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Summary

This thesis is concerned with the robots’ motion planning problem. In particular it is
focused on the path planning and motion planning for Autonomously Guided Vehicles
(AGVs) in well-structured, two-dimensional static and dynamic environments.

Two algorithms are proposed for solving the aforementioned problems. The first
algorithm establishes the shortest collision-semi-free path for an AGV from its start
point to its goal point, in a two-dimensional static environment populated by simple
polygonal obstacles. This algorithm constructs and searches a reduced visibility graph,
within the AGV’s configuration space, using heuristic information about the problem
domain.

The second algorithm establishes the time-minimal collision-semi-free motion for an
AGYV, from its start point to is goal point, in a two-dimensional dynamic environment
populated by simple polygonal obstacles. This algorithm considers the AGV’s space-
time configuration space, thus reducing the dynamic motion planning problem to the
static path planning problem. A reduced visibility graph is then constructed and
searched using information about the problem domain, in the AGV’s space-time
configuration space in order to establish the time-minimal motion between the AGV’s
start and goal configurations.

The latter algorithm is extended to solve more complicated instances of the dynamic
motion planning problem, where the AGV’s environment is populated by obstacles,
which change their size as well as their position over time and obstacles, which have
piecewise linear motion.

The proposed algorithms can be used to efficiently and safely navigate AGVs in well-
structured environments. For example, for the navigation of an AGV, in industrial
environments, where it operates as part of the manufacturing process or in chemical and
nuclear plants, where the hostile environment is inaccessible to humans.

The main contributions in this thesis are, the systematic study of the V*GRAPH
algorithm and identification of its methodic and algorithmic deficiencies;
recommendation of corrections and further improvements on the V¥*GRAPH algorithm,
which in turn lead to the proposition of the V¥*MECHA algorithm for robot path
planning; proposition of the D*MECHA algorithm for motion planning in dynamic
environments; extension to the D*MECHA algorithm to solve more complicated
instances of the dynamic robot motion planning problem; discussion of formal proofs of
the proposed algorithms’ correctness and optimality and critical comparisons with
existing similar algorithms for solving the motion planning problem.
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Introduction and
Overview of the Thesis

Though thy beginning was small, yet thy end will be very great
JOB 8:7

1.1 Introduction

Imagine an eight-year-old child is playing with a remote controlled car in the living
room of his/her house. The child skilfully navigates the car from one corner of the
room to another, avoiding collisions with the room’s furniture. What the child has just
done is to solve the gross motion planning problem, for a vehicle with three degrees of
freedom. If the action of the child is more thoroughly analysed, it can be noticed that
the child using his/her vision, recognises the objects in the car’s environment (the living
room), identifies their position and thus is able to build up a geometric model of the

environment. This model in turn helps him/her to navigate the car around the
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environment. Notice that the child unconsciously solves another significant robotics

problem, the vision problem.

Imagine now the scenario where the child is blindfolded and tries to navigate the car,
from one corner of the living room to another. The result will not be the same. The
navigation now relies upon previous experience the child has about the topology of the
room. The child knows the approximate position of the furniture in the room and tries
to navigate the car in an exploratory manner. For instance, if the car crashes with an
object of the room, the child instinctively backs it up and tries to circumnavigate the

object and reach the destination point.

This example demonstrates how easy it is for a human to solve the motion planning
problem with little conscious effort, providing that information is available about the
environment ahead of planning. It appears that when a human intuitively solves the
motion planning problem, in general it generates sub-optimal but safe trajectories. The
reason is that the human’s ability to move safely in a physical environment or to move
other objects within the environment, is a process undertaken instinctively, as generally

humans do not calculate all the possible routes and then select the optimal.

To replicate this human ability in a computer programme to navigate a robot in a
physical environment is an extremely difficult task. The reason is that there are
computational aspects involved, which themselves are very hard to undertake. For
example, one of the most challenging tasks is to represent real world objects within the

computer and to define geometric operations for them. Another important issue is the
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computational complexity, 1.e. how to generate effective solutions to the motion
planning problem in efficient time. The motion planning problem has received great
attention from the computer theoreticians community, thus it is sometimes referred to in

the literature as algorithmic motion planning.

1.2 The Importance of Motion Planning in Robotics

One of the most important tasks a robot should undertake in order to be autonomous is
to plan and execute its own motions in known environments or sense, react and avoid
obstacles in unknown environments. There are a significant number of applications,
which make use of robotic systems and in particularly of mobile robots, ranging from

manufacturing to space exploration.

The use of AGVs (Autonomously Guided Vehicles) and articulated robots is an
important consideration for the efficiency of an automated manufacturing process. In
the machining industry the use of robotic systems has made mass production a human
unassisted process with very precise results leading to good quality products. Mobile
robots are also used to conduct tasks in hostile environments, which are dangerous for
humans, such as nuclear and chemical plants, battlefields, mines and outer-space

environments.

Notice that most practical applications in which a mobile robot is involved are critical,
in the sense that they have to meet safety and economic aspects. For example, it would

be economically catastrophic if a mobile robot, which works as part of a manufacturing
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process in a multi-million pound production line, collided with other machines and
disrupted the process. Even more importantly it would be a disaster if a mobile robot
were to harm a human who also co-exists in its environment. The above examples
show how important it is for a robot to move safely in its environment and carry out
tasks in an optimal way. Therefore, algorithms, which plan the motion of a robot in a
physical environment, are of significant importance and they are called motion planners
or path planners. Note however that path planning is not the only ingredient for the
guidance of a robotic system. If the guidance procedure of a robotic system is analysed

it can be decomposed in the following three tasks:

o The first task is to create a map of the environment (if is not available, i.e. known
environment) in which the robot is operating. This task can be achieved by

sensing the environment.

. The second task is motion planning. This task establishes safe (collision-free) and

cost effective motions for the robot between two query points in its environment.
. The final task is the robot to be driven efficiently along the path established by the
previous task. This task controls the robot’s motors and actuators to perform the

desired motion.

The above process can be schematically represented as illustrated in Figure 1.1.
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different task is assigned to the robot a training procedure needs to be undertaken. Also
note that using the guidance method to programme a robotic system, its application

domain is very limited because the system cannot cope with moving obstacles.

The ultimate goal of robotics is to create autonomous robots and therefore much
research effort is now concentrated on creating autonomously guided robots, which
have the ability to plan and execute their own motions in known environments or sense,
react and avoid obstacles in unknown environments. Note that this thesis is concerned
with the robot motion planning problem and therefore it is considered that the robot’s
environment is known ahead of planning. In this case the motion planning task is
adequately accomplished in an off-line manner. However, when the environment is
unknown on-line planning (better described as obstacle avoidance) is required by the

system, which relies on information obtained by the robot’s sensors.

The importance of the motion planning problem in robotics on the one hand and its
hardness' on the other, justify the volume of research effort and the large number of
proposed approaches dealing with the motion planning problem. A review of robot
motion planning is presented in chapter three. Additional surveys can be found in (Yap,
1987), (Schwartz and Sharir, 1988), (Latombe, 1991), (Hwang and Ahuja, 1992) and

(Wager, 2000).

It has been shown that complete motion planning approaches, which guarantee to find a

solution to the problem if one exists, are computationally so expensive that they limit

! Inthe computer theoreticians’ community a problem is commonly characterized as hard when the best
available algorithm for solving is very expensive in its running time.
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the practicality of the approach, (Schwartz and Sharir, 1983), (Canny, 1988). However,
heuristic, resolution-complete, and probabilistically resolution-complete approaches
have been developed to make the solution of the motion planning problem more
pragmatic but at the expense of its completeness. These issues are also discussed in

chapter three.

A relaxed specification of the robot motion planning problem can be stated as follows:
Given the initial and final states of a robot and the constraints of allowable motions,
find a collision-free motion for the robot from its initial state to its final state which
satisfies the constraints. This is a very generic specification of the problem, thus the
problem has been classified into categories based upon the robot’s environment and task
domains. For instance, when the environment of the robot is static and the only
constraints on the robot are its kinematics and that it should not collide with the
environment’s obstacles, it suffices to define collision-free paths for the robot to follow
taking into account its kinematics. This problem is referred to in the literature as the
path planning problem. When the dynamics of the robot are taken into consideration
such as linear and angular velocities this problem is referred to as the trajectory
planning problem. Note that path planning problem is subset of trajectory planning.
When the environment of the robot contains only stationary obstacles it is referred to as
the static motion planning problem while when the environment contains moving

obstacles it is referred to as the dynamic motion planning problemz. More details about

2 In some textbooks the static motion planning and dynamic motion planning problem are referred to as

time-invariant and time varying motion planning problems respectively.
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the classification of the robot motion planning problems can be found in (Latombe,

1991) and (Hwang and Ahuja, 1992).

In this thesis two specific instances of the motion planning problem are considered. The
first 1s the path planning problem for an AGV in a two-dimensional static known
environment. The second is the motion planning of an AGV in a two-dimensional

dynamic known environment.

1.3 Aim and Objectives of the Research

The aim of the research is to develop algorithms for solving effectively and efficiently
the path planning problem for an AGV in two-dimensional static known environments
and the motion planning problem for an AGV in two-dimensional dynamic known

environments.

The objectives of the research are to:

. Conduct a literature survey on approaches and algorithms that have been proposed
for solving robot motion planning problem.

. Study and critically review existing robot motion planning approaches in order to
identify major problems and recommend ways to overcome these problems.

. Propose possible improvements to existing approaches for solving the path
planning problem for an AGV.

J Propose an approach for solving the motion planning problem for an AGV in

dynamic environments.
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. Investigate the correctness and the optimality of the proposed approaches.
. Test the proposed approaches experimentally through examples.

o Critically evaluate the proposed approaches and compare them with existing

approaches.

1.4 Methodology

As was mentioned in section 1.2 the first problem considered is the path planning
problem for an AGV in a two-dimensional static environment. More formally the

problem is posed as follows:

Let the AGV R be a simple polygonal free-flying object operating in a two-dimensional
Euclidean workspace W, populated by a finite number of simple polygonal obstacles,
the AGV’s start point s and its goal point g. The problem is to find a collision-free path
for the AGV R, given that the positions of the obstacles and the AGV’s start and goal
positions are known ahead of planning or to report failure if such path does not exist.
This is called the basic path planning problem or the basic movers’ problem because
there are restrictions on the robot and its environment, such as the robot is a rigid body
and no kinematic constraints are imposed on it, the obstacles are static and so on. In
Latombe (1991), it is reported that even the basic movers’ problem is a hard problem to

solve and when the robot is an articulated arm it gets even harder.

The approach proposed in the thesis to solve the problem, is based on the visibility

graph approach (Lozano-Pérez and Wesley, 1979), see section 3.2.1 for details. The
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general idea behind the visibility graph approach is to construct a graph in the robot’s
configuration space connecting all the vertices of the obstacles’ configuration spaces
that can be connected by a straight-line edge, such that this edge does not overlap the
interior of any obstacle's configuration space. It then searches this graph for a path

between the AGV’s start and goal locations.

The reasons that the visibility graph approach is selected as a general method for

approaching the basic movers’ problem are as follows:

It is relatively easy to implement.

. It is a fast and reliable method when applied in low-dimensional configuration
spaces (i.e. R?). Note the configuration space of the AGV in the basic movers’
problem is R’

. When the AGV’s configuration space is R, it establishes optimal paths.

. The visibility graph approach can be extended with no further computational
effort to incorporate non-holonomic kinematic constraints of a car-like AGV,
producing near-optimal paths, (Jiang et al, 1996) and (Jiang ez al, 1999).

