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Summary

This thesis is concerned with the robots' motion planning problem. In particular it is 
focused on the path planning and motion planning for Autonomously Guided Vehicles 
(AGVs) in well-structured, two-dimensional static and dynamic environments.

Two algorithms are proposed for solving the aforementioned problems. The first 
algorithm establishes the shortest collision-semi-free path for an AGV from its start 
point to its goal point, in a two-dimensional static environment populated by simple 
polygonal obstacles. This algorithm constructs and searches a reduced visibility graph, 
within the AGV's configuration space, using heuristic information about the problem 
domain.

The second algorithm establishes the time minimal collision-semi-free motion for an 
AGV, from its start point to is goal point, in a two-dimensional dynamic environment 
populated by simple polygonal obstacles. This algorithm considers the AGV's space- 
time configuration space, thus reducing the dynamic motion planning problem to the 
static path planning problem. A reduced visibility graph is then constructed and 
searched using information about the problem domain, in the AGV's space-time 
configuration space in order to establish the time-minimal motion between the AGV's 
start and goal configurations.

The latter algorithm is extended to solve more complicated instances of the dynamic 
motion planning problem, where the AGV's environment is populated by obstacles, 
which change their size as well as their position over time and obstacles, which have 
piecewise linear motion.

The proposed algorithms can be used to efficiently and safely navigate AGVs in well- 
structured environments. For example, for the navigation of an AGV, in industrial 
environments, where it operates as part of the manufacturing process or in chemical and 
nuclear plants, where the hostile environment is inaccessible to humans.

The main contributions in this thesis are, the systematic study of the V*GRAPH 
algorithm and identification of its methodic and algorithmic deficiencies; 
recommendation of corrections and further improvements on the V* GRAPH algorithm, 
which in turn lead to the proposition of the V*MECHA algorithm for robot path 
planning; proposition of the D*MECHA algorithm for motion planning in dynamic 
environments; extension to the D*MECHA algorithm to solve more complicated 
instances of the dynamic robot motion planning problem; discussion of formal proofs of 
the proposed algorithms' correctness and optimality and critical comparisons with 
existing similar algorithms for solving the motion planning problem.
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1
Introduction and 

Overview of the Thesis
Though thy beginning was small, yet thy end will be very great

JOB 8:7

1.1 Introduction

Imagine an eight-year-old child is playing with a remote controlled car in the living 

room of his/her house. The child skilfully navigates the car from one corner of the 

room to another, avoiding collisions with the room's furniture. What the child has just 

done is to solve the gross motion planning problem, for a vehicle with three degrees of 

freedom. If the action of the child is more thoroughly analysed, it can be noticed that 

the child using his/her vision, recognises the objects in the car's environment (the living 

room), identifies their position and thus is able to build up a geometric model of the 

environment. This model in turn helps him/her to navigate the car around the
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environment. Notice that the child unconsciously solves another significant robotics 

problem, the vision problem.

Imagine now the scenario where the child is blindfolded and tries to navigate the car, 

from one corner of the living room to another. The result will not be the same. The 

navigation now relies upon previous experience the child has about the topology of the 

room. The child knows the approximate position of the furniture in the room and tries 

to navigate the car in an exploratory manner. For instance, if the car crashes with an 

object of the room, the child instinctively backs it up and tries to circumnavigate the 

object and reach the destination point.

This example demonstrates how easy it is for a human to solve the motion planning 

problem with little conscious effort, providing that information is available about the 

environment ahead of planning. It appears that when a human intuitively solves the 

motion planning problem, in general it generates sub-optimal but safe trajectories. The 

reason is that the human's ability to move safely in a physical environment or to move 

other objects within the environment, is a process undertaken instinctively, as generally 

humans do not calculate all the possible routes and then select the optimal.

To replicate this human ability in a computer programme to navigate a robot in a 

physical environment is an extremely difficult task. The reason is that there are 

computational aspects involved, which themselves are very hard to undertake. For 

example, one of the most challenging tasks is to represent real world objects within the 

computer and to define geometric operations for them. Another important issue is the
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computational complexity, i.e. how to generate effective solutions to the motion 

planning problem in efficient time. The motion planning problem has received great 

attention from the computer theoreticians community, thus it is sometimes referred to in 

the literature as algorithmic motion planning.

1.2 The Importance of Motion Planning in Robotics

One of the most important tasks a robot should undertake in order to be autonomous is 

to plan and execute its own motions in known environments or sense, react and avoid 

obstacles in unknown environments. There are a significant number of applications, 

which make use of robotic systems and in particularly of mobile robots, ranging from 

manufacturing to space exploration.

The use of AGVs (Autonomously Guided Vehicles) and articulated robots is an 

important consideration for the efficiency of an automated manufacturing process. In 

the machining industry the use of robotic systems has made mass production a human 

unassisted process with very precise results leading to good quality products. Mobile 

robots are also used to conduct tasks in hostile environments, which are dangerous for 

humans, such as nuclear and chemical plants, battlefields, mines and outer-space 

environments.

Notice that most practical applications in which a mobile robot is involved are critical, 

in the sense that they have to meet safety and economic aspects. For example, it would 

be economically catastrophic if a mobile robot, which works as part of a manufacturing
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process in a multi-million pound production line, collided with other machines and 

disrupted the process. Even more importantly it would be a disaster if a mobile robot 

were to harm a human who also co-exists in its environment. The above examples 

show how important it is for a robot to move safely in its environment and carry out 

tasks in an optimal way. Therefore, algorithms, which plan the motion of a robot in a 

physical environment, are of significant importance and they are called motion planners 

or path planners. Note however that path planning is not the only ingredient for the 

guidance of a robotic system. If the guidance procedure of a robotic system is analysed 

it can be decomposed in the following three tasks:

  The first task is to create a map of the environment (if is not available, i.e. known 

environment) in which the robot is operating. This task can be achieved by 

sensing the environment.

  The second task is motion planning. This task establishes safe (collision-free) and 

cost effective motions for the robot between two query points in its environment.

  The final task is the robot to be driven efficiently along the path established by the 

previous task. This task controls the robot's motors and actuators to perform the 

desired motion.

The above process can be schematically represented as illustrated in Figure 1.1.
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Environment's Map

Motion Planning 
Path Planning

Feedback

Controller

t Robot's Actuators

Figure 1.1 An autonomous robotic system.

This thesis describes approaches to provide effective solutions to the second task 

involved in a robotic system's guidance, i.e. the motion planning task.

The earliest method for programming a robot to undertake a motion was to guide the 

robot through the motion by specifying a sequence of desired configurations. These 

configurations would be the robots initial and goal positions and additional intermediate 

configurations. This method of robot programming is called teaching by showing or 

guiding (Lozano-Perez and Wesley, 1983). Guiding was a common approach for 

programming robots and is still used today for programming industrial robots because 

of its simplicity and the relatively low level of operator skill. Robotic systems 

programmed by guiding perform repetitive tasks such as welding, painting and 

palletisation well. However, their abilities are limited due to the fact that every time a
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different task is assigned to the robot a training procedure needs to be undertaken. Also 

note that using the guidance method to programme a robotic system, its application 

domain is very limited because the system cannot cope with moving obstacles.

The ultimate goal of robotics is to create autonomous robots and therefore much 

research effort is now concentrated on creating autonomously guided robots, which 

have the ability to plan and execute their own motions in known environments or sense, 

react and avoid obstacles in unknown environments. Note that this thesis is concerned 

with the robot motion planning problem and therefore it is considered that the robot's 

environment is known ahead of planning. In this case the motion planning task is 

adequately accomplished in an off-line manner. However, when the environment is 

unknown on-line planning (better described as obstacle avoidance) is required by the 

system, which relies on information obtained by the robot's sensors.

The importance of the motion planning problem in robotics on the one hand and its 

hardness 1 on the other, justify the volume of research effort and the large number of 

proposed approaches dealing with the motion planning problem. A review of robot 

motion planning is presented in chapter three. Additional surveys can be found in (Yap, 

1987), (Schwartz and Sharir, 1988), (Latombe, 1991), (Hwang and Ahuja, 1992) and 

(Wager, 2000).

It has been shown that complete motion planning approaches, which guarantee to find a 

solution to the problem if one exists, are computationally so expensive that they limit

1 In the computer theoreticians' community a problem is commonly characterized as hard when the best 
available algorithm for solving is very expensive in its running time.
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the practicality of the approach, (Schwartz and Sharir, 1983), (Canny, 1988). However, 

heuristic, resolution-complete, and probabilistically resolution-complete approaches 

have been developed to make the solution of the motion planning problem more 

pragmatic but at the expense of its completeness. These issues are also discussed in 

chapter three.

A relaxed specification of the robot motion planning problem can be stated as follows: 

Given the initial and final states of a robot and the constraints of allowable motions, 

find a collision-free motion for the robot from its initial state to its final state which 

satisfies the constraints. This is a very generic specification of the problem, thus the 

problem has been classified into categories based upon the robot's environment and task 

domains. For instance, when the environment of the robot is static and the only 

constraints on the robot are its kinematics and that it should not collide with the 

environment's obstacles, it suffices to define collision-free paths for the robot to follow 

taking into account its kinematics. This problem is referred to in the literature as the 

path planning problem. When the dynamics of the robot are taken into consideration 

such as linear and angular velocities this problem is referred to as the trajectory 

planning problem. Note that path planning problem is subset of trajectory planning. 

When the environment of the robot contains only stationary obstacles it is referred to as 

the static motion planning problem while when the environment contains moving 

obstacles it is referred to as the dynamic motion planning problem2 . More details about

2 In some textbooks the static motion planning and dynamic motion planning problem are referred to as 
time-invariant and time varying motion planning problems respectively.
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the classification of the robot motion planning problems can be found in (Latombe, 

1991) and (Hwang and Ahuja, 1992).

In this thesis two specific instances of the motion planning problem are considered. The 

first is the path planning problem for an AGV in a two-dimensional static known 

environment. The second is the motion planning of an AGV in a two-dimensional 

dynamic known environment.

1.3 Aim and Objectives of the Research

The aim of the research is to develop algorithms for solving effectively and efficiently 

the path planning problem for an AGV in two-dimensional static known environments 

and the motion planning problem for an AGV in two-dimensional dynamic known 

environments.

The objectives of the research are to:

  Conduct a literature survey on approaches and algorithms that have been proposed 

for solving robot motion planning problem.

  Study and critically review existing robot motion planning approaches in order to 

identify major problems and recommend ways to overcome these problems.

  Propose possible improvements to existing approaches for solving the path 

planning problem for an AGV.

  Propose an approach for solving the motion planning problem for an AGV in 

dynamic environments.
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• Investigate the correctness and the optimality of the proposed approaches.

  Test the proposed approaches experimentally through examples.

  Critically evaluate the proposed approaches and compare them with existing 

approaches.

1.4 Methodology

As was mentioned in section 1.2 the first problem considered is the path planning 

problem for an AGV in a two-dimensional static environment. More formally the 

problem is posed as follows:

Let the AGV R be a simple polygonal free-flying object operating in a two-dimensional 

Euclidean workspace W, populated by a finite number of simple polygonal obstacles, 

the AGV's start point s and its goal point g. The problem is to find a collision-free path 

for the AGV R, given that the positions of the obstacles and the AGV's start and goal 

positions are known ahead of planning or to report failure if such path does not exist. 

This is called the basic path planning problem or the basic movers' problem because 

there are restrictions on the robot and its environment, such as the robot is a rigid body 

and no kinematic constraints are imposed on it, the obstacles are static and so on. In 

Latombe (1991), it is reported that even the basic movers' problem is a hard problem to 

solve and when the robot is an articulated arm it gets even harder.

The approach proposed in the thesis to solve the problem, is based on the visibility 

graph approach (Lozano-Perez and Wesley, 1979), see section 3.2.1 for details. The
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general idea behind the visibility graph approach is to construct a graph in the robot's 

configuration space connecting all the vertices of the obstacles' configuration spaces 

that can be connected by a straight-line edge, such that this edge does not overlap the 

interior of any obstacle's configuration space. It then searches this graph for a path 

between the AGV's start and goal locations.

The reasons that the visibility graph approach is selected as a general method for 

approaching the basic movers' problem are as follows:

  It is relatively easy to implement.

  It is a fast and reliable method when applied in low-dimensional configuration 

spaces (i.e. IR2). Note the configuration space of the AGV in the basic movers' 

problem is IR2 .

  When the AGV's configuration space is (R2 , it establishes optimal paths.

  The visibility graph approach can be extended with no further computational 

effort to incorporate non-holonomic kinematic constraints of a car-like AGV, 

producing near-optimal paths, (Jiang et al, 1996) and (Jiang et al, 1999).

  The visibility graph approach can be relatively easily extended to solve the 

dynamic motion planning problem establishing optimal motions, see chapter five 

for details.

Note that current implementations of the visibility graph approach, construct the entire 

visibility graph or a part of it by only considering the tangential to the obstacles' 

configuration space edges, thus reducing the size of the visibility graph and therefore
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making the search process quicker. The proposed algorithm is called V*MECHA and 

reduces further the number of vertices considered for the construction of the visibility 

graph, thus making the process even faster.

The V*MECHA algorithm is based on the V*GRAPH approach proposed by 

Alexopoulos and Griffin (1992) for solving the basic movers' problem, details of this 

approach are discussed in section 4.3.2. Note that Conn et al (1997), constructed a 

counterexample showing that the V*GRAPH algorithm is incorrect and therefore is not 

complete, see section 4.4 for details. In this thesis the V*GRAPH algorithm is 

extensively studied, an additional deficiency of the algorithm other than that reported by 

Conn et al (1997) is identified and recommendations for the algorithm completeness are 

made. Additional improvements on the algorithm are proposed, resulting in a new 

proposed algorithm called V*MECHA, for the path planning of an AGV. Note that 

proof of the proposed algorithm's completeness and optimality are provided.

The V*MECHA algorithm, in the worse case (this is when the AGV's environment 

contains only convex obstacles) is not as efficient as other algorithms, such as (Rohnert, 

1986) and (Liu and Arimoto, 1992), from an algorithmic theory point of view (but not 

always from practical point of view). However, in the average case (this is when there 

are non-convex obstacles in the AGV's environment), which in general appears more 

frequently in real world applications, the algorithm performs better than the
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aforementioned approaches, due the fact that the produced visibility graph is very small 

and thus the search for a path is quicker3 . More details are discussed in chapter four.

Another algorithm is proposed, which is an extension of the V*MECHA algorithm for 

solving the dynamic motion planning problem for an AGV. This algorithm is called 

D*MECHA and establishes time-minimal motion for an AGV between two query 

points in dynamic environments. The algorithm constructs a visibility graph in the 

space-time configuration space of the AGV and thus reduces the dynamic motion 

planning problem to that of the static path planning problem. This algorithm is indeed 

very efficient from both theoretical and practical point of view. The D*MECHA 

algorithm is extended to handle several types of obstacles' motions.

1.5 Overview of the Thesis

The thesis is organised as follows:

Chapter two presents some definitions, algorithmic notions and mathematical notations 

that will be used throughout this thesis. This presentation mostly serves as a quick 

reference to the basic concepts of the aforementioned subject areas, in order to make the 

concept of the thesis more thoroughly understood.

3 In fact the best result for this problem today is O(n log n), where n is the total number of the obstacles 
vertices proposed by Hershberger and Suri (1999). However, even though this is a very good result from 
a theoretic point of view, the algorithm is not implementable because it is very complex.
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In chapter three, a literature survey on robot motion planning approaches that have been 

proposed to date is presented and a critical review of these is conducted.

Chapter four investigates the V* GRAPH algorithm proposed by Alexopoulos and 

Griffin (1992) and identifies the problems and deficiencies of the algorithm. 

Recommendations are made to correct and complete the algorithm and further 

improvements are considered resulting in the proposition of the V*MECHA algorithm 

for effectively solving the path planning problem for an AGV.

In chapter five, the motion planning problem for an AGV in dynamic environments is 

considered. More specifically the problem of planning motions for an AGV operating 

in a two-dimensional environment populated by linearly moving obstacles is considered 

and an algorithm for solving it is proposed. This algorithm is an extension of the 

V*MECHA algorithm presented in chapter four and is called D*MECHA.

In chapter six the applicability of the D*MECHA algorithm in more complicated 

dynamic environments is discussed. Possible extensions are proposed to enable the 

D*MECHA algorithm to solve more complicated instances of the motion planning 

problem for an AGV in dynamic environments. In particular the motion planning 

problem for an AGV in environments, which contain obstacles that change their size 

over time and obstacles that have piecewise linear motions are considered.
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Chapter seven reviews the thesis, draws some conclusions from the work presented in 

the thesis, summarises the contributions of the work and makes recommendations for 

further work.

In Appendix A, an algorithm for computing the obstacles' configuration space, using 

Minkowski sums is presented. In Appendix B, the A* graph-searching algorithm is 

presented. Finally, Appendix C contains copies of the publications that have been 

produced during the course of the work described in the thesis.

1.6 Discussion

In this thesis the challenging problem of motion planning for autonomously guided 

vehicles is studied. In particular the path planning problem for an AGV in static known 

environments and the motion planning problem of an AGV in dynamic known 

environments, are considered. Two approaches are proposed for effectively solving 

these problems. These approaches in general produce optimum paths and motions and 

they are suitable for motion planning of an AGV in known and well structured 

environments, such as, industrial environments, chemical and nuclear plants or even for 

the navigation of water vessels.

The proposed approaches are experimentally tested through examples, they are critically 

compared with existing approaches and their advantages and disadvantages are 

identified and reported.
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Here is a brief summary of the contributions of the research described this thesis:

Contributions

1. The V*GRAPH approach proposed by Alexopoulos and Griffin (1992), for 

solving the basic movers' problem is extensively studied. An algorithmic 

deficiency other than that presented by Conn et al (1997), is identified and 

reported.

2. Corrections for the completion of the V* GRAPH algorithm are proposed enabling 

it to solve the path planning problem effectively. Further methodic and 

algorithmic improvements are made on the V*GRAPH algorithm resulting in the 

proposition of a new reduced visibility graph approach called V*MECHA 

algorithm, for solving the basic movers' problem.

3. Proposition of the SUPER_EXTREMES routine, which identifies the super- 

extremes of the extreme vertices of the visible sequence(s) for each obstacle in 

order to reduce the size of the visibility graph constructed by the V*MECHA 

algorithm.

4. Proposition of an algorithm called D*MECHA for solving the motion planning 

problem for an AGV in dynamic environments.

5. Investigation and proposition of possible extensions to the D*MECHA algorithm 

to be applicable in more complex dynamic environments are made. Specifically 

extensions to the D*MECHA algorithm, for solving the motion planning problem 

for an AGV in dynamic environments populated by obstacles that change their 

size over time are proposed. Also, extensions to the D*MECHA algorithm, for
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solving the motion planning problem for an AGV in dynamic environments 

populated by piecewise linearly moving obstacles are proposed.

6. Discussion of formal proofs of the proposed algorithms' correction and 

optimality. Critical comparisons with existing similar algorithms for solving the 

motion planning problem are also conducted.
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2
Preliminaries

Now, these are the foundations

II CHRONICLES 3: 3

2.1 Introduction

The intention of this chapter is to present some definitions, algorithmic notions and 

mathematical notations that will be used throughout this thesis. This presentation is by 

no means an exhaustive review of algorithmic research, computational geometry, 

topology or of various aspects of robot motion planning, but it mostly serves as a quick 

reference to the basic concepts of the aforementioned subject areas, in order to make the 

concept of the thesis more thoroughly understood. Some notions and definitions have 

been deliberately omitted from this chapter and are discussed in detail in the following
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chapters. In addition, a list of notational conventions used throughout this thesis is 

provided at the beginning of the thesis.

2.2 Algorithmic Research

The concept of algorithms is a very important area of computer science and is used 

widely in this thesis. The word algorithm itself is very interesting and over the years 

many attempts have been made by linguists to find the derivation of the word. For a 

brief historic review see (Knuth, 1997). According to the definition found in the 

Webster's dictionary (1995), the name algorithm is given after the Persian 

mathematician Mohammed al-Khwarizmi (825 AD) and its definition is as follows:

al-go'rithm / 'al-g&-"ri-[th]&m /: a procedure for solving a mathematical 

problem (as of finding the greatest common divisor) in a finite number of 

steps that frequently involves repetition of an operation; broadly: a step-by- 

step procedure for solving a problem or accomplishing some end especially 

by a computer.

A more formal definition of an algorithm is: a well-defined computational procedure, 

which is composed of a finite number of unambiguous, logical and mathematical steps, 

which take as an input a (set of) value(s) and produce as an output a (set of) value(s), for 

solving a given problem (set of problems). In most theoretic computer science 

textbooks, algorithms are explicitly presented in a pseudo-programming language (or 

pseudo-code). It is supposed that with a small programming effort this pseudo-code can
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be easily transformed into code of a programming language, which is understandable by 

a compiler. In this thesis, all algorithms will be presented in this manner (pseudo-code).

In general, algorithmic research or algorithmic analysis is not only concerned with 

establishing an algorithm to solve a given problem but also with solving this problem 

efficiently in terms of computational effort. This effort can be characterised by means 

of computational time (also called running time or computational complexity) and 

computational storage (also called space complexity). For a comprehensive 

introduction on algorithmic analysis, see (Cormen et al, 1990).

Given an algorithm for solving a problem, its computational efficiency is measured in 

terms of the size of the input of the algorithm. This is because the running time of the 

algorithm grows with the size of the input. For example, consider the problem of 

searching an array of integers to find the position in the array of a particular integer / 

(the integer 7 appears only once in the array). Suppose that the array has n elements. 

By using a sequential search to find the position in the array with value /, the algorithm 

starts from the first element and searches through the array for / until it finds it. The 

number of operations the algorithm should perform depends on (apart from the actual 

values to be searched) the number of values forming the input, in this case the size of 

the array. However, intuitively there can be different running times of the algorithm 

for different inputs. If the element with value / appear in the first position in the array, 

the algorithm only examines one element. In this case, the running time is very low and 

it is said that this is the best case for this algorithm. If / is in the last position in the 

array, the algorithm examines n elements in order to find it and it is said that this is the
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worst case for this algorithm. If the sequential search is applied to many arrays of size 

n, it is expected on average for the search to go half way through the arrays (providing 

that any position in the arrays has equal probability to host /), therefore on average the 

algorithm will examine n/2 elements. It is then said that this is the average case for this 

algorithm.

In general the best case for an algorithm appears very infrequently and does not fairly 

characterise the computational behaviour of an algorithm. However, there are some 

cases where the best case performance of an algorithm is of interest. Analysing and 

considering the worst case performance of an algorithm is of great interest because it 

gives an indication that an algorithm could perform at least that well. This is very 

important in critical applications and in real-time applications, where it is important to 

be certain about the algorithm's performance for any given input. Often an average case 

analysis is a more realistic measurement of an algorithm's performance. For instance, 

when an algorithm is running repeatedly on many sets of inputs. Unfortunately, average 

case analysis of an algorithm is not always possible because it requires knowledge about 

the data distribution of the input. In this thesis all algorithms presented or developed 

will be accompanied by a computational complexity analysis for their worst case 

performance, which appears to be the most representative and least optimistic 

measurement of an algorithm's performance.

2.2.1 Asymptotic Analysis

As mentioned in section 2.2, the time efficiency of an algorithm depends on the size of 

the input of the algorithm. Consider the problem of sorting the elements of an array of
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integers, of size n in ascending order. The running time of the algorithm is defined as 

the maximum number of primitive operations required by the algorithm to process the 

input, which is in this case of size n. Note that with the term primitive operation it is 

meant an operation, whose execution time is constant and does not depend on its 

operands. However, it is not very easy especially for complicated algorithms to make 

an accurate estimation of the number of primitive operations required by the process. 

Consider that for the sorting problem mentioned above, the bubble sort algorithm is 

used to solve it. After a careful analysis of the algorithm in Knuth (1998), it is derived 

that the running time of the algorithm in the worst case is defined by the function f(n) = 

7.5n +0.5n+l over the input (the n elements of the array). Note the worst case is when 

the initial array appears in descending order. This means that if there are n = 5 elements 

to be sorted, the algorithm can sort them using at most 191 primitive operations. If the 

number of elements to be sorted increases, it can be noticed that the number of primitive 

operations used by the algorithm will be different. For very large inputs, the algorithm's 

running time grows by a factor approximately n , even though the exact number of 

primitive operations is different. This happens because for large values of n, the low- 

order terms of the formula and the leading term's constant coefficient are relatively 

insignificant. For this reason, a simplified analysis is used to estimate the number of 

operations used by the algorithm for a given input. This is called asymptotic analysis 

and refers to the analysis of an algorithm, as the input size gets sufficiently large. To be 

more precise asymptotic analysis is concerned mostly with the growth rate of the 

number of primitive operations used by the algorithm as the input size gets sufficiently 

large.
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Definition 2.1 (asymptotic upper bound)

If T(n) > 0 represents the true running time of an algorithm, it is said that T(n) is in 

O(f(n)), if and only if there exist two positive constants c and n0 such that T(n) < c f(n), 

for all n > no.

For the worst case of the bubble sort, even though the exact running time is T(n) = 

7.5n +0.5n+l, the term n2 will dominate the growth as n increases. Therefore it could 

be said that the algorithm is in (or runs in) O(n2) time. Note that the upper bound is not 

the same as the worst case for a given input of size n. It is rather the upper bound for 

the growth rate of the primitive operations used by an algorithm as the input changes. 

Thus, it makes sense to define the upper bound of the best case (or the average case or 

the worst case). Since the bubble sort is in O(n2) in the worst case, it is true to say that 

bubble sort is also in O(n5). For this reason, it is of interest to define, the lowest 

possible upper bound (tight upper bound). Some textbooks provide a definition of the 

asymptotic upper bound using equality with the big-Oh notation. It seems more precise 

to say that T(n) is in O(f(n)) rather than T(n) = O(f(n)), because there is not a strict 

equality between T(n) and O(f(n)). For instance, O(n) is in O(n5), but O(n5) is not in 

0(n).

Just as an algorithm has an upper bound for a class of input, it also has a lower bound. 

This bound again bounds the growth rate of the algorithm from below, and is defined as 

the minimum number of the primitive operations required by the algorithm to process a 

class of input.
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Definition 2.2 (asymptotic lower bound)

If T(n) > 0 represents the true running time of an algorithm, it is said that T(n) is in 

Q(f(n)), if and only if there exist two positive constants c and no such that T(n) > c f(n), 

for all n > no-

It is important to specify for which particular class of input the asymptotic analysis is 

carried out. For instance, for the Insertion sort (Knuth, 1998) the asymptotic tight lower 

bound is Q(n) in the best case for the algorithm and Q(n2) in the worst case for the 

algorithm. Sometimes the time efficiency of an algorithm is lower bounded by the 

complexity of the input itself. For example, it is not possible to sort the n elements of 

an array if all of them are not examined at least once. The input itself can provide some 

indication for the asymptotic lower bound of an algorithm and it can be said that a 

sorting algorithm is at least in Q(n).

When an algorithm for solving a particular problem attains its lower bound it is said to 

be optimal, since there is no other algorithm that solves this problem by performing 

better asymptotically. If the lower bound and the upper bound of an algorithm are, 

Q(f(n)) and O(f(n)) respectively, it is then said that the algorithm has a tight bound of 

0(f(n)).

Definition 2.3 (asymptotic tight bound)

If T(n) > 0 represents the true running time of an algorithm, it is said that T(n) = 

0(f(n)), if and only if, T(n) is in O(f(n)) and T(n) is in fi(f(n)).
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Often there is a gap between the lowest upper bound of an algorithm and its highest 

lower bound (provided by the worst case construction). This means that there is either 

worse worst case construction to be set or there is still room for improvement on the 

upper bound of the algorithm.

2.2.2 Time and Space

As mentioned in section 2.2, another computing resource besides time that is of concern 

is the space. The amount of disk space or memory space that is available in a system is 

a very important consideration in the design of an algorithm. The computational 

complexity of an algorithm is a measurement of the time that the algorithm itself 

requires to solve a problem for a given set of data inputs. Space complexity is rather a 

measurement, which is determined for the data itself. For example, the space 

requirement for the array of integers mentioned in section 2.2.1 in the example of 

sequential search is kn bytes providing that each integer requires k bytes for its storage 

in the array. Thus, this data structure is 0(n). There are cases where the running time 

of an algorithm for solving a particular problem can be reduced by sacrificing the space 

requirements. This is known as the space/time trade-off principle.

2.2.3 Hardness of the Problems

In the computer theoretician community a problem is characterised as "hard" when the 

best existing algorithm that solves the problem has a very expensive running time. Such 

problems could be those with exponential running time. A typical example of such a 

problem is the TOWERS OF HANOI (sometimes referred to as the tower of Brahma or 

the end of the world puzzle) described in Harel (1993). In the problem there are three

2-8



Chapter 2 Preliminaries

pegs and a tower of disks on the first peg, with the smallest disk on the top and the 

biggest on the bottom, Figure 2.1 depicts this problem. The objective of the problem is 

to move all the disks from the first peg to the third peg with the help of the second peg, 

by moving only one disk at a time and by not resting a bigger disk on top of a smaller 

one.

Peg 1 Peg 2 Peg 3 

Figure 2.1 Illustration of the TOWERS OF HANOI problem.

This problem is very well understood but the best known algorithm for solving it is in 

0(2"). Try to run the algorithm for solving this problem for a "reasonably" large 

number of disks, e.g. 1 64, the running time is catastrophically long. If it takes one 

second to move one disk, it will take 585 billion years to move the 64 disks.

If there is a polynomial time algorithm to solve a problem, that is an algorithm whose 

running time is in O(p(n)), for some polynomial p, with n input length, then it is said 

that the problem is in P. The distinction between the polynomial and exponential time

' The original Tibetan Version of the puzzle involves 64 disks. Actually the Tibetans knew that the 
solution of the puzzle is extremely time consuming and they believed that the world would end when all 
the 64 disks were correctly piled up.
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algorithms is very important when considering the solution of a problem for large 

problem instances. Edmonds (1965), in a philosophical digression on the meaning of 

"efficient algorithm", characterised the polynomial algorithms for solving a problem, 

"good algorithms" and he pointed out a problem (Graph Isomorphism), which cannot be 

solved by such "good algorithms". A problem that can be solved by an algorithm of 

polynomial time, it is referred to as tractable. If a problem is so hard that there is no 

polynomial time algorithm to solve it, it is then referred to as intractable (Garey and 

Johnson, 1999). Note that not only problems, which require exponential time to be 

solved, are intractable but also problems for which the solution itself is so extensive that 

it cannot be bounded by a polynomial function of the input. Allan Turing, (Turing, 

1936) presented the first results on undecidability. He showed that problems exist, 

which no algorithm can solve, hence they are called undecidable. Such a problem is the 

HALTING PROBLEM, the solution to this problem requires an algorithm for deciding 

whether a given program will ultimately halt for a given input. It is plausible to assume 

that since problems exist, which no algorithm can solve, these problems are intractable.

A successful approach to deal with the intractable decidable problems came from the 

non-deterministic Turing machine. The non-deterministic Turing machine can be 

imagined as a computer, which has the ability to "guess" the correct solution for a 

problem from among all its possible solutions. An alternative way to regard a non- 

deterministic machine is as a super parallel computer, every terminal of which runs the 

same program (simultaneously) but each gets a different choice (guess)2 .

2 Note that this is not real parallel computing, which allows the computers to run different programs and 
interact with each other.
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If for a given problem, a solution can be "guessed" and this solution can then be 

checked whether it is correct or not in polynomial time, then this problem can be solved 

in polynomial time in a non-deterministic machine, even if the number of possible 

solutions is exponential. It is then said that this problem is in NP (Non-deterministic 

Polynomial) and algorithms that work in this manner are called non-deterministic. This 

means that a problem in NP can be solved in polynomial time using an infinite number 

of computers to corroborate in parallel all possible solutions to the problem. Note that 

not all the problems, which require exponential time in an ordinary computer, are in NP. 

For instance, the TOWERS OF HANOI problem is not in NP because it is not possible 

for a non-deterministic machine to "guess" and print out the correct answer in 

polynomial time. The ability of a non-deterministic machine is limited to "guessing" if 

a given choice among the set of all solutions is correct. Therefore, only those problems, 

to which a guessed solution can be checked for its correctness in polynomial time, can 

be solved in polynomial time by a non-deterministic machine.

If a problem is in NP and all other NP problems can be reduced to it in polynomial time, 

it is then said that this problem is NP-complete. There are many problems known to be 

NP-complete. For a comprehensive list see in Garey and Johnson (1999). What is 

really interesting about the NP-complete class is that, if someone ever finds a 

polynomial time algorithm in an ordinary computer to solve any of the problems in this 

class, then all the NP problems could be solved in polynomial time using an ordinary 

computer, by a series of reductions. One of the most important questions with no 

answer in computer science is whether P = NP. Figure 2.2, illustrates a view of the
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interrelation of the problems, which their solution requires at most exponential time 

algorithms.

Problems with Exponential Time

Figure 2.2 Relation between the problems, whose solution requires 

exponential time algorithms.

If there is a NP problem, say X, and it can be reduced in polynomial time to a problem 

Y, then problem Y is said to be NP-hard. Alternatively, a problem is NP-hard, if it is at 

least as hard as any NP problem. The NP-hardness of a problem is determined by a 

series of transformations of the problem to one of the known NP-hard problems. If 

there is an NP problem, say X, such that Y is in polynomial time reducible to it, then Y 

is NP-easy. For a more detailed discussion on NP-completeness, see (Papadimitriou 

and Steiglitz, 1982), (Van Leeuwen, 1990) and (Garey and Johnson, 1999).

Another class of problem's hardness is the PSPACE. A problem is said to be in 

PSPACE if it can be solved by an algorithm of polynomial space complexity on a non- 

deterministic machine (hence on a deterministic machine). Similar definitions to NP- 

completeness and NP-hardness, apply to PSPACE-completeness and PSPACE-hardness
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respectively. If there is a PSPACE problem say X, and it is polynomially reducible to a 

problem Y, then problem Y is said to be PSPACE-hard. If a problem is in PSPACE and 

is PSPACE-hard, it is then said that this problem is PSPACE-complete. The ability to 

subsume a problem in one of the above classes provides hard evidence for the lower 

bound of the computational complexity of the problem.

2.3 Computational Geometry and Topology

Computational geometry is the branch of computer science, which studies algorithms 

for the solution of geometric problems, (Mulmuley, 1994), (de Berg et al, 1997), (O1 

Rourke, 1998) and (Boissonnat and Yvinec, 1998). The input to a typical 

computational geometric problem is the description of a (or a set of) geometric 

object(s), such as points, line-segments, polytopes and so forth. The output is often the 

construction of a geometric structure such as the convex hull of a set of points, or it 

could be the response to a query about the input, such as whether the boundaries of two 

polygons intersect.

Many techniques for solving the robot motion planning problem use a geometric 

representation of the robot's environment. Such a geometric representation is called a 

geometric map and is made up of discrete geometric primitives such as points, lines, 

polygons, polyhedra and so forth. Note that the robot's space cannot only be 

geometrically represented. Another way to represent the space is by discretely sampling 

the space itself using a grid or another spatial decomposition tool and expresses the 

degree of occupancy of the sample points (cells of the grid). The robot's space can also
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be topologically represented. The topological representations rely explicitly on the 

connectivity between regions or objects and in contrast with the geometric 

representation involve absence of metric data.

In this section, some definitions and notational conventions from computational 

geometry and topology are presented.

The set of the real numbers is denoted by IR. This set can be represented by the real 

number line. For points p and q respectively on the real line, with p < q, the closed 

interval, which includes p and q is denoted by [p, q] and the open interval, which does 

not include them is denoted by (p, q), (in some textbooks this can be found as, ]p, q[). 

A d-dimensional space of reals is defined by (Rd . Imposing the Euclidean metric on the 

real space (Rd creates a Euclidean space Ed . This metric is the standard distance 

function. For two points p and q in the Euclidean plane E2 with co-ordinates (xp , yp) 

and (xq , yq) respectively the standard Euclidean distance between p and q is obtained by 

equation (2.1).

(2-1)

In the same manner, a subset S of (Rd , is dosed if it includes its boundary dS and open 

if it does not. The interior of a set S, int(S), is the set S without its boundary dS . The 

complement S , of a set S, consists of all points in the space which are not in S. The 

closure, cl(S), of a set S contains both its interior and its boundary and is 

cl(S) = int(S) u 6S . A set S is called compact if it is both closed and bounded. A set is
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said to be connected if any two points p, qeS, can be connected with a curve, and this 

curve is contained in S, otherwise it is called disconnected.

2.3.1 Higher-Dimensional Spaces

Points on the plane and in the three-dimensional space can be specified by means of 

Cartesian co-ordinates. Many notions and properties of two- and three - dimensional 

geometry can be generalised to spaces of n-dimensions with n>3. For instance if the 

points p and q have (pi, p2, ..., pn) and (qi, q2, ..., qn) co-ordinates respectively in the n- 

dimensional space, the distance between p and q is obtained by equation (2.2).

d(p, q) = \\P -q\ = -p+(q1 -pl 1 +... + q.-p. ' (2-2)

Hyperplane is a generalisation of a line in the n-dimensional space. Therefore, the set 

of points whose co-ordinates satisfy the linear equation (2.3) is called a hyperplane and 

divides the n-dimensional space into two half-spaces, as the plane divides the three- 

dimensional space in two half spaces.

aixj+ 32X2+ ... + anxn = b (2.3)

A hyper surface is a (n-l)-dimensional set that generalises a curve. If a hypersurface can 

be described by a polynomial of bounded degree, it is said that the hypersurface has a 

bounded algebraic degree.
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2.4 Configuration Space and Degrees of Freedom

This section describes some very important issues for solving the robot motion planning 

problem.

The physical space in which a robot operates is most of the time equal to the Euclidean 

space of dimensions two or three (E2 or E3) and it is referred to as the workspace. A 

robot's degrees of freedom (dof> are equal to the number of independent parameters that 

are adequate to describe the specification of any placement of the robot in the 

workspace. Using an artificial space the configuration space (or joint space) of 

dimensions equal to the number of the dof of the robot, every configuration of the robot 

can be represented uniquely within this space as a point. Figure 2.3 illustrates two 

different types of robots, a polygonal rigid robot and an articulated arm, each of them 

having a different number of degrees of freedom.

Figure 2.3 Illustration of different types of robots. On the left there is a 

polygonal robot with three degrees of freedom and on the right there is a 

robotic manipulator with two degrees of freedom.
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Robot 1 is a simple3 polygonal rigid body, which can translate freely in the x-y plane, 

resulting in two dof and rotate about its reference point r, adding another degree of 

freedom. The total number of the dof of Robot 1, is three and its configuration space is 

IR x [0, 27i). Robot 2, is an articulated arm, which moves in a two-dimensional 

workspace (hence, sometimes is called planar arm). It has three links LI, LI and L}. 

The first link is mounted on the ground and the other two links are connected to each 

other with two revoluted joints. A placement of Robot 2, can be uniquely defined by 

the angle of the two joints. Therefore, Robot 2 has two degrees of freedom. Suppose 

that the links do not collide with each other at any placement of the arm, then any 

placement of the arm can be defined by any pair of joints' angles (note that any pair of 

angles belong to the [0, 2nf). The configuration space of Robot 2 is SO(2). SO(n) is

2

the Special Orthogonal Group of the nxn matrices in IR" , with orthonormal columns 

and determinant equal to +1.

The idea of reducing the dimension of the robot into a point in an artificial space was 

first introduced by Udupa (1977). Later, Lozano-Perez and Wesley (1979), used this 

idea and represented a robot as a point (point-robot) in the configuration space and they 

mapped the environment's obstacles into that space. When the obstacles were mapped 

in the configuration space, they then planned the motion of the point-robot into this 

space. This algorithm finds collision-free motions of polygonal/polyhedral robots 

among polygonal/polyhedral obstacles. Using the configuration space approach they 

reduced the problem of finding a path between two points for a dimensioned robot 

among dimensioned obstacles to that of finding a path between two points for a point-

A polygon is said to be simple when its edges intersect only at their end points.
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robot among dimensioned obstacles. Lozano-Perez and Wesley's algorithm is 

considered as the first exact robot motion planning algorithm. Since then the idea of 

planning robot motions in a configuration space has been used widely.

2.4.1 Configuration Space of a Robot

Consider the workspace W = iRn , with n = 2 or 3, populated by dimensioned physical 

obstacles PI, where ieN and the rigid robot R in a specified position in W with a certain 

orientation. Further consider that Fw a Cartesian co-ordinate (global) frame attached to 

W with origin Ow and FR a Cartesian co-ordinate (local) frame attached to R with origin 

OR respectively (Fw is fixed while FR is moving). A configuration q of R is the 

specification of the position and orientation of FR with respect to Fw . All the 

configurations of R constitute the Configuration Space C (or Cspace} of R. When R is 

not a rigid body, for instance when it is an articulated manipulator, then for every body 

RI, ieN of R, a Cartesian co-ordinate frame FR . is attached to it with origin O R . A

configuration qt of R is the specification of the position and orientation of every FR . 

with respect to Fw . All the configurations q, of R constitute the Configuration Space C 

of R. The configuration space of a robot can be a multiple connected space, this means 

that there could be more than one path connecting two configurations in it. In robot 

motion planning, a function often is defined in order to refine the paths in the 

configuration space and choose one of them, depending on what sort of path (i.e. 

shortest path, time-minimal path or so on) is required. In Latombe (1991), the notion of 

configuration space is discussed in greater detail.
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2.4.2 Mapping the Obstacles in the Configuration Space

If R(q) denotes the subset of W occupied by R at configuration q then Pj, ie[l,..,p] maps 

from W in C to an area CPj, which is called Obstacle's Configuration Space or C- 

Obstacle. More formally:

CP| = {qeC | R(q) n P, * 0 } (2.4)

This area represents the configurations, which are illegal for the robot to attempt, 

because it will collide with the obstacle Pj. The union of all obstacles' configuration 

spaces CPj is called C-Obstacle region and is formally defined as:

UCPi (2.5)

This region represents all the inaccessible configurations for the robot to attempt, 

because in these configurations the robot will collide with some obstacles. In section 

2.4.4, a method for computing the configuration space of the obstacles is presented.

2.4.3 Path in the Configuration Space

A path for a robot R between the configurations qstart (robot's start configuration) and 

qg0ai (robot's goal configuration) in C can be defined as a continuous map:

t : [0, 1] -> C, where t(0) = qstart, T(!) = qgoai (2.6)
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It is important to note that the topology of C is not always the same as that of W. In the 

Euclidean workspace W, if two paths connect the same two points, one can be 

continuously deformed to the other one. However, this is not the case in C. If C is the

configuration space and UCPi is the union of all C-Obstacles, then the collision free 

space Cfree is defined as:

Any configuration on Cfree is called free configuration, Cfree space is an open set of all 

free configurations of R. Any path on Cfrce is called free path and it is guaranteed that 

while a robot is moving along it, it does not intersect or come in contact with any 

obstacle. A path between two configurations is a called semi-free path when it is a 

continuous map:

T = [0, 1] -> cl(Cfree) , where i(0) = qstart , T(!) = qgoal (2.8)

While the robot is moving on a semi-free path, it touches the boundaries of the obstacles 

without intersecting their interior. Motions in contact are also called compliant motions 

and sometimes result in more robust algorithms, (Avnaim et al, 1988).

2.4.4 Computing the Obstacles' Configuration Space
sEOT^

There are several methods for computing the C-Obstacles, seven of them are listed in 

(Hwang and Ahuja, 1992). These are, point evaluation, Minkowski sums, boundary 

equation, needle, sweep volume, template and Jacobian-based method. Kavraki (1995),
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presented an alternative way for computing the C-Obstacles using Fast Fourier 

Transform. All these methods can be used for any type of robot and they all work very 

well in configuration spaces of low dimensions, but as the number of degrees of 

freedom of the robot increases the configuration space grows exponentially and thus the 

computation of the C-Obstacles is an extremely difficult task. However note that there 

are some advantages and disadvantages to each method when used in different 

environments. For example the Minkowski sums is very straightforward when it is used 

for the construction of the C-Obstacles when the robot and the obstacles are two- 

dimensional polytopes (especially for non-rotating robots) and therefore this method is 

most popular with AGVs. This thesis is mostly concerned with the development of 

motion planning algorithms for AGVs, therefore in this chapter, the Minkowski sums 

method will be discussed.

The process of computing the configuration space of the obstacles is called growing 

obstacles. This is because the size of the obstacles is enlarged with respect to the size 

of the robot and the size of the robot is reduced to a point (point-robot). As long as the 

point-robot (reference point) is outside of the boundaries of the grown obstacles (C- 

Obstacles) the robot lies in a collision-free space. Figure 2.4 illustrates the principle for 

calculating the C-Obstacles when the workspace W = R2 . Suppose that R is a 

polygonal robot, which translates freely without rotation and the origin of the frame FR 

is an arbitrarily chosen reference point on the robot. If P is a polygonal obstacle then 

CP is the grown obstacle or Obstacle's Configuration Space (shaded area) and the robot 

can now be considered as a point.
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R

CP

FR

Figure 2.4 The shaded areas constitute the grown obstacle or the 

obstacle's configuration space CP.

The above process uses the Minkowski sums to calculate the C-Obstacles. The 

Minkowski sum of two Sj c IR2 and 82 c IR2, is denoted by Si © 82 and is defined as 

follows, (Lozano-Perez and Wesley, 1983).

For two sets Si c IR2 and 82 c: iR2, the Minkowski sum is,

Si, be S2 } (2.9)

In order to express the C-Obstacles as Minkowski sums, one more notation it is 

required. If q is a point q = (qx , qy), then -q is defined as -q = (-qx , -qy) and for a set S, - 

S is defined as -S = {-q : qeS}. As it can be noticed, -S, is obtained by reflecting 8 

about its origin.

Visually the C-obstacles can be obtained by arbitrarily choosing a point on the robot as 

a reference point and then keeping a track of the locus of the reference point, while the
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robot is moving (by touching) at fixed orientation along each side of every obstacle in 

the environment. More formally, given that the robot R and the obstacle P are sets in 

IR2 , CP = P 0 (-R(0, 0)), where is R(0, 0) is the reference point of the robot, the proof 

can be found in (Lozano-Perez and Wesley, 1983). If P and R are both convex 

polygons on the plane the resulting Minkowski sum of their vertices is a convex 

polygon. If P and R are two-dimensional n-gon and m-gon respectively then the 

Minkowski sum P © R can be computed in O(n + m) computational time when both P 

and R are convex, in O(nm) when one of them is convex and the other non-convex and 

in O(n2m2) when both of them are non-convex, (de Berg et al, 1997). Laumont, (1987) 

extended the algorithm for computing the obstacles' configuration space, to be 

applicable to generalised polygons4 , without loss of the algorithmic complexity. In 

Appendix A, an algorithm for computing the obstacles' configuration space for a non- 

rotating convex robot and a convex obstacle is presented. In addition, an extension to 

this algorithm for non-convex robot/obstacle is discussed along with an analysis of their 

computational time.

2.5 Discussion

Robot motion planning is a well studied area of robotics, which combines principles 

from many disciplines such as Algorithmic Research, Computational Geometry, 

Topology, Mathematics and so on. The aim of this chapter was to summarise some 

important aspects from these disciplines and to bring up some issues used in the thesis

4 Generalised polygons are two-dimensional polytopes, whose boundaries consist of straight line- 
segments and/or circular arcs.
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in order to make the study of the thesis at hand more efficient and its concept more 

thoroughly understood. This chapter is by no means a complete reference but just a 

representative source of information of the aforementioned aspects.
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3
Robot Motion Planning 

- Literature Survey

/ have declared the former things from the beginning
ISAIAH 48: 3

3.1 Introduction

As was mentioned in the introduction to the thesis (chapter one), motion planning is 

considered a central field in the development of robotic systems and it has attracted a 

great deal of research activity for the past two decades. The motivation behind the 

research efforts arises from the increasing demand for robotic systems and especially 

for AGVs from industry. One of the most essential tasks that a mobile robot should 

undertake in order to be autonomous is to plan its own motions. Therefore, the solution
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to the motion planning problem plays an important role in the development of 

autonomously guided vehicles and robotic systems in general. Various motion planning 

techniques for solving the basic movers' problem and various extensions of it have been 

developed over the years, each of them posing its own advantages and disadvantages in 

different application domains.

In this chapter several important contributions are presented, these contributions are 

summarised in three main approaches. The roadmap approaches, the cell 

decomposition approaches and the potential field approach, (Latombe, 1991). Note 

that these approaches are not mutually exclusive and sometimes a combination is used 

to solve a particular motion planning problem more effectively.

It is impossible to refer to all the contributions from the last two decades and this is not 

within the scope of this chapter. Therefore, this chapter does not serve as an exhaustive 

survey but only gives an indication of the development of motion planning techniques 

over the past two decades. Further surveys of motion planning can be found in (Akman, 

1987), (Yap, 1987), (Schwartz and Sharir, 1988), (Latombe, 1991), (Hwang and Ahuja, 

1992a), (Sharir, 1995), (Latombe, 1999) and (Wager, 2000). Note that chapters six and 

seven are concerned with the dynamic motion planning problem. Brief surveys of 

approaches used for solving the dynamic motion problem are provided at the beginning 

of each of these two chapters.
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3.2 Roadmap Approaches

The fundamental idea behind the roadmap approaches is to construct a network of one- 

dimensional curves lying in the robot's collision-free space, Cfrec , or its closure, cl(Cfree), 

in order to capture its connectivity. This network is called a roadmap and once it is 

constructed then the robot's start configuration, qstart , and its goal configuration, qgoa|, are 

connected to it, each of them with one-dimensional curve(s), which also lie in Cfree or 

cl(Cfree). Once the roadmap, R, is constructed and the qstart and qgoai are connected to it, 

the path planning problem has been reduced to a graph search problem. Thereby, what 

is required to solve the path planning problem is to search the one-dimensional network 

for a path from the robot's start configuration to its goal configuration. The essential 

matter of the roadmap approaches is the construction of the roadmap itself. There are 

various types of roadmaps based on different principles. These roadmaps are the 

visibility graph, the Voronoi diagram, the freeway nets , the silhouettes and the 

probabilistic roadmap. Each of them will be briefly discussed in the following sections.

3.2.1 Visibility Graph

The visibility graph approach is considered as one of the earliest robot path planning 

methods. It was first used by Nilsson (1969), to plan the motion of a mobile robot 

system (the Shakey). A model of the workspace was used and the actions of the robot 

were stated in a language of first-order predicate calculus. Lozano-Perez and Wesley 

(1979), further developed the idea of visibility graph and reported an algorithm for path 

planning of a polygonal/polyhedral robot in a two/three-dimensional environment.

1 In some literature this method is subsumed in the cell decomposition approaches, here the taxonomy 
from (Latombe, 1991) is adopted and the method is subsumed in the roadmap approaches.
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The visibility graph approach is mainly used in two-dimensional environments 

populated by polygonal obstacles. The visibility graph is an undirected graph 

constructed by considering all the vertices of the C-Obstacles, the robot's start 

configuration and its goal configuration. Edges of this graph are the line-segments, 

which connect all the mutually visible vertices (hence visibility graph). Two vertices 

are mutually visible when they can be connected with a straight line-segment and this 

segment does not overlap the interior of any C-Obstacle. More formally the undirected 

graph VG(V, E) is defined as follows:

V is the set of all C-Obstacles vertices as well as the qstart and qgoai.

E is the set of all edges ey = (vj, Vj) such that,

V ijeV A Vke[l,.., p] | eij n int(CPk) = 0.
i*j

Figure 3.1 illustrates the concept of visibility graph in an environment populated by 

polygonal obstacles.

*start

Figure 3.1 Visibility graph with polygonal obstacles.
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After the visibility graph has been constructed then a standard shortest path algorithm 

for weighted graphs can be applied to establish the shortest Euclidean semi-free path.

The algorithm presented in (Lozano-Perez and Wesley, 1979) is called VGRAPH and it 

was not accompanied by an upper bound, but it is suspected that is in O(n3), where n is 

the total number of the C-Obstacles' vertices, (Canny, 1988). Once the visibility graph 

was constructed they used heuristics to search it for the shortest path. In particular the 

A* algorithm due to Hart et al (1968) was used, which requires O(n2) time, where n is 

the total number of the graph's vertices. Therefore, the bottleneck of their approach is 

the construction of the visibility graph.

