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Abstract

The frequency assignment problem involves the assignment of discrete 

channels (frequencies) to the transmitters of a radio network. A separa­ 

tion between the frequencies assigned to transmitters close to each other is 

required to avoid interference. Unnecessary separation causes an excess re­ 

quirement for spectrum, which is a valuable resource. Consequently good 

assignments minimise both interference and the spectrum required.

The subject of this thesis is the fixed spectrum frequency assignment 

problem, where the spectrum available is given and the target is to minimise 

the total interference of the system.

Interference is modelled through binary constraints, and consequently the 

problem, which is treated as a combinatorial optimisation problem, can be 

represented by an undirected weighted graph.

A summary of some of the integer programming formulations which model 

the problem is presented, together with a brief dimensional study of them.

An efficient implementation of two well-known metaheuristic algorithms, 

adapted to the problem treated, is described.

Some novel lower bounding techniques which, given a problem, work by 

combining lower bounds calculated for some of its clique-like subproblems 

are presented. The key idea is that it is quite easy to calculate tight lower 

bounds for problems represented by complete graphs (cliques). The lower 

bounds for clique-like subproblems are produced by two different methods, 

the first of which is based on the solution of a linear program, while the 

second is based on a closed formula. The most effective method to gener­ 

ate estimates for general problems is based on a linear program which is 

reinforced with inequalities derived from the lower bounds calculated on its 

clique-like subproblems.
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The last part of the thesis is dedicated to improvements to the lower 

bounding techniques, both for those working on general problems and for 

those developed for cliques only.

Detailed computational results, obtained on a wide range of benchmarks, 

are reported.
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Chapter 1

Introduction

1.1 A brief history of wireless communication

The history of wireless communication via radio waves begins in the last 

decades of the Nineteenth Century, when several researchers started exper­ 

imenting with this new frontier for information transmission. Even before 

1900 it was possible to transmit signals across the Atlantic Ocean, and in 

1905 it was quite common for ships to communicate with shore stations using 

wireless telegraphy. After World War I, radio and (later) television broad­ 

casting became part of the everyday life for most people in our society. In the 

last fifty years many other applications of wireless communication have been 

introduced, both in the military field and in the civil one. Nowadays some 

of the most important technologies of modern society are based on wireless 

communication. In Section 1.3 we will describe some of these applications, 

following a brief description of how wireless networks work given in Section 

1.2.



1.2 A description of wireless networks

Each communication in a wireless network is realised using a transmitter 

and a receiver. The transmitter emits a signal (encoded information) usually 

on a specific frequency. This frequency is known to the receiver, which is 

able to translate the signal back into information. When two transmitters 

use frequencies that are too close together in the electromagnetic spectrum, 

their signals may interfere. Some of the factors that affect interference (beside 

frequency separation) are the respective distances between the transmitters 

and the receiver, the direction and the power of the transmitted signals, the 

terrain of the network's area and the weather conditions. By a closer study 

of the physics, more complex causes of interference can be identified, such 

as intermodulation products, spurious emissions and spurious responses (see 

Loxton [68] for a more detailed description of these phenomena).

The available radio spectrum is a limited resource and the growth of 

demand for it in recent decades has pushed its price up, increasing the im­ 

portance of good network planning. Such planning is based on frequency 

reuse within the same network and aims to achieve more efficient use of the 

frequency spectrum, maintaining the quality level of the network at a high 

standard. The Frequency Assignment Problem (FAP) is defined as the opti­ 

misation problem whose target is to find the best network planning possible.

A universally accepted convention in the theory of frequency assignment 

is to see a continuous frequency band [/min, /max] (where /mjn is the lowest 

frequency and /max is the highest one) as a set of discrete and contiguous 

channels {0,1,..., AT   1}, each with the same bandwidth 5, where N —

(/max — fmin)/B.

This view of the spectrum as a discrete resource is extremely useful, is 

realistic and is commonly adopted by service providers. In Figure 1.1 we



Channels: •8-

0

•Frequency band

Figure 1.1: Example of the creation of channels from frequencies.

present an example where five channels are created starting from a frequency 

band [/min ,/max].

It is customary to ignore the difference in meaning between channels and 

frequencies just highlighted, and to use the words synonymously.

1.3 Applications of wireless communication

In this section we enumerate some examples of the application of wireless 

communication. As the reader can see, some of the most common technolo­ 

gies of our time are realised through wireless communications.

1.3.1 Radio and television broadcasting

The most common way to transmit radio and television signals is through 

the air. The antennae transmit in a radial way (i.e. the signal is sent omni­ 

directionally), and the information sent is not dedicated to a single user, but 

to all who wish to receive. Signals transmitted in an area must not interfere 

with each other and, because of the radial transmission, this can be realised



by using each channel only once in the same area.

1.3.2 Mobile telephone networks

The most important application of wireless communication in the last decade 

has been in mobile phone networks. It is possible to say that the whole of 

society has been influenced by this innovation. The first commercial mobile 

phone service was introduced in 1946 by AT&T, but it was very limited in 

performance. For the first phone network with (relatively) large penetration 

we have to wait until the 1980's, when AT&T and Motorola Inc. introduced 

the Advanced Mobile Phone System (AMPS). In 1992 the Groupe Speciale 

Mobile (GSM), a group of European government-owned telephone compa­ 

nies, presented a new digital-based mobile communication standard, called 

GSM. This system has been very successful, not only in Europe but all around 

the world. A new standard, the Universal Mobile Telecommunications Sys­ 

tem (C/MT5), is being developed and in the future it should replace GSM.

A GSM mobile phone network is characterised by a number of base sta­ 

tions, each one including some antennae. Every antenna covers a part of the 

geographic area to be served, that is consequently divided into smaller areas, 

called cells. Each antenna operates on a certain frequency. A mobile phone 

within a cell is connected (on request) with the respective base station via 

one of the frequencies of the antennae operating on that cell. As a mobile 

phone proceeds from one cell to another during a call, the frequency should 

switch to one of those of the new cell without the user realising this. This 

process is known as handover. To aid handover, close cells must be slightly 

overlapped. Interference can arise when two antennae covering close cells 

operate on frequencies too close to each other. For a detailed description of 

GSM networks we refer the interested reader to Manni [73], Scourias [85],



Kuruppilai et al. [64], Eisenblatter et al. [39] and Grotschel [46].

1.3.3 Fixed wireless telecommunication networks

The cost for a wireless network undercuts, in particular circumstances, the 

cost for a conventional wired network, making the use of fixed wireless net­ 

works economic (see Smith et al. [94]). For this reason, in the near future 

fixed wireless networks will be adopted to provide fast access for Internet, 

telephony, video conferencing and home working, which are probably going 

to become some of the most important applications of telecommunication in 

the everyday-life of the next years.

The main difference between fixed and mobile wireless networks is that in 

the first case not only the positions of transmitters are known, as for mobile 

networks, but also the receivers are fixed. Because of this characteristic 

the signals of a fixed wireless network are directed, and consequently each 

receiver must be almost in line of sight of its transmitter.

We refer the interested reader to Alien et al. [6] for a more accurate 

description of fixed wireless networks and their design.

1.3.4 Military wireless networks

To guarantee communication during military operations, wireless connections 

have to be dynamically established. This is usually achieved using pairs of 

transceivers realising radio connections. In this case the interference, which 

is generally caused by the use of similar frequencies within the same area, 

has a higher level of tolerance than the other types of wireless networks. The 

reason for this is that a military network has generally to be engineered and 

realised very quickly, and anyway it is only temporary.



The interested reader can consult Bradbeer [24] or Williams [105] for a 

more detailed description of the features of a military wireless network.

1.4 Mathematical modelling of the frequency 

assignment problem

The frequency assignment problem can be modelled in many ways. In this 

section we briefly describe the two most famous models, the second of which 

can be seen as a higher level abstraction of the first.

1.4.1 Multiple interference model

Modelling reality through mathematics implies producing an abstraction of 

reality. In the case of wireless networks, the first problem to face is how 

to represent signal propagation. There are many models available, each one 

with particular physical justifications and a certain level of approximation 

to reality. We can refer the reader interested in a deeper study to Hall et al. 

[48].

Once a propagation model has been chosen, the natural way to proceed is 

to define an attenuation factor for adjacent channel interference, that mea­ 

sures the decrease of interference as the separation between the frequencies 

assigned to two transmitters increases (see, for example, Watkins et al. [102]). 

The next step is to select a set of reception test points in the area covered by 

the network. Given a frequency assignment, it is possible to evaluate at these 

points the so called Signal to Interference Ratio (SIR), a ratio between the 

strength of the wanted transmitter's signal and the strength of the interfering 

signals. In each network there is a parameter defining the level of tolerable



SIR. When the SIR is over this threshold for a receiver, it is able to recover 

the desired signal. When the SIR is under the threshold the interference is 

classified as unacceptable because the desired signal could be lost.

The general Multiple Interference Model (Watkins et al. [102], Smith et 

al. [88] and [89], Montemanni [76] and Montemanni et al. [79] 1 ) is based 

on the factors above. Slightly different multiple interference models can be 

found in Letschy et al. [66], Fischetti et al. [42], Capone and Trubian [26] 

and Mannino and Sassano [74].

The main problem of this way of modelling interference is in its intrinsic 

computational complexity. For this reason simpler modelling approaches 

have been derived, the most famous of which is the binary constraints model2 , 

described in the next section.

1.4.2 Binary constraints model

The Binary Constraints Model can be seen as a generalisation of the well- 

known Graph Colouring Problem, for a description of which the interested 

reader can refer to Jensen and Toft [57] or to Morgenstern [82]. The frequency 

assignment problem is modelled by an undirected graph, in which there is 

a vertex for each transmitter and an edge between each pair of potentially 

interfering transmitters. Every edge has a label indicating the separation 

required between frequencies assigned to the two respective transmitters, in 

order to have acceptable interference.

The binary constraints model is the most common in the literature, and it

J The work described in this paper is part of the PhD project of the author of this

thesis.
2The binary constraints model can be naturally derived from the multiple interference

model we have described (see Watkins et al. [102], Montemanni [76] and Bater [12]). For 

this reason it can be seen as a higher level of abstraction.



has been adopted since the beginning of optimisation in frequency assignment 

(Hale [47], Leung [67], Cozzens and Roberts [30] and Cozzens and Wang [31]). 

For a more detailed review of the theories developed until now on this model, 

the reader can refer to Murphey et al. [83].

Using the binary constraints approach, only interference involving pairs 

of transmitters is considered. This implies that cumulative interference (i.e. 

interference generated from more than one transmitter at a time) is simply 

lost. This, together with the highly digital logic of the model (a constraint 

can only be in two states: satisfied or violated), is the main drawback of this 

approach.

Notwithstanding that there are some papers which demonstrate the weak­ 

ness of the binary constraints model (see Dunkin and Alien [36], Dunkin and 

Jeavons [38], Dunkin et al. [37], Jeavons et al. [56], Bater [12] and Bater et 

al. [13], [14] and [15]), it is the most common in practise, especially because 

the loss of precision in the representation of reality is often justified by the 

intrinsically lower computational complexity of the model. This makes it 

possible to address problems of realistic dimensions, which otherwise could 

not be handled.

In this thesis we will adopt the binary constraints model and we will 

describe it more formally in Chapter 2.

1.4.3 Other models

Many other models to describe the FAP have been presented in the literature. 

For example in the EUCLID CALMA project3 , a binary model with some 

extra features is adopted.

3EUropean Cooperation for the Long term In Defence Combinatorial Algorithms for 

Military Application project, http://www.inra.fr/bia/T/schiex/Doc/CELARE.html.
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Another common modification of the binary constraints model is the so 

called Cellular Model, in which every vertex of G requires more than one fre­ 

quency and a certain separation must exist among the frequencies assigned 

to the same vertex. The most famous set of benchmark problems for fre­ 

quency assignment, named the Philadelphia Dataset (created on a problem 

originally proposed by Anderson [10] in 1973, and adopted, for example, in 

Smith et al. [91] and in Alien et al. [9]) has this feature.

There are also modifications of the binary constraints model where the 

penalty paid depends on how much a constraint is violated (Eisenblatter [41]). 

This idea is reasonable because higher violations will logically generate higher 

interference and consequently higher penalties in the mathematical model.

A different model, the so called Hypergraph Model, represents sets of 

transmitters that cannot assume the same frequency simultaneously through 

hyper-edges. See Sarkar and Sivarajan [84], Bater [12] and Hurley et al. [53] 

for more details.

Models considering more physical factors that can generate interference, 

such as intermodulation products and spurious emissions and responses, have 

been proposed in Loxton [68] and Smith et al. [93].

1.5 Types of Frequency Assignment Problem

As seen in the previous section, the frequency assignment problem can be 

modelled in many ways. Once one of these models is adopted, there are many 

possible optimisation targets. In this section we present some of those studied 

in the literature, briefly describing some of the results obtained for them so 

far. The reader interested in a more extensive explanation of these problems 

and related results can refer to the material concerning the EUCLID CALMA



project (especially Aardal et al. [1], [3] and Tiourine et al. [96]).

1.5.1 Minimum Order - Frequency Assignment Prob­ 

lem (MO-FAP)

The aim of the Minimum Order - Frequency Assignment Problem (MO-FAP) 

is to assign frequencies to the transmitters so that no unacceptable interfer­ 

ence occurs and at the same time the number of different frequencies used in 

the assignment plan (order of the assignment) is minimised.

This formulation of the problem is the oldest one and is probably now 

of little use in practise. In contrast to the situation of a couple of decades 

ago, the spectrum is now divided and allocated by the regulatory body4 in 

contiguous parts (or bands) and a network operator will receive one or more 

of these bands. Neither the authority nor the operators are interested in the 

number of used (or potentially used) frequencies within these bands, they 

are more concerned with the dimensions of the required bands.

In the literature it is possible to find good lower bounds for this type of 

problem, for example, in Hurkens and Tiourine [51] or Aardal et al. [2] (where 

an efficient branch &: bound assignment algorithm is also described). A 

description of some different heuristic approaches studied within the EUCLID 

CALMA project is given in Hurkens and Tiourine [51] and Tiourine et al. 

[96]. Bouju et al. [21] and [22] present a tabu search algorithm and a GEneral 

NET work (GENET) algorithm, while Warners et al. [100], [101] describe a 

potential reduction approach to the problem.

4For example in the UK the regulatory body is the Radiocommunications Agency, 

http://www.radio.gov.uk.

10



1.5.2 Minimum Span - Frequency Assignment Prob­ 

lem (MS-FAP)

In the Minimum Span - Frequency Assignment Problem (MS-FAP) the aim 

is, given a threshold for the acceptable interference, to assign frequencies 

to the transmitters while minimising the span, which is defined to be the 

difference between the maximum and the minimum used frequencies.

This type of problem is considered very important today, especially be­ 

cause of its use when an operator has to establish a network and it asks the 

authority for a part of the spectrum. Both the operator and the authority 

must have an approximation of the size of the required interval of spectrum 

for a fixed level of quality. This is exactly the information supplied by the 

span.

A lot of material on this problem is available in the literature. In the 

field of lower bounds some good results are presented in Smith and Hurley 

[90], Smith et al. [86] and Alien et al. [8] and [9]. Some other lower bounds 

are described in Tcha et al. [95] and in Janssen and Wentzell [54]. In 

Hurkens and Tiourine [51] and in Aardal et al. [2], the adaptations of the 

methods described for the MO-FAP are presented. An exact algorithm which 

produces a lower bound if the computation is stopped before the natural end 

is described in Avenali et al. [11].

Concerning heuristic algorithms, the most complete work available is FA- 

SOFT, a powerful system developed in a collaboration among the Radio- 

communications Agency, the University of Glamorgan and the University 

of Wales Cardiff, by Hurley, Smith and Thiel (see [52] and [92]). In this 

system an assorted collection of heuristic approaches is implemented and 

used together with some of the lower bounds of the same authors. Some 

other heuristic approaches (studied in the EUCLID CALMA project) are
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described in Hurkens and Tiourine [51], in Tiourine et al. [96] and in Aardal 

et al. [1], [3]. Other methods are due to Costa [29], de Werra and Gay [32], 

Battiti et al. [16], Hao et al. [49], Dome and Hao [34] and [35] and Alien et 

al. [5]. A multi-agent algorithm is described in Abril et al. [4].

1.5.3 Fixed Spectrum - Frequency Assignment Prob­ 

lem (FS-FAP)

As the name suggests, in the case of the Fixed Spectrum - Frequency Assign­ 

ment Problem (FS-FAP) there is a predefined set of available frequencies 

for each transmitter and the target is to minimise a measure of the level of 

interference present in the system. In general it will not necessarily be zero.

This problem is particularly useful for operators when they design real 

networks, after having obtained an allocation of spectrum.

In this thesis we will focus our attention on this type of frequency assign­ 

ment problem. We have made this choice essentially because FS-FAP is less 

studied among the problems presented in this section. This lack of research 

is probably due to the fact that the idea of explicitly accepting interference 

is relatively recent, being connected with increasing prices for spectrum in 

the last few years. In particular the lower bound theory is quite poor: good 

lower bounds have mainly been developed only for problems with particular 

features.

As well as the lack of a general lower bound technique, there are also 

no general exact algorithms. A number of heuristic algorithms have been 

proposed, but without lower bounds it is impossible to evaluate their per­ 

formance. It is possible to compare them but not to state anything about 

whether they work well in absolute terms.

In the next chapters we will present a more detailed literature review.
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1.5.4 Other optimisation targets

The reader interested in other, quite uncommon, optimisation targets, can 

refer to Borgne [17] or, for a review, to Roster's PhD thesis [60], Jaumard et 

al. [55] and FAP web5 , a website entirely devoted to frequency assignment 

problems.

1.6 Outline of the thesis

The thesis is organised as follows.

After the brief introduction to frequency assignment given in the previous 

sections, in Chapter 2 we formalise the binary constraints model for the fixed 

spectrum problem. We present a graph theoretical model and some integer 

programming formulations.

In Chapter 3 we propose two approximate techniques for solving the FS- 

FAP. In particular we describe the adaptation to the FS-FAP and the im­ 

plementation of two well-known metaheuristic algorithms. A description of 

the benchmarks adopted in this work is also given.

Chapter 4 is dedicated to lower bounds. We propose two different ap­ 

proaches, the most promising of which obtain the estimates (global lower 

bounds) by solving the linear relaxation of one of the integer programs de­ 

scribed in Chapter 2, reinforced with inequalities obtained from clique-like 

subproblems of the original problem. Each inequality is based on a lower 

bound for the penalty paid (or number of constraint violations present) in a 

clique-like subproblem (local lower bounds).

In Chapter 5 we describe some improvement techniques for the local lower 

bounds. These techniques are based on inequalities derived from some struc-

5FAP web - A website about Frequency Assignment Problems, http://fap.zib.de.

13



tural characteristics of the problems. These inequalities are used to reinforce 

the linear programs which are solved to obtain the local lower bounds.

In Chapter 6 some improvements for the most promising of the global 

lower bounding techniques described in Chapter 4 are presented. In partic­ 

ular we propose a simplification for the linear program on which the bounds 

are based. This simplification permits shortening of the computation times. 

A family of reinforcing inequalities, again derived from some structural in­ 

formation of the problems, is also described. These inequalities sometimes 

allow better estimates to be obtained.

Chapter 7 presents a discussion of the success of the upper and lower 

bounding techniques and presents suggestions for future work.
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Chapter 2

Fixed Spectrum - Frequency 

Assignment Problem (FS-FAP)

In this chapter we formally define the binary constraints model for the fixed 

spectrum frequency assignment problem, which we will adopt in the remain­ 

der of this thesis.

We describe a graph theoretical representation of the FS-FAP (see Diestel 

[33] for an introduction to graph theory) and some mathematical program­ 

ming formulations to represent it (see Williams [104] for an introduction 

to mathematical programming). A brief study of the dimensions of these 

formulations is also included.

2.1 Graph theoretical representation

Adopting the binary constraints model, the FS-FAP can be represented by 

a graph. Formally it can be defined as a 5-tuple {V, E, D, P, F} where the 

elements have the following meaning:

  V: vertex set of an undirected graph G. Every vertex represents a
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transmitter of the wireless network;

  E: set of edges of the undirected graph G. Edges represent those pairs 

of transmitters that are constrained. Edges will be written here as 

{v, w}, with v < w;

• D: set of labels. There is a mapping £ > £) such that {v,w} i-f dvw , 

with dvw e A/"o~. dvw is the highest separation between the frequency 

assigned to the transmitter v and the one assigned to w that may cause 

the generation of unacceptable interference. If we denote by f(v) the 

frequency assigned to transmitter u, then if \f(v) — f(w)\ > dvw , the 

interference involving the two transmitters is acceptable;

  P: set of labels. There is a mapping E  >  P such that {v,w} i-> pvw , 

with pvw G J\f+ . pvw is a cost to be paid if the separation between the 

frequencies of transmitters v and w is less than or equal to dvw \

• F: set of consecutive frequencies available for every vertex (transmit­ 

ter) in V.

The objective of the fixed spectrum frequency assignment problem is to 

find an assignment which minimises the sum of pvw over all pairs {v,w} 6 E 

for which \f(v) — f(w)\ < dvw .

A pictorial representation of a graph associated with the model described 

above is given in Figure 2.1.

2.2 Mathematical formulations

In this section we describe some integer programming formulations of the

FS-FAP.
A study of the size of these formulations is also presented.
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d«-p,
V={0,1,2,3}

E = {{0,1 },{ 0,2}, {1,2}, {1,3

F={0,1,2}

Figure 2.1: Example of the binary constraints model. 

2.2.1 Mathematical formulation FAP1

This model has been proposed by Koster et al. in [61] (see also [60], [62] and 

[63]) and it has been developed in the context of the benchmarks adopted 

within the EUCLID CALMA project. As noted before (see Section 1.4.3) 

these problems have features that are not present in our model and conse­ 

quently the version of the formulation presented here is a simplification of 

the original.

To describe formulation FAP\ we need the following definitions:

  xviwj: {0,1} variable defined for every {v, w} 6 E and for every i, j   F. 

It is 1 when vertex v is assigned frequency i and at the same time vertex 

w is assigned frequency j; 0 otherwise;

  yvi' {0,1} variable defined for every v G V and for every i 6 F. It is 1 

when v is assigned frequency z; 0 otherwise.
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(FAP1) Min £ ]T £ Mwmj. (2.1)
t'=0 j=0;

IFI-I

s.t. Y. y* = ! Vu e v (2.2)
i=0

IFI-I

y« V{u, w}   £; t = 0, . . . , |F| - 1 (2.3)
j=o
|F|-i

Y^ xwjvi = yvi V{u;, v} G £; t = 0, . . . , |F| - 1 (2.4) 
j=o

x««,,-e{0,l} V{w,u;}e-E; i, j = 0,. . . , |F| - 1 (2.5)

y« e {o, 1} VD e v ; » = o, . . . , |F| - i (2.6)

The target, minimising the global penalty to be paid, is expressed by 

(2.1); equations (2.2) hold because exactly one frequency is assigned to each 

transmitter. Equations (2.3) and (2.4) have been inserted to maintain consis­ 

tency between the values of the x and y variables; finally set inclusions (2.5) 

define the domain for the x's and set inclusions (2.6) state that y's must be 

in {0,1}.