. The visibility graph approach can be relatively easily extended to solve the

dynamic motion planning problem establishing optimal motions, see chapter five

for details.
Note that current implementations of the visibility graph approach, construct the entire

visibility graph or a part of it by only considering the tangential to the obstacles’

configuration space edges, thus reducing the size of the visibility graph and therefore

1-10
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making the search process quicker. The proposed algorithm is called V¥*MECHA and
reduces further the number of vertices considered for the construction of the visibility

graph, thus making the process even faster.

The V*MECHA algorithm is based on the V*GRAPH approach proposed by
Alexopoulos and Griffin (1992) for solving the basic movers’ problem, details of this
approach are discussed in section 4.3.2. Note that Conn ef a/ (1997), constructed a
counterexample showing that the V¥*GRAPH algorithm is incorrect and therefore is not
complete, see section 4.4 for details. In this thesis the V*GRAPH algorithm is
extensively studied, an additional deficiency of the algorithm other than that reported by
Conn et al (1997) is identified and recommendations for the algorithm completeness are
made. Additional improvements on the algorithm are proposed, resulting in a new
proposed algorithm called V¥*MECHA, for the path planning of an AGV. Note that

proof of the proposed algorithm’s completeness and optimality are provided.

The V¥MECHA algorithm, in the worse case (this is when the AGV's environment
contains only convex obstacles) is not as efficient as other algorithms, such as (Rohnert,
1986) and (Liu and Arimoto, 1992), from an algorithmic theory point of view (but not
always from practical point of view). However, in the average case (this 1s when there
are non-convex obstacles in the AGV's environment), which in general appears more

frequently in real world applications, the algorithm performs better than the

1-11
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aforementioned approaches, due the fact that the produced visibility graph is very small

and thus the search for a path is quicker’. More details are discussed in chapter four.

Another algorithm is proposed, which is an extension of the V¥MECHA algorithm for
solving the dynamic motion planning problem for an AGV. This algorithm is called
D*MECHA and establishes time-minimal motion for an AGV between two query
points in dynamic environments. The algorithm constructs a visibility graph in the
space-time configuration space of the AGV and thus reduces the dynamic motion
planning problem to that of the static path planning problem. This algorithm is indeed
very efficient from both theoretical and practical point of view. The D*MECHA

algorithm is extended to handle several types of obstacles’ motions.

1.5 Overview of the Thesis

The thesis is organised as follows:

Chapter two presents some definitions, algorithmic notions and mathematical notations
that will be used throughout this thesis. This presentation mostly serves as a quick
reference to the basic concepts of the aforementioned subject areas, in order to make the

concept of the thesis more thoroughly understood.

3 In fact the best result for this problem today is O(n log n), where n is the tqtql number of the obstacles
vertices proposed by Hershberger and Suri (1999). However, even thf)qgh this is a very good result from
a theoretic point of view, the algorithm is not implementable because it is very complex.

1-12
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In chapter three, a literature survey on robot motion planning approaches that have been

proposed to date is presented and a critical review of these is conducted.

Chapter four investigates the V¥*GRAPH algorithm proposed by Alexopoulos and
Griffin (1992) and identifies the problems and deficiencies of the algorithm.
Recommendations are made to correct and complete the algorithm and further
improvements are considered resulting in the proposition of the V¥MECHA algorithm

for effectively solving the path planning problem for an AGV.

In chapter five, the motion planning problem for an AGV in dynamic environments is
considered. More specifically the problem of planning motions for an AGV operating
in a two-dimensional environment populated by linearly moving obstacles is considered
and an algorithm for solving it is proposed. This algorithm is an extension of the

V*MECHA algorithm presented in chapter four and is called D*MECHA.

In chapter six the applicability of the D*MECHA algorithm in more complicated
dynamic environments is discussed. Possible extensions are proposed to enable the
D*MECHA algorithm to solve more complicated instances of the motion planning
problem for an AGV in dynamic environments. In particular the motion planning
problem for an AGV in environments, which contain obstacles that change their size

over time and obstacles that have piecewise linear motions are considered.

1-13
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Chapter seven reviews the thesis, draws some conclusions from the work presented in
the thesis, summarises the contributions of the work and makes recommendations for

further work.

In Appendix A, an algorithm for computing the obstacles’ configuration space, using
Minkowski sums is presented. In Appendix B, the A* graph-searching algorithm is
presented. Finally, Appendix C contains copies of the publications that have been

produced during the course of the work described in the thesis.

1.6 Discussion

In this thésis the challenging problem of motion planning for autonomously guided
vehicles is studied. In particular the path planning problem for an AGV in static known
environments and the motion planning problem of an AGV in dynamic known
environments, are considered. Two approaches are proposed for effectively solving
these problems. These approaches in general produce optimum paths and motions and
they are suitable for motion planning of an AGV in known and well structured
environments, such as, industrial environments, chemical and nuclear plants or even for

the navigation of water vessels.

The proposed approaches are experimentally tested through examples, they are critically

compared with existing approaches and their advantages and disadvantages are

identified and reported.

1-14
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Here is a brief summary of the contributions of the research described this thesis:

Contributions

1.  The V*GRAPH approach proposed by Alexopoulos and Griffin (1992), for
solving the basic movers’ problem is extensively studied. An algorithmic
deficiency other than that presented by Conn ef al (1997), is identified and
reported.

2. Corrections for the completion of the V*GRAPH algorithm are proposed enabling
it to solve the path planning problem effectively. Further methodic and
algorithmic improvements are made on the V¥GRAPH algorithm resulting in the
proposition of a new reduced visibility graph approach called V¥MECHA
algorithm, for solving the basic movers’ problem.

3. Proposition of the SUPER EXTREMES routine, which identifies the super-
extremes of the extreme vertices of the visible sequence(s) for each obstacle in
order to reduce the size of the visibility graph constructed by the V*MECHA
algorithm.

4. Proposition of an algorithm called D*MECHA for solving the motion planning
problem for an AGV in dynamic environments.

5. Investigation and proposition of possible extensions to the D*MECHA algorithm
to be applicable in more complex dynamic environments are made. Specifically
extensions to the D*MECHA algorithm, for solving the motion planning problem
for an AGV in dynamic environments populated by obstacles that change their

size over time are proposed. Also, extensions to the D*MECHA algorithm, for

1-15
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solving the motion planning problem for an AGV in dynamic environments
populated by piecewise linearly moving obstacles are proposed.

6. Discussion of formal proofs of the proposed algorithms’ correction and
optimality. Critical comparisons with existing similar algorithms for solving the

motion planning problem are also conducted.

1.7 References

ALEXOPOULOS, C. and GRIFFIN, P. 1992. Path Planning for a Mobile Robot. IEEE

Transactions on Systems, Man and Cybernetics, 22 (2), pp. 318 — 323.

CANNY, J. F. 1988. The Complexity of Robot Motion Planning. MIT Press, Cambridge,

MA.

CONN, R. A., ELENES, J. and KAM, M. 1997. A Counterexample to the Alexopoulos
- Griffin Path Planning Algorithm. IEEE Transactions on Systems, Man and

Cybernetics, Part B, 27 (4), 721 — 723.
HERSHBERGER, J. and SURI, S. (1999). An Optimal Algorithm for Euclidean
Shortest Paths in the Plane. SIAM Journal on Computing, 28 (6), pp. 2215 —

2256.

HWANG, Y. K. and AHUJA, N. 1992. Gross Motion Planning - A Survey. ACM

Computing Surveys, 24 (3), pp- 219 - 291.

1-16



Chapter 1 Introduction and Overview of the Thesis

JIANG, K, SENEVIRATNE, L. D. and EARLES, S. W. E. 1996. Three — Dimensional
Shortest Path Planning in the Presence of Polyhedral Obstacles. Proceedings
ImechE, Part C: Journal of Mechanical Engineering Science, 210 (4), pp. 373 —

381.

JIANG, K, SENEVIRATNE, L. D. and EARLES, S. W. E. 1999. A Shortest Path Based
Path Planning Algorithm for Nonholonomic Mobile Robots. Journal of

Intelligent and Robotic Systems, 24, pp. 347 - 366.

LATOMBE, J. C. 1991. Robot Motion Planning. Massachusetts: Kluwer Academic

Publishers.

LIU, Y. and ARIMOTO, S. 1992. Path Planning Using a Tangent Graph for Mobile
Robots Among Polygonal and Curved Obstacles. The International Journal of

Robotics Research, 11 (14), pp. 376 - 382.

LOZANO-PEREZ, T. 1983. Robot Programming. Proceeding of the IEEE, 71 (7N, pp-

821 - 841.

LOZANO-PEREZ, T. and WESLEY, M. A. 1979. An Algorithm for Planning

Collision-Free Paths Among polyhedral Obstacles. Communications of the

ACM, 22 (10), pp. 560 - 570.

1-17



Chapter 1 Introduction and Overview of the Thesis

ROHNERT, H. 1986. Shortest Paths in the Plane with Convex Polygonal Obstacles.

Information Processing Letters, 23, pp. 71 - 76.

SCHWARTZ, J. T. and SHARIR, M. 1983. On the "Piano Movers’" Problem. Il.
General Techniques for Computing Topological Properties of Real Algebraic

Manifolds. Advances in Applied Mathematics, 4, pp. 298 — 351.

SCHWARTZ, J. T. and SHARIR, M. 1988. A Survey of Motion Planning and Related

Geometric Algorithms. Artificial Intelligence, 37, pp. 157 - 169.

WAGER, M. L. 2000. Making Roadmaps Using Voronoi Diagrams. [WWW].

http://www.cs.uwa.edu.au/~michaelw/hons/roadmap.html (16 November 2000).

YAP, C. K. 1987. Algorithmic Motion Planning. In: SCHWARTZ, J. T. and YAP, C.
K. Advances in Robotics: Algorithmic and Geometric Aspects of Robotics.

Volume 1. Hillsdale, New Jersey: Lawrence Erlbaum Associates, Publishers, pp.

95 - 143.

1-18



Preliminaries

Now, these are the foundations

II CHRONICLES 3: 3

2.1 Introduction

The intention of this chapter is to present some definitions, algorithmic notions and
mathematical notations that will be used throughout this thesis. This presentation is by
no means an exhaustive review of algorithmic research, computational geometry,
topology or of various aspects of robot motion planning, but it mostly serves as a quick
reference to the basic concepts of the aforementioned subject areas, in order to make the
concept of the thesis more thoroughly understood. Some notions and definitions have

been deliberately omitted from this chapter and are discussed in detail in the following
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chapters. In addition, a list of notational conventions used throughout this thesis is

provided at the beginning of the thesis.

2.2 Algorithmic Research

The concept of algorithms is a very important area of computer science and is used
widely in this thesis. The word algorithm itself is very interesting and over the years
many attempts have been made by linguists to find the derivation of the word. For a
brief historic review see (Knuth, 1997). According to the definition found in the
Webster's dictionary (1995), the name algorithm is given after the Persian

mathematician Mohammed al-Khwarizmi (825 AD) and its definition is as follows:

al-go-rithm / 'al-g&-"ri-[th]&m /: a procedure for solving a mathematical
problem (as of finding the greatest common divisor) in a finite number of
steps that frequently involves repetition of an operation; broadly: a step-by-
step procedure for solving a problem or accomplishing some end especially

by a computer.

A more formal definition of an algorithm is: a well-defined computational procedure,
which is composed of a finite number of unambiguous, logical and mathematical steps,
which take as an input a (set of) value(s) and produce as an output a (set of) value(s), for
solving a given problem (set of problems). In most theoretic computer science
textbooks, algorithms are explicitly presented in a pseudo-programming language (or

pseudo-code). It is supposed that with a small programming effort this pseudo-code can
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be easily transformed into code of a programming language, which is understandable by

a compiler. In this thesis, all algorithms will be presented in this manner (pseudo-code).