An algorithm for constructing the visibility graph in time O(n2 log n), where n is the 

total number of the obstacles' vertices in the scene, was proposed by Lee (1978). This 

algorithm can lead to an overall computational complexity of the VGRAPH approach to 

O(n2 log n ) where n is the total number of the obstacles' vertices. (Welzl, 1985), 

(Asano et al, 1985) and (Edelsbrunner, 1987) proposed algorithms for constructing the 

visibility graph in time O(n ), where n is the total number of the obstacles' vertices. 

Ghosh and Mount (1987), proposed an output-sensitive algorithm for constructing the 

visibility graph in O(k + n log n) time, where k is the number of edges of the visibility 

graph and n is the total number of the obstacles' vertices.

Establishing the shortest path is fundamental in robot motion planning and is one of the 

most important issues. The visibility graph method is a very effective method when 

applied to translational motions in the plane and in general establishes optimal paths
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(using Euclidean metric). However, some drawbacks occur when using this method. 

These drawbacks are:

  Since the path established by this method lies in the cl(Cfree), the robot in general 

will touch the environment's obstacles, while it is moving along the path. Therefore, 

this method does not give rise to safe paths. However, this drawback can appear in 

many path planning approaches especially to these, which plan the robot's paths in 

the cl(Cftee) space. Note that any semi-free path can be transformed into a free path, 

which can be made arbitrarily close to the semi-free path.

  The path obtained using this method is a set of straight line-segments, which give 

rise to curvature discontinuities. This means that while the robot is moving along 

this path it might have to slow down completely in order to undertake some turns, 

which is not time efficient. However, this problem arises in many path planning 

approaches and one way to tackle it is to smooth out the path once it is found. The 

smoothing out procedure is at the expense of computational time.

  The optimality of the visibility graph method is not as effective when it is applied in 

configuration spaces with more than two dimensions. For example, in a three- 

dimensional configuration space populated by polyhedral obstacles, the shortest 

path does not in general go through the obstacles' vertices.

Canny (1988) showed that the problem of finding the shortest path in a three- 

dimensional configuration space, which contains polyhedral obstacles, is NP-hard.
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Lozano-Perez and Wesley (1979) attacked this problem by adding fake vertices in the 

C-Obstacles' edges so no resulting edge was greater than a predefined length. This 

method results in a good approximation of the shortest path but it makes the search of 

the graph more time consuming due to the increased number of vertices. Papadimitriou 

(1985), proposed a polynomial approximation scheme for solving this problem by 

breaking the original C-Obstacles' edges in the scene into short segments, he then 

constructed a visibility graph using these segments as nodes of the graph. The path 

obtained by the algorithm is at most (1 + g) times longer that the shortest path. The 

computational time of the algorithm is polynomial in n and E, where n is the total 

number of the elements of the polyhedral scene (vertices, edges and faces) and s is the 

desired accuracy of the approximation algorithm. Jiang et al (1996), proposed an 

algorithm for finding the shortest path between two query points in a three-dimensional 

environment populated by convex polyhedral in time O(n u ), where n is the total 

number of the obstacles' vertices, u is the maximum number of vertices on any one 

obstacle and k is the number of obstacles. Their approach is based on the concept of the 

visibility graph. A set of visible boundary edges (VBE) from a given view point are 

identified using a technique based on project!ve relationships. The algorithm starts 

from the robot's initial point as a view point and recursively constructs an initial 

reduced visibility graph through points on the VBEs at every recursive call, until the 

goal point is reached. An optimisation technique is used to revise the turning points of 

each path on the VBEs and the global shortest path is then selected from the three- 

dimensional reduced visibility graph.
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Laumond (1987), extended the visibility graph to be applicable in environments 

populated by generalized polygons using the properties of the Minkowski operators.

The visibility graph technique was further extended by, Rohnert (1986), Rohnert 

(1988), Liu and Arimoto (1991), Liu and Arimoto (1992) and Liu and Arimoto (1995) 

to the Tangent Graph (T-graph) (or reduced visibility graph). The tangent graph is a 

graph whose vertices are the C-Obstacles' vertices as well as the robot's start and goal 

points. The edges of this graph are the C-Obstacles' edges as well as the edges 

connecting all the mutually visible vertices and define common tangents to the C- 

Obstacles. Figure 3.2 illustrates the tangent graph, where it can be noticed that the 

number of edges of the tangent graph is considerably reduced from its corresponding 

visibility graph shown in Figure 3.1. In (Liu and Arimoto, 1992), it was shown that the 

T-graph contains the shortest semi-free path between two points. Therefore, since the 

T-graph has fewer edges than the visibility graph, the search for the shortest path is less 

time consuming.

qstart

Figure 3.2 Edges of the Tangent Graph are only the cotangents of any pair 

of the scene's C-Obstacles.
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Alexopoulos and Griffin (1992), proposed an algorithm named V* GRAPH for solving 

the basic movers' problem, in O(«2 log ri), where n is the total number of C-Obstacles' 

vertices. The algorithm constructs a reduced visibility graph in a different manner to 

this of the tangent graph and produces the shortest semi-free path between the AGV's 

start and goal locations. However, Conn et al (1997), constructed a counterexample, 

showing that the V*GRAPH algorithm is neither complete nor optimal in a sense that 

finds the shortest semi-free path between two query points as it was claimed by the 

authors. In chapter four the T-graph approaches will be discussed in more detail and the 

V*GRAPH algorithm will be studied in order to identify its deficiencies.

3.2.2 Generalised Voronoi Diagram

This approach is also called the retraction approach, because the Voronoi diagram is a 

mapping of the Cfree (= IR2) space into one-dimensional curves, which also lie in the 

Cfree- The mapping has to be continuous and preserve the original space's connectivity. 

Such a function in topology, which maps an n-dimensional space IR", onto an n-1- 

dimensional space IR"" 1 is called a retraction function (Preparata and Shamos, 1985), 

hence the name of the approach. For a detailed survey on Voronoi diagrams, see 

(Aurenhammer, 1991). A good textbook on the concept and applications of the Voronoi 

diagram is (Okabe et al, 2000). A review of the basic properties of the Voronoi 

diagram, along with some efficient techniques for its construction can be found in 

(Leven and Sharir, 1987). Some very brief but very interesting historical remarks about 

the Voronoi Diagram can be found in (de Berg et al, 1997).
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The Voronoi diagram (also known as Dirichlet tessellation or Thiessen tessellation)2 of 

a finite set of points (sites) S in the plane consists of a finite set of points (or Voronoi 

vertices) and a finite set of edges (or Voronoi edges) that partition the plane into 

(possibly unbounded) convex regions, which are called Voronoi cells. Each of these 

cells contains only one site and any point inside this cell is closer the site enclosed by 

this cell than to any other site, under a predefined metric (usually LI). Figure 3.3 

illustrates the concept of Voronoi diagram v(S) of a set of sites S in E2 .

Figure 3.3 Voronoi diagram for eight sites in the plane.

Every edge of the Voronoi diagram is the locus of the points, which are equidistant 

from at most two sites (bisector) and every vertex of the Voronoi Diagram is equidistant 

from at least three sites. It is not hard to show using the Ruler's formula (which states

2 The name Voronoi Diagram, Dirichlet tessellation or Thiessen tessellation, has been given to this 
Geometric structure in honour to the two Mathematicians and one Climatologist respectively for their 
great contributions regarding this Geometrical construct, (Aurenhammer, 1991).
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that for any connected planar embedded graph with v vertices, e edges and f faces the 

following holds: v-e+f =2) that the Voronoi diagram has O(n) edges and O(n) vertices. 

The lower bound for computing the Voronoi diagram Q(n log n) time, (de Berg et al, 

1997). Fortune (1986) proposed an algorithm for constructing the Voronoi Diagram in 

O(n log n) time and O(n) space, hence his algorithm is optimal. The Voronoi diagram 

as a geometric data structure was first proposed for solving the robot path planning 

problem by Rowat (1979).

A generalised Voronoi diagram (GVD) of set of points, line-segments, circles and 

polygons in the plane, was explored by Drysdale (1979). A GVD of a set of points and 

line-segments in the plane, in general partitions the plane into a complex of non-convex 

cells, (Lee and Drysdale, 1981). The edges of the GVD are straight line-segments and 

parabolic-segments.

In robot path planning the GVD is used to construct a roadmap in the robot's Cfree . 

When the Cfree = (R2 , the result GVD(Cfree) is a roadmap, which is composed of straight 

line-segments and parabolic-segments, when sites are the edges and the vertices of the 

scene's polygons. Figure 3.4 illustrates the GVD of a two-dimensional bounded 

configuration space populated by polygonal C-Obstacles.
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^<xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx>c<xxxxx>oo<xxx'

Figure 3.4 The Generalised Voronoi Diagram for a set of convex obstacles 

in the plane bounded by an external polygonal obstacle.

The straight line-segments in the GVD are sets of points, which are equidistant from 

two edges or two vertices of the environment's object features and the parabolic- 

segments are sets of points, which are equidistant from one edge and one vertex of the 

environment's object features, whose locus and directrix are the vertex and the edge 

respectively. Note that a GVD of n points and line-segments, has O(n) vertices and 

O(n) edges (Kirkpatrick, 1979).

As with the visibility graph, the construction of the GVD is a very important issue in the 

retraction approach for robot path planning and can determine the overall computational 

time of the approach. Lee and Drysdale (1981) presented an O(n log2 n) algorithm for 

constructing the GVD for a set of n points and line-segments in the plane. Kirkpatrick 

(1979), proposed an O (n log n) algorithm for constructing the Voronoi diagram of an 

arbitrary collection of n disjoint points and open line-segments.
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After the Voronoi diagram has been constructed, the robot's start and goal points are 

retracted to it in the following manner. Let proj start and proj goai be the configurations on 

the Cfree's boundary, which are closest to qstart and qgoai respectively. The half-line I 

emanating from projstart and proj goai and passing through qstart and qgoai respectively 

intersects the GVD(Cfree) in some configurations. The closest to proj start and proj goa i 

intersections of £ with GVD(Cfree) can then be obtained. These intersections are the two 

retracted points qstart' and qgoar of qstart and qgoai respectively on GVD(Cfree). Figure 3.5 

illustrates this retraction. Since there are O(n) edges in the GVD(Cfree), this retraction 

can be accomplished in O(n) time.

vy<^\?vvvvvvvvvvv^^

-x-

P™Jgoal
goal Jstart

Figure 3.5 Illustration of the retraction of qstart and qgoai on the GVD(Cfree).

When the roadmap (GVD(Cfree)) has been constructed and the robot's start and goal 

locations are retracted to it, it can then be searched for a path from qstart to qgoai. The 

collision-free path between qstart and qgoai generated by this approach, consists of three 

sub-paths: the straight line path from qstart to qstart', a path in the diagram from qstart ' to
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qgoai' and a straight line path from qgoai' to qgoai. The search process requires O(n) time, 

leading to an O(n log n ) time for the overall approach.

The Voronoi diagram has been used widely for robot path planning, (6'Dunlaing and 

Yap, 1985), (6'Dunlaing et al, 1986), (6'Dunlaing et al, 1987), (Takahashi and 

Schilling, 1989). Canny and Donald (1988), proposed a simplified Voronoi Diagram 

for the motion planning problem, which is composed only of straight line-segments and 

is easier to extend to higher dimensions.

The advantage of the generalised Voronoi diagram approach is that it establishes safe 

paths, because when the robot is moving along these paths it stays as far away as 

possible from the environment's obstacles. However, a major disadvantage of this 

approach is that in general it does not return optimal paths. As with the visibility graph 

the disadvantage of this method is that the construction of the Voronoi diagram in 

higher dimensions is not very obvious and requires considerable computational time.

3.2.3 Freeway Method

The freeway method was developed by Brooks (1983), the idea is similar to that of the 

Voronoi diagram, that is to keep the robot as far away as possible from the obstacles. It 

is supposed that the robot is a convex polygon and that the obstacles are represented as 

unions of convex polygons. This approach does not require the robot's configuration 

space to be calculated instead it uses the robot workspace W. The freeway method, in 

general, extracts geometric features called freeways from the workspace, connecting 

them using a one-dimensional network called freeway net. After the robot's start and
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goal points are retracted to this network, the method searches the freeway net for a 

collision free path between these points.

The freeways are created in those places in the environment that are not occupied by 

obstacles. The environment's obstacles contribute in the creation of the freeways by 

letting the edges of the adjacent obstacles, which face each other produce a straight 

linear generalised cylinder. A freeway is a straight linear generalised cylinder, the 

straight axis (spine) of which is annotated with a conservative description of the robot's 

(R) free orientations, while its reference point Rr is moving along it. This method was 

originally intended to be used for two-dimensional polygonal workspaces where, the 

robot translates and rotates. Figure 3.6 illustrates the concept of the freeway.

"Spine

Figure 3.6 A two dimensional straight linear generalised cylinder created 

by the environment's obstacles PI and ?2.
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A two dimensional straight linear generalised cylinder was defined in (Latombe, 1991) 

as follows:

'A two-dimensional straight linear generalised cylinder is a region of fff 
obtained by sweeping a straight line-segment, the cross-section, along a 
straight line the spine. An origin and an orientation are defined on the 
spine. The cross-section stays perpendicular to the spine. It is partitioned 
by the spine into two segments, the right and left cross-sections. The lengths 
of the right and left cross-sections are independent, continuous, piecewise 
linear functions of the abscissa along the spine. The two lines drawn by the 
extremities of the cross-section are called the right and the left sides of the 
cylinder.'

In this approach the robots obstacle-free sub-space E of the workspace W, 

( E = W \ |J p,, where PI are the environment's obstacles) is represented as overlapping

generalised cones (freeways). For the construction of the freeways all pairs of 

obstacles' edges are considered. With every obstacle's edge, a supporting line can be 

associated which includes this edge and separates the plane into two half-planes. One 

of these half-planes contains the obstacle and is called the inner half-plane of the edge 

and the other, which does not contain the obstacle, is called the outer half-plane. A pair 

of edges EI, £2 produce a generalised cylinder if the following two conditions are 

satisfied:

1. At least one vertex of each edge is on the outer half-plane of the other.

2. The inner product of the outward pointing normals of EI and E2 is negative.

These conditions simply ensure that the edges EI, E2 "face" each other. The 

construction of a generalised cone up to this point requires O(n2) time, where n is the 

total number of the obstacles' edges in the scene.
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The next stage of the construction is the formation of the spine of the cone. The spine is 

formed by a candidate pair of edges and is the bisector of the intersection of the two 

outer half planes defined by the edges. If the candidate edges are parallel the spine is 

parallel and equidistant to them, otherwise it is the bisector of the angle formed by the 

extension of the two edges. Each side of the cone is constructed of one of the edges (Ei 

or £2) extended at each extremity, by a half line parallel to the spine, see Figure 3.6.

The cone is then checked against all the obstacles to see if it lies in a free space. Every 

obstacle can be intersected with the cone in time O(n), where n is the number of the 

obstacle's edges. If an empty intersection arises nothing has to be done, otherwise the 

intersection is projected to the spine of the cone and the portion of the cone (slice), 

which intersects with the obstacle is truncated. This procedure is called truncation of 

the cylinder and requires O(n), where n is the number of the obstacle's vertices. All the 

disjoint slices of the cone, which do not include portions of both original edges, are then 

discarded. Figure 3.7 illustrates this procedure.

Discarded slices
Spine

Rejected slices

Figure 3.7 Truncation of non-free slices of a generalised cone.
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The overall computational time of the representation of the free space by freeways is 

O(n ), where n is the total number of the edges in the polygonal obstacles.

Figure 3.8 illustrates five generalised cones generated by the obstacles of a bounded 

environment (the boundary of the environment is considered as an obstacle).

Figure 3.8 Five freeways generated by the environments boundary and the 

environment's obstacles.

When all the generalised cones, which represent the free space, have been constructed, 

all the pairs of cones are examined for possible intersections of their spines and if there 

are some, to identify where these intersections occur. Each spine intersection point for 

each cone is accompanied by a subset of [0, 2ri), which determines the orientation 

interval of the robot R, such that R stays inside the corresponding generalised cone.
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Next, an undirected graph G is generated, which is called freeway net. Nodes of this 

graph are all the points that the spines of two freeways intersect and are contained in 

both freeways. As there are at most O(n2) cones, their pair-wise intersection has an 

upper bound of O(n4). If the start and the goal points are on the spine of the freeways, 

then they are added as nodes in the graph and their intervals are associated with these 

nodes in the graph. If the robot's start and goal positions do not lie on spines of 

freeways then the robot has to move from its start position to a spine and from a spine to 

its goal position.

In order a link to be created in the graph, the link must meet one of the two following 

conditions:

1. If two nodes are on the spine of the same freeway and the intersection of the 

robot's free-orientations interval associated with these nodes is a non-empty set, 

then there is a link between these two nodes in the freeway net.

2. If two nodes represent the same point in the x-y plane but for two different 

freeways and the intersection of the robot's free-orientations interval associated 

with these nodes is a non-empty set, then there is a link between these two nodes 

in the freeway net.

The first link condition corresponds to legal intra-freeway motions of the robot, while 

the second one corresponds to legal inter-freeway motions of the robot. The 

constructed freeway net is searched for a path between that initial and the goal nodes.
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The freeway method is suitable for two-dimensional environments where the robot 

translates and rotates. This method works quite fast when it is applied to relatively 

uncluttered environments, but its main drawback is that it is not complete, which means 

that it sometimes fails to find a path for the robot even if one exists. The 

incompleteness of the method is due to the fact that it rests on some intuitive 

assumptions, such as the spine of the freeways to be the bisector of the angle that the 

two supporting lines of the obstacles' edges create or the fact that the robot travels on 

the spines.

3.2.4 Silhouette Method

The silhouette method (or roadmap algorithm) was proposed by Canny (1988) and is the 

only complete general approach for robot path planning, which runs in a single 

exponential time in the dimension of the configuration space. It is complete because it 

guarantees to find a semi-free path providing that one exists, otherwise it reports failure. 

It is general because it is applicable in configuration spaces with arbitrary dimensions.

In this approach, the closure of the collision-free configuration space of the robot is 

input as a compact semi-algebraic set. Since the method operates in compact semi- 

algebraic sets it is also suitable for planning paths of multiple robots or articulated arms. 

The silhouette method uses tools from Differential Geometry such as "stratifications" 

and from the Elimination Theory such as "Multivariate Resultants" in order to achieve 

its complexity bounds. The method will be described here using a simple example, 

which is taken from (Canny, 1988), independently of these tools.
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Let the closure of the free space (cl(Cfree)) be a compact sub-set of IR m , where m is 

dimension of C and denoted by S. In this example, m = 3 and S is an ellipsoid which is 

pierced by a cylindrical hole. This is depicted in Figure 3.9.

Figure 3.9 Illustration of S, which is a compact sub-set of Rm .

The main idea behind the algorithm is to construct a one-dimensional roadmap R(S) that 

is connected within each connected component of S. The connectivity of R(S) can be 

explicitly computed and can be represented as a graph. Whenever the existence of a 

path between two arbitrarily chosen points, say pi and p2 in S, is questioned, it can be 

established, by just searching the roadmap after pi and p2 are connected to some nearby 

points of it. Therefore if the two points lie in a connected component of S, a path that 

connects them should exist in the roadmap R(S). The roadmap R(S) is constructed as 

follows.
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At the first stage, the algorithm reduces the dimension of the problem by one by 

considering slices through the space S with a hyperplane Pc of dimension m-1. In this 

example, S is a three-dimensional space, so Pc is a plane. The plane Pc is taken 

perpendicular to one of the axes, say the x-axis (the choice of the axis is arbitrarily 

made) of the co-ordinate system in which S is presented. At every position x = c the 

plane Pc defines a two-dimensional slice of S, which is PcnS. This is illustrated in 

Figure 3.10.

z..

Figure 3.10 The slice PcnS of S when the Pc is at position x = c.
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If a direction in the plane Pc is arbitrarily chosen, say y-direction, then R(S) contains all 

the locally extremal points of PcnS in that direction. Locally extremal points are the 

local minima, maxima and inflection points. The fact that S is a compact set guarantees 

that every connected component of PcnS has such local extremal points. In this way, 

any point in PcnS can be connected with a path to R(S). Some attention is required in 

the choice of co-ordinates, so that there is a finite number of extremal points in every 

slice (almost any choice is suitable, (Canny, 1988)).

Extremal points of 
P OS in y-direction

Figure 3.11 The two extremal points of the slice PcnS in y-direction.
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The algorithm sweeps the plane Pc across the x-axis (this is when the c's value is 

varied), so the extremal points trace out one-dimensional curves called silhouette 

curves. These curves form the spine of the skeleton R(S), as is shown in Figure 3.12.

Figure 3.12 When the PcnS is swept across the x-axis the extremal points 

form silhouette curves (long-dashed curves).

What can be noticed from Figure 3.12 is that although the set S is connected, the 

silhouette is not. Since it is desired that the roadmap R(S) represents S's connectivity, 

some additional silhouette curves must be added in order to make the representation 

complete. This can be done during the sweep process in the following way.

As the value of c start increases from some value c = CQ, the extremal points of the PcnS 

slice trace out smooth curves. If the curves were connected for some c with CQ<C<CI
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they would remain connected for a small increment of c by 6c. However, this is not 

true, as it can be noticed from Figure 3.13, new extremal points appear or disappear in 

certain slices. This happens for a finite number of values of c, these values are called 

critical values. The new extremal points themselves are called critical points, Figure 

3.13.

1, I

Critical points

Critical values

Figure 3.13 At the critical values c\ new extremal points 

appear in the set S.
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Whenever the sweep-plane passes through a critical point the algorithm connects this 

point to the rest of the silhouette with a path, which lies on the PcnS. Note that there is 

always such a path because of the way silhouette is defined. This process is called 

linking and is achieved by recursive callings of the roadmap algorithm on the m-1- 

dimensional set PcnS.

In the second recursive call of the algorithm a hyperplane of dimension m-2 

perpendicular to, say the y-axis, will sweep the PcnS across the y-axis and the new 

extremal points in a third dimension (say z-axis direction) will form new silhouette 

curves, as illustrated in Figure 3.14.

I l-\ l\> ,\l ..^—hiwrivK

Figure 3.14 The complete silhouette of set S.
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The recursion in general ends when there are not any critical points to connect to the 

silhouette in the set which is currently being swept, or when the dimension of the set is 

two. The robots start and goal point can be connected to the roadmap R(S) by treating 

them as critical points.

This technique is the only known complete method for robot path planning which runs 

in a single exponential time. In particular, its running time is exponential in the 

dimension of the robots configuration space. The exponent of the algorithm is equal to 

the robots degrees of freedom. When the robot's degrees of freedom are low, the 

method can solve the path planning problem in polynomial time as a function of the 

environment's complexity.

The disadvantage of this method is that the expensive computational complexity makes 

it impractical. Therefore, this method is mostly used in theoretical algorithms analysing 

complexity rather than as a practical approach for solving the robot path planning 

problem. Besides the impractical nature of this approach, another disadvantage is that 

the path established by this method lies in the cl(Cfree)- Therefore, this method does not 

give rise to safe paths.

3.2.5 Probabilistic Roadmaps (PRM)

This method constructs a roadmap in a random fashion. The overall computation of this 

approach is carried out in two phases. The pre-processing phase (or learning phase) 

and the query phase.
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The robot motion planning problem in general has two formulations determined by the 

availability of information about the robot's start and goal points a priori planning. 

These formulations are the single shot problem and learning problem. Single shot 

problems are these, where the robot's start and goal points are given in advance and the 

objective is to find a collision-free path between them. Learning problems are those 

where the robot's start and goal points are not given in advance and the objective is to 

construct a data structure that can be later used for any query. The single shot version 

of the problem is computationally cheaper to be solved, but if several different motions 

for a robot are requested to be computed in the same environment, it is computationally 

more efficient to solve the learning problem version.

The PRM approach can solve the learning problem thus it is regarded as a learning 

approach3 . In the pre-processing phase, a roadmap which is an undirected graph 

G = (V, E), is incrementally constructed in a probabilistic way. This construction is 

achieved by repeatedly generating random collision-free configurations of the robot. 

Every such configuration is added to V and is connected to the graph G by adding some 

edges to E. These configurations are connected using a very fast but not so powerful 

motion planner, called local planner. Note that every newly added configuration is 

connected by the local planner only to some neighbouring configurations within a 

distance d under some metric D. A potential field method can be used as a local 

planner, (Overmars and Svestka, 1995). The aim of this phase is to construct a network, 

which reasonably covers the Cfree . Note that at the end of this phase, additional nodes

3 The roadmap approaches (section 3.2) and the cell decomposition approaches (section 3.3) are 
considered as learning approaches, while the potential field method (section 3.4) is considered as single- 
shot method. The potential field method is single-shot, because the goal point contributes in the 
construction of the potential field (see section 3.4 for details).
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may have to be added in 'difficult' places of the Cfree in order that the representation of 

the robot's free space is more complete.

In the query phase, a query is encountered (hence the name of the phase), such as 

whether there is a collision-free path between two configurations, qstart and qgoa]. In this 

phase an attempt is made to connect these configurations to some nodes of the roadmap 

constructed in the pre-processing phase and then this roadmap is searched for a free 

path. A path between the qstart and the qgoai configurations and two nodes of the graph,

say q start and the q goal respectively, can be found by using the local planner of the pre­ 

processing phase.

This approach was proposed by (Kavraki and Latombe, 1994a), (Kavraki and Latombe, 

1994b) for motion planning of manipulators with many degrees of freedom. 

Independently presented in (Overmars and Svestka, 1995) for solving the motion 

planning problem for robots with few degrees of freedom and in (Svestka and 

Overmars, 1997), for motion planning of both symmetrical non-holonomic car-like 

robots and car-like robots, that can only move forward. It was further explored by 

Kavraki et al (1996) and Barraquand et al (1997). A very similar idea to the 

probabilistic roadmap technique was independently proposed by Horsch et al (1994), 

for motion planning of manipulators with up two 12 degrees of freedom. Their 

approach randomly generates configurations and connects them to their nearest-k 

neighbours for a small k, in order to build a graph G = (V, E). This task however, may 

result in a number of disconnected sub-graphs. A connection between these sub-graphs 

is then generated by reflecting randomly at the C-obstacles. A brief survey on PRM
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along with a proposed PRM and some experimental results can be found in (Kavraki 

andLatombe, 1998).

The PRM approach is probabilistically resolution-complete. This means that it can 

solve the problem (find a collision-free path in the open Cfree if one exists) with a 

probability approaching unity (1), providing that it is executed for a sufficient amount 

of time. By this it is meant that the probability that the planner will find a path bounds 

its computational complexity.

Experiments have shown that for the motion planning of a manipulator with 16 degrees 

of freedom in 'difficult' environments (these are environments with narrow passages), 

the learning phase requires time of the order of hundreds of seconds to adequately 

capture the Cfree with a roadmap of approximately 4700 nodes. When the time allowed 

for the query phase is of the order of a few seconds, the success rate of the approach is 

over 90%. For the experiment a DEC Alpha workstation was used (Kavraki and 

Latombe, 1998). For the motion planning of a car-like robot in difficult environments, 

the success rate of the approach is over 90%, with the learning phase requiring time of 

the order of a few seconds and the query phase requiring time of the order a few 

seconds, using a Silicon Graphics Indigo workstation (Svestka and Overmars, 1997).

3.3 Cell Decomposition Approaches

The main principle of the cell decomposition methods is to decompose the robot's 

collision-free configuration space (Cfree) into a finite number of non-overlapping regions
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called cells. In exact cell decomposition, the cells are of simple shapes (usually 

triangles and/or trapezoidal when the Cfree is two-dimensional and parallelepiped when 

the Cfree is three-dimensional) and cover the entire Cfree . In approximate cell 

decomposition, the Cfree is decomposed in cells of predefined shape (usually squares 

when the Cfree is two-dimensional and cubes when the Cfree is three-dimensional), whose 

union is a conservative approximation of the Cfree . In exact cell decomposition method 

the boundaries of the Cspace's objects are used for the generation of the cells, thus this 

method is object dependent, while in approximate cell decomposition the boundaries of 

the Cspace's objects are not used for the generation of the cells and thus this method is 

object independent. Once the Cfree is decomposed, a connectivity graph is constructed, 

which represents the adjacency of the cells. The connectivity graph is then searched for 

a channel between the cells, which contain the robot's start and goal configurations 

respectively. If there is a channel between the cells, which contain qstart and qgoai, a path, 

is extracted from it. In the following section the exact and approximate cell 

decomposition methods will be described for solving the basic robot movers' problem. 

For a detailed description of the decomposition methods see, (Yap, 1987) and 

(Latombe, 1991).

3.3.1 Exact Cell Decomposition

Since the decomposition of the Cfree is exact, the exact cell decomposition method is 

complete. The main difficulties of this approach are the selection of the geometry of the 

cells and the construction of the adjacency information.
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Here the exact cell decomposition approach will be discussed in its simplest form (for 

solving the basic movers' problem). Note that the generalised approach given by 

Schwartz and Sharir (1983b) is far more complicated and uses the important result of 

Collins (1975) for deciding the satisfiability of Tarski sentences. This method will be 

described here very briefly.

Consider the robot's configuration space of Figure 3.15. The robot's configuration 

space is a bounded polygonal region, which contains four holes (C-Obstacles). Its 

boundary is also considered as an obstacle. The robots start and goal configurations are 

denoted by qstart and qgoa] respectively.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Figure 3.15 The robot's configuration space externally bounded by an 

obstacle and internally bounded by four obstacles.

As was mentioned in section 3.2 the first step of the exact cell decomposition approach 

is to decompose the Cfree into a finite number of non-overlapping convex cells whose 

union is exactly the Cfree . There are two different types of decomposition, the first is
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covering and the second is partitioning (Keil and Sack, 1985). Covering a polygon 

means that the decomposition it is permitted to contain mutually overlapping pieces. 

Partitioning a polygon means completely dividing its interior into non-overlapping cells. 

Here it is of interest to decompose the Cfree by partitioning it, because it is required that 

any point of Cfree is contained in exactly one cell.

The optimal convex decomposition of a polygon (that is, decomposition into the 

smallest possible number of convex polygons) can be computed in polynomial time in 

the number of the polygons vertices (Keil and Sack, 1985). If the polygon to be 

decomposed contains holes, the problem of decomposing it, is NP-hard, (Lingas, 1982).

However, a decomposition method, which is non-optimal and is due to Chazelle (1987), 

can be used. This is called trapezoidal decomposition and it decomposes the polygonal 

region in trapezoids and triangles. (Note that triangulation could be used instead, to 

decompose the environment in triangular cells.) This method sweeps a line parallel to 

the y-axis across the Cfree . Each time a vertex of a CPj is encountered the algorithm 

generates at most two line-segments, which emanate from the encountered vertex and 

are extended to each extremity of the y-direction until they cross an edge of a CPj. If a 

crossing with such an edge does not occur (this case arises when the Cfree is not 

bounded) the decomposition contains cells extended infinitely. Figure 3.16 illustrates 

the trapezoidal decomposition of the Cfree of Figure 3.15.
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Figure 3.16 Trapezoidal decomposition of the Cfree .

The sweeping process used to identify the CPj's vertices requires O(n log n) 

computational time, where n is the total number of the C-Obstacles' vertices. Note that 

while the sweep-line is sweeping across the Cfree , the erection of the vertical line- 

segments, the identification of the cells, which contain the qstart and qgoai configurations 

and the generation of the connectivity graph G can be achieved concurrently.

The connectivity graph G is an explicit representation of the adjacency of the cells of 

Cfree. G is an undirected graph whose nodes represent the cells and each edge of it 

represents the adjacency between two cells. Two cells are adjacent when they share an 

edge with length greater than zero. The total number of nodes and edges of the 

connectivity graph is O(n). Figure 3.17 illustrates the connectivity graph, which 

represents the adjacency of the cells of the decomposed Cfree of Figure 3.16.
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Figure 3.17 The connectivity graph G, which represents the adjacency of 

the cells of Figure 3.16. The bold line is the path from the cell, which 

contains qstart to the cell, which contains qgoai.

After the connectivity graph is generated it can be searched for a path (note this is not a 

real path of the robot), from the node, which corresponds to the cell that contains the 

qstart configuration to the node, which corresponds to the cell that contains the qgoai 

configuration (bold lines in Figure 3.17). This path defines the channel, which is a 

sequence of adjacent cells, between the cell, which contains the qstart configuration and 

the cell, which contains the qgoai configuration. In Figure 3.18 the shaded cells illustrate 

the channel.

Figure 3.18 The channel (shaded cells) is a sequence of adjacent cells 

between the cells, which contain qstart, and qgoa].
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Any search engine can be used to search the connectivity graph. A path for the robot 

can then be defined within the channel by connecting the midpoints of the portions of 

the boundary shared by each successive cell in the channel. The bold line in Figure 

3.19 illustrates, the robot's path between the qstart and qgoa|.

Note that heuristics (i.e. the A* algorithm) can be used to optimise the length of the 

robot's path. In this case a graph G* needs to be constructed (instead of the 

connectivity graph) with nodes the qstart, the qgoai and all the midpoints of the portions of 

the common boundaries of the adjacent cells. An edge between two nodes in G* 

appears if the corresponding midpoints are adjacent to the same cell. The graph G* can 

then be searched using the A* algorithm to find the shortest path. Note that this path is 

the shortest path between qstart and qgoai among all the paths that pass through the 

midpoints of the common boundaries of adjacent cells and not the actual shortest path 

between these two points.

X XXX XX X X XX XXX XX X'

Figure 3.19 The path between qstart and qgoai.
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Since the search process requires O(n2) computational time, where n is the number of 

vertices of the graph, the overall computational complexity of the approach is O(n2), 

where n is the total number of the C-obstacles' vertices.

The advantage of this technique is that the paths that it generates are most of the time 

safer than the ones produced by either the visibility graph or the silhouette approaches. 

The main disadvantage is that they are not optimal in general. This method can be 

extended to three-dimensional configuration spaces populated by polyhedral obstacles. 

In this case the decomposed cells are parallelepipeds.

An exact cell decomposition approach was proposed by Schwartz and Sharir (1983a), 

for planning paths for a ladder (line-segment robot) and for compact connected two- 

dimensional polygonal robot in an environment W populated by polygonal obstacles. 

The case where the robot R is a ladder will be discussed here, the solution to the path 

planning problem when R is a polygon as defined above is very similar. The robot R 

can translate freely and rotate about its one endpoint. In this approach the environment 

W is decomposed into non-critical regions bounded by critical curves. A critical curve 

is the locus of the robot's reference point while the robot is moving having a critical 

contact with an obstacle. Critical contacts can be defined in many ways some of which 

are: a vertex of the robot touching an edge of an obstacle, an edge of the robot touching 

a vertex or an edge of an obstacle or the robot touching two or more obstacles at the 

same time. There are five different types of contacts in total when the robot is a ladder. 

Every non-critical region is a subset of the x-y plane and is the maximal subset of the
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positions of W at which, at least one orientation of R exists, such that R does not 

intersect any critical curves.

The feasible orientation for R when its reference point (one end of the ladder) lies in a 

non-critical region is expressed as a finite union of open sets of angles. The bounds of 

each set correspond to angles at which the robot makes contact with some obstacles. 

The robot can move from one point to another in the same non-critical region if the 

orientation of the robot at each point belongs to the same open set. The robot can move 

from one non-critical region to another if and only if, their boundaries share an open 

portion p of a critical curve and for every point pep the intersection of the robot's 

feasible orientations of the two regions is a non-empty set.

Once W is decomposed into cells (non-critical regions), a connectivity graph is 

generated, which represents the adjacency of the cells. This graph is then searched for a 

channel from the robot's start point to its goal point and a path is finally defined within 

this channel. Since the contacts between the robot and the obstacles define the critical 

curves, there are in total O(n2) (actually this bound is due to some more complicate 

curves such as the conchoid of Nicomedes, obtained by particular type of contacts) 

critical curves and since the critical curves can intersect each other there are in total 

0(n4) critical curve sections, leading to a O(n5 ) overall time, where n is the complexity 

of the obstacles.

An optimised variant of the above algorithm was proposed in (Leven and Sharir, 1985) 

for motion planning of a ladder in a two-dimensional space populated by polygonal
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barriers (obstacles). The algorithm's computational complexity is O(n2 log n), where n 

is the total number of the obstacles' vertices. 

A general exact cell decomposition algorithm was proposed by Schwartz and Sharir 

(1983b). Since this algorithm is exact its complexity depends on the complexity of the 

free space, which in tum depends on the complexity of the number of multiple contacts 

between the robot and the obstacles. The approach proposed by Schwartz and Sharir 

can be used for the motion planning of a robot with an arbitrary number of degrees of 

freedom. The only restriction of this method is that both the robot and the obstacles 

should be described as semi-algebraic sets. This approach is quite complicated to 

d+6 
implement and its computational complexity is O(n<2 », where n is the total number 

of obstacles' vertices and d is the total number of the degrees of freedom of the robot. 

This result is practical only for configurations with low dimensions and robots with 

small number of degrees of freedom. Quoting the authors ' The approach is 

catastrophically inefficient', i.e. O(n4096
) for a 6 dof robot. Again, this method serves as 

proof for the decidability of the general path planning problem. 

A variant of the exact cell decomposition was proposed by A vnaim et al (1988), for 

solving the two-dimensional instance of the movers' problem, when the robot rotates as 

well as translates. In their approach, they first constructed a graph G1, in which every 

node is associated with a face of the Cfree (a C-surface patch) and for every pair of 

adjacent faces an edge connects the corresponding nodes in the graph. Note that in this 

In the next step a triangular decomposition Tstart of C free 
Sstan 
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(respectively Tg0ai of C free ), where C f is a connected component of the cl(Cfree )
^goal 3 stan

n cl(C free ), (respectively C f is a connected component of the cl(Cfree) o
8 goal 9goal

cl(C fr )) are produced. A graph 62 is then constructed in which every node is
sgoal

associated with a cell in Tstart and for every pair of adjacent cells an edge connects the 

corresponding nodes in the graph. Similarly, a graph G3 is constructed for the Tgoai 

decomposition. The last step of their algorithm is to merge the graphs G\, GI and 63 to 

form a graph G', by connecting every node of graph GI (these nodes correspond to faces 

of d Cfree) to every node of the graphs GI and GS whose corresponding faces and cells 

share a straight line-segment of non-zero length. Finally G' is searched for a path 

between the cells which contains the start and goal points. The computational 

complexity of their algorithm is O(K log K + F), where K is the sum of the number of

edges which compose the boundary of cl(Cfree) n cl(C f ) and cl(Cfree) n
<> start

cl(C f ), which in the worst case is O(m2n2) and F is the number of the faces of the
sgoal

5Cfree- m and n are the number of the vertices of the robot and the obstacles 

respectively.

When the number of the robot's degrees of freedom is small., less powerful but more 

practical approaches using different approximation schemes and heuristics have been 

proposed by, (Brooks, 1983) see also section 3.2.3, (Lozano-Perez, 1981) see also 

section 3.3.2, (Guibas et al, 1989) and (Seneviratne et al, 1997).
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3.3.2 Approximate Cell Decomposition

As with the exact cell decomposition, this approach decomposes the Cfree into a finite 

number of cells and a path is found through a channel of cells. In the approximate cell 

decomposition, the cells have a pre-specified simple shape. Therefore, the union of the 

cells approximates the Cfree hence the name of the method. The size of the cells can be 

locally adapted by the geometry of the C-Obstacles. This approached was first 

proposed by Lozano-Perez (1981) and was further developed and used by, (Brooks and 

Lozano-Perez, 1983), (Faverjon, 1984), (Laugier and Germain, 1985), (Faverjon, 1986), 

(Kambhampati and Davies, 1986), (Noborio et al, 1990), (Zhu and Latombe, 1991), 

(Barbehenn and Hutchinson, 1995) and (Katevas et al, 1998).

Since the approach is conservative about the approximation of the Cfree, it is not 

complete therefore it can fail to find a path even if one exists. However, it is attractive 

because cells are generated by iterating the same simple computation and in general, the 

method is fast and easy to implement. The method will be described here for solving 

the basic movers' problem.

Consider the robot's configuration space of Figure 3.20. Without loss of the generality 

it is assumed that the robot's configuration space is bounded by a square, (the choice of 

the shape is made to make the exposition of the method simpler) and populated by three 

polygonal C-Obstacles. Note that the boundary of the robot's configuration space is 

considered as C-Obstacle as well. The start and goal configurations of the robot are the 

qstart and qgoai respectively.
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Figure 3.20 Two-dimensional configuration space.

This method recursively decomposes the configuration space into smaller rectangloid 

(rectangloid decomposition) called cells. In every recursive call of the decomposition 

over a cell, four new identical rectangloids are generated. This decomposition can be 

represented by a tree of degree four, therefore it is called quadtree decomposition 

(Samet, 1980), (Samet, 1990). If R is a rectangloid R c IRm which bounds the Cfrec , then 

a rectangloid decomposition K of the space R is a finite set of rectangloids kj, j =l..p 

such that:

(3.1)

and

V f,h e [1 ..p]: int(k f ) n int(k h ) = 0 (3.2)

Two cells are adjacent when they share a set in IR"1 " 1 of non-zero length measurement. 

In this example, since the configuration space C is two-dimensional the rectangloids 

will be of dimension two (which are rectangles) and in particular they will be squares.
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A classification of the cells kj (rectangloids in Rm), which reflects the occupancy of the 

C-obstacles within the cells can be defined as follows:

  Vje [l..p], Vie [l..n], int(kj) n CPj = 0 : kj is EMPTY

  Vje [l..p], Vie [l..n], int(kj) c CP; : kj is FULL

  Vje [l..p], Vie [l..n], (int(kj) n CP| * 0) A (int(kj) c£ CPj): kj is MIXED

Figure 3.21 illustrates the successive decomposition of R (environment of Figure 3.20) 

after two recursive calls of the decomposition procedure. The first decomposition 

decomposes R into four identical squares separated by the bold lines in Figure 3.21. 

The second decomposition decomposes R into sixteen identical squares separated by 

plain lines in Figure 3.21. The white cells are the EMPTY cells and the grey cells are 

the MIXED cells. At every call of the decomposition, only cells, which lie entirely in 

the Cfree or in a CPi, are not further decomposed.

Figure 3.21 The cells obtained after two successive decompositions of the 

environment.
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After each decomposition of the space R into cells, a connectivity graph G is generated 

representing the adjacency of the cells. Vertices of this graph are all the EMPTY and 

MIXED cells. An edge occurs in the graph between two vertices if their corresponding 

cells are adjacent. Since the environment is two-dimensional, two cells are adjacent 

when they share an edge with length greater that zero. Figure 3.22 illustrates the 

connectivity graph, which represents the adjacency of the cells of the decomposed Cfree 

of Figure 3.21.

Figure 3.22 The connectivity graph G, representing the adjacency of the 

cells of Figure 3.21.

A channel is a sequence of adjacent EMPTY and/or MIXED cells. If a channel contains 

only EMPTY cells it is called, EMPTY-channel otherwise it is called MIXED-channel. 

A path, which lies within an EMPTY-channel is a collision-free path. A path, which 

lies within a MIXED-channel, is not always collision-free path.

A hierarchical path planning method is defined by starting with a coarse decomposition 

of the configuration space and searching the corresponding connectivity graph for an
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EMPTY-channel between the cells, which contain the robot's qstart and qgoai 

configurations. If such a channel does not appear the algorithm then recursively 

decomposes the MIXED cells until an EMPTY-channel is obtained or a predefined cell- 

resolution is achieved.

As it can be seen from the connectivity graph of Figure 3.22, there is not an EMPTY- 

channel connecting the cells, which contain the qstart and qgoai configurations (these are 

nodes six and fifteen respectively). Therefore, the space R is further decomposed. 

More specifically only the MIXED cells are further decomposed. Figure 3.23 illustrates 

the decomposed space after the third successive decomposition of the space R.

^WWWWWYWWVWWWSA

Figure 3.23 Cells obtained after the third decompositions of R.

The connectivity Graph G of the environment of Figure 3.23 is illustrated in Figure

3.24.
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Figure 3.24 The connectivity graph G, representing the adjacency of the 

cells of Figure 3.23.

In Figure 3.24 the third successive decomposition of R gives rise to an EMPTY-channel 

between the cells, which contains the qstart and qgoai configurations (nodes six and fifteen 

respectively). Once an EMPTY-channel is found, a path can then be extracted from it, 

by connecting the qstart and qgoai configurations with a polygonal line passing through 

midpoints of the portions of the boundary shared by each successive cell in the channel. 

This is indicated by a dotted line in Figure 3.25.

Figure 3.25 The path (dotted line), between qstart and qgoal .

3-46



Chapter 3 Robot Motion Planning - Literature Survey

For the case when the common midpoints of the portions of the boundary shared by 

each successive cell in the channel are subsets of the edge/face of the same cell, 

additional vertices in the path should be introduced, such as configuration Q in Figure 

3.26.

Figure 3.26 Illustration of a case where additional vertices should be 

introduced.

For the search of the connectivity graph G in every recursive step of the algorithm, 

heuristics can be used to speed up the procedure of finding an EMPTY-channel. Note 

that sometimes even though an EMPTY-channel exists a somewhat shorter (distance- 

wise) path could be found by further decomposing the MIXED cells and possibly give 

rise to other EMPTY-channels, obviously this is at the expense of computational time.

The approximate cell decomposition is not a complete method because the union of the 

decomposed cells is an approximation of the Cfree . Therefore, the method might fail to 

find a path even if one exists. However, the precision of the approximation can be
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appropriately tuned (at the expense of computational time) to make the approximation 

very small, hence this method is resolution-complete.

An advantage of the approximate cell decomposition is that it is straightforward and is 

relatively easy to implement. Also since the size of the decomposed cells can be 

controlled, the method can give rise to a desired clearance of the path, which in turn can 

allow small perturbations on the robot's motion (due to control errors) while the robot is 

moving along the path.

Since its computational time grows with respect the size of the configuration space, the 

method is practical for configurations with low dimensions (less than five (Latombe, 

1991)). When the environment is three-dimensional, the decomposition is called octree, 

because it can be represented by a tree of degree eight. In general, the decomposition of 

a configuration space of dimension m can be represented by a 2m-tree, which is a tree of 

2m degree.

3.4 Potential Field Approach

The idea behind the potential field method is somewhat different than the idea behind 

all the methods discussed so far, which construct a network of one-dimensional curves 

in the robot's configuration space or physical space and then search this network for a 

path between the robot's start and goal points. In the potential field method, the concept 

of electrical potential fields is used, as heuristics to guide the search for a path between 

the robot's start and goal points in its physical space. The potential fields were first
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introduced by Khatib and Mampey in 1978 as an obstacle avoidance technique, (Hwang 

and Ahuja, 1992a). The method was used and further developed for robot path planning 

by (Khatib, 1986). Boissiere and Harrigan (1988) used the potential field method for 

local collision avoidance in a human Tele-operated puma. When the robot was due to 

collide with an obstacle while moving along the course given by the operator the 

PUMA reacted to the repulsive potential of the obstacle and changed its path. Tilove 

(1990), presented an overview of the artificial potential field method for path planning, 

described variations of the method and compared the performance of different 

algorithms. Hwang and Ahuja (1992b), presented a path planning algorithm based on 

the potential fields. In their approach path planning was done at two levels. At the first 

level a global planner generates a graph-like representation of the free space between 

minimum potential valleys (MPV) and also defines a path and the orientation of the 

robot along this path such that the chance for collision is minimum. At the second level 

a local planner moves the robot along the path found by the global planner and alters the 

path or the robot's orientation, if there is a need to, in order to avoid collisions. If the 

local planner fails at any point the global planner is used to generate new path and 

orientations. The process is repeated until a path is found or there are no more paths left 

for further examination. Juang (1998), used potential fields for real-time collision 

avoidance for an industrial manipulator. He presented an algorithm for fast calculation 

of the distance between the manipulator's links and the environment's obstacles and 

used this distance to create artificial repulsive forces between the robot and the 

obstacles. A collision avoidance control scheme based on the potential fields was then 

presented. A historical review of the potential field method for path planning and 

control can be found in (Koditschek, 1989).
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In the potential field method, the robot is considered as an electric particle moving 

under the influence of an artificial potential field U in a configuration-like space. 

Hence, the local variations of the potential field reflect the topology of robot's free 

space. A uniform artificial attractive potential is defined over the goal point, which 

attracts the particle (robot) towards it and an artificial repulsive potential is defined over 

the obstacles, which repel the particle from them. The motion of the particle is locally 

generated by a potential function, which combines both of the attractive and repulsive 

components of the field. An artificial force can then be produced at a current point as 

the negated gradient of the total potential field, which can be used to move the robot 

towards the most promising direction.

The obstacles in the environment are not represented by geometrically volumes but by 

potential functions, therefore the only knowledge that is required by the algorithm is 

local. Thus this method is suitable for real-time obstacle avoidance or/and on-line path 

planning. Note that this technique was initially intended for obstacle avoidance and not 

for path planning.

A typical potential function is defined as the summation of an attractive potential and a 

repulsive potential. The former pulls the robot towards the goal while the latter pushes

 > 
the robot away from the obstacles. The force F produced by potential field U and

applied on the particle at any point q is equal to the negated gradient vector of the 

potential field U. More formally when the robot's workspace is two-dimensional, the 

gradient vector of U at any point q = (x, y) can be defined by the equation 3.3.
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dxdu (3.3)

The potential field function should attain its minimum at the goal point and its 

maximum at the obstacles. In all other points, of the robot's free space the function 

should slope towards the goal point. Figure 3.27 illustrates a two dimensional 

workspace and its corresponding combined attractive and repulsive potential fields.

goal

start  

Figure 3.27 The summation of the artificial attractive and repulsive 

potential fields of a two-dimensional environment.

To model the environment involves determining field functions for the robot's goal 

point and the obstacles. An attractive potential field associated with the goal point is 

defined as a parabolic attractor, for example by the equation 3.4.

= a d(q,q , (3.4)
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Where a is a positive scaling factor and d(q, qgoai) = q - q goa | . Note that Uattr function

-> 
over the goal point is equal to zero. The force Fattr applied on the particle by the

 >  » 
attractive potential field Uattr , when is at a point q is, Fattr = -Vf/flffr (q). Figure 3.28

illustrates the parabolic well created by the artificial attractive potential field.

goal

start

Figure 3.28 The parabolic well created by the artificial attractive potential 

field of the goal point in a two-dimensional environment.

The repulsive force of an obstacle is modelled as a potential barrier that is erected to 

infinite as the robot approaches the obstacle. A repulsive potential field associated with 

every obstacle of the environment can be defined by the equation 3.5.

if p(q) < Po 

if p(q) > p0

(3.5)
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Where [3 is a positive scaling factor, dm j n(q, Pj) is the minimum distance from q to a Pj 

obstacle and po is positive constant, which describes the distance of influence of the 

obstacles. The function of the repulsive potential is piecewise, because it is desired that 

the particle is not influenced by the repulsive potential, when it is far away from the

obstacle Pj. The force F rep applied on the particle by the repulsive potential field Uirep

when is at any point q is, F reP (q) = -V£/rep (q) . Figure 3.29 illustrates the high value 

of the potential in the obstacles, attained by the artificial repulsive potential field.

goal

H3tB
start  

Figure 3.29 The artificial repulsive potential field of the obstacles in a 

two-dimensional environment.

A problem that can arise when a Pj is a non-convex polygon is that it is possible for the 

particle to oscillate between the adjacent sides of a reflex vertex of the obstacle, due to 

the simultaneous influence of a force field on the particle by the two sides. A way 

around this problem is to consider every non-convex obstacle in the environment as a 

concatenation of a finite number of non-overlapping convex sets. The repulsive 

potential of the obstacle is then equal to the sum of the repulsive potential of each 

convex set.
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The main disadvantage of the potential field approach is that the robot can be trapped in 

local minima of the potential function and hence this method does not always find a 

path from qstart to qgoai even when one exists. This fact makes the method incomplete. 

A solution for the local minima problem has been proposed by Khosla and Volpe 

(1988), by defining a potential function with only one minimum or in the worst case 

with a few. Rimon and Koditschek 1992, proposed a local minimum-free function 

called, global navigation function for robot path planning and control, in Euclidean 

spaces when the obstacles of the environment are spherical or star-shaped. An 

alternative is to escape from local minima and to begin the search again (see section 

3.4.1 for details).

When the attractive and repulsive potentials are defined, a path can be found from the 

robot's start point to its goal point iteratively, by moving the robot towards the most

-> 
promising direction defined by the artificial force F induced by the potential function

and proceeds in that manner by some increment until it reaches the goal point. This 

path corresponds to the path traced by a small ball placed at the start point and let roll 

on the potential surface until it reaches the goal point (Cameron, 1994). Suppose that 

the surface of the potential net is viscous and the ball will not overpass the goal point.

