
University of South Wales

2060347

Bound by

Abbey
Bookbinding Co.

105 Cathays Terrace, Cardiff CF2UHU
South Wales, U.K. Tel: (029) 2039 S882

www.bookbindersuk.com

A FORMAL MECHANISM FOR ANALYSIS AND
RE-IMPLEMENTATION OF LEGACY

PROGRAMS

DIMITRIOS V. MAGLARAS

A submission presented in partial fulfilment of the
requirements of the University of Glamorgan/Prifysgol Morgannwg

for the degree of Master of Philosophy

September 2001

A formal mechanism for analysis and re-
implementation of legacy programs

Abstract

The last ten years of this century have been characterized as a period of software
crisis. The need for information is growing day by day and the formal development
tools have been proven insufficient to serve this need. This led software engineers to
the creation of new technologies that would be more efficient in the manipulation of
the data and the development of software systems. However, what will happen with all
those large software applications that have been developed in the past, under formal
development tools such as 3rd GLs? In the real world there are too many software
applications, developed using 3rd GLs, still working in business and there are many
reasons why these applications need to be modified in order to keep on running
effectively. The introduction of EURO as global currency in Europe is a well-known
problem concerning these old applications. In most cases the documentation
describing the requirements, design and implementation of the legacy software
systems does not exist or is too poor to make sense. This thesis will provide a
mechanism to regain design and implementation information of a software system
examining its source code. The mechanism is based on a software tool that will be
able to extract useful information from the source code of an old application. The
modularization of the information, concerning the design and implementation
analysis of the software system, into smaller pieces of information, describes the
scheme that will be used in order to retrieve, manipulate and finally provide this
information to the users. This scheme treats the pieces of information, which are
gathered from the source code, as separate objects related to each other. These
objects together with their relations will be stored into a semantic network
(database). The contents of this database will be browsed in such a way that will
provide critical and meaningful information about the implementation and design of
the software system. A software module, called parser, will be developed, which will
be able to extract pieces of information by parsing all the source files of the old
application line by line. This information is stored into a semantic network and a
separate tool will be configured in order to retrieve information from the semantic
network and provide it on the screen using a GUI. In the first chapter an introduction
to this research project takes place. In the second chapter the documentation
gathered concerning the research area of software analysis and reuse is studied and
analyzed. In the third chapter all the requirements and specifications of the proposed
mechanism are set. Chapters four and five present the design and implementation of
the semantic network that will contain the pieces of information gathered from the
source code and the source code parser. In the sixth chapter the developed
mechanism is tested against its specifications. Finally, in the seventh chapter the
analysis of a large industry, data-processing software application takes place.

Table of contents

1. Introduction ..1
1.1. Introduction .. 1
1.2. Project Description ...2
1.3. Motivation ..4
1.4. Theses organization ...5

2. Documentation Study and Analysis ...6
2.1. Introduction ..6
2.2. The supporting theory ..6

2.2.1. The theory of software objects6
2.2.2. The software component classification theory7
2.2.3. The representation of software components8
2.2.4. The theory of patterns ..8
2.2.5. The theory of software repositories8

2.3. Bibliography overview ..9
2.3.1. General software reengineering issues9
2.3.2. Theory of patterns .. 17
2.3.3. Software testing theory ... 19

2.4. Commercial implementations concerning software reengineering21
2.4.1. The DMS® Software Reengineering Toolkit21
2.4.2. George and James Software ...23
2.4.3. The Metamorphic COBOL Converter24

2.5. Summary ..25
3. Requirements Analysis and Specifications26

3.1. Introduction ..26
3.2. Requirements analysis ..27

3.2.1. Database analysis ..28
3.2.1.1. Database structure ...28
3.2.1.2. Record structure ...29
3.2.1.3. Information concerning the table relations29

3.2.2. Control flow analysis ..30
3.2.2.1. The complete set of programs....................................30
3.2.2.2. The calls among programs31
3.2.2.3. The database attributes of each program31

3.2.3. Source code organization analysis32
3.3. Specifications ...32

4. Design and Implementation Analysis of the SIS Setup35
4.1. Introduction ..35
4.2. Presentation of tools ...36

4.2.1. Description of TELOS ...37
4.2.2. Description of Query Interpreter40
4.2.3. Description of Graphical Analysis Interface40