In general, algorithmic research or algorithmic analysis is not only concerned with
establishing an algorithm to solve a given problem but also with solving this problem
efficiently in terms of computational effort. This effort can be characterised by means
of computational time (also called running time or computational complexity) and
computational storage (also called space complexity). For a comprehensive

introduction on algorithmic analysis, see (Cormen et al, 1990).

Given an algorithm for solving a problem, its computational efficiency is measured in
terms of the size of the input of the algorithm. This is because the running time of the
algorithm grows with the size of the input. For example, consider the prot;lem of
searching an array of integers to find the position in the array of a particular integer /
(the integer I appears only once in the array). Suppose that the array has n elements.
By using a sequential search to find the position in the array with value /, the algorithm
starts from the first element and searches through the array for / until it finds it. The
number of operations the algorithm should perform depends on (apart from the actual
values to be searched) the number of values forming the input, in this case the size of
the array. However, intuitively there can be different running times of the algorithm
for different inputs. If the element with value 7 appear in the first position in the array,
the algorithm only examines one element. In this case, the running time is very low and
it is said that this is the best case for this algorithm. If I is in the last position in the

array, the algorithm examines n elements in order to find it and it is said that this is the
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worst case for this algorithm. If the sequential search is applied to many arrays of size
n, it is expected on average for the search to go half way through the arrays (providing
that any position in the arrays has equal probability to host /), therefore on average the
algorithm will examine n/2 elements. It is then said that this is the average case for this

algorithm.

In general the best case for an algorithm appears very infrequently and does not fairly
characterise the computational behaviour of an algorithm. However, there are some
cases where the best case performance of an algorithm is of interest. Analysing and
considering the worst case performance of an algorithm is of great interest because it
gives an indication that an algorithm could perform at least that well. This is very
important in critical applications and in real-time applications, where it is important to
be certain about the algorithm's performance for any given input. Often an average case
analysis is a more realistic measurement of an algorithm's performance. For instance,
when an algorithm is running repeatedly on many sets of inputs. Unfortunately, average
case analysis of an algorithm is not always possible because it requires knowledge about
the data distribution of the input. In this thesis all algorithms presented or developed
will be accompanied by a computational complexity analysis for their worst case
performance, which appears to be the most representative and least optimistic

measurement of an algorithm's performance.

2.2.1 Asymptotic Analysis
As mentioned in section 2.2, the time efficiency of an algorithm depends on the size of

the input of the algorithm. Consider the problem of sorting the elements of an array of



Chapter 2 Preliminaries

integers, of size n in ascending order. The running time of the algorithm is defined as
the maximum number of primitive operations required by the algorithm to process the
input, which is in this case of size n. Note that with the term primitive operation it is
meant an operation, whose execution time is constant and does not depend on its
operands. However, it is not very easy especially for complicated algorithms to make
an accurate estimation of the number of primitive operations required by the process.
Consider that for the sorting problem mentioned above, the bubble sort algorithm is
used to solve it. After a careful analysis of the algorithm in Knuth (1998), it is derived
that the running time of the algorithm in the worst case is defined by the function f(n) =
7.5n>+0.5n+1 over the input (the n elements of the array). Note the worst case is when
the initial array appears in descending order. This means that if there are n = 5 elements
to be sorted, the algorithm can sort them using at most 191 primitive operations. If the
number of elements to be sorted increases, it can be noticed that the number of primitive
operations used by the algorithm will be different. For very large inputs, the algorithm's
running time grows by a factor approximately n’, even though the exact number of
primitive operations is different. This happens because for large values of n, the low-
order terms of the formula and the leading term's constant coefficient are relatively
insignificant. For this reason, a simplified analysis is used to estimate the number of
operations used by the algorithm for a given input. This is called asymptotic analysis
and refers to the analysis of an algorithm, as the input size gets sufficiently large. To be
more precise asymptotic analysis is concerned mostly with the growth rate of the

number of primitive operations used by the algorithm as the input size gets sufficiently

large.
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Definition 2.1 (asymptotic upper bound)
If T(n) > 0 represents the true running time of an algorithm, it is said that T(n) is in

O(f(n)), if and only if there exist two positive constants ¢ and ny such that T(n) < ¢ f(n),

for all n > n,.

For the worst case of the bubble sort, even though the exact running time is T(n) =
7.50°+0.5n+1, the term n’ will dominate the growth as n increases. Therefore it could
be said that the algorithm is in (or runs in) O(n?) time. Note that the upper bound is not
the same as the worst case for a given input of size n. It is rather the upper bound for
the growth rate of the primitive operations used by an algorithm as the input changes.
Thus, it makes sense to define the upper bound of the best case (or the average case or
the worst case). Since the bubble sort is in O(n®) in the worst case, it is true to say that
bubble sort is also in O(n’). For this reason, it is of interest to define, the lowest
possible upper bound (tight upper bound). Some textbooks provide a definition of the
asymptotic upper bound using equality with the big-Oh notation. It seems more precise
to say that T(n) is in O(f(n)) rather than T(n) = O(f(n)), because there is not a strict
equality between T(n) and O(f(n)). For instance, O(n) is in O(n’), but O(n’ ) is not in

O(n).

Just as an algorithm has an upper bound for a class of input, it also has a lower bound.
This bound again bounds the growth rate of the algorithm from below, and is defined as
the minimum number of the primitive operations required by the algorithm to process a

class of input.
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Definition 2.2 (asymptotic lower bound)
If T(n) > O represents the true running time of an algorithm, it is said that T(n) is in
Q(f(n)), if and only if there exist two positive constants ¢ and ng such that T(n) > ¢ f(n),

for all n > n,.

It is important to specify for which particular class of input the asymptotic analysis is
carried out. For instance, for the Insertion sort (Knuth, 1998) the asymptotic tight lower
bound is Q(n) in the best case for the algorithm and Q(n®) in the worst case for the
algorithm. Sometimes the time efficiency of an algorithm is lower bounded by the
complexity of the input itself. For example, it is not possible to sort the n elements of
an array if all of them are not examined at least once. The input itself can provide some
indication for the asymptotic lower bound of an algorithm and it can be said that a

sorting algorithm is at least in Q(n).

When an algorithm for solving a particular problem attains its lower bound it is said to
be optimal, since there is no other algorithm that solves this problem by performing
better asymptotically. If the lower bound and the upper bound of an algorithm are,

Q(f(n)) and O(f(n)) respectively, it is then said that the algorithm has a tight bound of

O(f(n)).

Definition 2.3 (asymptotic tight bound)

If T(n) > 0 represents the true running time of an algorithm, it is said that T(n) =

@(f(n)), if and only if, T(n) is in O(f(n)) and T(n) is in Q(f(n)).
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Often there is a gap between the lowest upper bound of an algorithm and its highest
lower bound (provided by the worst case construction). This means that there is either
Worse worst case construction to be set or there is still room for improvement on the

upper bound of the algorithm.

2.2.2 Time and Space

As mentioned in section 2.2, another computing resource besides time that is of concern
is the space. The amount of disk space or memory space that is available in a system is
a very important consideration in the design of an algorithm. The computational
complexity of an algorithm is a measurement of the time that the algorithm itself
requires to solve a problem for a given set of data inputs. Space complexity is rather a
measurement, which is determined for the data itself. For example, the space
requirement for the array of integers mentioned in section 2.2.1 in the example of
sequential search is kn bytes providing that each integer requires k bytes for its storage
in the array. Thus, this data structure is @(n). There are cases where the running time
of an algorithm for solving a particular problem can be reduced by sacrificing the space

requirements. This is known as the space/time trade-off principle.

2.2.3 Hardness of the Problems

In the computer theoretician community a problem is characterised as "hard" when the
best existing algorithm that solves the problem has a very expensive running time. Such
problems could be those with exponential running time. A typical example of such a
problem is the TOWERS OF HANOI (sometimes referred to as the tower of Brahma or

the end of the world puzzle) described in Harel (1993). In the problem there are three
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algorithms is very important when considering the solution of a problem for large
problem instances. Edmonds (1965), in a philosophical digression on the meaning of
"efficient algorithm", characterised the polynomial algorithms for solving a problem,
"good algorithms" and he pointed out a problem (Graph Isomorphism), which cannot be
solved by such "good algorithms". A problem that can be solved by an algorithm of
polynomial time, it is referred to as tractable. If a problem is so hard that there is no
polynomial time algorithm to solve it, it is then referred to as intractable (Garey and
Johnson, 1999). Note that not only problems, which require exponential time to be
solved, are intractable but also problems for which the solution itself is so extensive that
it cannot be bounded by a polynomial function of the input. Allan Turing, (Turing,
1936) presented the first results on undecidability. He showed that problems exist,
which no algorithm can solve, hence they are called undecidable. Such a problem is the
HALTING PROBLEM, the solution to this problem requires an algorithm for deciding
whether a given program will ultimately halt for a given input. It is plausible to assume

that since problems exist, which no algorithm can solve, these problems are intractable.

A successful approach to deal with the intractable decidable problems came from the
non-deterministic Turing machine. The non-deterministic Turing machine can be
imagined as a computer, which has the ability to "guess" the correct solution for a
problem from among all its possible solutions. An alternative way to regard a non-
deterministic machine is as a super parallel computer, every terminal of which runs the

same program (simultaneously) but each gets a different choice (guess)’.

2 Note that this is not real parallel computing, which allows the computers to run different programs and
interact with each other.
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If for a given problem, a solution can be "guessed" and this solution can then be
checked whether it is correct or not in polynomial time, then this problem can be solved
in polynomial time in a non-deterministic machine, even if the number of possible
solutions is exponential. 1t is then said that this problem is in NP (Non-deterministic
Polynomial) and algorithms that work in this manner are called non-deterministic. This
means that a problem in NP can be solved in polynomial time using an infinite number
of computers to corroborate in parallel all possible solutions to the problem. Note that
not all the problems, which require exponential time in an ordinary computer, are in NP.
For instance, the TOWERS OF HANOI problem is not in NP because it is not possible
for a non-deterministic machine to "guess" and print out the correct answer in
polynomial time. The ability of a non-deterministic machine is limited to "guessing" if
a given choice among the set of all solutions is correct. Therefore, only those problems,
to which a guessed solution can be checked for its correctness in polynomial time, can

be solved in polynomial time by a non-deterministic machine.

If a problem is in NP and all other NP problems can be reduced to it in polynomial time,
it 1s then said that this problem is NP-complete. There are many problems known to be
NP-complete. For a comprehensive list see in Garey and Johnson (1999). What is
really interesting about the NP-complete class is that, if someone ever finds a
polynomial time algorithm in an ordinary computer to solve any of the problems in this
class, then all the NP problems could be solved in polynomial time using an ordinary
computer, by a series of reductions. One of the most important questions with no

answer in computer science is whether P = NP. Figure 2.2, illustrates a view of the
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interrelation of the problems, which their solution requires at most exponential time

algorithms.

Problems with Exponential Time

NP Problems

NP-Complete Problems
P Problems

Figure 2.2  Relation between the problems, whose solution requires

exponential time algorithms.

If there is a NP problem, say X, and it can be reduced in polynomial time to a problem
Y, then problem Y is said to be NP-hard. Alternatively, a problem is NP-hard, if it is at
least as hard as any NP problem. The NP-hardness of a problem is determined by a
series of transformations of the problem to one of the known NP-hard problems. If
there is an NP problem, say X, such that Y is in polynomial time reducible to it, then Y
is NP-easy. For a more detailed discussion on NP-completeness, see (Papadimitriou

and Steiglitz, 1982), (Van Leeuwen, 1990) and (Garey and Johnson, 1999).