Two common approaches that can be used for the generation of a path using the 

artificial potential field are the depth first search technique without backtracking and 

the best first search (Latombe, 1991). With depth first search technique without 

backtracking, the constructed path is constituted by successive line-segments starting 

from the robots start point. Every segment is computed at a point derived from the
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previous line-segment and is oriented along the negated gradient of the potential at this 

point. The main disadvantage of this technique is that because the robot follows the 

deepest fall of the potential function until it reaches the goal point, it is difficult to 

handle a situation when the robot is trapped in a local minimum before it reaches the 

goal point.

An alternative is a best-first search technique. This technique uses a fine grid over the 

space, it starts from the robot's start point and iteratively constructs a tree whose leaves 

are points of the grid, each of them with a pointer to its parent node in the tree. The 

leaves, which correspond to the most promising potential-wise points of the grid, are 

further expanded until the goal point is retained. If the goal point is attained the path is 

obtained by backtracking all the pointers in the tree from the goal point to the start 

point. If the goal point is not reached and the entire grid has been examined then there 

is no path between the robot's start and goal points. Otherwise, the robot is trapped in a 

local minimum. In this case the algorithm 'fills' the well of the minimum until it reaches 

a saddle point and resume the search along the negated gradient until the robot reaches 

the goal (Barraquand and Latombe, 1991).

3.4.1 Randomised Path Planning

The randomised path planner (RPP) was proposed by Barraquand and Latombe (1990), 

and is one of the most effective potential field based planners. Their approach is very 

like the best first search. The planner starts from the robot's start point and follows the 

deepest fall of the potential function until it reaches a minimum. If this minimum is the 

global (the goal point) then a path between the robot's start and goal point is obtained.
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If this is a local minimum then a random walk mechanism is activated to move the robot 

to some other point and then the deepest fall strategy is resumed until a minimum is 

reached again. Note that the random walk is a simulation of the Brownian motion that 

influences the natural particles. If the newly obtained minimum is not the same as that 

previously encountered then the new motion is added to the path. In this way a graph 

with nodes which are all the local minima of the potential function is created. The 

planner searches the environment until the goal point is encountered or until it gives up.

3.5 Discussion

In this chapter the robot motion planning problem was considered and some robot 

motion planning techniques have been presented. The robot motion planning problem 

has been shown to be a very hard problem especially in its full generalisation. This 

justifies the existence of so many different approaches to tackle the problem and the 

increased research efforts consumed on the subject in the last twenty years.

The majority of the robot motion planning techniques discussed in this chapter are 

concerned with solving the basic movers' problem, the reason for this is twofold. 

Firstly because it is easier to expose the methods by solving a simple instance of the 

robot motion planning problem than by solving the problem in its full generality. 

Secondly, because this thesis is concerned with the motion planning of autonomously 

guided vehicles, which in general operate in two-dimensional physical spaces and they 

do not have configuration spaces of high dimensionality.
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It has been shown that complete planners are computationally extremely expensive and 

they mostly serve as proof of the decidability of the general movers' problem rather 

than for practical use in the real world, especially when the instance of the problem 

being tackled is complicated. On the other hand many heuristic approaches, resolution- 

complete approaches and probabilistically resolution-compete approaches have been 

proposed to make the problem more tractable and its solution more pragmatic and 

practical but of course at the expense of the solution's completeness. In (Barraquand et 

al, 1997), it was stated that no tailor-made planner is likely to be the most efficient for 

all possible problems and that every application requires a hand made solution. For 

instance the PRM and the Voronoi diagram can provide good solutions for the robot 

motion planning problem in two-dimensional static environments but when the 

environment contains moving obstacles both approaches may fail to generate solutions.

In the subsequent chapters of the thesis the path planning problem for an AGV in two- 

dimensional static and dynamic environments is considered. Specifically in chapter 

four the static problem is encountered and an algorithm for solving it is proposed. The 

algorithm is based on the concept of visibility graph. The reason for this is that the 

visibility graph approach works quite fast in configurations of two-dimensions and in 

general establishes optimal paths, which is always desired. The proposed algorithm is 

called V*MECHA and it finds the shortest semi-free path (using Euclidean metric) for 

an AGV in a two-dimensional static environment by constructing a reduced visibility 

graph. The V*MECHA algorithm is based on the V*GRAPH algorithm and has been 

designed to correct and overcome the latter's deficiencies.
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In chapter five the V*MECHA algorithm is extended to be applicable in dynamic 

environments. An algorithm is proposed which is called D*MECHA and finds the 

time-minimal motion for an AGV between two query points. In the rest of the thesis 

various extension of the D*MECHA algorithm are proposed in order to increase its 

applicability.

Every algorithm proposed in the thesis is accompanied with an empirical analysis of its 

computational time and space, a proof of its correctness and a proof of its optimality.
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4
The V*MECHA

Algorithm for Path
Planning of an AGV

A mighty maze! but not without apian
ALEXANDER POPE 

AN ESSAY ON MAN, EPISTLE 1

4.1 Introduction

In this chapter the basic movers' problem is addressed and an algorithm for solving it is 

proposed. However, before the problem is addressed an accurate description of its 

specification, will be defined as follows.
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Problem 1

Consider a two-dimensional environment W populated by a finite number of two- 

dimensional polygonal obstacles, the AGV's start point and its goal point. The 

obstacles are static simple polygons and the AGV is a simple polygon, which can 

translate freely without rotation. The problem is to determine a safe path for the AGV 

between its start and goal locations providing that the shapes and locations of the 

obstacles, the shape of the AGV and the locations of the AGV's start and goal points are 

accurately known a priori planning.

It is assumed that the obstacles' configuration space can be easily constructed using the 

Minkowski sums (see section 2.4.4) and the AGV can be considered as a point, which 

translates in its configuration space. Therefore it is not peremptoriness to consider a 

more simplified version of the above problem in which the AGV is a point robot with 

strictly two-degrees of freedom (the two translations) operating in an environment W. 

Therefore Problem 1 can be reduced to Problem 1'.

Problem 1'

Consider a two-dimensional environment W populated by a finite number of two- 

dimensional polygonal obstacles, the AGV's start point and its goal point. The 

obstacles are static simple polygons and the AGV is a point-robot, which can translate 

freely, strictly 1 without rotation. The problem is to determine a safe path for the AGV 

between its start and goal locations providing that the shapes and locations of the

1 Since the AGV is a point robot, it should not make any difference if it rotates or not, because is a non- 
dimensioned object. However, in Problem 1' the AGV is considered as a point-robot only and only 
because the transformation of Problem 1 to Problem 1' is possible by constructing the AGV's 
configuration space, which is a two-dimensional space in which the AGV can only translate.
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obstacles and the locations of the AGV's start and goal points are accurately known a 

priori planning.

The solution to Problem 1' is adequate for solving Problem 1. The proposed algorithm 

for solving Problem 1' is called V*MECHA and is a roadmap approach based on the 

concept of the visibility graph. A visibility graph is constructed to capture the 

connectivity of the AGV's semi-free space and then this graph is searched to establish 

whether there is a semi-free path between the AGV's start location and its goal location. 

Thus the pure topological problem of defining a one-dimensional curve connecting two 

points in a space is transformed to a combinatorial one and specifically to a graph 

search problem.

As was mentioned in section 3.5 the V*MECHA algorithm is based on the V*GRAPH 

algorithm of Alexopoulos and Griffin (1992). The V*MECHA algorithm is proposed to 

overcome some deficiencies that arise in the V*GRAPH algorithm and solve the basic 

movers' problem efficiently and effectively. In section 4.2 other similar approaches to 

the V*MECHA algorithm for solving the basic movers' problem will be discussed. In 

section 4.3 the V*GRAPH algorithm will be presented. The weak points and the 

deficiencies of the V*GRAPH algorithm are identified in sections 4.4 and 4.5 and in 

section 4.6 the proposed algorithm is discussed, which is shown to overcome these 

deficiencies. In section 4.7 the V*MECHA algorithm is used to solve a problem and in 

sections 4.8 and 4.9 the admissibility and the optimality of the algorithm are 

demonstrated.
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4.2 Related Work

As was mentioned in section 3.2.1, Nilsson (1969), was the first to consider the path 

planning problem for a robotic system with planning capabilities (the Shakey) in 1969. 

A model of the environment was used and the visibility graph method was developed to 

plan the robot's motions. Lozano-Perez and Wesley (1979), further developed the 

method by computing the robot's configuration space and constructing a visibility graph 

within this space. After the visibility graph was constructed, it was searched for a path 

between the AGV's start and goal configurations. This algorithm was called VGRAPH 

and as was mentioned in section 3.2.1, it is suspected that it is in O(n3 ) computational 

time and O(n2) space, where n is the total number of the C-Obstacles' vertices.

Lee (1978), proposed an O(n2 log n) algorithm for the construction of the visibility 

graph , where n is the total number of the polygonal obstacles' vertices, leading to an 

overall computational complexity of the visibility graph approach O(n2 log n), where n 

is the obstacle's vertices. Better asymptotic upper bounds for the construction of the 

visibility graph were presented by (Welzl, 1985), (Asano et al, 1985) and 

(Edelsbrunner, 1987). In fact their algorithms construct the visibility graph of a 

polygonal scene in time O(n2), where n is the total number of the scene's vertices, 

leading to an overall computational complexity of the visibility graph approach in 

0(n2), where n is the total number of the scene's vertices.

Rohnert (1986), proposed a path planning algorithm for a point-robot operating in a 

two-dimensional environment populated by convex polygonal obstacles. This 

algorithm describes a Reduced Visibility Graph (RVG), which has smaller number of
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edges than the ordinary visibility graph. This reduction was based on the observation 

that the shortest semi-free path between two query points, runs via edges of the 

obstacles and the common tangent-segments of each pair of obstacles. Note that a 

common tangent-segment between two convex obstacles, lies between the two vertices 

of contact of the tangents with the polygons and there are four in total. Rohnert gave an 

algorithm for the construction of the reduced visibility graph in O(n + f2 log n) 

computational time and O(n + f2) space, where n is the total number of the obstacles' 

vertices and f is the total number of the obstacles. He then used an implementation of 

the Dijkstra's shortest path algorithm for a graph G = (V, E) with vertex set V and edge 

set E, which is in O(|E| + |V| log |V|) time described by Fredman and Tarjan (1984), to 

compute the shortest semi-path between the AGV's start and goal points, in O(f2 + n log 

n) computational time. In (Rohnert, 1988) the space complexity was further improved 

to O(n), but at the expense of the running time of the algorithm, which was increased to 

O(f n log n), where n is the total number of the obstacles' vertices and f is the total 

number of the obstacles. These results are summarised in (Fleischer et al, 1992).

In (Liu and Arimoto, 1992), an algorithm for constructing a reduced visibility graph 

called the Tangent graph (T-graph), for path planning of a point-robot in a two- 

dimensional environment populated by both convex and non-convex obstacles was 

proposed. The tangent graph is a graph whose vertices are the obstacles' vertices as 

well as the robot's start and goal points. The edges of this graph are the obstacles' edges 

as well as the edges connecting all the mutually visible vertices and define common 

tangents to the obstacles.. Their algorithm computes the tangent graph in O(n(n +1) + 

m2 t) computational time and O(m2 + n) space, where t is the total number of the
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obstacles vertices, m is the number of the obstacles' convex components and n is the 

number of the obstacles' convex vertices. In (Liu and Arimoto, 1991) and (Liu and 

Arimoto, 1995), an Extended Tangent Graph (ETG), was proposed for path planning of 

mobile circular robots (or disks) among general polygonal obstacles. The ETG is a 

radius independent data structure, which registers collision-free tangents of the 

obstacles according to the radius of different robots. In that way re-computation of the 

C-space when the radius r of the robots changes is avoided, by giving a threshold 

interval [1, h] to the edges of ETG, such that its edges are collision-free if and only if 1 < 

r<h.

Jiang et al (1996) and Jiang et al (1999) proposed algorithms based on the tangent graph 

for path planning of a non-holonomic AGV by executing reversal and forward 

manoeuvres. In their approach they first constructed a tangent graph in the AGV's 

workspace W for finding the shortest path for a point. Then they evaluate this path in 

order to decide whether it can be used as a reference to build up a path for the AGV. If 

the shortest path for a point could not be used as a feasible path of the AGV, it was then 

discarded and the next shortest path was considered. Finally configurations were laid 

sequentially on the selected path in a way that the AGV can manoeuvre from the one 

configuration to the next one without colliding with the environment's obstacles.

In section 4.6 an algorithm called V*MECHA is proposed for solving the basic movers' 

problem. The proposed algorithm has the same data structure as the visibility graph but 

constructs a reduced visibility graph in terms of number of edges, which in turn makes 

the search process for the shortest semi-path more efficient, since this process is
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strongly influenced by the number of graph edges. The V*MECHA algorithm finds the 

shortest semi-free path between two query points in a two-dimensional environment 

populated by both convex and non-convex simple polygonal obstacles.

4.3 A Description of the V*GRAPH Algorithm

The V*GRAPH algorithm was developed by Alexopoulos and Griffin (1992), to find 

the shortest semi-free path between two query points for a point-robot (the AGV), 

which translates freely without rotation, in a two dimensional environment populated by 

simple polygonal obstacles. The V*GRAPH algorithm is very similar to the VGRAPH 

proposed by Lozano-Perez and Wesley (1979). The only differences are that the latter, 

first constructs the entire visibility graph and then searches it for a path using the A* 

algorithm (Hart et al, 1968), while the former one interweaves the two processes. 

Another major difference is that the V*GRAPH algorithm does not construct the entire 

visibility graph but only part of it, therefore making the search process quicker. Before 

the V*GRAPH algorithm is presented, the A* algorithm will be briefly described in 

order to make the exposition of the V*GRAPH algorithm simpler and the proposition of 

the V*MECHA more thoroughly understood, more details about the A* algorithm are 

discussed in the Appendix B.

4.3.1 The A* Algorithm

The A* algorithm belongs to the family of heuristic2 search engines for the 

establishment of the shortest path between two vertices in a graph and it was proposed

2 The word heuristic comes from the Greek word heuriskein, meaning "to discover".
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by Hart et al (1968). Heuristics are criteria or principles for taking a decision upon 

several different actions and establish which of them is the most promising in order to 

achieve a goal more effectively. Consider the problem of finding the shortest path 

between vertex s and vertex g in an undirected graph with a total of n vertices. In order 

to give a physical hypostasis to the problem suppose that the vertices correspond to 

cities connected with roads (the edges) and that the shortest path between two cities is 

questioned.

The graph is not given in an explicit specification, such as an array (or list) of vertices 

and arcs (with the associated costs) but in an implicit specification, which is defined by 

a source vertex (the start vertex) s and a successor operator F. When the successor 

operator is applied to a vertex {nj} it produces a set {(nj,cij)}, where nj are all the 

successors of n; and Cy is the cost of the associated edge from nj to every nj. It is then 

said that the vertices nj are accessible from s. The process of applying the operator F to 

a vertex is called expanding a vertex.

The A* algorithm, searches for the minimum cost path (in this case the shortest path) by 

iteratively expanding vertices starting from vertex s. Each time a vertex n; is expanded, 

an edge to each of its successors is created. In this manner a search graph G is 

explicitly generated, which is a part of an implicitly defined graph. For every successor 

nj of nj the minimum cost of getting to it, is calculated and if this successor has not been 

visited before (produced previously as successive vertex after the expansion of a 

different vertex) a pointer to its parent vertex is held, generating a search tree ST, which 

is a subset of G. Note that the search tree ST is a spanning tree of G. If this node has
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been visited before then if the new way of attaining such a successor is less costly than 

the previous generated path to it, the algorithm redirects the pointers of this vertex 

towards n, in the tree, updates the cost of the path to get there and reconsiders it for the 

establishment of the minimum cost path from s to g. The algorithm terminates when the 

goal vertex is reached or there are no more vertices for expansion. The minimum cost 

path form s to g (providing that there is one) is obtained by backtracking all the pointers 

from g to s in the search tree ST.

If an algorithm is guaranteed to return the optimal path (the shortest in this case) 

between two vertices in a Sgraph3 (if there is one), otherwise it returns failure, it is

called admissible. An evaluation function f (n) is defined for every vertex in the graph 

in such a way that it determines which vertex will be expanded next. This is an efficient 

way to ensure that vertices, which are not on the shortest path, are not expanded, and

vertices that should be expanded are not ignored. A good choice for f can guarantee 

A*'s admissibility.

Suppose that the function f(n) defines the actual cost of the shortest path from s to g 

constrained to pass through n. If function g(n) defines the actual cost of the shortest 

path from s to n and function h(n) defines the actual cost of the shortest path from n to g 

then f(n) = g(n) + h(n). The function f is not known in advance therefore an estimation 

function f is used. To construct the estimation function f, the estimation functions of 

g and h should be found and summed. A good estimation for g(n) is where g (n) is the

3 Sgraph is called a graph G when 3 5 > 0 such as V ey eG: Cy > 5, where ey is the edge connects the i
i*j 

vertex to the j vertex in the graph and Cy is the cost associated with this edge.

4-9



Chapter 4 The V*MECHA Algorithm for Path Planning of an AGV 

minimum cost path from s to n the algorithm has found so far, therefore g (n) > g(n). 

An estimation of the function h(n) is not easy to find because the graph has not been 

explored yet beyond vertex n, so the best way to define it is to rely on heuristic 

information about the problem domain. For the shortest path between two cities a good 

estimation of h(n) is for h (n) to be equal to the airline distance from n to g. Note that 

this distance is the smallest possible. The A * algorithm presented by Hart et al (1968) 

is as follows: 

A * Algorithm 

1. Mark s "open" and calculate f (s). 

2. Select the open vertex n whose value of f IS the smallest. Resolve ties 

arbitrarily, but always in favour of vertex g. 

3. Ifn = g, mark n "closed" and terminate the algorithm 

4. Otherwise mark n closed and apply the successor r to n. Calculate f for each 

successor of n and mark as open each successor not already marked closed. 

Remark as open any closed vertex nj which is successor of n and for which f (nj) 

is smaller now than it was when nj was marked closed. Go to step 2. 

~ 

When h underestimates h then the A * algorithm is admissible. For a proof of the 

admissibility and optimality of the A * algorithm see Appendix B or (Hart et ai, 1968). 

For more information about heuristic search strategies see (Nilsson, 1980), (Barr and 

Feigenbaum, 1983), (Pearl, 1984) and (Nilsson, 1998). In (Pearl, 1983), an attempt to 

quantify the knowledge-search trade off in heuristic search engines and specifically for 

the A * algorithm was made. An analysis of the average number of vertices expanded, 

as a function of the accuracy of its heuristic estimates, is provided. Having discussed 

the A * algorithm, the V*GRAPH algorithm can now be presented. 
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4.3.2 The V*GRAPH Algorithm

The principle idea behind the V*GRAPH algorithm is to keep the size of the visibility 

graph4 (i.e. the number of edges and vertices of the graph) as small as possible while it 

provides adequate representation of the free space (to be precise, of the semi-free space) 

for the establishment of the shortest semi-path between the AGV's start and goal 

locations. This can be achieved by expanding as few vertices as possible. In the 

V*GRAPH algorithm the authors also reduced the size of the visibility graph by 

observing that the shortest semi-free path never visits obstacles' vertices with obtuse5 

interior polygon angle and that only visits vertices, which are extreme- vertices of visible 

sequences. In order to give some insight to these definitions consider the environment 

of Figure 4.1.

13

Figure 4.1 2, 4, 5, 7 and 8 are obtuse s-visible vertices. 1, 3, 6, 8 and 9 are 

the extreme vertices of the s-visible sequences.

4 Note that in the V*GRAPH algorithm as well as in V*MECHA (see section 4.6), the visibility graph is 
defined implicitly by the source vertex s and a successor operator F on s.
5 An obtuse angle is an angle which is greater that 90° and less than 180°. However, the authors in 
(Alexopoulos and Griffin, 1992) used the term obtuse angle to express an angle greater than 90°. This 
term is also adopted in this section to demonstrate the V*GRAPH algorithm.
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All vertices that are visible from vertex s are called s-visible vertices. Obtuse s-visible 

vertices in Figure 4.1 are the following vertices: 2, 4, 5, 7 and 8. An s-visible sequence 

is a set of consecutive s-visible vertices on a single obstacle's boundary, s-visible 

sequences in Figure 4.1 are the following: {!}, {3, 4, 5, 6}, {8, 9}. Extreme vertices of 

the s-visible sequences are the following: 1, 3, 6, 8, and 9.

The V*GRAPH algorithm starts by expanding the AGV's start point s, it identifies all 

the s-visible vertices and then it places them on a list VV, It then rejects all the non- 

extreme vertices of any s-visible sequence and all the obtuse vertices from the list VV 

and places the remaining vertices on a list called OPEN. The list OPEN contains at any 

time all the vertices that are candidates for expansion next. The algorithm uses an

evaluation ruction f (similar to the one used by the A* algorithm) over each vertex on 

the list OPEN in order to choose for expansion the vertex which is most promising to 

lead to the goal point. The algorithm carries on in this manner iteratively until the goal 

point is reached (this is when it is picked from the list OPEN for expansion) or until 

there are no further candidate vertices for expansion. More formally the V*GRAPH 

algorithm for solving the basic movers' problem was stated as follows:

V*GRAPHAlsorithm

INPUT: Initial robot position, s, goal position, t and obstacles. 

OUTPUT: Shortest collision-free path P from s to t
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begin
P : = M; 

OPEN : = {s}; 

g(s) : = 0;

f(s) : = 0; 

repeat

w: = {ieOPEN : f (i) < f (j), VjeOPEN}; 

remove w from OPEN; 

put w in P;

VV : = {w-visible vertices not on OPEN}; 

EV : = {extreme vertices of the w-visible paths in VV}; 

AV : = EV - {obtuse vertices in EV}; 

for each vertex i in AV do

h (i) : = Euclidean distance d(i, g) from i to t; 

g (i) : = g (w) + d(w, i);

f(i) :=g(i)+h(i); 

put i on OPEN; 

until ((OPEN = 0) or (w = t)); 

if = (OPEN = 0) then exit with failure; 

if = (w = t) then exit with P; 

end.

The authors claimed that the V* GRAPH algorithm takes advantage of their 

observations in order to reduce the size of the visibility graph and that it also makes use 

of the A* algorithm in order to find the shortest semi-path between the robot's start and 

goal points in O(n2 log n) computational time and O(n2) space, where n is the total 

number of the obstacles vertices. However, as it will be shown in section 4.5 one of the
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observations for reducing the size of the visibility graph is incorrect. To be specific this 

observation is the one, which states that the shortest semi-path does not go via obtuse 

vertices. In addition, Conn et al (1997) constructed a counterexample showing that the 

V*GRAPH algorithm is incorrect due to the fact that it employs the A* algorithm 

incorrectly. In section 4.4 this counterexample will be demonstrated and it will also be 

shown that the V*GRAPH algorithm employs the A* algorithm incorrectly.

4.4 Conn et al (1997)'s Counterexample on the V*GRAPH Algorithm

The scenario of the counterexample given by Conn et al (1997), is as follows. Consider 

the planar environment of Figure 4.2, populated by a stationary simple obstacle PI, the 

robot's start point s and its goal point t. The co-ordinates of the obstacle's vertices, the 

robot's start and goal points are given in Table 4.1.

s
t
1
2
3
4
5

(4,2)
(4,5)
(1,2)
(5,3)
(6.5, 1)
(6.5,4)
(1,4)

Table 4.1 The co-ordinates of the obstacle's vertices, the robot's start point 

s and its goal point t.
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Figure 4.2 Illustration of the scene of the counter example.

To test the V*GRAPH algorithm the above example is fed to it as an input and the 

values of its variables at each iteration along with its outputs are presented in Table 4.2.

Iterations i OPEN w W EV AV g(i) h(i) f(i)

s _""*** i
"s""i;2,T 1,3 ' 1,3 i0

5

...
4

1 2,5 2,5

3 1,2,4 1,2,4 1,4

3 4.242 7.242J 
2.692 4.716 7.40r
5 '""~'3';i62 "'8.162

1,4,5

8.282 "" 

5.692 2.692
s,l,3,5 1,4 . 5 t t

M»l
s,l,3,5,r"M t 5 5

8.162 0 8.162

11.324 3.162 14.486

Table 4.2 Summary of the results of the V*GRAPH algorithm when is 

applied to the scenario of Figure 4.2. The arrow indicates at which point the 

algorithm fails.
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As can be noticed from Table 4.2, when the algorithm is applied to the scenario of 

Figure 4.2, it terminates with a path P = {s, 1, 3, 5, t} of total length 8.162 units. It is 

obvious that there is a bug in the V*GRAPH algorithm because the shortest path it 

produced for a relatively easy environment (informally a relatively easy environment is 

populated by small number of obstacles which do not create narrow passages for the 

robot) is not collision-semi-free. Therefore, if the AGV moves along the produced path 

it will eventually collide with the environment's obstacle PI. Figure 4.3 illustrates the 

path produced by the V*GRAPH algorithm for the environment of Figure 4.2.

6

5 

4 

3

2- 

1 -

0 1

Figure 4.3 Illustration of the collision path produced by the V*GRAPH 

algorithm for the scenario of Figure 4.2.

The fact that a valid solution for the scenario of Figure 4.2 exists (this is the shortest 

semi-path between s and t) but the algorithm fails to produce it, implies that the 

algorithm is not complete and therefore incorrect. Note that one counterexample is
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enough evidence to prove an algorithms' incompleteness. In section 4.4.1 the weak 

points of the algorithm will be identified and the reason for the algorithm's failure will 

be discussed.

4.4.1 The Bug in the V*GRAPH Algorithm

Recall from section 4.3.1 that in the A* algorithm for each visited vertex a pointer to its 

parent vertex in the search tree is maintained. Every time a vertex say nexp is expanded 

it produces a vertex or a set of vertices, which are neighbouring to it. Suppose that after 

the expansion of the vertex ncxp , a vertex nne i ghb is produced, if this vertex has not been 

visited before it is placed on OPEN for consideration for expansion next. If nnejghb has 

been visited before then, if the new way of attaining nne j ghb is less time consuming than 

the previous one, the path is updated by redirecting nnej ghb's pointer towards nexp, its path 

cost is updated and is placed on OPEN (if not already on OPEN) for reconsideration for 

expansion next. In this way at each iteration of the algorithm the produced path reflects 

the best path in the environment explored so far. These very important steps of the A* 

algorithm are not contained in the V*GRAPH algorithm, therefore any vertex, which is 

expanded by the V* GRAPH algorithm becomes a member of the final path resulting the 

algorithm producing non-optimal paths and more importantly non-collision-free paths.

This is exactly why the algorithm failed to produce a collision-free path in Conn et al 

(1996)'s counterexample, presented in section 4.4. Every vertex expanded by the 

V*GRAPH algorithm became member of the final path without maintaining a pointer to 

its parent node. Notice in table 4.2 that after the expansion of vertex 3, the algorithm 

chose for expansion vertex 5 and it placed it on the final path. As it can be seen in

4- 17



Chapter 4_______________________The V*MECHA Algorithm for Path Planning of an AGV

Figure 4.3 the path between vertex 3 and vertex 5 is not collision-free and therefore the 

path produced by the algorithm (P = {s, 1, 3, 5, t}) is not collision-free. The algorithm 

failed at its fourth iteration when it expanded and placed vertex 5 in the final path 

immediately after vertex 3.

This enough evidence to conclude that the V*GRAPH algorithm does not employ the 

A* algorithm correctly, therefore it does not produce semi-free paths nor optimal paths 

as was claimed by its authors.

4.5 Identification of a New Deficiency on the V*GRAPH Algorithm

In (Alexopoulos and Griffin, 1992) a theorem was proposed and proved stating that: A 

shortest semi-free path from s to g cannot contain obtuse obstacles' vertices (according 

to their definition, vertices with interior polygonal angle greater than 90°).

This statement is not always true, because if an obstacle's vertex has interior polygon 

angle S, with — < S < TT, then this vertex is obtuse vertex, but at the same time it is

non-concave, Figure 4.4c depicts such a vertex. As, it will be shown by Proposition 4.2 

in section 4.6 the shortest path from s to g cannot contain concave vertices (vertices 

with interior polygon angle greater that n radians, Figure 4.4b), but this does not imply 

that it cannot contain obtuse non-concave vertices.
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Figure 4.4a Vertex x is Figure 4.4b Vertex x is Figure 4.4c Vertex x is 

an acute vertex. an obtuse concave vertex. an obtuse non-concave

vertex.

Therefore since the V*GRAPH algorithm rejects obtuse non-concave vertices it might 

mistakenly miss a path from s to g, which goes through an obtuse non-concave vertex. 

Figure 4.5 illustrates such a situation.

g

Figure 4.5 Illustration of an environment where the V*GRAPH algorithm 

fails to find a path, due to the fact that it does not consider obstacles' obtuse 

vertices for the construction of the visibility graph.
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In section 4.6 an algorithm called V*MECHA is proposed for path planning of an AGV. 

The V*MECHA algorithm takes advantage of some useful observations for the 

reduction of the vertices considered for the construction of the visibility graph from the 

V*GRAPH algorithm, and as will be shown makes proper use of the A* algorithm to 

provide a solution to the basic movers' problem. It will be shown that the V*MECHA 

algorithm overcomes the deficiencies of V* GRAPH, and always returns the shortest 

semi-free path between two query points for an AGV providing that one exists.

4.6 Proposition of the V*MECHA Algorithm for Path Planning

As it was mentioned in section 4.1 the V*MECHA algorithm is proposed to overcome 

the deficiencies of the V*GRAPH algorithm. The V*MECHA algorithm is a 

completion of the V*GRAPH algorithm, it combines both the V*GRAPH and the A* 

algorithms to solve the basic movers' problem. The proposed algorithm solves Problem 

1' as addressed in the introduction of the chapter (section 4.1) and makes use of 

Proposition 4.1 and Proposition 4.2 (see below) in order to construct a reduced visibility 

graph of the AGV's configuration space, thereby making the search process for a path 

between the AGV's start and goal configurations more time efficient. Before the 

presentation of the two propositions Theorem 4.1, which guarantees the optimality of 

the path, is discussed.
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Theorem 4.1

Given the AGV's start point s, its goal point g and a set of static simple polygonal 

obstacles P, the shortest semi-free path 9 between s and g (providing that s and g are in 

the same connected component of the AGV's free space) such that, V PjeP, 9 n Pj = 0 

is composed of straight line-segments joining s and g via the obstacles' vertices.

Proof

The proof is by contradiction. Let V be the set of the obstacles' vertices as well as s and 

g. Let E be the set of edges connecting vertices within V such that every edge in E does 

not intersect the interior of any obstacle. Suppose now, that the shortest semi-free path 

9 between s and g contains an edge, which does not join two vertices from V. 

Therefore at least one point pi on the path 9 exists, such that the path bends at pi and 

pigV. Let PJ-I and pj+i be the predecessor and the successor of pi on the path 

respectively. Figure 4.6 illustrates such a path.

The polygonal line pi-i, pi and pj+i is a convex sub-segment of the polygonal line s, pj_i, 

Pi, PJ+I and g. Since 9 is the global shortest path, according to the principle of 

optimality the sub-path t, of 9 (this is the path from p\.i to pi+i through pO is the shortest

between p^ and PJ+I. However, note that if the straight line-segment Pj_ip i+1 is

collision-free (to be more precise semi-free), then p^pj+i is shorter than any other 

polygonal line with the same end points and therefore is shorter than the sub-path £,,

hence 9 is not optimal and the theorem holds. If the straight line-segment p w p i+] is 

not collision-free then a non-empty set V'c V exists such that V VjeV, Vj is inside the
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triangle A PM pi p i+1 . The convex polygonal subset p^, YI, .., Vk and pj+i of the convex 

hull of the set of points {V u pM u pi+1 } is shorter than any other polygonal line- 

segment with the same end points, which does not intersect the interior of the convex 

hull. Therefore, since the polygonal line pi, p^ and pi+] lies outside the convex hull of 

{V u pi-i u PJ+I} the polygonal line PM, vj, ..Vk and pi+i is shorter than the polygonal 

line pi-i, pi and pi+ i (convex hull definition) therefore, the sub-path £ is not the shortest 

hence cp is not optimal and thus the theorem holds.

sub-path E,

Pi

path cp

Figure 4.6 The shortest path bends only at the obstacles' vertices.

Theorem 4.1 entails that the shortest semi-free path between two given points in an 

environment populated by polygonal obstacles is contained in the environment's 

visibility graph. Therefore the shortest path in the visibility graph between vertices s
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and g is the actual shortest path in the environment between the AGV's start and goal 

points.

Recall from section 4.3.2 that the authors of the V*GRAPH algorithm reduced the size 

of the visibility graph by only considering the extreme vertices of any visible sequence 

for its construction. A similar argument is used by the V*MECHA algorithm for the 

reduction of the visibility graph. This argument will be proved in Lemma 4.1 and will 

be further extended by Proposition 4.1 to reduce even more the size of the visibility 

graph. Before the presentation and proof of Lemma 4.1 some useful definitions should 

be provided. Note that the proof of Lemma 4.1 is similar to the proof in (Alexopoulos 

and Griffin, 1992).

Recall from section 4.3.2 that all vertices that are visible from vertex s are called s- 

visible vertices. An s-visible sequence is a set of consecutive s-visible vertices on a 

single obstacle's boundary. The s-visible sequences in Figure 4.7 are the following: {1, 

2, 3}, {15, 16} and {9, 10}. Extreme vertices of the s-visible sequences are the 

following: 1,3, 15, 16, 9, and 10. Notice that, since there can be more that one s-visible 

sequence for one obstacle there can be more than two extremes for a single obstacle. 

For instance, in Figure 4.7 there are two s-visible sequences for obstacle PI and these 

are (1, 2, 3} and {9, 10}. The extreme vertices of the s-visible sequences of obstacle PI 

are 1,3, 9 and 10.
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13

15

Figure 4.7 1, 3, 9, 10, 15 and 16 are the extreme vertices of the s-visible 

sequences.

The two extremes of all the extreme vertices of the s-visible sequences for a single 

obstacle are called super-extremes. In Figure 4.7 the super-extremes are the vertices 1, 

10, 15, 16. Vertices 1 and 10 are the super-extremes for obstacle PI and the vertices 15 

and 16 are the super-extremes of obstacle P2 . Note that from a vertex s there are at most 

two super-extremes for each obstacle. In Lemma 4.1 will be proved that the shortest 

path between two query points for an AGV, in an environment populated by simple 

polygonal obstacles, goes via the extreme vertices of the visible sequences. Further in 

Proposition 4.1 it will be shown that the shortest path only visits the super-extremes of 

the extreme vertices of the visible sequences of every obstacle.

4-24



Chapter 4 The V*MECHA Algorithm for Path Planning of an AGV

Lemma 4.1

From a vertex K, only the extreme vertices of the /^-visible sequences need to be 

considered for the construction of the visibility graph because the shortest semi-free 

path from s to g through K passes via the extremes vertices of any Ac-visible sequence.

Proof

Consider the environment of Figure 4.8 and the /c-visible sequence on the obstacle PI

g

K-visible sequence = {x, 1,2,3, y}

K

Figure 4.8 The shortest path between s and g though k only visits extreme 

vertices of the k-visible sequences.

The /f-visible sequence contains five vertices with extremes at its two ends, vertices x 

and y respectively. Note that if the sequence had less then three vertices all of them 

would be extremes. The shortest path between K and the goal point g is the straight 

line-segment, which connects them. Unfortunately this path is not collision-free 

because it intersects the interior of the PI, therefore the AGV would have to 

circumnavigate PI. Since the AGV will go through point rand will circumnavigate P]
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it will definitely pass either through vertex x or through vertex y. Therefore the shortest 

semi-path to the goal, which goes through point K will contain either the line-segment

KX or the line-segment Ky, because the straight line-segment between two points is 

shorter than any other polygonal line, which connects these points.

Indeed, as can be noticed from Figure 4.8 if the shortest semi-path to the goal through 

point K, is the one which goes around the left hand side of PI, it will definitely go 

through vertex x and the straight line-segment KX is shorter than any other polygonal 

line from K to x through non-extreme vertices of the K -visible sequence. Therefore the 

Lemma holds.

Proposition 4.1 is proposed to strengthen Lemma 4.1 and to further reduce the number 

of vertices considered for the construction of the visibility graph. Using Proposition 4.1 

the size of the visibility graph produced by the V*MECHA algorithm is smaller that the 

visibility graph produced by the V*GRAPH algorithm.

Proposition 4.1

From a vertex K, only the super-extremes of the extreme vertices of the /^-visible 

sequences for each obstacle need to be considered for the construction of the visibility 

graph because the shortest semi-free path from s to g through K passes via the super- 

extremes of the K-visible sequences.
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Proof

The proof of the Proposition is very similar to that of Lemma 4.1. Consider the 

environment of Figure 4.9 and the /c-visible sequences on the obstacle PI. There are 

three it-visible sequences and these are {1}, {3, 4, 5, 6} and {8, 9}.

Figure 4.9 The super-extremes of the k-visible sequences are the vertices 1 

and 9.

According to Lemma 4.1 only the extreme vertices of the AT-visible sequences should be 

considered for the construction of the visibility graph. Extreme vertices of the AT-visible 

sequences are 1, 3, 6, 8 and 9.

It is known that the shortest path between K and the goal point g is the straight line- 

segment, which connects them. Unfortunately this path is not collision free because it 

intersects the interior of the PI, therefore the AGV would have to circumnavigate PI. 

Notice that since the AGV will go through point K and will circumnavigate PI it will 

definitely pass either through vertex 1 or through vertex 9, which are the super-extremes 

of the extreme vertices of the /c-visible sequences for P,. Therefore using the same
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arguments as in Lemma 4.1 it easily follows that only the super-extremes of the extreme 

vertices of the visible sequences for each obstacle should be considered for the 

construction of the visibility graph.

Note that when the algorithm identifies the super-extremes of the k-visible sequences, it 

then marks all the non-super-extremes as useless, so they are not considered again later 

by the algorithm, if they are visible from a different vertex, say r, regardless whether 

they are super-extremes or non-super-extremes of the r-visible sequences. The reason 

for rejecting permanently the non-super-extreme vertices of a visible sequence is as 

follows.

Suppose that vertex, say v, is a non-super-extreme for an obstacle of the /r-visible 

sequences. If v is visible from another vertex later in the algorithm, say vertex r 

accessible from K then if v is non-super-extreme vertex of the r-visible sequences it will 

be rejected anyway. If v is a super-extreme vertex of the r-visible sequences then it 

does not need to be considered for the construction of the visibility graph because, the 

line-segment connecting K to v is shorter than any other path from K to v through r. But 

since v is a non-super-extreme vertex in the K-visible sequences this means that it does 

not need to be considered for the construction of the visibility graph. Therefore once 

non-super-extremes of the visible sequences are identified as the algorithm proceeds, 

they can be rejected permanently.
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Proposition 4.2

The shortest semi-free path from the AGV's start point s to its goal point g, never visits 

concave obstacles' vertices.

Proof

It is trivial to show by contradiction that any path through a concave vertex is not the 

shortest. Consider the environment of Figure 4.10 and suppose the contrary, namely 

that the shortest semi-free path goes through the concave vertex x of the obstacle PI.

y-visible sequence = {p, x, q} 

Figure 4.10 The shortest path never visits concave vertices.

Further suppose that the predecessor of x on the path is vertex y. Since obstacle PI is a 

simple polygon, a small real 8 always exists, such that if a circle with radius z and 

centre the vertex x is inscribed, it intersects the two adjacent edges of vertex x at points 

say p and q, which are visible form y. Therefore all three points p, x, q are consecutive 

points on PI'S boundary and are visible from y. So these points constitute a y-visible 

sequence with extremes p and q. According to Lemma 4.1 the shortest semi-free path 

only visits the extreme vertices of a visible sequence, therefore the path through vertex

4-29



Chapter 4_______________________The V*MECHA Algorithm for Path Planning of an AGV

x can be shortened by passing either through point p or through point q instead and 

therefore is not the shortest, which contradicts the initial assumption that the path 

through the concave vertex x is the shortest and proves the Proposition.

Proposition 4.2 not only reduces the number of vertices considered for the construction 

of the visibility graph but also overcomes the deficiency that appears in the V*GRAPH 

algorithm which rejects the obtuse non-concave vertices.

From Proposition 4.1 and Proposition 4.2 it is concluded that all the concave vertices 

and all the non-super-extreme vertices of the visible sequences in the environment 

should be rejected and not considered by the algorithm, because the shortest semi-free 

path between two query points does not go via such vertices. Note that special 

treatment is needed when the AGV's goal point g coincides with a concave vertex or 

with a non-super-extreme vertex of an obstacle (i.e. for the g vertex not to be rejected).

To demonstrate the effectiveness of Proposition 4.1 and Proposition 4.2, consider the 

two-dimensional environment of Figure 4.11 s and g denote the AGV's start and goal 

locations respectively and PI and P2 are the environment's obstacles.
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Figure 4.11 Illustration of the reduction due to Proposition 4.1 and 

Proposition 4.2.

Visible vertices from s are the vertices, 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 17, 18 and 19. There 

are four s-visible sequences, these are, {1, 2}, {4, 5, 6, 7, 8, 9, 10}, {12} and {17, 18, 

19}. By applying Proposition 4.1 to the environment of Figure 4.11 the only s-visible 

vertices, which need to be included in the visibility graph are the super-extremes, 1,12, 

17 and 19. From these vertices, vertex 12 is a concave vertex. So by applying 

Proposition 4.2 to the environment of Figure 4.11, the only s-visible vertices that are left 

to be included in the visibility graph are the vertices, 1,17, and 19. In Figure 4.11, can 

be noticed the large reduction of vertices considered for the construction of the visibility 

graph, from 1, 2, 4, 5, 6, 7, 8, 9, 10, 12, 17, 18 and 19 to 1, 17 and 19. Having set and 

proven the two propositions responsible for the reduction of the vertices considered for 

the construction of the visibility graph, the proposed algorithm can now be presented.

4-31



Chapter 4_______________________The V*MECHA Algorithm for Path Planning of an AGV

4.6.1 The V*MECHA Algorithm

As was mentioned earlier in this section the V*MECHA algorithm makes use of the A* 

algorithm for the construction of the shortest semi-free path. The algorithm starts from 

the AGV's start configuration and iteratively generates a reduced visibility graph, which 

is searched for the identification of the shortest Euclidean path between s and g. The 

algorithm starts by expanding point s, it identifies all the s-visible vertices and then it 

rejects all the non-super-extremes of the s-visible sequences and all the concave 

vertices. The algorithm undertakes a heuristic search process guided by the evaluation

function f. Inspired by the A* algorithm, the evaluation function is defined as follows.

The evaluation function f is defined such that its value f (n) for any vertex n is an 

estimation of f(n). The function f(n) is the cost of the actual shortest path from s to g 

constrained to pass through vertex n. If function g(n) defines the actual cost of the 

shortest path from s to n and function h(n) defines the actual cost of the shortest path 

from n to g then the function f(n) is defined as follows,

f(n) = g(n) + h(n) (4.1)

However, since is not possible to know f(n) in advance, an estimation function is used 

instead. The estimation function of f is the function f and in order to be defined the 

estimation functions of g and h should be defined and summed together. As in the A* 

algorithm described in section 4.3.1, a good estimation for g(n) is g(n), where g(n) is 

the shortest path from s to n the algorithm has found so far, therefore g (n) > g(n). An 

estimation of the function h(n) is not easy to find, so the best way to define it is to rely
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on heuristic information about the problem domain. For the basic movers' problem a 

good estimation of h(n) is for h (n) to be equal to the airline distance from n to g. Note 

that this distance is the smallest possible between two vertices in the environment. 

Therefore more formally the estimation function that is used can be defined as follows: 

~ ~ 

f (n) = g (n) + h (n) (4.2) 

Having the evaluation function for the search process defined the algorithm proceeds as 

follows. When the algorithm expands s at the beginning, it rejects all the non-super-

extremes of the s-visible sequences and all the concave vertices. All the (remaining) 

produced vertices are placed on a list called OPEN and a function f is evaluated for 

each produced vertex in order for the vertex with the best assessment to be chosen for 

expansion next. The list OPEN contains at any time all the vertices that are candidates 

for expansion next. Every vertex produced is marked visited and is placed in a search 

tree called Path with a pointer to its parent vertex. The algorithm then picks from 

OPEN the vertex with the smallest f value to expand next. The algorithm carries on in 

this manner iteratively until the goal point is reached (this is when it is picked from the 

OPEN list for expansion) or until there are no further candidate vertices for expansion 

on OPEN. Note that if after the expansion of the vertex say Ilexp, a vertex nneighb is 

produced, then if this vertex has been visited before and the new way of attaining it 

gives rise to a shorter path than that previously encountered, then the tree Path is 

updated by redirecting nneighb'S pointer towards Ilexp, its f value is updated and placed 

on OPEN if its not already there, for reconsideration for expansion next. In this way at 

each iteration of the algorithm the tree Path reflects the best path in the environment 
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explored so far. If the algorithm terminates because the vertex g is reached, the shortest 

semi-free path between s and g is obtained by backtracking all the pointers in the tree 

Path from g to s. Otherwise if the algorithm terminates when the list OPEN is empty, 

this means that there are no further vertices for expansion and therefore there is not a 

semi-free path between s and g. The V*MECHA algorithm is proposed as follows:

V*MECHA Algorithm

INPUT: AGV's start point s, AGV's goal point g and the set of obstacles P. 

OUTPUT: Shortest semi-free path for the AGV from s to g.

begin

put s in Path;

put s in Open;

mark s visited;

g(s) : = 0;

while (Open ^ nil) do

begin

w : = {isOpen : f(i)< f(j) | VjeOpen, resolve ties arbitrarily but

always in favour of the goal vertex};

remove w from Open;

if w = g then exit while loop;

VV : = { VISIBLE_VERTICES (w, P)};

SE : = {SUPER_EXTREMES (w,VV)};

Mark all the vertices in {VV-SE} useless;

NCV : = SE - {concave vertices in SE};

for each vertex ieNCV do

if i is not marked useless then

if i is not marked visited then 

begin
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h(i) : = Airline distance da j r(i, g) from i to g; 

g(i) : = g(w) + dedge(w, i);

f(i) :=g(i) + h(i);

put i in Path with pointer toward w;

put i in Open;

mark i visited; 

end;

else if g(i) > g(w) + dedge(w, i) then 

begin

redirect pointer of i toward w in Path;

if ie Open then remove i from Open; 

g(i) : = g(w) + dedge(w, i);

put i in Open; 

end; 

end;
if w = g then return the path by tracing all the pointers in Path from g back to 

s else if Open = nil then return failure; 

end.

VV in the algorithm is a set, which contains all the visible vertices from the vertex 

currently being expanded. For the identification of the visible vertices from a vertex say 

v, an algorithm, which is due to Lee (1978) can be used. This algorithm is called as a 

subroutine by the V*MECHA algorithm called VISIBLE_VERTICES and will be 

discussed in section 4.6.2.
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SE in the algorithm is a set, which contains the super-extremes of the extreme vertices 

of the visible sequence(s) in VV. For the identification of the super-extremes of the 

visible sequence(s), the algorithm uses the subroutine SUPER_EXTREMES. This 

subroutine will be discussed in section 4.6.2.

NCV in the algorithm is a set, which contains only the non-concave vertices from SE.

dedge(w, i) is the cost (length) of the edge connecting vertices w and i.

dair(w, i) is the airline (Euclidean) distance between vertices w and i.

All vertices considered for the construction of the RVG are marked as visited.

All the non-super-extreme of the visible sequences are marked as useless

4.6.2 V*MECHA's Subroutines

The first subroutine used by V*MECHA is the VISIBLE VERTICES. This routine 

takes as arguments a point v and a set of obstacles P and returns a set W of all the 

vertices that are visible from v. The second subroutine used by the V*MECHA 

algorithm is the SUPER_EXTREMES. This routine takes as arguments a point v and a 

set of its visible vertices W and returns all the super-extremes of the v-visible 

sequence(s).
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VISIBLE VERTICES (v. P)

INPUT: A collision-free point v and the set of obstacles P. 

OUTPUT: The set W of all vertices visible from vertex v.

begin

Sort the scene's vertices according to their clockwise angle the half-line 

emanating from v through each vertex creates with the x-axis. If there are any 

ties give priority according their distance to v. Let pi, p2, .., pn be the sorted 
list;

Let (. be the half-line emanating from v and parallel to the x-axis. Find the

obstacle's edges that are properly intersected by i (intersected in other points

than the obstacle's edges endpoints) and store them in a balanced tree T in the
order their intersection;

W:=0;

for i := 1 to n do

if VISIBLE (pi) then add pi to W;

Insert into T the obstacle's edge incident to pi that lie on the clockwise 
side of the half-line from v to PJ;

Delete from T the obstacle's edge incident to pi that lie on the counter­ 
clockwise side of the half-line from v to p\',

return W; 

end.

The VISIBLE subroutine is called by the VISIBLE VERTICES subroutine, and it is 

used to decide whether a vertex pi is visible from v. Usually this involves only checking 

within the tree T if the edge closest to v (note that this is the leftmost leaf of the tree)
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intersects vp, . However the visible subroutine should take care of the case when vp; 

contains other vertices. The VISIBLE subroutine is as follows:

VISIBLE (PJ)

begin

if vpj intersects the interior of the obstacle of which pi is a vertex, locally at pi

then return false 

else if i=l or PJ.I is not on the segment vpj

then Search in T for the edge e in the leftmost leaf 

if e exists and vp ( intersects e

then return false 

else return true 

else if PJ_I is not visible

then return false

else Search in T for an edge e that intersects Pj.jpj 

if e exists

then return false 

else return true 

end.

By analysing the computational time of the VISIBLE_VERTICES subroutine, it can be 

noticed that the first step of the algorithm, which sorts the vertices according to their 

clockwise angle requires O(n log n) computational time, where n is the total number of 

the obstacles' vertices. The second step, which checks for intersection between the 

obstacles edges and the half-line, which emanates from v and is parallel to the x-axis 

and places the corresponding edge in the a balanced search tree T, requires O(n log n) 

computational time, where n is the total number of the obstacles edges. The last step is
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the execution of the for loop. In each execution of the loop constant time is required for 

some geometric checks (these checks are carried out in the subroutine VISIBLE] and 

O(log n) time for a constant number of operations on the balanced tree T, where n is the 

total number of the obstacles' vertices. Since there can be at most n iterations in the for 

loop, its computational time O(n log n), where n is the total number of the obstacles' 

vertices. Therefore the overall computational time of the VISIBLE_VERTICES 

subroutine is O(n log n), where n is the total number of vertices of the input set of 

obstacles P.

SUPER EXTREMES Subroutine

Before the SUPERJEXTREMES subroutine is proposed it is important to note that this 

subroutine requires the vertices of the obstacles to be numbered consecutively around 

the obstacles (say in counter-clockwise order). Each vertex is numbered by a set of two 

digits. The first digit is the index of the obstacle and the second is the index of the 

vertex. For example, suppose that a scene contains two obstacles each of them having 

three vertices. The vertices of the first obstacle are numbered counter-clockwise as, (1, 

1) for the first vertex, (1,2) for the second and (1, 3) for the third. The vertices of the 

second obstacle are numbered counter-clockwise as, (2, 1), (2, 2) and (2, 3). Note that 

this way of representing the obstacles' vertices does not influence the V*MECHA 

algorithm or any of its subroutines in the way they are executed or their computational 

complexity. Therefore, it is assumed that the input of the problem is fed to the 

algorithm in the above manner. However, in the rest of the thesis except the following 

subroutine the vertices will continue to be numbered as they were up to this point (by a 

single digit) for the sake of the uniformity and the clarity of the exposition.
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The SUPER_EXTREMES subroutine takes as arguments a point v and a set of its 

visible vertices W and returns all the super-extremes of the extreme vertices of the v- 

visible sequence(s). The routine compares the counter-clockwise angles created by the 

line-segments that connect v to any of the v-visible vertices, with the x-axis, in order to 

find the super-extremes. This is the reason that the obstacles' vertices should be 

numbered using two digits so that the routine can distinguish the vertices of different 

obstacles and produce the super-extremes of each obstacle.

Notice that the super-extremes can be identified by the SUPER_EXTREMES 

subroutine directly without having to identify the extreme vertices of the visible 

sequences at all.

SUPER EXTREMES fv, W)

INPUT: A collision-free point v and a set W of v-visible vertices. 