2.2.2 Mathematical formulation FAP2

The formulation described in this section is a modification of the one pre­ 

sented in Aardal et al. [2] within the EUCLID CALMA project. 

To describe F API we need the following definitions:

  zvw : {0,1} variable defined for every {v,w} e E. It is 1 when there 

is interference involving transmitter v and transmitter w (i.e. |/(u) - 

f(w)\ < dvw );

• xvi : {0,1} variable defined for every v   V and for every i E F. It is 1
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when transmitter v is assigned to frequency i.

(FAP2) Mm J^ pvwZwu (2.7)

\F\-l

s.t. J^ xvi = 1 Vv e V (2.8)
«=0

V{u, «;} £; i,j = 0,...,|F|-l; 
+ zwj < 1 + 2  (2.9)

{0, 1} V{u,u>}e£ (2.10)

1 (2.11)

Here (2.7) expresses the target: minimising the penalty to be paid; equa­ 

tions (2.8) assert that every transmitter has to be assigned to exactly one 

frequency and inequalities (2.9) activate the z variables in the case of inter­ 

ference. Set inclusions (2.10) and (2.11) state that the z's and the x's have 

to be boolean variables.

2.2.3 Mathematical formulation FAP3

This formulation is a simplification of the one proposed (but not studied) near 

the end of Koster's PhD thesis [60], where it is stated to be a refinement and 

extension of the Orientation Model (Borndorfer et al. [20]). 

To describe FAP3 we need the following definitions:

  yv : integer variable defined for every v   V. It represents the frequency 

assigned to transmitter v;

• x lvw : {0,1} variable defined for every {v, w} e E. It is 1 when \yv -yw \ <

Uvw'i

0 otherwise;
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x°w : {0,1} variable defined for every {v,w} e E. It is 1 when yv -yw > 

dvw ; 0 otherwise;

xlw : {0,1} variable defined for every {u, w} 6 E. It is 1 when yw -yv > 

dvw ; 0 otherwise.

(FAP3) Min Pvw x lvw (2.12)

s.t. z^ + xlw + x 2vw = 1 V{u, u>} e £ (2.13)

yv -yw > (dvw + 1)*1 - dvwxlw - (\F\ - l)xlw V{u, w}£E (2.14)

yv -yw < (\F\ - l)x°vw + dvwxlw - (dvw + l}xlw V{v, w}£E (2.15)

yw e{0,l,...,|F|-l} VweV (2.16)

*le{o,i} V{«,u;}e£; (2.17)

^Le{0,l} V{u, w}EE (2.18) 

«Le{0,l} V{«,ti;}e£ (2.19)

Here the target, minimising the global penalty to be paid, is expressed 

by (2.12); equations (2.13) are introduced to force exactly one among x°w , 

x^w and xlw to be 1 for every {v,w} 6 E] inequalities (2.14) and (2.15) 

are introduced to maintain consistency between the values of the x and y 

variables; set inclusions (2.16) are inserted to define the permitted values for 

the y's; finally set inclusions (2.17), (2.18) and (2.19) fix the domains for all 

the x's.

2.2.4 Dimensions of formulations

In this section we estimate, given the problem characteristics (i.e. the number 

of vertices, the number of edges and the frequency domain dimension), the 

number of constraints and variables of each formulation presented in the
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Formulation

FAPl

FAPl

FAP3

No. of Constraints

\V\ + 2\E\\F\

\V\ + \E\0(\F\)

3\E\

No. of Variables

\V\\F\ + \E\\F\*

\V\\F\ + \E\

\V\ + 3\E\

Table 2.1: Dimensions of the formulations.

previous sections. We group these results in Table 2.1, where the columns 

have the following meaning:

  Formulation: names of the three formulations studied in the previous 

sections;

  No. of Constraints: expressions for the number of constraints of the 

formulations (number of rows of the problem matrix). Constraints 

defining variable domains are not counted here:

  No. of Variables: expressions for the number of variables of the formu­ 

lations (number of columns of the problem matrix).

Analysing Table 2.1, it is possible to have an idea of how the formula­ 

tions studied modify their dimensions when the characteristics of the problem 

modelled change. It can be seen that the number of constraints of FAPl 

and FAPl is dominated by the product between \E\ (number of edges of the 

graph representing the problem) and a quantity proportional to \F\ (number 

of frequencies available) 1 . This result is not encouraging, because it suggests 

that for most of the problems the number of constraints will be too large to be 

handled. For the other formulation, FAP3, we have 3\E\ constraints. This

J In the estimate for the number of constraints of FAPl, max{v,w}£E{dvw} has been 

considered as limited by a problem-independent constant. This is generally true in reality.
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means that FAP3 should have a reasonably small number of constraints, 

especially on sparse problems.

Analysing the third column of Table 2.1 we can see how FAPl has a 

number of variables proportional to \V\ 2 |F| 2 , a value that could become much 

too large even for relatively small problems. Formulation FAPl appears to 

be the one with the smallest number of variables when problems have a small 

fixed span, while F.4P3 should be the smallest one in the case of problems 

with larger span and which are not too dense.

Concluding the examination of Table 2.1, we can state that FAP3 is the 

most promising formulation from a dimensional point of view. It is probably 

the only one of the formulations described here which can be used to deal 

with real problems.
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Chapter 3

Upper Bounds

This chapter is dedicated to heuristic algorithms for the FS-FAP.

After a brief review of the methods described in the literature, we present 

an adaptation to the FS-FAP of two well-known approximation algorithms. 

In particular, we describe the first application (as far as we are aware) of a 

modified version of the original tabu search paradigm to the FS-FAP.

The chapter is concluded with some computational tests.

Some of the results presented in this chapter can be found in Montemanni 

and Smith [77] and Montemanni et al. [78].

3.1 Literature review

Many heuristic algorithms have been presented in the literature for the FS- 

FAP, or for slightly more complex problems which generalise it. In this 

section we briefly describe some of these approaches, without attempting to 

be comprehensive. More detailed reviews can be found in Koster [60], Smith 

et al. [87], Eisenblatter et al. [39] and, for the algorithms developed within 

the EUCLID CALMA project, in Hurkens and Tiourine [51], Tiourine et al.
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[96] and Aardal et al. [3].

Borndorfer et al. [18], [19] and Eisenblatter [40] present some constructive 

algorithms (i.e. algorithms which construct a solution step by step starting 

from an empty one) together with some basic local searches (i.e. algorithms 

which move from solution to solution, searching for the best possible one). 

Other notable local search approaches are presented in Koster [60] and Mon- 

temanni [75], where a set of constructive algorithms is also proposed. An 

interior point method applied to a quadratic formulation of FS-FAP is de­ 

scribed in Warners [100] and in Warners et al. [101].

In the field of metaheuristic algorithms (i.e. iterative methods which, 

using particular strategies, drive a subordinate heuristic algorithm to explore 

the search space in an intelligent way), an Approximate Non deterministic 

Tree Search (ANTS) algorithm is presented in Maniezzo and Carbonaro [70], 

Maniezzo et al. [71] and Montemanni [75]. Some methods based on the 

genetic algorithm paradigm are proposed in Kolen [59] and in Lau and Tsang 

[65]. Boyce et al. [23] present a GEneral NETwork (GENET) algorithm 

together with a tabu search algorithm. Finally, a Guided Local Search (GLS) 

algorithm is presented in Voudouris [98] and Voudouris and Tsang [99].

In Whitaker et al. [103] a tabu search algorithm developed to deal with 

binary and non binary constraints (i.e. constraints involving more than two 

transmitters at a time), called NBS (non binary solver), is described.

Some authors have focussed their attention on unweighted problems 

(V{u, w} pvw = 1), where the target is to minimise the number of constraint 

violations. Some of the most interesting methods working on this model are 

briefly summarised in the following paragraph.

Two approaches to unweighted problems based on the tabu search para­ 

digm are described in Castellino et al. [27] and Hao et al. [49] respectively
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(see also Dome and Hao [35]), while an evolutionary algorithm is presented 

in Dome and Hao [34]. A different approach to the problem, based on a 

randomised algorithm is described in Zerovnik [106]. The most complete col­ 

lection of heuristic methods for unweighted problems is provided by FASOFT 

(Hurley et al. [52]), where assorted constructive algorithms, local searches 

and metaheuristic algorithms are implemented.

3.2 The simulated annealing algorithm

In this section we describe the general framework of the simulated annealing 

algorithm and an implementation for the FS-FAP.

3.2.1 General description

Simulated annealing is a metaheuristic algorithm derived from thermody- 

namic principles. It has been applied originally to combinatorial optimisa­ 

tion in Kirkpatrick et al. [58]. It can be used to find (near) minimum cost 

solutions 1 of difficult problems characterised by vast search spaces, on which 

it is impossible to obtain the optimal solution by running exact algorithms. 

The search proceeds with the cost function reducing most of the time, but 

it is allowed to increase sometimes to permit escape from local minima which 

are not global minima. The analogy with thermodynamics, and specifically 

with the way that liquids freeze and crystalise, or metals cool and anneal, is 

in the strategy adopted to accept or not accept cost-increasing solutions. At 

high temperatures, the molecules of a liquid move freely with respect to one 

another. If a liquid metal is cooled quickly (i.e. quenched), it does not reach

1 Here and in the following we suppose the methods to be applied to minimisation 

problems. It is trivial to adapt the descriptions for the maximisation case.
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a minimum energy state but a somewhat higher energy state corresponding, 

in the mathematical sense, to a suboptimal solution. On the other hand, 

if the liquid is cooled slowly, thermal mobility is restricted. The atoms are 

often able to line themselves up and form a pure crystal that is completely 

regular. The crystal is the state of minimum energy for the system, which 

corresponds to the optimal solution in a mathematical optimisation prob­ 

lem. The algorithm is based on the connection of the physical concept of 

temperature with the mathematical concept of the probability of accepting 

a cost-increasing solution. The probability will be high initially and will de­ 

crease slowly, like the temperature in the annealing process which produces 

the regular crystal.

The main elements of the algorithm are:

  Solution representation: each feasible solution of the optimisation prob­ 

lem must have a unique representation within the search space;

  Cost function: a function Cost mapping each feasible solution into a 

value representing its cost (analogous to the energy of the system in the 

thermodynamic case). The goal of the algorithm is to find a solution 

which minimises the cost;

  Neighbourhood: a function mapping each feasible solution S into a 

set of other solutions. Each time the algorithm has to consider a new 

solution it is chosen randomly among those in the neighbourhood of 

the current solution;

  Temperature t: a control parameter analogous to the temperature in 

the physical annealing process. It starts with an high value and de­ 

creases during the computation. The parameter is used to decide 

whether or not to accept a new solution;
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• Annealing schedule: this indicates how t is lowered from high values 

to low values during the running of the algorithm. It simulates the 

physical process of cooling.

• Termination criterion: the algorithm stops when the termination crite­ 

rion is satisfied. Generally the criterion is represented by a minimum 

value for the temperature or by a maximum number of consecutive it­ 

erations carried out without accepting solutions with cost higher than 

the actual one.

At each iteration the algorithm selects a new solution SN from the neigh­ 

bourhood of the current solution So • If the cost of the new solution is less 

than or equal to the cost of the old one (i.e. Cosi(Sjv) < Cost(So)) then 

the new configuration is accepted and becomes the new current solution. If 

Cost(SN) > Cost(So) then the new configuration may still be accepted, with 

probability given by:

. f, Co,t(SN )-Co,t(S0 ) •>min|l,e——— «——— j (3.1)

This general scheme, which always takes a downhill step and sometimes takes 

an uphill step, is known as the Metropolis algorithm. The simulated annealing 

procedure described by Kirkpatrick et al. [58] uses the Metropolis algorithm 

and varies the temperature parameter t during the computation. In the 

beginning t is high and most of the new configurations are accepted; as the 

algorithm proceeds t reduces until it reaches a value where non improving 

configurations are all rejected.

The pseudocode for the general simulated annealing algorithm is pre­ 

sented in Figure 3.1. imit is a parameter representing the initial tempera­ 

ture. Isa is the number of iterations carried out by the algorithm at each 

temperature value.
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SimulatedAnnealing (Pr)

INPUT:
Pr = optimisation problem.
OUTPUT:
a solution of Pr.

So '•= randomly generated feasible solution of Pr; 
Best := S0 ]
t := initial temperature t,-n ,-t ; 
While(termination criterion not met) 

For k := 0 to Isa
SN '•— randomly chosen solution in the neighbourhood of So', 
fff i i • r« ,\ Co,t(sN )-co,t(s0 ) 
li(random number m [0,1) < e < )

So '•= SN;
lf(Cost(SN ) < Cost(Best))

Best :— SN\ 
Endlf 

Endlf 
EndFor 
reduce i; 

EndWhile 
Return Best;

Figure 3.1: Simulated annealing algorithm.

3.2.2 A simulated annealing algorithm for the FS-FAP

Our adaptation of the general simulated annealing schema to the FS-FAP 

is presented in this section. For the description we refer to the notation 

introduced in Section 2.1.

3.2.2.1 Solution representation

A frequency assignment S is represented as a list (/s(0), /s(l),..., /s(|^| — 

1)} where element fs(v) contains the frequency assigned to transmitter v.
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3.2.2.2 Cost function

The cost function Cost maps an assignment into the sum of the penalties 

paid in it. Formally we have:

Cost(S)=

3.2.2.3 Neighbourhood

Given a current solution So, another assignment SN is in its neighbourhood 

if SN differs from So for the frequency assigned to exactly one violating 

transmitter of So, where a violating transmitter is defined as a transmitter 

involved in at least one constraint violated in So • Formally, if we define V/0 

as the set of violating transmitters in the assignment So, SN is a neighbour 

of So if 3v G Vgo | fs0 (v) ^ fsN (v) and Mw e V,w ^ v fs0 (w) = fsN (w)-

The neighbourhood described above is often referred to as a single move 

full violating neighbourhood in the literature (see, for example, Hurley et al. 

[52]).

We have also experimented with a bigger neighbourhood, the so called 

double move full violating neighbourhood. Intuitively this considers as a neigh­ 

bour of So each solution which differs from So in the frequencies assigned 

to exactly two transmitters, of which at least one must be a violating trans­ 

mitter. The use of this more complex neighbourhood slightly slowed down 

the algorithm without giving any improvement. For this reason we did not 

explore it further.

3.2.2.4 Temperature t

In the simulated annealing implementation we propose, the initial tempera­ 

ture tinit is a user defined parameter and t decreases from this initial value
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according to the annealing schedule.

3.2.2.5 Annealing schedule

The annealing schedule we adopt is known as geometric cooling in the liter­ 

ature (see, for example, Hurley et al. [52]). Every Isa iterations we reduce t 

using the following formula:

t:=at (3.3)

where 0 < a < 1 is a user defined parameter.

The annealing schedule described is very simple. More complex schemes 

have been tested, but they did not appear to improve the results of the 

algorithm.

3.2.2.6 Termination criterion

The algorithm stops when Imax consecutive iterations are carried out without 

accepting a solution with a cost higher than that of the current solution. lmax 

must be a very large number to prevent the phenomenon of interrupting the 

search process when a long sequence of consequent improving moves are 

carried out.

3.2.2.7 Implementation details

The implementation technique we adopt is inspired by the one described in 

Hao et al. [49]. We maintain a table of dimension \V\ x |F|, called the cost 

change table, where position (u,/) contains the cost of the solution obtained 

by changing to / the frequency currently assigned to transmitter v (if / is 

the frequency currently assigned to u, then the value contained in the entry 

(v,f) is the cost of the current solution). Each time a move is carried out,
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the elements of the table affected by the move are updated accordingly. For 

each transmitter v we also adopt a list containing its adjacent transmitters 

(transmitters involved in at least one constraint with v). This list is used 

to speed up the table updating process. Only the transmitters which are 

adjacent to the one modified are involved in the updating process. Only 

the positions of the table corresponding to the frequencies which interfere 

with the old or the new frequency of the reassigned transmitter are modified. 

An example of the use of the cost change table is given in Figure 3.2. An 

interval of columns of the rows corresponding to four transmitters, u, v, w 

and 2, appears in the figure. In the graph representing the problem, u and 

v are not connected, u and w are connected with an edge with separation 

duw — 2 and u and z are connected with an edge with separation duz = 0. 

In the figure we depict the effects which derive from the modification of 

the frequency assigned to transmitter u from j (Old) to i (New). We have 

highlighted the table entries the values of which are modified because of the 

frequency reassignment. In blue we have indicated the entries which increase 

their values (of puw and puz for w and z respectively) and in yellow the entries 

which have their values decreased. Notice that the entry (w, k] (green) is not 

modified. As transmitter v is not connected with transmitter u, its row is 

not affected by the frequency reassignment.

Initialising the table has a computational complexity of 0(|V| 2 |F|). Af­ 

ter each move, the matrix can be updated with a theoretical complexity of 

0(|V||F|). In practise the updating process is extremely fast, because the 

entries of the table which are updated are generally a small subset.

An implementation of the algorithm without the cost change table would 

have a theoretical complexity of O(|V|) at each iteration (to compute the 

variation of cost due to the move selected). The implementation we propose,
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Figure 3.2: Updating the cost change table.

notwithstanding its higher theoretical complexity, appears to be faster (some 

preliminary tests confirmed this). The reason is that at all of the iterations 

where the potential move is rejected, no cost calculation of table updating is 

necessary with this implementation.

3.3 The tabu search algorithm

In this section we describe the general ideas of the tabu search algorithm and 

an implementation of it we have developed for the FS-FAP. This implemen­ 

tation presents some particular features, which are not present in the general 

schema. These features seem to improve the performance of the tabu search 

algorithm on the FS-FAPs.

3.3.1 General description

Tabu search is a metaheuristic algorithm. It was first suggested by Glover 

[43] (see also Glover et al. [44]).

The basic idea of the method is to partially explore the search space of all 

feasible solutions by a sequence of moves. At each iteration, the move carried
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out is the most promising among those available. A mechanism which forbids 

a set of moves at each iteration is present, aiming to help the algorithm to 

escape from local (but not global) minima.

Formally, the main elements of the algorithm are:

• Solution representation: each feasible solution of the optimisation prob­ 

lem must have a unique representation within the search space;

• Cost function: a function Cost mapping each feasible solution into a 

value representing its optimisation cost. The goal of the algorithm is 

to find a solution which minimises this value;

• Neighbourhood: a function mapping each feasible solution 5 into a 

set of other solutions. Each time the algorithm has to consider a new 

solution, it is chosen from the neighbourhood of the current solution;

• Tabu list: a list containing the last T moves carried out, which for this 

reason are forbidden. A solution obtained from the current solution S 

with a move contained in the tabu list, cannot (in general) be a member 

of the neighbourhood of S]

• Aspiration criterion: if a tabu move (a move which is contained in 

the tabu list) satisfies this criterion, then the solution obtained by 

applying it to the current solution S can be considered to be in the 

neighbourhood of S. The usual criterion is that the move produces the 

best solution obtained so far.

• Termination criterion: the algorithm stops when the termination crite­ 

rion is satisfied.

At each iteration the algorithm calculates the neighbourhood of the current 

assignment. Solutions generated by using a move contained in the tabu list
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cannot be in the neighbourhood set, unless the respective move satisfies the 

aspiration criterion. The solution with the minimum cost among those in 

the neighbourhood becomes the new current solution.

The tabu list, whose dimension strictly depends on the neighbourhood 

selected, has been inserted to prevent the search becoming trapped in a local 

minimum, while the aspiration criterion has been introduced to give more 

flexibility to the algorithm: it makes a move contained in the tabu list feasible 

in case it would produce a very promising new solution.

In Figure 3.3 the pseudocode of the general tabu search algorithm is 

presented.

TabuSearch (Pr)

INPUT:
Pr = optimisation problem.
OUTPUT:
a solution of Pr.

S := randomly generated solution of Pr;
Best := S;
While(termination criterion not met)

S :— best solution in the neighbourhood of S*;
lf(Cost(S) < Cost(Best)) 

Best := S;
Endlf
update tabu list; 

EndWhile 
Return Best;

"the neighbourhood of S does not include solutions obtained using 
those moves which are contained in the tabu list and do not sati­ 
sfy the aspiration criterion.

Figure 3.3: Tabu search algorithm.
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3.3.2 A tabu search algorithm for the FS-FAP

In this section we present our adaptation of the tabu search algorithm to the 

FS-FAP. For the description we refer to the notation introduced in Section 

2.1.

3.3.2.1 Solution representation

The representation of a frequency assignment S is the same as that described 

in Section 3.2.2.1 for the simulated annealing algorithm. It is obtained by 

using a list (/s(0), /s(l), •.., fs(\V\ — 1)}, where element fs(v) contains the 

frequency assigned to transmitter v.

3.3.2.2 Cost function

The function Cost is the same as that described for the simulated annealing 

algorithm in equation (3.2). Cost maps each assignment S into the sum of 

the penalties paid in it.

3.3.2.3 Neighbourhood

An assignment SN is in the neighbourhood of the current solution So if SN 

differs from So in the frequency assigned to exactly one violating transmit­ 

ter2 and the move which produces SN from So is not in the tabu list (no 

aspiration criterion is used, see Section 3.3.2.5). Defining Vgo as the set 

of violating transmitters in the assignment So, SN is a neighbour of So if 

3^ € V£ | fSo (v) + fsM and Vw e V> + v fSo (w) = fStl (w) and the 

move (v,fsN (v)) is not in the tabu list.

Accordingly to the definition given in Section 3.2.2.3, a violating transmitter is a 

transmitter involved in at least one constraint violated in So .
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3.3.2.4 Tabu list

The tabu list of our algorithm contains pairs (v, /), where v is a transmitter 

and / a frequency. Each time a move involving the assignment of frequency 

/ to transmitter v is carried out, we insert (v,/) into the tabu list, where it 

will remain for approximately T iterations.

Instead of using a tabu list with a fixed length T, as in the original schema, 

we have decided to dynamically vary T during the running of the algorithm. 

This choice has been suggested by some tests which indicated the superiority 

of the dynamic tabu list over the static one (see Section 3.4.3). In particular 

we have noticed that the best results were achieved by reducing the length of 

the tabu list in the same way as it is done for the temperature parameter in 

the simulated annealing algorithm. Every Its iterations we reduce the length 

T of the tabu list using the following formula:

T:=/3T (3.4)

where 0 < (3 < 1 is a user defined parameter. When T is reduced, the oldest 

moves which exceed the new length of the list become feasible. The initial 

value of T, which we will refer to as Tim-t, is defined by the user.

3.3.2.5 Aspiration criterion

We do not use any aspiration criterion in our tabu search algorithm. Some 

preliminary tests suggested that the use of an aspiration criterion slows down 

our implementation of the algorithm (because of the extra data structures 

and their updating) without improving the results. This situation is quite 

uncommon in the field of combinatorial optimisation, and could be an indi­ 

cation of the peculiarity of the FS-FAP.
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3.3.2.6 Termination criterion

The algorithm stops when T, the length of the tabu list, becomes smaller 

than a threshold value Tm;n , which is specified by the user. This termination 

criterion is quite uncommon for a tabu search algorithm, but it is trivially 

connected with our strategy of dynamically modifying the parameter T.