Another class of problem's hardness is the PSPACE. A problem is said to be in
PSPACE if it can be solved by an algorithm of polynomial space complexity on a non-
deterministic machine (hence on a deterministic machine). Similar definitions to NP-

completeness and NP-hardness, apply to PSPACE-completeness and PSPACE-hardness
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respectively. If there is a PSPACE problem say X, and it is polynomially reducible to a
problem Y, then problem Y is said to be PSPACE-hard. 1f a problem is in PSPACE and
is PSPACE-hard, it is then said that this problem is PSPACE-complete. The ability to
subsume a problem in one of the above classes provides hard evidence for the lower

bound of the computational complexity of the problem.

23 Computational Geometry and Topology

Computational geometry is the branch of computer science, which studies algorithms
for the solution of geometric problems, (Mulmuley, 1994), (de Berg et al, 1997), (O'
Rourke, 1998) and (Boissonnat and Yvinec, 1998). The input to a typical
computational geometric problem is the description of a (or a set of) geometric
object(s), such as points, line-segments, polytopes and so forth. The output is often the
construction of a geometric structure such as the convex hull of a set of points, or it
could be the response to a query about the input, such as whether the boundaries of two

polygons intersect.

Many techniques for solving the robot motion planning problem use a geometric
representation of the robot's environment. Such a geometric representation is called a
geometric map and is made up of discrete geometric primitives such as points, lines,
polygons, polyhedra and so forth. Note that the robot’s space cannot only be
geometrically represented. Another way to represent the space is by discretely sampling
the space itself using a grid or another spatial decomposition tool and expresses the

degree of occupancy of the sample points (cells of the grid). The robot’s space can also
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be topologically represented. The topological representations rely explicitly on the
connectivity between regions or objects and in contrast with the geometric

representation involve absence of metric data.

In this section, some definitions and notational conventions from computational

geometry and topology are presented.

The set of the real numbers is denoted by R. This set can be represented by the real
number line. For points p and g respectively on the real line, with p < q, the closed
interval, which includes p and q is denoted by [p, q] and the opern interval, which does
not include them is denoted by (p, q), (in some textbooks this can be found as, ]p, q|).
A d-dimensional space of reals is defined by RY. Imposing the Euclidean metric on the
real space RY creates a Euclidean space E°. This metric is the standard distance
function. For two points p and q in the Euclidean plane E? with co-ordinates (xp, Yp)
and (x4, yq) respectively the standard Euclidean distance between p and q is obtained by

equation (2.1).

d(p.q)=|p-q|=J&, ~x,) +(,-»,) @.1)

In the same manner, a subset S of RY, is closed if it includes its boundary 0S and open
if it does not. The interior of a set S, int(S), is the set S without its boundary 8S. The

complement S, of a set S, consists of all points in the space which are not in S. The

closure, cl(S), of a set S contains both its interior and its boundary and is

cl(S) =int(S) U 8S. A setS is called compact if it is both closed and bounded. A setis
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said to be connected if any two points p, qe8S, can be connected with a curve, and this

curve is contained in S, otherwise it is called disconnected.

2.3.1 Higher-Dimensional Spaces

Points on the plane and in the three-dimensional space can be specified by means of
Cartesian co-ordinates. Many notions and properties of two- and three - dimensional
geometry can be generalised to spaces of n-dimensions with n>3. For instance if the
points p and q have (py, pa, ..., pa) and (qy, qa, ..., qn) co-ordinates respectively in the n-

dimensional space, the distance between p and q is obtained by equation (2.2).

d(p.a)=|p-d|=a-p) +(@,—p,) ++(a,-p,) (2.2)

Hyperplane 1s a generalisation of a line in the n-dimensional space. Therefore, the set
of points whose co-ordinates satisfy the linear equation (2.3) is called a hyperplane and
divides the n-dimensional space into two half-spaces, as the plane divides the three-

dimensional space in two half spaces.

axitaxyt... taxp=b (2.3)

A hypersurface is a (n-1)-dimensional set that generalises a curve. If a hypersurface can

be described by a polynomial of bounded degree, it is said that the hypersurface has a

bounded algebraic degree.
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Robot 1 is a simple’ polygonal rigid body, which can translate freely in the x-y plane,
resulting in two dof and rotate about its reference point r, adding another degree of
freedom. The total number of the dof of Robot 1, is three and its configuration space is
R? x [0, 2m). Robot 2, is an articulated arm, which moves in a two-dimensional
workspace (hence, sometimes is called planar arm). It has three links L;, L, and L.
The first link is mounted on the ground and the other two links are connected to each
other with two revoluted joints. A placement of Robot 2, can be uniquely defined by
the angle of the two joints. Therefore, Robot 2 has two degrees of freedom. Suppose
that the links do not collide with each other at any placement of the arm, then any
placement of the arm can be defined by any pair of joints' angles (note that any pair of

angles belong to the [0, 27)%). The configuration space of Robot 2 is SO(2). SO(n) is

the Special Orthogonal Group of the nxn matrices in R™ , with orthonormal columns

and determinant equal to +1.

The idea of reducing the dimension of the robot into a point in an artificial space was
first introduced by Udupa (1977). Later, Lozano-Pérez and Wesley (1979), used this
idea and represented a robot as a point (point-robot) in the configuration space and they
mapped the environment's obstacles into that space. When the obstacles were mapped
in the configuration space, they then planned the motion of the point-robot into this
space. This algorithm finds collision-free motions of polygonal/polyhedral robots
among polygonal/polyhedral obstacles. Using the configuration space approach they
reduced the problem of finding a path between two points for a dimensioned robot

among dimensioned obstacles to that of finding a path between two points for a point-

3 A polygon is said to be simple when its edges intersect only at their end points.
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robot among dimensioned obstacles. Lozano-Pérez and Wesley's algorithm is
considered as the first exact robot motion planning algorithm. Since then the idea of

planning robot motions in a configuration space has been used widely.

2.4.1 Configuration Space of a Robot

Consider the workspace W = R", with n = 2 or 3, populated by dimensioned physical
obstacles P;, where ieN and the rigid robot R in a specified position in W with a certain
orientation. Further consider that Fy a Cartesian co-ordinate (global) frame attached to
W with origin Ow and F a Cartesian co-ordinate (local) frame attached to R with origin
Or respectively (Fy, is fixed while Fr is moving). A configuration q of R is the
specification of the position and orientation of Fr with respect to Fy. All the
configurations of R constitute the Configuration Space C (or Cspace) of R. When R is

not a rigid body, for instance when it is an articulated manipulator, then for every body

R;, ieN of R, a Cartesian co-ordinate frame F,, is attached to it with origin O, = A

configuration g; of R is the specification of the position and orientation of every F,,
with respect to Fy. All the configurations q; of R constitute the Configuration Space C
of R. The configuration space of a robot can be a multiple connected space, this means
that there could be more than one path connecting two configurations in it. In robot
motion planning, a function often is defined in order to refine the paths in the
configuration space and choose one of them, depending on what sort of path (i.e.
shortest path, time-minimal path or so on) is required. In Latombe (1991), the notion of

configuration space is discussed in greater detail.
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2.4.2 Mapping the Obstacles in the Configuration Space
If R(q) denotes the subset of W occupied by R at configuration q then P; ie [1,..,p] maps

from W in C to an area CP;, which is called Obstacle’s Configuration Space or C-

Obstacle. More formally:
CPi={qeC|R(qQ)NPi=} 2.4)
This area represents the configurations, which are illegal for the robot to attempt,

because it will collide with the obstacle P;. The union of all obstacles’ configuration

spaces CP; is called C-Obstacle region and is formally defined as:
p
HCPi (2.5)

This region represents all the inaccessible configurations for the robot to attempt,
because in these configurations the robot will collide with some obstacles. In section

2.4.4, a method for computing the configuration space of the obstacles is presented.
2.4.3 Path in the Configuration Space
A path for a robot R between the configurations Gsar (robot’s start configuration) and

Qgoal (tobot’s goal configuration) in C can be defined as a continuous map:

1 : 0, 1] = C, where 1(0) = starr, T(1) = qgoul (2.6)
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It is important to note that the topology of C is not always the same as that of W. In the
Euclidean workspace W, if two paths connect the same two points, one can be

continuously deformed to the other one. However, this is not the case in C. If C is the

configuration space and LPJCPi is the union of all C-Obstacles, then the collision free

i=1

space Cge is defined as:

Cieo = C\Qcpi ={qe C|R(Q) Qcpi -5} 2.7)

Any configuration on Cge is called free configuration, Ce. space is an open set of all
free configurations of R. Any path on Cge. is called free path and it is guaranteed that
while a robot is moving along it, it does not intersect or come in contact with any
obstacle. A path between two configurations is a called semi-free path when it is a

continuous map:
7= [0, 1] > cl(Cgee) , where 1(0) = qstart, T(1) = (goal 2.8)
While the robot is moving on a semi-free path, it touches the boundaries of the obstacles

without intersecting their interior. Motions in contact are also called compliant motions

and sometimes result in more robust algorithms, (Avnaim et al/, 1988).

2.4.4 Computing the Obstacles' Configuration Space

There are several methods for computing the C-Obstacles, seven of them are listed in
(Hwang and Ahuja, 1992). These are, point evaluation, Minkowski sums, boundary

equation, needle, sweep volume, template and Jacobian-based method. Kavraki (1995),
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presented an alternative way for computing the C-Obstacles using Fast Fourier
Transform. All these methods can be used for any type of robot and they all work very
well in configuration spaces of low dimensions, but as the number of degrees of
freedom of the robot increases the configuration space grows exponentially and thus the
computation of the C-Obstacles is an extremely difficult task. However note that there
are some advantages and disadvantages to each method when used in different
environments. For example the Minkowski sums is very straightforward when it is used
for the construction of the C-Obstacles when the robot and the obstacles are two-
dimensional polytopes (especially for non-rotating robots) and therefore this method is
most popular with AGVs. This thesis is mostly concerned with the development of
motion planning algorithms for AGVs, therefore in this chapter, the Minkowski sums

method will be discussed.

The process of computing the configuration space of the obstacles is called growing
obstacles. This is because the size of the obstacles is enlarged with respect to the size
of the robot and the size of the robot is reduced to a point (point-robot). As long as the
point-robot (reference point) is outside of the boundaries of the grown obstacles (C-
Obstacles) the robot lies in a collision-free space. Figure 2.4 illustrates the principle for
calculating the C-Obstacles when the workspace W = R Suppose that R is a
polygonal robot, which translates freely without rotation and the origin of the frame Fg
is an arbitrarily chosen reference point on the robot. If P is a polygonal obstacle then

CP is the grown obstacle or Obstacle’s Configuration Space (shaded area) and the robot

can now be considered as a point.
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robot is moving (by touching) at fixed orientation along each side of every obstacle in
the environment. More formally, given that the robot R and the obstacle P are sets in
R, CP=P® (-R(0, 0)), where is R(0, 0) is the reference point of the robot, the proof
can be found in (Lozano-Peréz and Wesley, 1983). If P and R are both convex
polygons on the plane the resulting Minkowski sum of their vertices is a convex
polygon. If P and R are two-dimensional n-gon and m-gon respectively then the
Minkowski sum P @ R can be computed in O(n + m) computational time when both P
and R are convex, in O(nm) when one of them is convex and the other non-convex and
in O(n’m?) when both of them are non-convex, (de Berg et al, 1997). Laumont, (1987)
extended the algorithm for computing the obstacles' configuration space, to be
applicable to generalised polygons®, without loss of the algorithmic complexity. In
Appendix A, an algorithm for computing the obstacles' configuration space for a non-
rotating convex robot and a convex obstacle is presented. 1n addition, an extension to
this algorithm for non-convex robot/obstacle is discussed along with an analysis of their

computational time.