OUTPUT: A set with the super-extremes of the v-visible sequence(s) in W.

begin

Put all vertices from W to Temp sorted lexicographically upon their two digits

numbering;

k:=l;

left|<:= first element Temp;

right|<:= first element Temp;

for v; := (the second element of Temp) to (the last element of Temp) do

begin
if Vj(obs) 5* Vj.i(obs) then k:=k+l;
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if leftk = 0 and rightk = 0 then leftk := Vj(obs, ver) and rightk 

:=Vj(obs, ver) else if the counter-clockwise angle created by vv i and 

the x-axis is greater than this of the leftk then leftk := Vj(obs, ver) else if 

the counter-clockwise angle created by Wj and the x-axis is smaller 

than this of the rightk then rightk := Vj(obs, ver);

end;

end.

At the end of the above subroutine, k is the number of the super-extremes pairs and leftk 

and rightk are the left and right super-extremes respectively for each encountered 

obstacle. For each vertex Vj in W, obs and ver are its obstacle's number and vertex's 

number indexes. In order to demonstrate how the above routine works, a simple 

example will be given. Consider the example of Figure 4.12.

3,3

Figure 4.12 Environment used for the demonstration of the 

EXTREME VERTICES subroutine.
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In the example of Figure 4.12, W = {(2, 1), (2 ,3), (2. 4), (2, 5), (3,1), (3, 2), (1, 6), 

(1,7), (1, 1), (1, 2), (1, 3)} and Temp = [(1, 1), (1, 2), (1, 3), (1, 6), (1, 7), (2, 1), (2, 3), 

(2, 4), (2, 5), (3, 1), (3, 2)] at the beginning of the algorithm. The results of the 

algorithm when applied to the example of Figure 4. are summarized in Table 4.3.

Iterations v ( k leftu right^ 1

left! =(1,6) right, =(1,3)

(2, 5)
(3, 1) "3~ (3, 1) (3yl) 

, 2)

Ieft2 = (2, 1)

Left3 = (3,1) rights = (3,2)

Table 4.3 Summarization of the results of the SUPER_EXTREMES

subroutine when is applied is applied to the scene of Figure 4.12.

As can be notice from Table 4.3, when the routine SUPER_EXTREMES is applied to 

the example of Figure 4.12, it terminates with three super-extremes pairs (k = 3) and 

these are, [(1, 6), (1, 3)], [(2, 1), (2.5)] and [(3, 1), (3, 2)].

By analysing the computational time of the EXTREME_VERT1CES subroutine it can 

be noticed that the first step of the algorithm, which sorts the vertices first by their 

obstacle's index obs and vertex's index ver and places them in Temp, requires O(n log 

n) computational time, where n is the total number of the obstacles' vertices. The 

second step, is the loop for which encapsulates statements of constant time and is
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traversed n times. Therefore the overall computational time of the 

EXTREME VERTICES subroutine is O(n log n), where n is the total number of 

vertices of the input set of obstacles P.

Having discussed the subroutines of the V*MECHA algorithm its presentation is 

completed and it is now appropriate to test the algorithm by considering a path planning 

problem. Before any formal proof of the algorithm's admissibility and optimality, the 

algorithm will be tested in section 4.7 on the counterexample of the V*GRAPH 

algorithm constructed by Conn et al (1997).

4.7 Testing V*MECHA using Conn et al (1997)'s Counterexample

A quick reminder of the counterexample's scene is provided in Figure 4.13 and a 

summary of the scene's co-ordinates is provided in Table 4.4.

6

5

4

2- 

1

0 \
2 4

Figure 4.13 Illustration of the counterexample's scene.
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(4,2)
(4,5)
(1,2)
(5,3)
(6.5, 1)
(6.5,4)
(1,4)

Table 4.4 The co-ordinates of the scene's vertices.

To test V*MECHA the aforementioned example is fed into it as input and the values of 

its variables at each iteration along with its outputs are presented in Table 4.5.

At the first iteration of the algorithm vertex s is expanded and after the filtering of the s- 

visible vertices using proposition 4.1 and 4.2, vertices 1 and 3 are added to the spanning 

tree Path with a pointer pointing towards s (see table 4.5 for details). At the second 

iteration vertex 1 is chosen from Open to be expanded because it has the smallest f 

value. After filtering the 1-visible vertices using proposition 4.1 and 4.2, and checking 

for the already visited vertices (these are vertices s and 3) whether the new way of 

getting to them is less time consuming than the previous, the only vertex which is added 

to the Path, is vertex 5 with a pointer pointing towards vertex 1. In the same manner at 

the third iteration vertex 3 is chosen from Open to be expanded and vertex 4 is added to 

the path with a pointer pointing towards vertex 3. At the fourth iteration vertex 5 is 

chosen to be expanded and vertex g is added to the path with a pointer pointing towards 

vertex 5. At the fifth iteration vertex g is chosen to be expanded next and therefore the 

algorithm terminates because the goal point is reached.
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Chapter 4 The V*MECHA Algorithm for Path Planning of an AGV

As can be noticed from Table 4.5, when the V*MECHA algorithm is applied to the 

scenario of Figure 4.13, it terminates with a path Path = {s, 1, 5, g} of total length 8.162 

units. Figure 4.14 depicts the path produced by the V*MECHA algorithm for the 

environment of Figure 4.13.

6

5

4

3

2

1

0 \ \ \ 1 I
1234567

Figure 4.14 The arrows illustrate the semi-free path proposed as a solution 

to the scenario of Figure 4.13 by the V*MECHA algorithm.

This path is semi-free and is also the shortest path between s and g. The fact that the 

V*MECHA algorithm discovers the correct solution for Conn et al (1997)'s 

counterexample while the V*GRAPH fails, is an indication (but not a guarantee) that 

the algorithm works better that the V*GRAPH at least for this particular example. 

However, a formal proof of the V*MECHA's correctness will be discussed in section 

4.8.
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Note that since the V*MECHA algorithm uses the A* algorithm to search for the 

shortest path, the proofs of the V*MECHA's admissibility and optimality are similar to 

that of the A* algorithm presented in (Hart et al, 1968).

4.8 The Admissibility of the V*MECHA Algorithm

For the V*MECHA algorithm to be admissible it has to be proved that it always 

terminates by returning the shortest semi-free path between the AGV's start point s and 

its goal point g in the RVG, providing there is one, otherwise it terminates with failure. 

Having proven Proposition 4.1 and Proposition 4.2 it is ensured that the algorithm will 

not fail to find a path from s to g, providing that there is one, due to the rejection of the 

non-super-extremes and the concave vertices. It will be shown that if the V*MECHA 

algorithm is applied to finite 5graphs and h underestimates h, it always finds the 

shortest paths.

Lemma 4.2

If Vn, h (n) < h(n) and the V*MECHA algorithm has not terminated, then there is 

always a vertex n' on OPEN and on the shortest path, such that f (n') < f(s), (f(s) is the 

shortest unconstrained path s to g).

Proof

Let the sequence Path = (s, n ]; n2 , ..., g) be the optimal path from s to g. At any time 

before the algorithm terminates let n" be the vertex last expanded by the algorithm and 

n' the vertex with the smallest f value on OPEN (the successor of n" on Path), note
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that n' could be g. It is known by the definition of f that, f (n') = g (n') + h (n'), but 

since n' all its ancestors have been expanded, the optimal path to n' must have been 

found, so g (n') = g(n') therefore, 

~ ~ 

f (n') = g(n') + h (n') (4.3) 

and since it is assumed that, h (n') < h(n') then, 

f (n') < g(n') + h(n') = f(n') (4.4) 

It is known that the value of the function f for any vertex n on the optimal path is equal 

to f(s), therefore the inequality 4.4 becomes, 

~ 

f (n') < f(s), Vn E Path (4.5) 

and the Lemma is proven. 

Theorem 4.2 

In a finite 8graph, if for every vertex h (n) < h(n) then the V*MECHA algorithm is 

admissible. 
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Proof

Suppose the contrary, that the algorithm terminates without returning the shortest path 

between s and g. There are three different cases where this could happen.

1 st case: The V*MECHA algorithm terminates with a path to a non-goal vertex. 

The proof of this contradiction is very trivial and it immediately follows from the 

termination condition in the algorithm: if w = g then exit while loop.

2nd case: The V*MECHA algorithm does not terminate at all.

It is not hard to show that the algorithm always terminates. If the V*MECHA algorithm

does not terminate, it is because it expands vertices on OPEN forever and therefore will

f(s)expand vertices in the search tree further than —- steps from s. Since the graph is a
5

f(s)finite graph and is also a Sgraph, the g values of vertex n on OPEN further than ——
5

steps from s in the search tree and thus their f values will exceed f(s). However, no

f(s) vertex further than —^- from s is expanded, because it is known by Lemma 4.2 that
5

there is some vertex n' on the optimal path such that f (n') < f(s), therefore the 

algorithm will expand n' rather than n. The only way that the algorithm can now fail to

f(s)terminate is if it keeps reopening vertices within -^ steps of s. However, each such
o

vertex can be opened only a finite number of times since there are finite numbers of

ffs)paths for s to n through such vertices within ~- steps of s. Therefore the V*MECHA
o

algorithm terminates.
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3 r case: The V*MECHA algorithm terminates with a path to g, however the path

is not the shortest.

Suppose that the algorithm terminates at the goal point g but not via the shortest path. 

From Lemma 4.2, it is known that just before the termination of the algorithm a vertex 

n' on OPEN and the optimal path existed. Therefore vertex n' would have been chosen 

for expansion rather that vertex g, which contradicts the assumption that V*MECHA 

terminated.

Having proved all three cases, it is shown that for finite Sgraphs, if h (n) < h(n) then the 

V*MECHA algorithm is admissible.

4.9 The Optimality of the V*MECHA Algorithm

As was mentioned in section 4.8, when the encountered graph is a finite 5graph and h 

underestimates h, then the V*MECHA algorithm is admissible. However, there can be 

several values of h underestimating h. For instance if h(n) = 0 it is still an 

underestimate of h(n). Note that if h (n) = 0 the V*MECHA algorithm is a uniform-cost 

search known as the Dijkstra's shortest path algorithm, (Dijkstra, 1959).

Consider two different versions of the V*MECHA algorithm say V*MECHAi and 

V*MECHA2 each of them using a different h value, say h i and h 2 respectively. If for 

all non-goal vertices n, hi < h 2 , it is then said that V*MECHA2 algorithm is more 

informed than the V*MECHAi algorithm.
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It will be shown here that the V*MECHA algorithm is optimal in the sense that it never 

expands more vertices than any other admissible algorithm, which is less than or

equally informed as the V*MECHA algorithm, under a restriction on the h. The 

restriction on h, is that the difference between the estimated costs from any two visible 

vertices to the goal vertex g is less than or equal to the cost of the arc connecting the 

two vertices. More formally for any two visible vertices nj and nj,

h (nO - h (nj) < dedge(ni, nj) (4.6)

This is called the consistency assumption because it must be true when the heuristic 

information is applied consistently to all vertices.

Lemma 4.3

If the consistency assumption is satisfied then for every expanded vertex n by 

V*MECHA § (n) = g(n). In other words, this Lemma states that if the consistency 

assumption is satisfied the V*MECHA algorithm has found the optimal path to any 

vertex n it selects for expansion.

Proof

Suppose that the contrary is true and just before expanding n, that g(n) > g(n). 

Therefore V*MECHA has not found the shortest path, but from Lemma 4.2 it is known 

that just before the expansion of n, a vertex n' on OPEN and on Path with g (n') = g(n') 

exists. If n' = n then the Lemma holds, otherwise,
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g(n) = g(n') + dedge(n', n) = g (n') + dedge(n', n) (4.7) 

Under the initial assumption g (n) > g(n), so it is obtained that

g(n)>g(n') + dedge(n',n) (4.8) 

If the fi(n) is added to both sides of the inequality (4.8), then

g (n) + h (n) > g (n') + dedge(n', n) + h (n) (4.9)

By applying the consistency assumption to the right hand side of inequality (4.9) it is 

obtained,

g(n)+h(n)>g(n')+h(n') (4.10)

Therefore, f (n) > f(n'), which contradicts the fact that the algorithm chose n for 

expansion while n' was available. Therefore the Lemma is proven.

Lemma 4.4

For any vertex n expanded by the V*MECHA, if h underestimates h then f (n) < f(s).
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Proof

If the vertex n is expanded by the V*MECHA algorithm and n is the goal g then f (n) < 

f(s) because the V*MECHA algorithm is admissible and the Lemma holds. If n is not 

the goal then it is known from Lemma 4.2 that just before n was expanded there was a 

vertex n' on OPEN and on Path such that f (n') < f(s). If n = n' then the Lemma holds 

otherwise since the algorithm chose n for expansion instead of n' it must have been that,

f(n)< f(n')<f(s) (4.11) 

and the Lemma is proven.

Theorem 4.3

If the V*MECHA algorithm is more informed than another admissible algorithm say, 

MECHA, and the consistency assumption is satisfied, then if a vertex is expanded by 

V*MECHA, it is also expanded by MECHA.

Proof

Again suppose the contrary, namely that a vertex n expanded by the V*MECHA 

algorithm but not by MECHA. This could happen because some information should be 

available to MECHA that the cost of a path trough n is equally or more expensive than 

the shortest path, so f(n) > f(s).

It is known that the actual shortest path from s to g constrained to pass through n is 

f(n) = g(n) + h(n), rearranging this equation it yields,
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h(n) = f(n)-g(n) (4.12)

By the initial assumption it is known that MECHA considered that f(n) > f(s), therefore

h(n) >f(s)-g(n) (4.13)

The MECHA algorithm could use as a lower heuristic estimate fi (n) = f(s) - g(n), while 

the V*MECHA algorithm uses as a heuristic estimate h (n) = f (n) - g (n), but from 

Lemma 4.4 it is known that f (n) < f(s), therefore h (n) < f (s) - g (n) meaning that the 

heuristic function of V*MECHA has satisfied h(n) < f(s) - g(n). However from

Lemma 4.3, it is known that g(n) = g(n), therefore h(n) < f(s) - g(n). This indicates 

that the MECHA algorithm used information on vertex n, which allowed a lower bound 

for h, at least as large as the one used by the V*MECHA algorithm, contradicting the 

initial assumption that the V* MECHA algorithm is more informed than the MECHA 

algorithm. Therefore the theorem holds.

4.10 The Optimality of the Path Produced by the V*MECHA 

Algorithm

According to Theorem 4.1 the shortest semi-free path between the AGV's start point s 

and its goal point g, in an environment populated by static simple polygonal obstacles 

bends only at obstacles' vertices. Therefore the visibility graph of the environment 

encapsulates the shortest semi-free path from s to g. From Propositions 4.1 and 4.2 it is
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known that the RVG produced by V*GRAPH also encapsulates the shortest semi-free 

path from s to g. Since the V*MECHA algorithm is admissible it guarantees to find the 

shortest path within the RVG and therefore the global shortest semi-free path from s to 

g in the AGV's environment.

4.11 Time and Space Complexities of the V*MECHA Algorithm

In this section an empirical analysis of the computational time and space of the 

V*MECHA algorithm will be presented.

Theorem 4.4

The V*MECHA algorithm establishes the shortest semi-free path for an AGV, between 

two query points, in O(k n log n) computational time and in O(k2) space, where n is the 

total number of the obstacles' vertices and k is the total number of the obstacles' non- 

concave vertices.

Proof

The while loop of the algorithm is traversed at most k times since the length of Open is 

0(k), where k is the total number of the obstacles' non-concave vertices. Therefore 

there are O(k) iterations and in each iteration the following steps are executed. The 

identification of the vertex in Open with the smallest f value requires O(k) time, where 

k is the total number of the obstacles' non-concave vertices. The identification of all 

the w-visible vertices requires O(n log n) time, where n is the total number of the 

obstacles' vertices, see section 4.6.2 for details. The identification of the super-
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extremes of the extreme vertices of any w-visible sequence requires O(n log n) time, 

where n is the total number of the obstacles' vertices, see section 4.6.2 for details.' The 

treatment of w's children requires O(k) time, where k is the total number of the 

obstacles' non-concave vertices.

The most computationally expensive steps inside the while loop are the identification of 

the w-visible vertices and the identification of the super-extremes of the extreme 

vertices of the w-visible sequences. Both of these steps require O(n log n) time, where 

n is the number of the obstacles' vertices and these steps dominate the computational 

time of each iteration of the while loop, which is traversed k times, leading the overall 

computational time of the V*MECHA algorithm to be in O(k n log n).

The number of edges of the reduced visibility graph produced by the V*MECHA

algorithm is bounded by . Since = -——-———- which is in O(k2), the
\ 2 J \ 2 J 2

•^

space complexity of the V*MECHA algorithm is in O(k ).

The worst time and space complexities attained by the V*MECHA occur when it is 

applied in an environment populated only by convex obstacles and k becomes equal to n
*) 9

leading in a computational time 0(n log n) and O(n ) space.

4-56



Chapter 4 ____________________The V*MECHA Algorithm for Path P tannins of an AGV

4.12 Comparing the V*MECHA Algorithm to other Visibility Graph 

Approaches

In this section the performance of V*MECHA will be compared with various similar 

algorithms implemented for the solution of the basic movers' problem and will be 

critically evaluated.

As was mentioned in section 4.2, Rohnert (1986) proposed an algorithm for solving the 

basic movers' problem in time O(f2 + n log n) after O(n + f2 log n) pre-processing, 

where f is the total number of the environment's obstacles and n is the total number of 

the obstacles' vertices. Rohnert's algorithm is computationally more efficient than 

V*MECHA, but its main disadvantage over the V*MECHA algorithm is that its 

applicability is restricted only to environments populated by convex obstacles while the 

V*MECHA is applicable to environments populated by both convex and non-convex 

obstacles.

Several methods for constructing the entire visibility graph in time O(n2), where n is the 

total number of the obstacles vertices have been proposed, as described in section 4.2. 

This result leads the VGRAPH approach to be in O(n2) computational time, where n is 

the total number of the obstacles' vertices. Comparing the V*MECHA approach to the 

VGRAPH approach is not very easy because the computational time of the V*MECHA 

depends on the type of obstacles populating the environment. Therefore two different 

measurements will be proposed.
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The first is when the V*MECHA attains its worst time complexity, this is when the 

environment contains only convex obstacles. In this case V*MECHA's computational 

time is O(n2 log n), where n is the total number of the obstacles' vertices while the 

VGRAPH's computational complexity is O(n2), where n is the total number of the 

obstacles' vertices. In this case theoretically the VGRAPH algorithm is 

computationally more efficient than the V*MECHA, but sometimes in practice 

V*MECHA is faster due to the fact that it does not construct the entire visibility graph 

but only part of it, as opposed to VGRAPH, which constructs the entire visibility graph. 

Since fewer vertices are considered for inclusion in the visibility graph, due to the fact 

that the non-super-extreme vertices are rejected, the OPEN list is smaller resulting in 

less executions of the algorithm's while loop. Therefore even when the environment is 

populated only by convex obstacles V*MECHA in reality can sometimes be less time 

consuming than VGRAPH. Also note that since the visibility graph produced by 

V*MECHA algorithm is smaller than the entire visibility graph produced by VGRAPH, 

the search process is faster because its efficiency relies on the number of edges of the 

considered graph.

In the average case, this is when the environment is populated by both convex and non- 

convex obstacles, V*MECHA is in practice nearly always computationally more 

efficient. Intuitively in this particular application the average case analysis seems a 

more realistic measure because in general the physical environment of a robot is 

populated by obstacles of various shapes and sizes and are more likely to be (or 

approximated by) non-convex obstacles rather than 'fine' convex obstacles. Figure 4.15
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illustrates an environment presented in (Liu and Arimoto, 1992) for the comparison of 

the T-graph approach with the VGRAPH approach.

g

Figure 4.15 The environment used in (Liu and Arimoto, 1992) for the 

comparison of VGRAPH and T-graph algorithms.

The same environment will be used here in order to demonstrate the large reduction in 

size of the visibility graph achieved by the V*MECHA algorithm. Figure 4.16a 

illustrates the visibility graph constructed by the VGRAPH algorithm and Figure 4.16b 

illustrates the visibility graph constructed by the V*MECHA algorithm.
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Figure 4.16a Illustration of the 

visibility graph constructed by the 

VGRAPH algorithm for the 

identification of the shortest path 

between the AGV's start point s and its 

goal point g.

Figure 4.16b Illustration of the 

visibility graph constructed by the 

V*MECHA algorithm for the 

identification of the shortest path 

between the AGV's start point s and its 

goal point g.

As can be noticed from Figures 4.16a and 4.16b, the size of the visibility graph 

produced by the V*MECHA algorithm is significantly smaller than that produced by 

the VGRAPH algorithm. This reduction makes the search process for the identification 

of the shortest path much faster.

Even by comparing the V*MECHA algorithm to the T-graph algorithm proposed by 

Liu and Arimoto (1992), it can be noticed that frequently the visibility graph 

constructed by the V*MECHA can be smaller in size than the one constructed by the T- 

graph. Again the same environment will be used to compare the size of the visibility
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graph constructed by the V*MECHA to that constructed by the T-graph. Figures 4.17a 

and 4.17b, illustrate this comparison.

Figure 4.17a Illustration of the 

visibility graph constructed by the T- 

graph algorithm for the identification of 

the shortest path between the AGV's 

start point s and its goal point g.

Figure 4.17b Illustration of the 

visibility graph constructed by the 

V*MECHA algorithm for the 

identification of the shortest path 

between the AGV's start point s and its 

goal point g.

As can be noticed from Figures 4.17a and 4.17b, the reduction of the size of the 

visibility graph produced by the V*MECHA algorithm is very apparent in comparison 

to that of the T-graph approach, thus making the search process for the identification of 

the shortest path a much faster process. Also, it is worth noting that there are cases 

when the V*MECHA attains better computational complexity. The computational time 

of the T-graph approach is in O(n (n + t) + m2 t), where n is the total number of the
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obstacles' convex vertices, m represents the number of the obstacles' convex 

components and t is the total number of the obstacles' vertices. If the environment is 

populated by non-convex obstacles with large numbers of concave vertices (i.e. star-like 

polygonal obstacles), there are lot of convex components in the obstacles which makes 

the T-graph more expensive computationally and at the same time makes V*MECHA 

cheaper computationally because there are less vertices for consideration for the 

construction of the visibility graph and thus less executions of the while loop.

4.13 Discussion

In this chapter a new algorithm was proposed for solving the basic movers' problem. 

The algorithm is called V*MECHA and establishes the shortest semi-free path between 

two query points for an AGV in a two-dimensional environment which contains simple, 

convex and non-convex polygonal obstacles. The algorithm is a heuristic search engine 

and is proposed to correct the V*GRAPH algorithm and overcome its deficiencies.

The computational complexity of the V*MECHA algorithm is empirically shown to be 

in O(k n log n ), where k is the total number of the obstacles' non-concave vertices and 

n is the total number of the obstacles' vertices.

Two propositions are presented and proved in order to minimise the number of vertices 

considered for the construction of the visibility graph without sacrificing the optimality 

of the path. The significant reduction of the size of the visibility graph enables the

4-62



Chapter 4_______________________The V*MECHA Algorithm for Path Planning of an AGV_

search process to be carried out more efficiently and effectively, since its efficiency is 

strongly influenced by the number of edges of the considered graph.

The algorithm was proven to be admissible and optimal in a sense that it never expands 

more vertices than any other less or equally informed admissible algorithm.

Examples showed that the V*MECHA algorithm is superior to those algorithms which 

construct the entire visibility graph in the average case (which appears most frequently 

in real world environments) and that it can be faster than the T-graph algorithm in some 

cases.

In the next chapter the V*MECHA algorithm will be used as the basis for the 

development of another algorithm called D*MECHA. The D*MECHA algorithm finds 

the time-minimal semi-free motion between two query points for an AGV, which 

operates in a two-dimensional environment populated by simple convex and non- 

convex polygonal obstacles which can be static or moving, following a predefined 

motion.
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5
The D*MECHA

Algorithm for Motion
Planning of an AGV in

Dynamic Environments
For every matter has its time and method

ECCLESIASTES 8: 6

5.1 Introduction

In this chapter the problem of planning the motion of an AGV in environments 

populated with both static and moving obstacles is considered and an extension of the 

V*MECHA algorithm for solving this problem is proposed. The two-dimensional 

dynamic motion planning problem is often referred to in the literature 

as the two-dimensional asteroid problem or the cocktail party problem.
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The trajectories of the obstacles are supposed to be known or easily computed as a 

function of time. Note that in static environments the solution of the path planning 

problem is just about spatial reasoning, while in dynamic environments its solution 

should incorporate the parameter of time. Therefore in dynamic environments, where 

the AGV's path should be defined as a function of time the term motion is used instead 

of path and hence motion planning instead of path planning. More formally the 

dynamic motion planning problem is posed as follows.

Problem 2

Consider the problem of planning the motion of an AGV R in a two-dimensional 

workspace W populated by simple polygonal obstacles Pj, where ieN, the AGV's start 

location s and its goal location g. The AGV is a point-robot, which translates freely at 

fixed orientation with bounded velocity modulus. The maximum velocity that the robot 

can reach is denoted by v5 max . Every P, in W can be static or moving along linear paths

at fixed orientation, with constant velocity, which is less than O maXR . Every moving PJ, 

before and after its motion has velocity equal to zero. The environment's obstacles are 

not allowed to come into contact with each other at any time. The problem is to plan a 

time-minimal semi-free motion for R, from its start point to its goal point, given that the 

AGV's start and goal points are collision-free at all times and that the descriptions of 

the obstacles (such as shapes, locations and velocities) are accurately known ahead of 

planning.

A number of mild assumptions are considered in order to make the problem more 

tractable. These assumptions are the following:
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\. The obstacles are not allowed to come in contact with each other at any time. This 

assumption simply maintains the topology of the free space the same at all times.

2. The robot's start and goal points are collision-free at all times. This assumption 

simplifies the solution of the problem by avoiding extra checking at the start and 

the end of the robot's motion.

3. It is supposed that the moving obstacles and the robot can accelerate and 

decelerate instantly. This assumption makes the solution to the problem simpler 

by not having to consider acceleration and deceleration constraints.

4. The velocity of every obstacle is smaller than the velocity of the robot. Under the 

premises of this assumption the time-minimality theorem is realisable (see section 

5.8 for details).

Some of these assumptions can be relaxed however at the expense either of the 

computational time of the algorithm or of the minimality of the produced motion or 

even of the solutions completeness.

The problem considered in this chapter is far more complicated than the problem 

considered in chapter four whose domain was a stationary environment, but at the same 

time is more realistic. The reason for this is that most of the environments where an 

AGV operates are reconfigured over time regardless of whether they are indoor, such as 

industrial environments where other robots or humans co-exist or outdoors where

5-3



Chapter 5_____The D*MECHA Algorithm for Motion Planning of an AGV in Dynamic Environments

physical obstacles are in motion. In section 5.2 a number of studies are overviewed 

whose results indicate that the robot motion planning in time varying environment is 

intrinsically harder problem than the robot path planning among stationary obstacles. 

However, there are algorithms, which work in limited domains (problem domains under 

mild assumptions) and attain polynomial time (Fujimura, 1991). Here an algorithm will 

be proposed for solving the motion planning problem in polynomial time for an AGV 

which operates in a time-varying environment under the mild assumptions considered 

by the specification of the problem. This algorithm is an extension of the V*MECHA 

algorithm presented in chapter four and is called D*MECHA.

5.2 Related Work

Sutner and Maass (1988) considered the motion planning problem for a point-robot with 

bounded velocity modulus among dynamic obstacles in one-dimension. In their 

approach they introduced another dimension into the configuration space, so the one- 

dimensional moving obstacles were described as polygonal objects in space-time. The 

motion planning of a point-robot with bounded speed in one dimension was solved in 

polynomial time on the total number of vertices of the polygonal space-time obstacles.

In (Canny and Reif, 1987) it was shown that motion planning for a point-robot, with a 

bounded velocity modulus, in a two-dimensional environment populated by arbitrarily 

many moving, non-rotating convex obstacles, that move at constant velocity is NP-hard.
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Kant and Zucker (1986), decompose the trajectory planning problem (TPP) into two 

sub-problems, (i) The path planning problem (PPP) in which a path that avoids 

collisions with static obstacles, is planned and (ii) the velocity planning problem (VPP) 

in which the velocity that avoids collisions with moving obstacles along this path, is 

planned. The VPP is posed in path-time space where time is explicitly represented as 

an extra dimension reducing the problem to a graph search leading to the transformation 

of the VPP into a PPP. The limitation of this approach is that the AGV is not allowed to 

alter the path established in the path planning stage, but only its velocity along this path. 

This means that the algorithm will not find a solution when one exists for the case 

where an obstacle is moving along the path of the AGV.

Erdmann and Lozano-Perez (1987) consider the problem of planning motion for 

multiple robots. They assign priorities to each robot and then they plan the motion of 

one robot at a time according to its priority. The space-time configuration space was 

represented as a list of configuration space slices at particular points in time. These 

times are those at which a moving object changes its velocity. A motion consists of a 

series of straight-line segments each of them starting at a node of a slice and terminating 

at a node of the next slice. The robot follows a straight-line motion with constant 

velocity between the nodes of two slices. Along the path the robot changes its velocity 

only at nodes of obstacles, when some obstacle's velocity changes. Due to the 

discretisation of the time the algorithm might fail to find a path because it only 

generates a few path segments. The authors alleviated this problem by introducing 

extra configuration space slices between those already represented, at the expense of the 

algorithm's computational time. The algorithm runs in time O(r n3), where n is the total
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number of the environment's edges and r is the total number of the constructed slices. 

The algorithm is time resolution-complete between the slices. A way to make the 

algorithm complete is to introduce slices at the times where the topology of the free 

space changes.

Fujimura and Samet consider the dynamic robot motion planning problem and reported 

a number of papers considering different types of environments. A summary of these 

results can be found in (Fujimura, 1991). Fujimura and Samet (1993) presented an 

algorithm to find a motion for a point-robot, in an environment populated by time- 

dependent obstacles and destination point. The environment's obstacles are convex 

polygons, which move in a fixed direction at constant speed. The algorithm they 

proposed finds the time-minimal motion given that the point-robot moves faster than the 

obstacles and the destination point. This algorithm is based on the concept of the 

accessibility graph. Accessibility graph is a directed graph with nodes, all the 

accessible by the robot obstacle's vertices and destination point, as well as the robot's 

start point. Note that this graph is embedded in the two-dimensional configuration 

space of the robot and not in its three-dimensional space-time configuration space. This 

graph can be infinite and therefore the authors considered a finite version of the 

accessibility graph by considering the accessible points with the youngest accessible 

time. The algorithm searches this graph and finds the time-minimal motion from the 

robot's start point to its goal point in O(n2 log n) computational time, where n is the 

total number of the obstacles' vertices. Fujimura (1993) proposed two algorithms for 

solving the motion planning problem for a point robot that moves in an environment 

where the moving obstacles and the destination point have a cyclic motion. These
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algorithms are the hit-and-leave, which is suited to sensor-based navigation and the 

accessibility algorithm, which is more suited when the environment is accurately known 

ahead of planning. Both of these algorithms establish a collision-free motion (more 

precisely a semi-free motion), providing that the robot moves faster than the obstacles. 

The motion defined by the second method is also time-minimal. Fujimura (1994), 

proposed an algorithm for motion planning of a point-robot in an environment with 

transient obstacles and destination point. Transient obstacles are those obstacles whose 

existence in the environment is time-dependent. The algorithm was based on the 

propagation of a wave-front technique in order to identify the robot's accessible points 

and then construct an accessibility graph. The time-minimal motion for the robot from 

the start to the goal point was then established in O(n3 log n) computational time, where 

n is the total number of the environment's vertices.

Reif and Sharir (1985) showed that the problem of motion planning in a three- 

dimensional environment populated by moving obstacles is a PSPACE-hard problem, 

when the robot's velocity modulus is bounded and NP-hard when the robot's velocity 

modulus is not bounded.

5.3 The Space-Time Configuration Space

As was mentioned in the introduction of this chapter (section 5.1), in dynamic 

environments the solution of the path planning problem is not just about spatial 

reasoning, because the parameter of time should be taken into consideration. Note that
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in such environments a path could be collision-free in a specific period of time 1a and 

not free of collisions in a different period of time tl3' 

Since the position of the environment's obstacles changes over time, the motion of the 

AGV should be defined as a continuous function of time. This can be achieved by 

defining the AGV's space-time configuration space CT. The AGV's space-time 

configuration space is defined, by adding the dimension of time in its configuration 

space C. Since the AGV is a point-robot with two degrees of freedom (the two 

translational) its configuration space C is identical to its workspace W at the same time 

instance. Note that the CPis are shape invariant under translations and therefore, 

V'i, CPi = Pi at all times. Thereby in time dynamic environments when the AGV only 

translates, every obstacle's configuration space remains unchanged. The only thing that 

changes is its position and specifically it moves in the same way as its corresponding 

obstacle moves in W. 

Figure 5.1 depicts a two-dimensional workspace W populated by two obstacles PI and 

P2 and the AGV's start and goal point. The PI obstacle is static while P2 is moving and 

moves along the direction indicated between times 1a and tl3' Figure 5.2a illustrates the 

AGV's configuration space at time 1a and Figure 5.2b illustrates the AGV's 

configuration space at time tl3' 
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g

• 
S

Figure 5.1 The AGV's workspace W populated by a stationary and a 

moving obstacles as well as the AGV's start and goal points.

x

0

x

0
Figure 5.2a The AGV's configuration Figure 5.2b The AGV's configuration 

space C at time ta . space C at time tp.

The AGV's space-time configuration space CT = C x [0, +00) and thus 

CT = [R2 x [0, +00). Every CP; maps from C into CT as a prism, which is denoted by 

CTPj. The static CP; s map into prisms, which are orthogonal to the x-y plane in CT and 

the time-varying CPjS map into prisms, which are sloped to the x-y plane in CT. The
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angle of the slope of any CTP; is proportional to the corresponding obstacle's constant 

velocity.

It is known from the specification of the problem in section 5.1 that the boundaries of 

the obstacles do not come in contact with each other at any time. Therefore, the 

boundaries of the CPjS in C and the boundaries of the CTPjS in CT do not come in 

contact in contact with each other at any time. Figure 5.3 illustrates the AGV's three- 

dimensional space-time configuration space CT for the environment of Figure 5.1.

0

Shaft edge of CTP 2

Base of CTP2

Figure 5.3 The AGV's space-time configuration space CT for the 

environment of Figure 5.1.
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Note that after the end of each obstacle's motion the corresponding prism becomes 

orthogonal to the x-y plane. As can be noticed from Figure 5.2b and 5.3 all the edges of 

the CPjS map into the faces of the prisms (CTPjs) in CT and all the vertices of the CPjS 

map into the edges of the prisms, which do not constitute the bases of them, these edges 

are called shaft edges. The AGV's start and the goal configurations in C correspond to 

half lines in CT, which emanate from qs and qg respectively.

With the construction of the AGV's space-time configuration space, the problem of 

planning a motion for an AGV in a dynamic environment has been simplified to that of 

planning a path for an AGV in a static environment. A path in CT encapsulates both 

time and location information, therefore since the AGV is moving with constant 

velocity the Euclidean shortest path from qs to qg in the three-dimensional CT, 

corresponds to the time-minimal motion from qs to qg in C. Once the space-time 

configuration space has been constructed, it can then be searched for a collision-free 

shortest path from qs to qg .

5.4 'Reachability' and Visibility

Since the AGV is a point-robot not subject to any kinematic or dynamic constrains, in 

order to move from its start point to its goal point by attainting a time-minimal semi- 

free motion it should always moves with its maximum velocity u maXR .

A set of all reachable configurations for the AGV when moving with constant velocity 

(u max ), from a specific configuration p in C, between two time instances t« and tp (with
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t<x < tp), is bounded by the perimeter of a circle CR, with centre p and radius 

r = umax R (tp • t<x)- Figure 5.4 illustrates the set of all reachable configurations for the 

AGV R in C between ta and tp time instances.

y •

o

Figure 5.4 All the reachable configurations from p are bounded by the 

perimeter of the circle CR.

Given that the AGV is moving with constant velocity (u maXR ), the set of all the 

configurations that can reach between two time instances t« and tp (with ta < tp) from a 

single configuration p in CT, is defined by the surface of a right circular cone CN, 

which emanates from p. Figure 5.4 illustrates the set of all reachable configurations for 

the AGV in CT between ta and tp time instances.
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Figure 5.5 All the reachable configurations from p are defined by the 

surface of the cone CN.

The configuration p is the apex of the cone CN. The height h of CN is parallel to the 

time axis and is equal to tp - ta . The radius r of the circular base of CN is equal to

u maXR (tp -ta ) . The angle & created by the slant height I of CN and the x-y plane is 

defined as follows:

h - 
r (t -t )

max p a 
R

(5.1)
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If CT is polar-swept with a half-line emanating from a point p, at angle 9 (with the x-y 

plane), then all the intersections between the half-line and any of the shaft edges of the 

prisms correspond to reachable configurations by the AGV from p.

Fujimura (1994) used the idea of the cone in order to identify the collision fronts of 

transient obstacles and then he proposed an algorithm for finding a time-minimal 

motion for an AGV in environments populated by transient obstacles and a destination 

point.

Figures 5.6a and 5.6b give some insight into the idea of the cone. Suppose that a cone 

CN emanates from a configuration, say p on the half-line qs in CT, with projections on 

the x-y plane and the time axis, (xp , yp) and tp = 0 respectively. Further, suppose that 

CN intersects the shaft edge 2 of the CTPi at configuration say q, with projections on 

the x-y plane and the time axis, (xq , yq) and tq respectively. This means that the AGV is 

capable of reaching configuration q from p in time tq - tp given that the AGV is 

travelling with constant speed equal to u maXR . This scenario corresponds to 

configuration space C as follows. If the AGV leaves qs, (or configuration p with co­ 

ordinates (xp , yp)) at the time instance tp = 0, then it is capable of reaching vertex 2 of 

CPi, at a configuration q with co-ordinates (xq , yq) at time instance tq , given that the 

AGV is moving with constant speed equal to u maXR . Then it is said that vertex 2 of 

CP] is reachable from configuration p at configuration q in time tq , and within time
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yp

Figure 5.6a 'Reachability' in CT. Figure 5.6b 'Reachability' in C.

However, in order to say that an AGV is capable of moving from configuration p to 

configuration q, 'reachability' is not enough. Another condition, which has to be 

satisfied, is visibility. This means that the two configurations can be connected with an 

edge and this edge does not overlap the interior of any CTPj in CT. In summary, if a ray

v is swept about p keeping a constant angle $ = tan" 1 (C maXR "') with the x-y plane, all the 

p-visible configurations at angle 9 in the CT can be identified. These p-visible 

configurations at angle S in CT correspond to p-visible vertices in C at a specific 

location at a specific time instance, which can be reached from p by the AGV, given 

that it is moving with constant velocity equal to u maXR . In this way a graph 

demonstrating reachability and visibility ('reacha-visibility graph' RVGS) at angle & 

can be constructed in CT and then searched for a path. Note that the RVG9 is a directed 

graph because every motion of the AGV should be strictly monotone in time.
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5.5 Proposition of the D*MECHA Algorithm

As was mentioned in the introduction of this chapter (section 5.1) the D*MECHA 

algorithm is an extension of the V*MECHA algorithm presented in chapter four. 

Therefore the two propositions used by the V*GRAPH algorithm in order to minimise 

the number of the obstacles' vertices considered for the construction of the visibility 

graph will also be used by the D*MECHA algorithm. However, note that even though 

the propositions are the same, their validity when applied in time-varying environments 

has to be proved. Note also that the Theorem 4.1 presented in chapter four, is 

applicable in dynamic environments as well, therefore more formally Theorem 5.1 is 

stated as follows.

Theorem 5.1

Given the AGV's start point s, its goal point g and a set P of moving and stationary 

simple polygonal obstacles, the time-minimal semi-free motion from s to g (providing 

that there is a motion from s to g), turns only at obstacles' vertices.

Proof

The proof of the theorem is similar to that of Theorem 4.1 in chapter four and it follows 

immediately once the AGV's space-time configuration space CT is constructed.

Theorem 5.1 entails that the time-minimal motion between two given points in an 

environment populated by moving and static polygonal obstacles is contained in the 

RVG9 in CT. Therefore the minimum-cost path in RVG9 in CT between nodes qs and 

qg corresponds to time-minimal motion in the environment between the AGV's start and
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goal points. However, notice that in dynamic environments an obstacle's vertex (a shaft 

edge of a CTPj in CT) can be visible and reachable from different vertices more than 

once, in different locations and different times. Thus resulting in an arbitrarily large 

RVGg in CT and hence making the search process of the RVGg extremely time 

consuming. A way to alleviate this problem is by using Lemma 5.1.

For the sake of the simplicity, Lemma 5.1, Lemma 5.2 and Propositions 5.1 and 5.2 (see 

below) won't be proved in the three-dimensional CT, but in the two-dimensional 

configuration space C, taking the parameter of time into consideration.

Lemma 5.1

If a vertex of an obstacle (a shaft edge in CT) is considered more than once for the 

construction of the RVGa in CT then the corresponding configuration with the youngest 

reachable time should be retained.

Proof

Recall from section 5.4 that in order for the AGV to get from qs to qg by following the 

time-minimal semi-free motion, it should always move with its maximum velocity. 

Now suppose that the vertex v of a C-Obstacle (shaft edge v in CT) is visible and 

reachable from a configuration qi, at a configuration qv and time tv . Suppose further 

that as the algorithm proceeds, vertex v is also visible and reachable by a configuration 

q2, at configuration qv ' and time tv ', with tv ' > tv . Since the AGV can be at 

configuration qv at time tv , if it gets hooked on vertex v and follows the motion of the C- 

Obstacle it can be at configuration qv ' at time tv ', however by moving with velocity less
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than u maXR (recall that according to the forth assumption the velocity of every obstacle 

is less than C maXR ). Since in the time-minimal semi-free motion the AGV should move 

at its maximum velocity the motion through configuration qv ' is not time-minimal. 

Therefore if a vertex is visible and reachable more than once, the configuration with the 

youngest reachable time should be considered for the construction of the RVGS . Note 

that vertices of the RVGg are not the original C-Obstacles' vertices as in the case with 

static environment (chapter four) but the configurations where these vertices are visible 

and reachable. The importance of this Lemma is that it maintains the number of 

vertices of the RVGg < n + 2, where n is the total number of the C-Obstacles vertices.

Before Proposition 5.1 and Proposition 5.2 that are used for the reduction RVGg size, 

are discussed, Lemma 5.2 should be presented.

Lemma 5.2

A time-minimal semi-free motion visits only configurations in CT, which correspond to 

extreme vertices of a visible sequence in C.

Proof

Consider the AGV's configuration space C of Figure 5.7, the C-Obstacle CPi is moving 

in the direction indicated. There are two different ways for the AGV to reach qg from 

qs . The first is to move directly to the qg , stop and wait at configuration qa until the C- 

Obstacle moves out of its way and then carry on moving towards qg . The second is to 

go around either side of the C-Obstacle. It will be proved in section 5.8 that the former 

way of getting to qg is not time-minimal.
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Figure 5.7 The time-minimal motion does not visit non-extreme vertices 

of the visible sequence.

Therefore the AGV will go around CPj, either from the left hand side or the right hand 

side, in order to achieve a time-minimal motion. Suppose that the time-minimal semi- 

free motion is the one, which goes around the left hand side of the CPi, further suppose 

that vertices 1, 2, 3 are all reachable and visible from qs at configurations qi, q2 and qa 

and time ti, t2 and t3 respectively. Vertices 1, 2, 3 are reachable, visible from qs and 

they are consecutive on a single C-Obstacle's boundary therefore, they comprise a qs- 

visible sequence. Since the time-minimal motion is the one, which goes around the left- 

hand side of the CPi the AGV will definitely pass through vertex 1, while moving along 

the time-minimal semi-free motion. Therefore for the validity of the lemma it has to be 

shown that the straight line motion from qs to vertex 1 at configuration qi is less time 

consuming than any other polygonal motion from qs to vertex 1 through a non-extreme 

vertex of the qs-visible sequence, which meets vertex 1 at a configuration q,'.

Suppose the contrary, namely the time-minimal motion visits non-extreme vertices of 

visible the sequence and that in the configuration space of Figure 5.7 the time-minimal
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motion from qs to vertex 1 goes through vertex 2, which is the non-extreme vertex of 

the qs-visible sequence {1, 2, 3}.

If the AGV departs from qs at time t0 it can reach vertex 1 at configuration qi at time ti,

by moving on the straight-line segment q s q, . If the AGV departs from qs at time t0 it 

will eventually reach vertex 2 at configuration q2 at time t2 and if it starts moving from 

configuration q2 towards vertex 1 at time t2 , it will eventually reach vertex 1 at a 

configuration qf and time tf. Since it is assumed that the motion from qs to vertex 1 

through vertex 2 is time-minimal then it must hold that,

ti'=t2 + (t,'-t2)<t, (5.2)

This means that after the AGV departs from q2 at t2 it can be at qi either at time ti' = ti 

(note this is the upper bound of the inequality 5.2) or in time tj" with i\ < V <ti (note 

that if the AGV is at qi at time ti", vertex 1 of the C-Obstacle has not arrived yet in 

configuration qi). However, it is well known the straight-line segment, which connects 

two points (in this case qs and qi) is shorter than any other polygonal line with the same 

endpoints and since the AGV moves with constant velocity (equal to u raaXR ), motion 

{qs, qi} is less time consuming than motion {qs , q2 , qi} and therefore, i\ < i\ , which 

contradicts inequality 5.2 and in turn the initial assumption that the time-minimal semi- 

free motion visits non-extreme vertices of the qs-visible sequence. This proves the 

Lemma.
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Proposition 5.1

A time-minimal semi-free motion only visits configurations in CT, which correspond to 

super-extremes of the extreme vertices of the visible qs-sequences for each CPj in C.

Proof

According to Lemma 5.2 the time-minimal semi-free motion visits only configurations 

in CT, which correspond to extreme vertices of the visible sequences in C. Using the 

same arguments as in Lemma 5.2 it can be shown that the time-minimal semi-free 

motion never visits configurations in CT, which correspond to the non-super-extremes 

of the extreme vertices of the visible sequences for each CPj in C.

As with the V*MECHA algorithm, when the D*MECHA identifies the super-extremes 

of the qs-visible sequences, it marks all the non-super-extremes as useless. In this way 

they are not considered again later by the algorithm, if they are visible from a different 

vertex, say r, regardless whether they are super-extremes or non-super-extremes of the 

r-visible sequences. The reason for rejecting permanently the non-super-extremes is as 

follows.

Suppose that vertex, say v, is a non-super-extreme vertex of the extremes of the In­ 

visible sequences for the CP] and is reachable at configuration qv at time tv . If v is 

visible and reachable from another vertex later in the algorithm, say vertex r (which is 

accessible from k), at configuration qv ' at time tv ' then if v is non-super-extreme of the 

extreme vertices of the r-visible sequences for CPi it will be rejected. If v is a super- 

extreme of the extreme vertices of the r-visible sequences for CPi then it does need to
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be considered for the construction of the visibility graph because tv < tv ' and according 

to Lemma 5.1 the configuration qv is retained because it has smaller reachable time. 

But since v is a non-super-extreme of the extreme vertices of the k-visible sequences for 

CPi, it does not need to be considered for the construction of the visibility graph. 

Therefore once the non-super-extremes of the extreme vertices of the visible sequences 

for each CP, are identified, they can be rejected permanently.

Proposition 5.2

Configurations in CT, which correspond to concave vertices of non-convex C- 

Obstacles, should not be included in the time-minimal semi-free motion.

Proof

Consider the AGV's configuration space of Figure 5.8, the C-Obstacle CPi is moving in 

the direction indicated. There are two different ways for the AGV to reach qg from qs . 

The first is to move directly to the qg, stop and wait at configuration qa until the C- 

Obstacle moves out of its way and then carry on moving towards qg . The second is to 

go around either side of the C-Obstacle (top or bottom side). It will be proven in 

section 5.8 that the former way of getting to the qg is not time-minimal.

Assume that the time-minimal motion is the one, which goes around the bottom side of 

the CPi and specifically is the motion {qs , q3 , q4, qs, and qg }. Note that this motion goes 

via the concave vertex 4 of CPj.
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Figure 5.8 The time-minimal motion does not visit concave vertices.

If the AGV starts moving from qs at time to it can reach vertex 3 at configuration qa at 

time 13. If it starts moving from q^ at time 13 it can reach vertex 4 at configuration q4 at 

time U- Recall from the specification of the problem that the obstacles are not allowed 

to come in contact with each other at any time, this means that there should be at least a 

sufficiently small clearance distance CT in between them. Since vertex 4 is visible and 

reachable from q3 and CPi is a simple polygon then there is always a point v between 

vertex 4 and its successor within distance a from 4 which is also visible from q3 . Point 

v is reachable and visible from q4 at configuration qv and time tv . Point v is also 

reachable from q3 at configuration qv ' and time tv ', with tv ' < tv , because the straight line 

motion {q3, v'} is less time consuming that any other polygonal motion with the same 

endpoints (in this case (q3 , q4 , qv }). Note that motion {q3 , qv } is collision-free, since the 

AGV always moves within distance a from CP,. Therefore the motion {qs , q3 , qv ', q5 , 

qg) is less time consuming than the motion {qs , q3 , q4 , qs, qg }, which contradicts the 

assumption that the motion (qs , q3) q4 , qs, qg } is time-minimal. This contradiction leads
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to the conclusion that the time-minimal-motion never visits concave vertices of non- 

convex C-Obstacles.

The D*MECHA algorithm uses Proposition 5.1 and Proposition 5.2 in order to 

minimise the number of configurations considered for the construction of the RVGo- 

Note that these propositions are applied in the two-dimensional projection of the CTPjS 

on the x-y plane.

5.5.1 The D*MECHA Algorithm

The D*MECHA algorithm starts from configuration qs at to and it iteratively generates 

the RVGg, in CT. It then searches this graph for the shortest Euclidean path qs to qg . 

This path corresponds to the time-minimal motion from qs to qg in C. The algorithm 

starts by expanding configuration qs at time to, it identifies all the qs-visible and 

reachable configurations and then it rejects all the non-super-extremes of the qs-visible 

sequences and all the concave vertices. It places the remaining visible configurations 

on a list called OPEN, which contains all the candidate configurations for expansion 

next. A function tf is evaluated for each configuration on OPEN and the configuration 

with the smallest tf is chosen for expansion next.

The evaluation function t f is defined such that its value tf (qn) at any configuration qn is 

an estimation of tf(qn). Where tf(qn) is the time-cost of travelling along the path traced 

by the actual time-minimal motion from qs to qg constrained to pass through 

configuration qn of vertex n. More formally,
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tf(qn)=tg(qn)+f h(qn) (5.3)

t g(qn) is an estimation of the actual time-minimal motion from the qs configuration to 

the current configuration qn . The function t h (qn) is an estimation of the actual time- 

minimal motion from the current configuration qn to qg . An obvious choice for t g(qn) 

is the time-cost of the path from qs to qn the algorithm already found. The choice t h(qn) 

is not so obvious, therefore information about the problem domain should be taken into 

consideration. The airline distance between the current configuration qn and the qg half- 

line can be chosen as a heuristic estimate. Note that the distance to the qg half-line 

should be measured from the current configuration qn to a configuration qg ' on the qg

half-line in such a way, that the line-segment q n q g ' creates an angle $ with the x-y

plane. The travel time along the airline distance from qn to the qg at angle 9 is the 

fastest possible travel time, so t h(qn) underestimates th(qn).

Every configuration produced is also marked visited and is placed in the search graph 

RVGg with a pointer to its parent node, thus generating a spanning tree called Motion of 

the RVGs. D*MECHA algorithm carries on in this manner iteratively until the qg 

configuration is reached (this is when it is picked from the OPEN list for expansion) or 

when there are no further candidate configurations for expansion on OPEN. Note that if 

after the expansion of the configuration, say n^p, a configuration, say qne ighb', (which 

corresponds to the neighb vertex of an obstacle) is produced, then if this node has been 

visited before at configuration say qneighb, and the new way of attaining it gives rise to a 

faster motion (time-wise) than that previously encountered, then the tree Motion is 

updated by redirecting qncighb's pointer towards qexp, its t f value is updated and placed
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on OPEN if its not there already, for reconsideration for expansion next. Note that in 

this case qneighb is not the same with qne ighb' but according to Lemma 5.1 even though an 

C-Obstacle's vertex can be visible and reachable in several configurations the one with 

the smallest reachable time is retained. For example, as can be noticed in Figure 5.9 the 

shaft edge 2 of the CTPi can be intersected by cones, which emanate from two different 

configurations and specifically from the qs configuration and from configuration y. 