4.3. Design analysis ...42
4.3.1. GAIN browser setup design ...42
4.3.2. Database instance design ...46

4.4. Implementation Analysis ..51
4.4.1. GAIN browser setup implementation....................................51
4.4.2. Database instance implementation52
4.4.3. Database instance creation procedure....................................52

5. Design and Implementation Analysis of the COBOL Parser54
5.1. Introduction ..54
5.2. Presentation of tools ...54
5.3. Design Analysis of the COBOL Parser55

5.3.1. The COBOL Parser segments...55
5.3.2. The COBOL Parser phases ...56

5.4. Implementation analysis of the COBOL Parser59
5.4.1. The initialization phase ...59
5.4.2. The filesystem scanning phase59
5.4.3. The source code scanning phase61
5.4.4. The final merging phase ...76

6. Application and Testing of the Software Reengineering Mechanism.........77
6.1. Introduction ..77
6.2. Application ..77

6.2.1. The source code parsing procedure77
6.2.2. Information storage into the TELOS database instance78
6.2.3. Presentation of the information using the SIS GAIN browser.....79

6.3. Testing ..81
6.3.1. The testing method .. 81
6.3.2. Applying the testing method ...82

6.3.2.1. Specifications regarding the database analysis83
6.3.2.2. Specifications regarding the control flow analysis84
6.3.2.3. Specifications regarding the source code organization86

6.4. Conclusions .. 87
7. Analysis of the XPERT Hotel Application88

7.1. Introduction .. 88
7.2. Description of the XPERT Hotel software system 88
7.3. Source code level analysis ..89

7.3.1. Source code location ..89
7.3.2. Organization of the source code90
7.3.3. Dead code ...91

7.4. Program level analysis ..92
7.4.1. The complete set of programs...92
7.4.2. Program names ..93
7.4.3. Control flow description ...94
7.4.4. Database access of each program94
7.4.5. Datafile definitions ..95

7.5. Database level analysis ..96
7.5.1. The complete set of datafiles ...96
7.5.2. Access attributes ..96
7.5.3. Datafile structure definition and datafile record description98
7.5.4. Relation information .. 102

7.6. Conclusions .. 103
8. Conclusions and Future Improvements104

8.1. Conclusions ..104
8.1.1. Philosophical matters regarding software reengineering 104
8.1.2. Who would need this mechanism and why 104
8.1.3. Documentation .. 105
8.1.4. Testing the software reengineering mechanism106
8.1.5. The XPERT Hotel application106

8.2. Future improvements... 107
9. Appendices ..108

9.1. Appendix 1 ..108
9.2. Appendix 2 ..109
9.3. Appendix 3 ..110
9.4. Appendix 4 .. 113
9.5. Appendix 5 .. 114
9.6. Appendix 6 ..115
9.7. Appendix 7 .. 119
9.8. Appendix 8 .. 120
9.9. Appendix 9 ..121
9.10. Appendix 10 ...122
9.11. Appendix 11 ...123
9.12. Appendix 12 ...126
9.13. Appendix 13 ...127
9.14. Appendix 14 ...137
9.15. Appendix 15 ...148
9.16. Appendix 16 ...165
9.17. Appendix 17 ...167
9.18. Appendix 18 ...184

A formal mechanism for analysis and re-
implementation of legacy programs

Chapter 1

Introduction

1.1 Introduction

The following project has been carried out from Mr. Dimitrios Maglaras. He is
a mathematician with a software engineering specialization. His main interests are the
structured architecture and design of large software systems and the reengineering of
existing software applications. In the past he has been dealing with software
components that were using techniques to calculate the solution vector of large linear
equation systems with special structures. Nowadays he deals most with 'data-
processing applications', the way they are developed, structured and implemented.

The last ten years of this century have been characterized as a period of
software crisis. The need for information is growing day by day and the formal
development tools have been proven insufficient to serve this need. This led software
engineers to the creation of new technologies that would be more efficient in the
manipulation of the data and the development of software systems. Large software
systems have been developed using these new technologies. These systems have been
proven efficient and satisfying. However, what will happen with all those large
software applications that have been developed in the past, under formal development
tools such as 3rd generation languages (GLs)? In the real world there are too many
software applications, developed using 3rd GLs, still working in business. There are
many reasons why these applications need to be modified in order to keep on running
effectively. The introduction of EURO as global currency in Europe is a well-known
problem concerning these old applications. In most cases the documentation
describing the requirements, design and implementation of the legacy software
systems does not exist or is too poor to make sense. This thesis will provide a
mechanism to regain design and implementation information of a software system
examining its source code.