2.5 Discussion

Robot motion planning is a well studied area of robotics, which combines principles
from many disciplines such as Algorithmic Research, Computational Geometry,
Topology, Mathematics and so on. The aim of this chapter was to summarise some

important aspects from these disciplines and to bring up some issues used in the thesis

Y Generalised polygons are two-dimensional polytopes, whose boundaries consist of straight line-
segments and/or circular arcs.
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in order to make the study of the thesis at hand more efficient and its concept more
thoroughly understood. This chapter is by no means a complete reference but just a

representative source of information of the aforementioned aspects.
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Robot Motion Planning
- Literature Survey

I have declared the former things from the beginning
ISAIAH 48: 3

3.1 Introduction

As was mentioned in the introduction to the thesis (chapter one), motion planning is
considered a central field in the development of robotic systems and it has attracted a
great deal of research activity for the past two decades. The motivation behind the
research efforts arises from the increasing demand for robotic systems and especially
for AGVs from industry. One of the most essential tasks that a mobile robot should

undertake in order to be autonomous is to plan its own motions. Therefore, the solution
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to the motion planning problem plays an important role in the development of
autonomously guided vehicles and robotic systems in general. Various motion planning
techniques for solving the basic movers’ problem and various extensions of it have been
developed over the years, each of them posing its own advantages and disadvantages in

different application domains.

In this chapter several important contributions are presented, these contributions are
summarised in three main approaches.  The roadmap approaches, the cell
decomposition approaches and the potential field approach, (Latombe, 1991). Note
that these approaches are not mutually exclusive and sometimes a combination is used

to solve a particular motion planning problem more effectively.

It is impossible to refer to all the contributions from the last two decades and this is not
within the scope of this chapter. Therefore, this chapter does not serve as an exhaustive
survey but only gives an indication of the development of motion planning techniques
over the past two decades. Further surveys of motion planning can be found in (Akman,
1987), (Yap, 1987), (Schwartz and Sharir, 1988), (Latombe, 1991), (Hwang and Ahuja,
1992a), (Sharir, 1995), (Latombe, 1999) and (Wager, 2000). Note that chapters six and
seven are concerned with the dynamic motion planning problem. Brief surveys of
approaches used for solving the dynamic motion problem are provided at the beginning

of each of these two chapters.
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3.2 Roadmap Approaches

The fundamental idea behind the roadmap approaches is to construct a network of one-
dimensional curves lying in the robot's collision-free space, Cgec, Or its closure, cl(Cfree),
in order to capture its connectivity. This network is called a roadmap and once it is
constructed then the robot's start configuration, gsr, and its goal configuration, Qgoal, ar€
connected to it, each of them with one-dimensional curve(s), which also lie in Cge or
cl(Cree). Once the roadmap, R, is constructed and the qsiae and qgoa are connected to it,
the path planning problem has been reduced to a graph search problem. Thereby, what
is required to solve the path planning problem is to search the one-dimensional network
for a path from the robot's start configuration to its goal configuration. The essential
matter of the roadmap approaches is the construction of the roadmap itself. There are
various types of roadmaps based on different principles. These roadmaps are the
visibility graph, the Voronoi diagram, the freeway nets', the silhouettes and the

probabilistic roadmap. Each of them will be briefly discussed in the following sections.

3.2.1 Visibility Graph

The visibility graph approach is considered as one of the earliest robot path planning
methods. It was first used by Nilsson (1969), to plan the motion of a mobile robot
system (the Shakey). A model of the workspace was used and the actions of the robot
were stated in a language of first-order predicate calculus. Lozano-Pérez and Wesley
(1979), further developed the idea of visibility graph and reported an algorithm for path

planning of a polygonal/polyhedral robot in a two/three-dimensional environment.

In some literature this method is subsumed in the cell decomposition approaches, here the taxonomy
from (Latombe, 1991) is adopted and the method is subsumed in the roadmap approaches.
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The visibility graph approach is mainly used in two-dimensional environments
populated by polygonal obstacles. The visibility graph is an undirected graph
constructed by considering all the vertices of the C-Obstacles, the robot's start
configuration and its goal configuration. Edges of this graph are the line-segments,
which connect all the mutually visible vertices (hence visibility graph). Two vertices
are mutually visible when they can be connected with a straight line-segment and this
segment does not overlap the interior of any C-Obstacle. More formally the undirected

graph VG(V, E) is defined as follows:

V is the set of all C-Obstacles vertices as well as the qsiare and qgoal-

E is the set of all edges e;; = (vi, vj) such that,

VijeV A Vke[l, .., p] | e int(CPy) = <.
i#]

Figure 3.1 illustrates the concept of visibility graph in an environment populated by

polygonal obstacles.

Figure 3.1 Visibility graph with polygonal obstacles.
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After the visibility graph has been constructed then a standard shortest path algorithm

for weighted graphs can be applied to establish the shortest Euclidean semi-free path.

The algorithm presented in (Lozano-Pérez and Wesley, 1979) is called VGRAPH and it
was not accompanied by an upper bound, but it is suspected that is in O(n’), where n is
the total number of the C-Obstacles' vertices, (Canny, 1988). Once the visibility graph
was constructed they used heuristics to search it for the shortest path. In particular the
A* algorithm due to Hart ef al (1968) was used, which requires O(n®) time, where n is
the total number of the graph’s vertices. Therefore, the bottleneck of their approach is

the construction of the visibility graph.

An algorithm for constructing the visibility graph in time O(n* log n), where n is the
total number of the obstacles’ vertices in the scene, was proposed by Lee (1978). This
algorithm can lead to an overall computational complexity of the VGRAPH approach to
O(n® log n ) where n is the total number of the obstacles' vertices. (Welzl, 1985),
(Asano et al, 1985) and (Edelsbrunner, 1987) proposed algorithms for constructing the
visibility graph in time O(n?), where n is the total number of the obstacles’ vertices.
Ghosh and Mount (1987), proposed an output-sensitive algorithm for constructing the
visibility graph in O(k + n log n) time, where k is the number of edges of the visibility

graph and n is the total number of the obstacles’ vertices.

Establishing the shortest path is fundamental in robot motion planning and is one of the
most important issues. The visibility graph method is a very effective method when

applied to translational motions in the plane and in general establishes optimal paths
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(using Euclidean metric). However, some drawbacks occur when using this method.

These drawbacks are:

Since the path established by this method lies in the cl(Cjee), the robot in general
will touch the environment's obstacles, while it is moving along the path. Therefore,
this method does not give rise to safe paths. However, this drawback can appear in
many path planning approaches especially to these, which plan the robot’s paths in
the cl(Cgee) space. Note that any semi-free path can be transformed into a free path,

which can be made arbitrarily close to the semi-free path.

The path obtained using this method is a set of straight line-segments, which give
rise to curvature discontinuities. This means that while the robot is moving along
this path it might have to slow down completely in order to undertake some turns,
which is not time efficient. However, this problem arises in many path planning
approaches and one way to tackle it is to smooth out the path once it is found. The

smoothing out procedure is at the expense of computational time.

The optimality of the visibility graph method is not as effective when it is applied in
configuration spaces with more than two dimensions. For example, in a three-
dimensional configuration space populated by polyhedral obstacles, the shortest

path does not in general go through the obstacles' vertices.

Canny (1988) showed that the problem of finding the shortest path in a three-

dimensional configuration space, which contains polyhedral obstacles, is NP-hard.
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Lozano-Pérez and Wesley (1979) attacked this problem by adding fake vertices in the
C-Obstacles' edges so no resulting edge was greater than a predefined length. This
method results in a good approximation of the shortest path but it makes the search of
the graph more time consuming due to the increased number of vertices. Papadimitriou
(1985), proposed a polynomial approximation scheme for solving this problem by
breaking the original C-Obstacles' edges in the scene into short segments, he then
constructed a visibility graph using these segments as nodes of the graph. The path
obtained by the algorithm is at most (1 + €) times longer that the shortest path. The
computational time of the algorithm is polynomial in n and &, where n is the total
number of the elements of the polyhedral scene (vertices, edges and faces) and ¢ is the
desired accuracy of the approximation algorithm. Jiang et al (1996), proposed an
algorithm for finding the shortest path between two query points in a three-dimensional
environment populated by convex polyhedral in time O(n’® V"), where n is the total
number of the obstacles’ vertices, v is the maximum number of vertices on any one
obstacle and k is the number of obstacles. Their approach is based on the concept of the
visibility graph. A set of visible boundary edges (VBE) from a given view point are
identified using a technique based on projective relationships. The algorithm starts
from the robot’s initial point as a view point and recursively constructs an initial
reduced visibility graph through points on the VBEs at every recursive call, until the
goal point is reached. An optimisation technique is used to revise the turning points of
each path on the VBEs and the global shortest path is then selected from the three-

dimensional reduced visibility graph.
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Laumond (1987), extended the visibility graph to be applicable in environments

populated by generalized polygons using the properties of the Minkowski operators.

The visibility graph technique was further extended by, Rohnert (1986), Rohnert
(1988), Liu and Arimoto (1991), Liu and Arimoto (1992) and Liu and Arimoto (1995)
to the Tangent Graph (T-graph) (or reduced visibility graph). The tangent graph is a
graph whose vertices are the C-Obstacles' vertices as well as the robot's start and goal
points. The edges of this graph are the C-Obstacles’ edges as well as the edges
connecting all the mutually visible vertices and define common tangents to the C-
Obstacles. Figure 3.2 illustrates the tangent graph, where it can be noticed that the
number of edges of the tangent graph is considerably reduced from its corresponding
visibility graph shown in Figure 3.1. In (Liu and Arimoto, 1992), it was shown that the
T-graph contains the shortest semi-free path between two points. Therefore, since the
T-graph has fewer edges than the visibility graph, the search for the shortest path is less

time consuming.

Figure 3.2 Edges of the Tangent Graph are only the cotangents of any pair

of the scene's C-Obstacles.
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Alexopoulos and Griffin (1992), proposed an algorithm named V*GRAPH for solving
the basic movers’ problem, in O(#* log ), where 7 is the total number of C-Obstacles’
vertices. The algorithm constructs a reduced visibility graph in a different manner to
this of the tangent graph and produces the shortest semi-free path between the AGV’s
start and goal locations. However, Conn er al (1997), constructed a counterexample,
showing that the V¥*GRAPH algorithm is neither complete nor optimal in a sense that
finds the shortest semi-free path between two query points as it was claimed by the
authors. In chapter four the T-graph approaches will be discussed in more detail and the

V*GRAPH algorithm will be studied in order to identify its deficiencies.