This happens because it is possible for the same vertex of a C-Obstacle to be visible and 

reachable in different time instances and locations in C from different vertices. This 

situation corresponds to different intersections of the sweeping half-line with the same 

shaft edge in different time instances from different configurations. However, 

configuration qneighb is retained because it has the youngest reachable time. In this way 

at each iteration of the algorithm the tree Motion reflects the best path in CT explored 

so far.

Ineighb *lneighb

r/y

Figure 5.9 Treatment of the shaft edges considered for the construction of 

the RVG9 that have been visited before.
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The algorithm terminates either when it reaches the qg configuration or when there are 

no more configurations on OPEN for expansion. In the first case the time-minimal 

semi-free motion from qs to qg is obtained by backtracking all the pointers in Motion 

from the qg to qs . In the second case there is not a path between qs and qg in CT, which 

means that there is not a semi-free motion from the AGV's start point to its goal point 

and the algorithm just reports failure.

Note below that the input of the algorithm is the CT configuration space. Since the 

obstacles shapes, positions and velocities are accurately known ahead of planning, the 

AGV's CT can be constructed easily. The proposed algorithm finds the time-minimal 

motion and is stated as follows.

D*MECHA Algorithm

INPUT : AGV' s qs and qg half lines and CTP, obstacles.
OUTPUT: Time-minimal collision-free motion from AGV's start point to its goal 

point.

begin

put qs in Motion; 

put qs on OPEN; 

mark qs visited;

< g (qs): = 0;
while (OPEN * nil) do 

begin

w : = {qieOPEN : < KqO < l Kgj) I v qeOPEN, resolve ties arbitrarily 
but always in favour of the qg configuration};
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remove w from OPEN;

if w = qg then exit while loop;

VV : = { VISIBLE CONFIGURA TIONS& (w, CTP)} ;

SE : = {SUPER EXTREMES (w, V V)} ;
Mark all shaft edges, which correspond to {VV-SE} configurations
useless;

NCV : = SE- {concave vertices in SE};

for each vertex q, eNCV do

if qi is not marked useless then

if qi is not marked visited then 
begin

t h(qi): = t(dair(qi, qg))s (the time of travelling along the 
airline distance from qj to qg at angle &); 

O:=t g(w) + t(dedge(w, qi));

put qj in Motion with pointer toward w; 
put qj in Open; 
mark qj visited; 

end;
else if * g(qj) > * g(w) + t(dedge(w, qO) then 

begin

redirect pointer of q, toward w in Motion; 

if qieOPEN then remove i from OPEN;

t g(q,) : = f g(w) + t (dedge(w, qi));

UqO : =I g(qi)+ T h(qi); 
put qi on OPEN;

end; 

end;
if w = qg then return the motion by tracing all the pointers in Motion from qg 

back to qs else if OPEN = nil then return failure; 

end.
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In the above algorithm, Motion is a search tree, which represents at any instant the best 

motion obtained so far. For each visited configuration n (except qs) a pointer to its 

parent is held. The function t f (qn) is associated with each configuration n in the current 

Motion. The t(dedge(w, qn)) is a function, which represents the time-cost of travelling 

(with u maXR ) along an edge, which connects two configurations in RVG9 . The

t(dair(w, qn))s is a function, which represents the time-cost of travelling, with o maxR

along the airline distance between configurations w and qn at angle B. The list OPEN 

contains at any instant, the configurations that are candidates for consideration next. All 

the configurations of the environment are initially marked as unvisited and useful.

5.5.2 The D*MECHA's Subroutines

The first subroutine used by the D*MECHA algorithm is the 

VISIBLE_CONFIGURATIONS&. This subroutine is similar to the one presented in 

section 4.6.2 with some minor changes. It takes as arguments a configuration q and a 

set of CTP-Obstacles in CT and returns a set W of all the reachable and visible 

configurations from configuration q. The second subroutine is the 

SUPER_EXTREMES. This routine is exactly the same as the one in section 4.6.2 

therefore will be not presented here again. The SUPER_EXTREMES routine takes as 

arguments a configuration q and a set W of reachable and visible configurations from q 

and returns the super-extremes of the q-visible sequences.

VISIBLE CONFIGURATIONS.0 (qv. CTP)

INPUT: A collision-free configuration qv and the set CTP. 

OUTPUT: The set W of all vertices visible from vertex v.
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begin

Sort the CT's shaft edges according to the clockwise angle the projection to

the x-y plane of the half-line emanating from qv at angle 9 with the x-y plane,

through each shaft edge, create with the x-axis. If there are any ties give
priority according to their distance to qv . Let q u q2,.., qn be the sorted list;

Let t be the half-line emanating from qv at angle 3 with the x-y plane, the

projection of which to the x-y plane is parallel to the x-axis. Find the CTPjS'

faces that are properly intersected by i (intersected in other configurations than

the CTPj's shaft edges) and store them in a balanced tree T in the order their
intersection;

W:=0;

for i := 1 to n do

if VISIBLE (qO then add q; to W;

Insert into T the CTPj's face incident to qj that lie on the clockwise side 
of the half-line from qv to qj;
Delete from T the CTPj's face incident to qj that lie on the counter­ 
clockwise side of the half-line from qv to qj; 

return W; 

end. I

The VISIBLE subroutine called by VISIBLE_CONFIGVRATIONS& subroutine and 

decides whether configuration q; is visible from qv .

VISIBLE (a,)

begin

if q v q t intersects the interior of the CT-Obstacle of which qj is a shaft edge, 

locally at qj then return false

else if i=l or qj.i is not on the segment q vq,

then Search in T for the face fin the leftmost leaf
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if f exists and ^ v"' intersects f

then return false 

else return true 

else if qi-i is not visible

then return false

else Search in T for a face f that intersects 

if f exists

then return false 

else return true 

end.

The computational complexity of the VISIBLE_CONFIGURATIONS$ subroutine is 

0(n log n), where n is the total number of the C-Obstacles' vertices. Indeed, as it can be 

noticed the first step of the algorithm, which sorts the configurations according to the 

clockwise angle requires O(n log n) time, where n is the total number of the C- 

Obstacles' vertices. The second step, checks for possible intersections between the half- 

line t and the faces of the CTPjS and stores these intersections in the balance tree T. 

This step requires O(n log n) time, where n is the total number of the CT-Obstacles' 

shaft edges. The final step is the for loop, which is traversed n times. Each time the 

subroutine VISIBLE is called, which requires constant computational time for some 

geometric checks and O(log n) time for a constant number of operations on the balanced 

tree T, where n is the total number of the C-Obstacles' vertices. Therefore the 

computational complexity of the final step is O(n log n), where n is the total number of 

the C-Obstacles' vertices.
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The discussion of the D*MECHA's subroutines completes the presentation of the 

algorithm. In section 5.6 a simple motion planning problem will be solved using the 

D*MECHA algorithm in order to test the algorithm's capabilities. This problem is 

taken from (Fujimura, 1991).

5.6 A Simple Motion Planning Problem

Consider the environment of Figure 5.10 populated by two moving obstacles PI and 

as well as the AGV's start point s and its goal point g.

y
10- 

9-

8-

7 

6-

5-

4- 

3- 

2- 

1 -

0

,. .

'

V
S

1

_ ^

1 
1 2 3

*

• 
g

t ir^.• 'L^

s

—1 —— 
4 ;

---a J----

----1 [

1 x
> 6 7 8 9 10

Figure 5.10 Illustration of the problem's scene.
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The obstacles are moving in the directions indicate. Suppose that the velocity of both 

obstacles is Im/sec and the maximum velocity that the robot can reach is 2m/sec. The 

obstacles start moving towards the indicated direction at the same time t = 0 and their 

motion terminates after 6 seconds. The positions of the AGV's start and goal locations 

and the obstacles initial locations as well as their shape are accurately known ahead of 

planning and they are as depicted in Figure 5.10. The co-ordinates of the AGV's start 

and goal points and obstacle's vertices at their initial locations, are given in Table 5.1.

(4,2)
(5, 10)
(2,6)
(2,3)
(4,4.5)
(8,9)
(8,7)
(10,7)
(10,9)

Table 5.1 Co-ordinates of the AGV's start and goal locations and the 

obstacles' vertices initial locations of the environment of Figure 5.10.

Taking into consideration the positions of the AGV's start point s its goal point g and 

the obstacles' initial positions and their velocity, the AGV's space-time configuration 

space CT can be constructed. The AGV's space-time configuration space CT is as 

depicted in Figure 5.11.
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t = 6

t = 0

Figure 5.11 Illustration of the AGV's space-time configuration space CT.

To test the D*MECHA, the CT is fed to it as input and the values of its variables at each 

iteration along with its outputs are presented in Table 5.2. In Figures 5.12a-d the 

configurations, which are considered for the construction of the RVG& at any iteration 

of the algorithm are depicted.

In table 5.2 and in Figures 5.12a-d the configurations on the CT-Obstacles' shaft edges 

will not carry the prefix q. The change in symbolisation is taking place purely for space 

matters.
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\ Vertex 6 

Vertex 3

Figure 5.12a The black dots indicate all the configurations placed in the 

tree Motion at the first iteration of the algorithm.

Figure 5.12b The black dots indicate all the configurations placed in the 

tree Motion at the second iteration of the algorithm
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t = 3.75

Figure 5.12c The black dots indicate all the configurations placed in the 

tree Motion at the third iteration of the algorithm.

t = 4.41 
t = 4.25

Figure 5.12d The black dots indicate all the configurations placed in 

the tree Motion at the forth iteration of the algorithm.
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After the D*MECHA algorithm terminates with w = tg, the time-minimal semi-free 

motion for the AGV between its start and goal points can be obtained by 

backtracking all the pointers in the search tree Motion from tg back to ts . Therefore 

for the problem of figure 5.10, the time-minimal semi-free motion from start to goal 

is Motion = {ts, t3 , t5 , t4 , tg } and its time-cost is 4.25 seconds. Figure 5.13 depicts the 

motion produced by the D*MECHA algorithm for the environment of Figure 5.10.
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Figure 5.13 The arrows illustrate the semi-free motion proposed as a 

solution to the problem of Figure 5.10 from the D*MECHA algorithm.
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This motion is a semi-free and is also the time-minimal motion between start and 

goal as it will be shown in section 5.8. Note that while the AGV moves from vertex 

5 to vertex 4 between times t5 = 2.75 min and t4 = 3.75 min, it might coincide with 

some configurations on the edge (4, 5).

5.7 The Admissibility and the Optimality of the D*MECHA 

Algorithm

As was mentioned in section 5.1 the D*MECHA algorithm is based on the 

V*MECHA algorithm presented in chapter four. The proofs of the D*MECHA's 

admissibility and optimality are the same as the V*MECHA's proofs presented in 

section 4.8 and section 4.9 respectively. Therefore these proofs are omitted from this 

chapter.

The D*MECHA algorithm is admissible, which means that it always produces the 

time-minimal motion from qs to qg within the RVGS (providing that one exists), 

otherwise it returns failure. Also the D*MECHA algorithm is optimal in the sense 

that it never expands more configurations than any other admissible algorithm, which 

is less or equally informed, for the identification of the time-minimal motion.
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5.8 The Optimality of the Motion Produced by the D*MECHA 

Algorithm

According to Theorem 5.1, the time-minimal semi-free motion for an AGV in an 

environment populated by moving and stationary obstacles from its start point to its 

goal point, turns only at obstacles' vertices. Therefore the visibility graph at angle & 

in CT encapsulates the time-minimal semi-free motion. Proposition 5.1 and 

Proposition 5.2 ensure that the RVG» encapsulates the time-minimal semi-free 

motion. Therefore, since the D*MECHA algorithm is admissible it guarantees that it 

finds the time-minimal motion within the RVGs. In order for the motion established 

by the D*MECHA algorithm to be the global time-minimal semi-free motion, it must 

be shown that there is no stop-motion, which can be accomplished by the AGV in 

less time that the one suggested by the D*MECHA algorithm. Stop-motion is the 

motion which involves stops and it can be defined in such a way, that the AGV stops 

at certain locations waits there until one or more obstacles move out of its way and 

then starts moving again towards the goal point.

Lemma 5.3

The time-minimal semi-free motion for an AGV R from its start location to its goal 

location in an environment populated by only one static or moving obstacle PI, is a 

non-stop-motion.

Proof

The proof of the Lemma is carried out in the two-dimensional configuration space C. 

For the case when CPi is static the Lemma follows immediately. In the case of a
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moving obstacle, consider its configuration space in Figure 5.14. qs and qg are the 

AGV's start and goal configurations respectively and CPi is a moving C-Obstacle at 

its initial position. The C-Obstacle starts moving at time to towards the direction 

indicated.

qs
Figure 5.14 Illustration of the case where qg is visible from q2 at time t2 .

The least time consuming motion for the AGV from qs to qg is the motion along the 

straight line-segment, which connects them, while R is moving with its maximum 

velocity (u maXR ). However, if the AGV starts moving at time t0, from qs to qg along 

this motion it will eventually collide with the CPi at configuration qa at time ta . 

Therefore R will have to circumnavigate CPi from either side. R can meet vertices 2 

and 3 at configurations q2 and q3 at times t2 and t3 respectively, with t2 , t3 > ta . 

Without loss of the generality suppose that the motion from the left hand side of the 

CPi is less time consuming than the one from the right hand side of it. As mentioned 

earlier R can meet vertex 2 at configuration q2 at time t2 . When the AGV is at 

configuration q2 at time t2 , either the qg , is visible or not visible. If the qg is visible 

(Figure 5.14), then the AGV can start moving towards it at time t2 and reach it.
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According to the formulation of the problem the velocity of any obstacle in the 

environment is less than the AGV's velocity. Therefore, by using triangle 

inequalities over {q2, qa , qg }, it can be obtained that motion {q2 , qg } is faster than 

motion {qa, qa , qg }. Thus {qs , q2, qg } is faster than motion {qs, q?, q<x, qg } and so is 

faster than the stop-motion {qs, qa, qg }, hence it is time-minimal. Also note that if 

the AGV starts moving from q2 to qa at time t2 it will get to qa in less time than the 

CPi's vertex 2 will, because its velocity is larger than that of the CPi, this fact further 

endorses the triangle inequality. The minimality of the motion (q2, qg } over {q2, qa , 

qg } also follows immediately by Lemma 5.2. In the same manner time-minimality 

holds for one-dimensional obstacles.

If qg is not visible from q2 at the time instance ta then there are two possible 

outcomes. The first is that qg will be visible from q2, while the AGV is moving from 

q2 to qg with constant velocity equal to 6 maXR and the CPi is moving in the direction 

indicated. Note that the visibility is to be identified in CT. The visibility depends on 

the angle 3 of the sweep line and the slope of the CTP] in CT, this means that the 

visibility depends on the velocities of the AGV and the C-Obstacle respectively. 

Figure 5.15 illustrates such a case.
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qs
Figure 5.15 Illustration of the case where qg is not visible from qa at t2 

but it becomes so while the AGV is moving towards qg.

Even though qg is not visible from qi at time t2 it becomes visible as the time passes 

and the CPi moves out of its way. Note that in this case, while the R is moving from 

q2 to qg, it might coincide with some points on CPi's boundary.

The second outcome is when qg is not visible from q2 at time t2 and it does not 

become visible even after the AGV departs from q2 at time t2 and while it is moving 

towards qg (Figure 5.16a). What happens in this case is that the CPfs velocity is not 

large enough in comparison with the AGV's velocity in order for the CPj to move 

out of AGV's way before a collision occurs between them. Note also that the shape 

of the C-Obstacle also plays an important role in the visibility.
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qs

Figure 5.16a Illustration of the case 

where qg is not visible from q2 at t2 and 

it does not become so even while the 

AGV is moving towards qg .

Figure 5.16b For the case depicted in 

Figure 5.16a the AGV will have to pass 

through another vertex of the CP] on its 

way to qg .

Figure 5.16a illustrates the case, where if the AGV starts moving from q2 at time t2 

towards the qg, with velocity equal to u max , it will eventually collide with the CPi at 

the point c. Therefore the AGV will have to pass through another vertex of the CPi 

before reaching qg . Figure 5.16b illustrates the motion of the AGV, in which it will 

have to pass through the CPi's vertex 1. Note that the visibility is to be identified in 

CT.

For the proof of the lemma what remains to be shown is that the motion {qs , q2 , qi, 

qg } is less time consuming than the stop-motion {qs , qa , qg }. Since the AGV at time 

t2 can be either at configurations q2 or qa it has to be shown that the motion from q2
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to qg through qi is faster than the motion from q2 to qg through qa . If the AGV leaves 

q2 at time t2 it will reach configuration q, at time ti at a configuration on the half 

plane defined by a line passing through qa and qg and contains q2 . Otherwise qg 

would have been visible from q2 while both the AGV and the CP] were in motion. 

The fact that vertex 1 at ti is on the half-plane which contains q2 means that qg is not 

visible from qa at ti. So if the AGV departs from qi at ti and moves along a motion, 

which is parallel and in the same direction as the direction of the CPi's motion, it 

will eventually join the stop-motion {qs , qa ,qg } at a configuration j and time say tj. 

By using triangle inequalities over {qi, j, qg ) it is derived that the motion {q b qg } is 

less time consuming than the motion {qi, j, qg}. But since tj is the very latest time 

that the AGV could reach j in the best case scenario depending on the shape of the C- 

Obstacle (Figure 5.16b does not illustrates the best case scenario) by following the 

stop-motion {qs , qa , qg }, it is derived that the motion {qs , q2 , qi, qg } is less time 

consuming than the motion (qs , q2 , qa , qg }. Therefore motion {qs , q2 , qb qg } is less 

time consuming than the stop-motion (qs, qa, qg } and hence is time-minimal. Note 

that while the AGV follows the motion {qs , q2, q,, qg }, it might coincide with the 

boundary of CPi for some time. Hence, the Lemma holds.

Theorem 5.2 (The Time-Minimal Motion Theorem)

The time-minimal motion for an AGV R from its start location s to its goal location g 

in an environment populated by a set P of static and moving obstacles, is a non-stop- 

motion.
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Proof

The proof of the Theorem is carried out in the two-dimensional configuration space 

C. The theorem is proved by induction on n, the total number of C-Obstacles in C. 

In the base case this is when n = 1 (one C-Obstacle in the C) the theorem holds by 

Lemma 5.3.

Assume that the theorem holds for n-1 C-Obstacles in the environment. The 

induction hypothesis states that if the AGV departs at any time from qs , a time- 

minimal collision semi-free motion |i exists from qs to qg in an environment 

populated with n-1 C-Obstacles and this is a non-stop-motion. Thus if there are n-1 

C-Obstacles in the environment and the AGV departs from qs at time, say ts , a 

collision-free non-stop motion (i exists, which if the AGV follows it will arrive at qg 

at time, say tg . This means that if the AGV departs from the qg at time tg , and the C- 

Obstacles have reverse motion it can be at qs at time ts by following the [i motion 

reversed.

The last step of the proof is to show that the theorem holds for n C-Obstacles. 

Assume that if the environment contains n C-Obstacles and the AGV departs from qs 

at time ts it can be at qg at time, say tg ' by following a time-minimal motion, it is not 

yet known whether this motion is a stop-motion or a non-stop-motion.

Suppose now that in the environment with n-1 C-Obstacles, a C-Obstacle is inserted 

so the total number of C-Obstacles is n. If the AGV does not collide with the newly 

inserted C-Obstacle, while is moving along motion p then the theorem holds. In this
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case the AGV departs from qs at time ts and gets to qg at time tg ' = tg . If the AGV 

collides with the newly inserted C-Obstacle, while it is moving along motion jj,, then

to' * tg.5 &

Suppose further that the last C-Obstacle's vertex that the AGV passes via, before the 

collision with the newly inserted C-Obstacle occurs, is vertex v at configuration qv at 

time tv . By the induction hypothesis it is known that the motion from s to v is time- 

minimal and a non-stop motion. It is also known by Lemma 5.3 that if the AGV 

departs from qv at time tv it will avoid collision with the newly inserted C-Obstacle 

by realising a time-minimal, non-stop motion to some vertex of an C-Obstacle that 

has not been considered yet for the construction of the time-minimal motion or to the 

qg '. Let this vertex be vertex w. If w = qg ' then this motion is time-minimal and 

non-stop and tw = tg '. If w is a vertex of a C-Obstacle then the motion from w to qg is 

a time-minimal non-stop motion (recall that if the AGV departs from qg ' at time tg ' 

and the C-Obstacles have reverse motion it can be at qs at time ts ' by following the 

motion reversed). Therefore time-minimal motion from s to g in an environment 

populated by a set P of n static and moving obstacles is a non-stop-motion. And the 

theorem holds.

Corollary 5.1

The motion established by the D*MECHA algorithm for an AGV which only 

translates between two query points, in a two-dimensional environment populated 

moving and static simple polygonal obstacles, is the global time-minimal motion.
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Proof

The proof follows immediately from Theorem 5.1, Proposition 5.1, Proposition 5.2 

and Theorem 5.2.

5.9 Time and Space Complexities of the D*MECHA Algorithm

In this section an empirical analysis of the computational time and space of the 

D*MECHA algorithm will be presented.

Theorem 5.3

The D*MECHA algorithm establishes the time-minimal semi-free motion for an 

AGV, between two query points in an environment populated by both static and 

moving obstacles, in O(k n log n) computational time and in O(k2) space, where n is 

the total number of the obstacles' vertices and k is the total number of the obstacles' 

non-concave vertices.

Proof

The length of the list OPEN is O(k), where k is the total number of the C-Obstacles' 

non-concave vertices, thus the while loop of the algorithm is traversed at most k 

times. Therefore there are O(k) iterations and at each iteration the following steps 

are executed. The identification of the configuration on OPEN with the smallest 

t f(qj) value requires O(k) time, where k is the total number of the C-Obstacles' non- 

concave vertices. The identification of all the w-visible and reachable configurations 

at angle 9 requires O(n log n) time, where n is the total number of the C-Obstacles'
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vertices, see section 5.5.2 for details. The identification of the extreme 

configurations of any w-visible sequence requires O(n log n) time, where n is the 

total number of the C-Obstacles' vertices, see section 5.5.2 for details. The treatment 

of w's children requires O(k) time, where k is the total number of the C-Obstacles' 

non-concave vertices.

The overall computational time of the D*MECHA algorithm is in O(k n log n), 

where n is the total number of the C-Obstacles' vertices and k is the total number of 

the C-Obstacles' non-concave vertices.

The number of edges of the RVG^ produced by the D*MECHA algorithm is 

bounded by . Since = -—————- which is in O(k2), the space 

complexity of the D*MECHA algorithm is in O(k2).

The worst time and space complexities are attained by the D*MECHA algorithm 

when it is applied in an environment populated by only convex obstacles and k 

becomes equal to n leading to a computational time O(n2 log n) and O(n2) space.

5.10 Some Interesting Properties of the Motion's Time-Minimality

As was seen from the above discussions the D*MECHA algorithm establishes the 

time-minimal semi-free motion between two query points for an AGV in an 

environment populated by moving obstacles, in O(k n log n) computational time and
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(k2) computational space, where k is the total number of the obstacles' concave 

vertices and n is the total number of the obstacles' vertices. The time-minimality 

characteristic of the produced motion demonstrates some very interesting properties. 

These properties enable the algorithm to provide solutions to other related problems. 

For instance the algorithm can provide a solution to the decision problem of whether 

a semi-free motion between the AGV's start point and its goal point that is 

accomplished by a given time (deadline) exists.

Another problem that can be solved by the D*MECHA algorithm is the one which 

requires the establishment of the latest departure time for the AGV from its start 

point in order to arrive at is destination point at a given time. This property is very 

important when the AGV's motion is part of a manufacturing process in which there 

are different tasks that have to be co-ordinated. For the solution to this problem the 

goal point and the arrival time are set as start point and start time of the AGV 

respectively and the obstacles have reverse motions. Notice that now the motion 

finding process is reversed. The time that the AGV arrives at the destination point 

(the original start point) by following the time-minimal motion is the solution to the 

problem.

Notice that when there are only stationary obstacles in the environment, the time- 

minimal motion from s to g defines also the shortest path from s to g.

Note also that some of the assumptions made in section 5.1 can be relaxed but as was 

mentioned in section 5.1, unfortunately at the expense either of the computational
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time of the algorithm or of the minimality of the produced motion or even at the 

expense of the solution's completeness. For instance, the assumption that the AGV 

always moves always with greater velocity than the obstacles. If there is an obstacle 

in the environment that moves faster that the AGV the algorithm may fail to find the 

time-minimal motion because it may pay for the AGV to follow a stop-motion.

5.11 Comparing the D*MECHA Algorithm to other Approaches

In this section the D*MECHA algorithm is compared with other approaches that 

have been proposed over the years for the solution of the robot motion planning 

problem.

As was mentioned in section 5.2 Kant and Zucker (1986), decompose the trajectory 

planning problem (TPP) into two sub-problems, (i) The path planning problem 

(PPP) in which a path, which avoids collisions with static obstacles, is planned and 

(ii) the velocity planning problem (VPP) in which the velocity, which avoids 

collisions with moving obstacles along this path, is planned. Their approach is not 

complete and it might fail to produce a motion when one exists. The reason for this 

is that the AGV is not allowed to circumnavigate the obstacles but only move along 

the path established at the path planning stage of the approach. Therefore if an 

obstacle moves along the AGV's path or its motion terminates on the AGV's path 

then the approach fails to find motion even though one exists. The advantage of the 

D*MECHA algorithm over this approach is that it always establishes a path if one 

exists (under the assumptions made in section 5.1). Therefore it succeeds to produce
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a semi-free motion even in situations where Kant and Zucker's approach fails. 

Another major advantage of the D*MECHA algorithm over the approach of Kant 

and Zucker is that the motion that it produces is time-minimal while Kant and 

Zucker's approach is far from time-minimal because it involves many stops.

Erdmann and Lozano-Perez (1987), presented the space-time configuration space as 

a list of configuration space slices at particular points in time. These points in time 

are those at which a moving object changes its velocity. The motion of the robot 

consists of a series of straight-line segments connecting nodes of different slices and 

the robot moves with constant velocity between two slices. Along this motion the 

robot changes its velocity only at nodes of obstacles when an obstacle's velocity 

changes. Their algorithm is time resolution-complete between the slices. The 

algorithm runs in time O(r n3), where n is the total number of the environment's 

edges and r is the total number of the constructed slices. The advantage of the 

D*MECHA algorithm over this algorithm is that it is computationally more efficient. 

It establishes the time-minimal semi-free motion in O(k n log n) time, where k is the 

total number of the obstacles' non-concave vertices and n is the total number of the 

obstacles vertices. Also note that the D*MECHA algorithm considers far fewer 

obstacles' vertices for the construction of the reacha-visibility graph in CT, which 

makes the search process for the time-minimal motion quicker.

Fujimura (1991) presented an algorithm to find a motion for a point-robot, in an 

environment populated by time-dependent obstacles and a destination point. The 

environment's obstacles are polygons, which move in a fixed direction at constant
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speed. The algorithm they proposed finds the time-minimal motion given that the 

point-robot moves faster than the obstacles and the destination point. This algorithm 

is based on the concept of the accessibility graph. The algorithm searches this graph 

and finds the time-minimal motion from the robot's start point to its goal point in 

O(n2 log n) computational time, n is the total number of the obstacles' vertices. The 

advantage of the D*MECHA algorithm over this algorithm is that it is 

computationally more efficient and that in general considers less obstacles' vertices 

for the construction of the reacha-visibility graph and thus makes the search process 

for the time-minimal motion less time consuming.

5.12 Discussion

In this chapter an algorithm for solving the dynamic robot motion planning problem 

was proposed. The algorithm is called D*MECHA and establishes the time-minimal 

semi-free motion for an AGV (point robot) between two query points in an 

environment populated by simple polygonal obstacles.

The computational complexity of the algorithm is O(k n log n), where k is the total 

number of the obstacles' non-concave vertices and n is the total number of the 

obstacles' vertices. The D*MECHA algorithm is an extension of the V*MECHA 

algorithm presented in chapter four therefore the two propositions used in order to 

minimise the number of vertices considered for the construction of the visibility 

graph were used here for the reduction of the visibility graph in CT without 

sacrificing the optimality of the motion.
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The algorithm was proven to be admissible and optimal in the sense that it never 

expands more vertices than any other less or equally informed admissible algorithm. 

The time-minimality theorem was stated proving that the motion produced by the 

algorithm is time-minimal under some mild assumptions.

By the time-minimality theorem it was stated that in order for the AGV to attain a 

time-minimal semi-free motion should follow a vertex-to-vertex non-stop motion by 

moving constantly at its maximum velocity. However this may appear counter­ 

intuitive to a human being. The reason for that is that the humans and in general 

every animal possess the cognitive ability to follow the quick and at the same time 

safe motion rather than a dangerous fast motion within a physical environment. This 

human ability is extremely hard to replicate in computer algorithms. Another factor 

is that the AGV is supposed to be a point subject only to velocity bounds while the 

real physical AGVs are dimensioned objects subject to an acceleration bound and 

other physical constrains such as friction, inertia and so on. Finally the assumption 

that the robot moves with greater velocity than the obstacles is not always realizable 

in physical environments. Taking into consideration all these factors a different 

strategy may have to be employed for the solution of the robot motion planning 

problem. In the next chapter the extensibility of the D*MECHA algorithm in more 

complicated environments will be investigated.
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6
Extensions to the 

D*MECHA Algorithm
/ know that thou canst do everything

JOB 42: 2

6.1 Introduction

In chapter five the D*MECHA algorithm for finding the time-minimal motion between 

two query points in an environment populated by linearly moving obstacles was 

described. In this chapter the applicability of the D*MECHA algorithm in more 

complicated dynamic environments will be investigated. In particular two types of 

environments will be considered. The first contains obstacles, which change their size 

over time and the second contains obstacles, which have piecewise linear motion.
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The extensibility of the D*MECHA algorithm to solve the dynamic motion planning 

problem for environments, which contain obstacles whose size changes over the time is 

presented. This means that the obstacles in the environment can shrink or expand over 

time as well as change their position at the same time. This is a slightly modified 

problem to the classic dynamic robot motion planning problem. In the classic problem 

the position of the obstacles in the environment is time dependent, whereas in this 

instance the size of the obstacles as well as their position in the environment depend on 

time. There are a large number of significant applications, which can be modelled using 

the concept of shrinking and expanding obstacles. In section 6.2 examples of such 

applications and the motivation behind this work will be discussed.

The extensibility of the D*MECHA algorithm to solve the dynamic motion planning 

problem for environments, which contain obstacles with piecewise linear motion is also 

investigated in this chapter. Most of the time a real world environment where an AGV 

operates, cannot be described adequately when only linearly moving obstacles are used 

for its formulation. Obstacles with piecewise linear motion, can describe more general 

environments in the sense that the motion of the obstacles is more relaxed and therefore 

the domain of problems that can be formulated using piecewise linearly moving 

obstacles is larger. An obstacle has piecewise linear motion when it moves for a finite 

number of time intervals in a fixed direction with constant velocity. Note that the 

obstacle's velocity in different time intervals does not have to be the same.

It will be shown that the D*MECHA algorithm with minor changes is still applicable to 

such environments. It will also be shown that the admissibility and the optimally
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properties of the algorithm are maintained. The motion produced by the algorithm in 

such environments also maintains the property of its optimality. More formally the two 

problems considered in this chapter are as follows.

Problem 3 (Shrinking and Expanding Obstacles)

Consider the problem of planning the motion of an AGV R in a two-dimensional 

workspace W populated by simple polygonal convex obstacles P i5 where i e |),j, the 

AGV's start location s and its goal location g. The AGV is a point-robot, which 

translates freely at fixed orientation with bounded velocity modulus. The maximum 

velocity that the robot can reach is denoted by n . Every P, in W can be either static
u max R

or linearly moving as well as shrinking or expanding. The velocity of the moving 

obstacles and the obstacles, which alter their size is less than r; . Every moving Pb'-'max,,

before and after its motion has velocity equal to zero. The environment's obstacles are 

not allowed to come into contact with each other at any time. The problem is to plan a 

time-minimal semi-free motion for R, from its start point to its goal point, given that the 

AGV's start and goal points are collision-free at all times and that the descriptions of 

the obstacles (such as shapes, locations and velocities) are accurately known ahead of 

planning.

Problem 4 (Obstacles with Piecewise Linear Motion)

Consider the problem of planning the motion of an AGV R in a two-dimensional 

workspace W populated by simple polygonal obstacles Ph where I € N, the AGV's start 

location s and its goal location g. The AGV is a point-robot, which translates freely at 

fixed orientation with bounded velocity modulus. The maximum velocity that the robot
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can reach is denoted by 5^ . Every Pj in W can be static or moving. The moving 

obstacles can have either linear motion with constant velocity, which is less than ,1
u max R

or piecewise linear motion with constant velocity for each time interval, which is less 

than {3 . Note that their velocity in different time intervals does not have to be themax R

same. Every moving Pj, before and after its motion has velocity equal to zero. The 

environment's obstacles are not allowed to come into contact with each other at any 

time. The problem is to plan a time-minimal semi-free motion for R, from its start point 

to its goal point, given that the AGV's start and goal points are collision-free at all times 

and that the descriptions of the obstacles (such as shapes, locations and velocities) are 

accurately known ahead of planning.

6.2 Environments with Shrinking and Expanding Obstacles

In this section Problem 3 is studied and the extensibility of the D*MECHA algorithm 

for solving it is investigated. As was mentioned in section 6.1, there are significant 

applications, which can be formulated using shrinking and expanding obstacles in their 

environment. Some, examples of applications whose environments can be described 

with obstacles, which alter their size over the time, are as follows.

. A real world application which can be modelled as an environment containing 

shrinking and expanding obstacles is when a robot watercraft is navigating in a 

sea in which tide gives rise to a difference of the water level on reefs and 

islands. The immediate affect on the robot's workspace is the shrinkage or 

expansion of the obstacles. As obstacles are considered the cross sections of the
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islands with the plane defined by the sea level. For minimal time vessel routing 

in time dependent environments and related problems, see (Perakis and 

Papadakis, 1989) and (Papadakis and Perakis, 1990).

• Another application is when an AGV operates in a manufacturing environment 

where there are multi-arm stations that operate as part of the manufacturing 

process. As these stations extend and retract their arms they can be considered 

as shrinking and expanding obstacles for the AGV, which operates among them 

as part of the manufacturing process.

. An important application that can be modelled as an environment with shrinking 

and expanding obstacles is when an AGV is moving in dynamic environments 

and there are uncertainties on the obstacles' velocities due to control errors if 

other robots co-operate in the environment and are considered as obstacles for 

the AGV or due to lack of the knowledge of the environment before planning. 

The uncertainty of the obstacles' velocity can be incorporated and the obstacles 

can be modelled as moving shrinking or expanding obstacles. In this way 

collisions with the environment's obstacles due to their velocity' uncertainties 

can be avoided. Also the D*MECHA algorithm can be applicable when the 

information about the problem domain not accurately defined ahead of planning.

As it can be noticed there are important applications whose environments can be 

described with shrinking and expanding obstacles. Fujimura (1991) considered this
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problem and proposed an extension of the accessibility graph algorithm to handle such 

environments without worsening the algorithm's computational complexity.

6.2.1 Detailed Description of the Shrinking and Expanding Obstacles

As was mentioned in the specification of the problem the obstacles are convex 

polygons, which can be either static or moving. Note that an obstacle, which does not 

change its position over the time but it changes its size is also considered as a moving 

obstacle.

Shrinking and expanding obstacles are defined as two-dimensional simple polygons 

whose boundary alters over the time. The alteration of the obstacles' size over time 

does not happen randomly, but in the following manner. Every vertex PJ of the obstacle 

P is moving with constant velocity along a linear path defined by a fixed point O inside 

the obstacle and the vertex pi3 as illustrated in Figure 6.1.

Ps'

P6

P4

Figure 6.1 Illustration of an obstacle, which expands about its internal 

point 0.
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The distance that every vertex p, of the obstacle covers between two time instances ta 

and tp, with tQ < tp , is given by (c (tp- ta) UPi), where c is a constant which can only take 

two values, 1 or -1 depending whether the obstacle is shrinking or expanding and 5 is

the velocity of vertex p; . Note that the constant c takes the value -1, when the obstacle 

shrinks and the value 1, when the obstacle expands.

Most often the applications require the shrinkage or the expansion of an obstacle to be 

undertaken uniformly, this means that all vertices p, have the same velocity and move 

simultaneously. However notice that the proposed algorithm can handle cases where 

vertices have different velocities or even move at different times, as long as the obstacle 

does not deform. That is, if the obstacle is convex it does not become non-convex after 

the shrinkage or the expansion. Notice at the specification of the problem that the 

environment's obstacles are not allowed to come in contact with each other at any time 

therefore the topology of the AGV's free space remains the same at all times.

In this chapter the robot motion planning problem in an environment populated by 

convex shrinking and expanding obstacles is considered. Intuitively when an obstacle is 

non-convex the process of shrinkage and expansion is more complicated, simply 

because one internal point is not always adequate to define the motion of all obstacles' 

vertices. However notice that the algorithm is still applicable to environments, which 

contain non-convex obstacles as long as the deformation requirement is preserved.
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6.2.2 Construction of the Space-Time Configuration Space

It is known from the specification of the problem that the AGV is a point-robot 

therefore its configuration space C = W = R2 and every obstacle's configuration space 

CPj = Pj. The space-time configuration space CT = R2 x [0, +00) and every obstacle's 

configuration space CPj maps from C into CT to a prism denoted by CTPj.

The AGV's space-time configuration space for an environment, which contains 

shrinking and expanding obstacles, is very similar to the space-time configuration space 

for an environment, which contains static and linearly moving obstacles. The only 

difference is that when the environment contains shrinking or expanding obstacles the 

size of the polygons defined by the cross section of a prism of a shrinking or expanding 

obstacle and a plane parallel to the x-y plane at two different time instances is not the 

same. Figures 6.2a and 6.2b illustrate the AGV's configuration space C and its space- 

time configuration space CT. The AGV's configuration space of Figure 6.la contains 

two C-Obstacles. The CP l shrinks uniformly over time, with velocity equals to 5 and 

the CP2 changes its position over time and it moves in direction d2 with velocity equal
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CP2 (a) CP2 (p)

Figure 6.2a The AGV's configuration 

space containing one linearly moving 

C-Obstacle and one C-Obstacle which 

shrinks.

0

Figure 6.2b The AGV's space-time 

configuration space for the 

configuration space of Figure 6.2a.

6.2.3 Applicability of the D*MECHA Algorithm

Recall from the specification of the problem (Problem 3) that the AGV is a point-robot, 

which is not subject to any kinematic or dynamic constraints. Thus in order to move 

from its start point to its goal point, attaining a time-minimal motion, it should move 

constantly with its maximum velocity (^ ).
rnsxp

In section 5.5 a theorem (Theorem 5.1) was presented, stating that the time-minimal 

semi-free motion between the AGV's start point and its goal point in an environment 

populated by stationary and linearly moving obstacles, turns only at obstacles' vertices. 

Note that this theorem remains valid for environments populated by shrinking and
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expanding obstacles and its proof follows immediately once the AGV's space-time 

configuration space CT is constructed. Therefore the time-minimal motion between 

two query points in an environment populated by stationary, linearly moving and 

shrinking and expanding obstacles is contained in the RVG9 in CT.

Note also that Propositions 5.1 and 5.2 presented in section 5.5 that are used for the 

reduction of the configurations considered for the construction of the RVG,, and the
o

identification of the semi-free motion, are still valid and applicable in environments 

populated with shrinking and expanding obstacles. Therefore, after the construction of 

the CT the D*MECHA algorithm can be applied to find the time-minimal, semi-free 

motion from the AGV's start configuration to its goal configuration. The D*MECHA 

algorithm was presented in section 5.5 therefore is will not be presented again here.

6.2.4 Sensitivity Analysis of the Admissibility and Optimality Properties of

the D*MECHA Algorithm

The computational time and space of the algorithm are not sensitive to the introduction 

of the new motions (i.e. shrinkage or expansion) of the obstacles. Thus the 

computational time and space of the algorithm remain O(n2 log n) and O(n2) 

respectively, where n is the total number of the obstacles" vertices (for an environment 

with convex obstacles).

Note also that the D*MECHA algorithm still maintains its admissibility and optimality 

properties. The formal proofs of the algorithm's admissibility and optimality when
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there are shrinking and expanding obstacles in the environment remain the same as 

discussed hi section 5.7 and therefore they are omitted from this chapter.

Thus the D*MECHA algorithm is immediately applicable to environments populated by 

shrinking and expanding obstacles, without any further alterations to the algorithm and 

most importantly without increase in its computational complexity and loss of its 

admissibility and optimality properties.

Notice that the Time-Minimal Motion Theorem (theorem 5.2) presented in section 5.8 is 

still valid in environments, which contain shrinking and expanding obstacles, therefore 

the motion produced by the D*MECHA algorithm when applied in such environments 

is time-minimal.

The aforementioned arguments lead to the conclusion that the D*MECHA algorithm is 

applicable in the extended environment specified in Problem 3 in section 6.1 and 

establishes the time-minimal semi-free motion for an AGV between its start and goal 

points. Therefore it can adequately solve Problem 3.

63 Environments Containing Piecewise Linearly Moving Obstacles

In this section Problem 4 is studied and the extensibility of the D*MECHA algorithm 

for solving it is investigated. Fujimura (1991) and Fujrmura (1993) considered the same 

problem and presented an algorithm for solving iL using the concept of the accessibility 

graph. His algorithm establishes the time-minimal motion in environments populated
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by piecewise linearly moving obstacles, in time O(n2 log (mn)), where n is the total 

number of the obstacles' vertices and m is the average number of turns made by the 

obstacles.

In this section an extension of the D*MECHA algorithm will be proposed for solving 

the encountered problem and a critical evaluation of the approach as well as a 

comparison with other approaches will be presented.

6.3.1 Space-Time Configuration Space with Piecewise Linearly Moving 

Obstacles

When the AGV's workspace W is populated by piecewise linearly moving obstacles its 

corresponding space-time configuration space differs from that which contains linearly 

moving obstacles. The reason is that an obstacle which has piecewise linear motion, 

moves for a finite number of time intervals in fixed direction with constant velocity. 

Therefore its corresponding CT-Obstacle in CT is a sequence of a finite number of 

prisms each of them bending towards a different direction (depending on the direction 

of the obstacle's motion at the corresponding time interval), with different slopes to the 

x-y plane (depending on the obstacle's velocity at the corresponding time interval). 

Note that after the end of the obstacle's motion the corresponding prism becomes 

orthogonal to the x-y plane. Figure 6.3a depicts the AGV's configuration space for an 

environment, which contains one piecewise linearly moving obstacle and Figure 6.3b 

depicts its corresponding space-time configuration space.
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CP(5)

CP(a)

Figure 6.3a The AGV's 

configuration space C populated by 

the linearly moving C-Obstacle CP.

a

Figure 6.3b The AGV's 

configuration space-time CT for the 

C-space of Figure 6.3a.

In the configuration space of Figure 6.3a, the CP is moving within each of the three 

time intervals (aj p), (p 5 y) and (y^ g) in directions, d,, d2 and d3 , with velocities 5 , ^ 2

and £ respectively.

The CTP in CT consists of a sequence of three prisms each of them bending in the 

corresponding direction, with the corresponding slope.

It can be seen from Figures 6.3a and 6.3b that all the edges of the CP map into the faces 

of the prisms (in the sequence) in CT and all the vertices of the CP map into the edges 

of the prisms, which do not constitute the bases of them, these edges are called
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edges- The common edges of every pair of adjacent prisms in the sequence are called 

common base edges- The AGV's start and the goal configurations in C correspond to 

half lines in CT, which emanate from qs and qg respectively.

6.3.2 Applicability of the D*MECHA Algorithm

In section 5.5 a theorem was discussed (Theorem 5.1), stating that when the AGV's 

environment is populated by a set P of linearly moving and stationary simple polygonal 

obstacles, the time-minimal semi-free motion from the AGV's start point s to its goal 

point g (providing that one exists), turns only at obstacles' vertices. However as will be 

suggested by the following example this is not the case when there are piecewise 

linearly moving obstacles in the environment.

Example

Consider the configuration space of Figure 6.4. The CP is a moving C-Obstacle with 

piecewise linear motion. Suppose that the CP's initial position is when the C- 

Obstacle's edge (1, 2) coincides with the line g { , as is depicted in Figure 6.4. The 

AGV's start and goal configurations are qs and qg respectively. The CP moves in 

direction db with velocity, say Im/sec. When the edge (1, 2) reaches the line (2 (this is 

after 2 seconds) the direction and the velocity of the C-Obstacle changes and it moves in 

direction d2 for lOseconds, with velocity, say 0.5m/sec. Suppose that the maximum 

velocity of the AGV is n = 1.5m/sec. The co-ordinates of the C-Obstacle's verticesJ u max R

when the CP is at its initial position and the AGV's start and goal points are given in 

Table 6.1.
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y- 
10-
9-

8- 

7- 

6- 

5- 

4- 

3 -

1 -

0 i
i^ 

6 8 10

Figure 6.4 An example of a C-space, which contains one piecewise 

linearly moving C-Obstacle.

qs
%i
2
3
4

(3,2)
(8,4)
(5,4)
(7,4)
(5,y)
(7,y)

Table 6.1 The co-ordinates of the C-Obstacle's vertices (at their initial 

position) and the AGV's start and goal configurations.
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Note that the direction of CP's motion changes from d( to d2 when vertices 1 and 2 have 

co-ordinates (5, 2) and (7, 2) respectively.

Discussion of the Example

According to the specification of the problem the AGV is a point-robot, which is not 

subject to any kinematic or dynamic constraints, therefore in order to move from its 

start point to its goal point attaining a time-minimal semi-free motion it should always 

move with its maximum velocity, o = \ 5 m / sec •
max R

There are two different ways for the AGV to reach qg from qs . The first way is to move 

directly from qs to qg, stop and wait at configuration q until the CP moves out of its 

way and then carry on moving towards qg . This motion is depicted in Figure 6.5. The 

second way is to move from qs to qg by going around the CP, either from below or 

above. Here it will be shown that neither of these motions is time-minimal and a new 

way for attaining the time-minimal motion will be presented.
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Figure 6.5 Illustration of a stop-motion.

In section 5.8 the Time-Minimal Motion Theorem (Theorem 5.2) was presented stating 

that the time-minimal motion for an AGV R from its start location s to its goal location 

g in an environment populated by a set P of static and linearly moving obstacles is a 

non-stop-motion. In section 6.3.5 this theorem will be discussed and it will be shown 

that it is still valid for environments populated with piecewise linearly moving 

obstacles. Therefore the former way of reaching the qg is not time-minimal. The latter 

way for reaching the qg is by moving around the CP from either its bottom side or its 

topside.
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If the CP had not changed the direction of its motion after 2 seconds, then if the AGV 

leaves from the start configuration qs at time t0 it could reach the vertex 1 at a 

configuration q { at time t,, vertex 2 at configuration q2 and time t2 and vertex 4 at 

configuration q4 and time t4 , given that it moves with velocity equals v Figure 6.6 

illustrates these configurations.

y- 
10-
9-

8- 

7- 

6- 

5-

3 -

*•>-->>

I -

0 \ r TIII 
123456

i i 
9 10

Figure 6.6 Vertices 1, 2, 4 would have been visible and reachable at 

configurations q,, q2 , q4 at times tb t2 and t4 respectively, if the CP had not 

changed the direction of its motion when it reached line fy.
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However the C-Obstacle changes its direction and velocity when its edge (1,2) reaches 

the line (2 . This means that if the AGV starts moving from qs at time t0 it will never 

reach vertex 2 at q2 , simply because the C-Obstacle will never be at such a 

configuration, due to the fact that the C-Obstacle changes its direction before vertex 2 is 

at configuration q2 . Also note that the AGV will never reach vertex 4 at configuration 

q4, again for the same reason. Notice however in Figure 6.7, that if the AGV departs 

from qs at time t0, it can reach vertex 1 at configuration q l at time t, while the CP moves 

in direction d] and vertex 4 at configuration q4 ' at time t4 ', after the CP changes its 

direction and while it is moving in direction d2 .

10- 

9- 

8- 

7- 

6- 

5-

3-

1 -

0

<\4

q4 .

Qs
<h

———I———I—————————I——————I——I——I——x 
1 2 3 4 5 6 7 8 9 10

Figure 6.7 Vertices 1 and 4 are visible and reachable from qs at 

configurations q] and q4 ' respectively.
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Recall that if the AGV departs from the start configuration qs at time t0 it can reach 

vertex 1 at a configuration qj at time t l5 while the CP is moving in direction d,. Thus 

the AGV could reach vertex 4 at a configuration, say q4 " at time t4", by going through 

vertex 1 when is at configuration q] at time t b but t4 ' < t4", because the straight line 

motion is the shortest. Also note that vertex 2 is not visible and reachable from 

configuration qj. Therefore the only way for the AGV to reach configuration qg from qs 

is to go around the topside of the CP, and in particular through configuration q4 '. 

Figure 6.8 illustrates this motion.

7 8 10

Figure 6.8 The time-minimal motion from qs to qg , which goes around the 

topside of the CP.
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The time taken for the AGV to reach configuration qg from configuration qs by moving 

with its maximum velocity along the motion depicted in Figure 6.5 is 9.7seconds.

When the motion of the obstacles is a piecewise linear motion the direction of the 

obstacles' motion changes over time. Therefore it is possible for the AGV not to reach 

a vertex of the obstacle due to the fact that the obstacle changed its direction, when it 

would have reached it if the obstacle had not changed its direction. For instance, in the 

above example, if the direction of the CP had not changed after 2 seconds, vertex 2 

would have been visible and reachable at configuration c^.

Vertices 1 and 4 of the CP are visible and reachable from qs at configuration q[ at time 

t] and q4' at time t4' respectively, however vertex 2 is not. This means that there is 

always an internal point on the edge (1,2) of the CP, which lies between vertices 1 and 

2 and can serve as a configuration for the AGV to pass through on its way to the goal 

position. This point is called assistant configuration- Note that chronologically, this is 

the last point of contact between the edge (1,2) and the AGV. Fujimura (1992) also 

used the internal assistant point for establishing the time-minimal motion in 

environments which contain piecewise linearly moving obstacles.

It will be shown here that the motion from qs to qg in the above example through such 

an assistant configuration is less time consuming than the motion, which goes around 

the topside of the C-Obstacle.
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Suppose that an internal point on the edge (1, 2) is visible and reachable from qs at 

configuration qass(1 > 2) at time t^/ 1 ' 2) . If the AGV departs from qs at t0 , it can be at 

configuration q^1 ' 2) at time tass(1 ' 2) . If the AGV departs from qass(l - 2) at time tass(1 ' 2) it 

can meet vertex 2 at configuration q2 " at time t2", and then it can reach qg at time tg 

Figure 6.9 depicts this motion.

y
10-

9-

8- 

7-

6-

5-

3-
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0

'

1̂
*

|d2

q2 "

qs a (1 - 2)^s Mass

1 1 1 1 1 1 1 1 x
123456789 10

sure 6.9 A motion from qs to qg , through configuration q^/ 1 ' 2) , which

corresponds to an internal point of the CP's edge (1, 2).

The time taken by the AGV to reach configuration qg from configuration qs by moving 

with its maximum velocity along the motion depicted in Figure 6.9 is 4.05 seconds. It
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can be noticed this motion is less time consuming than the motion, which goes around 

the topside of the CP and its time-cost is 9.7 seconds. Thus the time-minimal motion 

between qs and qg in the given example, is the one, which goes through the assistant 

configuration qass(1 ' 2) , which corresponds to an assistant point on the CP's edge (1, 2).

The above example indicates that the time-minimal motion for an AGV (point-robot) 

between two query points in an environment populated with piecewise linearly moving 

obstacles can also turn at points other than the obstacles' vertices and in particular at 

internal edge points of the obstacles. Therefore the Theorem 5.1 discussed in section 

5.5 is not valid when the environment contains piecewise linearly moving obstacles.

6.3.3 Extension on the D*MECHA Algorithm

Since the time-minimal motion can turn at internal edge points (assistant configurations) 

of the piecewise linearly moving obstacles, the process of constructing the RVG9 in the 

three-dimensional configuration space-time CT, now is somewhat different. The reason 

for this is because additional configurations other than configurations on the shaft edges 

of the CT-Obstacles should be considered for the construction of the RVGg in CT.