There are certain problems that occur in the reengineering process of large
data-processing software application systems, which have been developed using
legacy software development tools, such as the complexity of the code combined with
the absence of computer-aided software engineering (CASE) tools. This project will
study the requirements, design and develop a software system that helps, by means of
providing critical information, to speed up this process. A real data-processing
software system, which has been developed using the RM/COBOL-85 computer
language, will be analyzed using this mechanism and the results of this process will

be presented.

1.2 Project description

Many large software systems have been developed using COBOL, PASCAL,
PL1, BASIC and other software development tools that belong to a very large
category named 3rd Generation Languages. In the following when a reference to a
software system or application is made, characterizing it as old or legacy, it means
that the referenced software or application has been developed using 3rd GLs. This
thesis focuses in the reengineering process of old software applications.

It has been more than a decade now that the next generation of software
development languages (4th GLs) appeared for the first time. Nowadays, 4th GLs
dominate in the software development community. They offer many facilities that
make software development easier especially on applications that manipulate large
amounts of data. Nowadays, modern software developers use these tools almost
exclusively in the development of their software applications.

The mechanism for analysis and re-implementation of legacy programs, which
is presented in this thesis, is based on a software tool that will be able to extract useful
information from the source code of an old application. This information can be used
for various purposes, such as: version information, problem determination and
problem solution. Furthermore, this information can be utilized for the whole
reconstruction of an already implemented and working application. The main idea is
to develop a software system in order to extract information concerning the structure,
implementation and design of an existing software application instead of having
software engineers to read all the source code line by line, in order to extract the
desired information.

Software engineers are interested in specialized pieces of information, which
are spread throughout the source code of the software application, in order to
understand the design and implementation analysis of the application. Until now
engineers had to read the source code line by line, in order to identify these pieces of
information. An automated system should be able to locate these pieces of
information inside the source code, store them in a database and represent them in a
user-friendly manner through a graphical user interface (GUI). The purpose of the
proposed thesis is the development of such an automated system.

The meaning of "pieces of information" is abstract and subjective. In
software engineering, one could find some "pieces of information", about an old
application, important and at the same time, someone else could characterize them
meaningless. For example, someone would think that access to temporary files is a
phenomenon that should be remarked, while someone else couldn't care less about the
temporary files that a software application creates and accesses. However, the
similarities found across software systems are enormous and undeniable. These
similarities indicate common techniques in the design and implementation of software
systems. The pieces of information, which will be extracted from the source code,
may be used in order to regain information about such techniques, which where
applied during the development of the software application. This thesis will
concentrate in the extraction of such pieces of information.

The modularization of the information, concerning the design and
implementation analysis of the software system, into smaller pieces of information,
describes the scheme that will be used in order to retrieve, manipulate and finally
provide this information to the users. This scheme treats the pieces of information,
which are gathered from the source code, as separate objects related to each other.
These objects together with their relations will be stored into a semantic network

(database). The contents of this database will be browsed in such a way that will
provide critical and meaningful information about the implementation and design of
the software system.

A software module, called parser, will be developed, which will be able to
extract all this information from the source code of the old application, by parsing all
the source files of the old application line by line, gathering all the pieces of
information included in the source code. The parser should recognize and understand
a number of statements and their arguments specific to the 3rd GL, which was used in
the development of the old software application. Not all of the statements of the
programming language should be understood from the parser. Only the ones regarded
to include useful pieces of information will be recognized.

After the parser has finished scanning the source code of the application, it
will store the information derived in a text file in the form of transactions. A special
tool will be used in order to read the text file, execute the transactions and store the
information to the database.

Finally, a separate tool will be configured in order to retrieve information from
this database and provide it on the screen. The retrieval of the information will be
implemented in the form of query transactions to the database. The results of these
transactions will be formed and presented on the screed using a GUI. This tool should
be in a position to provide results for a number of predefined queries. For example, if
the names of all the datafiles (tables) that are used from a software system were stored
in the database a simple query would be 'give me the names of all the files that this
software system uses'. The engine should search in this database, whenever this query
is asked and come out with the results.