3.2.2 Generalised Voronoi Diagram

This approach is also called the retraction approach, because the Voronoi diagram is a
mapping of the Cree (= R?) space into one-dimensional curves, which also lie in the
Ciee. The mapping has to be continuous and preserve the original space's connectivity.
Such a function in topology, which maps an n-dimensional space R", onto an n-1-
dimensional space R™' is called a retraction function (Preparata and Shamos, 1985),
hence the name of the approach. For a detailed survey on Voronoi diagrams, see
(Aurenhammer, 1991). A good textbook on the concept and applications of the Voronoi
diagram is (Okabe et al, 2000). A review of the basic properties of the Voronoi
diagram, along with some efficient techniques for its construction can be found in
(Leven and Sharir, 1987). Some very brief but very interesting historical remarks about

the Voronoi Diagram can be found in (de Berg et al, 1997).
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The Voronoi diagram (also known as Dirichlet tessellation or Thiessen tessellation)” of
a finite set of points (sites) S in the plane consists of a finite set of points (or Voronoi
vertices) and a finite set of edges (or Voronoi edges) that partition the plane into
(possibly unbounded) convex regions, which are called Voronoi cells. Each of these
cells contains only one site and any point inside this cell is closer the site enclosed by
this cell than to any other site, under a predefined metric (usually L,). Figure 3.3

illustrates the concept of Voronoi diagram v(S) of a set of sites S in E*.

Figure 3.3 Voronoi diagram for eight sites in the plane.

Every edge of the Voronoi diagram is the locus of the points, which are equidistant
from at most two sites (bisector) and every vertex of the Voronoi Diagram is equidistant

from at least three sites. It is not hard to show using the Euler's formula (which states

The name Voronoi Diagram, Dirichlet tessellation or Thiessen tessellation, has been given to this
Geometric structure in honour to the two Mathematicians and one Climatologist respectively for their
great contributions regarding this Geometrical construct, (Aurenhammer, 1991).

3-10
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that for any connected planar embedded graph with v vertices, e edges and f faces the
following holds: v-e+f =2) that the Voronoi diagram has O(n) edges and O(n) vertices.
The lower bound for computing the Voronoi diagram Q(n log n) time, (de Berg et al,
1997). Fortune (1986) proposed an algorithm for constructing the Voronoi Diagram in
O(n log n) time and O(n) space, hence his algorithm is optimal. The Voronoi diagram

as a geometric data structure was first proposed for solving the robot path planning

problem by Rowat (1979).

A generalised Voronoi diagram (GVD) of set of points, line-segments, circles and
polygons in the plane, was explored by Drysdale (1979). A GVD of a set of points and
line-segments in the plane, in general partitions the plane into a complex of non-convex
cells, (Lee and Drysdale, 1981). The edges of the GVD are straight line-segments and

parabolic-segments.

In robot path planning the GVD is used to construct a roadmap in the robot's Cpree.
When the Cgee = FRZ, the result GVD(Cpyee) is a roadmap, which is composed of straight
line-segments and parabolic-segments, when sites are the edges and the vertices of the
scene's polygons. Figure 3.4 illustrates the GVD of a two-dimensional bounded

configuration space populated by polygonal C-Obstacles.
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Figure 3.4 The Generalised Voronoi Diagram for a set of convex obstacles

in the plane bounded by an external polygonal obstacle.

The straight line-segments in the GVD are sets of points, which are equidistant from
two edges or two vertices of the environment's object features and the parabolic-
segments are sets of points, which are equidistant from one edge and one vertex of the
environment's object features, whose locus and directrix are the vertex and the edge
respectively. Note that a GVD of n points and line-segments, has O(n) vertices and

O(n) edges (Kirkpatrick, 1979).

As with the visibility graph, the construction of the GVD is a very important issue in the
retraction approach for robot path planning and can determine the overall computational
time of the approach. Lee and Drysdale (1981) presented an O(n log” n) algorithm for
constructing the GVD for a set of n points and line-segments in the plane. Kirkpatrick
(1979), proposed an O (n log n) algorithm for constructing the Voronot diagram of an

arbitrary collection of n disjoint points and open line-segments.
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(goal' @and a straight line path from qgeou' t0 ggoa. The search process requires O(n) time,

leading to an O(n log n ) time for the overall approach.

The Voronoi diagram has been used widely for robot path planning, (O'Dunlaing and
Yap, 1985), (O'Dunlaing er al, 1986), (O'Dunlaing et al, 1987), (Takahashi and
Schilling, 1989). Canny and Donald (1988), proposed a simplified Voronoi Diagram
for the motion planning problem, which is composed only of straight line-segments and

is easier to extend to higher dimensions.

The advantage of the generalised Voronoi diagram approach is that it establishes safe
paths, because when the robot is moving along these paths it stays as far away as
possible from the environment's obstacles. However, a major disadvantage of this
approach is that in general it does not return optimal paths. As with the visibility graph
the disadvantage of this method is that the construction of the Voronoi diagram in

higher dimensions is not very obvious and requires considerable computational time.

3.2.3 Freeway Method

The freeway method was developed by Brooks (1983), the idea is similar to that of the
Voronoi diagram, that is to keep the robot as far away as possible from the obstacles. It
is supposed that the robot is a convex polygon and that the obstacles are represented as
unions of convex polygons. This approach does not require the robot’s configuration
space to be calculated instead it uses the robot workspace W. The freeway method, in
general, extracts geometric features called freeways from the workspace, connecting

them using a one-dimensional network called freeway net. After the robot’s start and
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A two dimensional straight linear generalised cylinder was defined in (Latombe, 1991)

as follows:

‘A two-dimensional straight linear generalised cylinder is a region of /4
obtained by sweeping a straight line-segment, the cross-section, along a
straight line the spine. An origin and an orientation are defined on the
spine. The cross-section stays perpendicular to the spine. It is partitioned
by the spine into two segments, the right and left cross-sections. The lengths
of the right and left cross-sections are independent, continuous, piecewise
linear functions of the abscissa along the spine. The two lines drawn by the
extremities of the cross-section are called the right and the left sides of the
cylinder.'

In this approach the robots obstacle-free sub-space E of the workspace W,
(E=W\UP., where P; are the environment's obstacles) is represented as overlapping

generalised cones (freeways). For the construction of the freeways all pairs of
obstacles' edges are considered. With every obstacle's edge, a supporting line can be
associated which includes this edge and separates the plane into two half-planes. One
of these half-planes contains the obstacle and is called the inner half-plane of the edge
and the other, which does not contain the obstacle, is called the outer half-plane. A pair
of edges Ei, E; produce a generalised cylinder if the following two conditions are

satisfied:

1. At least one vertex of each edge is on the outer half-plane of the other.

2. The inner product of the outward pointing normals of E; and E; is negative.

These conditions simply ensure that the edges E;, E, "face” each other. The
construction of a generalised cone up to this point requires O(nz) time, where n is the

total number of the obstacles' edges in the scene.
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Next, an undirected graph G is generated, which is called freeway net. Nodes of this
graph are all the points that the spines of two freeways intersect and are contained in
both freeways. As there are at most O(n’) cones, their pair-wise intersection has an
upper bound of O(n*).  If the start and the goal points are on the spine of the freeways,
then they are added as nodes in the graph and their intervals are associated with these
nodes in the graph. If the robot's start and goal positions do not lie on spines of
freeways then the robot has to move from its start position to a spine and from a spine to

its goal position.

In order a link to be created in the graph, the link must meet one of the two following

conditions:

1. If two nodes are on the spine of the same freeway and the intersection of the
robot’s free-orientations interval associated with these nodes is a non-empty set,

then there is a link between these two nodes in the freeway net.

2. If two nodes represent the same point in the x-y plane but for two different
freeways and the intersection of the robot’s frec-orientations interval associated
with these nodes is a non-empty set, then there is a link between these two nodes

in the freeway net.
The first link condition corresponds to legal intra-freeway motions of the robot, while

the second one corresponds to legal inter-freeway motions of the robot. The

constructed freeway net is searched for a path between that initial and the goal nodes.
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The freeway method is suitable for two-dimensional environments where the robot
translates and rotates. This method works quite fast when it is applied to relatively
uncluttered environments, but its main drawback is that it is not complete, which means
that it sometimes fails to find a path for the robot even if one exists. The
incompleteness of the method is due to the fact that it rests on some intuitive
assumptions, such as the spine of the freeways to be the bisector of the angle that the
two supporting lines of the obstacles’ edges create or the fact that the robot travels on

the spines.

3.2.4 Silhouette Method

The silhouette method (or roadmap algorithm) was proposed by Canny (1988) and is the
only complete general approach for robot path planning, which runs in a single
exponential time in the dimension of the configuration space. It is complete because it
guarantees to find a semi-free path providing that one exists, otherwise it reports failure.

It is general because it is applicable in configuration spaces with arbitrary dimensions.

In this approach, the closure of the collision-free configuration space of the robot is
input as a compact semi-algebraic set. Since the method operates in compact semi-
algebraic sets it is also suitable for planning paths of multiple robots or articulated arms.
The silhouette method uses tools from Differential Geometry such as “stratifications”
and from the Elimination Theory such as “Multivariate Resultants” in order to achieve
its complexity bounds. The method will be described here using a simple example,

which is taken from (Canny, 1988), independently of these tools.
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The recursion in general ends when there are not any critical points to connect to the
silhouette in the set which is currently being swept, or when the dimension of the set is
two. The robots start and goal point can be connected to the roadmap R(S) by treating

them as critical points.

This technique is the only known complete method for robot path planning which runs
in a single exponential time. In particular, its running time is exponential in the
dimension of the robots configuration space. The exponent of the algorithm is equal to
the robots degrees of freedom. When the robot's degrees of freedom are low, the
method can solve the path planning problem in polynomial time as a function of the

environment’s complexity.

The disadvantage of this method is that the expensive computational complexity makes
it impractical. Therefore, this method is mostly used in theoretical algorithms analysing
complexity rather than as a practical approach for solving the robot path planning
problem. Besides the impractical nature of this approach, another disadvantage is that
the path established by this method lies in the cl(Cge.). Therefore, this method does not

give rise to safe paths.

3.2.5 Probabilistic Roadmaps (PRM)
This method constructs a roadmap in a random fashion. The overall computation of this
approach is carried out in two phases. The pre-processing phase (or learning phase)

and the query phase.
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The robot motion planning problem in general has two formulations determined by the
availability of information about the robot's start and goal points a priori planning.
These formulations are the single shot problem and learning problem. Single shot
problems are these, where the robot's start and goal points are given in advance and the
objective is to find a collision-free path between them. Learning problems are those
where the robot's start and goal points are not given in advance and the objective is to
construct a data structure that can be later used for any query. The single shot version
of the problem is computationally cheaper to be solved, but if several different motions
for a robot are requested to be computed in the same environment, it is computationally

more efficient to solve the learning problem version.

The PRM approach can solve the learning problem thus it is regarded as a learning
approach’. In the pre-processing phase, a roadmap which is an undirected graph
G = (V, E), is incrementally constructed in a probabilistic way. This construction is
achieved by repeatedly generating random collision-free configurations of the robot.
Every such configuration is added to V and is connected to the graph G by adding some
edges to E. These configurations are connected using a very fast but not so powerful
motion planner, called Jocal planner. Note that every newly added configuration is
connected by the local planner only to some neighbouring configurations within a
distance d under some metric D. A potential field method can be used as a local
planner, (Overmars and Svestka, 1995). The aim of this phase is to construct a network,

which reasonably covers the Cgee. Note that at the end of this phase, additional nodes

> The roadmap approaches (section 3.2) and the cell decomposition approaches (section 3.3) are

considered as learning approaches, while the potential field method (section 3.4) is considered as single-
shot method. The potential field method is single-shot, because the goal point contributes in the
construction of the potential field (see section 3.4 for details).
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may have to be added in 'difficult' places of the Cge. in order that the representation of

the robot's free space is more complete.

In the query phase, a query is encountered (hence the name of the phase), such as
whether there is a collision-free path between two configurations, qstart and qgoar- In this
phase an attempt is made to connect these configurations to some nodes of the roadmap
constructed in the pre-processing phase and then this roadmap is searched for a free

path. A path between the qgar and the qgou configurations and two nodes of the graph,
say q,,, and the agoal respectively, can be found by using the local planner of the pre-

processing phase.