The internal obstacles' edges (assistant) points where the time-minimal motion can turn 

correspond to configurations in CT that are visible and reachable from a configuration, 

say q, and are on the common base edges between two successive prisms in a sequence 

of prisms. Suppose that all the assistant configurations need to be identified from a 

configuration q, in CT. The procedure is similar as the one in section 5.5.2, which 

identifies visible and reachable configuration in CT, which correspond to C-Obstacles'
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vertices in C. Therefore from a configuration q in CT, if a half-line is polar swept about

q by keeping a constant angle 3 (recall from section 5.4 that 9, =tan~ 1 (0 "')) w

the x-y plane, the intersections between the half-line and the common base edges of 

successive prisms in a sequence, correspond to reachable assistant configurations from 

q in CT. Once the reachable assistant configurations are identified, then those which 

satisfy the visibility condition, are retained. Figure 6.10 gives some insight in such 

configurations.

Assistant 
configuration

a

Figure 6.10 Illustration of an assistant configuration (qass), which is visible 

and reachable from configuration q in CT.

The algorithm identifies all the visible and reachable qass configurations from a given 

configuration q, but for the construction of the RVG3 it does not consider those where
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both adjacent vertices on the edge are visible and reachable from q. The reason is that if 

the AGV can reach the two vertices of an edge at some configurations from q, it is less 

time consuming to move straight to them than passing through an internal assistant 

configuration. For example consider the configuration space of Figure 6.11.

y 
10-
9-

8- 

7- 

6- 

5-

3-

i -

0

qs

i i i i 1

9 10

Figure 6.11 Illustration of the internal assistant configurations.

If the AGV departs from qs at time to it can reach the assistant configurations qass(1 '4) and 

qasg(i,2) at times t^/ 1 '4* and tass(U) respectively, which is equal to 2 seconds. These two 

configurations are internal edge points of the CP. The assistant configuration qass(1 < 4) is 

an internal point of the edge (1, 4) of the CP and the assistant configuration qj] > 2) is an
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internal point of the edge (1,2). Notice however, that if the AGV departs from qs at 

time t0 it can reach both vertices of the edge (1,4), vertex 1 at configuration q, while the 

CP moves in direction d t and vertex 4 at configuration q4" while the CP moves in 

direction d2 . Therefore the assistant configuration q^^ does not need to be 

considered for the construction of RVG9 , because both vertices 1 and 4 are visible and 

reachable at some configurations, and thus the qass<1>4) is discarded. However, notice 

that if the AGV departs from qs at time t0 it cannot reach both vertices of the edge (1,2), 

because vertex 2 is not visible and reachable at any configuration therefore the assistant 

configuration qass(1 '2) is considered for the construction of the RVG9 . The algorithm 

proceeds as follows.

When the D*MECHA algorithm identifies all the visible and reachable configurations 

on the CTP/s shaft edges, from a configuration w, it places them on the list VV. Then 

it places on the list NCV all the configurations which correspond to super-extremes and 

non-concave vertices from VV. The algorithm then identifies all the assistant 

configurations from w, but it only places on the list NCV those assistant configurations 

whose two adjacent vertices are not in VV. The rest of the algorithm remains the same 

and proceeds as demonstrated in section 5.5.

Note that each vertex of a C-Obstacle is visible and reachable only once in its life-time 

from a given configuration. Also note that irrespective of how many different motions a 

C-Obstacle's edge has, it can only have one internal assistant point from a given 

configuration.
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A common base edge in CT can be visible and reachable by many different 

configurations at different points along its length. Note that all these points have the 

same reachable time since a common edge is always parallel to the x-y plane in the CT. 

However, the x-y co-ordinates of the configurations, which correspond to different 

assistant points on the same common base edge are different. This has as a result, the 

RVG9 to have arbitrarily many vertices and the search process for a motion to be 

extremely time consuming. A way to alleviate this problem is to consider only the 

assistant point, which is closest to the edge's vertex that is not visible and reachable 

from the current configuration. For clarity consider the configuration space of Figure 

6.12.
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Figure 6.12 Assistant configurations qass(x) and q^ are on the same ed§e
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If the AGV departs from qs at time t0 it can reach vertex 1 at configuration q, and time t, 

but it cannot reach vertex 2 due to the fact that the CP changes its direction before 

vertex 2 is at such a configuration, which can reachable by the AGV. Therefore an 

internal assistant configuration on the CP's edge (1, 2) should be considered for the 

construction of the RVG9 . Note that if the AGV departs from qs at time t0 it can reach 

an internal assistant point on the edge (1, 2) at configuration q^^ at time tass(x) by 

moving along the straight line motion (qs , qass(x)). If the AGV departs from qs at time t0 

it can reach an internal assistant point on the edge (1, 2) at configuration qass(y) at time 

tass(y) (with tass(y) = tass(x)), by going via configuration q,. As can be noticed 

configurations q^*' and qass(y) are reachable at the same time (this is the time CP 

changes its direction), but at different locations. Since the assistant configurations are 

only considered because one of the two vertices of the (1,2) edge, is not visible and 

reachable (in this case vertex 2) from qs , the configuration which is closest to vertex 2 is 

considered for the construction of the RVG Q . The reason for this is that if the CP had
tr

not changed its direction, according to Theorem 5.1 from section 5.5, configuration q2 

(of vertex 2) would have been considered for the identification of the time-minimal 

motion. However, since this configuration is not visible and reachable from qs, the 

configuration on the edge (1,2), which is closest to vertex 2 should be retained for the 

construction of the time-minimal motion. Another way to look at it is that since all the 

assistant configurations on a common base edge have the same reachable time, for the 

construction of the time-minimal motion only the extreme should be retained.
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6.3.4 Analysis of the Time and Space Complexities

As explained in section 6.2.3, making some minor modifications to the D*MECHA 

algorithm enables it to solve the motion planning problem for an AGV in a two- 

dimensional environment populated by static, linearly moving and piecewise linearly 

moving obstacles. Specifically, the algorithm is the same as that presented in section 

5.5 but there is one step added. This is the step, which identifies the visible and 

reachable internal assistant configurations for each currently expanded configuration. 

In this section an analysis of the modified D*MECHA algorithm is carried out in order 

to find out whether the modifications influence the computational time and space of the 

algorithm.

t

Since the total number of vertices in the Cspace is n the total number of edges in the 

environment is n as well. Suppose that p is the total number of C-Obstacles in the

environment. The average number of edges per C-Obstacle is equal to e = — > thus
P

each C-Obstacle has e edges on average. Now suppose mj is the number of changes in 

the direction of the ith C-Obstacle. The average number of direction changes for each

C-Obstacle is m = mi +m2+- + mp times. Therefore since each C-Obstacle changes
P

its direction m times on average and it has e edges on average, there will be (e m p) 

common base edges in CT. The visible and reachable internal assistant configuration 

from each currently expanded configuration w can be identified in O(m e p log (m e p)) 

time, which is equal to O(nm log (nm)), where n is the total number of the C-Obstacles 

vertices in the Cspace and m is the average number of directions changes for each C- 

Obstacle. Notice that for every non-concave vertex of a C-Obstacle that is not
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reachable and visible from a configuration q, due to the fact that the C-Obstacle 

changed its direction, an assistant configuration is considered, therefore the number of 

the executions of the while loop of the algorithm remain k, where k is the total number 

of the C-Obstacles' non-concave vertices. Thus the total time complexity of the 

algorithm is O(k (mn log (mn))), where k is the total number of the C-Obstacles' non- 

concave vertices, n is the total number of vertices in the Cspace and m is the average 

number of changes in the direction of each C-Obstacle.

The space complexity of the algorithm is O((k + m p)2), where k is the total number of 

the C-Obstacles' non-concave vertices, m is the average number of changes in the 

direction of each C-Obstacle and p is the number of C-Obstacles in the C-space.

6.3.5 The Optimality of the Motion Produced by the D*MECHA Algorithm

Notice that the proof of the modified D*MECHA's admissibility and optimality are the 

same as in section 5.7. Therefore the modified D*MECHA is admissible, which means 

that it always produces the time-minimal motion from qs to qg within the RVGS 

(providing that one exists), otherwise it returns failure. Also the modified D*MECHA 

algorithm is optimal in the sense that it never expands more configurations than any 

other algorithm, which is less or equally as informed, for the identification of the time- 

minimal motion.

It is not hard to extend and prove that the Time-Minimal Motion Theorem (theorem 5.2) 

presented in section 5.8 is still valid in environments, which contain piecewise linearly 

moving obstacles. Therefore the time-minimal motion for an AGV between two query
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points in an environment, which contains piecewise linearly moving obstacles, is a non­ 

stop motion. In fact, the only difference from the proof presented in section 5.8, is that 

now the internal assistant points are considered as vertices of the obstacles. Therefore 

the semi-free motion produced by the modified D*MECHA algorithm when applied in 

such environments is time-minimal.

6.3.6 Comparison with other Approaches

In this section the D*MECHA algorithm is compared with other popular algorithms for 

solving the motion planning problem in a two-dimensional environment populated by 

piecewise linearly moving obstacles. In particular it will be compared with the 

approaches of Kant and Zucker (1986), Erdmann and Lozano-Perez (1987) and 

Fujimura (1991), using the example presented in section 6.3.2.

Recall from section 5.2 that Kant and Zucker (1986), decompose the trajectory planning 

problem (TPP) into two sub-problems. The path planning problem (PPP) in which a 

path that avoids collisions with static obstacles is planned and the velocity planning 

problem (VPP) in which the velocity that avoids collisions with moving obstacles along 

this path is planned. However, notice that this approach is not very efficient because it 

will not find a solution when one exists for the case where an obstacle is moving along 

the path (established in the first stage of the approach) of the AGV, since the AGV 

cannot alter its path but just its velocity in the second stage of the approach.

In Erdmann and Lozano-Perez (1987), the configuration space-time was represented as 

a list of configuration space slices at particular points in time. These times are those at

6-31



Chapter 6________________________________Extensions to the D*MECHA Algorithm

which a moving object changes its velocity. This approach produces a motion, which 

consists of a series of straight-line segments between obstacles' nodes in adjacent slices. 

The robot follows a straight-line motion with constant velocity between the nodes of 

two slices. Along the path the robot changes its velocity only at nodes of obstacles, 

when some obstacle's velocity changes. The algorithm runs in time O(r n3), where n is 

the total number of the environment's edges and r is the total number of the constructed 

slices. The algorithm is time resolution-complete between the slices. A way to make 

the algorithm complete is to introduce slices at the times where the topology of the free 

space changes.

Fujimura (1991), constructed an accessibility graph in the environment and then 

searched it for the time-minimal motion between the AGV's start and goal points. 

Vertices of the accessibility graph are the obstacles vertices at a certain location and 

time as well as internal points on the obstacles' edges.

Figure 6.13 illustrates the path produced by each of these approaches. The dashed line 

is the motion produced by Kant and Zucker's approach, the plain line is the motion 

produced by Erdmann and Lozano-Perez's approach and the bold line is the motion 

produced by the D*MECHA algorithm and Fujimura's approach.
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Figure 6.13 Illustration of the four motions.

Note that the motions established by the D*MECHA algorithm and Fujimura's 

approach are the same, since they are both time-minimal.

Since there is only one CP in the configuration space of Figure 6.13 and this is moving, 

Kant and Zucker's approach at the first stage, defines as a path from qs to qg the straight 

line-segment, which connects them and then alters the velocity of the AGV along this 

path in order to avoid collisions with the moving CP. In this approach the AGV starts 

from configuration qs at time t0 and meets with vertex 1 of the CP after 3.66 seconds at 

the configuration A. From qs to A, the AGV moves with velocity equal to 0.62m/sec.
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The velocity of the AGV then changes to 1.29m/sec until it reaches configuration B 

(this configuration is where the AGV and vertex 2 of the CP meet). The time-cost of 

the motion from A to B is 1.66 seconds. Then the velocity of the AGV changes again 

and the AGV moves from B to qg at its maximum velocity. The AGV gets from B to qg 

within 0.42 seconds. The total time of the motion produced by Kant and Zucker's 

approach is 5.74 seconds.

In Erdmann and Lozano-Perez's approach the AGV departs from qs at time t0 and 

moves with velocity equal to Im/sec to meet vertex 1 of the CP at configuration C. 

Note that the AGV moves from qs to C within 2 seconds. The AGV's velocity is then 

changed to 0.7m/sec until the AGV reaches the qg configuration. The AGV reaches qg 

from C within 4.04 seconds. The total time of the produced motion by Erdmann and 

Lozano-Perez's approach is 6.04 seconds.

In Fujimura's approach as well as with the D*MECHA algorithm the AGV is constantly 

moving at maximum velocity, in this case its maximum velocity is equal to 1.5m/sec. 

In both approaches the AGV departs from qs at time to and reaches an internal assistant 

point of the CP's edge (1, 2), at a configuration qass(1 '2) within 2 seconds. The AGV then 

moves from qass( ''2) to configuration qi" where it meets vertex 2 of the CP, within 0.66 

seconds. The AGV then reaches qg from q2 " within 1.39 seconds. The total time of the 

motion produced by both the D*MECHA algorithm and Fujimura's approach is 4.05 

seconds. Table 6.2 summarises the results of the comparison between the four 

approaches.
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jelocity Ti: 
i/sec in seconds

Kant and Zucker's approach, 1986

Erdmann and Lozano-Perez, 1987

Fujimura, 1991

D*MECHA

qs -> A 
A->B 
B-»qg

C-»qgSr"
qT'->qg

0.62 
1.29 
1.50
1.00 
0.70
1.50 
1.50 
1.50
1.50 
1.50 
1.50

3.66 
1.66
0.42
2.00 
4.04
2.00 
0.66 
1.39
2.00 
0.66 
1.39

5.74

6.04

4.05

4.05

Table 6.2 Summary of the comparison between the four approaches.

As can be observed in Table 6.2, the motions established by the D*MECHA algorithm 

and Fujimura's approach for the given example have the same time-cost. This happens 

because both of the approaches establish the time-minimal motion. The fact that Kant 

and Zucker's and Erdmann and Lozano-Perez's approaches produced motions with 

higher time-cost is an indication that these approaches do not produce time-minimum 

motions, which is a disadvantage of those approaches over the D*MECHA algorithm 

and 's approaches.

Figures 6.14a-d illustrate the profiles of the velocity and duration of the motion for each 

approach.
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Kant and Zucker's Approach
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Figure 6.14a Profile of the velocity and 

the duration of the motion defined by 

Kant and Zucker's approach.

Erdmann and Lozano-Perez's 
Approach

Velocity rrV Time in 
sec seconds

Figure 6.14b Profile of the velocity 

and the duration of the motion defined 

by Erdmann and Lozano-Perez's 

approach.

Fujimura's Approach

2

1.5
1

0.5
0

Velocity Time in 
m/sec seconds

D*MECHA Algorithm

(1,2)

(1.2) q2 '

Velocity Time in 
m/sec seconds

Figure 6.14c Profile of the velocity and Figure 6.14d Profile of the velocity

the duration of the motion defined by and the duration of the motion defined

Fujimura's approach. by D*MECHA algorithm.

Figure 4.15 depicts the changes in the AGV's velocity while it moves along each of the 

four motions of Figures 6.13a-d as well as the time consumed by each motion.
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Figure 6.15 Velocity profile of the four motions when used to solve the 

encountered example.

The advantage of the D*MECHA algorithm over the Kant and Zucker's and Erdmann 

and Lozano-Perez's approaches is that in general it establishes time-optimal motions. 

Also note that Kant and Zucker's approach is not complete while the D*MECHA is. 

Therefore there could be environments populated by piecewise linearly moving 

obstacles, where Kant and Zucker's approach fails to find a solution to the motion 

planning problem but this would not be the case for the D*MECHA algorithm. Note 

that the D*MECHA algorithm also computationally more efficient than the Erdmann 

and Lozano-Perez's approach.

Notice that both the D*MECHA algorithm and Fujimura's approach establish time- 

minimal motions. Fujimura's approach is computationally more efficient but the author 

in Fujimura (1991) does not specify whether his approach considers more than one
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internal assistant point on a single edge for the construction of the accessibility graph. 

Thereby this approach can well build an arbitrarily large accessibility graph, which in 

turn can make the search process extremely time consuming.

6.4 Discussion

In this chapter, two motion planning problems have been considered and the 

extensibility of the D*MECHA algorithm for solving them was investigated. 

Specifically the two problems considered were, (i) the motion planning problem for an 

AGV in a two-dimensional environment populated by shrinking and expanding 

obstacles and (ii) the motion planning problem for an AGV in a two-dimensional 

environment populated by static, linearly moving and piecewise linearly moving 

obstacles.

The importance of both problems was discussed and their applicability was highlighted. 

The solution to the former problem has great applicability in motion planning for a 

vessel or other marine vehicles, while it can also be used to formulate the manufacturing 

environments were articulated arm stations can be modelled as shrinking and expanding 

obstacles for an AGV, which co-exists and co-operates in the environment, as part of 

the manufacturing process. With the concept of shrinkage and expansion of the 

obstacles, problems where there is uncertainty about the obstacles velocity can also be 

solved. The original obstacles, where uncertainty about their velocity exists can be 

approximated by shrinking and expanding obstacles, enabling the D*MECHA 

algorithm to be applicable in somewhat more general environments where there is lack 

of accurate information about the environment's obstacles ahead of planning.

6-38



Chapter 6_______________________________ Extensions to the D*MECHA Algorithm

The applicability of the second problem, which deals with piecewise linearly moving 

obstacles is more obvious. The reason is that since an AGV operates in a physical 

environment the formulation of the environment's obstacles as linearly moving objects 

in not adequate to describe the motion of the obstacles in a general environment. 

Therefore extending the D*MECHA algorithm to solve the motion planning problem 

for environments populated by piecewise linearly moving obstacles enabling it to solve 

more general instances of the classic robot motion planning problem and at the same 

makes its applicability more realistic.

It was shown that the D*MECHA algorithm can successfully handle environments 

populated by shrinking and expanding obstacles, thus establishing the time-minimal 

motion for an AGV, from its start point to its goal point in such an environment, 

without any extra cost in its computational complexity. It was also shown that the 

algorithm also maintains its admissibility and optimality properties and in general it 

establishes optimal motions.

The D*MECHA algorithm with minor changes can also handle environments populated 

by piecewise linearly moving obstacles. The only modification to the algorithm is that 

it has to consider internal points on the obstacles' edges as well as their vertices for the 

construction of the reduced visibility graph. Note that this modification increases the 

computational time and space of the algorithm to O(k (mn log (mn))) and O((k + m p)2) 

respectively, where k is the total number of the obstacles' non-concave vertices, n is the 

total number of vertices in the environment and m is the average number of changes in 

direction of each obstacle.
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It was shown that the modified D*MECHA algorithm maintains its admissibility and 

optimality properties. Thus it always establishes the time-minimal motion for an AGV 

in a two-dimensional environment populated by static, linearly moving and piecewise 

linearly moving obstacles.

In conclusion it can be noticed that the flexibility of the D*MECHA algorithm to handle 

different sorts of environments, with minor modifications, is an indication that the 

D*MECHA algorithm can solve a number of relevant problems and extensions of the 

classic robot motion planning problem.
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7
Conclusions and 

Future Work
Now all has been heard; here is the conclusion of the matter

ECCLESIASTES 12: 3

7.1 Introduction

In this chapter a review of the thesis is presented, some conclusions are drawn, the main 

contributions of the research are discussed and future work is recommended.

As was mentioned in the introduction of the thesis, the motion planning problem is an 

everyday task for humans, which they solve relatively easily without any conscious 

effort. However, the ability that humans possess to plan their own motions or the 

motions of other objects in a physical environment is very difficult to replicate in a 

computer program. Motion planning is a very important aspect of robotics and
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therefore robust methods and efficient algorithms for solving it are required. The 

importance of motion planning in robotics arises from the fact that industry requires 

flexible and autonomous robots, which can plan and execute their own motions and 

react to the environment. Also the great safety and economic aspects involved in 

robotic applications contribute towards the need for developing robust and efficient 

motion planning approaches for robots.

The robot motion planning problem has been shown to be a very challenging problem. 

The complete approaches currently available for solving it are computationally so 

expensive that they limit the practicality of the approach and mostly serve as proof of 

the decidability of the general movers' problem. For this reason much research has 

concentrated on providing solutions to individual instances of the motion planning 

problem rather than proposing approaches for solving the general movers' problem.

In this thesis the robot motion planning problem was considered and in particular two 

instances of it have been studied. The first is the path planning problem for an AGV in 

two-dimensional static environments. The second is the motion planning for an AGV in 

two-dimensional dynamic environments. Two approaches and various extensions of 

them were proposed to provide solutions to these problems.

7.2 Review of the Thesis

In the introductory chapter of the thesis the motivation and the challenges of the robot 

motion planning were identified and the aim and the objectives of this research were
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highlighted. Chapter two is a quick reference of the basic mathematical and algorithmic 

notions and notations used throughout this thesis.

In chapter three a background literature survey on the robot motion planning problem 

was conducted and a critical review of the most important approaches for solving it was 

presented. The advantages and disadvantages of every approach were highlighted and 

the suitability of each of them in different application domains was discussed. Finally, 

some key issues about the existing robot motion planning approaches were observed 

that helped to identify their deficiencies, which in turn later resulted in the proposition 

of the V*MECHA and D*MECHA algorithms.

Chapter four was concerned with the path planning problem for an autonomously 

guided vehicle in a static environment populated by polygonal obstacles. Several 

algorithms based on the visibility graph approach for path planning were briefly 

discussed and the V*GRAPH (Alexopoulos and Griffin, 1992) was extensively studied. 

Some methodic and algorithmic deficiencies of the algorithm were identified and 

recommendations to overcome these deficiencies and complete the algorithm were 

made. Further recommendations were made to improve the algorithm resulting in the 

proposition of a new approach (the V*MECHA algorithm) for path planning. The 

V*MECHA algorithm finds the shortest collision-semi-free path between two query 

points for an AGV in a two-dimensional environment populated by simple polygonal 

obstacles. This algorithm is a hybrid approach of the V*GRAPH algorithm and the A* 

graph searching algorithm. Formal proof of the V*MECHA algorithm's correctness 

and optimality were described and a critical comparison of it with other similar
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approaches was conducted. Finally the advantages and disadvantages of the 

V*MECHA algorithm over other similar approaches were highlighted and a 

demonstration of the algorithm through an example was given.

In chapter five the problem of planning a motion for an autonomously guided vehicle in 

a two-dimensional dynamic environment was considered. Several algorithms, which 

solve this problem were briefly discussed and the extensibility of the V*MECHA 

algorithm for solving it was investigated, resulting in the proposition of D*MECHA 

algorithm. The D*MECHA algorithm is based on the visibility graph approach. It 

constructs a reduced visibility graph in the AGV's space-time configuration space and 

then searches it, in order to establish the time-minimal collision-semi-free motion 

between two query points. The algorithm was demonstrated through an example and 

formal proofs of its correctness and its optimality were provided. The optimality of the 

motion produced by the algorithm was also formally proven. Finally, the algorithm was 

critically compared with other similar approaches and its advantages and disadvantages 

were reported.

In chapter six several variations of the dynamic robot motion planning problem were 

considered and the extensibility of the D*MECHA algorithm for solving them was 

investigated. More specifically, two dynamic robot motion planning problems were 

studied. The first problem was that of planning a motion for an autonomously guided 

vehicle in a two-dimensional dynamic environment populated by shrinking and 

expanding simple polygonal obstacles. The second problem was that of planning a 

motion for an autonomously guided vehicle in a two-dimensional dynamic environment
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populated by piecewise linearly moving simple polygonal obstacles. The motivation for 

formulating such environments and their applications domain were addressed and 

extensions to D*MECHA for solving the aforementioned problems were proposed. 

Proofs of the D*MECHA's correctness and optimality when applied to such 

environments were discussed. The algorithm was compared with other existing 

algorithms and its advantages and disadvantages over them were highlighted.

7.3 Discussion and Conclusions of the Research

Motion planning is a fundamental ingredient for the guidance of a robotic system, but as 

was discussed in section 7.1, complete algorithms for solving it in its full generality are 

computationally extremely expensive and therefore cannot provide a pragmatic solution 

in real applications. This justifies the volume of different approaches to the problem to 

date and the proposition of many different methods for solving it. Due to the fact that 

the complete methods for solving the generalised movers' problem are computational so 

expensive, approaches for providing solutions to individual instances of the problem 

depending on the application domain are proposed. Also heuristic approaches, 

probabilistic approaches and resolution-complete approaches are employed to make the 

problem more tractable and its solution more pragmatic and practical but at the expense 

of the solution's completeness.

The V*MECHA algorithm proposed in this thesis for solving the basic path planning 

problem is based on the concept of the visibility graph. The reason for this is that the 

visibility graph approach works quite fast in two-dimensional configuration spaces and
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in general establishes optimal paths, which is always desired. Also note that as was 

demonstrated in chapter six the visibility graph approach can be extended to solve the 

dynamic motion planning problem without any extra expense in its computational 

complexity.

The V*MECHA algorithm constructs a reduced visibility graph in the AGV's 

configuration space and searches it for a path between the AGV's start and goal points. 

Current visibility graph approaches construct either the entire visibility graph or a 

reduced visibility graph by only considering the visible common tangents between 

every pair of obstacles. Rohnert (1986) showed that if there are only convex obstacles 

in the environment there are at most four such visible common tangents for each pair of 

obstacles. Liu and Arimoto (1991) and Liu and Arimoto (1992), extended this idea to 

non-convex obstacles by considering the minimum number of the convex 

decompositions of the non-convex obstacles for the evaluation of their algorithm's 

complexity. Their algorithm constructs the T-graph and finds the shortest path within 

the graph in O(n (n + t) + m2 t), where n is the total number of the obstacles' convex 

vertices, m represents the number of the obstacles' convex components and t is the total 

number of the obstacles' vertices.

The V*MECHA algorithm, using Proposition 4.1 and Proposition 4.2 (see section 4.6) 

minimises the number of vertices considered for the construction of the visibility graph 

without sacrificing the optimality of the path. The significant reduction of the size of 

the visibility graph enables the search process to be carried out more efficiently and 

effectively, since its efficiency is strongly influenced by the number of edges of the

7-6



Chapter 7_______________________________________Conclusions and Future Work

considered graph. Notice in section 4.12 that the V*MECHA algorithm considers fewer 

vertices for the construction of the visibility graph than Liu and Arimoto's algorithm 

resulting in a smaller size visibility graph than the T-graph. Even though Liu and 

Arimoto's algorithm in general is computational cheaper than the V* MECHA 

algorithm, as was discussed in section 4.12, there are some occasions where the 

V*MECHA algorithm attains better computational complexity.

In conclusion notice that although there are algorithms, which construct the entire 

visibility graph or the T-graph and they are more efficient than the V*MECHA 

algorithm from a strictly theoretical point of view, in practice most of the time it is 

advantageous to use the V*MECHA algorithm because the visibility graph it constructs 

is much smaller and thus the search process for a path is accomplished more quickly.

The D*MECHA algorithm presented in chapter five for solving the dynamic motion 

planning problem establishes the time-minimal motion. The time-minimality 

characteristic of the motion produced demonstrates some very interesting properties. 

These properties enable the algorithm to provide solutions to other related problems. 

For instance, the algorithm can provide a solution to the decision problem of whether a 

semi-free motion between the AGV's start point and its goal point that can be 

accomplished by a given time (deadline) exists. Another problem that can be solved by 

the D*MECHA algorithm is the one which requires the establishment of the latest 

departure time for the AGV from its start point in order to arrive at is destination point 

by a given time. This property is very important when the AGV's motion is part of a 

manufacturing process in which there are different tasks that have to be co-ordinated.
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For the solution of this problem the goal point and the arrival time are set as start point 

and start time of the AGV respectively and the obstacles have reverse motions. Notice 

that now the motion finding process is reversed. The time that the AGV arrives at the 

destination point (the original start point) by following the time-minimal motion is the 

solution to the problem.

By the time-minimality theorem it was stated that in order for the AGV to attain a time- 

minimal semi-free motion it should follow a vertex-to-vertex non-stop motion by 

moving constantly at its maximum velocity. However, this may appear counter­ 

intuitive to a human being. The reason for that is that humans and in general every 

animal possess the cognitive ability to follow the quick and at the same time safe 

motion rather than a dangerous fast motion within a physical environment. Another 

factor is that the AGV is supposed to be a point subject only to velocity bounds while 

the real physical AGVs are dimensioned objects subject to an acceleration bound and 

other physical constraints such as friction and inertia. Finally, the assumption that the 

robot moves with greater velocity than the obstacles is not always realisable in physical 

environments. Taking into consideration all these factors a different strategy may have 

to be employed for the solution of the robot motion planning problem.

The D*MECHA algorithm can be extended to solve other motion planning problems. 

For example, in chapter six some extensions to the D*MECHA algorithm were 

proposed to solve, (i) the motion planning problem for an AGV in a two-dimensional 

environment populated by shrinking and expanding obstacles and (ii) the motion 

planning problem for an AGV in a two-dimensional environment populated by static,
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linearly moving and piecewise linearly moving obstacles. The fact that the D*MECHA 

algorithm is flexible enough to handle different sorts of environments, with only minor 

modifications, is an indication that it can solve a number of relevant problems and 

extensions of the classic robot motion planning problem.

7.4 The Main Contributions of the Thesis

In this section the main contributions of the research presented in this thesis are 

discussed.

1. The V*GRAPH approach proposed by Alexopoulos and Griffin (1992), for 

solving the basic movers' problem is extensively studied. An algorithmic 

deficiency other than that presented by Conn et al (1997), is identified and 

reported.

More specifically, in the V* GRAPH algorithm the authors reduced the size of the 

visibility graph by observing that the shortest semi-free path never visits obstacles' 

vertices with obtuse interior polygon angle and that it only visits vertices, which are 

extreme vertices of visible sequences. It was shown by Proposition 4.2 in section 4.6 

the shortest path from the AGV's start point to its goal point cannot contain concave 

vertices (vertices with interior polygon angle greater that n radians), but this does not 

imply that it cannot contain obtuse non-concave vertices. Thus since the V*GRAPH 

algorithm rejects obtuse non-concave vertices it might mistakenly miss a path from the 

AGV's start point to its goal point, which goes through an obtuse non-concave vertex.
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Therefore the V*GRAPH algorithm is not complete and thus incorrect. Conn et al 

(1997), proposed a counter-example showing that the V*GRAPH algorithm is incorrect 

due to the misuse of the A* algorithm. However, they did not provide enough 

information about the failure of the algorithm and they did not propose any 

recommendations for the algorithm's completion. In sections 4.4 and 4.5 a full analysis 

of the algorithm's deficiencies is provided and recommendations to overcome them are 

proposed.

2. Corrections for the completion of the V* GRAPH algorithm are proposed along 

with methodic and algorithmic improvements that resulted in the proposition of 

a new reduced visibility graph approach called the V*MECHA algorithm, for 

solving the basic movers' problem.

The V*MECHA algorithm corrects the V*GRAPH algorithm by making proper use of 

the A* algorithm and by identifying (filtering) correctly the vertices to be rejected for 

reducing the size of the visibility graph. Thus since the V*GRAPH algorithm 

sometimes fails to solve the path planning problem correctly, while the V*MECHA 

algorithm always succeeds, it can be concluded that V* GRAPH is a poor method while 

V*MECHA is a complete algorithm. The V*MECHA algorithm further reduces the 

number of vertices considered for the construction of the visibility graph by rejecting 

the non-super-extremes of the extreme vertices of the visible sequences for each 

obstacle. Therefore the search process for establishing the shortest path between the 

AGV's start and goal locations is accomplished much more quickly. New lower bounds 

are also proposed for the V*MECHA algorithm other than that proposed for the
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V*GRAPH, based on the observation that the complexity of the algorithm highly 

depends on the type of the obstacles (convex/non-convex) that exist in the AGV's 

environment.

3. The proposition of the routine, which identifies the super-extremes of the 

extreme vertices of the visible sequence for each obstacle.

A novel feature of the V*MECHA algorithm is the rejection of the non-super-extremes 

of the extreme vertices of the visible sequence for each obstacle. By only considering 

the super-extremes of the extreme vertices of the visible sequence for each obstacle, the 

size of the visibility graph constructed by the V*MECHA algorithm is smaller than that 

constructed by the V* GRAPH. A new routine has been proposed for identifying the 

super-extremes of the extreme vertices of the visible sequence for each obstacle, which 

requires dual numbering for the vertices of the obstacles.

4. The proposition of an algorithm called D*MECHA for solving the motion 

planning problem for an AGV in dynamic environments.

The D*MECHA algorithm is an extension of the V*MECHA. The algorithm considers 

the space-time configuration space of the AGV and thus reduces the dynamic motion 

planning problem to that of the static path planning problem. It then constructs a 

reduced visibility graph within the AGV's space-time configuration space and searches 

this graph for the shortest path between the AGV's start and goal points. This path 

corresponds to the time minimal motion for the AGV between its start and goal points.
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A theorem was proposed and proved stating that the time-minimal motion for an AGV 

between to query points in a dynamic polygonal environment is a non-stop vertex-to- 

vertex motion, providing that the velocity of the AGV is larger than the obstacles' 

velocity.

5. Investigation and proposition of possible extensions to the D*MECHA 

algorithm are made, in order for it to be applicable in more complex dynamic 

environments are made.

Specifically extensions to the D*MECHA algorithm, for solving the motion planning 

problem for an AGV in dynamic environments populated by obstacles that change their 

size over time were proposed. Also, extensions to the D*MECHA algorithm, for 

solving the motion planning problem for an AGV in dynamic environments populated 

by piecewise linearly moving obstacles were proposed. Note that the time-minimality 

property of the proposed by the D*MECHA algorithm, motion is preserved in both

cases.

6. Finally discussions of formal proofs of the proposed algorithms' correctness and 

optimality as well as critical comparisons with existing similar algorithms for 

solving the motion planning problem are conducted.
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7.5 Suggestions for Future Work

After the completion of the research the results obtained opened several possible 

avenues for further work. This work can be summarised in the following three areas.

• Testing of the algorithm's abilities in a real robotic system.

• Identification of possible extensions to the D*MECHA algorithm, to enable it to 

solve the dynamic motion planning problem in more complex environments.

• Reduction of the algorithm's complexity.

To fully appreciate the proposed algorithms for robot motion planning, it would be 

valuable to carry out testing on a real robotic system. The use of simulations or by 

proving the correctness of the algorithms gives a good indication of the abilities of the 

algorithms but it eliminates the numerous problems, which arise when applied in real 

world applications.

As shown in chapter six the D*MECHA algorithm can be extended for application in 

environments populated by obstacles, which change their size over time and in 

environments populated by obstacles, which have piecewise linear motion. The 

D*MECHA algorithm can be further extended to handle environments populated by 

transient obstacles. Transient obstacles are those obstacles, which appear and disappear 

from the environment over time. There is a large application domain of dynamic 

environments, which can be modelled using the concept of transient obstacles. An
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example of which is when a robot operates in an environment where objects are placed 

in it or picked up from it by a crane, such as ports, airports and construction sites. 

Another situation, which could be modelled as a transient obstacle is an area of the 

robot's environment, which is temporarily hazardous for the robot, such as a slippery 

area, which becomes clear after some period of time. It is also possible to model a 

situation where an AGV operates in a manufacturing environment in which articulated 

robot arms pick and place objects in the environment as part of the manufacturing 

process and the AGV should complete its tasks avoiding collisions with the 

environment's transient objects. Note that when transient obstacles populate the AGV's 

environment, the Time-Minimal Motion Theorem (Theorem 5.2) is no longer valid. 

The reason for this is that when an obstacle has transient motion it might pay for the 

AGV to wait at a certain location for the obstacle to disappear and then start moving 

towards the goal point rather than circumnavigating the obstacle by following a vertex- 

to-vertex motion.

The D*MECHA algorithm can also extended to handle environments populated by 

accelerating and decelerating obstacles. One way to handle such obstacles is to 

approximate their motion by a sequence of piecewise linear motions. Note that the 

approximation can be arbitrarily close so the acceleration or the deceleration of the 

obstacles can be adequately represented by a sequence of piecewise linear motions. 

This way the D*MECHA algorithm can handle environments, which contain 

accelerating/decelerating obstacles and most importantly the time-minimality of the 

produced motion is preserved as long as the AGV moves faster than any obstacle.
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So far, only changes on the environment's obstacles motion have been considered, but 

what about if there are changes and restrictions in the AGV motions? In other words, 

what if the AGV is not a free-flying object but is a car-like robot subject to kinematic 

constraints? The proposed algorithm can still be applicable but a way to incorporate the 

AGV's kinematic constraints should be defined. A possible way to do it is to employ a 

method similar to that presented in (Jiang et al, 1996), (Jiang et al, 1999).

Finally, further research can be done to establish lower bounds on the algorithms' time 

complexity. It was shown in section 4.12 that even though there are algorithms using 

the concept of visibility graph for solving the basic path planning problem that have 

lower time complexity bounds than the V*MECHA algorithm sometimes it is beneficial 

to use the V*MECHA algorithm, because in reality there are cases where it can solve 

the basic path planning problem more efficiently time-wise. This happens due to the 

fact that the visibility graph which the V*MECHA algorithm constructs is very small in 

size. However it is very difficult to accurately evaluate its time complexity due to its 

heuristic nature. If the time-complexity of the V*MECHA algorithm is reduced it could 

become a very powerful tool for path planning, combining both low time complexity 

and its powerful heuristic nature to solve very efficiently the motion planning problem.
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A.I Configuration Space of a Robot

In chapters 4 and 5, two algorithms were presented for solving the robot's path planning 

and robot's motion planning problems respectively. In both chapters the robot (the 

AGV) was a point-robot. Solving the path (or motion) planning problem for a point 

robot amongst dimensioned obstacles is easier than solving the same problem for a 

dimensioned robot amongst dimensioned obstacles but unfortunately it is not realistic, 

because real robots have dimensions. However, there is a way to reduce the latter 

problem to the former one using the concept of configuration space.

Let R be a simple polygonal robot operating in a two-dimensional Euclidean 

environment populated by a set P = {Pi, P2 , ..., Pn } of simple polygonal obstacles, this 

environment is the robot's workspace W. Suppose that a global co-ordinate frame FW is 

embedded in W. Further suppose that an arbitrary point is chosen in the interior of the 

robot, this point is called the robot's reference point r, (note that this point can be 

exterior to the robot as well) and that a co-ordinate frame FR is embedded in R with its 

origin at r. Note that the FW is a static co-ordinate frame while the FR is a moving one.

In Figure A. 1 the robot R is a triangular robot and in order to make the demonstration of 

the configuration space more intuitive suppose that the origin of the FR coincides with 

the origin of the FW - Thus the robot's reference point is at FR(0, 0) and in this case is 

also at Fw(0, 0). Since R is a rigid body, every point on R has a fixed position with 

respect FR but is moving with respect Fw . Suppose that in Figure A. 1 the black dot is 

the reference point r of the robot. A placement of the robot can be specified by stating
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the co-ordinates of its reference point. Thus in Figure A. 1 robot r is initially at R(0, 0) 

and then at R(4, 6).

10- 
9-
8- 

7- 

6 ^

5- 

4- 

3-

2-

0

Reference point

1 3 8 9 10

Figure A.I The placement of a robot can be specified in terms of the co­ 

ordinates of its reference point.

If the robot could rotate as well as translate about its reference point another parameter 

9 is then needed to specify the orientation of the robot. In this case R(x, y, 9) specifies 

a placement of the robot R, with its reference point at (x, y) and counter-clockwise 

rotated about r at angle cp with the x-axis of Fw.
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A placement of a robot is specified by a number of parameters, which correspond to the 

number of the robot's degrees of freedom. Therefore the number of parameters that are 

required, to specify a placement of a robot in a three-dimensional space is six, providing 

that the robot is free to translate and rotate. Three translations and three rotations. The 

parameter space of R is called configuration space or joint space and is denoted by C or 

C space.

It is important to distinguish the workspace of the robot from its configuration space. 

The workspace is the real world space in which the robot operates. Configuration space 

is its parameter space. When a robot with two degrees of freedom (two transactional) 

operates in a two-dimensional environment, its configuration space is identical to its 

workspace (they are both two-dimensional Euclidean spaces).

Notice that some configurations for the robot in C are inaccessible because when its 

reference point is on such configurations the robot collides with the environment's 

obstacles. R(q) denotes the subset of W occupied by R at configuration q. Suppose that 

W is populated by a set of obstacles P = (Pi, P2, ..., Pn }- Every P; maps from W into C 

to an area CPj, which is called Obstacle 's Configuration Space or C-Obstacle. More 

formally:

CPi={qeC|R(q)nPi*0} (A.I)
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This area represents the configurations, which are illegal for the robot to attempt, 

because it will collide with the obstacle Pj. The union of all obstacles' configuration 

spaces CPj is called C-Obstacle region and is formally defined as:

UCPi (A.2)

This region represents all the inaccessible configurations for the robot to attempt, 

because in these configurations the robot will collide with some obstacles. In section 

A.2 a method, which uses the Minkowski Sums for computing the C-Obstacle region

and thus the collision-free configuration space Cfree = C \ UCPi is presented.

A.2 Minkowski Sums

Suppose that R is a two-dimensional, simple, convex polygon, which can only translate 

in a two-dimensional environment populated by a set P of two-dimensional simple, 

convex polygonal obstacles. The C-Obstacle, of an obstacle Pk eP is defined as the set 

of configurations in C, such that if the robot's reference point is placed at such a 

configuration, R intersects Pk . Therefore by equation A.I, it is obtained that CPk = 

{qeC R(q)nPk *0}.

The process of computing the configuration space of the obstacles is called growing 

obstacles. This is because the size of the obstacles is enlarged with respect to the size 

of the robot and the size of the robot is reduced to a point (point-robot). As long as the 

point-robot (reference point) is outside of the boundaries of the grown obstacles (C-
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Obstacles) the robot lies in a collision-free space. Figure A.2 illustrates the principle for 

calculating the C-Obstacles when the workspace W = iR2 . If Pk is a polygonal obstacle 

then CPk is the grown obstacle or Obstacle's Configuration Space (shaded area) and the 

robot can now be considered as a point.

CPt

R

Figure A.2 The shaded areas constitute the grown obstacle or the 

obstacle's configuration space

The above process uses the Minkowski sums to calculate the C-Obstacles. The 

Minkowski sum of two sets S] c IR2 and 82 c IR2 , denoted by Si © 82 and is defined as 

follows, (Lozano-Perez and Wesley, 1 983),

Si.be S2 } (A.3)

In order to express the C-Obstacles as Minkowski sums one more piece of notation is 

required. If p is a point p = (px , Py), then -p is defined as -p = (-px , -py) and for a set S, 

-S is defined as -S = {-q : qeS}. As can be noticed in Figure A3, if S is a set in [R2 , -S, 

is obtained by reflecting S about its origin.

A-6



Appendix A Computation of the C-Obstacles using Minkowski Sums
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Figure A.3 -S is obtained by reflecting S about its origin.

Theorem A.I

If R is a translating robot in a two-dimensional environment and PR is an obstacle then 

the CPk is Pk © (-R(0, 0)).

Proof

For the validity of the theorem what has to be proved is that R(x, y) intersects Pk if and 

onlyif(x,y)ePk 0(-R(0,0)).
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Suppose that the robot R intersects Pk when it is at configuration R(x, y) and let q be a 

configuration in the intersection, with q = (qx , qy). Since q e R(x, y) then (qx - x, qy - 

y) e R(0, 0) and thus (- qx + x, - qy + y) e (-R(0, 0)). However since q e Pk , then (x, 

y) e Pk © (-R(0, 0)). It is clear that the converse it is also true.

Observe in Figure A.4 that if R and P are two simple convex polygons and CP = P © R, 

an extreme point of CP in direction u, is the sum of the extreme points of P and R in 

direction u.

q+r

Figure A.4 The extreme point of the P © R in direction u is the sum of 

the extreme point of P and R in direction u.

Theorem A.2

If P and R are convex polygons on the plane with n and m edges respectively, then their

Minkowski sum P © R is a convex polygon, which has at most n + m edges.

A-



Computation of the C-Obstacles usinz Minkowski Sums

Proof

The convexity of P ® R follows immediately form its definition. Observe that in P © R 

every vertex is obtained when one vertex of each set is combined, and every edge is 

obtained either when an edge and a vertex are combined or when two edges are 

combined. The worst case is when P and R do not have any parallel edges because 

every vertex of one of the sets is combined with every edge of the other set giving rise 

to maximum n + m edges for P © R.

Since the intuitive idea behind the computation of the C-Obstacles using Minkowski 

sums has been established, an algorithm for the Minkowski sum of two convex 

polygons can be presented. The MINKOWSKIJSUM algorithm presented below 

constructs the P © R by combining vertices that are extremes in the same direction. It is 

supposed that the vertices are numbered in counter-clockwise order around the 

obstacles, with ri and pi the vertices of R and P with the smallest y-value respectively 

(if there are ties choose the one with the smallest x-value).

MINKOWSKI SUM

Input : Polygon R with vertices n,.., rv and polygon P with vertices pi,.., pw . 

Output: P © R

begin

rn+i :=r i;

rm+i :=pi;
While (i * n+1) and 0 * m+1) do

A-9



Computation of the C-Obstacles usinz Minkowski Sums

begin

Add TJ + pj as a vertex in P © R; 

If angleOw+i) < angle(pjpj+i) then
i: = i+l; 

else If angle(r,ri+ i) > angle(pjpj+1 ) then
m :=j+l;

else begin

end; 

end; 

end.

Theorem A.3

If R and P are convex polygons with n and m vertices respectively their Minkowski sum 

can be computed in O(n + m) time.

Proof

The proof follows immediately by observing that at every traverse of the while loop 

either i or j or even both are increased by one, until the both reach n+1 and m+1 

respectively.

If R and P are polygons and one of the two is convex and the other is non-convex (say P 

is non-convex) then P can be triangulated in m-2 triangles, where m is the number of its 

vertices and the union of the Minkowski sums of the convex polygon with every
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triangle can be computed in O(nm) time, where n is the number of vertices of the 

convex Polygon and m is the number of vertices of the non-convex polygon.

In the same manner when both R and P are non-convex polygons their Minkowski sum 

can be computed in O(n2m2) time, where n is the number of vertices of R and m is the 

number of vertices of P.

A- 11



B
The A* Algorithm

B- 1



The _A* Algorithm

B.I Graph Searching

In this appendix the A* search algorithm is discussed and a proof of its admissibility 

and optimality is provided. Graph searching is in general, a frequent challenge in many 

computing problems and it is a very important aspect in robots' path and motion 

planning. There are several techniques for graph searching that have been developed 

over the years, for example, breadth-first search and depth-first search (or backtracking 

search). The A* algorithm is a best-first search (or heuristic search). A* is similar to 

breadth-first search, with the difference that the search does not proceed uniformly 

outward from the start vertex, it proceeds biased in favour of some vertices that the 

heuristic information about the problem domain indicate may lie on the best path to the 

goal vertex.

B.2 A General Graph Search Approach

The algorithm presented below is a general graph search technique, which starts from 

the start vertex of the graph and proceeds by applying operators 1 until the goal vertex of 

the graph is reached.

GeneralGravhSearch

1. Create a search graph, G with only the start vertex s. Put s on an ordered 

list OPEN;

2. Create an empty list CLOSED;

1 These operators are functions, which transform one state of the environment into another, which results 
after an action.
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3. If OPEN = nil then exit with failure;

4. Remove the first vertex (vertex n) from OPEN and put it on CLOSED;

5. If n = g (the goal vertex) exit with success and return the path obtained by 

tracing the pointers in G from n back to s. (Note that the pointers are created 
in step 7);

6. Expand n, add all its successors in G;

7. For every successor j of n neither on OPEN nor on CLOSED place a 

pointer from j to n and also put j on OPEN. For every successor j of n 

already on either OPEN or CLOSED if the newly path to j is less costly 

than the previously generated then redirect its pointer back to n. If j is on 
CLOSED remove it and place it on OPEN;

8. Reorder OPEN according to some criteria;

9. Goto 3;

The above process explicitly generates a sub-graph G of an implicitly defined graph. A 

search tree, ST, subset of G, is defined by the pointers, which are created in step 7. 

Note that ST is a spanning tree of G. ST is represented by associating to each vertex in 

G (except s) a pointer to one of its parents. Note that even if G is a general graph step 7 

ensures that ST is a tree, since vertex j never records more than one predecessor at the 

time.

hi the algorithm above it is not specified what criteria are used to rearrange OPEN. 

These criteria can determine in which manner the search proceeds. If the vertices are 

placed at the end of OPEN in the order in which they generated with no further 

rearrangement, this leads to a breadth-first search. Note that in this manner the vertices 

are picked from OPEN in FIFO order. Placing the most recently generated vertex at the
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beginning of OPEN with no further rearrangement, leads to a depth-first search. Note 

that in this manner the vertices are picked from OPEN in LIFO order. These search 

methods are also called blind-search methods because the choice of which vertex to 

pick from OPEN to expand next is not influenced by any heuristic factor. In the 

heuristic search, the list OPEN is rearranged according to the heuristic value of the 

vertices.

B.3 Heuristic Information

The solution to the graph searching problem offered by the blind-search methods often 

exceeds the practical limits of computational time and storage. However, it is possible 

to optimise the computational time and storage factors by taking advantage of available 

information about the problem graph, to direct the search in the right direction. A way 

to take advantage of such information is to define an evaluation function, which when 

applied to every vertex gives an indication of how promising that vertex is, to lead to 

the goal vertex. This allows the rearrangement of the OPEN in a way such that its 

elements are ranked in descending order with the most promising vertex to lead to the 

goal first.

For example, consider the problem of searching a graph, which corresponds to a 

network of cities, which are connected with intercity roads. The problem requires the 

establishment of a route between two cities, the start city s and the goal city g. If a 

blind-search is adopted to solve the problem, the search will proceed from one vertex to 

another using some predefined rule without taking into consideration any information
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about the problem domain, such as how close is a given city to the goal city. However, 

if some information about the problem domain was available, such as the airline 

distance between every city and the goal city it could be used to guide the search 

process, simply by moving to cities closer to the goal city.

Note that the selection of the heuristic information is crucial, it depends on the nature of 

the problem and differs in different applications. For instance, in the above example of 

the cities, the distance metric is an adequate heuristic information but in other 

applications, such as games, puzzles and so on, a different metric may have to be 

employed so that each configuration can be evaluated based on common features that 

exhibit with the goal configuration.

B.4 The A* Search Algorithm

The GeneralGraphSearch algorithm presented in section B.2 can be a best-first search 

called A* if an evaluation function f is used to minimise the number of vertices visited 

during the search process ensuring that the best path is obtained. Note that the 

rearrangement of the vertices on OPEN at step 8 takes place according to increasing

values of the function f.

Before the evaluation function f is defined some additional notation needs to be 

introduced. Let g(n) be equal to the actual cost of the shortest path between the start 

vertex s and vertex n, among all possible paths. Further let h(n) be equal to the actual 

cost of the shortest path between vertex n and the goal vertex, among all possible paths.
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Then f(n) = g(n) + h(n) is the actual cost of the shortest path (among all possible paths) 

from the start vertex s to the goal vertex constrained to pass through vertex n. Notice 

that f(s) = h(s), since g(s) = 0 and is the actual cost of the shortest unconstrained path 

from the start vertex to the goal vertex.

However, it is not possible to know for every vertex the value of fin advance, therefore 

an estimation function f is used instead. Let g be an estimate for g and fi be an 

estimate for h, so

f(n)=g(n)+h(n) (B.I)

It is simple to calculate a value for g by summing the cost of the arcs along the path

already found from s to n. To establish a value for fi (the heuristic factor) is however 

more difficult. Therefore for the establishment of its value, heuristic information about 

the problem domain should be obtained for it to rely upon. In the cities example 

discussed in section B.3 the airline distance between city n and the goal city can be used

as value of h . Having defined the evaluation function f it is now possible to present 

the A* algorithm.

The A* Algorithm

1. Create a search tree, ST with only the start vertex s. Calculate f (s) and 

associated its value with vertex s. Put s on an ordered list OPEN;

2. Create an empty list CLOSED;

3. If OPEN = nil then exit with failure;
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4. Remove the first vertex from OPEN and put it on CLOSED. Call this 

vertex n;

5. If n = g (the goal vertex) exit with success and return the path obtained by 

tracing the pointers in ST from n back to s. (Note that the pointers are 

created in step 7);

6. Expand n, generating a set M of all its successors. Install all members of M 

that are neither on OPEN nor on CLOSED in the ST as successors of n.