3.3.2.7 Implementation details

The implementation technique we adopt is an extension of that described in 

Section 3.2.2.7 for the simulated annealing algorithm.

In addition to the cost change table (which contains in each position (u, /) 

the cost of the solution obtained by changing to / the frequency currently 

assigned to v) there is a second table, again of dimension \V\ x |F|, containing 

in each position (t>, /) the last iteration number in which the respective move 

(assignment of frequency / to transmitter v) has been carried out. This table 

is used to check in a fast way whether or not a candidate move is tabu: if 

the iteration number stored in the cell is greater than or equal to the current 

iteration number minus T, then the move is tabu. We also maintain a list 

which indicates for each transmitter, the frequency (different from the one 

currently assigned) that, without generating a tabu move, would produce 

the lowest cost if assigned to it. This list is used at each iteration to select 

quickly the best move in the active neighbourhood. After each iteration this 

list is updated efficiently, by modifying only the entries affected by the last 

move. We also have a one-dimensional array of length |T,m-t | which contains 

the conventional tabu list. It is used at each iteration to identify quickly the 

move which exits from the list (and to update efficiently the data structures 

affected by this exit). Like for the implementation of the simulated annealing 

algorithm, for each transmitter we have a list of the adjacent transmitters.
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These lists are used to speed up the process of updating the structures.

Initialising the structures has a computational complexity of 0(|V| 2 |F|). 

After each move, the tables can be updated with a theoretical complexity of 

O(|V||F|). In practise the updating process is very fast, but not as fast as 

for the simulated annealing algorithm, because of the additional overhead of 

the extra data structures.

3.4 Computational results

In this section we introduce the graphs we will use in the benchmarks adopted 

in this thesis. We also present the results obtained on these benchmarks by 

the heuristic algorithms described in this chapter. Section 3.4.3 is dedicated 

to a study on the effectiveness of the dynamic length tabu list within the 

tabu search algorithm, while the chapter is closed with a comparison of our 

algorithms with some other methods presented in the literature.

3.4.1 Description of graphs

In this section we describe the characteristics of the graphs on which the 

benchmarks of this thesis are based. It is interesting to notice that we will 

often undertake different tests on the same graph, changing the size of the 

spectrum available. For this reason there are more benchmarks than the 

number of graphs we describe in Section 3.4.1.1, Section 3.4.1.2 and Section 

3.4.1.3.

3.4.1.1 Graph set 1

The weighted graphs of the first set were originally minimum span problems. 

We have converted them into the FS-FAP format by fixing V{u, w} pvw — 1.
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Specifically, the scenarios of this first set are created from different families 

of minimum span problems:

• AC-x-y: scenarios derived from a binary constraint representation of 

area coverage problems (see Watkins et al. [102]). x is the number of 

transmitters and y the required SIR (signal to interference ratio);

• GSM-x: realistic GSM scenarios, x is the number of transmitters in 

the network;

• Testx: graphs generated by Cardiff University (see Castellino et al. [27] 

and Smith et al. [92]). Again, x is the number of transmitters in the 

network;

• P06-z: subproblems of the well-known Philadelphia problem, originally 

proposed in Anderson [10] (see also Smith et al. [92]). The generic 

graph P06-z is obtained by considering for every cell i of the problem 

a demand of ^^ , where m(i) is the original demand for cell i.

• POQb-z: graphs obtained from the Philadelphia problem with the same 

method described for P06-z, but with a co-cell separation of 3 instead 

of the original 5. This has been done to more closely match the char­ 

acteristics of realistic modern frequency assignment problems.

3.4.1.2 Graph set 2

The second family of scenarios is formed by only one type of graph:

• GSM2-x: adaptation to our model of realistic GSM scenarios, x is the 

number of transmitters in the network.
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3.4.1.3 Graph set 3

The third family is composed of random scenarios we have generated using 

a basic graph generator. Our generator randomly places some sites into a 

rectangular region and assigns to each site a random number of transmitters. 

Given a required edge density for the graph, we fix the Euclidean distance 

f. below which there will be a constraint (edge). The highest separation 8 

and highest penalty <f> which will appear in the problem are specified by the 

user. These values will be used for co-sited constraints. For each non co-site 

constraint, if we call <r the Euclidean distance between the two transmitters 

v and w involved, the required separation dvw is a random integer in the 

following interval:

o < dvw
Each pvw is generated in a similar way, and it is a random integer in the 

following interval:

(3.6)

We do not expect the scenarios created using our generator to be very 

realistic because of the very basic model of reality adopted, but we think 

they are adequate for our purpose. For the description of better, and more 

complex, frequency assignment problem generators, we refer the interested 

reader to Dunkin and Alien [36] and van Benthem [97].

Specifically, the third set of scenarios is composed of the following type 

of graph:

• rl-r1-s-x-w-8-4>: rl is a random seed used to place sites on the rectan­ 

gular area; r2 is a second random seed adopted to calculate separations 

and penalties; s is the number of sites of the network; x is the number
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of transmitters to distribute among the s sites; w (0 < w < 1) is an 

approximation of the edge density of the graph (number of edges of the 

graph PS wx(^~ l > ); J is the maximum separation value in the scenario; 

<j) is the maximum penalty value in the scenario.

3.4.1.4 Graph characteristics

In Table 3.1, Table 3.2 and Table 3.3 we summarise the characteristics of the 

graphs previously introduced. The meaning of the columns is as follows:

• Graph: names we will use to refer to the scenarios;

• \V\: number of vertices of each graph;

• \E\: number of edges of each graph;

• dvw : separation values in each graph. The subcolumns have the follow­ 

ing meaning:

— Max: maximum separation in each graph;

— Avg: average of the separations of each graph;

• Pvw'- penalty values in each graph. The subcolumns have the same 

meaning as in column "dvw ".

3.4.2 Results of our heuristic algorithms

In this section we group the results obtained by the algorithms described in 

Section 3.2.2 and Section 3.3.2 on the benchmarks derived from the graphs 

previously described.

All the tests of this thesis have been carried out on a computer with an 

Intel Pentium II 400MHz processor, equipped with 128MB of memory.
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Graph

AC-45-17
AC-45-25
AC-95-9

AC-95-17
GSM-93
GSM-246

Test95
Test282
P06-5
P06-3

P06b-5
P06b-3

|V|

45
45
95
95
93
246
95
282
88
153
88
153

\E\

482
801
781

2298
1073
7611
1214

10430
3021
9193
3021
9193

Clynj

Max Avg
1 0.29
1 0.34
0 0.00
1 0.15
1 0.28
2 0.32
4 1.37
4 1.38
4 0.58
4 0.59
2 0.39
2 0.40

Pvw

Max Avg
1 1.00
1 1.00
1 1.00
1 1.00
1 1.00
1 1.00
1 1.00
1 1.00
1 1.00
1 1.00
1 1.00
1 1.00

Table 3.1: Problem characteristics. Graph set 1.

Graph

GSM2-184 
GSM2-227
GSM2-272

\v\
184 
227 
272

\E\

6809 
10088 
14525

Uyw

Max Avg
2 0.20 
2 0.18 
2 0.16

Pvw
Max Avg
10s 8.946 * 106 
108 9.102 * 106 
108 7.953 * 106

Table 3.2: Problem characteristics. Graph set 2.

Graph

1-1-50-75-30-2-50
1-2-50-75-30-4-50
1-3-50-75-30-0-50
1-4-50-75-30-2-1

1-5-50-75-30-2-100
1-6-50-75-30-0-10000

\v\
75
75
75
75
75
75

\E\

835
835
835
835
835
835

dvw 
Max Avg

2 0.26
4 0.62
0 0.00
2 0.25
2 0.26
0 0.00

Pvw
Max Avg
50 10.81
50 11.01
50 10.97
1 1.00

100 21.35
10000 2068.48

Table 3.3: Problem characteristics. Graph set 3.
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3.4.2.1 Parameter settings

After a parameter tuning phase, in which we have noticed that the tuning of 

the parameters is not very crucial for the results, we decided on the following 

settings. For all of the problems we have fixed a = 0.95, Isa = 2 * 106 , Imax — 

5 * 107 , Tmin = 10, /? = 0.96 and /«, = 5 * 104 . t init = 0.01 for the problems 

based on AC-45-17, AC-45-25, AC-95-9, AC-95-17, GSM-93, Test95 and 

on the graphs of the third set except 1-6-50-75-30-0-10000; t init = 0.1 for 

the problems based on GSM-246, Test282, P06-5, P06-3, P06b-5 and P06b- 

3', tinit = 1 for the problems based on the graphs of the second set and 

on 1-6-50-75-30-0-10000. Tinit = 500 for the problems based on AC-45-17, 

AC-45-25, AC-95-9 and on the graphs of the third set; Tinit = 1000 for the 

problems based on AC-95-17, GSM-93, GSM-246, Test95 and on the graphs 

of the second set. Finally Tin;t — 2000 for the remaining problems (based on 

Test282, P06-5, P06-3, P06b-5 and P06b-3).

As the algorithms are naturally fast because of the efficient implemen­ 

tation, we had the opportunity to choose quite conservative values for the 

parameters, which give priority to a careful search instead of the convergence 

speed. Execution times are anyway under 45 minutes for all of the problems, 

and under 10 minutes for most of them.

3.4.2.2 Results

In Table 3.4, Table 3.5 and Table 3.6 we summarise the results obtained by 

our two algorithms on the benchmarks. Both the algorithms have been run 

five times on each problem. The columns of the tables have the following 

meaning:

• Problem: names of the problems. Each name is composed of the fol­ 

lowing two elements:
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— Graph: name of the graph on which the problem is based;

— |F|: number of channels available;

• Simulated annealing: summary of the results obtained by the simu­ 

lated annealing algorithm in the five runs. The subcolumns have the 

following meaning:

— Min: the best result obtained on each problem;

— Max: the worst result obtained on each problem;

— Avg: the average of the results obtained on each problem in the 

five runs;

• Tabu search: summary of the results obtained by the tabu search al­ 

gorithm in the five runs. The subcolumns have the same meaning as 

in column "Simulated annealing".

From Table 3.4, Table 3.5 and Table 3.6 the tabu search algorithm appears 

to be better than the simulated annealing algorithm, both in terms of best 

solution found and in terms of the average of the costs. It must however 

be observed that for some of the weighted problems (Table 3.5 and Table 

3.6) the simulated annealing algorithms obtains better results than the tabu 

search algorithm.

It is also interesting to observe that both the approaches have obtained, 

in particular for the weighted problems of Table 3.5 and Table 3.6, quite 

scattered results in the five runs (i.e. there is a substantial difference between 

the worst and the best result of the five runs). This is an indicator of the 

difficulty of the algorithms to escape from local minima and to converge to a 

global minimum. For this reason we suspect that the upper bounds may not 

be very good for some of the problems. The scattered results suggest also
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Problem 
Graph

AC-45-17
AC-45-17
AC-45-25
AC-45-25
AC-95-9
AC-95-9

AC-95-17
AC-95-17
GSM-93
GSM-93
GSM-246
GSM-246

Test95
Test95

Test282
Test282
P06-5
P06-5
P06-3
P06-3

P06b-5
P06b-5
P06b-3
P06b-3

\F\
7
9
11
19
6
10
15
21
9
13
21
31
31
36
61
71
11
41
31
71
21
31
31
71

Simulated 
Min Max
32
15
33
8

31
3
34
10
32
7
82
28
12
8

61
37
143
15

115
26
52
25

112
26

32
15
33
8

31
3

35
10
33
8
85
30
13
9

65
39
147
15

119
26
52
25

112
26

annealing 
Avg
32.0
15.0
33.0
8.0

31.0
3.0
34.2
10.0
32.4
7.8
83.0
28.8
12.8
8.4

63.6
38.0
144.8
15.0
118.2
26.0
52.0
25.0
112.0
26.0

Tabu search 
Min Max Avg
32
15
33
8

31
3

33
10
32
7
79
25
12
8

51
27
133
15

115
26
52
25

112
26

32
16
33
8

31
3

34
10
34
8

84
28
13
9

59
34
136
15

119
26
52
25
113
26

32.0
15.4
33.0
8.0

31.0
3.0

33.8
10.0
33.0
7.6

82.2
26.6
12.8
8.2

55.8
31.2
134.6
15.0
116.4
26.0
52.0
25.0
112.4
26.0

Table 3.4: Upper bounds results. Benchmark set 1.

Problem 
Graph |F|

GSM2-184 39 
GSM2-184 49 
GSM2-227 39 
GSM2-227 49 
GSM2-272 39 
GSM2-272 49

Simulated annealing 
Min Max Avg
5849 6546 6207.6 
874 905 898.8 

11125 12768 12151.8 
2513 2717 2597.4 

32210 34252 33654.0 
8830 9820 9340.6

Tabu search 
Min Max Avg
5521 5869 5736.4 
999 1247 1118.0 

10979 11984 11431.4 
2459 3148 2743.4 

27416 30149 29208.2 
7785 8629 8178.8

Table 3.5: Upper bounds results. Benchmark set 2.
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Problem 
Graph |F|

1-1-50-75-30-2-50 5 
1-1-50-75-30-2-50 10 
1-1-50-75-30-2-50 11 
1-1-50-75-30-2-50 15 
1-2-50-75-30-4-50 11 
1-3-50-75-30-0-50 11 
1-4-50-75-30-2-1 10 

1-5-50-75-30-2-100 10 
1-6-50-75-30-0-10000 10

Simulated annealing 
Min Max Avg
1247 1259 1253.4 
119 128 121.2 
59 81 76.0 
11 13 12.0 

347 366 355.8 
36 40 38.2 
19 19 19.0 
204 229 218.8 
7140 8181 7736.8

Tabu search 
Min Max Avg
1242 1304 1266.0 
101 118 107.0 
68 74 70.8 
12 13 12.2 

323 344 335.6 
36 38 37.0 
19 20 19.2 

186 209 199.2 
6942 7464 7180.0

Table 3.6: Upper bounds results. Benchmark set 3.

that, given a problem, many short runs could produce a better upper bound 

than a single long run.

3.4.3 Effectiveness of the dynamic length tabu list in 

the tabu search algorithm

In this section we compare the results obtained by the tabu search algorithm 

which incorporates a dynamic length tabu list, with the results obtained by 

a tabu search algorithm with a fixed length tabu list (i.e. (3 = 1), which we 

will refer to as the conventional tabu search algorithm.

The implementation of the conventional algorithm is the same as de­ 

scribed in Section 3.3.2.7 except for the exit criterion, which in this case is 

a maximum computation time of 45 minutes. For each problem considered, 

this time is longer than the time required by the tabu search algorithm with 

the dynamic length tabu list, which in the remainder of the chapter we will 

refer to as the dynamic tabu search algorithm.

In Table 3.7, Table 3.8 and Table 3.9 the results achieved by the conven­ 

tional tabu search are compared with those obtained by the dynamic tabu
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search. Three different values for the length of the conventional tabu list 

have been considered for each problem, and for each one of these values the 

best result achieved in five runs is presented in the table. The columns of 

the table have the following meaning:

• Problem: names of the problems. Each name is composed of the fol­ 

lowing two elements:

— Graph: name of the graph on which the problem is based;

— | F |: number of channels available;

• DTS: best results obtained by the dynamic tabu search algorithm;

• CTS: best results obtained by the conventional tabu search algorithm. 

Subcolumns have the following meaning:

— T,: length of the tabu list;

— Val,: best upper bound obtained with a tabu list of length T,.

The advantage arising from the use of the dynamic length tabu list is clear 

from Table 3.7, Table 3.8 and Table 3.9. The dynamic tabu search algorithm 

obtains a worse result than the conventional tabu search algorithm in only 

two cases (problem GSM2-184 with |F| = 49 and problem 1-1-50-75-30-2-50 

with \F\ = 15). It is interesting to notice that these are problems for which 

the simulated annealing algorithm obtained a better result than the tabu 

search algorithm in the tests of Section 3.4.2.2. This may be an indication 

that, for these problems, the five runs of the tabu search algorithm considered 

in Section 3.4.2.2 were particularly unlucky.

It is also important to observe that the parameter tuning of the dynamic 

tabu search algorithm is easier because even a greatly overestimated choice
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Problem 
Graph |F|

AC-45-17 7
AC-45-17 9
AC-45-25 11
AC-45-25 19
AC-95-9 6
AC-95-9 10
AC-95-17 15
AC-95-17 21
GSM-93 9
GSM-93 13
GSM-246 21
GSM-246 31

Test95 31
Test95 36
Test282 61
Test282 71
P06-5 11
P06-5 41
P06-3 31
P06-3 71

P06b-5 21
P06b-5 31
P06b-3 31
P06b-3 71

DTS

32
15
33
8

31
3
33
10
32
7

79
25
12
8

51
27

133
15

115
26
52
25

112
26

T! Vah
450 36
450 20
450 33
450 8
450 36
450 3
450 40
450 13
900 44
900 13
900 94
900 36
900 15
900 10
1800 83
1800 52
1800 161
1800 15
1800 121
1800 26
1800 52
1800 25
1800 117
1800 26

CTS
T2 Val2
100 32
100 15
140 33
140 8
140 31
140 3
100 34
100 10
100 33
100 7
500 87
500 33
300 12
300 8
400 63
400 36
400 133
400 15
400 123
400 29
400 52
400 25
300 117
300 26

T3 Val3
30 32
30 15
30 34
30 8
30 31
30 3
30 34
30 10
50 33
50 7
100 100
100 34
100 12
100 8
100 68
100 40
100 161
100 21
100 144
100 31
100 61
100 27
100 117
100 26

Table 3.7: Effectiveness of the dynamic length tabu list in the tabu search 
algorithm. Benchmark set 1.

Problem 
Graph |F|

GSM2-184 39
GSM2-184 49
GSM2-227 39
GSM2-227 49
GSM2-272 39
GSM2-272 49

DTS

5521
999

10979
2459
27416
7785

Ti VaU
900 6806
900 1054
900 13325
900 3322
900 30775
900 8877

CTS 
T2 Val2
300 5881
300 874
500 11561
300 2517
500 29481
500 8776

T3 Val3
100 5896
100 999
100 12996
100 2961
100 39506
100 10165

Table 3.8: Effectiveness of the dynamic length tabu list in the tabu search 
algorithm. Benchmark set 2.
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Problem 
Graph |F|

1-1-50-75-30-2-50 5
1-1-50-75-30-2-50 10
1-1-50-75-30-2-50 11
1-1-50-75-30-2-50 15
1-2-50-75-30-4-50 11
1-3-50-75-30-0-50 11
1-4-50-75-30-2-1 10

1-5-50-75-30-2-100 10
1-6-50-75-30-0-10000 10

DTS

1242
101
68
12
323
36
19
186
6942

Ti Vali
450 1347
450 163
450 101
450 18
450 444
450 48
450 24
450 336
450 8982

CTS
T2 Val2
140 1255
140 105
140 73
140 11
140 327
140 39
140 20
140 198
140 7176

T3 Val3
30 1352
30 165
30 102
30 15
30 441
30 44
30 20
30 349
30 9100

Table 3.9: Effectiveness of the dynamic length tabu list in the tabu search 
algorithm. Benchmark set 3.

for parameters T,-nat , ft and Its does not compromise the quality of the esti­ 

mates (although the convergence speed of the algorithm may be affected). 

On the contrary, the choice of parameter T is crucial for the conventional 

tabu search algorithm.

3.4.4 Comparison with algorithms of other authors

In this section we compare our simulated annealing and tabu search algo­ 

rithms with two programs developed by other authors.

The first program considered is FASoFT (Hurley et al. [52]). It treats 

only problems where the target is to minimise the number of constraint vi­ 

olations, so we cannot run it on the second and, except for one problem, 

the third families of benchmarks. As stated in Section 3.1, FASOFT con­ 

tains more than one algorithm. For the tests reported in this thesis we have 

adopted the tabu search algorithm, which seems to be the best one of the 

collection.

The second algorithm we consider is the tabu search algorithm NBS, 

developed by Whitaker et al. [103]. The algorithm has been originally de-
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veloped to deal with binary and non binary constraints, but we do not have 

this last type of constraint. Thus we do not use all of its functionality. Un­ 

fortunately the method is not able to manage the problems of the second 

benchmarks family because their penalties are too high. Consequently we 

have run NBS only on the problems of the first and the third families.

The methods have been tuned in such a way to have computation times 

similar to those of the algorithms developed by us. Notwithstanding our 

efforts in the tuning phase, we believe that the developers of the algorithms 

could have found better parameter configurations, which probably would 

have produced better results.

In Table 3.10 and Table 3.11 we compare the upper bounds produced 

by our algorithms with those provided by FASOFT and NBS. The results 

presented are, for each method, the best obtained in five or more runs. The 

columns of the tables have the following meaning:

• Problem: names of the problems. Each name is composed of the fol­ 

lowing two elements:

- Graph: name of the graph on which the problem is based;

— \F\: number of channels available;

• Simulated annealing: best results obtained by the simulated annealing 

algorithm described in Section 3.2.2;

• Tabu search: best results obtained by the tabu search algorithm de­ 

scribed in Section 3.3.2;

• FASOFT: best results obtained by the tabu search algorithm contained 

in the system FASOFT. The symbol " - ", which appears in the rows
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Problem 
Graph |F|

AC-45-17 7
AC-45-17 9
AC-45-25 11
AC-45-25 19
AC-95-9 6
AC-95-9 10
AC-95-17 15
AC-95-17 21
GSM-93 9
GSM-93 13

GSM-246 21
GSM-246 31

Test95 31
Test95 36
Test282 61
Test282 71
P06-5 11
P06-5 41
P06-3 31
P06-3 71

P06b-5 21
P06b-5 31
P06b-3 31
P06b-3 71

Simulated 
annealing

32
15
33
8

31
3
34
10
32
7

82
28
12
8

61
37
143
15

115
26
52
25

112
26

Tabu 
search

32
15
33
8

31
3
33
10
32
7

79
25
12
8

51
27
133
15

115
26
52
25

112
26

FASOFT

33
16
34
9

31
3
36
11
34
9

89
35
15
10
75
45
137
16

123
28
52
25
113
26

NBS

32
16
33
8

31
3
36
10
39
9

93
36
13
9

70
42
144
15
132
29
53
25
116
26

Table 3.10: Upper bounds comparison. Benchmark set 1.

of the weighted problems, means that no result is available (method 

cannot manage this type of problem);

• NBS: best results obtained by the tabu search algorithm NBS.

On the benchmarks analysed in Table 3.10 and in Table 3.11, both FA- 

SOFT and NBS are clearly dominated by our algorithms. On some problems 

(in particular on those of the third benchmark set) there is a great difference 

among the upper bounds provided by the different algorithms. This may be
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Problem 
Graph |F|

1-1-50-75-30-2-50 5
1-1-50-75-30-2-50 10
1-1-50-75-30-2-50 11
1-1-50-75-30-2-50 15
1-2-50-75-30-4-50 11
1-3-50-75-30-0-50 11
1-4-50-75-30-2-1 10

1-5-50-75-30-2-100 10
1-6-50-75-30-0-10000 10

Simulated 
annealing

1247
119
59
11
347
36
19

204
7140

Tabu 
search
1242
101
68
12

323
36
19

186
6942

FASOFT

-
-
-
-
-
-

19
-
-

NBS

1296
131
112
17

371
44
21

251
18034

Table 3.11: Upper bounds comparison. Benchmark set 3.

seen as an indication of the difficulty of these problems.