Figure 1.1 shows the layout of the formal mechanism. In summary, the steps, which
will be followed are:

1 The parser will extract the necessary information from the sources of the old
application and store it in a text file in a form of transactions.

2 A special tool will read the text file and execute the transactions

3 Another tool will be configured in order to retrieve the information from the
database by executing queries to it. The information will be presented on the
screen using a GUI.

Graphical representation of the
information taken from the Sources

Figure 1.1 - Layout of the mechanism for analysis and re-implementation of legacy
programs.

1.3 Motivation

The results of this research will help the software engineers, to overcome
many difficult problems, which are now facing. Billions of lines of 3rd GL source
code have been written for the development of millions of legacy software
applications. These legacy applications now are very difficult to maintain or further
develop. The development tools of 3rd GLs used for the implementation of software
applications (mainly those that manipulate big amounts of data) are primitive
compared to the 4th GL development tools. Furthermore, the modern software
development tools use an open architecture to store and manipulate data. A separate
software engine is responsible for the final data manipulation and storage. The
application itself just makes the necessary request to this engine (transaction), in order
to retrieve or store data, using a separate software module (driver), to communicate
with this engine. This makes access to the same database engine very easy for
separate applications that need to retrieve data stored in the same database. Just using
a similar driver it can achieve communication with the same database engine and
access its data. Applications developed using 3rd GL usually communicate with each
other using ASCII text files that have special structure. This is a rather painful and
time spending procedure because there are no standard rules for the structure of these
text files and a special piece of software (usually called bridge) should be developed,
from both sides, for that purpose. Thus, a lot of time and manpower is wasted in the
maintenance or further development of legacy applications.

Due to the robust and effective tools that the 4th GLs provide in the
development of software applications and to the simple solutions that have been given
to problems that 3rd GL face, there are yet not many software developers left to deal

with all those applications that have been developed using 3rd GLs. In addition, 3rd
GLs are not taught any more in modern schools and universities. As a result, all new
software developers work using modern tools and techniques. Nevertheless, there are
many applications that have been developed in the past using old development tools
and now only need a minor alterations or improvements. In this case all the necessary
information that can be extracted from the old application, is required in a short
period of time. The proposed formal software reengineering mechanism will help
locating the problem, in order to commit the necessary changes, having as a result an
improved, working application.

Other software developers could use this tool in order to keep version
information for their applications. This tool will help them to keep truck of the
characteristics of every version of their application, by scanning the sources of their
application in a regular basis and keeping records of the databases, which are
produced each time.

1.4 Theses organization

Chapter 2 presents the documentation that was found to be representative in
the research area of these theses. In this chapter the supporting theory, published
papers and other relative commercial implementations are discussed. In Chapter 3
the requirements that this software reengineering mechanism must fulfill are studied
and according to those requirements a set of specifications is created. Chapter 4
presents the design and implementation analysis of the model, which is developed
aiming to represent the analysis of each software application. This model is
implemented in the form of a specific setup of the SIS software engine. Chapter 5
contains the design and implementation analysis of the source code parser. The
developed mechanism is applied in a real software system and is tested against its
specifications in Chapter 6. Finally, Chapter 7 presents the detailed analysis of the
software system, which was analyzed while testing the software reengineering
mechanism in Chapter 6.

A formal mechanism for analysis and re-
implementation of legacy programs

Chapter 2

Documentation Study and Analysis

2.1 Introduction

In this chapter the analysis and study of existing documentation in the
research field of reengineering and reusing legacy software systems will be
investigated. This specific domain of software engineering, -software reengineering
and reuse- provides an attractive research area for the computer scientists. It covers a
very wide range of software applications that are still running in business and they
need appropriate modifications to fulfill the new requirements. These applications
without proper reengineering tools and techniques would be very hard to modify and
the corporations that are using them would face serious problems.

The supporting theory of this research area is presented in the first section of
the document. In the second section some papers that are found to be representative
for this specific research domain are discussed. Finally, in the third section some
existing implementations of tools, which were developed to provide software
reengineering and reuse solutions, will be presented.