7. For every member j of M do 

begin

Calculate f (j);

If j is neither on OPEN nor on CLOSED then put it on OPEN with

its f value and place a pointer from j to n;

If j is already on either OPEN or CLOSED compare f(j) just

calculated with the f value previously associated with the vertex and

if the new value is lower then do

begin

Substitute it for the old value;

Redirect its pointer towards n;

If j is on CLOSED then remove it from CLOSED and put it

on OPEN; 

end; 

end;

8. Reorder Open in order of increasing f values. (Resolve ties always in 

favour of the goal vertex);

9. Goto 3;

B-7



dP£endixB ___________________________________________The A* Algorithm

B.5 The Admissibility of the A* Algorithm

There are two conditions for graphs and one condition for h that guarantee A*'s 

admissibility, that is when the A* algorithm is applied to such graphs it always finds 

minimal cost paths. The conditions are:

Condition I: The graph is finite. That is every vertex of the graph has finite number

of successors. 

Condition H: The graph is a Sgraph. That is all arcs in the graph have cost greater

than some amount 5. 

Condition III: For all vertices in the search graph, h (n) < h(n).

In other words it will be shown that if the A* algorithm is applied to a finite Sgraph and

h underestimates h, it always finds minimal cost paths. At the beginning, it will be 

shown that before the termination of the algorithm, there is always a vertex on OPEN

and on the optimal path whose f value is less than or equal to the actual cost of the 

minimal cost path from s to g. Recall that the actual cost of the minimal cost path from 

s to g is f(s). The aforementioned result is then used to show that the vertex on OPEN 

with the minimum f value cannot be the goal vertex unless its f value is equal to f(s) 

and thus the optimal path has been found.

Lemma B.I

If Vn, h(n) < h(n) and the A* algorithm has not terminated, then there is always a 

vertex n' on OPEN and on the minimal cost path, such that f (n') < f(s).
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Proof

Let the sequence Path = (s, m, 112, ..., g) be the optimal path from vertex s to vertex g. 

At any time before the algorithm terminates let n" be the vertex last expanded by the 

algorithm and n' the vertex with the smallest f value on OPEN (the successor of n' ' on 

Path), note that n' could be g. It is known by the definition of f that, f (n') = g (n') + 

h (n'), but since all the ancestors of n' have been expanded, the optimal path to n' must 

have been found, so g (n') = g(n') therefore,

f(n') = g(n')+h(n') (B.2) 

and since it is assumed that, h (n') < h(n') then,

f(n')<g(n') + h(n') = f(n') (B.3)

It is known that the value of the function f for any vertex n on the optimal path is equal 

to f(s), therefore the inequality B.3 becomes,

f(n')<f(s), VnePath (B.4) 

and the Lemma is proven.
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Theorem 4.2

In a finite Sgraph (I, II), if for every vertex h (n) < h(n) (III), then the A* algorithm is 

admissible.

Proof

Suppose the contrary, that the algorithm terminates without returning the shortest path 

between s and g. There are three different cases where this could happen.

1s case: The A* algorithm terminates with a path to a non-goal vertex.

The proof of this contradiction is very trivial and it immediately follows from the

termination condition in the algorithm in step 5.

2" case: The A* algorithm does not terminate at all.

It is not hard to show that the algorithm always terminates. If the A* algorithm does not

terminate, it is because it expands vertices on OPEN forever and therefore will expand

f(s)
vertices in the search tree further than —— steps from s. Since the graph is a finite

8

f(s)
graph and is also a Sgraph, the g values of vertex n on OPEN further than —- steps

5

from s in the search tree and thus their f values will exceed f(s). However, no vertex

f(s) further than —— from s is expanded, because it is known by Lemma B.I that there is
6

some vertex n' on the optimal path such that f (n') < f(s), therefore the algorithm will 

expand n' rather than n. The only way that the algorithm can now fail to terminate is if
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it keeps reopening vertices within —— steps of s. However, each such vertex can be
5

opened only a finite number of times since there are finite numbers of paths for s to n

f(s)through such vertices within -^ steps of s. Therefore the A* algorithm terminates.
5

3r case: The A* algorithm terminates with a path to g, however the path is not the

shortest.

Suppose that the algorithm terminates at the goal point g but not via the shortest path. 

From Lemma B.I, it is known that just before the termination of the algorithm a vertex 

n' on OPEN and on the optimal path existed. Therefore vertex n' would have been 

chosen for expansion rather that vertex g, which contradicts the assumption that A* 

terminated.

Having proved all three cases, it is shown that for finite 5graphs, if h (n) < h(n) then the 

A* algorithm is admissible.

B.6 The Optimality of the A* Algorithm

As was shown in section B.5, if the three conditions (I, II, III) are satisfied, the A* 

algorithm is admissible. However, there can be several values of h underestimating h. 

For instance if h (n) = 0 it is still an underestimate of h(n). Note that if h (n) = 0 the A* 

algorithm is a uniform-cost search known as the Dijkstra 's shortest path algorithm.
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Consider two different versions of the A* algorithm say AI* and A2 * each of them 

using a different h value, say h , and h 2 respectively. If for all non-goal vertices n, 

h i < h.2, it is then said that A2* algorithm is more informed than the AI* algorithm.

It will be shown here that the A* algorithm is optimal in the sense that it never expands 

more vertices than any other admissible algorithm, which is less than or equally 

informed as the A* algorithm, under a restriction on the h . The restriction on h , is that 

the difference between the estimated costs from any two neighbouring vertices to the 

goal vertex g is less than or equal to the cost of the arc connecting the two vertices. 

More formally for any two neighbouring vertices (when two vertices are neighbouring 

there is an arc in between them and the cost of the arc is dedge(nj, rij)) n\ and HJ,

h (m) - h (nj) < dedge(ni, HJ) (B.5)

This is called the consistency assumption because it is must be true when the heuristic 

information is applied consistently to all vertices.

Lemma B.2
If the consistency assumption is satisfied then for every expanded vertex n by A*

g (n) = g(n). In other words, this Lemma states that if the consistency assumption is 

satisfied the A* algorithm has found the optimal path to any vertex n it selects for 

expansion.
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Proof

Suppose that the contrary is true and just before expanding n, that g(n) > g(n).

Therefore A* has not found the shortest path, but from Lemma B.I it is known that just 

before the expansion of n, a vertex n' on OPEN and on the optimal path with g (n') = 

g(n') exists. If n' = n then the Lemma holds, otherwise,

g(n) = g(n') + dedge(n', n) = g (n') + dedge(n', n) (B.6) 

Under the initial assumption g (n) > g(n), so it is obtained that

(B.7)

If the h(n) is added to both sides of the inequality (B.7), then

g (n) + h (n) > g (n') + dedge(n', n) + h (n) (B.8)

By applying the consistency assumption to the right hand side of inequality (B.8) it is 

obtained,

g(n)+h(n)>g(n')+h(n') (B.9)

Therefore, f (n) > f (n'), which contradicts the fact that the algorithm chose n for 

expansion while n' was available. Therefore the Lemma is proven.
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Lemma B.3

For any vertex n expanded by the A*, if h underestimates h then f (n) < f(s).

Proof

If the vertex n is any expanded by the A* algorithm and n is the goal g then f (n) < f(s) 

because the A* algorithm is admissible and the Lemma holds. If n is not the goal then it 

is known from Lemma B.I that just before n was expanded there was a vertex n' on 

OPEN and on the minimal cost path such that f (n') < f(s). If n = n' then the Lemma 

holds, otherwise since the algorithm chose n for expansion instead of n' it must have 

been that,

f(n)< f(n')<f(s) (B.10) 

and the Lemma is proven.

Theorem B.2

If the A* algorithm is more informed than another admissible algorithm say, A'*, and 

the consistency assumption is satisfied, then if a vertex is expanded by A*, it is also 

expanded by A'*.

Proof

Again suppose the contrary, namely that a vertex n expanded by the A* algorithm but 

not by A'*. This could happen because some information should be available to A'*
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that the cost of a path through n is equally or more expensive than the minimal cost 

path, so f(n) > f(s).

It is known that the actual shortest path from s to g constrained to pass through n is 

f(n) = g(n) + h(n), rearranging this equation it yields,

h(n) = f(n) - g(n) (B.ll) 

However, by A'* it was considered that f(n) > f(s), therefore

h(n) >f(s)-g(n) (B.I2)

The A'* algorithm could use as a lower heuristic estimate h(n) = f(s) — g(n), while the 

A* algorithm uses as a heuristic estimate h (n) = f (n) - g (n), but from Lemma B.3 it is 

known that f (n) < f(s), therefore h (n) < f (s) - g (n), meaning that the heuristic factor 

of A* has satisfied h(n) < f(s) - g(n). However from Lemma B.2, it is known that

g(n) — g(n), therefore h(n) < f(s) - g(n). This indicates that the A'* algorithm used 

information on vertex n, which allowed a lower bound for h, at least as large as the one 

used by the A* algorithm, contradicting the initial assumption that the A* algorithm is 

more informed than the A'* algorithm. Therefore the theorem holds.

B- 15



c
Publications

C- 1



Appendix C _____________________________________Publications

Appendix C contains all the papers that have been published as a result of the research 

described in this thesis.

DIAMANTOPOULOS, A., ROBERTS, G. N. and HARWOOD, D. J. 2000. An 

improved algorithm for finding the time-minimal motion for an AGV in time- 

dependent environments. Proceeding of 6th IF AC Symposium on Robot Control, 

SYROCO 2000. September 21 st - 23 rd , 2000. Vienna, Austria. Volume II, pp.

537-542.

DIAMANTOPOULOS, A., ROBERTS, G. N. and HARWOOD, D. J. 2000. Extension 

to the D*MECHA Algorithm. Proceedings of the 14th International Conference 

of Systems Engineering. September 12th - 14th , 2000. Coventry, UK. Volume 1, 

pp. 119-122.

DIAMANTOPOULOS, A., ROBERTS, G. N. and HARWOOD, D. J. 2000. Robot 

Motion Planning in Environments Populated by Shrinking and Expanding 

Obstacles. Proceedings of the 3rd European Advanced Robotics Systems 

Masterclass and Conference - Robotics 2000 (EUREL). April 12th - 14th , 2000. 

Salford, Manchester, UK. Volume 2.

C-2



Publication

DIAMANTOPOULOS, A., ROBERTS, G. N. and HARWOOD, D. J. 1999. A heuristic 

algorithm for motion planning of an AGV in dynamic environments. 

Proceedings of the 2nd Workshop on European Scientific and Industrial 

Collaboration (WESIC 99). September 1 st - 3 rd, 1999. Newport, UK. pp. 207 - 

214.

DIAMANTOPOULOS, A., ROBERTS, G. N. and HARWOOD, D. J. 1999. A new 

hybrid approach for path planning of an AGV. Proceedings of the 2" 

International Symposium Advanced Manufacturing Processes, Systems and 

Technologies, (AMPST 99). March 30th - 3 1 st, 1999. Bradford, UK. pp. 299 - 

308.

C-3



Publications

AN IMPROVED ALGORITHM FOR FINDING THE TIME-MINIMAL 
MOTION FOR AN AGV IN TIME-DEPENDENT ENVIRONMENTS
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Abstract: The use of Autonomously Guided Vehicles (AGVs) or articulated robot arms, is 
an important consideration for the efficiency of an automated manufacturing process. In the 
machining industry the use of robotic systems has made the mass production a human 
unassisted process with very precise results leading to good quality products. In this paper 
an algorithm for motion planning of an AGV in time-varying environments is presented. 
More specifically this algorithm finds the time-minimal collision-free motion from an initial 
point to a goal point for an AGV, in an environment populated by static and time-varying 
obstacles. The algorithm's computational complexity is O(n2 log n), where n is the total 
number of the obstacles'configuration space vertices. Copyright 2000IFAC

Keywords: Robotics, AGV, Motion planning, Computational Geometry, Algorithms, 
Computational complexity.

1. INTRODUCTION

In this paper an algorithm for motion planning of an 
AGV in time-dependent environments is presented. 
The algorithm finds the time-minimal collision-free 
motion from an initial point to a goal point for an 
AGV in a two-dimensional environment populated by 
static and moving obstacles. This algorithm is an 
improvement of the D*MECHA algorithm previously 
reported by the authors (Diamantopoulos et al., 1999). 
Some changes have also been made on the 
D*MECHA algorithm in order to make it more 
robust. For a survey on motion planning see (Hwang 
andAhuja, 1992).

In Diamantopoulos et al, (1999), it was stated that the 
D*MECHA algorithm establishes a time-minimal 
motion providing that the AGV is moving in a vertex- 
to-vertex manner. It was also stated that in the case 
where the AGV can move in a non-vertex-to vertex 
manner the motion established by the D*MECHA is 
greedy in time. This happens because it is possible

for the time-minimal motion, to be defined in such a 
way that the AGV will have to stop at a specific 
location to wait for a moving obstacle to move out of 
its way and then start moving again towards the goal 
position. However in this paper it is demonstrated 
that the time-minimal motion between two points, for 
an AGV in a two-dimensional time-varying 
environment is a vertex-to-vertex motion, therefore 
the motion established by the algorithm is time- 
minimal in general.

2. FORMULATION OF THE PROBLEM

Consider the problem of planning a motion for an 
AGV A in a two-dimensional workspace W populated 
by polygonal obstacles Pj, where ieN, the AGVs start 
location S and its goal location G. The AGV A is a 
point-robot, which translates freely at fixed 
orientation with bounded velocity modulus. The 
maximum velocity that the robot can reach is denoted 
by iw. Every Pj in W can be static or moving along
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linear paths at fixed orientation, with constant 
velocity, which is less than umal . Every moving P,, 
before and after its motion has velocity equal to zero. 
The environment's obstacles are not allowed to come 
into contact with each other at any time. The problem 
is to plan a collision-free time-minimal motion for A, 
from S to G, given that A moves with constant 
velocity and that the description of the obstacles (such 
as shapes, locations and velocities) is accurately 
known ahead of planning.

3. THE CONFIGURATION SPACE-TIME

In time-varying environments the solution of the 
motion planning problem is not just about spatial 
reasoning, because the parameter of time should be 
taken into consideration. Note that in such 
environments a path could be collision-free in a 
specific period of time and not free of collisions in a 
different period of time. Therefore the AGV's 
configuration space-time CT is defined, by adding the 
dimension of time in its configuration space C. Its 
configuration space C = W = SR 2 and every obstacle's 
configuration space CPj = Pj. The AGV's 
configuration space-time is CT = C x [0, +00) and 
hence CT = M2 x [0, +w). The CP; map from C into 
CT as prisms, which are denoted by CTPj. The static 
CPj map into prisms, which are orthogonal to the x-y 
plane and the moving CP, map into prisms, which are 
sloped to the x-y plane in CT. The angle of the slope 
of any CTPj is proportional to the corresponding 
obstacle's constant velocity. Since the boundaries of 
the CPj do not come in contact in C at anytime, the 
boundaries of the CTPj in CT are not in contact. 
Figure 1 illustrates the AGV's configuration space C 
and configuration space-time CT. Note that after the 
end of each obstacle's motion, the corresponding 
prism in CT becomes orthogonal to the x-y plane.

CP.IW

CP,(a)
CP2(a)l 

CP2(P) S

Fig. 1. The AGV's configuration space C and its 
configuration space-time CT.

From Figure 1, it can be noticed that the edges of the 
CP| in C map into the faces of the prisms (CTP,) in 
CT. The vertices of the CP; map into the edges of the 
prisms, which do not constitute the bases of them, 
these edges are called shaft edges. The start point S 
and the goal point G in C correspond to half-lines in 
CT, which emanate from S and G respectively and are 
parallel to the time-axis.

With the construction of the AGV's configuration 
space-time, the problem of planning a motion for an 
AGV in a time-varying environment has been 
simplified to that of planning a path for an AGV in a 
static environment. A path in CT encapsulates both 
time and location information, therefore since the 
AGV is moving with constant velocity the Euclidean 
shortest path from S to G in the three-dimensional 
CT, corresponds to the time-minimal motion from S 
to G in C. Once the configuration space-time has 
been constructed, it can then be searched for a 
collision-free shortest path from S to G.

4. 'REACHABILITY' AND VISIBILITY

Given that A is moving with constant velocity, the set 
of all the configurations that can reach between two 
time instances ta and tp from a single configuration p 
in CT, is defined by the surface of a right circular 
cone CN, which emanates from p (Figure 2).

Fig. 2. All the reachable configurations from p are 
defined by the surface of the cone CN.

The height h of CN is parallel to the time axis and is 
equal to tp - ta . The radius r of the base of CN is equal 
to UA (tp - ta). The angle S created by the slant height 
i of CN and the x-y plane is defined as follows:

« „tan 9 = — o tan & =
tn~~ta

(1)

If CT is polar-swept with a half-line emanating from a 
point p, at angle 9 (with the x-y plane), then all the 
intersections between the half-line and any of the 
shaft edges of the prisms correspond to reachable 
configurations from p. However, in order to say that 
an AGV is capable of moving from configuration p to 
configuration q, 'reachability' is not enough. Another 
condition, which has to be satisfied, is visibility. This 
means that the two configurations can be connected 
with an edge and this edge does not overlap the 
interior of a CTP, in CT. In summary, if a ray v is 
swept about p keeping a constant angle S = tan'^u" 1 ) 
with the x-y plane, all the p-visible configurations at 
angle S in the CT can be identified. These p-visible 
configurations at angle & in CT correspond to p- 
visible vertices in C at a specific location at a specific 
time instance, which can be reached from p by the 
AGV, given that it is moving with constant velocity
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equal to u. in this way a directed graph 
demonstrating reachability and visibility ('reacha- 
visibility graph' RVG S) at angle 3 can be constructed 
in CT and then searched for a path. The following 
propositions are used to minimise the size of RVG9 .

Proposition I
Configurations in CT, which correspond to concave 
vertices of non-convex obstacles in C, should not be 
included in the time-minimal motion.

Proof
Consider the environment of Figure 3, the obstacle P 
is moving in the direction indicated. There are two 
different ways for the AGV to reach G. The first is to 
start moving towards G, stop wait at a until the 
obstacle moves out of its way and then carry on 
moving towards G, it will be proven in section 6, that 
this motion is not time minimal. The second one is to 
go around either side of the obstacle. Assume that the 
time-minimal motion, from S to G is {S, 3, 4, 5, G}. 
This motion goes through the concave vertex 4 of the 
obstacle P. Since the obstacles are not allowed to 
come in contact with each other there should be at 
least a sufficiently small clearance distance cr between 
them. A point v is chosen between vertex 4 and its 
successor within distance cr from 4. Note that motion 
{3, v} is collision-free, since the AGV always moves 
within distance a from P. It can be shown now, that 
the motion {S, 3, v, 5, G} is less time consuming than 
the motion {S, 3, 4, 5, G}, given that the AGV is 
moving with constant velocity. By using triangle 
inequalities over the concave vertex, its predecessor 
and its successor (vertices 4, 3, v respectively), the 
result obtained is that the motion from 3 to v is less 
time consuming than the motion from 3 to v through 
the concave vertex 4. Therefore the motion {S, 3, v, 
5, G} is less time consuming than the motion {S, 3, 4, 
5, G}, which contradicts the initial assumption that 
the motion {S, 3, 4, 5, G} is time-minimal. This 
contradiction leads to the conclusion that the time 
minimal-motion should not contain concave vertices 
of non-convex obstacles.

Fig. 3. The time minimal motion does not contain 
concave vertices.

The algorithm proposed here manipulates concave 
vertices in the following manner. When an 
intersection occurs between the sweep line and a shaft 
edge of a prism, which corresponds to a concave 
vertex in C, the algorithm rejects it and marks this 
shaft edge as useless in order that it is not used again. 
Since this edge is marked as useless intuitively it has 
to be proven that it should never be used again. If 
from a configuration w in CT, a configuration, say k, 
is reachable and visible and k, corresponds to a

concave vertex k in C, then all the configurations km 
in CT, which correspond to k in C, will never need to 
be used again. Suppose that a configuration, say k2 in 
CT, which corresponds to k in C is reachable and 
visible from q, then one of k' predecessors or 
successors which happen to be a non-concave vertex, 
or a non-concave vertex of a different obstacle should 
also be reachable and visible from q. The only case 
when this is not true is when the environment is 
bounded by a polygon and there are no obstacles in 
the environment, but then the time-minimal motion is 
the straight line connecting S to G. Special attention 
is needed if the goal point coincides with a concave 
vertex (of a non-moving obstacle). Using this 
proposition the problem of taking special care for 
non-convex obstacles is tackled since the algorithm 
ignores them.

Proposition 2
A time-minimal motion never visits configurations in
CT, which correspond to non-extreme vertices of a
visible sequence in C. (Visible sequence is a set,
which contains all visible vertices from a given
vertex, which are consecutive on a single obstacle's
boundary.)

Proof
Consider the environment of Figure 4 the obstacle P is 
moving in the direction indicated. Assume that the 
time-minimal motion is the one that goes around the 
left-hand side of the obstacle, this motion then will 
definitely pass through vertex 5. Vertices 3, 4, 5, are 
reachable and visible from S and they are also 
consecutive on a single obstacle's boundary. The 
straight-line motion from S to 5 is less time 
consuming than any other motion, which connects S 
to 5 and passes through non-extreme vertices of the S- 
visible sequence (proved by triangle inequalities). 
Therefore the time-minimal motion should not visit 
non-extreme S-visible vertices (like vertex 4) of an S- 
visible sequence. In the same manner the proposition 
can be proved for the other side of the obstacle, given 
that the time-minimal motion goes around the right- 
hand side of the obstacle.

Fig. 4. The time-minimal motion only visits the 
extreme vertices of any visible sequence.

The algorithm uses propositions 1 and 2 in order to 
minimize the number of configurations considered for 
the construction of the RVGS . Propositions 1 and 2 
are applied to the two-dimensional projection of the 
CTP, in the x-y plane. The use of propositions 1 and 
2, in an environment populated by both convex and 
non-convex moving obstacles, does not reduce the
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overall time complexity of the algorithm, but it 
considerably reduces the size of RVG9 .

5. THE PROPOSED ALGORITHM

The algorithm starts from configuration S and 
incrementally generates RVG8, searching it for the 
shortest Euclidean path between the half lines S and 
G. This path corresponds to the time-minimal motion 
from S to G in C. The algorithm is a heuristic search 
process guided by the evaluation function t f over 
every configuration. When the algorithm expands a 
configuration producing more than one candidate 
configuration for the robot to move toward, the 
estimation function t f is applied to each of them in 
order to choose the one with the best assessment. The 
remaining configurations are stored in a candidate list 
for later consideration.

The evaluation function tf is defined such that its
value tf (n) at any configuration n is an estimation of 
tf(n). Where tf{n) is the time-cost of travelling along 
the path traced by the actual time-minimal motion 
from S to G constrained to pass through configuration
n. More formally t f (n) = tg (n) + t h (n), where t g (n) 
estimates the time-cost of travelling from the start
location to the current location. The function th (n) 
estimates the time-cost of travelling from the current 
location to the goal location. An obvious choice for
tg (n) is the time-cost of the path from S to n the
algorithm found so far. A choice for t h (n) is not so 
obvious, therefore information about the problem 
domain should be taken into consideration. The 
airline distance between the current configuration n 
and the goal half-line can be chosen as a heuristic 
estimate. Note that the distance to the goal half-line 
should be measured from the current configuration n 
to a configuration o on the goal half-line in such a 
way that the line-segment no creates an angle 9 with 
the x-y plane. The search in CT can be carried out 
either based on information about the Euclidean 
distance or on information about the travel time 
(distance over speed). In this approach information 
about the travel time, has been chosen for the search 
of RVGS . The travel time along the airline distance 
from n to the goal G at angle 9 is the fastest possible 
travel time, so t h (n) underestimates th(n). If for all n, 
t h (n)< th(n) the algorithm is admissible, (Hart et al, 
1968). The proposed algorithm finds the time- 
minimal motion and is stated as follows.

begin

put S in Motion; 
put S in Open; 
mark S visited;
t.(S):=0;

while (Open ^ nil) do 
begin

w : = {ieOpen : t, (i)< t f (j) | VjeOpen, 
resolve ties arbitrarily but always favour G};

remove w from Open;
if w = G then exit while loop;
W: = {w-visible points at angle S};
EV:= {extreme vertices of the w-visible 

sequences in the projections of VV into Q};
mark all the non-extremes vertices useless
AV: = EV - {obtuse vertices in EV};
for each vertex ieAV do 

if i is not marked useless then 
if i is not marked visited then 

begin
t h (i): = t(dair(i, G)) s (the time airline 

distance from i to G); 
fg (i): = t g (w) + t(d(w, i)) 3 ;
t f (i): = tg (i) + t h (i); 
put i in Motion with pointer toward w; 
put i in Open; 
mark i visited; 

end;
else if t f (i) > tg (w) + t(d(w, i))s +

t(dair(i, G))3 then 
begin 

redirect pointer of i toward w in
Motion; 

if ie Open then remove i from Open
tg (i):=tg (w) +t(d(w, i)) s ;
t f (i):=tg (i) + t h (i); 
put i in Open; 
end; 

end;
if (Open ^ nil) then return Motion by tracing all 

the pointers backward from G to S
else return failure; 

end.

In the above algorithm, Motion is a spanning tree, 
which represents at any instant the best motion 
obtained so far. For each visited configuration n 
(except S) a pointer to its parent is held. The function
t f (n) is associated with each configuration n in the 

current Motion. The t(d(w, n))3 is a function, which 
represents the time-cost of travelling (with umax) 
along an edge, which connects two vertices in RVG3 . 
The t(dair(w, n))s is a function, which represents the 
time-cost of travelling, with umax along the airline 
distance between configurations w and n at angle 9. 
The list Open contains at any instant, the vertices that 
are candidates for consideration next. All the vertices 
of the environment are initially marked as unvisited 
and useful. Once the algorithm is executed it returns 
failure if no motion from S to G exists, otherwise a 
time-minimal motion is returned by backtracking the 
tree Motion from G to S.
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Some attention should be paid to the inner loop of the 
algorithm, which handles the situation in which a 
vertex of an obstacle has been visited before. 
Suppose that after the expansion of a configuration y, 
a configuration x' has been produced. Further 
suppose that x' corresponds to the x vertex of an 
obstacle, which has been visited before at a different 
place and time instance, say at configuration x". If 
tbe new way of attaining x provides a less time 
consuming motion than a previously generated 
motion from S to x (when x is at x 11 ) then the x' is 
retained for x and the tree Motion is updated. If x is 
in Open then it is removed from Open and the new 
tf (x) is calculated (for x') and then it is reinserted in 
Open. If it is not in Open then the t f (x) is calculated 
(for x') and it is inserted in Open for later 
consideration for expansion.

Since the AGV always moves with its maximum 
velocity it should never visit the same vertex more 
than once along time-minimal motion. Therefore, a 
rule is adopted, in which if the same shaft edge in CT 
is intersected more than once with the sweeping half- 
line then the intersection which corresponds to the 
configuration with smallest t f value is the one that is 
retained. Note that using this rule the size of the 
visibility graph is bounded by the total number of 
obstacles' vertices in the scene. The proof of the 
algorithm's completeness is similar to that of the A* 
and can be found in (Hart et al, \ 968).

6. TIME-MINIMAL THEOREM

Any motion from S to G, which bends at a location 
other than an obstacle's vertex (motion x in Figure 5) 
can be shortcut by a vertex-to-vertex motion from S to 
G. Since the algorithm presented in this paper is 
admissible, it is guaranteed that there is no quicker 
vertex-to-vertex motion between S and G. What has 
to be demonstrated for the time minimality, is that 
there is no other arbitrary motion from S to G for the 
AGV A which can be completed in less time than the 
one suggested by D*MECHA. An arbitrary motion 
may be defined in such a way, that the AGV stops at a 
certain point to wait for an obstacle to move out of its 
way and then start moving again towards the goal 
location G.

Lemma 1
The time-minimal motion from S to G, which avoids 
collisions with the scene's obstacle P, is a vertex-to- 
vertex motion.

Proof
The proof of the Lemma will be carried out in the 
two-dimensional configuration space C. Consider the 
environment of Figure 5, where S and G are the 
AGV's start and goal locations respectively and the 
two-dimensional object P is a moving obstacle.

Fig. 5. The goal point is reachable and visible from a.

If A moves straight from S to G it will collide with 
the obstacle P at location y at time t 1( given that A is 
moving with constant velocity uma;( . However A can 
meet vertex 2 and 3 at locations a and (3, at times t2 
and t3 respectively with t2 , t3 > ti. Even thought time 
t2 > t t , it is possible to show that a motion from S to G 
through vertex a is less time consuming than a motion 
in which the AGV will have to stop and wait in y. No 
matter which of the two routes, {S, a, G} or {S, y, G} 
the AGV follows, at time t2 it will be either at position 
a or y respectively. When the AGV is at location a at 
time t2 , either the goal location G, is visible or not 
visible. If the goal location G is visible (Figure 5), 
then the AGV can start moving towards it at time t2 
and reach it. According to the formulation of the 
problem the velocity of any obstacle in the 
environment is less than the AGV's velocity. 
Therefore, by using triangle inequalities over 
{a, y, G}, it can be obtained that motion {S, a, G} is 
faster than motion {S, a, y, G} hence faster than 
motion {S, y, G} and therefore time-minimal. In the 
same manner time-minimality holds for one- 
dimensional obstacles.

If the goal location G is not visible from a at the time 
instance t2 then there are two possible outcomes. The 
first is that G will be visible from a, while the AGV is 
moving from a to G with constant velocity equal to 
uraax and the obstacle P is moving in the indicated 
direction (Figure 6) with velocity equal to UP . Note 
that the visibility in this case is to be identified in CT. 
The visibility depends on the angle 9 of the sweep 
line and the slope of the obstacle in CT, this means 
that the visibility depends on the velocities of the 
AGV and the obstacle respectively. Even though G is 
not visible from a at time t2 it becomes visible as the 
time passes and the obstacle P moves out of its way 
and finally A reaches G in less time than the motion 
{S, y, G}, for the same reason as in the previous case. 
In this case, while the AGV is moving from a to G, it 
might coincide with some points on P's boundary for 
some time.

Fig. 6. This figure illustrates the first case.

The second case is when G is not visible from a at 
time t2 and it does not become visible even after the
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AGV departs from a at time t2 and while is moving 
towards G. What happens in this case is that the 
velocity of the obstacle P is not large enough in 
comparison to the AGV's velocity in order for P to 
move out of the AGV's way before a collision occurs 
between them. In such a case the AGV will have to 
pass through another vertex of the obstacle before it 
reaches G. Figure 7a illustrates this case, where it can 
be seen that if the AGV starts moving from a at time 
t2 towards G, with velocity equal to umax , it will 
eventually collide with the obstacle at the point c.

Fig. 7a-b. These figures illustrate the second case.

Figure 7b illustrates the motion of the AGV, in which 
it will have to pass through vertex 1. For the proof of 
the Lemma what remains to be shown is that the 
motion {S, a, 1, G} is less time consuming than {S, 
y, G}. Since the AGV at time t2 will be either at 
position a or y respectively it has to be shown that the 
motion from a to G through 1 is faster than the 
motion from a to G through y. If A leaves cc at time t2 
it will reach vertex 1 at time t3 at a location on the half 
plane defined by the line passing through y and G 
which contains a, since G is not visible from a in CT 
at time t2- The fact that vertex 1 at t3 is on the half- 
plane, which contains a means that G is not visible 
from y at t3 . If j is the projection of 1 on the path of 
the motion {y, G} and if the AGV departs from 1 at t3 
and moves along the straight motion k (with velocity 
equal to that of the obstacle) it will then join the 
motion {y, G} at point j and time say t4 . By using 
triangle inequalities it is derived that the motion from 
1 to G is faster than the motion 1 to G through j. 
Therefore the motion {S, a, 1, G} is less time 
consuming than the motion {S, a, l,j, G} and thus 
less time consuming that the {S, y, G}. Note that 
while the AGV follows the motion {a, 1, G}, it might 
coincide with the boundary of P for some time.

The time-minimal theorem
A time-minimal collision-free motion from the start
location S to the goal location G, is a vertex-to-vertex
motion.

Proof
The theorem is proved by induction on n, the total 
number of obstacles in the scene. In the base case 
(i.e., when n=0) the theorem holds, since the time- 
minimal motion between two points is on the straight- 
line segment which connects them. Assume that the 
theorem holds for n-1 obstacles in the environment. 
By the induction hypothesis a time-minimal collision- 
free motion u exists from S to G for n-1 obstacles and 
this is a vertex-to-vertex motion. To prove the

theorem for n obstacles, an obstacle is inserted in the 
environment so the total number of obstacles is n. 
Note that the sequence that the obstacles get involved 
for the construction of the motion is very important. 
If the new obstacle collides with motion u at point k 
then by the time this collision is avoided the rest of 
motion u no longer the same. This means that the 
sequence that the obstacles get involved from k to G 
no longer leads to optimum motion and the induction 
assumption has been violated. Since the environment 
is time-dependent after the insertion of the n* obstacle 
if u is still collision-free the theorem holds. 
Otherwise the sequence that the obstacles get 
involved for the construction of the motion is 
reconsidered. The induction hypothesis is applied for 
the first n-1 (time-wise) obstacles from S to G in the 
scene, resulting from removing the last obstacle. 
According to the induction hypothesis this guarantees 
that there exist a time-minimal collision-free motion u 
from S to G. The last obstacle is then reinserted, if 
motion u is still collision-free then the theorem holds. 
Otherwise a time-minimal collision-free motion can 
be constructed from the last vertex before the 
collision in motion u, to G and by Lemma 1 this is a 
vertex-to-vertex motion. Thus the time-minimal 
collision-free motion from S to G is the concatenation 
of the two motions and therefore the theorem holds. 
The above proof shows that the motion from S to G, 
obtained by D*MECHA is less time consuming than 
any other arbitrary motion and is therefore time- 
minimal.

7. DISCUSSION

It has been demonstrated that D*MECHA algorithm 
establishes the time-minimal motion from S to G in a 
two-dimensional time-varying environment. The 
algorithm is in O(n2 log n), where n is the total 
number of C-Obstacles' vertices. A detailed 
empirical time analysis of the algorithm can be found 
in Diamantopoulos et al, (1999). If only stationary 
obstacles populate the environment then the time- 
minimal motion also defines the shortest path.
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Abstract

In a recent paper, the authors presented an algorithm for 
finding the time-minimal motion for an AGV (point-like 
robot) in a two-dimensional environment populated by 
moving obstacles. In that approach the obstacles were 
moving along linear paths with constant velocity. The 
algorithm's asymptotic time was shown to be in O(n2 log n), 
where n is the total number of the obstacles' vertices in the 
scene. In this paper an investigation for a possible relaxation 
of some assumptions about the robot's environment is carried 
out, the applicability of the algorithm is questioned and the 
possible affect in its computational time is examined. The 
assumption that the obstacles move along linear paths with 
constant velocity is relaxed so the obstacles can accomplish 
piecewise linear motions with constant velocity over each of 
them.

1 Introduction

Robot motion planning is an extremely broad field in its own 
right, which has attract much research attention in the last two 
decades. There are many techniques and algorithms 
developed for solving the robot motion planning problem 
under various types of constraints. For good surveys on the 
robot motion planning problem see [1] and [2], also a good 
reference, which discuss various motion planning techniques 
in a fair detail is [3].

In this paper the problem of motion planning for an AGV 
in time-varying environments is investigated. Since the 
environment is reconfigured over the time the solution to this 
problem does not only answers the question 'where is the 
AGV to go?" but also the question "when is the AGV to goT 
Note that in such environments a motion could be collision- 
free in a specific period of time and not free of collision in a 
different period of time.

The specific instance of motion planning in an 
environment where the obstacles have piecewise linear 
«ion is considered. The applicability of the D*MECHA 
algorithm [4] is examined and its optimality is explored. 
s°me computational complexity issues are also discussed.

2 Related work

In this section a very brief background literature survey is 
presented, which is by no means exhaustive. In [5], Sutner 
and Maass consider the motion planning problem for a point- 
robot with bounded velocity among dynamic obstacles in one 
dimension. In their approach they constructed the two- 
dimensional configuration space-time in which the obstacles 
were polygonal objects and then they found a collision-free 
motion in polynomial time on the total number of vertices of 
the polygonal space-time obstacles.

Kant and Zucker [6], decompose the trajectory planning 
problem (TPP) into two sub-problems, (i) The path planning 
problem (PPP) in which a path, which avoids collisions with 
static obstacles, is planned and (ii) the velocity planning 
problem (VPP) in which the velocity, which avoids collisions 
with moving obstacles along this path, is planned. The VPP 
is posed in path-time space where time is explicitly 
represented as an extra dimension reducing the problem to a 
graph search leading to the transformation of the VPP into a 
PPP. The limitation of this approach is that the AGV is not 
allowed to alter its path but only its velocity. This means that 
the algorithm will not find a solution when one exists for the 
case where an obstacle is moving on the path of the AGV.

In [7], Erdmann and Lozano-Perez consider the problem 
of planning motion for multiple robots. They assign priorities 
to each robot and then they plan the motion of one robot at a 
time according to its priority. The configuration space-time 
was represented as a list of configuration space slices at 
particular points in time. These times are the ones at which 
some moving object whose motion has already be planned 
changes its velocity. All paths between adjacent slices, which 
terminate at obstacles' vertices, are considered for the 
construction of the motion. A motion was then obtained by 
using vertex-to-vertex translation of the point-robot in 
between the configuration slices.

Fujimura and Samet in [8] presented an algorithm to find 
a motion for a point-robot, in an environment populated by 
time-dependent obstacles and destination point. Their 
approach is based on the accessibility concept and produces 
the time-minimal motion between the robot's start and goal 
(which is moving) points in polynomial time on the total 
number of the obstacle vertices, given that the robot has 
larger velocity than the obstacles.

Canny and Reif, in [9] show that motion planning for a 
point-robot, with a bounded velocity modulus, in a two- 
dimensional environment populated by arbitrarily many
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moving, non-rotating convex obstacles, that move at constant 
velocity is NP-hard.

In [10] it was shown that the problem of motion planning 
in a three-dimensional environment populated by moving 
obstacles is a PSPACE-hard problem, when the robot's 
velocity modulus is bounded and NP-hard when the robot's 
velocity modulus in not bounded.

3 The D*MECHA Algorithm
Ik authors in [4] presented an approach for finding the time- 
minimal motion for a point robot between two points in a 
two-dimensional environment populated by static and moving 
obstacles. The environment's time-dependent obstacles are 
moving along linear paths with constant velocity less that the 
velocity of the AGV. This approach constructs the robot's 
configuration space-time and then searches it for the shortest 
path using heuristics by taking into consideration the path's 
monotonicity constraint and the maximum velocity constraint. 
Figure 1 illustrates the AGV's two-dimensional configuration 
space C and its three-dimensional configuration space-time 
CT.

CP,(P)

CP,(a)

Figure 1. This figure illustrates the AGV's configuration 
space C and configuration space-time CT.

As it can be seen from figure 1 the configuration space- 
time is a static environment representing the constraints 
imposed on the AGV by its time-dependent workspace. Once 
the configuration space-time has been constructed it can then 
be searched for a path between the start point S and the goal 
point G. S and G in CT correspond to half-lines emanating 
from S and G respectively, which are parallel to the time axis.

All the reachable configurations in CT form a single 
configuration p, are defined by the surface of a cone CN 
emanating from p. The cone CN is a right circular cone and 
its slant edge creates an angle 9 with the xy-plane which is 
e<)ual to arctan(u~'), where u is the AGV constant velocity. 
Therefore if CT is polar-swept with a half-line emanating 
from a point p, at angle 9 (with the x-y plane), then all the 
intersections between the half-line and any of the shaft edges 
°f'he prisms correspond to reachable configurations from p.

In order for the AGV to be able to move from 
configuration p to the reachable configuration, say q, the two 
^figurations should be visible to each other. That is they 
can get connected with an edge and this edge does not overlap 
^ interior of any obstacle (prism in CT).

The algorithm starts from configuration S at time to and 
generates a graph, which connects S to G with edges in CT, 
this graph is a topological representation of the connectivity 
of the environment. It is a directed graph since the path of the 
AGV should be strictly monotone in time, which 
demonstrates the reachability and visibility at angle 9 and is 
denoted by RVG3 . The time-minimal motion for the AGV in 
C corresponds to the shortest path in CT, given that the AGV 
always moves at its maximum velocity omax . In [4] it was 
shown that in the time-minimal motion the AGV does not 
visit acute vertices and extreme vertices of visible sequences. 
The algorithm was stated as follows.

begin
9 := arctan (umax "') 
put S in Motion; 
put S in Open; 
mark S visited;
t g (S):=0;

while (Open * nil) do 
begin

w : = {ieOpen : t f (i)< t f (j) | VjeOpen, 
resolve ties arbitrarily but always favour G};

remove w from Open;
if w = G then exit while loop;
VV: = {w-visible points at angle 9};
EV:= {extreme vertices of the w-visible 

sequences in the projections of VV into Q};
mark all the non-extremes vertices useless
AV: = EV - {obtuse vertices in EV};
for each vertex ieAV do 

if i is not marked useless then 
if i is not marked visited then 

begin
t h (i) : = t(dair(i, G))9 (the time airline 

distance from i to G); 
tg (i):=tg (w) +t(d(w,i))a;
tf (i): = tg (i) + t h (i); 
put i in Motion with pointer toward w; 
put i in Open; 
mark i visited; 

end; 
else if t f (i) > tg (w) + t(d(w, i))s +

t(dair(i, G))8 then 
begin 

redirect pointer of i toward w in
Motion;

if ieOpen then remove i from Open 
tg (i): = tg (w) +t(d(w, i))8 ;
ff (i): = tg (i) + t h (i);
put i in Open; 
end; 

end;
if (Open # nil) then return Motion by tracing all the 

pointers backward from G to S
else return failure; 

end.
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This algorithm uses the heuristics of the A* algorithm and 
finds the time-minimal motion for an AGV (point-robot) from 
Sto G in an environment populated by two-dimensional static 
and moving obstacles. The proofs of the algorithm's 
jdmissibihty and completeness is similar to that of the A* and 
are discussed in [11]. In [4] it was proved that the time- 
minimal motion in environments like the aforementioned, is a 
vertex-to-vertex motion and since the D*MECHA algorithm 
is admissible it is guaranteed to find the time-minimal motion 
in general from S to G.

4 Piecewise linear motion

In this section the applicability of the D*MECHA algorithm 
in time-varying environments, in which the obstacles have 
piecewise linear motion, is explored. This environment is 
more general in a sense that is more realistic than the one in 
which the obstacles have linear motion. In the piecewise 
linear motion the obstacles move with constant velocity in a 
fixed direction for a finite number of time intervals. Their 
velocity in different time intervals does not have to be the 
same. Note that the when an obstacle changes its direction 
and velocity within a time interval the direction of the slope 
of the corresponding prism in CT changes. Figure 2 
illustrates the AGV's two-dimensional configuration space C 
and its three-dimensional configuration space-time CT.

CP(y)

CP(P)

S CP(a)

Figure 2. This figure illustrates the AGV's configuration
space C and configuration space-time CT, of an environment,

which contains an obstacle with piecewise linear motion.

In [4] it was stated that the computational complexity of 
D*MECHA is O(n2 log n) for an environment populated by 
static and moving obstacles along linear paths, where n is the 
total number of the C-Obstacles' vertices. However it has to 
ta determined whether the overall time complexity changes 
when the obstacles have piecewise linear motion. Suppose 
that the direction and velocity of an obstacle P changes m 
times, a vertex v of P is reachable and visible from a given 
Point only once, given that the AGV moves with its 
teimum velocity constantly. Therefore by the above 
observation and by keeping in mind that the process is the 
same it is concluded that the overall worst-case complexity of 
fte D*MECHA remains unchanged. Summarising the above 
concepts it is concluded that D*MECHA is in O(n2 log n) 
eyen when the moving obstacles of the environment have

piecewise linear motion, where n is the total number of the 
obstacles' vertices. This time improves the current asymptotic 
time O(n2 log(nm)) given in [12], where n is the total number 
of the obstacles vertices and m is the average number of turns 
made by the obstacles.

Once the applicability of D*MECHA for such 
environments has been decided what is left to be investigated 
is whether the motion obtained is still time minimal.

5 Time-minimality of the motion
In this section the time-minimality of the D*MECHA 
algorithm, when applied in environments with static and time- 
varying obstacles with piecewise linear motion, is examined. 
In [4] it was shown that the time-minimal motion from S to G 
in an environment which contains static and moving along 
linear paths obstacles, is a vertex-to-vertex motion. Figure 3 
illustrates an example, which suggests that this is not the case 
when the obstacles have piecewise linear motion. Suppose 
that the obstacle P starts moving from position l t towards the 
bottom with velocity 2m/sec. When the edge (1,2) reaches 
the line ?2 the direction and the velocity of the obstacle 
change towards the indicated direction with velocity Im/sec.

3m/s

Im/s •

Figure 3. An example of an obstacle in piecewise linear 
motion.

Suppose that the time-minimal motion is the one, which 
goes around the bottom side of the obstacle. Further suppose 
that given the speed limit imposed on the AGV, the AGV 
leaves the start point S at time to it can reach the vertex 1 at a 
configuration qj at time t, or vertex 2 at configuration q2 and 
time t2 , if the obstacle would not have changed its direction. 
However the obstacle changes its direction and its velocity 
when its edge (1,2) reaches the line i2 - This means that if the 
AGV starts moving from S at time to it will never reach vertex 
2 at q2 simply because the obstacle will never be at such a 
configuration. Therefore the motion will have to go through 
the vertex 1. If the AGV leaves from configuration q, at time 
t s and reaches the vertex 2 before the obstacle changes its 
direction at a configuration q3 and time t3 then it can start 
moving from q3 and reach the goal point and this motion is 
time-minimal. Otherwise the AGV will have to move 
through the other vertices of the obstacle and therefore this 
motion will not be the time-minimal motion.
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When the motion of the obstacles is piecewise linear the 
direction of the obstacles changes over time. Therefore it is 
possible for the AGV not to reach a vertex of the obstacle due 
to the fact that the obstacle changed its direction. For 
example in figure 3 vertex 1 is visible and reachable from S 
but vertex 2 it is not, due to the fact that the obstacle's 
direction changes before the AGV meets vertex 2 in the 
configuration q2 . However, there is an internal point on the 
edge, which is adjacent to these vertices and can serve as a 
configuration for the AGV to pass through on its way to the 
goal position, this point is called assistant point. Therefore 
the motion from S to G produced by the algorithm is a vertex- 
to-vertex motion, which goes through vertices of the obstacles 
and assistant configurations. The assistant configurations 
correspond to reachable and visible configuration from a 
configuration q in CT on a common edge between two 
prisms. This configuration is an intersection of the sweep- 
line and such an edge in CT. In the example of figure 4, qas is 
the assistant point from S on the edge (1,2). The time 
minimal motion from S to G is {S, qas , q3 , G}, figure 4 
illustrates the motion. Note that in this motion the AGV 
coincides with the boundary of the obstacle for some time.
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Im/s

4 3

4 3
P

1 2
i^-*

Figure 4. This figure illustrates the time-minimal motion 
from S to G passing through the assistant configuration qas .
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Abstract - This paper address the robot motion 
planning problem in an environment populated 
by obstacles that change their size over time. 
That is the obstacles in the environment can 
shrink or expand over time. This is a slightly 
modified problem to the classic dynamic robot 
motion planning problem. In the classic 
problem the position of the obstacles in the 
environment is time dependent whereas in this 
instance the size of the obstacles in the 
environment depends on time. Intuitively it 
seems that there is not large application 
domain or at least frequent applications of the 
real life, which can be modelled using the 
concept of shrinking and expanding obstacles. 
However in this paper some applications are 
discussed and the problem of moving an AGV 
in such environments is considered. More 
specifically an algorithm for finding the time- 
minimal motion between two points in an 
environment populated by shrinking and 
expanding obstacles is considered.

Keywords: Motion Planning, Path Planning, 
Obstacle Avoidance, Time-minimal Motion, 
and Computational Geometry.

1. Introduction
Many researchers have considered the 

robot motion planning problem in dynamic 
environments. Sutner and Maass in [1] have

solved the problem of motion planning in a 
dynamic environment populated by one- 
dimensional time varying obstacles. They 
constructed the robot's space-time 
configuration space and they solve the problem 
in polynomial time on the total number of the 
vertices of the polygonal space-time obstacles.

In [2], it has been shown that motion 
planning for a point-robot, with a bounded 
velocity modulus, in a two-dimensional 
environment populated by arbitrarily many 
moving, non-rotating convex obstacles, that 
move at constant velocity is NP-hard. Erdmann 
and Lozano-Perez [3] consider the problem of 
planning motion for multiple robots. They 
assign priorities to each robot and then they 
plan the motion of one robot at a time according 
to its priority. Kant and Zucker [4] consider a 
monotonous path in space-time by 
decomposing the trajectory planning problem 
planning problem into two sub-problems: (i) 
planning a path to avoid collisions with static 
obstacles and (ii) planning the velocity along 
the path to avoid collisions with moving 
obstacles. In [5] an algorithm was presented to 
find a motion for a point-robot, in an 
environment populated by time-depended 
obstacles and destination point. The proposed 
algorithm finds the time-minimal motion given 
that the point-robot moves faster than the 
obstacles and the destination point, in 
polynomial time using the accessibility concept.
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In [6], an algorithm was proposed for finding a 
greedy in time motion for an AGV in an 
environment populated by linear moving 
obstacles. The algorithm uses the concept of the 
visibility graph to find a motion in the time- 
space. The AGV was a point robot subjected 
only to speed upper bound and the algorithm 
had a polynomial computational time on the 
total number of the obstacles' vertices. 
Fujimura in [7] proposed two algorithms for 
solving motion planning problem for a point 
robot that moves in an environment where the 
moving obstacles and the destination point have 
cyclic motion. These algorithms are the hit-and- 
leave, which is suited for sensor-based 
navigation and the accessibility algorithm, 
which is more suited when the environment is 
accurately known ahead planning. Both of 
these algorithms establish a collision-free 
motion, providing that the robot moves faster 
than the obstacles. The motion defined by the 
second method is also time-minimal.

Reif and Sharir in [8], showed that the 
problem of motion planning in a three- 
dimensional environment populated by moving 
obstacles is a PSPACE-hard problem, when the 
robot's velocity modulus is bounded and NP- 
hard when the robot's velocity modulus is not 
bounded.

Fujimura has considered the problem 
of motion planning among shrinking and 
expanded obstacles in [9]. His algorithm was 
based on a wave propagation technique and it 
had polynomial computational time on the total 
number of the environment's vertices. The 
approach presented in this paper finds the time- 
minimal motion for a point robot between two 
points, in an environment populated by 
shrinking and expanding obstacles, in 
computational time O(n2 log n), where n is the 
total number of the obstacles' vertices. This 
approach is based on the D*MECHA algorithm 
previously reported by the authors [6].

2. Motivation
A real world application which can 

modelled as an environment containing 
shrinking and expanding obstacles is when a 
robot watercraft is navigating in a sea in which 
tide give rise into a difference of the water's 
level on skerries and islands. The immediate 
affect on the robot's workspace is the shrink or

expansion of the environment's obstacles. 
Obstacles are considered the cross sections of 
the islands with the plane defined by the sea 
level. Another application is when an AGV 
operates in a manufacturing environment where 
there are round multi-arms stations that operate 
as part of the manufacturing process. As these 
stations extend and retract their arms over the 
time they can be considered as shrinking and 
expanding obstacles for the AGV. Another 
possible application is when an AGV is moving 
in dynamic environments and there are 
uncertainties on the obstacles' velocity, they can 
be modelled as moving and expanding 
obstacles in this way the collisions due to the 
uncertainty can be avoided.

3. Establishment of the problem
Consider the environment W populated 

by shrinking and expanding obstacles Pj, where 
ieN and the AGV's initial point S and goal 
point G. The problem is to establish a time- 
minimal motion from S to G for the AGV A 
avoiding collisions with the environment's 
obstacles, providing there exist one. The AGV 
A is a point robot, which moves with constant 
velocity. The description of the obstacles (such 
as shapes, locations and velocities) is accurately 
known ahead of planning.

3.1. Description of the obstacles
Shrinking and expanding obstacles are 

defined as two-dimensional convex polytopes 
whose boundary alters over the time. The 
alteration does not happen randomly but in the 
following manner; every vertex Vj of an 
obstacle is moving with constant velocity along 
the linear path defined by a fixed point O inside 
the obstacle and the vertex V; .

Figure 1. This figure illustrates a growing obstacle.

The distance that an obstacle's vertex 
can cover within time t is given by c-t-uPi ,
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where c is a constant which can only takes two 
values, 1 and -1 depending whether the 
obstacle is expanding or shrinking and UP, is the 
speed of the vertices of the i obstacle. Note that 
all the vertices of an obstacle start moving and 
finishing together (this assumption may be 
relaxed). The obstacles' vertices move in such 
a way that the obstacles do not deform. Every 
dynamic obstacle, before the beginning and 
after the end of its motion has velocity equal to 
zero. The environment's obstacles are not 
allowed to collide at any time. Any contact 
between the obstacle's boundaries is considered 
a collision.