This approach was proposed by (Kavraki and Latombe, 1994a), (Kavraki and Latombe,
1994b) for motion planning of manipulators with many degrees of freedom.
Independently presented in (Overmars and Svestka, 1995) for solving the motion
planning problem for robots with few degrees of freedom and in (Svestka and
Overmars, 1997), for motion planning of both symmetrical non-holonomic car-like
robots and car-like robots, that can only move forward. It was further explored by
Kavraki et al (1996) and Barraquand et a/ (1997). A very similar idea to the
probabilistic roadmap technique was independently proposed by Horsch et al (1994),
for motion planning of manipulators with up two 12 degrees of freedom. Their
approach randomly generates configurations and connects them to their nearest-k
neighbours for a small k, in order to build a graph G = (V, E). This task however, may
result in a number of disconnected sub-graphs. A connection between these sub-graphs

is then generated by reflecting randomly at the C-obstacles. A brief survey on PRM
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along with a proposed PRM and some experimental results can be found in (Kavraki

and Latombe, 1998).

The PRM approach is probabilistically resolution-complete. This means that it can
solve the problem (find a collision-free path in the open Cye if one exists) with a
probability approaching unity (1), providing that it is executed for a sufficient amount
of time. By this it is meant that the probability that the planner will find a path bounds

its computational complexity.

Experiments have shown that for the motion planning of a manipulator with 16 degrees
of freedom in 'difficult’ environments (these are environments with narrow passages),
the learning phase requires time of the order of hundreds of seconds to adequately
capture the Cgee With a roadmap of approximately 4700 nodes. When the time allowed
for the query phase is of the order of a few seconds, the success rate of the approach is
over 90%. For the experiment a DEC Alpha workstation was used (Kavraki and
Latombe, 1998). For the motion planning of a car-like robot in difficult environments,
the success rate of the approach is over 90%, with the learning phase requiring time of
the order of a few seconds and the query phase requiring time of the order a few

seconds, using a Silicon Graphics Indigo workstation (Svestka and Overmars, 1997).

3.3 Cell Decomposition Approaches

The main principle of the cell decomposition methods is to decompose the robot’s

collision-free configuration space (Cpre) into a finite number of non-overlapping regions
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called cells. In exact cell decomposition, the cells are of simple shapes (usually
triangles and/or trapezoidal when the Cge is two-dimensional and parallelepiped when
the Cgee is three-dimensional) and cover the entire Cge.. In approximate cell
decomposition, the Cgee is decomposed in cells of predefined shape (usually squares
when the Cge. is two-dimensional and cubes when the Ce. is three-dimensional), whose
union is a conservative approximation of the Cgee. In exact cell decomposition method
the boundaries of the Cspace’s objects are used for the generation of the cells, thus this
method is object dependent, while in approximate cell decomposition the boundaries of
the Cspace’s objects are not used for the generation of the cells and thus this method is
object independent. Once the Cge. is decomposed, a connectivity graph is constructed,
which represents the adjacency of the cells. The connectivity graph is then searched for
a channel between the cells, which contain the robot’s start and goal configurations
respectively. If there is a channel between the cells, which contain qsiar and ggoat, @ path,
is extracted from it. In the following section the exact and approximate cell
decomposition methods will be described for solving the basic robot movers’ problem.
For a detailed description of the decomposition methods see, (Yap, 1987) and

(Latombe, 1991).

3.3.1 Exact Cell Decomposition
Since the decomposition of the Cre. is exact, the exact cell decomposition method is
complete. The main difficulties of this approach are the selection of the geometry of the

cells and the construction of the adjacency information.
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covering and the second is partitioning (Keil and Sack, 1985). Covering a polygon
means that the decomposition it is permitted to contain mutually overlapping pieces.
Partitioning a polygon means completely dividing its interior into non-overlapping cells.
Here it is of interest to decompose the Cge. by partitioning it, because it is required that

any point of Cye is contained in exactly one cell.

The optimal convex decomposition of a polygon (that is, decomposition into the
smallest possible number of convex polygons) can be computed in polynomial time in
the number of the polygons vertices (Keil and Sack, 1985). If the polygon to be

decomposed contains holes, the problem of decomposing it, is NP-hard, (Lingas, 1982).

However, a decomposition method, which is non-optimal and is due to Chazelle (1987),
can be used. This is called trapezoidal decomposition and it decomposes the polygonal
region in trapezoids and triangles. (Note that triangulation could be used instead, to
decompose the environment in triangular cells.) This method sweeps a line parallel to
the y-axis across the Cge.. Each time a vertex of a CP; is encountered the algorithm
generates at most two line-segments, which emanate from the encountered vertex and
are extended to each extremity of the y-direction until they cross an edge of a CP;. If a
crossing with such an edge does not occur (this case arises when the Cge. is not
bounded) the decomposition contains cells extended infinitely. Figure 3.16 illustrates

the trapezoidal decomposition of the Cge. of Figure 3.15.
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Figure 3.16 Trapezoidal decomposition of the Cyee.

The sweeping process used to identify the CPy’s vertices requires O(n log n)
computational time, where n is the total number of the C-Obstacles’ vertices. Note that
while the sweep-line is sweeping across the Cgee, the erection of the vertical line-
segments, the identification of the cells, which contain the qsiar and ggoa configurations

and the generation of the connectivity graph G can be achieved concurrently.

The connectivity graph G is an explicit representation of the adjacency of the cells of
Cree. G is an undirected graph whose nodes represent the cells and each edge of it
represents the adjacency between two cells. Two cells are adjacent when they share an
edge with length greater than zero. The total number of nodes and edges of the
connectivity graph is O(n). Figure 3.17 illustrates the connectivity graph, which

represents the adjacency of the cells of the decomposed Cgee of Figure 3.16.
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Since the search process requires O(n®) computational time, where n is the number of
vertices of the graph, the overall computational complexity of the approach is O(nd),

where n is the total number of the C-obstacles’ vertices.

The advantage of this technique is that the paths that it generates are most of the time
safer than the ones produced by either the visibility graph or the silhouette approaches.
The main disadvantage is that they are not optimal in general. This method can be
extended to three-dimensional configuration spaces populated by polyhedral obstacles.

In this case the decomposed cells are parallelepipeds.

An exact cell decomposition approach was proposed by Schwartz and Sharir (1983a),
for planning paths for a ladder (line-segment robot) and for compact connected two-
dimensional polygonal robot in an environment W populated by polygonal obstacles.
The case where the robot R is a ladder will be discussed here, the solution to the path
planning problem when R is a polygon as defined above is very similar. The robot R
can translate freely and rotate about its one endpoint. In this approach the environment
W is decomposed into non-critical regions bounded by critical curves. A critical curve
is the locus of the robot’s reference point while the robot is moving having a critical
contact with an obstacle. Critical contacts can be defined in many ways some of which
are: a vertex of the robot touching an edge of an obstacle, an edge of the robot touching
a vertex or an edge of an obstacle or the robot touching two or more obstacles at the
same time. There are five different types of contacts in total when the robot is a ladder.

Every non-critical region is a subset of the x-y plane and is the maximal subset of the



Chapter 3 Robot Motion Planning - Literature Survey

positions of W at which, at least one orientation of R exists, such that R does not

intersect any critical curves.

The feasible orientation for R when its reference point (one end of the ladder) lies in a
non-critical region is expressed as a finite union of open sets of angles. The bounds of
each set correspond to angles at which the robot makes contact with some obstacles.
The robot can move from one point to another in the same non-critical region if the
orientation of the robot at each point belongs to the same open set. The robot can move
from one non-critical region to another if and only if, their boundaries share an open
portion P of a critical curve and for every point pef the intersection of the robot's

feasible orientations of the two regions is a non-empty set.

Once W is decomposed into cells (non-critical regions), a connectivity graph 1is
generated, which represents the adjacency of the cells. This graph is then searched for a
channel from the robot’s start point to its goal point and a path is finally defined within
this channel. Since the contacts between the robot and the obstacles define the critical
curves, there are in total O(n®) (actually this bound is due to some more complicate
curves such as the conchoid of Nicomedes, obtained by particular type of contacts)
critical curves and since the critical curves can intersect each other there are in total
O(n*) critical curve sections, leading to a O(n®) overall time, where n is the complexity

of the obstacles.

An optimised variant of the above algorithm was proposed in (Leven and Sharir, 1985)

for motion planning of a ladder in a two-dimensional space populated by polygonal
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barriers (obstacles). The algorithm’s computational complexity is O(n” log n), where n

is the total number of the obstacles’ vertices.

A general exact cell decomposition algorithm was proposed by Schwartz and Sharir
(1983b). Since this algorithm is exact its complexity depends on the complexity of the
free space, which in turn depends on the complexity of the number of multiple contacts
between the robot and the obstacles. The approach proposed by Schwartz and Sharir
can be used for the motion planning of a robot with an arbitrary number of degrees of
freedom. The only restriction of this method is that both the robot and the obstacles

should be described as semi-algebraic sets. This approach is quite complicated to

implement and its computational complexity is O(n(2d+6)) , where n is the total number
of obstacles’ vertices and d is the total number of the degrees of freedom of the robot.
This result is practical only for configurations with low dimensions and robots with
small number of degrees of freedom. Quoting the authors ‘The approach is
catastrophically inefficient’, 1.e. O(n**°) for a 6 dof robot. Again, this method serves as

proof for the decidability of the general path planning problem.

A variant of the exact cell decomposition was proposed by Avnaim et al (1988), for
solving the two-dimensional instance of the movers’ problem, when the robot rotates as
well as translates. In their approach, they first constructed a graph Gy, in which every
node is associated with a face of the Cgee (a C-surface patch) and for every pair of

adjacent faces an edge connects the corresponding nodes in the graph. Note that in this

case C = R?2 x S'. In the next step a triangular decomposition Tsan of C free, .
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(respectively Tgom 0f Cee, l ), where Cg.. isa connected component of the cl(Chree)
goal start
N CH(Coyee, I), (respectively Cie,, | is a connected component of the cl(Cgee) M
Boal goal

el(C e, l)) are produced. A graph G, is then constructed in which every node is
goal

associated with a cell in Ty and for every pair of adjacent cells an edge connects the
corresponding nodes in the graph. Similarly, a graph Gjs is constructed for the Tgoal
decomposition. The last step of their algorithm is to merge the graphs G;, G2 and G3 to
form a graph G', by connecting every node of graph G; (these nodes correspond to faces
of 8Cfee ) to every node of the graphs G, and G; whose corresponding faces and cells
share a straight line-segment of non-zero length. Finally G' is searched for a path
between the cells which contains the start and goal points. The computational

complexity of their algorithm is O(K log K + F), where K is the sum of the number of

edges which compose the boundary of cl(Cpee) N Cl(Coe, o ) and cl(Cqee) M
Cl(C e, | ), which in the worst case is O(m’n’) and F is the number of the faces of the
goal

OCgee- M and n are the number of the vertices of the robot and the obstacles

respectively.