We believe that the better performance of our methods can be explained 

partly by a better implementation. The two tabu search algorithms of FA- 

SOFT and NBS are implemented in a classic way, and do not use the spe­ 

cial structures adopted in the implementation of our algorithms (see Section 

3.2.2.7 and Section 3.3.2.7). A consequence of the adoption of these spe­ 

cial structures is that our tabu search is able to use a full neighbourhood, 

which we believe to be a really important factor in the quality of our re­ 

sults. FASOFT and NBS have to use a random (partial) neighbourhood for 

computational reasons.

Considering the pure speed of the algorithms, we can observe that, 

notwithstanding that we consider a full neighbourhood instead of a partial 

one as the other methods, our tabu search is, in terms of number of itera­ 

tions carried out in a given interval of time, at least 5 times faster than the 

tabu search of FASOFT and at least 20 times faster than the one developed 

within NBS. It is anyway important to remind the reader that NBS is the 

only method, among those compared, which is able to deal with non binary
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constraints. This extra feature contributes to make the algorithm slower.

To understand the role of the speed of our methods in the better results 

obtained by them, we tested FASOFT and NBS on longer runs. Practically 

no improvement was found, and this suggests that the superiority of our 

methods does not depend only on their speed, but probably on the different 

neighbourhood adopted. However it must be observed that the use of a 

better neighbourhood in our methods is a direct consequence of the use of 

an efficient implementation.

Another factor which could make our tabu search algorithm more effective 

than those implemented in FASOFT and NBS is, we believe, the dynamic 

length tabu list (as observed in Section 3.4.3).
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Chapter 4

Lower Bounds

In this chapter, after a brief review of the literature, we present some lower 

bounding techniques for the FS-FAP.

Some methods calculate lower bounds for the cost paid (number of con­ 

straint violations present) in complete subgraphs (clique-like subproblems) 

of a given problem. These estimates are used in other methods to produce 

lower bounds for the original problem.

The last section is dedicated to computational results and a brief analysis 

of them.

A preliminary version of some of the methods described in this chapter 

has been presented in Montemanni et al. [81].

4.1 Literature review

Few lower bounding methods for the FS-FAP appear in the literature. Un­ 

fortunately those that do appear are based on very basic ideas or developed 

for problems with particular features, which are used to make the methods 

work. To the knowledge of the author no general method exists.
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In the rest of this section we present an overview of the approaches pro­ 

posed so far.

4.1.1 Lower bound by Alien et al.

In Alien et al. [7] a lower bound based on the adaptation of the Travelling 

Salesman Problem bound, originally developed for the MS-FAP (see, for 

example, Smith et al. [86]) to the FS-FAP is described. The method for the 

MS-FAP, which is to create and solve a linear program, is designed to work 

on near-clique subproblems of the entire problem. A detailed description of 

the adaptation of the method to the FS-FAP is given in Section 4.2.1.

The main limitation of the bound is that it is non-trivial only for near- 

clique problems.

4.1.2 Lower bound by Smith et al.

A simple lower bound is described in Smith et al. [86]. The method is 

based on a closed formula, applied to clique-like subproblems. This formula 

returns, for a given number of available frequencies and a given clique, a 

lower bound for the number of vertices that cannot be satisfied in a violation 

free assignment of the clique. This is also a lower bound for the number 

of constraint violations in the subproblem. We will give a more detailed 

description of the formula in Section 4.2.2. A lower bound for the number of 

constraint violations of the global problem is given by the sum of the bounds 

obtained on some disjoint clique-like subgraphs of it.

The idea on which this method is based is very simple, but in general 

the results are poor, especially because the number of violating transmitters 

(which the formula returns) can be much less than the number of constraint 

violations.
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4.1.3 Lower bounds by Aardal et al.

In Aardal et al. [2] a lower bounding technique developed within the EUCLID 

CALMA project is presented. It is based on some valid inequalities for the 

linear relaxation of formulation FAP2 (see Section 2.2.2). Non-zero bounds 

have only rarely been found with this approach.

4.1.4 Lower bounds by Hurkens and Tiourine

Hurkens and Tiourine [51] present a second lower bounding technique devel­ 

oped within the EUCLID CALMA project (see also Tiourine et al. [96] and 

Aardal et al. [3]). It works only for problems where most of the transmitters 

have a preassigned frequency (we do not consider this feature in our model) 

and the penalties to be paid when changing these frequencies dominate the 

penalties generated by frequency separation constraints. They formulate a 

new problem, the solution of which provides a lower bound for the original 

one. The relaxed problem is a non-linear program where for each transmitter 

it is decided whether or not to change the preassigned frequency.

The results are good, but problems dominated by preassigned frequencies 

are very uncommon in practice.

4.1.5 Lower bounds by Koster et al.

Two other methods developed on the EUCLID CALMA project benchmarks 

(after the end of the project) have been presented by Koster et al.. In [60] and 

[61] the polytope of FAPl (see Section 2.2.1) is studied from a polyhedral 

point of view and some facet defining inequalities are presented. Computa­ 

tional tests show that the method is practical only for problems with very 

small frequency domains (less than 7). As the authors state, it is impossible
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to approach real life problems using this method.

A second lower bounding technique is presented in [60], [62] and [63] 

(see also Aardal et al. [3]). Here Roster et al. propose first of all some 

preprocessing rules that reduce the size of the problems by trivial consider­ 

ations. Sometimes good lower bounds are provided just by applying those 

rules. The gap between the best known upper bound and the lower bound 

so obtained is closed by at least 73% on 8 of the 11 problems given (2 of 

them are solved to optimality). A dynamic programming algorithm is also 

presented. It works by computing a tree decomposition of the problems re­ 

sulting after preprocessing, and by partitioning the frequency domains into 

subsets. Each partition is considered as a frequency in a new problem. This 

approach is able to obtain the optimum for 5 of the problems and quite 

good lower bounds for the remaining 4 (2 were solved to the optimum by 

preprocessing).

The preprocessing rules appear to work only on the benchmarks the au­ 

thors studied, and the dynamic programming algorithm is strongly based on 

two peculiarities of the EUCLID CALMA project's problems: the tree-like 

structure and the natural partition characterising frequency domains (they 

are separated intervals of frequencies). Realistic problems generally do not 

have tree-like structures and their frequency domains tend to be (almost) 

continuous intervals of spectrum.

4.1.6 Lower bounds by Maniezzo and Montemanni

In Maniezzo and Montemanni [72] and Montemanni [75] a family of con­ 

structive lower bounds is described. The work is based on the observation 

that the FS-FAP can be seen as a simplification of the Quadratic Assignment 

Problem (see, for example, Maniezzo [69] for a description of this problem).
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The lower bounds presented are consequently adaptations of classical lower 

bounds originally developed for this problem.

The results obtained are acceptable only for the EUCLID CALMA project 

benchmarks. When more general benchmarks are considered, the method 

works only for small problems with limited frequency domains, and also in 

this case it requires long computation times.

4.1.7 Lower bound by Chardaire and Sutter

Chardaire and Sutter [28] describe a lower bounding method for the Uncon­ 

strained 0-1 Quadratic Programming Problem, through which it is possible 

to represent the FS-FAP.

The method obtains good lower bounds, but unfortunately the compu­ 

tational time grows exponentially with the size of the problem. The largest 

problem which it is possible to bound with such an approach has 100 vari­ 

ables, which in terms of frequency assignment is a very small problem. The 

number of variables of the 0-1 quadratic programming representation of FS- 

FAP is given by \V\ \F\.

4.1.8 Lower bound by Helmberg

More recently Helmberg [50] presents a new lower bound based on semidef- 

inite programming (see also Eisenblatter et al. [39]). The method provides 

a lower bound for the Max k-Cut Problem, that is seen as a simplification of 

the FS-FAP.

The main limitations of this approach are:

• it can model only co-channel constraints (separations of 1 channel);

• the computation complexity is intrinsically high;
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• numerical problems may occur.

In particular, modelling only co-channel constraints could be a great limi­ 

tation because most of the real networks have co-site constraints, that model 

the separations that must exist among transmitters installed at the same 

site. These co-site separations usually require 2 or 3 channels separation, 

and they must be relaxed to 1 channel to apply the method described in [50].

The results presented, which are for problems with co-channel constraints 

only, are satisfying, but with long computation times, especially for the larger 

problems.

4.2 Local lower bounds

In this section we describe two methods working on clique-like problems. 

The first produces a lower bound for the cost paid in the problem, while the 

second gives a lower bound for the number of constraint violations.

The idea is to apply these methods on clique-like subproblems of a bigger 

problem. Because they do not work on the whole problem but just on a part 

of it, we will call these methods local lower bounds.

It is interesting to point out that the idea of working on (near) clique 

subproblems is well-known to be a successful approach for lower bounding 

minimum span frequency assignment problems (see, for example, Smith and 

Hurley [90], Smith et al. [86] and Alien et al. [8]).

Before the description of the methods, we need to specify exactly what 

we will refer to as a clique-like subproblem in the remainder of the thesis. 

They are the following two types of subgraphs.

Definition 1. A \eve\-k-h clique of G is a complete subgraph in which every 

edge has label at least k in D and label at least h in P, which is not contained
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in any larger such complete subgraph.

Definition 2. A \eve\-k~h non-maximal clique of G is a complete subgraph 

in which every edge has label at least k in D and label at least h in P, which 

is contained in a larger such complete subgraph.

In the remainder of the thesis we will refer to level-0-l non-maximal 

cliques simply as non-maximal cliques.

4.2.1 TSP lower bound

The methods described in this section return a lower bound for the cost 

(weighted sum of penalties) paid in a \eve\-k-h (non-maximal) clique C =

{VC,EC }.
We present the original method, which is described in Alien et al. [7], 

and a simplified version we have developed.

4.2.1.1 Original method

The original idea (described in Alien et al. [7] and briefly introduced in 

Section 4.1.1) is to adapt the Travelling Salesman Problem bound, originally 

developed for the MS-FAP, to the FS-FAP. Ideally the target becomes to 

find a Hamiltonian path with length equal to the available span, where the 

length is given by the sum of the separations between each pair of consecutive 

vertices in the path. The penalty is paid when the separation between the 

vertices of an active edge is less than the one required not to have interference. 

In the conversion process some simplifications have been introduced. The 

most important of these simplifications is the elimination of the so-called 

subtour elimination inequalities, which were originally inserted to force the 

active variables to form an unique circuit.
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In [7] the authors propose an integer program, the target of which is to 

find the lowest cost set of disjoint circuits of total length |F| — 1 in the clique 

C", obtained from C by adding a dummy vertex D connected to all the other 

vertices v G Vc by an edge with zero length. D has been added to work on 

a closed TSP-like problem instead of an open one. To describe in detail this 

formulation, which we call TSPfp, we first need to introduce the meaning of 

the variables.

• UDV : {0,1} variable defined for every v G V. It is 1 when the vertex of 

C associated with transmitter v is connected to the dummy vertex D 

in the set of active circuits; 0 otherwise;

• Uvwi- {0,1} variable defined for every {v,w} 6 E and for every / € 

{0,1,..., \F\ — 1}. It is 1 when transmitter v is adjacent to transmitter 

w (v < w) in one of the active circuits and their frequency separation 

is /; 0 otherwise.
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Min , Pvwuvwl (4.1)
{v,w}€Ec t=0

IFI-I 
s.t. ^ uvwi < 1 Vu e Vc (4.2)

t=0

; i=0 tuGVc; i=0 
v<w v~>w

= 2 (4.4)

^ = |F|-l (4.5)

{0, 1} Vt; e Vc (4.6)

V{u,u;} G £c! 
{0,l} ^ J (4.7)

The target, minimising the penalty on disjoint circuits, is expressed by 

(4.1). Inequalities (4.2) express that at most one of the uvwi 's can be active 

between every pair of transmitters {v,w}. Equations (4.3) and (4.4) force 

every element of the set Vc U {D} to be connected with exactly two other 

elements of the same set. Equation (4.5) expresses the fact that the sum of 

the length of the circuits has to be equal to the fixed span, while equations 

(4.6) and (4.7) specify the domains of the variables.

For computational reasons it would be difficult to deal with the integer 

program TSPfp directly, so integrality constraints have been relaxed into 

continuous constraints, obtaining what we will refer to as TSP^. Formally 

in TSP^ the following constraints substitute (4.6) and (4.7) respectively:

0 < uDv < 1 MvtVc (4.8) 

0<uvwi <l V{v,w}£Ec ; » = 0,...,|F|-1 (4.9)
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4.2.1.2 Improved method

Soon we realised that the formulation described in the previous section can 

be improved by considering a new linear program, which we will refer to as 

TSP^R. TSPi,R is a simplification of TSP R̂ because it provides the same 

bounds but has many fewer variables. The variables of TSPiR have the 

following meanings:

• UDV : continuous variable relaxed from a {0,1} variable. It is defined 

for every v G V. A value of 1 means that the vertex associated with 

transmitter v is connected to the dummy vertex D in the set of active 

circuits;

• u ŵ : continuous variable relaxed from a {0,1} variable. It is defined for 

every {u, w} 6 E. A value of 1 means that transmitter v is adjacent to 

transmitter w (v < w) in one of the active circuits and the constraint 

on the edge {v,w} is violated;

• u ŵ : continuous variable relaxed from a {0,1} variable. It is defined for 

every {v, w} € E. A value of 1 means that transmitter v is adjacent to 

transmitter w (v < w) in one of the active circuits and the constraint 

on the edge {v,w} is not violated.
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(TSPLR ) Min T Pvw uvvw (4.10)

s-t. ^L + «1 < 1 V{t;, w} e £c (4.11)

(t& + O = 2 VV € VC (4.12)

= 2 (4 - 13 )

^ + l)u^<|F|-l (4.14)

0 < uDv < 1 Vu e Vc (4.15)

0<«L<1 V{u,u;}e£;c (4.16)

0<wfu,<l V{u,u;}e£;c (4.17)

can be seen as a modification of TSP^ where there are just two 

possible variables (instead of |F|) for each active edge {v,w}: u ŵ (violated, 

representing separation 0) and u ŵ (non-violated, representing separation 

dvw + 1). A consequence of this simplification is the difference between con­ 

straint (4.5) and constraint (4.14), where the sign that was previously "=", 

becomes "<".

We will prove that, given a clique C, the cost of an optimal solution of 

TSPLR is always equal to the cost of an optimal solution of TSP^R- First 

we need to give the following definition.

Definition 3. Opt ((7; LP) is the cost of an optimal solution of the linear 

program LP, when it is applied to graph G.

Theorem 1. Opt(C, TSPLR) = Opt(C, TSP£R ).

Proof. We will prove the inequalities Opt(C, TSPLR ) < Opt(C, TSPffi) 

and Opt(C, TSPLR) > Opt(C, TSP^) separately. To make the exposition
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clearer we will refer to the u variables of TSPLR as u^LR) and to the u variables

Opt(C, TSPLR ) < Opt(C,
We construct a feasible solution of TS?LR from a given solution of
Wo, CL T/ (LR) ( AL) Wf 1 r- v V(LK) ir^dvw (AL) , N(LR) Vv e Vc wDv = u D̂v ; V{v,w} 6 Ec uv^ = Jj.™ uvwi and u™

^'-dvw+i uvwi '. The solution of TSP^R so obtained is trivially feasible and

has the same cost as the original solution of TSP£R . The procedure, when

applied to an optimal solution of TSP R̂ , proves the inequality.

Opt(C, TSPLR) > Opt(C, TSPffi):
We construct a feasible solution of TSP£R from a given solution of

r,c ^ - Dv , , /c

V* €{!,..., dvw , dvw + 2, . . . , \F\ - 1} V{u, TJ;} e Ec u (v̂ ] = 0. The solution 

of TSP£R so obtained could violate constraint (4.5). It is possible to select a 

set of edges {w, w} for which u 0̂ + u^(dtw+l} > 0, to reduce the value of u 0̂ 

and w^w^+i) variables and to increase other u^ variables, with i > dvw + l, 

by the same quantity. With this operation it is possible to satisfy constraint 

(4.5) without increasing the cost of the solution, which is consequently less 

than or equal to the one of the initial solution of TSPtR- The procedure, 

when applied to an optimal solution of TSPLR-, proves the inequality. D

The integrality of the objective of the solutions of TSPLR is not guaran­ 

teed, but in the original problem TSPfp every solution must have an integer 

cost, so we can round the cost of a non-integer solution to the integer above. 

Consequently, in the remainder of this thesis, when we will refer to the result 

returned by the TSP bound, we will refer to

f optimal solution of TSPLR ] (4.18)
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Formulation

TSP& 
TSPLR

No. of Constraints

\E\ + \V\ + 2 

\E\ + \V\ + 2

No. of Variables

\V\ + \F\\E\ 
|V| + 2|£|

Table 4.1: Dimensions of formulations TSPffi and TSPLR .

4.2.1.3 Dimensions of TSPffi and TSPLR

In Table 4.1 we compare the dimensions of formulations TSP^ and 

The table clearly shows how the number of variables of the formulation which 

produces the lower bound is reduced when TSPiR is used instead of TSP^. 

The columns of the table have the following meanings:

• Formulation: names of the two formulations we compare;

• No. of Constraints: expressions for the number of constraints of the 

formulations (number of rows of the problem matrix). Constraints 

denning variable domains are not counted here;

• No. of Variables: expressions for the number of variables of the formu­ 

lations (number of columns of the problem matrix).

The greatest benefit of the use of TSPLR instead of TSPffi should be 

faster solution times, because a smaller linear program (the number of vari­ 

ables is strongly reduced, especially for problems with \F\ large) is in general 

easier to solve. In our global lower bounding strategies (see Section 4.3), 

TSPiR will be solved many times, and for this reason any improvement in 

its solution time translates into a major improvement in the computation 

time for the entire algorithm.
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Figure 4.1: Limitation of the TSP lower bound.

4.2.1.4 Limitation of the method

The weakest point of the lower bound obtained solving TSPtR (or even 

TSPfp} is that it ignores every (possible) penalty between transmitters that 

are not consecutive in the circuits of a solution. An example of such a 

situation is presented in Figure 4.1.

In Figure 4.1 part a we show three vertices (0,1,2) of a larger clique 

C on which we calculate the TSP bound, and the induced edges. All the 

cPs in the subproblem are zero (d0i = d02 = d12 = 0) and \F\ frequencies 

are available (F — {0,1,..., \F\ — I}). In part 6 we depict in bold the 

edges of our subproblem which are active in a solution of the linear program 

TSPLR calculated on the clique C. We imagine the edges {0, 1} and {0,2} 

to be violated (u^ = u 2̂ = 1). Switching to the original FS-FAP we can 

observe how the solution that arises from the bold subcircuit would have 

the vertices 0, 1 and 2 assigned to the same frequency, and consequently a 

violated constraint between vertices 1 and 2, which is actually ignored by the 

TSP bound (since u\^ = 0).

We can conclude that we expect this approach not to give very good 

bounds on problems where optimal solutions have a high density of violated
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constraints, that would lead to many consecutive violated edges in the so­ 

lution of TSPiR (TSPfp}. These problems are anyway quite uncommon 

because, if they are modelled in a proper way, too many constraints vio­ 

lated would generally imply high interference, and this would probably mean 

that the available spectrum is simply not adequate to establish the desired 

network.

4.2.2 Formula lower bound

The methods described in this section provide a lower bound for the number 

of constraint violations that will occur in the level- (k-l)-h (non-maximal) 

clique C = {Vc, EC}.

4.2.2.1 Original method

A first way to obtain a lower bound for the number of constraint violations 

is through the formula described in Smith et al. [86], briefly introduced in 

Section 4.1.2:

(4.19)

This formula counts the number of vertices which it is impossible to assign in 

a violation-free assignment using the available span. This is trivially a lower 

bound for the number of violations in C.

Unfortunately the bound given by (4.19) in usually poor.

4.2.2.2 Improved method

To generate better lower bounds than those returned by (4.19), we have 

introduced a new formula, which is based on the following ideas. A lower 

bound for a level- (k-l)-h clique C is obtained by partitioning the set of
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available frequencies into ^ sets of consecutive frequencies. Interference 

between transmitters assigned to frequencies of different sets is ignored. The 

number of violations is minimised if the transmitters are spread between sets 

as evenly as possible.

In order to formalise this approach, we need the following definitions:

a = (4.20)

(4.21)

a represents the lowest cardinality of the sets into which Vc is partitioned. 

/3 is the number of sets with cardinality a + 1.

Theorem 2. The integer value

KM-/»)<*»-')) (422)

is a lower bound for the number of constraints violated in a level-(k-l)-h 

clique C — {Vc,Ec}, where there are \F\ consecutive available frequencies.

Proof. We will prove that (4.22) expresses the minimal solution, in terms of 

constraint violations, for a clique C' = {Vc>,Ec>} where |Vc'| = \Vc\ and 

V{v,w} G EC> dvw — k — 1. As V{v,w} G Ec dvw > k - 1, the minimal 

solution for C' is a lower bound for the minimal solution of C.

An assignment S of frequencies to the vertices of Vc> is considered and 

the frequency assigned to vertex v in assignment S is denoted by fs(v). 

Yp e /0,1,..., pf1 ] fc - l} we define Bf = {v € Vc> \ fs(v) = p}.

A new assignment S' with no more constraint violations than S is con­ 

structed as follows. We define F' = {mk \ m e A/"0+ ) n F. S' is obtained,
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starting from 5, by setting Vp 6 F' Bj' = ugT 1 Bf and Vp £ F' Bj' = 

0. There are no more constraint violations in 5" than in S because if 

\fs>(v) - fs'(u>)\ < k - 1 with v, w e Vc > then \fs (v) - fs(w)\ < k - 1.

Next we show that for a minimal assignment 5" with the properties of S', 

we have \BJ \ — \BJ,"\ < 1 for any pair p,p' of frequencies in F', i.e the sizes 

of the sets Bj are either all the same or take two distinct values differing by 

1. Suppose that \Bf"\ = a and \BJ,"\ = b with b = a - I and / > 2. If we 

move a vertex from \BJ"\ to \BJ,"\ the change in the number of constraint 

violations is:

(a - l)(a - 2) + (b + 1)6 - a(a - 1) - 6(6 - 1)
2

= -a. + 6 - 1 = -/ + 1 < 0 for / > 2.

Thus we can repeat this operation for pairs of vertices, decreasing the num­ 

ber of constraint violations until we obtain an assignment S'" with \B^'"\ — 

\Bpi I 5- 1 f°r every pair p, p1 of frequencies in F'. Then there will be /3 

sets of size a -\- 1 and ( ^ — ft ) sets of size a. The number of constraint
• 1 +• t Qlll • ^ (/?a(c,+l)+(r^]-/?)a(a-l))violations of 5 is then i—————Vl * '—L———L D

4.2.2.3 Limitation of the method

The main limitation of the formula lower bound is that it reduces all the 

separations dvw involved to k — 1, and this does not appear to be a very 

promising approach for problems with a wide range of separation values.