2.2 The supporting theory

The domain of this project includes general software engineering concepts
and especially reengineering concepts. The software engineering community has
achieved great progress in software reengineering and reusability. For this reason
several computer theories have been developed to provide answers to serious
questions in this problem domain. The most important of those theories are presented
and discussed in this section.

2.2.1 The theory of software objects

The theory of software objects plays a pivotal role in software reengineering.
This theory has brought a revolution in the software engineering community. It does
not provide just another tool or another technique to develop software, but the
innovation that this theory has brought, lies at a higher level of abstraction. It lies in
the software development mentality that every developer will have to follow or stay
out of business. Almost every action inside this project is based on the object-
oriented philosophy that dominates nowadays. This theory has also inspired the
scientists to create several techniques in order to be able to reuse software
components and to control big systems in a much more efficient and robust manner.

In the context of this thesis a tool will be developed that will scan the source
code of an old application. Then it will store the information gathered about the

applications design and implementation in a Semantic Network (database), which
consists of software objects and relations between them. This way useful information
will be provided to the engineers about the software system under analysis in order to
modify it.

The Semantic Network used in this project handles data in a form of objects
related to each other. Every last piece of information is treated as a separate object
and any special characteristic of an object is represented as a relation to another
object. Using this principle all the information extracted from the source code of the
legacy application will be stored into a specially configured TELOS database
instance, which forms the implementation of the Semantic Network that will be used
in this project. A special tool will be provided in order to present the information,
which has been derived from the sources of the old application and stored into the
database, to the end users.

2.2.2 The software component classification theory

The software component classification is another theory in computer science
that is used in the context of this project. The information derived from the source
code of the application under analysis, represented in an object form, should be
distributed into a class hierarchy schema, which will actually consist an easily
manipulated Semantic Network. Inside the database, which forms the
implementation of the Semantic Network, objects sharing common properties will be
grouped into classes. Classes themselves are treated as generic objects, which their
members are instances of. These classes, in turn, can be instances of other more
generic objects. In fact every object has to be declared as an instance of at least one
class. As a result, an infinite classification hierarchy is created starting with objects
that have no instances of their own and they are usually called tokens [12].

The software component classification theory proposes and studies the
grouping of elements containing related pieces of information into sets. Using this
theory the manipulation of these elements becomes more efficient and the
management of the whole system that is created much easier. It has been proved that
the management of large software class collections requires addressing problems
related to the following categories:

- The representation of classes so as to capture structural and descriptive
information and to allow multiple views.
- The representation of relationships and dependencies among classes in a
collection.
- The selection and understanding of classes by appropriate querying and
browsing facilities.
- The support of class evolution. [9]

2.2.3 The representation of software components

The representation theory is a research domain that has to be studied in this
thesis also. The system that will be developed uses a special tool in order to represent
the information gathered in a human understandable way. The so-called
representation problem in reverse engineering [22] has been taken into account in
order to pass information to the users with a human friendly user interface. A
browser allows viewing parts of the information that has been derived from the
source code and has been stored in the database. The information is presented at
various levels of detail and navigation through the presented components in a
hypertext-like fashion is available.

2.2.4 The theory of patterns

The theory of patterns is an interesting research domain that software
engineers use in order to transfer expertise among them easily. This theory uses
standard forms to express problems and solutions that have been successfully applied
to them. When the time comes for software engineers to deal with a large
application, in order to make some changes or try to extract specific information, this
theory helps them mostly in the first steps [24]. Software reengineering faces such
problems all the time so the theory of patterns is widely used. It takes a long time for
engineers to become experts in a specific domain and this theory helps them in this
effort.

Nevertheless, this project will try to regain formal patterns that have been
used by the developers of the old application concerning its design and
implementation. It will give one more solution to the problem of reengineering large
software applications, which have been developed using 3rd generation software
development tools. It should be capable to transfer expertise that has been invested in
the development of the legacy application to the new engineers that have undertaken
the responsibility to commit reengineering actions upon it.

2.2.5 The theory of software repositories

Another approach to software maintenance and reengineering is through
software repositories [10]. This reengineering effort aims to the creation of a
software component repository that will contain useful information about the
software system that is being analyzed. When the source code is organized, classified
and sorted in a repository it becomes much easier for the developers to control it and
thus become more efficient. This way when the time comes for a complete
reengineering process (i.e. reconstruction with new and modern development tools)
information such as specifications and design analysis is easier to be reused.