When the number of the robot's degrees of freedom is small, less powerful but more
practical approaches using different approximation schemes and heuristics have been
proposed by, (Brooks, 1983) see also section 3.2.3, (Lozano-Pérez, 1981) see also

section 3.3.2, (Guibas et al, 1989) and (Seneviratne et al, 1997).
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3.3.2 Approximate Cell Decomposition

As with the exact cell decomposition, this approach decomposes the Csee into a finite
number of cells and a path is found through a channel of cells. In the approximate cell
decomposition, the cells have a pre-specified simple shape. Therefore, the union of the
cells approximates the Cyee hence the name of the method. The size of the cells can be
locally adapted by the geometry of the C-Obstacles. This approached was first
proposed by Lozano-Pérez (1981) and was further developed and used by, (Brooks and
Lozano-Pérez, 1983), (Faverjon, 1984), (Laugier and Germain, 1985), (Faverjon, 1986),
(Kambhampati and Davies, 1986), (Noborio et al, 1990), (Zhu and Latombe, 1991),

(Barbehenn and Hutchinson, 1995) and (Katevas et al, 1998).

Since the approach is conservative about the approximation of the Cpee, it is not
complete therefore it can fail to find a path even if one exists. However, it is attractive
because cells are generated by iterating the same simple computation and in general, the
method is fast and easy to implement. The method will be described here for solving

the basic movers’ problem.

Consider the robot’s configuration space of Figure 3.20. Without loss of the generality
it is assumed that the robot’s configuration space is bounded by a square, (the choice of
the shape is made to make the exposition of the method simpler) and populated by three
polygonal C-Obstacles. Note that the boundary of the robot’s configuration space is

considered as C-Obstacle as well. The start and goal configurations of the robot are the

Qstart a0d Qgoql respectively.



Chapter 3 Robot Motion Planning - Literature Survey

.qgoal
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65,69,
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.qstart

Figure 3.20 Two-dimensional configuration space.

This method recursively decomposes the configuration space into smaller rectangloid
(rectangloid decomposition) called cells. In every recursive call of the decomposition
over a cell, four new identical rectangloids are generated. This decomposition can be
represented by a tree of degree four, therefore it is called quadtree decomposition
(Samet, 1980), (Samet, 1990). IfR is a rectangloid R < R™ which bounds the Cg, then
a rectangloid decomposition K of the space R is a finite set of rectangloids k;, j =1..p

such that:

R = ij (3.1)

and

f‘v’h f,he[l.p]:int(k;) Nint(k, ) =< (3.2)
£

Two cells are adjacent when they share a set in R™" of non-zero length measurement.
In this example, since the configuration space C is two-dimensional the rectangloids

will be of dimension two (which are rectangles) and in particular they will be squares.
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appropriately tuned (at the expense of computational time) to make the approximation

very small, hence this method is resolution-complete.

An advantage of the approximate cell decomposition is that it is straightforward and is
relatively easy to implement. Also since the size of the decomposed cells can be
controlled, the method can give rise to a desired clearance of the path, which in turn can
allow small perturbations on the robot's motion (due to control errors) while the robot is

moving along the path.

Since its computational time grows with respect the size of the configuration space, the
method is practical for configurations with low dimensions (less than five (Latombe,
1991)). When the environment is three-dimensional, the decomposition is called octree,
because it can be represented by a tree of degree eight. In general, the decomposition of
a configuration space of dimension m can be represented by a 2"-tree, which is a tree of

2™ degree.

3.4 Potential Field Approach

The idea behind the potential field method is somewhat different than the idea behind
all the methods discussed so far, which construct a network of one-dimensional curves
in the robot's configuration space or physical space and then search this network for a
path between the robot's start and goal points. In the potential field method, the concept
of electrical potential fields is used, as heuristics to guide the search for a path between

the robot's start and goal points in its physical space. The potential fields were first
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introduced by Khatib and Mampey in 1978 as an obstacle avoidance technique, (Hwang
and Ahuja, 1992a). The method was used and further developed for robot path planning
by (Khatib, 1986). Boissiere and Harrigan (1988) used the potential field method for
local collision avoidance in a human Tele-operated puma. When the robot was due to
collide with an obstacle while moving along the course given by the operator the
PUMA reacted to the repulsive potential of the obstacle and changed its path. Tilove
(1990), presented an overview of the artificial potential field method for path planning,
described variations of the method and compared the performance of different
algorithms. Hwang and Ahuja (1992b), presented a path planning algorithm based on
the potential fields. In their approach path planning was done at two levels. At the first
level a global planner generates a graph-like representation of the free space between
minimum potential valleys (MPV) and also defines a path and the orientation of the
robot along this path such that the chance for collision is minimum. At the second level
a local planner moves the robot along the path found by the global planner and alters the
path or the robot’s orientation, if there is a need to, in order to avoid collisions. If the
local planner fails at any point the global planner is used to generate new path and
orientations. The process is repeated until a path is found or there are no more paths left
for further examination. Juang (1998), used potential fields for real-time collision
avoidance for an industrial manipulator. He presented an algorithm for fast calculation
of the distance between the manipulator’s links and the environment’s obstacles and
used this distance to create artificial repulsive forces between the robot and the
obstacles. A collision avoidance control scheme based on the potential fields was then

presented. A historical review of the potential field method for path planning and

control can be found in (Koditschek, 1989).
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In the potential field method, the robot is considered as an electric particle moving
under the influence of an artificial potential field U in a configuration-like space.
Hence, the local variations of the potential field reflect the topology of robot’s free
space. A uniform artificial attractive potential is defined over the goal point, which
attracts the particle (robot) towards it and an artificial repulsive potential is defined over
the obstacles, which repel the particle from them. The motion of the particle is locally
generated by a potential function, which combines both of the attractive and repulsive
components of the field. An artificial force can then be produced at a current point as
the negated gradient of the total potential field, which can be used to move the robot

towards the most promising direction.

The obstacles in the environment are not represented by geometrically volumes but by
potential functions, therefore the only knowledge that is required by the algorithm is
local. Thus this method is suitable for real-time obstacle avoidance or/and on-line path
planning. Note that this technique was initially intended for obstacle avoidance and not

for path planning.

A typical potential function is defined as the summation of an attractive potential and a

repulsive potential. The former pulls the robot towards the goal while the latter pushes

N
the robot away from the obstacles. The force F produced by potential field U and
applied on the particle at any point q is equal to the negated gradient vector of the
potential field U. More formally when the robot’s workspace is two-dimensional, the

gradient vector of U at any point q = (X, y) can be defined by the equation 3.3.
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The main disadvantage of the potential field approach is that the robot can be trapped in
local minima of the potential function and hence this method does not always find a
path from g t0 qgom €ven when one exists. This fact makes the method incomplete.
A solution for the local minima problem has been proposed by Khosla and Volpe
(1988), by defining a potential function with only one minimum or in the worst case
with a few. Rimon and Koditschek 1992, proposed a local minimum-free function
called, global navigation function for robot path planning and control, in Euclidean
spaces when the obstacles of the environment are spherical or star-shaped. An
alternative is to escape from local minima and to begin the search again (see section

3.4.1 for details).

When the attractive and repulsive potentials are defined, a path can be found from the

robot’s start point to its goal point iteratively, by moving the robot towards the most

promising direction defined by the artificial force I_’)' induced by the potential function
and proceeds in that manner by some increment until it reaches the goal point. This
path corresponds to the path traced by a small ball placed at the start point and let roll
on the potential surface until it reaches the goal point (Cameron, 1994). Suppose that

the surface of the potential net is viscous and the ball will not overpass the goal point.

Two common approaches that can be used for the generation of a path using the
artificial potential field are the depth first search technique without backtracking and
the best first search (Latombe, 1991). With depth first search technique without
backtracking, the constructed path is constituted by successive line-segments starting

from the robots start point. Every segment is computed at a point derived from the
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previous line-segment and is oriented along the negated gradient of the potential at this
point. The main disadvantage of this technique is that because the robot follows the
deepest fall of the potential function until it reaches the goal point, it is difficult to
handle a situation when the robot is trapped in a local minimum before it reaches the

goal point.

An alternative is a best-first search technique. This technique uses a fine grid over the
space, it starts from the robot's start point and iteratively constructs a tree whose leaves
are points of the grid, each of them with a pointer to its parent node in the tree. The
leaves, which correspond to the most promising potential-wise points of the grid, are
further expanded until the goal point is retained. If the goal point is attained the path is
obtained by backtracking all the pointers in the tree from the goal point to the start
point. If the goal point is not reached and the entire grid has been examined then there
is no path between the robot's start and goal points. Otherwise, the robot is trapped in a
local minimum. In this case the algorithm 'fills' the well of the minimum until it reaches
a saddle point and resume the search along the negated gradient until the robot reaches

the goal (Barraquand and Latombe, 1991).

3.4.1 Randomised Path Planning

The randomised path planner (RPP) was proposed by Barraquand and Latombe (1990),
and is one of the most effective potential field based planners. Their approach is very
like the best first search. The planner starts from the robot's start point and follows the
deepest fall of the potential function until it reaches a minimum. If this minimum is the

global (the goal point) then a path between the robot's start and goal point is obtained.
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If this is a local minimum then a random walk mechanism is activated to move the robot
to some other point and then the deepest fall strategy is resumed until a minimum is
reached again. Note that the random walk is a simulation of the Brownian motion that
influences the natural particles. If the newly obtained minimum is not the same as that
previously encountered then the new motion is added to the path. In this way a graph
with nodes which are all the local minima of the potential function is created. The

planner searches the environment until the goal point is encountered or until it gives up.

3.5 Discussion

In this chapter the robot motion planning problem was considered and some robot
motion planning techniques have been presented. The robot motion planning problem
has been shown to be a very hard problem especially in its full generalisation. This
justifies the existence of so many different approaches to tackle the problem and the

increased research efforts consumed on the subject in the last twenty years.

The majority of the robot motion planning techniques discussed in this chapter are
concerned with solving the basic movers’ problem, the reason for this is twofold.
Firstly because it is easier to expose the methods by solving a simple instance of the
robot motion planning problem than by solving the problem in its full generality.
Secondly, because this thesis is concerned with the motion planning of autonomously
guided vehicles, which in general operate in two-dimensional physical spaces and they

do not have configuration spaces of high dimensionality.
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It has been shown that complete planners are computationally extremely expensive and
they mostly serve as proof of the decidability of the general movers’ problem rather
than for practical use in the real world, especially when the instance of the problem
being tackled is complicated. On the other hand many heuristic approaches, resolution-
complete approaches and probabilistically resolution-compete approaches have been
proposed to make the problem more tractable and its solution more pragmatic and
practical but of course at the expense of the solution's completeness. In (Barraquand et
al, 1997), it was stated that no tailor-made planner is likely to be the most efficient for
all possible problems and that every application requires a hand made solution. For
instance the PRM and the Voronoi diagram can provide good solutions for the robot
motion planning problem in two-dimensional static environments but when the

environment contains moving obstacles both approaches may fail to generate solutions.

In the subsequent chapters of the thesis the path planning problem for an AGV in two-
dimensional static and dynamic environments is considered. Specifically in chapter
four the static problem is encountered and an algorithm for solving it is proposed. The
algorithm is based on the concept of visibility graph. The reason for this is that the
visibility graph approach works quite fast in configurations of two-dimensions and in
general establishes optimal paths, which is always desired. The proposed algorithm is
called V*FMECHA and it finds the shortest semi-free path (using Euclidean metric) for
an AGV in a two-dimensional static environment by constructing a reduced visibility
graph. The V¥*MECHA algorithm is based on the V*GRAPH algorithm and has been

designed to correct and overcome the latter’s deficiencies.
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In chapter five the V*MECHA algorithm is extended to be applicable in dynamic
environments. An algorithm is proposed which is called D*MECHA and finds the
time-minimal motion for an AGV between two query points. In the rest of the thesis
various extension of the D¥*MECHA algorithm are proposed in order to increase its

applicability.

Every algorithm proposed in the thesis is accompanied with an empirical analysis of its

computational time and space, a proof of its correctness and a proof of its optimality.
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