4.3 Global lower bounds

In this section we present some techniques which produce lower bounds for 

the cost paid in a general FS-FAP. Having defined the lower bounds working
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on subproblems as /oca/, by contrast we will call these new lower bounds 

global, as they work on complete problems.

The global techniques described in this section are heavily based on the 

local bounds described in Section 4.2.

4.3.1 Lower bound LB1

The idea of this bound, which we call LB1, is the same as that described 

theoretically, but not implemented, in Smith et al. [86] and Alien et al. 

[7]. A set of disjoint clique-like subproblems of the graph G, representing 

a FS-FAP, is selected and the local lower bounds described in Section 4.2 

are calculated on these subproblems. The sum of these local bounds gives a 

global lower bound.

4.3.1.1 Selection of disjoint clique-like subproblems

The main question arising is how to select the disjoint clique-like subproblems 

on which to calculate the local lower bounds. Our strategy is to start with 

an empty set and to insert iteratively new disjoint cliques into it. To do this 

we fix a set K of separation values and a set H of penalty levels and at each 

iteration, Mk G K and V/i 6 H, the \eve\-k-h cliques of the graph not yet 

covered by the already selected clique subproblems are generated, and the 

most promising of them is selected.

Considering at each iteration such a large number of clique subproblems 

would appear to generate a very time consuming algorithm. Fortunately this 

is not true. At each iteration, for a fixed pair (fc,/i), all the \eve\-k-h cliques 

can be retrieved by running the algorithm described in Bron and Kerbosch 

[25] on the problem obtained from the original one by ignoring the vertices 

covered by clique subproblems selected in the previous iterations (and the
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Figure 4.2: Role of \eve\-k-h cliques.

edges involving them) and all the edges with separation less than k or penalty 

less than h. The key point of this strategy is that the algorithm of Bron and 

Kerbosch appears to be extremely fast on the graphs associated with realistic 

frequency assignment problems.

The choice of considering \eve\-k-h for some different values of k instead 

of \eve\-Q-h cliques only (for a given value of /i), can be justified with the 

help of the example in Figure 4.2.

In part a we have a level-0-1 clique with four vertices (0,1,2,3) with 

d03 = di3 = d23 = 0 (thin edges) and d0i — ^02 = dn = 2 (bold edges). There 

are six available frequencies (F = {0,1,2,3,4,5}) and Vu, w — 0,1,2,3, v < 

w pvw = 1. Both the TSP bound and the formula bound produce a lower 

bound of 0 for this problem. In part b of the figure we consider a level-2-1 

clique which is a subclique of the level-0-1 clique in part a. On this problem 

the lower bound obtained by both the methods is 1. This happens because 

the TSP bound and the formula bound work better on smaller problems 

with more homogeneous values of the <f s.

Generalising the example above we can conclude that consideration of 

\eve\-k-h cliques for some different values of k can lead to a better lower
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bound.

Referring again to Figure 4.2, we can justify the choice of considering 

\Gve\-k-h cliques for some different values of /i, instead of treating level-fc-l 

only (for a given value of k). This time we read the figure as the pictorial 

representation of a level-0-1 clique with four vertices (0,1,2,3) with p03 = 

Pis = P23 = 1 (thin edges) and p0i = Poz = P\i = 10 (bold edges). There are 

two available frequencies (F — {0,1}) and Vv,w = 0,1,2,3, v < w dvw — 0 

(part a). A lower bound of 2 for the penalty paid in this problem is obtained 

by the TSP bound and, indirectly, by the formula bound1 . In part 6 of 

the figure we consider a level-0-10 clique which is a subclique of the level-0- 

1 clique in part a. On this problem the lower bound obtained by both our 

methods is 10. This happens because the TSP bound and the formula bound 

work better on smaller problems with more homogeneous values of the p's.

Generalising the example above we can conclude that to consider \eve\-k-h 

cliques for different values of h can lead to a better lower bound.

The sets K and H , which contain respectively the values of k and h for 

which \evel-k-h cliques are considered, are parameters of the method.

4.3.1.2 Algorithm to produce LBl

The heuristic algorithm we adopt to select the set of disjoint clique subprob- 

lems used to generate LBl can be summarised as follows. At every iteration, 

given the set K of separation levels considered and the set H of penalty 

levels considered, Vk £ K and V/i € H we calculate the TSP bound and 

the formula bound on each \eve\-k-h clique C of the not yet covered graph

lrThe formula bound produces a lower bound of 2 for the number of constraint vio­ 

lations. This means a lower bound of 2 for the penalty if we consider two of the edges 

with the smallest penalty as violated, accordingly to the solution of the respective problem 

U2W, which will be described in Section 4.3.1.2.1.
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R = {Vfj: Ept}. The result of the formula bound, which expresses a num­ 

ber of constraint violations, is converted into a penalty by solving the linear 

program described in the Section 4.3.1.2.1.

The clique C with the greatest local lower bound is selected (ties are 

broken by choosing the smallest clique) and its vertices are considered as 

covered in the following iterations. The algorithm stops when the last selected 

clique produces a lower bound of zero.

In Figure 4.3 we present pseudocode for the algorithm to calculate LBl.

4.3.1.2.1 Conversion of the number of constraint violations into a 

penalty

To convert the lower bound T for the number of constraint violations returned 

by the formula bound into a lower bound for the penalty, we solve the linear 

program described below, where we refer to a clique C = {Vc,Ec} and 

variables have the following meaning:

• zvw : continuous variable relaxed from a {0,1} variable. It is defined 

for every {v,w} € E. A value of 1 means that the constraint between 

vertex v and vertex w is violated; a value of 0 means that the constraint 

is not violated.

(U2W) Min ^ P™z™ (4 ' 23) 
{v,w}eEc

s.t. £ zvw >r (4.24) 
{V,W}&EC

Q<zvw <l \/{v,w}£Ec (4.25) 

In practice, U2W returns the sum of the r smallest penalties of clique C.
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LB1 (Pr)

INPUT:
Pr = problem of type FS-FAP. 
OUTPUT:
a lower bound of the cost of an optimal solution of Pr.

R := graph representing Pr; 
DC := 0; 
While(VR 2 0) 

MC := 0; 
For k £ K

For h e H
MC := MC U set of all level-k-h cliques of R; 

EndFor 
EndFor
C := element of MC with the greatest lower bound; 
DC :=DC\J{C}; 
If(local lower bound on C = 0)

VR := 0; 
Else

VR := VR\VC ;
ER := ER\{{v,w}\v eVcorwe Vc }\ 

Endlf 
EndWhile 
Return Y^CZDC (l°cal lower bound on C);

Figure 4.3: Algorithm for lower bound LB1.
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4.3.2 Lower bound LB2

The global lower bound described in this section, which we call LB2, is based, 

like LB1, on the application of the local lower bounds described in Section 4.2 

to \evel-k-h clique subgraphs of the original problem. In this case the local 

bounds are used to produce valid inequalities with which we reinforce the 

linear relaxation of the integer program FAP3 (described in Section 2.2.3). 

Formally we start by presenting the linear relaxation of FAP3 and then 

describing the inequalities derived from the local lower bounds. Finally we 

propose the algorithm that produces the global lower bound.

4.3.2.1 FAPZLR : the linear relaxation of FAP3

A common way to obtain a lower bound for the solution of an integer pro­ 

gram is to relax the integrality constraints into continuous constraints and 

to solve the linear program so obtained. The linear programming relaxation 

of formulation FAP3, which we will refer as FAPSiR, is as follows:

(FAP3LR ) Min £ Pvw x lvw (4.26)

s-t. *°vw + x lvw + *L = 1 V-K w} e E (4.27) 

yv ~ yw > (d™ + l)x°vw - dvwx lvw - (\F\ - I)x2vw V{v,w} e E (4.28)

yv -yw < (\F\ - i)x°vw + dvw xlw - (dvw + i)*L V{t>,™} e E (4.29)

0 < yv < \F\ - I Vu e V (4.30)

0<zl<l V{t;,«;}e£ (4.31)

0<zl<l V{v,w}eE (4.32)

0<zL<l V{v,w}eE (4.33)

It is the same as FAPZ with the exception of constraints (4.30), (4.31), (4.32) 

and (4.33), which substitute (2.16), (2.17), (2.18) and (2.19).
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It is interesting to observe that, as the penalties pvw are defined as integers 

(see Section 2.1), every solution of FAPZ is integer. Consequently if we round 

the cost of a solution of FAP%LR to the integer above, we still have a lower 

bound of the cost of the solutions of FAPZ. This rounding process will be 

implicitly applied to each modification of FAP3LR in the rest of this thesis.

It is well known (see Aardal et al. [1], Koster [60] and Montemanni [76]) 

that linear relaxation techniques provide very poor bounds (practically al­ 

ways 0) for all of the mathematical formulations described in Chapter 2. 

Our target is to define some valid inequalities to reinforce these linear relax­ 

ations. We have decided to work on FAP3 in this thesis because, as observed 

in Section 2.2.4, it is the most tractable formulation in terms of dimensions.

4.3.2.2 Reinforcing FAP3LR

The inequalities we present are defined on a \evel-k-h (non-maximal) clique 

subproblem C = {Vc, EC} of G. They have the following forms:

(4-35)

Formally, inequality (4.34) forces the number of constraints violated in 

C to be at least r, while (4.35) forces the penalty paid in C to be at least 

8. 8 can be obtained using the TSP bound on the subproblem with the 

original penalties, while r can be obtained by applying the formula bound 

or by applying the TSP bound on a problem where all the penalties have 

been changed to 1. In the remainder of the thesis we will refer to the TSP 

bound applied to the problem obtained by reducing the original penalties to
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1 as the unweighted TSP bound. Analogously we will sometimes refer to the 

TSP bound applied to the original problem as the weighted TSP bound.

4.3.2.2.1 Selection of relevant inequalities

The question of which inequalities, among all the possible ones, we should 

add to FAP^LR arises. After some tests it has become clear that, because of 

the relative small dimensions of FAP3LR , it is possible to handle the linear 

program reinforced with a great number of relevant inequalities. We then 

consider all the \eve\-k-h cliques which arise from a suitable definition of the 

separations set K and of the penalties set H. All the relevant inequalities 

calculated on them will be added to FAP^LR-

Given a clique subproblem on which either the bound on the number of 

constraint violations or the bound on the penalty is non-zero, an important 

question is about which constraints should be added to FAPZt,R\ constraint 

(4.34) only, constraint (4.35) only or both? The answer, together with the 

consequent choice criterion, is given in the remainder of this section.

We consider the example of Figure 4.4, where a clique C (subproblem of 

a bigger problem G) with five vertices (0,1,2,3,4) is depicted. Each thin 

edge has d — 0 and p = 1 (d12 = «?is = «?u = ^23 = d24 = d34 = 0 and 

p12 = p13 — p14 = p23 = P24 = P34 = 1)) while each bold edge has d — 1 and 

p = 3 (d0i — d02 = d03 — d04 = 1 and p0i = Po2 = Pos = Po4 — 3). There are 

three available frequencies (F = {0,1,2}).

If we calculate the local lower bound on the number of constraint viola­ 

tions on (7, we obtain a bound of 2, which would generate a constraint of 

type (4.34) with r = 2. Calculating the weighted TSP bound, we obtain a 

lower bound of 3 for the penalty paid in C, which can be used as 8 for the 

respective constraint of type (4.35).
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We now study how the linear program FAP^LR reacts when the two 

possible inequalities arising from C are added to it. In the following para­ 

graphs some configurations of the x l variables corresponding to the edges of 

C are considered. These configurations do not represent feasible frequency 

assignments for C, but they can exist within a solution of FAP^LR because 

FAP$LR is a simplification (i.e. the linear relaxation) of the representation 

of G in terms of integer programming.

If we add to FAP^LR only the constraint (4.34) with T — 2, a solution 

where the only violated edges of C are {1,4} and {2,3}, which produces a 

penalty of 2, would be feasible2 . This solution would violate the constraint 

(4.35) which would force the solution to have a penalty at least equal to 3.

By contrast, adding the constraint (4.35) on the penalty paid on C (with 

5 = 3) only, a solution where the only violated edge of C is {0,1} would be 

feasible for FAP%LR strengthened by (4.35) 2 . This solution would produce 

just one constraint violation, and this would violate the constraint (4.34), 

where r = 1.

By extension from the example above we can conclude that there is not 

a dominance between the two types of constraints, and that we should work 

with both of them, selecting each time whether to add just one of them or 

both.

The formal criterion we adopt to choose which constraints to add for 

a given clique C — {Vc,Ec} derives from the theorems which follow. To 

simplify the description of these, we give the following definition:

i + 1 )~th §reatest Fealty in_ / (i -|- i;-m greaiesu peiiaiuy 111 \ /^ ^gN 
^ ~~ \ the problem represented by C ) \ • )

Thus g0 > g\ > • • • > 9\Ec\--ii wnere eacl1 9i corresponds to pvw for some 

2In this solution of the strengthened FAP$LR some x° and x2 variables will be frac­ 

tional.
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Figure 4.4: Constraints selection criterion.

edge {v,w} e Ec .

We refer to r as the lower bound for the number of constraint violations 

in C and to 8 as the lower bound for the penalty paid in C.

Theorem 3. Ifr>0 and the condition

r-2

(4.37)
!=0

is satisfied on a clique C, then the constraint of type (4-34) generated from 

C is not dominated by the constraint (4-35) generated from C.

Proof. If the r — 1 edges with highest penalties are violated, then the con­ 

straint (4.34) generated from C will not be satisfied, although the constraint 

(4.35) generated from C is satisfied. D

Theorem 4. // 5 > 0 and the condition

\EC\-I 
£ &<* (4.38)

i=\Ec \-T

is satisfied on a clique C, then the constraint of type (4-35) generated from 

C is not dominated by the constraint (4-34) generated from C.
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AddCtrs(C,LP, T, 8)

INPUT:
C = clique subproblem.
LP — (reinforced) linear program of type
T — lower bound for the no. of ctr. violations in C;
8 — lower bound for the penalty paid in C\

If ((T > 0) or (8 > 0))
If((r > 0) and (condition (4.37) is satisfied))

add the constraint (4.34) generated from C; 
Endlf 
li((8 > 0) and (condition (4.38) is satisfied))

add the constraint (4.35) generated from C to LP; 
Endlf 
If(conditions (4.37) and (4.38) are not satisfied)

add the constraint (4.34) generated from C to LP; 
Endlf 

Endlf

Figure 4.5: Selection of the constraints to generate from a clique-like sub- 
problem.

Proof. If the T edges with lowest penalties are violated, then the constraint 

(4.35) generated from C will not be satisfied, although the constraint (4.34) 

generated from C is satisfied. d

The criterion arising from these theorems is described in the procedure 

whose pseudocode is presented in Figure 4.5. We adopt the convention that, 

if both condition (4.37) and condition (4.38) do not apply for a clique C (i.e. 

the constraints (4.34) and (4.35) calculated on C give the same information), 

then we add only constraint (4.34).
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LB2 (Pr)

INPUT:
Pr = problem of type FS-FAP. 
OUTPUT:
a lower bound of the cost of an optimal solution of Pr.

LP :— linear program FAP^LR representing Pr; 
For k € K 

For h € H
CSkh '•— set of all level-k-h cliques of G\
v c e cskh

T :— lower bound for the number of constraint violations in C\ 
8 := lower bound for the penalty paid in C: 
AddCtrs(C, LP, r, 6); 

EndV 
EndFor 

EndFor 
Return [ Cosifoptimal solution of LP) ];

Figure 4.6: Algorithm for lower bound LB2.

4.3.2.3 Algorithm to produce LB2

In Figure 4.6 we present pseudocode for the algorithm which produces the 

global lower bound LB2. It is the result of the considerations previously 

illustrated.

4.3.3 Lower bound LB3

This lower bound is an extension of the lower bound LB2 obtained by con­ 

sidering not only maximal \eve\-k-h cliques, but also non-maximal cliques.
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0
Figure 4.7: Role of non-maximal cliques.

4.3.3.1 Role of non-maximal cliques

A question that arises is whether adding inequalities calculated on non- 

maximal cliques to FAP^LR can improve the results obtained by adding 

to FAP^LR only inequalities derived from (maximal) \eve\-k-h cliques.

The answer is easy: non-maximal cliques can give more information than 

\eve\-k-h cliques only, and this is clear from the example described in Fig­ 

ure 4.7.

In Figure 4.7 part a we consider a clique on which we calculate the TSP 

bound and the formula bound. The clique has four vertices (0,1,2,3), two 

available frequencies for each vertex (F = {0,1}), Vt>, w € {0,1,2,3}, v < w 

dvw = 0 and pvw - 1. Both our approaches produce a lower bound of 2, 

generating the following reinforcing inequality for

X04
(4.39)

Now we consider the part b of Figure 4.7, in which we have a non-maximal 

clique which is a subproblem of the clique in part a. The reinforcing inequal­ 

ity derived by the TSP bound and the formula bound for this subproblem
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42 + *03 + *23 > 1 (4.40)

In the figure a solution of FAP3LR with the following values for x 1 vari­ 
ables is highlighted in bold:

XQ2 = Xo3 = X\3 = X\3 = 001

This is a valid solution3 for constraint (4.39), but it does not respect con­ 

straint (4.40). Adding the inequality calculated on the non-maximal clique 

in part b of the figure, can improve the result obtained by adding only the 

inequality derived from the level-0-1 clique in part a, and consequently, by 

extension from this particular case, we can conclude that adding non maxi­ 

mal cliques can help to obtain better estimates. Our results will also support 

this conclusion.

In particular, in the example of Figure 4.7 the main limitation of our 

inequalities is clear: they specify the penalty (number of violations) that must 

be present in a subproblem, but they are unable to describe relations among 

violated constraints. As also the global formulation FAP^LR is generally not 

able to specify these relations, the violated constraints often assume infeasible 

configurations.

4.3.3.2 Selection of non-maximal cliques

It is clearly impossible to consider all of the non-maximal cliques of a graph. 

For this reason we have adopted a heuristic criterion to select the most 

promising of them. The algorithm which implements this criterion takes into 

account the last available solution of the reinforced linear program FAP3LR . 

3Notice that in such a solution we will have Xg2 = x\^ = 0.5.
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Given a \eve\-k-h (non maximal) clique C = {Vc,Ec}, a chain of non- 

maximal cliques which are subsets of C is created by the algorithm. The chain 

starts from the empty set and stops when the maximal clique C is reached. 

At each iteration, given the current non-maximal clique S — {Vs, ES}, we 

select probabilistically a vertex to be added to S. We need the following 

definition to specify how the probability is calculated:

a (v } _ ( number of non-maximal cliques involving the edge \ IAA-\\ 
^ ' '~\ {v,w} already considered by the algorithm / ( • '

The probability of selecting a vertex v (not yet in Vs) is then given by:

4 '

(4-42)

where af^ indicates the value of variable x lvw in the last available solution of 

the (reinforced) formulation FAP^LR.

The strategy described gives priority to those vertices which are connected 

to S with edges that are not violated in the last solution available and that 

have not been considered too many times in the previous selections of non- 

maximal cliques.

The pseudocode for the heuristic criterion described in this section is 

incorporated into the pseudocode for the lower bounding technique LB3, 

which is presented in Figure 4.8.

4.3.3.3 Algorithm to produce LB3

In this section we describe the algorithm to produce the global lower bound 

LB3, which incorporates inequalities arising from non-maximal clique sub- 

problems. The pseudocode is given in Figure 4.8.
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LB3(Pr)

INPUT:
Pr = problem of type FS-FAP. 
OUTPUT:
a lower bound of the cost of an optimal solution of Pr.

LP := linear program FAP3iR representing Pr; 
For k € K 

For h € H 
CSkh '•= set of all level-k-h cliques of G;
v c € cs^

r := lower bound for the number of constraint violations in C; 
S :— lower bound for the penalty paid in C; 
AddCtrs(C, LP, T, 8); 

EndV 
EndFor 

EndFor
While(time < Tmax ) 

V C 6 {set of all level-0-1 cliques of G} 
If (random number in [0,1) < p%) 

S := {0, 0}; 
While(5 / C)

v :— vertex in Vc\Vs chosen probabilistically (eqn. (4.42)); 
ES := ES U {edges involving v and the vertices already in Vs}', 
VS := VS U {v}~
T := lower bound for the number of constraint violations in 5; 
5 :— lower bound for the penalty paid in 5; 
If(r < no. of ctr. violations in S in the last solution of LP)

r:=0; 
Endlf

< penalty in S in the last solution of LP)

Endlf
AddCtrs(C, LP, T, 5)- 

EndWhile 
Endlf 

EndV
update the solution of LP; 

EndWhile 
Return [ Cost ̂ optimal solution of LP) ] ;

Figure 4.8: Algorithm for lower bound LB3. 
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The first phase of the algorithm is the same as the algorithm to produce 

LB2, described in Figure 4.6.

In the second phase the algorithm enters into an iterative statement. Here 

at every iteration, each level-0-1 clique C is selected with a given probability 

pz. If C is selected, we generate a chain of non-maximal cliques, where each 

one of them differs from the previous one by a new vertex v, added with 

probability given by (4.42). We calculate all the constraints obtained from 

these non-maximal cliques and we add to LP the ones which are violated 

in the last solution of LP. LP is the representation through FAP^LR of 

the FS-FAP Pr, reinforced with some constraints of type (4.34) and (4.35). 

The choice of the type of constraint to add is done following the criterion 

described in the pseudocode of Figure 4.5.

A new solution of LP is calculated after consideration of all the selected 

level-0-1 cliques.

The algorithm exits from the iterative statement and stops when a max­ 

imum computation time Tmax has been reached.

It is important to notice that we may add redundant constraints to LP, 

because we do not update the solution of LP too often. We choose to do so 

because to prevent this would be more expensive, in computational terms, 

than dealing with redundant constraints. In particular, the probability p2 

has been inserted to give a tradeoff between the frequency of solution of LP 

and the probability of having redundant inequalities.

4.4 Computational results

In this section we group some computational results obtained by the methods 

described in this chapter. We also present a brief analysis of those situations
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in which our methods do not obtain tight estimates.

All of the linear programs arising within this thesis have been solved using 

ILOG CPLEX4 callable libraries version 6.6.

4.4.1 Local lower bounds

In this section we study the results obtained by the two local lower bounding 

techniques described in Section 4.2. We present the results achieved by the 

two methods on some of the benchmarks described in Section 3.4.1.

A study of the computation times of the two local lower bounds is omitted 

as they are always negligible.

We present charts where in the x axis some of the level-0-1 cliques (with 

a non-null local upper bound) of a given problem are represented. By a local 

upper bound we mean an upper bound for the penalty paid in a given clique 

subproblem, ignoring the rest of the problem. Each local upper bound is 

calculated by running the tabu search algorithm described in Section 3.3.2 

with appropriate parameter settings. We cannot guarantee the optimality 

of the upper bounds, and on the contrary we suspect that it is not always 

reached.