In this project a big software repository is created and managed with special
tools and techniques so that the information stored in the repository can easily be
retrieved. This information can be presented with different ways, each giving a
certain point of view of the software system that is under analysis. The relations
between the software routines and the data tables they manipulate give a good
example to this. If someone focuses on a routine he can easily see all the data tables
it affects and if he focuses on a data table he can easily see the routines that affect

this table.

2.3. Bibliography overview

The scientific papers found in the bibliography search, in the area of software
reengineering, can be divided into three categories. The first category includes those
papers that refer to general reengineering issues. The second category consists of
papers that provide an approach to software reengineering through the theory of
patterns. Finally, the third category contains two papers that provide techniques for
testing the results of a software development process.

2.3.1 General software reengineering issues

Arun Lakhotia in his paper entitled "Architecture Recovery Techniques: a
unified view and a measure of their goodness"[32] provides a framework for
comparing architecture recovering techniques (ART). He developed a scheme to
classify ART'S. In addition, he described a unifying view of ART'S by rephrasing
each technique using a common set of symbols and terms. Finally, in this paper a
metric to quantify how "close" a recovered architecture is to an expected architecture
is developed.

Arun Lakhotia mentions that recovering a system's architecture corresponds
to performing cluster analysis. The term cluster analysis broadly refers to any
method of grouping a set of objects such that objects in the same group are in "some
sense" more similar to each other than those in different groups.

While talking about the effectiveness of ART's Lakhotia mentions that even a
small variation in a graph, which a human, may easily not detect, could change its
"meaning" drastically. Therefore there is a need to automate the comparison of the
recovered architecture with an expected architecture.

As a conclusion the author refers that in order to keep up with changes in
technology, the re-engineering of large software systems is the only viable
alternative. He insists that any re-engineering task involves reverse engineering, i.e.
recovering of design and other abstractions from source code.

The BAI Reengineering Team in its paper entitled "Software Reengineering
Technique Classification" [27] proposes the creation of a reengineering technique
catalogue or a reengineering process fragment library. The team focuses on four
software abstraction levels namely axioms, requirements, design and implementation
together with the various operations on software represented at these levels.

The BAI reengineering team insists that the reengineering of software seeks
to clarify understanding of software, alter characteristics of code, or change the
functionality of software. They claim that reengineering is like maintenance, in that it
operates on existing software. Both reengineering and maintenance are like software
development. Development creates new software requirements, design, and
implementation from whole clothe, while reengineering and maintenance mend and
alter an existing garment.

Furthermore, a definition of terms about software abstractions and
reengineering actions is attempted. The BAI reengineering team claims that there are
four software abstraction levels. They define these four software abstraction levels
and two software primitive definitions, the forward engineering and reverse
engineering. With the use of these definitions a classification of the various software
reengineering techniques takes place.

10

Arun Lakhotia in his paper entitled "A Unified Framework for Expressing
Software Subsystem Classification Techniques'^ 16] presents a unified framework for
expressing techniques of classifying subsystems of a software system. The
framework consists of a consistent set of terminology, notation and symbols that may
be used to describe the input, output and processing performed by these techniques.

Arun Lakhotia claims that unless the architecture of a system is documented,
which is very rare, its maintainer has to infer its overall structural organization from
its source code. However, the architecture of a software system is not usually
apparent from its source code. Having these facts in mind Lakhotia mentions that
there is considerable interest in developing automated support for recovering the
architecture of a software system from its source code.

He also refers that the crucial problem in recovering the architecture of a
software system is classifying its components into subsystems. Next he points out
that the emerging field of software architecture aims at formalizing the notion of
architectures and developing languages to specify architectures. Finally, in this paper
Lakhotia admits that research in subsystem classification is also of significance to
research in reengineering procedural programs into object-oriented programs.

"Toward Experimental Evaluation of Subsystem Classification Recovery
Techniques"[17] is the title of a paper that has also been published from Arun
Lakhotia in cooperation with John M. Gravley. Lakhotia and Gravley introduce
through this paper a technique that measures the effectiveness of subsystem
classification recovery techniques (SCRT). SCRT's are used to classify software
system components into subsystems.

