 19th July 2000, La Jolla,

Ca., USA. IEEE. pp. 974-977.

SMITH, J. and SUGIHARA, K. 1996. GA Toolkit on the Web. 1st Online

9-11

Evolutionary Computation and Experimental Design

Workshop on Soft Computing, 19th August 1996, http://www.bioele.nuee.nagoya-

u.jp.ac/wscl/

TEO, M-Y. and SIM, S-K. 1995. Training the Neocognitron Network Using

Design of Experiments. Artificial Intelligence in Engineering, 9, pp. 85-94.

THOMPSON, V. 1995. Process Management in Manufacturing. Control

Engineering Practice, 3(4), pp. 537-543.

WANG, G., GOODMAN, E.D. and PUNCH III, W.F. 1996. Simultaneous Multi-

Level Evolution, Second On-line Workshop on Evolutionary Computation, 4th - 22nd

March 1996. http://www.bioele.nuee.nagoya-u.ac.jp/wec2/

YAO, X. 1993. A Review of Evolutionary Artificial Neural Networks. International

Journal of Intelligent Systems, 8, pp. 539-567.

YEN, J., LEE, B. and LIAO, J.C. Using Fuzzy Logic and a Hybrid Genetic

Algorithm for Metabolic Modelling. Texas A&M University Report.

YIP, P.P.C. and POA, Y-H. 1995. Combinatorial Optimization with Use of Guided

Evolutionary Simulated Annealing. IEEE Transactions on Neural Networks, 6(2),

pp. 290-295.

YURET, D. and DE LA MAZA, M. 1993. Dynamic Hill Climbing: Overcoming

9-12

Evolutionary Computation and Experimental Design

the limitations of optimization techniques. Second Turkish Symposium on Artificial

Intelligence and Neural Networks', pp 254-260.

9-13