Each chart of this section contains the following values:

• UB: upper bounds of the cost paid in the clique when the rest of the 

problem is ignored (local upper bounds);

• Formula LB: local lower bounds obtained by the formula bound. As 

the formula bound returns an estimate of the number of constraint 

violations, in the case of weighted problems we convert the results into

4http://www.cplex.com.
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AC-45-25-|F|=11

IUB Formula LB BTSP LB

Figure 4.9: Local lower bounds on AC-45-25 with |F| = 11.

a bound on the penalty by solving the respective linear programs [/ 

introduced in Section 4.3.1.2.1;

• TSP LB: local lower bounds obtained by the TSP bound;

We have subdivided the results accordingly to the benchmark families.

The target of the problems of the first family is to minimise the number of 

constraint violations (i.e. V[v,w] G E pvw = 1). In Figure 4.9 we present a 

chart summarising the results obtained on the level-0-1 cliques of the problem 

AC-45-25 with |F| = 11 (this information is reported in the top right corner).

In Figure 4.9 the formula lower bound dominates the TSP bound and 

matches the upper bound for all the subproblems. The good results of the 

formula bound, which works by reducing all the separations to the smallest 

of them, suggest that the problem examined is quite regular in terms of 

separations. It is also interesting to observe how the TSP bound tends 

to underestimate the number of constraint violations when there are many,
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Figure 4.10: Local lower bounds on Test282 with |F| = 71.

confirming that the method works better when there are few violations.

A different situation is depicted in Figure 4.10, where the results obtained 

for a subset of the level-0-1 cliques of the problem Test282 with |F| = 71 are 

presented.

The gap between the upper bound and the TSP bound is not closed and 

the formula bound always produces a bound of zero. The bad results of the 

formula bound may suggest a very scattered distribution of the separation 

values.

The two examples above suggest that the characteristics of the problems 

can heavily influence the performance of our local lower bounds.

In Figure 4.11 we present the results obtained on a weighted problem from 

the second family of benchmarks. The problem considered is GSM2-184, and 

|F| = 39. We can see how the TSP bound dominates the formula bound, 

suggesting that the TSP bound has better performance than the (converted) 

formula bound on weighted problems.

The last tests presented concern the problems of the third set of bench-
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Figure 4.11: Local lower bounds on GSM2-184 with |F| = 39.

marks. We want to study how the quality of the local lower bounds changes 

when some of the characteristics of the problems change. In particular we 

study how the bounds are affected by changes in the domain dimension, by 

changes in the range of the separation values and by changes in the range of 

the penalty values. We ignore the modification of the edge density because 

it would not be significant in terms of local problems.

In Figure 4.12 we group the results obtained on the same problem, when 

the number of available channels changes. In the first graph a domain of 15 

frequencies is considered. Only a small fraction of the level-0-1 cliques have 

a non-zero upper bound and in these cases both the local bounds find the 

optimal solutions. Considering |F| = 10 (second graph) a gap between the 

upper bound and the lower bounds is present and occurs particularly when 

the upper bound is high. The TSP bound dominates the formula bound. In 

the graph in the bottom of the figure we consider just 5 available frequencies, 

and the lower bounds obtain poor results, particularly the TSP bound. This 

does not work properly when, as in this case, the density of violations is
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very high (the reason for this has been explained in Section 4.2.1.4). We can 

conclude that the performances of our lower bounds are heavily influenced by 

the domain size: underestimated domains mean high density of violations, 

which implies poor results.

In Figure 4.13 we group the results obtained on a set of graphs which have 

the same structure but differ in the range of the cfs (separation values). The 

maximum possible value of separation (the minimum is always 0) is reported 

in the top left corner of each of the three graphs. The gap between the upper 

and the lower bounds increases as the range increases. It is important to 

observe how the lower bounds do not change too much from one graph to 

another, while the upper bounds become higher and higher: this means that 

our methods tend not to capture the increase of the size of the maximum d 

value. Another observation is about the fact that increasing the separation 

values range without augmenting the available frequencies, makes the density 

of the violations become higher, producing a result similar to the one obtained 

by reducing the number of frequencies available on a fixed problem. This 

could suggest that the degradation of the performance with the increase of 

the range of the cPs could depend also on the augmentation of the density of 

violated edges, which, we have seen, makes the quality of our lower bounds 

decrease.

Finally, in Figure 4.14 we present the results obtained when the range 

of the possible values for the p's (penalty values) is modified on a graph 

which maintains the other characteristics unchanged. The degradation in 

the performance of our local lower bounds is clear, especially for the formula 

bound. Also in this case it is interesting to observe how the lower bounds do 

not capture too much of the increase of the upper bounds when the range 

of the penalty values becomes bigger, producing an effect similar to the one
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\F\ = md-1-1-50-75-30-2-50 - |F|=5

IUB Formula LB HTSP LB

Figure 4.12: Performance of the local lower bounds when the frequency do 

main is changed.
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md-1.3-50-75-30-0-50 - |F|=11

Maxd=2 md-1-1-50-75-30-2-50 - |F|=11

1 2 3 4

md-1-2-50-75-3(M-50 -

IUB Formula LB BTSP LB |

Figure 4.13: Performance of the local lower bounds when the range of the 

separations is changed.
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seen in Figure 4.13. In this case bigger ranges for the p's do not directly 

imply higher density of violated constraints, so we can conclude that bigger 

ranges for p's imply worse local lower bounds.

We can conclude that the performance of the local lower bounds described 

in Section 4.2 heavily depends on the characteristics of the problems. They 

seem to work very well on the simplest problems (i.e. the average of the d's 

is not too far from 0, the average of the p's is not too far from 1 and there 

is an adequate frequency domain), while they have more difficulty when the 

separations, and especially the penalties, are very scattered or the dimension 

of the frequency domain is very underestimated. The quality of our lower 

bound seems to be particularly affected by this last factor. This is not a 

dramatic problem because, as we have observed in Section 4.2.1.4, a heavily 

underestimated frequency domain is quite uncommon.

4.4.2 Global lower bounds

In this section we summarise the results obtained by the global lower bounds 

described in Section 4.3. We first specify the parameter settings we have 

chosen, then we present the results obtained and a brief study of them.

4.4.2.1 Parameter settings

In this section we specify the values we have chosen for the parameters of 

the methods LB1, LB2 and LB3.

The sets K and H, which contain respectively the values of k (separa­ 

tions) and h (penalties) we will consider for \ave\-k-h cliques have been set 

as described below based on a series of tests. These suggested that K and 

H are not crucial parameters, as the lower bounds (especially LB3) are not 

too much affected by different settings of them. However a good tradeoff
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Maxp = md-1-4-50-75-30-2-1 - |F|=10

Max p= 100 *

md-1-1-50-75-30-2-50 - |F|-10

ma-1-5-50-75-30-2-100- |F|=10

IUB Formula LB BTSP LB

Figure 4.14: Performance of the local lower bounds when the range of the 

penalties is changed.
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Graph
GSM2-184 
GSM2-227 
GSM2-272

1 st
1 
1 
1

9nd

2000 
2000 
2000

3rd
4000 
4000 
4000

4th

6000 
6000 
6000

cth (j

8000 
8000 
8000

Table 4.2: Definition of H. Benchmark set 2.

Graph
1-1-50-75-30-2-50
1-2-50-75-30-4-50
1-3-50-75-30-0-50

1-5-50-75-30-2-100
1-6-50-75-30-0-10000

1 st
1
1
1
1
1

ond

10
10
10
20

2000

3rd
20
20
20
40

4000

4th

30
30
30
60

6000

5th
40
40
40
80

8000

Table 4.3: Definition of H. Benchmark set 3.

between the quality of the bounds and the computational times seems to 

be reached when K includes all of the levels of separation which appear in 

the problem (for a frequency assignment problem typically there are no more 

than five levels) and when H includes five levels of penalty5 . Consequently K 

is given by all of the values appearing in the problem, while the definition of 

H depends on the problem. The values chosen for each weighted problem are 

specified in Table 4.2 and Table 4.3, where the columns have the following 

meaning:

• Graph: names of the scenarios. For all the problems derived from a 

scenario (by defining different frequency domains), the set H contains 

the same values;

• z th : i th value contained in the set H for each scenario.

It is important to observe that the quality of the lower bounds seems to 

depend more on the choice of the set K than on the choice of the set H. 

5This is valid for the weighted problems only. For unweighted problems H = {!}.
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The lower bound LB3 has two other parameters: the probability pi, 

which is used in the second phase of the algorithm and the maximum com­ 

putation time Tmax . Tmax has been fixed at 24 hours and p2 at 0.75. It must 

be observed that some preliminary tests suggested that p2 is not a crucial 

parameter for the quality of the lower bounds.

4.4.2.2 Results

In Table 4.4, Table 4.5 and Table 4.6 we summarise the results obtained by 

the global lower bounding techniques LBl, LBl and LB3. The columns of 

the tables have the following meaning:

• Problem: names of the problems. Each name is composed of the fol­ 

lowing two elements:

— Graph: name of the graph on which the problem is based;

— |jP|: number of channels available;

• UB: best upper bound available for each problem. The bounds are 

obtained using the heuristic algorithms described in Chapter 3;

• LBi: lower bounds obtained by the method LBi. The two subcolumns 

have the following meaning:

- Val: values of the lower bounds;

- Sec: computation times in seconds.

The results summarised in Table 4.4, Table 4.5 and Table 4.6 can be 

considered very satisfactory, because the lower bounds are on average good 

and the methods presented are, as far as we know, the first to work on general

98



Problem 
Graph |F|

AC-45-17 7
AC-45-17 9
AC-45-25 11
AC-45-25 19
AC-95-9 6
AC-95-9 10

AC-95-17 15
AC-95-17 21
GSM-93 9
GSM-93 13
GSM-246 21
GSM-246 31

Test95 31
Test95 36
Test282 61
Test282 71
P06-5 11
P06-5 41
P06-3 31
P06-3 71

P06b-5 21
P06b-5 31
P06b-3 31
P06b-3 71

UB

32
15
33
8

31
3

33
10
32
7

79
25
12
8

51
27
133
15

115
26
52
25
112
26

LB1
Val Sec
16 1
9 1

21 1
8 2

20 1
3 1

21 19
9 19

14 3
4 2

47 14
16 12
11 2
7 2

19 273
5 229

121 4
15 5

109 16
26 17
49 5
25 5
106 15
26 17

LBl
Val Sec
16 1
9 1

21 2
8 3

24 1
3 1

25 68
9 22

15 2
4 2

47 28
16 22
12 2
7 2

20 190
5 124

121 7
15 7

109 41
26 31
49 9
25 10
106 59
26 47

L£3 
Val Sec
20 31
10 4
26 986
8 3

27 17
3 1

28 738
9 22

17 32
4 2
50 5657
16 22
12 2
7 2

20 190
6 1030

121 7
15 7

109 41
26 31
49 9
25 10
106 59
26 47

Table 4.4: Lower bounds results. Benchmark set 1.

Problem 
Graph |F|

GSM2-184 39
GSM2-184 49
GSM2-227 39
GSM2-227 49
GSM2-272 39
GSM2-272 49

UB

5521
874

10979
2459

27416
7785

LBl
Val Sec
1923 9
500 9

2708 17
1125 16
5206 53
2394 38

LBl 
Val Sec

4816 88
874 60
7147 179
1998 123

12792 265
5168 270

LBZ
Val Sec

4856 5035
874 60

7328 16064
1998 123
12909 85131
6258 80951

Table 4.5: Lower bounds results. Benchmark set 2.
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Problem 
Graph |F|

1-1-50-75-30-2-50 5
1-1-50-75-30-2-50 10
1-1-50-75-30-2-50 11
1-1-50-75-30-2-50 15
1-2-50-75-30-4-50 11
1-3-50-75-30-0-50 11
1-4-50-75-30-2-1 10

1-5-50-75-30-2-100 10
1-6-50-75-30-0-10000 10

UB

1242
101
59
11
323
36
19
186
6942

LSI
Val Sec
247 2
14 1
10 1
4 2
25 3
12 1
14 1
24 2
1274 2

LB2
Val Sec
519 4
36 3
28 2
11 3
54 3
28 2
14 1
49 3

3083 3

LB3 
Val Sec
802 65296
52 1879
36 616
11 3
68 5655
35 218
17 29
90 2259

6315 8891

Table 4.6: Lower bounds results. Benchmark set 3.

problems, i.e. without using particular characteristics of a given problem (set 

of problems).

Lower bound LB3 is the best one in terms of results, but has longer 

computation times. LBl does not seem to be very promising: it is always 

dominated by LB1 (and consequently LB3), and on average the difference 

between the computation times of LBl and LB2 is minimal. For this reason 

in the following we will not consider LBl further. LB2 can be seen as a 

truncated version of Z/53, and can be used as a first approximation of the 

lower bound in a short time.

The quality of the lower bounds is not constant over all of the examples 

and in particular the ratio LB3/UB varies between 0.211 (1-2-50-75-30-4-50 

with |F| = 11) and 1 (many problems). We suspect that in some cases the 

upper bounds do not match the optimum (as observed in Section 3.4.2.2), and 

consequently we think that the quality of the lower bounds may be sometimes 

underestimated. It is anyway clear that, given a scenario, our three methods 

work better when the number of frequencies available is greater and the values 

of the separations (d's) are defined in small ranges (see Table 3.1, Table 3.2
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and Table 3.3).

Observing that the global lower bounds seem to work better in the same 

conditions in which the local lower bounds obtain their best results (see Sec­ 

tion 4.4.1), we can conclude that when the local lower bounds are not tight, as 

a consequence the global lower bounds do not seem to work effectively. The 

main question arising now is whether this is the only factor which affects the 

quality of the global lower bounds, or whether there are other reasons. We 

will discuss this in the following section, where we will try also to delineate 

some strategies to improve our global lower bounds.

There is another important observation about the results of Table 4.4, Ta­ 

ble 4.5 and Table 4.6. For some problems the lower bounds match the upper 

bounds and this may suggest that the variables of the reinforced FAP^iR 

represent a feasible (optimal) assignment for the original FS-FAP. Unfor­ 

tunately this is not true, and this certainly depends on the weakness of 

constraints (4.28) and (4.29) of formulation FAP^LR, which are not strong 

enough to guarantee a feasible assignment, even when the global lower bounds 

are optimal. This property, which is intrinsic in our methods, is unfortunate 

because it makes it non trivial to use the solutions of the reinforced FAP^LR 

as starting points to generate good upper bounds.

4.4.2.3 Study of the results

In this section we investigate the results presented in the previous section. 

In particular we focus our attention on those situations where our methods 

have not obtained tight estimates. The most obvious explanation for these 

situations is given by the loss of information arising from the use of FAP^LR 

instead of FAPZ. In the following of this section we will look for other, less 

obvious, explanations.
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As anticipated in the previous section, sometimes the poor quality of the 

global lower bounds could be strictly connected with the poor quality of 

the local lower bounds. To examine this possibility, we have considered a 

modified version of LB2 and LB3, where values for the r's and the S's are 

obtained by running upper bounding techniques on clique like subproblems. 

The comparison of the results obtained by these modified methods with the 

original ones is presented in Table 4.7, where the columns have the following 

meaning:

• Problem: names of the problems. Each name is composed of the fol­ 

lowing two elements:

— Graph: name of the graph on which the problem is based;

— |F|: number of channels available;

• UB: best upper bound available for each problem, according to the 

results obtained by the heuristic algorithms described in Chapter 3;

• LBi: results obtained by the two versions of the method LBi. The two 

subcolumns have the following meaning:

— LLB: results obtained by the original algorithm LBi;

— LUB: results obtained by the modified version of the algorithm 

LBi. For each clique-like subproblem considered, local upper 

bounds are used instead of the formula and the TSP local lower 

bounds for the creation of the reinforcing constraints (4.34) and 

(4.35). The local upper bounds are calculated by running the tabu 

search algorithm described in Section 3.3.2 with appropriate para­ 

meter settings. Notice that the resulting global estimates cannot 

be read as lower bounds.
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Problem 
Graph |F|

Test282 71 
1-2-50-75-30-4-50 11 

GSM-93 13

UB

27 
323

7

LB1 
LIB LUB

5 14 
54 138 
4 4

LB3 
LIB LUB

6 >15 
68 >161
4 4

Table 4.7: Sensitivity of the global lower bounds to the quality of the local 
lower bounds.

Some values of the last column of the table are of type " > x ". This means 

that when the computation has been truncated after 24 hours, the algorithm 

was still improving and the lower bound was x. These time consuming runs 

are due to the slowness of the method when the calculation of the local upper 

bounds is included.

In studying Table 4.7 it should be noted that two factors could perturb 

the results of the table. Both are connected with the quality of the up­ 

per bounds, local and global respectively, which cannot be guaranteed. All 

the conjectures we will make in the following are consequently based on the 

hypothesis that all the global and local upper bounds are not greatly over­ 

estimated. We remain uncertain about this hypothesis, but we must assume 

it for the considerations described in the following.

The results presented in Table 4.7 are very heterogeneous. For the prob­ 

lems Test282 with |F| - 71 and 1-2-50-75-30-4-50 with |F| = 11, the poor 

quality of the global lower bound appears to be a direct consequence of the 

poor quality of the local lower bounds. The improvement of the result when 

local upper bounds are considered instead of local lower bounds is consistent, 

notwithstanding that a gap between the global lower bound and the global

upper bound remains.
The results commented above can be read as an indication that, for the 

problems considered, the poor quality of the local lower bounds is an impor-
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tant factor in the quality of our global lower bounds, but it may not be the 

only one.

The last row of the table, which concerns problem GSM-93 with |F| = 13, 

confirms this last conjecture. In this case the use of local upper bounds 

instead of local lower bounds does not affect the global result. This indicates 

that the quality of the local lower bounds is already very good, but this 

is not enough to guarantee a tight global lower bound. A second factor, 

independent of the quality of the local estimates, must consequently affect 

the quality of the global lower bounds. It seems to depend on something 

that cannot be captured by the single clique-like subproblems, probably on 

constraint violations which are caused by the structure of the whole problem 

(or of a subproblem of it bigger than each clique-like subproblem). For this 

reason we will refer to this factor as the context problem to indicate that it 

depends on the context in which the clique-like subproblems are inserted. 

This context is ignored by our techniques, which are based on clique-like 

subproblems only.

The chart presented in Figure 4.15 should help to understand the context 

problem. It refers to problem GSM-93 with |F| = 13, and also for this 

example the unproved hypothesis that the global upper bound is not greatly 

overestimated must be assumed. In the x axis of the chart all of the \eve\-k-h 

cliques considered by LB2 (see Section 4.4.2.1) with a non-null local upper 

bound are listed. For each one of these cliques we present the following 

values (we remind the reader that GSM-93 is an unweighted problem, i.e. 

V{w,ti;}€ E pvw = I):

• Local penalty in the global UB: penalty paid within the subproblem in 

the solution of the whole problem which produces the best global upper 

bound available (obtained with the methods described in Chapter 3);
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•Local penalty in the global UB •LocalUB

Figure 4.15: Context problem in GSM-93 with \F\ = 13.

• Local UB: local upper bound of the penalty paid in the subproblem, 

without considering the rest of the problem (obtained with the methods 

described in Chapter 3);

• Local LB: local lower bound of the penalty paid in the subproblem, 

without considering the rest of the problem. The highest value between 

those returned by the TSP bound and the formula bound is considered.

Analysing Figure 4.15 we can see how, for the problem represented, "Local 

LB" always matches "Local UB" (i.e. the local lower bounds are optimal), 

but the values of these series are always below the respective values of "Local 

penalty in the global UB" (i.e. there is a context problem).

In conclusion we think that when our lower bounds do not work satisfac- 

torally, this is a result of at least three main factors. The first, which is the 

most obvious one because it is part of our approach to the problem, is the 

loss of information arising from the use of FAP3LR instead of FAP3. The 

second factor is the unsatisfactory quality of the local lower bounds, while
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the third is what we have called the context problem.

In Chapter 5 we will develop some methods which aim to improve the 

local lower bounds.

In Chapter 6 we will propose a simplification for the global formulation 

FAP3, together with some reinforcing inequalities for it. These inequalities 

represent structural information of the original frequency assignment problem 

which are lost when the linear relaxation of FAP3 is considered. In Chapter 6 

we will also briefly describe some approaches we have developed to overcome 

the context problem, but which have proved to be completely ineffective.
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Chapter 5

Improving the local lower 

bounding techniques

In Chapter 4 we have described some global lower bounding techniques, to­ 

gether with the local lower bounds on which they are based. In Section 

4.4.2.3 we have observed that three main reasons can be identified to explain 

those situations where our global lower bounds are not very tight. One of 

these reasons is the poor quality of the local lower bounds in these situations. 

The aim of this chapter is to improve the quality of the local lower bounds.

The formula bound (Section 4.2.2) does not seem to have great margin for 

improvement. More potential seems to be offered by the TSP bound (Section 

4.2.1). For this reason in this chapter we will work mainly on this method, 

describing two ideas which should reinforce the linear program TSPin, on 

which the TSP bound is based.

We also propose a non-trivial method to convert a lower bound for the 

number of constraint violations present in a problem into a lower bound for 

the penalty paid in the same problem.

The chapter is concluded by some computational results.
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5.1 Improving the TSP lower bound

In this section we propose two families of constraints, 2-path inequalities and 

subtour elimination inequalities, which should reinforce TSPLR, the linear 

program solved to compute the TSP local lower bound.

5.1.1 2-path inequalities

The method described in this section is based on a reformulation of TSPLR 

which includes new variables and new constraints. For simplicity we will 

refer to the approach as 2-path inequalities, notwithstanding it is more than 

a simple new set of inequalities.

The aim of the method is to avoid the undesirable phenomenon described 

in the example of Figure 4.1, where a constraint violation, implicitly present 

in the assignment arising from the solution of TSPin, is ignored by the lower 

bound.

As stated in Section 4.2.1, the TSP lower bound for the FS-FAP has 

been created by converting the well-known TSP lower bound method for 

the MS-FAP, described in Alien et al. [8]. In that paper a set of inequalities 

developed to improve the TSP lower bound for the MS-FAP (called frequency 

assignment inequalities) is described (see also Alien et al. [9], Dunkin and 

Alien [36] and Smith et al. [86], [88] and [91]). In this section we present a 

family of inequalities for the FS-FAP version of the TSP bound which are 

based on the same idea. However, our inequalities look very different from 

those described in [8] because of the strong differences existing between the 

FS-FAP and the MS-FAP.