The authors insist that though there is a rich body of literature investigating
various aspects of classification problems, there is no classification technique that, if
directly applied to a new classification problem, will guarantee good results. They
justify their claim insisting that classification techniques are essentially heuristic and
rely upon knowledge specific to the problem domain. Additionally, Lakhotia and
Gravley insist that there is no single, general-purpose classification technique, but
research into classification problems has led to classes of techniques such as generic
templates that may be customized for individual applications.

Discussing the evaluation of the effectiveness of an SCRT the authors
mention that there is no distinction in evaluating the effectiveness of an SCRT and
any other heuristic technique. They believe that in order to evaluate a SCRT
someone will have to subject it to several different inputs and compare its outputs
against to expected outputs.

Lakhotia and Gravley mention that the problem for recovering the modular
subsystem classification of legacy systems is an important issue in the reverse
engineering of software. As a conclution they claim that several techniques have
been proposed for recovering such subsystem classifications and that there is now a
considerable collection of techniques. They insist that these techniques should be
experimentally evaluated.

Arun Lakhotia is also the author of the paper titled "What is the appropriate
abstraction for understanding and reengineering a software system?" [14]. Lakhotia
believes that in order to understand a software system for maintaining it, a model
(requirement, design or some other view) is created by abstracting certain details
away from the source code. He also believes that the model plays a central role in
any automated support for software maintenance and that the choice of abstraction

11

(the notation or technique used to represent a model) therefore becomes a crucial
decision in the development of any maintenance tool.

Lakhotia insists that the most appropriate abstraction of a software system
varies based upon the maintenance task being performed. He mentions (as an
example) that in order to make changes to a program such as adding a new feature,
an abstraction that permits concept assignment and impact analysis is more useful.
On the other hand, if the need is to reengineer a system (i.e. to move from one
programming language to another), abstractions that enable restructuring and
redesign of the code would be preferred.

The author makes two critical statements concerning the appropriate
abstractions necessary to understand and reengineer a software system. The first is:
"For activities (such as reuse and reengineering) requiring an understanding a what a
software system does, abstractions that where (or should have been) used in the
forward engineering of the system should also be most effective to recover by
reverse engineering". The second is: "Even if two programs are written in the same
language, the same abstractions may not be useful in understanding them for the
purpose of reuse and reengineering".

In his conclusions Lakhotia mentions that so far the program understanding
community has focused on recovering abstractions such as program cliches, logic or
set theoretic expressions, cross-reference databases, control flow graphs and abstract
syntax trees. These abstractions differ in the amount of information they hide as well
as the effort involved in recovering them. Of these, only logic or set expressions are
used, by some forward engineering methods at the requirements and design level.

Burd E. and Munro M. in their paper entitled "A method for the identification
of reusable units through the reengineering of legacy code" [4] describe a method for
reengineering legacy systems into potential reuse candidates so that they can
eventually be replaced by more flexible and maintainable software. Their method
consists of 10 steps to obtain the reuse candidates and employs both the analysis of
code and the assistance of domain specialists. These steps are:

1. Generate a PERFORM graph from the source code
2. Generate a dominance tree from the PERFORM graph pairs
3. Identify reusable units from the dominance tree
4. Identify data dependencies within the source code
5. Identify data inter-relationships between sub-graphs
6. Identify potential reuse candidates from users/designers of code
7. Identify potential simplification procedures to assist encapsulation
8. Isolate sub-graph(s) to form reusable components using graph slicing
9. Identify data items in reuse units that would reduce data intersections
10. Identify SECTIONS where partitioning could assist separation

The authors mention that it has been estimated that about 70% of the total life
cycle cost is spent on software maintenance and this fact makes the redevelopment of
code an expensive and time-consuming business. They also mention that one
recently proposed approach is to reengineer parts of the code into objects. This
involves splitting the functionality of the legacy code into smaller encapsulated
objects. The result of this restructuring is believed to aid the maintenance process.
They generally believe that reuse has long been thought of as a way of improving
productivity and improving quality standards. In addition, they believe that reuse

12

based software development can reduce the costs of maintenance, because the nature
of such software is more modular and therefore software updates are more localized.