4. Construction of the Space-Time 
Configuration Space

Since the environment is dynamically 
reconfigured for the solution of the path 
planning problem the parameter of time has to 
be taken into consideration. Note that a path n 
could be collision-free at a specific time 
instance t[ and not free of collisions in a 
different time instance t2 . Therefore in such 
environments the path from the AGV's initial 
point to its goal point has to be defined as a 
function of time and the term motion is used 
instead of path, hence motion planning instead 
of path planning.

It is possible to construct the AGV's 
configuration space at any fixed-point t in time, 
this geometrically captures the constraints on 
the AGV's degrees of freedom at time t. Now 
considering all points in time, the space-time 
configuration space can be produced. The 
space-time configuration space is defined by 
adding the dimension of time into the 
configuration space C. By the formulation of 
the problem the AGV is a point-robot therefore 
its configuration space C = W = R2 and every 
obstacle's configuration space CPi = Pj. The 
space-time configuration space CT = R x [0, 
+00) and every obstacle's configuration space 
CP; map from C into CT to a prism denoted by 
CTPj. Figures la and Ib illustrate the AGV's 
configuration space C and space-time 
configuration space CT. Since the boundaries 
of the CPj do not come in contact at any time 
the boundaries of the CTP; do not come in 
contact at any time.

O

Figure 2. This figure illustrates the configuration space 
C and the space-time configuration space CT.

From the figure 2 it can be noticed that 
the edges of the CTP> in CT that do not 
constitute the bases of the prisms (shaft edges) 
correspond to vertices of the CPj in C. The 
edges of the CTP; that constitute the prisms' 
bases in CT correspond to the edges of CPi in 
C. The AGV's start point S and its goal point 
G form C map into CT to half-lines emanating 
from S and G respectively parallel to the time 
axis. A slice of the space-time configuration 
space CT at a given time t corresponds to the 
AGV's configuration space at time t. Once the 
space-time configuration space has been 
constructed it can then be searched for the time- 
minimal motion between the initial and goal 
positions. Erdman and Lozano-Perez [3], used 
the idea of space-time configuration space in 
order to plan motions for multiple robots. They 
assign priorities to each robot and then they 
plan the motion of one robot at a time according 
to its priority. The configuration space-time 
was constructed for each moving object in order 
to represent the constraints imposed on it by its 
time-depended environment. In their approach 
the configuration space-time was discretised 
and represented as a list of configuration space 
slices. A motion was then obtained by using 
vertex-to-vertex translation of the point-robot 
between adjacent slices. This planner is time 
resolution-complete between the slices, unless 
the free space-time between slices is also 
searched.

In this paper the space-time 
configuration space is constructed in a 
continuous manner and then searched for a 
motion between the AGV initial and goal 
positions. In the next section a method to 
search the CT will be presented.
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5. Searching the CT for a Collision-free 
motion

In the time-minimal motion the AGV A 
has to move at its maximum velocity (umax). 
Therefore, given that the AGV A is moving 
with constant velocity equal to umax, the set of 
all the configurations that can reach from a 
configuration p in space-time between time t, 
and t2, is defined by the surface of the cone CN 
which emanates from p.

Figure 3. The surface of the cone CN defines the set of 
all reachable configurations from p.

The cone CN is a right cone which 
emanates from p. The height h of the cone is 
equal to t2 - t]. The radius of the base of CN 
corresponds to the distance that the AGV can 
travel in the x-y plane in time t2 - ti given that it 
is moving with velocity UA equals to umax and is 
defined as r = (t2 - ti) UA . The angle 9 created 
by the slant height (. of the cone and the x-y 
plane is defined as follows:

U(tp - ta)

tan & = — <=> tan 3 = u'1 => 
u

So if the environment is polar-swept 
with a ray r emanating from a configuration say 
p then all the intersections between the ray r 
and any shaft edge of the CTP,, define the set of 
reachable configurations from p. Now consider 
the reachable from p configuration q and its 
projections into the x-y plane and the time axis 
xq , yq and tq respectively. These projections

correspond to the position and the time instance 
that the AGV and the corresponding C- 
Obstacle's vertex can meet in C, given that the 
AGV is moving with constant velocity equal to
Umax-

However, in order to say that an AGV 
is capable of moving from configuration p to 
configuration q, 'reachability' is not enough. 
Another condition, which has to be satisfied, is 
visibility. This means that the two 
configurations can be connected with an edge 
and this edge does not overlap the interior of a 
CTPj in CT. When the configuration p and the 
configuration q can be connected with an edge, 
it is said that q is visible from p. In summary, if 
a ray v is swept about p by keeping a constant 
angle 9 = tan"'^"1 ) with the x-y plane, all the 
p-visible configurations at angle & in the CT 
can be identified. These p-visible 
configurations at angle 0 in CT correspond to 
p-visible vertices in C at a specific location at a 
specific time instance, which can be reached 
from p by the AGV, given that is moving with 
constant velocity equal to UA. In this way a 
graph demonstrating 'reachability' and 
visibility ('reacha-visibility graph') at angle 9 
(RVG3) can be constructed in CT and then 
searched for a path. Note that no object can 
move back in time so the motion established by 
the algorithm has to be strictly monotone in 
time and therefore the RVGS is a directed 
graph. The following proposition is used in 
order to reduce the size of the RVGS .

Proposition 1
A time-minimal motion never visits 

configurations in CT, which correspond to non- 
extreme vertices of a visible sequence 1 in C.

Proposition 1 is applied to the two- 
dimensional projection of the CTPj in the x-y 
plane. This proposition was proved by the 
authors in [6].

6. The proposed algorithm
The algorithm presented in this paper is 

an variant of the D*MECHA algorithm 
previously reported by the authors in [6]. The 
proposed algorithm is a heuristic search

1 Visible sequence is a set, which contains all visible 
vertices from a given vertex, which are consecutive 
on a single obstacle's boundary.
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strategy, based on the A* algorithm [10]. The 
algorithm searches for the Euclidean shortest 
path between the start and goal half-lines in CT. 
This path (shortest) corresponds in the time- 
minimal motion from S to G in C.

The algorithm is a heuristic search 
process guided by the evaluation of the function
tf over every configuration considered for the 
construction of the motion. An estimation 
function is used to assess how close a current 
configuration c is to the goal configuration. If 
there is more than one configuration for the 
robot to move toward, a heuristic function is 
applied over each of them in order to choose the 
one with the best assessment. The remaining 
configurations are stored in a candidate's list 
for later consideration.

Since the AGV is moving with constant 
velocity equal to umax, then the shortest 
Euclidean path in CT corresponds to the time- 
minimal motion in C. Therefore the airline 
distance between the current configuration c 
and the goal half-line can be chosen as a 
heuristic function. Note that this distance to the 
goal half-line should be measured from the 
current configuration c to a configuration o on 
the goal half-line in such a way that the line- 
segment CO creates an angle 9 with the x-y 
plane. The length of this line-segment is the 
smallest possible distance between the current 
configuration and the goal half-line in CT, 
which corresponds to the time-minimal motion 
in C. The search in CT can be carried out either 
based on information about the Euclidean 
distance or based on information about the 
travel time (distance over speed). In this 
approach information about the travel time, has 
been chosen for the search of CT.

The function tf (n) at any configuration 
n is an estimation of tf{n) which defines the 
time-cost of travelling along the path traced by 
the actual time-minimal motion from S to G 
constrained to pass through configuration n.
More formally tf (n) =tg (n) + th (n), where

tg (n) is the time-cost of travelling along the
path traced by the time-minimal motion from S 
to n the algorithm found so far, estimating tg(n), 
which defines the time-cost of travelling along 
the path traced by the actual time-minimal
motion from S to n. The function th (n) is an 
estimation of the function th(n) which defines

the time-cost of travelling along the path traced 
by the actual time-minimal motion from 
configuration n to a preferred goal of n (in this 
case G). However an estimation of the function 
th(n) is not easy to find, so the best way to 
define it is to rely on information about the 
problem domain. In time-minimal applications 
when the AGV travels with constant speed, a
good estimation of th(n) is t h (n), the travel time 
of along the airline distance from n to the goal 
G. This distance is the smallest possible
distance between these configurations, so t h (n)
is the lower bound of th(n). When h (n) is the 
lower bound the algorithm is admissible, [10]. 
The proposed algorithm finds the time-minimal 
motion for an AGV in a dynamic environment 
and is stated as follows:

The proposed algorithm 
begin

&:=arctan(umax" 1 ) 
put S in Motion; 
put S in Open; 
mark S visited;
tg (S): = 0;

while (Open & nil) do 
begin

w : = {ieOpen : tf (i)< ?f (j) | VjeOpen, 
resolve ties arbitrarily but always 
in favour of the goal node}; 

remove w from Open; 
if w = G then exit while loop; 
W: = {w-visible points at angle 9}; 
EV:= (extreme vertices of the w-visible 

sequences in the projections of W 
intoQ}; 

mark all the non-extremes vertices
useless

for each vertex ieEV do 
if i is not marked useless then 

if i is not marked visited then 
begin

t h (i) : = t(dair(i, G))» (the time 
of travelling on the airline 
distance from i to G);

t g (i):= tg (w)+t(d(w,i))8 ;

tf (i):= tg (i) + th (i);
put i in Motion with pointer

toward w; 
put i in Open;
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mark i visited; 
end;

else if tf (i) > tg (w) + t(d(w, i))8 +
t(dair(i, G))9 then 

begin
redirect pointer of i toward w in

Motion; 
if i 6 Open then remove i from

Open

tg(i): = tg (w)+t(d(w,i))8;

t f (i):= t g (i) + t h (i); 
put i in Open; 
end; 

end; 
if (Open * nil) then return Motion by

tracing all the pointers 
backward from G to 

else return failure; 
end.

In the above algorithm, Motion is a 
spanning tree, which represents at any instant 
the best motion obtained so far. For each 
visited configuration n (except S) a pointer to
its parent is held. The function tf (n) is 
associated with each configuration n in the 
current Motion, The t(d(w, n))8 is a function, 
which represents the time-cost of travelling 
along an edge, which connects two vertices in 
RVG9, with omax . The d^w, n)3 is a function, 
which represents the time-cost of travelling, 
with umax along the airline distance between 
configurations w and n at angle 9. The list 
Open contains at any instant, the vertices that 
are candidates for consideration next. All the 
vertices of the environment are initially marked 
as unvisited and useful. Once the algorithm is 
executed it returns failure if no motion from S 
to G exists, otherwise a time-minimal motion is 
returned by backtracking the spanning tree 
Motion from G to S.

Some attention should be paid on the 
inner loop of the algorithm, which handles the 
situation in which a vertex of an obstacle has 
being visited before. Suppose that after the 
expansion of a configuration y a configuration 
x' has been produced. Further suppose that x' 
corresponds to the x vertex of an obstacle, 
which has been visited before at a different 
place and time instance, say at configuration 
x". If the new way of attainting x provides a

less time consuming motion than a previously 
generated motion from S to x (when x is at x") 
then the x' is retained for x and the tree Motion 
is updated. If x is in Open then it is removed
from Open, the new tf (x) is calculated (for x') 
and then it is reinserted in Open. If it is not in 
Open then the Tf (x) is calculated (for x') and it 
is inserted in Open for later consideration for

7. Admissibility and Optimality of the 
algorithm

The algorithm proposed in this paper is 
based on the A* algorithm for finding the 
shortest path in a graph. The RVGS is a 
directed 5graph and the evaluation function
used is tf (n) = t g (n) + th (n), since the th (n) <
th(n) Vn, then the proposed algorithm is 
admissible. That is it always terminating by 
finding an optimal path from S to a preferred 
node of S in CT and therefore an optimal 
motion in C. The proof of the algorithm's 
admissibility is the same with the A*'s proof 
and is presented in [10]. In a similar way to the 
A* in [10] it can be shown that the proposed 
algorithm is optimal in a sense that it expands 
the smallest number of configurations necessary 
to guarantee finding an optimal motion.

8. Analysis of the algorithm
By analyzing the algorithm it can be 

noticed that the steps that find n with the
smallest tf in Open and remove it from it 
require O(n) time since there are at most n 
vertices in Open, the treatment of its 'children' 
requires also O(n) time. The step for computing 
the set of visible vertices for a K vertex at angle 
S with the x-y plane requires O(n log n) time, 
(polar sweep algorithm). The computation time 
for finding the extreme vertices in a K-visible 
sequence is O(n), [11]. Since all these steps 
appear nested in the while loop of the 
algorithm, which can be repeated at most n 
times, the overall time complexity of the 
algorithm is O(n2 log n).

9. The time-minimality of the algorithm
In this section it is shown that the 

motion that the algorithm establishes for an 
AGV between its initial and goal its points in an 
environment populated by shrinking and 
expanding obstacles is time-minimal. This is
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achieved by demonstrating that there is no other 
mot10n from S to G for the AGV A that can be 
executed m less time than the one suggested by 
the proposed algorithm.

Lemma 1
The proposed algorithm establishes the 

quickest vertex-to-vertex motion from S to G.

Since the algorithm is admissible it is 
guaranteed to return the quickest vertex-to- 
vertex motion.

It is essential for the time-minimality of 
the algorithm to show that the time-minimal 
motion is vertex to-vertex motion. Therefore it 
has to be shown that no other arbitrary motion 
is faster. An arbitrary motion can be defined in 
such a way that the AGV will have to stop at a 
certain point wait for an obstacle to shrink out 
of its way and the carry on moving towards it 
goal position.

Theorem 1
The time minimal motion for an AGV 

A from its start location S to its goal location G, 
in an environment populated by shrinking and 
expanding obstacles is a vertex-to-vertex 
motion.

Proof
The proof of this theorem is carried out 

in the two-dimensional C. Consider the 
configuration space C of figure 4.

G

Figure 4. This figure illustrates theorem 1.

The time-minimal motion from S to G is the 
straight-line motion that connects them. 
However this motion is not collision-free 
because if the AGV follows it, it will collide 
with the CP at location a in time ti, given that 
A is moving with constant velocity equals to 
tW- However the AGV A can meet vertex 5 
of the shrinking CP at location (3 in time t2, with

t2 > t]. Even thought time t2 > t ]5 it is possible 
to show that motion SpG is less time 
consuming than SaG. No matter which of the 
two routes, SaG or SpG the AGV follows, in 
time t2 it will be either at position a or P 
respectively. According to the formulation of 
the problem the velocity of any obstacle in the 
environment is less than the AGV's velocity. 
Therefore, by using triangle inequalities over 
paG, it can be obtained that motion SpG is 
faster than motion SpaG and hence motion 
SpG is faster than motion SaG and therefore 
time-minimal.

The above proof shows that the motion from S 
to G, obtained by the algorithm presented in 
this paper is less time consuming than any other 
arbitrarily motion and is therefore time- 
minimal.

10. Discussion
In this paper the D*MECHA algorithm 

[6], was reconsidered by the authors and 
slightly modified to be applicable in 
environments populated by convex shrinking 
and expanding obstacles. Its admissibility and 
time-minimality was shown. Intuitively it is 
possible for the algorithm to be applicable in 
environments, which contain both moving, and 
shrinking/expanding obstacles and further with 
possible extensions, in environments populated 
by moving obstacles which shrink and expand. 
Note that when the obstacles in the environment 
have velocity equal to zero the time-minimal 
motion form S to G obtained by the algorithm 
also defines the shortest path from S to G.
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A HEURISTIC ALGORITHM FOR MOTION PLANNING OF 
AN AGV IN DYNAMIC ENVIRONMENTS

Abstract: In this paper an algorithm for planning safe motion for an 
autonomous guided vehicle (AGV), in a two-dimensional environment 
populated by time-depended obstacles is presented. It is assumed that the 
time depended obstacles are moving along linear paths with constant 
velocity. All information about the obstacles, such as, shapes, locations 
and velocities are given ahead planning. The AGV is a point-robot with 
bounded velocity modulus. A heuristic algorithm is proposed for finding 
time-minimal motion for the AGV in such dynamic environments, in 
O(n log n) computational time, where n is the total number of the 
obstacles ' vertices.

1 Introduction

Over the years, a number of methods have been developed for solving the problem of 
planning collision-free paths for an AGV, in a two-dimensional environment, populated by 
stationary obstacles, from an initial point to a goal point. One of the first methods is the 
VGRAPH approach, which was developed by Lozano-Perez and Wesley, 1979. This 
approach uses the concept of Visibility Graph to solve the aforementioned problem, in 
0(n2 log n), computational time, where n is the total number of the C-obstacles' edges. The 
Visibility Graph is an important combinatorial structure, El Gindy and Avis, 1981, Guibas 
et al, 1986, Ghosh and Mount, 1987, which has been extensively used for the Robot Motion 
Planning problem.

In this paper, an algorithm for finding a time-minimal motion in a two-dimensional 
environment, populated by time varying obstacles, from an initial point to a goal point (this 
problem is also referred in the literature as two-dimensional asteroid avoidance problem) 
using the concept of visibility graph is presented.

2 Previous work survey

Sutner and Maass, 1988 have solved the problem of motion planning in a dynamic 
environment populated by one-dimensional time varying obstacles. In their approach they 
introduced another dimension into the configuration space, so the one-dimensional moving 
obstacles were described as polygonal objects in a space-time. The motion planning of a 
point-robot with bounded speed in one dimension was solved in polynomial time on the total 
number of vertices of the polygonal space-time obstacles.

In Canny and Reif, 1987, it has been shown that motion planning for a point-robot, with a 
bounded velocity modulus, in a two-dimensional environment populated by arbitrarily many
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moving, non-rotating convex obstacles, that move at constant velocity is NP-hard. Erdmann 
and Lozano-Perez, 1987 consider the problem of planning motion for multiple robots. They 
assign priorities to each robot and then they plan the motion of one robot at a time according 
to its priority. The configuration space-time was constructed for each moving object in order 
to represent the constraints imposed on it by its time-depended environment. A motion was 
then obtained by using vertex-to-vertex translation of the point-robot in configuration space- 
time. Kant and Zucker, 1986 consider monotonous path in space-time by decomposing the 
trajectory planning problem into two subproblems: (i) planning a path to avoid collisions with 
static obstacles and (ii) planning the velocity along the path to avoid collisions with moving 
obstacles. Fujimura and Samet, 1993 presented an algorithm to find a motion for a point- 
robot, in an environment populated by time-depended obstacles and destination point. The 
environment's obstacles were convex polygons, which move in a fixed direction at constant 
speed. The algorithm they proposed finds the time-minimal motion given that the point-robot 
moves faster than the obstacles and the destination point, in polynomial time using the 
accessibility concept. Fujimura, 1993 proposed two algorithms for solving motion planning 
problem for a point robot that moves in an environment where the moving obstacles and the 
destination point have cyclic motion. These algorithms are the hit-and-kave, which is suited 
for sensor-based navigation and the accessibility algorithm, which is more suited when the 
environment is accurately known ahead planning. Both of these algorithms establish a 
collision-free motion, providing that the robot moves faster than the obstacles. The motion 
defined by the second method is also time-minimal. Fujimura, 1994, proposed an algorithm 
for motion planning of a point-robot in an environment with transient obstacles and 
destination point. This algorithm was based on the propagation of a wave-front technique 
and finds the time minimal motion between two points in the plane in polynomial 
computational time.

Reif and Sharir, 1985, showed that the problem of motion planning in a three-dimensional 
environment populated by moving obstacles is a PSPACE-hard problem, when the robot's 
velocity modulus is bounded and NP-hard when the robot's velocity modulus in not bounded.

The approach presented in this paper finds the time-minimal vertex-to-vertex motion for a 
point robot between two points, in an environment populated by moving obstacles, in 
polynomial time. This approach is based on the V*MECHA algorithm previously reported 
by the authors, Diamantopoulos A. et al., 1999.

3 Formulation of the problem

The formulation of the problem is as follows. Let W=R2 be the workspace, populated by 
two-dimensional polygonal obstacles Pi? where i€N+, the AGV's start point S and its goal 
point G. The AGV A is a point-robot, which translates freely with bounded velocity 
modulus. Therefore the AGV's configuration space C = W = R2 and every obstacle's 
configuration space CPi = P;. Some of the obstacles of W are allowed to translate along 
linear paths at fixed orientation, with constant velocity upi, between two time instances ti and 
t2. Let Pi(t) denote the region of W occupied by PI at instance t, (t > 0) and CPj(t) denote the 
region of C occupied by CPi at instance t. Before the start and after the end of the motion of 
every moving obstacle Pj, the obstacle has velocity equal to zero. The interiors of any two 
obstacles are not allowed to overlap at any time. The problem is to determine a collision-free 
time-minimal motion for the AGV A, from the start point S to the goal point G, given that the 
AGV A is constantly moving with its maximum velocity (max(uA)) and that the description
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°fanni °bstades (such as shaPes > locations and velocities) are accurately known ahead of

4 Configuration Space-Time

The motion planning problem, is a more difficult problem than the path planning problem, 
where its solution is just the establishment of a sequence of (collision-free) points connecting 
the start point to the goal point for a robot or the determination that such sequence does not 
exist. In dynamic environments the solution of the motion problem is not just about spatial 
reasoning, because the parameter of time should be taken into consideration. Since there are 
time-depended obstacles in the environment, a continuous function of time should be defined 
in order to specify the AGV's position in the environment at all times. This can be achieved 
by adding another dimension (the time dimension) to the AGV's configuration space C. The 
new configuration space with the extra dimension is called configuration space-time CT and 
is defined as, CT = C x [0, +00). Every CPi from C (either static or moving) maps into 
configuration space-time CT as a static obstacle CTPi. Since the interior of the CPiS do not 
overlap m C at all times, then the interior of the CTPiS do not overlap in CT at all times. In 
our problem the configuration space C = R2, so the CT = C X [0, +00) and hence 
CT = R X [0, +00). The two-dimensional CPjS from C map to CT in prisms. Figures la and 
Ib illustrate the relation between two-dimensional configuration space C and the three- 
dimensional configuration space-time CT.

CP,(B

CP,(a)

CP2(a) 
CP2(P)

Figure la This figure illustrates the posi­ 
tions of CPi and CPj in two 
time instances a, p in C.

Figure Ib This figure illustrates the way 
the CPi and CP2 map from C 
into CT in static prisms.

As it can be noticed in Figures la and Ib, the static obstacles in C correspond to orthogonal 
to x-y plane prisms in CT and the time varying obstacles from C correspond to sloped with 
respect the x-y plane prisms in CT. The slope of each obstacle in CT, is determined by its 
constant linear velocity. Note, that all the edges of the CTPjS in CT which do not constitute 
the bases of the prisms, correspond to vertices of CPjS in C, these edges are called shaft
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edges. The edges of the CTPjS that constitute the prisms' bases in CT correspond to the 
edges of the CPiS in C. The start point S and the goal point G of C correspond to half-lines in 
CT, which emanate from S and G respectively and are parallel to the time-axis. The 
configuration space-time CT (which is static) can be searched for a collision-free path 
between the S and G. Note that since no object can move back in time, the path in CT should 
be strictly monotone in time. In the next section some possible extensions on the V*MECHA 
algorithm, are presented to enable it to find time-minimal motion for an AGV in dynamic 
environments.

5 Extension of V*MECHA for time-varying domains

According to the assumptions made earlier, the AGV A (point-robot) moves with constant 
velocity max(uA). Therefore, the set of all the reachable configurations, from a specific 
configuration p in C, between two time instances ta and tp (with ta < tp), is defined by the 
perimeter of a circle CR, with centre p and radius r = UA (tp - ta), Figure 2.

CR
= uA (tp -ta)

O

Figure 2 The perimeter of the cycle CR defines the set of all reachable 
configurations from the configuration p in C for an AGV which 
is moving with constant velocity UA, between time ta and tp.

In the three-dimensional CT, the set of all reachable configurations for the AGV A from a 
specific configuration p, between two time instances ta and tp is defined by the surface of a 
right cone CN emanating from configuration p, given that A is moving with constant 
velocity. The configuration p is the apex of the cone. The height h of the cone is equal to 
tp - ta . The radius R of the base of the cone is equal to UA (tp - ta). The angle 3 created by the 
slant height I of the cone and the plane Q (Q is defined by the apex of the cone and is parallel 
to the x-y plane of CT) is defined as follows:

n cetand = — => tan$ = ————-
R U(tp - ta)

=> tan 3 = - => tan& = u" 1 => 9 = tan~'(u~') 
u

Figure 3 illustrates the cone whose surface defines the set of all the reachable configurations 
from a configuration p in CT.
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^

Figure3 The surface of the cone CN defines the set of all reachable configurations 
from configuration p in the three-dimensional space-time for an AGV A, 
which is moving with constant velocity UA, between time ta and tp.

Any intersection between the surface of the cone CN and any shaft edge or the goal half-line 
in CT is a candidate configuration for the AGV to move to. The AGV moves to such 
configuration depending on whether this configuration is visible from the apex of the cone or 
not and whether it is on the path traced by the time-minimal motion. An intersection 
corresponds to a vertex of an obstacle CP, or to the goal point G in C at some time t.

Summarizing, if a ray v is swept about p by keeping constant angle 3 = tan'^u"1 ) with the 
plane Q, all the p-visible points (points that can get connected with p without any prior 
interceptions) at angle & in the CT can be identified. These points correspond to vertices of 
the CPjS in C at some time t and more specific to p-visible vertices in C, which are used to 
construct a kind of a visibility graph. Alexopoulos and Griffin, 1992, used a cone, in order to 
identify all the visible vertices from given vertex. Then they proposed an algorithm for 
finding a greedy in time motion for a robot in dynamic environments. The algorithm was 
called E*GRAPH and it was based on the V*GRAPH algorithm. The E*GRAPH algorithm 
seems to be incorrect, because it is based on the V*GRAPH which has been proven to be 
incorrect Conn et al., 1997. Fujimura, 1994 also used the idea of the cone in order to identify 
the collision fronts of transient obstacles in an environment, and then he proposed an 
algorithm for finding a time-minimal motion for an AGV in environments populated with 
transient obstacles and destination point.

According to two properties in Diamantopoulos et al., 1999, the shortest Euclidean path in a 
two dimensional static environment, can not contain non-extreme vertices of a p-visible 
sequence (set of consecutive p-visible vertices on a single CPj) and obtuse polygon vertices, 
are also applicable in dynamic environments. Since the AGV is moving with constant 
velocity it can be easily shown that within the time-minimal motion the AGV does not pass 
through vertices rejected by the above properties. The two properties are applied in the 
projection of the CTPjS to the plane Q. These properties are used in order to reduce the 
number of vertices which will be examined for the construction of the time-minimal motion.

D*MECHA is a heuristic search algorithm guided by the evaluation of the function tf over 
every vertex of the visibility graph and finds the time-minimal motion from the start node S
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to the goal node G. The function tf (n) at any node n is an estimation of tf(«) which defines 
the time-cost of travelling along the path traced by the actual time-minimal motion from S to 
G constrained to pass through node n. More formally tf (n) = tg (») + th (n), where tg (n) is 
the time-cost of travelling along the path traced by the time-minimal motion from S to n the 
algorithm found so far, estimating tg(n), which defines the time-cost of travelling along the 
path traced by the actual time-minimal motion from S to n. The function th (n) is an 
estimation of the function th(«) which defines the time-cost of travelling along the path traced 
by the actual time-minimal motion from node n to a preferred goal of n (in this case G). 
However an estimation of the function th(w) is not easy to find, so the best way to define it is 
to rely on information about the problem domain. In time-minimal applications when the 
AGV travels with constant speed, a good estimation of th(«) is th («), the time of travelling 
along the airline distance from n to the goal node. This distance is the smallest possible 
distance between these nodes, so t h (n) is lower bound of th(n). When h(n) is lower bound 
the D*MECHA is admissible. The algorithm D*MECHA finds the time-minimal vertex-to- 
vertex motion for an AGV in a dynamic environment and is stated as follows:

D*MECHA algorithm 
begin

S := arctan (u" 1 )
put S in Motion;
put S in Open;
mark S visited;
tg (S) : = 0;

while (Open * nil) do 
begin

w : = {ieOpen : tf (i)< ff (j) | VjeOpen, resolve ties arbitrarily but always
in favor of the goal node}; 

remove w from Open; 
if w = G then exit while loop; 
VV : = {w- visible points at angle &};
EV := {extreme vertices of the w-visible sequences in the projections of VV into Q}; 
mark all the non-extremes vertices useless 
AV : = EV - (obtuse vertices in EV}; 
for each vertex ieAV do 

if i is not marked useless then 
if i is not marked visited then 

begin 
t h (i) : = t(dair(i, G)) (the time of travelling on the airline distance from i to G);
tg (i) := tg (w) +t(d(w,i));
tf (i) := tg (i) + t h (i);
put i in Motion with pointer toward w;
put i in Open;
mark i visited; 

end;
else if tg (i) > t g (w) + t(d(w, i)) then 

begin
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redirect pointer of i toward w in Motion; 
if ie Open then remove i from Open 
tg (i) := tg (w) +t(d(w,i));

tf (i) := tg (i) + t h (i); 
put i in Open; 
end; 

end;
if (Open * nil) then return Motion by tracing all the pointers backward from G to S 
else return failure; 

end.

In the algorithm, Motion is a spanning tree, which represents at any instant the best motion 
obtained so far. For each visited node n (except S) a pointer to its parent is held. The 
function tf (n) is associated with each node n in the current Motion. The t(d(w, «)) is a 
function, which represents the time-cost of travelling along an edge, which connects two 
vertices in the visibility graph, with max(uA). The dair(w, n) is a function, which represents 
the time-cost of travelling, with max(uA) along the airline distance between nodes w and n. 
The list Open contains at any instant, the vertices that are candidates for expansion next. All 
the vertices of the environment are initially marked as unvisited and useful.

6 Analysis of the algorithm

The D*MECHA algorithm, finds the time-minimal vertex-to-vertex motion for an AGV 
(point-robot), in a two-dimensional dynamic environment, from a point S to a point G, in 
0(« log n) computational time, where n is the total number of C-obstacles' vertices. Indeed,
by analyzing the algorithm it can be noticed that the steps that find the n with smallest tf in 
Open and remove it from the Open requires O(«) time, since there are, at most n vertices in 
Open, the treatment of its children requires also O(«) time. The step for computing the set 
visible vertices for a K vertex at angle $ with the x-y plane, requires O(« log n) time. The 
computation time for finding the extreme vertices in a /tr-visible sequence is O(n). The obtuse 
visible vertices can be removed in time O(«). Since all these steps appear nested in the while 
loop of the algorithm, which can be repeated at most n times, the overall time complexity of 
D*MECHA is O(n2 log n). The proof of D*MECHA's admissibility and optimality is similar 
to V*MECHA's and is presented in Diamantopoulos A. et al., 1999.

7 Discussion

Under the assumption that the AGV is moving with constant velocity equal to max(uA), the 
motion that is established by the D*MECHA algorithm is a time-minimal motion. During 
this motion the AGV is moving from S to G through CPj's vertices in a non-stop manner. If 
only stationary obstacles populate the environment then the time-minimal motion established 
by D*MECHA defines also the shortest path from S to G. In the case that the AGV is 
allowed to move in a non vertex-to-vertex manner without constant velocity, then the 
D*MECHA algorithm does not always return the time-minimal motion but a greedy in time 
motion. This happens because it is possible for the time-minimal motion, to be defined in 
such a way that the AGV will have to stop at a specific place to wait for a moving obstacle to 
move out of its way and then start moving again towards the goal position. In this kind of
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motion it is possible for the AGV to reach the point G without having to pass through 
C -obstacles 1 vertices.
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Synopsis
In this paper, an algorithm for planning a safe path for a two-dimensional polygonal 
Autonomous Guided Vehicle (AGV), which translates freely without rotation in a two- 
dimensional known environment, populated by physical stationary obstacles, is presented. 
The obstacles are transformed to represent the locus of forbidden positions of an arbitrarily 
chosen reference point on the AGV and the AGV is considered as a point-robot (reference 
point). The V*MECHA algorithm is then applied to find the shortest safe path between an 
initial and goal point for the AGV in the environment in O(n2 log ri) computational time, 
where n is the total number of the transformed obstacles' vertices.

Notations
0(«) denotes the computational complexity of an algorithm.
F is an operator, which when applied to a node n; in a graph takes the value

{(n,, Cy)}, which is a set of pairs for all n,'s successors, where cy is the cost of
the edge that connects node n/ to its successor node n,. 

icx denotes the line segment kx.
d(x, y) is the Euclidean distance between node x andy connected by an edge. 
dair(x, y) is the airline Euclidean distance between node x and y.

1 INTRODUCTION

The use of AGVs or articulated robot arms, for moving objects, tools or devices from one 
point to another and performing tasks in the workspace of a manufacturing environment, is an 
important consideration for the efficiency of an automated manufacturing process. The 
problem of finding the shortest collision-free path for an AGV between two points in an 
environment populated by static obstacles has been solved correctly, by Lozano Perez and 
Wesley (1). In their approach they compute the obstacles' configuration space (C-Obstacles) 
and then they construct the visibility graph by connecting all the mutual visible vertices of the 
C-Obstacles and the AGVs initial and goal points. When the visibility graph has been 
constructed it is then searched for a path from the initial to the goal point. This algorithm is
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called VGRAPH and finds the shortest safe path in O(«2 log ri) computation time, where n is 
the total number of the C-Obstacles' edges.

Alexopoulos and Griffin in (2) proposed an algorithm named V*GRAPH for solving the 
planar stationary-obstacle problem for polygonal obstacles and AGV, in O(«2 log «), where n 
is the total number of C-Obstacles' vertices. The V* GRAPH algorithm was meant to be 
quicker than VGRAPH for an average case even though they have the same time complexity. 
This improvement is achieved due to the fact that V*GRAPH does not construct the entire 
visibility graph like VGRAPH, but only a part of it. However Conn et al. (3) show with a 
counterexample that V*GRAPH approach is not global and therefore incorrect.

In this paper a hybrid approach similar to V*GRAPH is presented. This approach employs 
both V*GRAPH and A* (shortest path algorithm using heuristics Hart et al. (4)) algorithms 
and solves the planar stationary-obstacles path planning problem in worst case O(«2 log ri) 
computation time, where n is the total number of C-Obstacles' vertices. The advantage of this 
approach over the other algorithms is that much smaller number of vertices are selectively 
considered for the creation of the visibility graph and fewer vertices are examined for the 
construction of the path. Since the visibility graph is constructed by using less edges the 
algorithm is quicker for the average case and therefore improves manufacturing efficiency.

2 A BRIEF DESCRIPTION OF V*GRAPH ALGORITHM

The basic idea behind the V*GRAPH algorithm is that the number of vertices that are 
considered for the construction of the visibility graph is smaller. This implies that fewer 
nodes are examined for the identification of the shortest path and therefore the procedure is 
quicker. The reduction of the number of nodes that are considered for the construction of the 
visibility graph is achieved in V*GRAPH by only expanding a subset of visible nodes that 
would have been expanded by VGRAPH. This reduction is due to the fact that not all the 
vertices are suitable enough to be candidates for expansion in order to construct the visibility 
graph. In the V*GRAPH algorithm the vertices with interior polygon angle greater than n 
radians and the non-extreme vertices of a visible sequence are not considered for the 
construction of the visibility graph. All the vertices in an environment that are visible from a 
vertex K are called ^-visible vertices. The set of consecutive ^-visible vertices on every 
C-Obstacle; is called sr-visible sequence.

The V*GRAPH algorithm uses these two conditions to minimize the size of the visibility
graph and then using a heuristic strategy guided by the evaluation of a function f finds the 
shortest path between s (initial point) and g (goal point). The value of f (ri) over every vertex 
n of the visibility graph estimates the shortest Euclidean distance from s to g through node n.
Specifically this approach borrows the f («) =g(«) + h(n), function from the A* search 
algorithm and uses it in the same way as the A* algorithm (where g (n) estimates the actual 
cost of the shortest path from s to n and h (n) estimates the actual cost of the shortest path 
from n to g). Alexopoulos and Griffin (2) presented their algorithm as follows:

V* GRAPH algorithm 
Begin

P :={s}; 
Open : = {s};
g(s) : = 0;
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f(s) : = 0; 
repeat

w: = {ieOpen : f (i) < f(j) | VjeOpen}
remove w from Open;
put w in P;
VV : = {w-visible vertices not in Open};
EV : = {extreme vertices of the w-visible paths in VV};
AV : = EV - {obtuse vertices in EV};
for each vertex i in AV do

h (i) : = Euclidean distance d(i, g) from i to g; 
g (i) : = g (w) + d(w, i);
f(i) :=g(i)+h(i); 
put i in Open;

until ((Open = 0) or (w = g)); 
if = (Open = 0) then

exit with failure; 
if = (w = g) then

exit with P; 
end.

The overall time complexity of this algorithm is O(«2 log ri), where n is the total number of 
C-Obstacles' vertices.

3 A COUNTER-EXAMPLE ON V*GRAPH ALGORITHM

Conn et al. (3) in 1996 used a counter-example on V*GRAPH algorithm in order to prove 
its incorrectness. The scenario of the counter-example was as follows; consider the following 
planar stationary-obstacle environment and a point-robot, which needs to move from s (initial 
point) to g (goal point) by following the shortest (Euclidean) path.

1
3

Fig 1 The planar stationary-obstacle environment 
used in the counter-example.

The coordinates of the obstacle's vertices, initial point and goal point were given as follows:

s = (3,l), g = (3,4), 1=(0,1), 2=(4,2) 
3 = (5.5,0), 4 = (5.5, 3), 5 = (0,3)
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Since the robot is a point-robot, the C-Obstacle is the same as the obstacle of the

w hC algorithm can be applied to find the shortest path between s and g. 
When the V*GRAPH algorithm is applied to the above scenario then the following table with 
values of the algorithm's variables is obtained while the algorithm is tested.

Table 1 This table summarizes the values of the algorithm's variables while it is tested. 
I Iterations i j____P____Opgi w W EV AV h(i) g(i) f(i)

|; s s , ^«wit

f 1
i 3

;2 5

| 4^__. ———— ~ — __~ ——— _

s 0
1
1,3 

s,l 3
3,5 

s,l,3 5
1,5 
1,4,5

s 1,2,3

1 2,5

3 1,2,4

1,3 1,3

2,5 5WS

1,2,4 1,4

4.24
1 4.72
1

3.16

4.24 
2.69

3
2.69

5

8.28 
5.69

7.24
7.41

8.16

12.52 
8.38

s, 1,3,5 J,4__

What can be noticed from Table 1, is that at the forth iteration of the 'repeat' loop of the 
algorithm, the path P = {s, 1, 3, 5} intersects the boundary of the obstacle (Figure 2).

g

Fig 2 At this figure the intersection of the path (bold 
line) with the obstacle's boundary is illustrated.

Since a valid solution for the above scenario exists, which is P = {s, 1, 5, g} and the 
algorithm does not return this, but returns an invalid one instead, then the algorithm is not 
global and therefore incorrect. The V*GRAPH algorithm is also not optimal, because the 
solution of the above scenario contains a non-optimal vertices' subsequence {..., 1, 3, 5,...}, 
which should not be included in the Euclidean shortest path.

The incorrectness of V*GRAPH is due to the misuse of A*. In the Alexopoulos and 
Griffin (2) paper it is stated that V*GRAPH employs A* algorithm for finding the shortest 
path, however this claim is not correct. The problem of V*GRAPH is the fact that all the 
vertices it expands are contained in the final path. This happens because the algorithm is not 
capable of removing any vertex from the path, so each vertex is placed in the path it is not 
possible to be removed by the algorithm even if a vertex of a better path should be placed 
instead. A very important step of A* algorithm is missing from V*GRAPH, this step is the 
one which allows the algorithm to keep a record of pointers for the vertices of the path and to 
update it at each iteration according to the best path found so far. The facts presented above 
lead to the result that V*GRAPH is not complete, not optimal and it does not employ A* 
which is complete and optimal.
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To overcome the deficiencies of V*GRAPH a new hybrid approach (V*MECHA) for path 
planning of an AGV in a two-dimensional stationary-obstacle environment is proposed. The 
V*MECHA algorithm is a completion of V*GRAPH algorithm. This algorithm is a mixture 
of the V*GRAPH and A* algorithms. V*MECHA minimize the size of visibility graph using 
Theorems 1 and 2 presented below and finds the shortest path between s (initial point) and g 
(goal point) using powerful heuristics from A*. V*MECHA starts from the initial node s and 
generates a part of the visibility graph by applying recursively the successor operator F. A 
node is said to be expanded when the operator T has been applied to it. The value of the 
operator F when applied to a node n, is a set of pairs {(ny, c,y)}, where c,y is the cost of the edge 
which connects node / to node j in the graph, for all the successor nodes j's of the node /. 
During the execution of the algorithm, each time a node is expanded a successor w of the 
node, the cost of the optimal path for reaching w and a pointer to the predecessor of w are 
stored. When the algorithm reaches the node g, then it is terminated and no more nodes are 
expanded. The shortest path is then obtained by tracing backwards all the pointers from g to 
s. If an algorithm is guaranteed to return a shortest path between two nodes in a graph that all 
edges have greater than zero length, then it is called admissible.

Theorem 1: From a vertex K, only the extreme vertices on a ^-visible sequence need to be 
considered for the construction of the visibility graph because any line segment from s: to g 
through the extremes is the shortest.

Proof: Suppose VS is a ^--visible sequence of a CB (CB is the configuration space of 
an obstacle B) in the environment. If VS contains less than three vertices then these are the 
extremes. Suppose now that VS contains three or more vertices and the extremes are x and y. 
If a line segment connecting K to g collide with CB, then a shortest path passing through k 
will contain either the line segment ioc or the line segment icy . Otherwise will contain a 
polygonal line with endpoints one of the two extremes and therefore it is not the shortest. The 
extremes of a /r-visible sequence can be computed in O(«) computational time.

Theorem 2: A shortest collision-free path from s to g cannot contain vertices with interior 
polygon angle greater than re radians (obtuse vertices).

Proof: If the shortest path, Path from s to g contains an obtuse vertex q of the CB, 
then if the predecessor and the successor of q on Path is respectively x and y, then it exists a 
point v on qy excluding q and y which is visible from x (Figure 3).

CB

Fig 3 Illustration of Theorem 2, where the path 
containing an obtuse vertex is {s, x, q, y, g} 
and the actual shortest path is {s, x, y, g}.
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Using the triangle inequality, d(x, v) < d(x, q) + d(q, v)

it is obtained that, d(^ v) + d(v? ^ < d^ q} + d(g> v) + d(Vj y)

but since' d(x, 9) + dfe v) + d(v, y) = d(x, 9) 

then' d(x, v) + d(v, y) < d(x, q) + A(q, y)

The above inequality implies that if the path passes though v instead of q is shorter, which 
contradicts the fact that Path is the shortest path. This proof by contradiction leads to the 
conclusion that the shortest path should not include obtuse vertices.

To demonstrate the effectiveness of Theorem 1 and 2 consider the planar environment of 
Figure 4, where the C-Obstacle is denoted by CB and s, g are the initial and goal points 
respectively.

g

12

Fig 4 This figure illustrates the great reduction of vertices 
considered for the construction of the visibility graph 
from {1,3, 4, 5,6, 7, 8, 9,11, 12} to {1,3, 9, 12}.

Applying Theorem 1 to the above example, the s-visible vertices to be included in the 
visibility graph have been reduced to 1, 3, 9,11, 12. If Theorem 2 is now used over the set of 
vertices obtained as a result of Theorem 1, the vertices included in the visibility graph are 
1, 3, 9, 12. This example illustrates the great reduction of vertices considered for the 
construction of the visibility graph from (1,3,4,5,6,7,8,9,11, 12} to (1,3,9, 12}.

The V*MECHA algorithm defines a function f for every node in the graph in such a way, 
that it determines which node will be expanded next. This is an efficient way to ensure that 
nodes that are not on the optimal path are not expanded, and nodes that should be on the 
optimal path are not ignored. The algorithm uses Theorems 1 and 2, to minimize the number 
of vertices to be examined for the identification of the shortest safe path, and using a heuristic 
strategy guided by the evaluation of a function f over every vertex, finds the shortest path 
form the start node s to the goal node g. The function f (n) at any node n is an estimation of 
f(«) which defines the actual cost of the shortest path from s to g constrained to pass through

node «. More formally f («) = g (n) + h (n), where g («) is the cost of the shortest path from s 
to n, the algorithm found so far estimating g(w), which defines the actual cost of the shortest 
path from s to n. The function h (n) is an estimation of the function h(») which defines the 
actual cost of the shortest path from node n to a preferred goal of n (in this case g). However
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an estimation of the function h(«) is not easy to find, so the best way to define it is to rely on 
information about the problem domain. In shortest path applications a good estimation of 
h(«) is h(«), the airline distance from n to the goal node. This distance isjhe smallest 
possible distance between these nodes, so h (n) is lower bound of h(n). When h (n) is lower 
bound the V*MECHA is admissible. The V*MECHA algorithm stated as follows:

V*MECHA algorithm 
begin

put s in Path;
put s in Open;
mark s visited;
g(s) : = 0;
while (Open # nil) do 

begin
w : = {ieOpen : f (i) < f (j) | Vj 6 Open, resolve ties arbitrarily but

always in favor of the goal node}; 
remove w from Open; 
if w = g then exit while loop; 
VV : = {w-visible vertices};
EV : = {extreme vertices of the w-visible paths in VV}; 
mark all the non-extremes vertices useless 
AV : = EV - {obtuse vertices in EV}; 
for each vertex ie AV do

if i is not marked useless then 
if i is not marked visited then 

begin
h(i) : = Airline distance dair(i, g) from i to g; 
g(i) : = g(w) + d(w, i);
f (i) : = g(i) + h(i);
put i in Path with pointer toward w;
put i in Open;
mark i visited; 

end;
else if g(i) > g(w) + d(w, i) then 

begin
redirect pointer of i toward w in Path;
if ie Open then remove i from Open
g(i): = g(w) + d(w, i);
f (i): = g(i) + n(0 i 
put i in Open;

end;
end; 

if (Open * nil) then return Path by tracing all the pointers backward from g to s
else return failure; 

end.
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The above algorithm finds the Euclidean shortest path for a two-dimensional AGV in a 

two-dimensional stationary-obstacle environment from a start point s to a goal point g. In the 
algorithm Path is a spanning tree, which represents at any instant the best path obtained so 
far, for each visited node n (except s) a pointer to its parent is held. The function f («) is 
associated with each node n in the current Path, this is an estimation function of f(«) which is 
the actual cost of the best path from s to g constrained to pass through n. The d(w, n) is a 
function, which represents the cost of an edge, which connects two vertices in the visibility 
graph. The dair(w, n) is a function, which represents the cost of the airline distance between 
node w and n. The list Open contains at any instant, the vertices that are candidates for 
expansion next. All the vertices of the environment are initially marked as unvisited and 
useful.

4.1 The admissibility of V*MECHA

The evaluation function is f (n) =§(«)+ h(n), where g(«) is the minimum cost path from s
to n, found by V*MECHA so far, and h(«) is an estimation of the optimal path from n to a 
preferred node of n in a graph which all edges have greater than zero length.

Theorem 3: If h (») < h(n) for all n, then V*MECHA is admissible, Hart et al., (4).

Since in V*MECHA, h(») is the airline distance between node n and g, then is always less 
than or equal to h(«), therefore the V*MECHA is admissible.

4.2 The optimality of V*MECHA

According to the knowledge of the problem domain, the precision of the heuristic function
can be tuned. For instance if h («) = 0, this means that no heuristic information is available. 
However the algorithm will still find the minimum cost path if there is one, because
h(«) < h(ri). An algorithm AlgOi is more informed than another algorithm Alg02, if the 
heuristic information which underestimating h(«) used by Algo/ is greater than the one used 
by Algo 2. A less informed algorithm will expand more nodes than a more informed
algorithm. With a restriction on h, it is possible to show that V*MECHA is optimal in a 
sense that it does not expand more nodes than any other admissible algorithm, which is less
than or equally informed as V*MECHA. The restriction used on h is:

The above inequality restricts the difference of the estimated path costs from any two 
nodes to the goal node, to be less than or equal, to the actual cost of the shortest path between 
the nodes if there is one. If the heuristic information is applied consistently to every node this 
assumption is true. For this reason it is called consistency assumption. For the proof of 
V*MECHA's optimality, in a sense that it does not expand more nodes than any other less or 
equally informed, admissible algorithm the following two theorems are necessary to used.

Theorem 4: If the consistency assumption is satisfied and a node n is expanded by 
V*MECHA, then g («) = g(»).

This theorem was used by Hart et al., (4) for the proof of A*'s optimality. It shows that 
when the heuristic information of the problem is applied consistently at all nodes and the node
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n has been expanded by V*MECHA algorithm, then the cost of the estimated shortest path 
from node s to n found by the algorithm, is guaranteed to be equal to the actual cost of the 
shortest path from node s to n.

Theorem^ If h is an underestimation of h, then for every node n expanded by 
V*MECHA, !(„)< f(s).

Proof: If n is a node which has been expanded from V*MECHA and n is the goal then 
f (n) = f(s) and the theorem is proved. If n is not the goal, then it is known from (4) that just 
before n was expanded by V*MECHA there was a node n' on the optimal path with 

f (n') < f(s). If n = n' then the theorem is proved otherwise n would have been expanded by 
V*MECHA instead of n' and the following inequalities should be true,

f(«)<f(«')< f(s)

therefore the theorem is proved. This theorem shows that if the heuristic information h about 
the problem domain underestimates h, then the estimated cost of the path from s to g through 
n for any n expanded by V*MECHA is less than or equal to the actual cost of the shortest path 
from s to g. Now the optimality of V*GRAPH can be proved.

Theorem 6: If V*MECHA is more than or equally informed as another admissible 
algorithm BMECHA and the consistency assumption is satisfied, then if a node n is expanded 
by V*MECHA, it is also expanded by BMECHA.

This theorem shows that V*MECHA is optimal in a sense that no other admissible 
algorithm which is less than or equally informed as V*MECHA, expands less nodes than 
V*MECHA. This theorem was also proved and used by Hart et al., (4) for the proof of A*'s 
optimality.

4.3 The time complexity of V*MECHA

The V*MECHA algorithm, finds the shortest path for a two-dimensional robot, in a two- 
dimensional stationary-obstacle environment, from a point s to a point g in O(n2 log n) 
computational time, where n is the total number of C-Obstacles' vertices. Indeed, by
analyzing the algorithm it can be noticed that the steps that find the n with smallest f (n) in 
Open and remove it from it require Q(ri) time, since there are at most n vertices stored in 
Open. The step for computing the set visible vertices for a K vertex requires O(w log n) time, 
de Berg M. et al. (8). The computation time for finding the extreme vertices in a ^-visible 
sequence is O(«), Alexopoulos and Griffin (2). The obtuse visible vertices can be removed in 
time O(«). The treatment of /^s children requires O(rc). Since all these steps appear nested in 
the while loop of the algorithm, which can be repeated at most n times, the overall time 
complexity of V*MECHA is O(n2 log n). The V*MECHA algorithm appears to have the 
same time complexity as VGRAPH. However Wesley (5), Asano et al. (6) and Edelsbrunner 
(7), proposed algorithms which construct the visibility graph in O(n2) and then by using 
Dijkstra's shortest path algorithm O(«2), obtain the shortest path from s to g in overall time 
complexity of O(w2).

The advantage of V*MECHA over the other algorithms that construct the entire visibility 
graph, is that in an average case the size of the visibility graph is greatly reduced and the 
algorithm can be faster. An example of such a case is illustrated in Figure 5.
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FigSa This figure shows the reduced 
number of edges construct the 
visibility graph by V*MECHA.

Fig 5b This figure shows the number of 
edges construct the visibility graph 
by the other algorithms.

The above case is an average case in which it is clear that V*MECHA algorithm considers 
a much smaller number of vertices for the construction of the visibility graph in comparison to 
any other algorithm which constructs the entire visibility graph and therefore is quicker.

5 CONCLUSIONS

In this paper a new algorithm has been presented for mobile robot path planning. The 
algorithm is called V*MECHA and finds the shortest-distance, collision-free path for a 
mobile robot in an environment populated by stationary obstacles. V*MECHA was 
developed to overcome the deficiencies of a previous algorithm, the V* GRAPH. The time 
complexity of V*MECHA is O(n2 log n) and its advantage over other similar algorithms is 
that in an average case it is quicker because it expands a smaller number of vertices for the 
construction of the visibility graph.
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