In the following description we will refer to a clique problem C -
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Formulation TSPtR is modified into TSP^ which uses the variables 

defined in Section 4.2.1.2 for formulation TSPiR plus the new set evw , defined 

as follows:

• evw : continuous variable relaxed from a {0,1} variable. It is defined 

for every {v,w} e E. A value of 1 means that the constraint between 

vertex v and vertex w (v < w) is violated.
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(TSP&) Min

+ " < 1

Pvw&v

E «,+o +

UI<V

- «L > o

0 < uDv < 1

0 < t& < 1 

0 < w£. < 1

0 < evw < I

(5.1) 

V{v,w}£Ec (5.2)

= 2 VveVc (5.3)

(5.4)

(5.5)

V{u,u;}ejE;c (5.6) 

Vw, to, 2 G Vc; v < u; < z\

&VW ^_ ^^2; ~r dwz

Vv,w,z G Vc-; u < w < z\

^vz ^_ QVW i ®"wz

Vv, w, z € Vc ; u < w < z;

U"WZ _ QVW \ &VZ

VveVc
V{v,u;}e EC 

V{v,w}£Ec 

\/{v,w}£ EC

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

Formulation TSP^ differs from formulation TSPm mainly for the fol­ 

lowing three reasons (apart from the new set of variables):

• each evw has replaced the respective u%w in the objective function;

• there is a new set of inequalities, (5.6), which specifies that each evw
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•

must be greater than or equal to the respective u ŵ ;

there are three new sets of inequalities, (5.7), (5.8) and (5.9), which are 

the 2-path inequalities. These inequalities cover all the subproblems 

with three vertices where if two of its edges are violated then the third 

one must also be violated. They force the violation of the third edge 

to be counted when the other two are.

It is interesting to notice that a problem of the same nature as that 

treated by 2-path inequalities (i.e. a violation, which is implicitly present in 

the assignment derived from the solution of TSPLR, is ignored by the bound), 

can arise on paths of length three of more. For this reason in Alien et al. 

[8] the equivalent of our 2-path inequalities is generalised, from a theoretical 

point of view, for longer paths. The generalisation was not implemented in 

[8] for computational reasons. For analogous reasons we limit our study to 

2-path inequalities. However, violated paths longer than three would exist 

only when a great number of constraints are violated and, as pointed out in 

Section 4.2.1.4, this is quite uncommon in a FS-FAP. Thus we do not expect 

that inequalities for longer paths would be very helpful.

The strategy we adopt to derive 2-path inequalities is described in the 

following section.

5.1.1.1 Selection of the inequalities

2-path inequalities are selected by running a complete search, possibly trun­ 

cated, which examines sets of three variables and tests whether they could 

generate any inequalities. The algorithm stops when all of the possible sets 

have been examined or when MItsp inequalities have already been added to 

the original formulation. MItsp is a user denned parameter.
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Before starting the search, Vt; e Vc we calculate the sum of the penalty 

of the constraints in which v is involved. Formally we define:

r(v) = P™ + pwv (5.14)

The vertices are examined by the algorithm described above in non- 

increasing order of r's. Examining the transmitters in this order should 

help the algorithm to add the most significant inequalities if the search is 

truncated.

Pseudocode of the algorithm is presented in Figure 5.1.

5.1.2 Subtour elimination inequalities

In the TSP lower bound for the MS-FAP (and in the classical formulation of 

the Travelling Salesman Problem, as well) there is a set of inequalities called 

subtour elimination inequalities (see, for example, Alien et al. [8]). These 

constraints force the active variables to form a single circuit (Hamiltonian 

circuit) instead of a set of disjoint circuits. In this section we propose a 

transposition of the subtour elimination inequalities for the FS-FAP version 

of the TSP bound. In [8] it is stated that subtour elimination inequalities 

have little effects on the tightness of the lower bound for the MS-FAP. We 

hope to obtain a different result for the FS-FAP.

Referring to a clique problem C = {VC ,EC } and to the formulation 

TSPLR (see Section 4.2.1.2), the subtour elimination constraints can be writ-

112



Add2Path(C)

INPUT:
C = clique problem of type FS-FAP.

LP := formulation TSP|£ (without (5.7)'s, (5.8)'s and (5.9)'s) representing C; 
na := 0;
o := vector of the transmitters of VQ ordered with 

r (eqn. (5.14)) non-increasing; 
For i:= 0 to \VC \ - 1

For j:=i + 1 to \Vc\-l 
For *:= j-f 1 to |Vc( - 1

v := smallest index among o[«], o[?] and o[&]; 
w := intermediate index among o[i], o[y] and o[A;]; 
2 := greatest index among o[t], o\j] and o[A;]; 
If(rfvu; > dvz + ^uiz)

add the respective constraint (5.7) to LP; 
na := na + 1; 

Endlf 
lf(dvz > dvw + dwz )

add the respective constraint (5.8) to LP: 
na := na + 1; 

Endlf 
If(cfwz > dvw + dvz )

add the respective constraint (5.9) to LP; 
na := na + 1; 

Endlf 
If(no > MItsp )

stop; 
Endlf 

EndFor 
EndFor 

EndFor

Figure 5.1: Selection of 2-path inequalities.
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ten as follows: 

/

\

VS C (VC U 
> 2 (5.15)

Inequalities (5.15) specify that for each S C (Vc U {£>}) which includes 

the dummy vertex D 1 , at least two variables involving a vertex in S and a 

vertex in Vc\S must be active. This forces the active variables to form a 

Hamiltonian circuit.

It is important to notice that in the description of the subtour elimina­ 

tion inequalities we have referred to TSPiR- The inequalities can also be 

added without any modification to TSP^ (the problem arising when 2-path 

inequalities are considered).

The strategy we adopt for the selection of the subtour elimination in­ 

equalities is described in the following section.

5.1.2.1 Selection of the inequalities

It would be extremely impractical to derive and add to TSPin all of the 

possible inequalities (5.15), and also if we do this, the reinforced TSPLR 

formulation would contain too many useless constraints because most of the 

subtour elimination inequalities would be redundant in the optimal solutions. 

For this reason, instead of adding all of the possible inequalities, we adopt 

an iterative algorithm to retrieve significant subtour elimination inequalities 

only.

1 D has been arbitrarily included into S to simplify the notation. This does not limit 

the power of the inequalities.
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The algorithm, given a solution of TSPLR (possibly already reinforced 

with some subtour elimination inequalities), selects at each iteration a new 

inequality to be added to TSPLR or decides to stop. In particular, at each 

iteration i the method constructs a complete graph C{MC such that Vc, = 

Vc U {£>}, where a cost cvw is associated with each edge {v, w} of the clique. 

We define the costs as follows:

"1 + ^1 Xv*D
(5.16)

UDW otherwise

where u ŵ , u ŵ and UDW contain the value of the respective variables in the 

last available solution of TSPLR.

To describe exactly how the algorithm works at each iteration z, we need 

the following definitions.

Definition 4. Given S C Vc > , S ^ ®, the cut <f>(S} induced by S is defined
jW C

as the set of edges {v,w} G ECi which have exactly one endpoint in S. 

Definition 5. Given a cut 4>(S), we define:

CntCost(4>(S)) =
{v,w}e6(S)

Our strategy is based on solving, at each iteration i, a Minimum Cut 

Problem on the graph C*MC , constructed as described above. The minimum 

cut problem is to find a minimum-cost cut <j>(S). To solve this problem we 

adopt the algorithm described in Goemans [45] (where the reader can find 

also a more detailed description of the problem).

Given an optimal solution of the minimum cut problem, we then have the 

following result:

Theorem 5. If (j>(S) is a minimum cut of the graph C 1MC with D 6 S then:
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AddSubtourElimination (C)

INPUT:
C = clique problem of type FS-FAP.

LP := representation of C through formulation
stop := FALSE;
i := 0;
While(stop = FALSE)

stop := TRUE;
solve LP]
construct C1MC from the last solution of LP;
<j>(S) :— minimum cut in C1MC ;
li(CutCost(4>(S)) <2)

add the constraint (5.15) induced by S to LP; 
stop := FALSE;

Endlf
i := i + 1; 

EndWhile

Figure 5.2: Selection of subtour elimination inequalities.

• // CutCost(^>(S)) < 2 then the subtour elimination inequality defined 

by the vertex set S is violated in the last solution o

• If CutCost^S1 )) > 2 then the last solution ofTSPLn respects all of 

the possible subtour elimination inequalities.

Proof. Follows from the construction of the graph CfMC . D

The iterative algorithm we adopt to select violated subtour elimination 

inequalities is summarised in Figure 5.2.
The following observation is important. We can add all of the significant 

subtour elimination inequalities because there are generally just a few in our 

benchmarks. For other types of problems it may be necessary to consider
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criteria to stop the search process before its natural end. Examples of such 

criteria could be a maximum number of constraints added or a limit on the 

time spent searching for them. We have not investigated these alternatives.

5.2 Reinforcing U2W

In this section we describe a non-trivial method to obtain a lower bound 

for the penalty paid in a problem when a lower bound for the number of 

constraint violations present in the same problem is available.

In Section 4.3.1.2.1 we have proposed a technique to convert a lower 

bound for the number of constraint violations into a lower bound for the 

penalty paid. It was based on the solution of the linear program U2W. In 

this section we present a set of inequalities which should improve the quality 

of the conversion by reinforcing U2W.

In the remainder of this section we will adopt the notation previously 

introduced in Section 4.3.1.2.1.

The weakest point of the original linear program U2W is that, given a 

clique, it ignores the relations among its edges. Practically, it simply selects 

the T edges with the smallest penalties. For this reason the solution of U2W 

often does not correspond to a feasible assignment of the vertices of the clique. 

An example of this situation is given in Figure 5.3, where a clique C with 

four vertices (Vc = {0,1,2,3}) is depicted. We define V{v, w} 6 Ec dvw = 0, 

Po2 = Po3 = P23 = 1 (thin edges) and p0i = Pit = Pis = 3 (bold edges). 

Two frequencies are available (F = {0,1}). Both the formula bound and 

the unweighted TSP bound return a lower bound of 2 for the number of 

constraint violations present in the clique. An optimal solution of the linear 

program U2W (conversion from the number of constraint violations to a
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Figure 5.3: Limitation of the conversion from number of constraint violations 

to penalty based on the linear program U1W ' .

penalty) with r — 2 is trivially the following one:

ZQI = ZQZ = 1 ZQI = z\2 — zis — z?3 = 0

This solution generates a lower bound of 2 for the penalty paid in the 
clique. Such a solution does not generate a feasible assignment with the 
same cost because, as edges {0,2} and {0,3} are active, transmitters 0,2 
and 3 would be assigned to the same frequency. This should cause the edge 

{2, 3} to be violated despite not being counted in the lower bounds.
The conversion can be improved by adding to U2W the analogue of the 

2-path inequalities for the TSP lower bound (see Section 5.1.1). Formally, 
given a clique-like subproblem C = {VC ,EC }, we define the following set 

of inequalities (in this case we do not need to add new variables to the 

formulation):

zvs + zwz -zvw <l Vu, w,z€Vcl v<w <z- dvw > dvz + dwz (5.18) 

< 1 Vu, w, z £ Vc\ v <w < z\ dvz > dvw + dwz (5.19)
_ •*• " " '

zvw + zvz -zwz <l Vu, w, z G Vc ; v < w < z; dwz > dvw + dvz (5.20) 

If we consider again the example of Figure 5.3, we can notice how the
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version of U2W reinforced with inequalities (5.18), (5.19) and (5.20) returns 

a solution of cost 3 (when r — 2), and the edge {2,3} is now counted as 

violated by the lower bound.

Inequalities (5.18), (5.19) and (5.20) look the same as the 2-path inequal­ 

ities introduced in Section 5.1.1 for the TSP bound. However, the ideas 

on which the two approaches are based are different. The TSP bound ver­ 

sion of the inequalities works within the method to improve the estimate, 

while the version described in this section is to improve the conversion of 

an already calculated lower bound for the number of constraint violations 

into a lower bound for the penalty paid. In practise this last version is used 

after a lower bound has been calculated, while the TSP version of the in­ 

equalities is used during the calculation of the lower bound. For this reason, 

the lower bound obtained by solving U1W reinforced by 2-path inequalities 

(5.18), (5.19) and (5.20), where T is the solution of the unweighted TSP 

lower bound, is dominated by the lower bound obtained by the weighted 

TSP bound reinforced with the 2-path inequalities described in Section 5.1.1 

(TSPlx). On the other hand, the method described in this section may pro­ 

duce better estimates for the penalty than those based on the TSP bound 

only, by converting the lower bounds for the number of constraint violations 

returned by the formula bound.

5.2.1 Selection of the inequalities

The strategy we follow to retrieve the inequalities (5.18), (5.19) and (5.20) 

is the same as that described in Section 5.1.1.1 for the selection of the TSP 

bound version of the 2-path inequalities.

The maximum number of constraints added, which was MItsp in the 

description of Section 5.1.1.1, is in this case called MIu2w , and it is again a
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user defined parameter.

5.3 Computational results

In this section we present the results of the methods described in the present 
chapter. We first define the parameter settings we have adopted, then we 
analyse how much the local lower bounds result improved when the new 
techniques are in use, and finally we study how the global lower bounds are 
affected by these local lower bound improvements.

5.3.1 Parameter settings

The only parameters appearing in the methods described in this chapter 
are those relative to the maximum number of 2-path inequalities which are 
considered. There is a parameter for each of the two versions of these in­ 
equalities. MItSp is the one for the TSP bound version (Section 5.1.1.1), 
while MIU2W is for the U2W version (Section 5.2.1). Both the parameters 
have been fixed at 5000. This limit is only reached for a few problems, and 
it never affects the quality of the estimates.

The parameters of the methods described in Chapter 4 assume the values 
specified in Section 4.4.2.1.

5.3.2 Local lower bounds

The aim of this section is to understand how much the techniques discussed 
in this chapter are able to improve local lower bounds. For this analysis 
we use charts similar to those adopted in Section 4.4.1 to study the original 
local lower bounds. The logic of the charts in the same, but the sequences 
of values depicted are different. In this section we have the following values:
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• UB: upper bounds of the penalty paid in the subproblems (ignoring 

each time the rest of the problem). It is calculated by running the tabu 

search algorithm described in Section 3.3.2 with appropriate parameter 

settings. Optimality is not guaranteed;

• TSP: lower bounds of the penalty paid in the subproblems obtained 

by the original TSP bound;

• TSP + IP: lower bounds of the penalty paid in the subproblems ob­ 

tained by the TSP bound reinforced with 2-path inequalities (described 

in Section 5.1.1);

• TSP + SE: lower bounds of the penalty paid in the subproblems ob­ 

tained by the TSP bound reinforced with subtour elimination inequal­ 

ities (described in Section 5.1.2);

• TSP -f 2P + SE: lower bounds of the penalty paid in the subproblems 

obtained by applying the TSP bound reinforced with both 2-path and 

subtour elimination inequalities;

• U2W: lower bounds of the penalty paid in the subproblems obtained 

by solving the linear program U2W (described in Section 4.3.1), with 

T as the highest lower bound for the number of constraint violations 

available (formula bound and unweighted TSP bound are considered);

• U2W + 2P: lower bounds of the penalty paid in the subproblems ob­ 

tained by solving the linear program U2W reinforced with 2-path in­ 

equalities (described in Section 5.2), with T as the highest lower bound 

for the number of constraint violations available (formula bound and 

unweighted TSP bound are considered).
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We aim to study, through three different pairs of charts, how the improve­ 

ment techniques react when the characteristics of the problems change.

The first two charts are grouped in Figure 5.4. They show how the qual­ 

ity of the estimates changes when the dimension of the frequency domain 

is changed. We can observe how "TSP + SE" never improves the result 

obtained by "TSP", and this indicates that subtour elimination inequalities 

have no effect when applied to formulation TSPLR. The situation is differ­ 

ent for 2-path inequalities, which are able to improve the results obtained 

by "TSP" ("TSP + 2P"). It is interesting to observe that subtour elimina­ 

tion inequalities are sometimes effective (see the first chart) when applied to 

TSPl^ ("TSP + 2P + SE"). "U2W + 2P", which improves substantially 

the estimate produced by "C/2VK", always obtains at least the same results 

as "TSP-I-2P".

Comparing the two charts of the figure, "U2W + 2P" gives the most 

robust method: it is always close to the best estimates in the first graph and 

it obtains the best results in the second, where the T-SP-based methods do 

not seem to be particularly effective.

It must anyway be observed that the gap between the upper bounds and 

the lower bounds is not closed.

A second set of charts appears in Figure 5.5. They are presented to study 

how the quality of the estimates is affected by modifications in the range of 

the separation values. The observations about the charts of Figure 5.4 are 

mainly valid also in this case. Figure 5.5 suggests that the improvement 

techniques work better when all of the cPs are 0 (first chart). When the 

values of the d's are scattered (second chart) the quality of the estimates 

decreases, both in term of gain on the original methods described in Chapter 

4 and in terms of absolute quality. In the second chart the gap between the
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md-1-1.50-75-30-2.50 • |F|=10

md-1-1.50-75-30.2-50 - |F|=5

IUB BTSP BTSP+2P BTSP-t-SE BTSP+2P+SE U2W BU2W+2P

Figure 5.4: Performance of the improved local lower bounds when the fre 

quency domain is changed.
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md.1.3-50-75-30.0-50 - |F|=11

Maxd = md-1-2-50-75-30-4-50 - |F|=11

IUB HTSP BTSP+2P BTSP+SE BTSP+2P+SE U2W BU2W+2P

Figure 5.5: Performance of the improved local lower bounds when the range 

of the separations is changed.

upper and the lower bounds remains wide.

In Figure 5.6 we present the results obtained by the local lower bound 

techniques on two problems which differ only for the range of the penalty val­ 

ues. Analysing the charts it appears clear that the improvement techniques 

described in this chapter obtain better results when the penalty values are 

scattered (second graph). In this case the gap between the upper and the 

lower bounds is relatively small, notwithstanding that it remains probably 

too large.
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Maxp = 50

Max p = 100

md-1-1-50-75-30-2-50 -

mcJ-1-5-50-75-30.2-100 • |F|=10

IUB HTSP •TSP+2P BTSP+SE BTSP+2P+SE U2W BU2W+2P

Figure 5.6: Performance of the improved local lower bounds when the range 

of the penalties is changed.

125



We can conclude that the best method in terms of robustness is "U2W + 

2P", whose estimates are always very close to the best available. "TSP + 

2P + SEn sometimes obtains better results, but it does not work effectively 

in particular circumstances (see the second chart of Figure 5.4).

We must finally observe that the techniques described in this chapter are 

not particularly effective, because the gap between the local lower bounds 

and the local upper bounds has not been closed at a satisfactory level.

5.3.3 Global lower bounds

We have carried out some tests to evaluate the effects of the local lower bound 

improvement techniques described in this chapter on the global lower bounds 

LB2 and Z/53, described in Section 4.3.2 and Section 4.3.3 respectively.

The results of the experiments are not positive. LB2 is sometimes slightly 

improved when the local improvement techniques are in use, but no improve­ 

ment is achieved for our best method, L£?3. This suggests that when inequal­ 

ities generated from a larger number of clique-like subproblem are considered 

(LB3 considers non-maximal cliques, which are ignored by L52), the effects 

of using local lower bounds which are not tight are mitigated. A different 

justification for the lack of global improvements may be that the techniques 

described in this chapter are not very effective, and consequently the local 

estimates are not sufficiently improved by them.

It is interesting to observe that the results of Table 4.7, which suggest that 

better local lower bounds could sometimes lead to better global lower bounds, 

are not contradicted. From the second chart of Figure 4.13 and from some 

tests which are not reported, we know that for the benchmarks Test282 with 

\F\ = 71 and 1-2-50-75-30-4-50 with \F\ = 11, i.e. the problems of Table 4.7 

whose results were improved when local upper bounds were used instead of
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local lower bounds, the techniques described in this chapter do not produce 

any significant improvement in the local lower bounds.
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Chapter 6

Improving the global lower 

bounding techniques

In this chapter we aim to improve the global lower bounding techniques LB1 

and L53, described in Chapter 4.

In the first section we discuss the role of the structure of formulation 

FAP%LR (presented in Section 4.3.2.1) within the lower bounds and we pro­ 

pose a simplified formulation, FAP^R , which achieves the same results, but 

with shorter computation times and smaller memory requirements.

In the second part of the chapter some reinforcing inequalities for 

FAP3fR , which are called global 2-path inequalities, are introduced. These 

inequalities express some structural characteristics of the problems, charac­ 

teristics which are represented by the integer program FAP3, but which are 

lost when its linear relaxation FAP3LR (or F-4P3ffl) is considered.

A section is dedicated to a brief description of some techniques we have 

developed aiming to overcome the context problem, but which have proved 

to be completely ineffective.

The last section is dedicated to computational results.
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Some of the methods described in this chapter have been presented, to­ 

gether with part of the theory developed in Chapter 4, in Montemanni et al. 

[80].

6.1 Simplified linear relaxation FAP3SLR

A question concerning the results obtained by the global lower bounding 

techniques LB1 and LBZ arises. It is about the contribution of formulation 

FAPSiR to these results, and in particular on the role of the structure of 

the formulation in the estimates. We suspect that FAP^LR works just as 

a container for reinforcing inequalities (4.34) and (4.35), which in this case 

would autonomously supply all of the useful information.

We define a new formulation, that is simply a container for inequalities 

(4.34) and (4.35), and we study the results obtained when this new for­ 

mulation is used instead of FAP^LR within the global lower bounds LB2 

and LB3. The formulation, which is called F.4P3fR , is a simplification of 

FAP^LR- Variables x°, x 2 and y have been deleted (together with constraints 

(4.27), (4.28) and (4.29), that involve these variables). The formulation which 

results is as follows.

(FAP3SLR) Min £ Pvwxlw (6.1) 
{v,w}eE

s.t. Q<xlw <l V{v,w}eE (6.2)

It must be observed that when no constraint (4.34) or (4.35) is added to 

, the optimal solution trivially has cost 0 for all of the problems, 

and consequently the formulation makes sense only when some reinforcing 

inequalities are added to it.
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In the remainder of this chapter we will refer to formulation 

reinforced with a set of inequalities X as FAPZ^R + X.

There is an important result which connects the solutions of FAP3LR + X 

with the solutions of FAP3SLR + X when the inequalities of X involve x 1 

variables only. To describe it we refer to Definition 3 and to a FS-FAP 

represented through a graph G. We also assume1 that V{v,w} 6 E dvw < 

1*1-2.

Theorem 6. If the inequalities contained inX involve x l variables only, then 

Opt(G, FAP3LR + X) = 0Pt(G, FAP3SLR + I).

Proof. We will prove the inequalities Opt(G, FAP3LR + X] < Opt(G, 

FAPZSLR + J) and Opt(G, FAP3LR + J) > Opt(G, FAPZSLR + J) sepa­ 

rately. To make the exposition clearer we will refer to the x 1 variables of 

FAP3SLR as z 1 '5).

Opt(G, FAP3LR + I) < Opt(G, FAP3SLR + X):

Starting from a feasible solution Sols of F.4P3f R + X, we construct a fea­ 

sible solution Sol of FAP%LR + X. We define the values of the variables 

of Sol as follows: V{v,w} € E x lvw = zils) , x°vw = x 2vw = (l - xil5)) /2; 

Vv G V yv = 0. Sol is feasible for FAP^LR + X. It also has the same cost as 

Sols . The procedure, when applied to an optimal solution of FAP3fH + J, 

proves the inequality.

Opt(G, FAP3LR + X) > 0Pt(G, FAP3SLR + X):

As FAPZSLR is a simplification of FAP3LR, this inequality is automatically 

true. D

As inequalities (4.34) and (4.35) involve z 1 variables only, we can conclude

that FAP3SLR can substitute FAP3LR inside the global lower bounds LB1

J The assumption is not restrictive because if 3{v, w} £ E such that dvw > \F\ -2 then

the edge {v, w} can be eliminated from E, and a fixed cost of pvw can be added instead.
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and LB3 without any loss of quality in the results. This confirms that most 

of the information represented in the integer program FAP3 is lost when its 

linear relaxation, FAPSiR, is considered.

A direct consequence of Theorem 6 is the result which we present in the 

remainder of this section. We first need the following definition.

Definition 6. 7 = {C1/, £/,£/} is the concise definition for the following re­ 

inforcing inequality:

cL*L>ti ( 6 - 3 )

where the elements of the inequality have the following meaning:

• Ci = {Vcn ECJ}: clique-like subproblem on which inequality I is de­ 

fined;

• t/: type of inequality I. It can be (4-34) or (4-35);

• £/; right hand side of inequality I; 

,1 if ti =(4-34)
C — ^ttin

Proposition 1. Given a problem G. if X = {xlw \{v,w} 6 E} is a non­ 

zero cost, optimal solution of the linear program FAP^R representing G 

reinforced with the set of inequalities X, of type (4.34) and (4.35), then 3/6 

X which satisfies the following inequality:
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Proof. We suppose that there is an optimal solution X such that V7 e J the 

following inequality is satisfied:

c™*™ > & ( 6 - 5 )

We will show that X cannot be optimal. 

We first need the following definition:

(6.6)

Now we consider a new solution X such that M{v,w} 6 E x^u, = ^-. 

respects all of the inequalities in T because V7 e I we have:

E c1 f1 - - \^ r1 r l '-vw-^vw > / ; ^vw-^vw
{v,w}£ECl {v,w}^.Ec,

> fr V C1 X 1 - fr— •*—\ r , / j <"vw'L vw S»J

The cost of X is less than that of X (£ > 1 because of (6.5)), which 

consequently was not optimal. D

The proposition above confirms our conjectures about the role of the 

local lower bounds within the global estimates. It implies that if there is a 

problem for which every local lower bound for the penalty paid (number of 

constraint violations present) is much smaller than the penalty paid (number 

of constraint violations present) within the respective subproblems in an 

optimal frequency assignment, then the global lower bound cannot be tight.

It is interesting to observe that the gap between each local lower bound 

and the penalty (number of constraint violations) present in the respective
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Formulation

FAP3LR 

FAP3SLR

No. of Constraints

3|J5| 

0

No. of Variables

|V| + 3|£I| 

\E\

Table 6.1: Dimensions of formulations FAPZLR and FAP3SLR .

edges in an optimal frequency assignment can be due to a poor performance of 
the local lower bounding techniques or to the presence of a context problem. 

It must also be noticed that the above proposition confirms that the 
consideration of non-maximal cliques can be useful, because the addition of 
new constraints can lead to a redistribution of constraint violations among 
edges, and eventually to a higher-cost solution of F.4P3fH .

6.1.1 Dimensions of FAP3LR and FAP3SLR

In Table 6.1 we compare the dimensions, in terms of number of constraints 
and number of variables, of formulation FAP3LR and formulation F.4P3f R. 
The columns of the table have the following meanings:

• Formulation: names of the two formulations we compare;

• No. of Constraints: expressions for the number of constraints of the 
formulations (number of rows of the problem matrix). Constraints 

defining variable domains are not counted here;

• No. of Variables: expressions for the number of variables of the formu­ 

lations (number of columns of the problem matrix).

From Table 6.1 the importance of the simplification appears clear. When 
the simplified formulation is used there is a much smaller memory require­ 
ment because of the reduction in the number of variables and the reduction

133



in the number of constraints. As it is generally easier to solve a smaller prob­ 

lem, the simplification should also guarantee an improvement in the speed of 
the algorithm.

6.2 Global 2-path inequalities

A simple way to reinforce FAP3ffi is to add to it some inequalities, which 

are the analogue of the 2-path inequalities for the linear program U1W, 

described in Section 5.2 (and also of the 2-path inequalities for the linear 

program TSPiR, described in Section 5.1.1). Formally the inequalities are 
as follows:

, , Vv,w.z £ V : l l •, , , ,. o4 + x lwz -x lvw <l • (6.7)
{v, w}, {v, z}, {w, z} e E\ dvw > dvz + dwz 

, , , Vv,w, z E V :*i» + *i« - *i, < i f f ( , (6-8){v, w}, {v, z}, {w, z} E E; dvx > dvw + dwz

, , Vv,w,z G V :
xlw + x lvz - X lwz <\ (6.9)

{v, w}, {v, z}, {w, z} e E; dwz > dvw + dvz

The presence of these inequalities should help to avoid many situations 

where the constraint violations (which are forced to exist by inequalities 

(4.34) and (4.35)) assume infeasible configurations. This should increase the 

quality of the global lower bounds.

It is interesting to notice that, as inequalities (6.7), (6.8) and (6.9) in­ 

volve only x l variables, Theorem 6 still applies. Also Theorem 1 still applies 

because if a solution ~X = {xlvw \{v,w} E E} respects a set of global 2-path 

inequalities, then V( > 0 the solution ~X (where V{v,w} £ E f \w = £**) re­ 

spects the same set of global 2-path inequalities, and consequently the proof 

of Theorem 1 will still be valid.
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It would be extremely impractical to deal with all of the possible global 2- 

path inequalities of a problem. For this reason we have developed a technique 

which, at each iteration of the global lower bounding technique LB3, adds 

only those inequalities which are violated in the last solution available. The 

technique is described in detail in the following section.

6.2.1 Selection of the inequalities

The strategy we adopt to select violated global 2-path inequalities is based 

on a complete search similar to the one presented in Figure 5.1, which was 

used to retrieve 2-path inequalities for the linear program TSPLR.

The main difference between the algorithm which is described in Figure 

6.1 and the one of Figure 5.1, is that in Figure 6.1 an inequality is added 

only if it is violated in the last available solution of the reinforced FAP3^R , 

while in Figure 5.1 all of the potentially violated inequalities are added at 

once.

The difference highlighted above is required since the consideration of all 

of the possible 2-path inequalities is possible for a subproblem, but not for a 

complete problem.

The procedure of Figure 6.1 is applied each time a new solution of the 

reinforced FAP^R is available (at each iteration of L53).

6.3 Methods to overcome the context prob­ 

lem

We have developed some methods aiming to overcome the context problem 

(see Section 4.4.2.3), but unfortunately they have proved to be completely
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AddGlobal2Path(Pr, LP)

INPUT:
Pr = problem of type FS-FAP;
LP = (reinforced) representation of Pr through FAP3^R .

For v:= 0 to |V| - 1
For w:= v + 1 to \V\ - 1 

For z:= w + 1 to |V| - 1
ff(({u, w} e E) and ({v, z} £ E) and ({w, z} 6 E)) 

tf((dvw > dvz + dwz ) and (z*w < x lvz + x\,z - 1))
add the respective constraint (6.7) to LP; 

Endlf 
lf((dvz > dvw + dwz ) and (x lvz < x lvw + x lwz - 1))

add the respective constraint (6.8) to LP; 
Endlf 
li((dwz > dvw + dvz ) and (x lwz < xlw +xl, - 1))

add the respective constraint (6.9) to LP; 
Endlf 

Endlf 
EndFor 

EndFor 
EndFor

where x^w is the value of variable x lvw in the current solution of LP.

Figure 6.1: Selection of global 2-path inequalities.
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ineffective. For this reason we present only a brief description of them.

The idea on which the approaches are based is to insert the calculation 

of the local lower bounds into the context of the entire problem, and not 

simply into the context of the clique-like subproblem to which each local 

lower bound refers.

The main conceptual difference from the global lower bounding technique 

LJ32, described in Section 4.3.2, is then that the local lower bounds are not 

calculated before the global lower bound, but they are calculated together 

with the global lower bound. The only way to do this is to embed the 

methods which produce the local estimates within the global formulation 

FAP3LR , and consequently the calculation of the local lower bounds within 

the solving process of the modified F.4P3f R. Unfortunately such a strategy 

implies a new set of constraints (and a new set of variables) to be added to 

FAP3^R for each clique-like subproblem considered.

We have developed a version of the TSP local lower bound (see Section 

4.2.1) in which the formulation TSPm is embedded into FAP3fR , and the 

values of the variables xv of T&PLR are connected to those of the variables 

x 1 of FAP3fH .

Another method we have developed is an embedded version of the for­ 

mula local lower bound, in which a new set of constraints and a new set of 

variables are added to FAP3f R to connect the value of each local estimate 

to the number of different frequencies used within the respective clique-like 

subproblem in the global solution of the modified F.4P3f R .

Unfortunately the connections between the (embedded) local lower 

bounds and the global problem are, in the techniques described above, ex­ 

tremely weak, and for this reason the approaches are ineffective.
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6.4 Computational results

In this section we summarise the results obtained by the global lower bounds 

LB1 and LB3 when the improving techniques described in this chapter are 

in use.

6.4.1 Parameter settings

The parameters used within the improved lower bounding techniques LB2 

and L53 have the same values specified in Section 4.4.2.1 for the original 

methods.

6.4.2 Lower bound LB2

The improvements for the global lower bound LB1 are only in the com­ 

putation times, and they derive from the use of the simplified formulation 

FAP3^R instead of FAP^LR- No improvement in the quality of the estimates 

is expected as we do not apply global 2-path inequalities to this bound.

The results achieved by LB2 when FAPZ^R is used are compared, in 

Table 6.2, Table 6.3 and Table 6.4, with those obtained in Chapter 4. The 

columns of the tables have the following meaning:

• Problem: names of the problems. Each name is composed of the fol­ 

lowing two elements:

- Graph: name of the graph on which the problem is based;

- |F|: number of channels available;

• UB: best upper bounds available. The bounds are obtained using the 

heuristic algorithms described in Chapter 3;
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• LB1: lower bounds obtained by LB2. The subcolumns have the fol­ 

lowing meaning:

- Val: values of the lower bounds;

- Sec: computation times in seconds. The subcolumns are defined 

as follows:

* Old: results achieved in Chapter 4 (FAP3LR is in use);

* New: results achieved when FAP3ffi is used instead of 

FAPZLR .

From Table 6.2, Table 6.3 and Table 6.4 it appears quite clear how 

LB1 saves computation time when formulation FAPZ^R is used instead of 

FAP^Ln. The phenomenon is particularly evident for problems with longer 

computation times.

6.4.3 Lower bound LB3

For the global lower bound L£?3, the improvements derive from the adoption 

of the simplified formulation FAP^R and from the use of the global 2-path 

inequalities.

The results achieved by the new version of LB3 are compared, in Table 

6.5, Table 6.6 and Table 6.7, with those obtained in Chapter 4. The columns 

of the tables have the following meaning:

• Problem: names of the problems. Each name is composed of the fol­ 

lowing two elements:

- Graph: name of the graph on which the problem is based;

- \F\: number of channels available;
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Problem 
Graph |F|

AC-45-17 7
AC-45-17 9
AC-45-25 11
AC-45-25 19
AC-95-9 6
AC-95-9 10
AC-95-17 15
AC-95-17 21
GSM-93 9
GSM-93 13
GSM-246 21
GSM-246 31

Test95 31
Test95 36
Test282 61
Test282 71
P06-5 11
P06-5 41
P06-3 31
P06-3 71

P06b-5 21
P06b-5 31
P06b-3 31
P06b-3 71

UB

32
15
33
8

31
3
33
10
32
7
79
25
12
8

51
27
133
15

115
26
52
25
112
26

Val

16
9

21
8
24
3
25
9
15
4
47
16
12
7
20
5

121
15
109
26
49
25
106
26

LB2 
Sec

Old New
1 1
1 1
2 2
3 1
1 1
1 1

68 26
22 17
2 2
2 1
28 7
22 7
2 1
2 1

190 117
124 95

7 5
7 5

41 17
31 18
9 5
10 5
59 16
47 17

Table 6.2: Improved lower bound LB2 results. Benchmark set 1
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Problem 
Graph |F|

GSM2-184 39 
GSM2-184 49 
GSM2-227 39 
GSM2-227 49 
GSM2-272 39 
GSM2-272 49

UB

5521 
874 

10979 
2459 
27416 
7785

Val

4816 
874 
7147 
1998 
12792 
5168

LB2
Sec 

Old New
88 28 
60 23 
179 52 
123 46 
265 119 
270 63

Fable 6.3: Improved lower bound LB2 results. Benchmark set 2.

Problem 
Graph |F|

1-1-50-75-30-2-50 5
1-1-50-75-30-2-50 10
1-1-50-75-30-2-50 11
1-1-50-75-30-2-50 15
1-2-50-75-30-4-50 11
1-3-50-75-30-0-50 11
1-4-50-75-30-2-1 10

1-5-50-75-30-2-100 10
1-6-50-75-30-0-10000 10

UB

1242
101
59
11

323
36
19

186
6942

Val

519
36
28
11
54
28
14
49

3083

LB1 
Sec 

Old New
4 2
3 1
2 1
3 1
3 2
2 1
1 1
3 1
3 1

Table 6.4: Improved lower bound LB1 results. Benchmark set 3
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• UB: best upper bounds available. The bounds are obtained using the 

heuristic algorithms described in Chapter 3;

• 153: lower bound obtained by LB3. The subcolumns have the follow­ 

ing meaning:

- Old: results presented in Chapter 4. The subcolumns are defined 

as follows:

* Val: values of the lower bounds;

* Sec: computation times in seconds;

— New: results achieved when the improving techniques described in 

this chapter are in use. The subcolumns have the same meaning 

as in column "Old".

As expected, from Table 6.5, Table 6.6 and Table 6.7 we can see how the 

techniques described in this chapter allow better results to be obtained. This 

is true especially for the weighted problems, for which the results presented 

in Chapter 4 were poorer. In particular 10 problems of the 30 for which 

optimality was not reached in Chapter 4, have the estimate improved.

When there is no improvement in the estimate, the computation time of 

the revised method is practically always shorter. This is not true just for 

3 of the 29 problems for which a better estimate has not been found. For 

these 3 problems the use of global 2-path inequalities has produced a longer 

computation time (notwithstanding the simplified formulation FAPZSLR was

in use).
It is interesting to observe that some experiments we have carried out 

indicate that when the local improvement techniques described in Chapter 5 

are used in conjunction with the global techniques presented in this chapter,
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Problem 
Graph |F|

AC-45-17 7
AC-45-17 9
AC-45-25 11
AC-45-25 19
AC-95-9 6
AC-95-9 10

AC-95-17 15
AC-95-17 21
GSM-93 9
GSM-93 13

GSM-246 21
GSM-246 31

Test95 31
Test95 36
Test282 61
Test282 71
P06-5 11
P06-5 41
P06-3 31
P06-3 71

P06b-5 21
P06b-5 31
P06b-3 31
P06b-3 71

UB

32
15
33
8

31
3

33
10
32
7

79
25
12
8

51
27
133
15

115
26
52
25

112
26

L 
Old

Val Sec
20 31
10 4
26 986
8 3

27 17
3 1

28 738
9 22
17 32
4 2

50 5657
16 22
12 2
7 2

20 190
6 1030

121 7
15 7

109 41
26 31
49 9
25 10

106 59
26 47

53
New 

Val Sec
20 27
10 2
26 1114
8 1

27 13
3 1

28 756
9 17
17 26
4 1

50 5679
16 7
12 1
7 1

21 18779
6 993

121 5
15 5

109 17
26 18
49 5
25 5

106 16
26 17

Table 6.5: Improved lower bound LB3 results. Benchmark set 1
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Problem
Graph |F|

GSM2-184 39
GSM2-184 49
GSM2-227 39
GSM2-227 49
GSM2-272 39
GSM2-272 49

UB

5521
874

10979
2459

27416
7785

LB3
Old

Val Sec
4856 5035
874 60

7328 16064
1998 123

12909 85131
6258 80951

New
Val Sec

4856 5032
874 23

7445 70677
1998 46

16144 85677
6310 66705

Table 6.6: Improved lower bound LB3 results. Benchmark set 2.

Problem 
Graph |F|

1-1-50-75-30-2-50 5
1-1-50-75-30-2-50 10
1-1-50-75-30-2-50 11
1-1-50-75-30-2-50 15
1-2-50-75-30-4-50 11
1-3-50-75-30-0-50 11
1-4-50-75-30-2-1 10

1-5-50-75-30-2-100 10
1-6-50-75-30-0-10000 10

UB

1242
101
59
11
323
36
19
186
6942

LI 
Old

Val Sec
802 65296
52 1879
36 616
11 3
68 5655
35 218
17 29
90 2259
6315 8891

33
New 

Val Sec
806 76057
53 345
36 230
11 1
71 18794
36 31
17 24
94 11138

6586 2060

Table 6.7: Improved lower bound LBZ results. Benchmark set 3.
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no improvement of the results presented in Table 6.5, Table 6.6 and Table 

6.7 is achieved.
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Chapter 7

Conclusion and future work

7.1 Conclusion

In this thesis we have treated the fixed spectrum frequency assignment prob­ 

lem, modelled through binary constraints.

We have presented an efficient implementation of two well-known meta- 

heuristic algorithms. In particular we have proposed a version of the tabu 

search algorithm characterised by a variable length tabu list which seems to 

be extremely effective when compared with other algorithms presented in the 

literature.

The main contribution of the thesis is represented by some novel lower 

bounding techniques we have developed. The most promising of these tech­ 

niques obtains the estimates (global lower bounds) by solving a linear program 

reinforced with some inequalities, each one derived from the lower bound of 

the penalty paid (number of constraint violations present) in a clique-like 

subproblem of the original problem (local lower bounds). The method is 

based on the consideration that it is "easy" to calculate lower bounds for 

clique-like subproblems, and that these (local) lower bounds can be used to
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obtain a (global) lower bound for the penalty paid in the whole problem.

An analysis of the results obtained by the global lower bounding tech­ 

niques has been carried out, and two main factors which may lead to esti­ 

mates which are not tight (when linear relaxation is used) have been identi­ 

fied. These factors are the quality of the local lower bounds, which sometimes 

is not high enough, and a structural problem of our methods, which we have 

called the context problem.

Some techniques aiming to improve the quality of the local lower bounds 

have been proposed, but they have proved not to be strong enough.

Finally, some simplifications and improvements for the global lower 

bounding techniques have been proposed. They have often led to better 

results, both in terms of computation time and quality of the estimates.

In Table 7.1, Table 7.2 and Table 7.3 we summarise the results obtained 

by our upper and lower bounding techniques on the benchmarks adopted in 

this thesis. The columns of the tables have the following meanings:

• Problem: names of the problems. Each name is composed of the fol­ 

lowing two elements:

— Graph: name of the graph on which the problem is based;

— \F\: number of channels available;

• LB: best lower bounds available. The bounds are obtained using the 

global lower bound technique LB3, described in Chapter 4 and im­ 

proved in Chapter 6;

• UB: best upper bounds available. The bounds are obtained using the 

heuristic algorithms described in Chapter 3;

• LB/UB: ratios of the data contained in the previous two columns.
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Problem 
Graph |F|

AC-45-17 7
AC-45-17 9
AC-45-25 11
AC-45-25 19
AC-95-9 6
AC-95-9 10
AC-95-17 15
AC-95-17 21
GSM-93 9
GSM-93 13

GSM-246 21
GSM-246 31

Test95 31
Test95 36

Test282 61
Test282 71
P06-5 11
P06-5 41
P06-3 31
P06-3 71

P06b-5 21
P06b-5 31
P06b-3 31
P06b-3 71

LB

20
10
26
8

27
3

28
9
17
4

50
16
12
7

21
6

121
15

109
26
49
25
106
26

UB

32
15
33
8

31
3

33
10
32
7

79
25
12
8

51
27
133
15

115
26
52
25
112
26

LB/UB

0.625
0.667
0.788
1.000
0.871
1.000
0.848
0.900
0.531
0.571
0.633
0.640
1.000
0.875
0.412
0.222
0.910
1.000
0.948
1.000
0.942
1.000
0.946
1.000

Table 7.1: Benchmark set 1. Summary of the results.

Problem 
Graph \F \

GSM2-184 39
GSM2-184 49
GSM2-227 39
GSM2-227 49
GSM2-272 39
GSM2-272 49

LB

4856
874
7445
1998

16144
6310

UB

5521
874

10979
2459

27416
7785

LB/UB

0.880
1.000
0.678
0.813
0.589
0.811

Table 7.2: Benchmark set 2. Summary of the results
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Problem 
Graph |F|

1-1-50-75-30-2-50 5
1-1-50-75-30-2-50 10
1-1-50-75-30-2-50 11
1-1-50-75-30-2-50 15
1-2-50-75-30-4-50 11
1-3-50-75-30-0-50 11
1-4-50-75-30-2-1 10

1-5-50-75-30-2-100 10
1-6-50-75-30-0-10000 10

LB

806
53
36
11
71
36
17
94

6586

UB

1242
101
59
11

323
36
19

186
6942

LB/UB

0.649
0.525
0.610
1.000
0.220
1.000
0.895
0.505
0.949

Table 7.3: Benchmark set 3. Summary of the results.

The results summarised in Table 7.1, Table 7.2 and Table 7.3 are ex­ 

tremely satisfactory, especially because, as far as we know, there is no other 

general purpose lower bounding technique available in the literature. All the 

methods presented so far work by exploiting some specific peculiarity of a 

given benchmark set, and consequently are effective only for the problems 

contained in that set.
The largest benchmarks adopted in this thesis are close to the maximum 

size that can be handled directly by the current implementation of the lower 

bounding techniques. Larger problems could be handled by an implementa­ 

tion with a more compact memory structure (and possibly by using a special 

purpose linear program solver instead of CPLEX). This was considered be­ 

yond the scope of this thesis.

7.2 Future work
The work presented in this thesis can be extended, in our opinion, mainly in 

four different directions.
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The first direction, which is the most obvious one, concerns the devel­ 

opment of effective techniques to improve the local lower bounds and to 

overcome the context problem.

The second research direction concerns a theoretical study of the graphs 

representing the problems, aiming to identify those characteristics which help 

our methods to produce good estimates (this study would be important es­ 

pecially for the lower bounds). This research should lead to a problem clas­ 

sification based on the expectation of the quality of the estimates produced 

by our methods.

In this thesis we have already identified some of the problem features 

which seem to help our lower bounding techniques, but a formal classification, 

with the related graph theoretical study, has not been considered because it 

was beyond the scope of this work.

The third research direction is about the study of an effective heuristic 

technique to transform a solution of FAPZ^R (or FAP^LR) into a low cost 

assignment. As anticipated in Section 4.4.2.2, this seems to be a non trivial 

task.

The fourth research direction concerns the extension of the methods we 

have proposed to permit them to deal with more complex models of fre­ 

quency assignment problems. In particular it should be quite easy to mod­ 

ify our methods to make them able to treat problems represented through 

multi-graphs, i.e. problems in which for a pair of transmitters there are dif­ 

ferent penalty levels, each one associated with a different separation level 

(see Eisenblatter [41] for a more detailed description of such a model).
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