Burd and Munro point out that similar techniques previous to their work had
only been tried on small (averaging several hundred lines) Pascal programs. Their
work has investigated its use for up to 30.000 lines of code. The case studies
performed have indicated that the only issue of size concerned with the use of the
method is the upper limits of the prototype tools used for analysis. However, if
industrial strength tools were developed the upper analysis limits will be larger. The
issue of size is less important than the issue of complexity. The greater the number of
possible paths through the program, the size of reusable components is likely to be
smaller.

From performing the case studies they have identified a number of drawbacks
with using the method including:

Complexity with data interactions means that further work must be
performed on steps 9 and 10 to reduce the complexities of component
interfaces.

- Development of good graphical tools is required to achieve automatic
support.

Burd and Munro believe that the benefits of the method contribute to many
aspects of software engineering and that users of this approach can expect to see an
impact in the areas of software reuse, software maintenance, program understanding,
impact analysis and code reengineering/restructuring.

Canfora et al. in their paper entitled "Decomposing legacy systems into
objects: an eclectic approach" [5] observed a large consensus within the software
maintenance community that identifying objects in existing procedural programs is
desirable. They present a number of reasons why object identification within
procedural programs is necessary, such as:

Acquiring a precise knowledge of the data items in a program, the ways
these items are created and modified and their relations.

- Understanding system design, testing and debugging.
- Reengineering from a conventional programming language into an object-

oriented language.
- Avoiding degradation of the original design during maintenance.
- Facilitating the reuse of existing operations contained in a software

system.
- Extending the benefits of recent programming innovations to most

systems currently in use.
- Repairing the damages of extensive maintenance.
- Evolving the reverse engineered procedural programs in an object-

oriented domain.
- Recovering software architectural representations from source code.

In this paper the authors present their experiences of applying an eclectic
approach to identify objects in procedural programs. A premise of their research is
that methods and tools proposed to identify objects achieve some level of success,
but by no means a single approach can handle the large variety of problems that arise
in real-life large-scale projects of identifying objects in legacy systems. They pursue
an eclectic approach where a domain expert software engineer is encouraged to
select, tailor and combine existing object identification methods to synthesize the

13

method most suitable to the project and the system at hand. Their study demonstrates
that using an eclectic approach, where existing object recovery methods are tailored
and combined to adapt to the requirements and characteristics of a particular project,
tends to produce objects, which contain less spurious connections and require less
human effort to comprehend.

Dr. Carma McClure makes some interesting claims in the paper titled
"Model-Driven Software Reuse. Practing Reuse Information Engineering Style"[35].
McClure gives out some reasons why reuse should occur in an enterprise. In that
paper is mentioned that reuse makes sense because the similarity found across
software systems (including code, design, functions and architectures) is enormous
and undeniable. The author defines software reuse as the systematic development of
reusable components and the systematic reuse of these components as building
blocks to create new systems. The author claims that a reusable component may be
code, but the bigger benefits of reuse come from a broader and higher-level view of
what can be reused (such as software specifications, designs, tests, cases, data,
prototypes, plans, documentation, frameworks and templates).

Certain cases that reuse has been applied and succeeded are also mentioned in
that paper. McClure insists that reuse is more difficult to implement than other
software technologies because it works best when applied above the single system
level where there is more opportunity to reuse components and to get the payback
from the investment in reuse. It is also claimed that the broader the base in which to
practice reuse the better.

The author also states that the requirements of future systems must be
identified and reusable components, that can fulfill common requirements, must be
created and all this must be done prior to developing these systems. It is also
mentioned that reuse must be planned in order to be successful. As a result the earlier
in the life cycle process reuse is considered, the greater the benefits actually achieved
from reuse will be. Practicing reuse in the early phases often leads to greater reuse in
the phases, which follow.

While referring to domain analysis on enterprise models the author mentions
that software reuse would be practical and easier to cost-justify if only we could
predict what components would be highly reusable prior to new system development.
McClure also insists that domain analysis provides a time and place in the software
life-cycle to determine what the most valuable reusable components for the domain
are likely to be and to create a library containing these components. Furthermore,
domain analysis provides an opportunity to link business goals and system planning
with reuse planning, enabling the most optimum practice of reuse for the corporation.
McClure provides a table showing some reuse metrics together with the scope for
practicing reuse. While referring to reuse-driven systems planning she claims that the
goal of reuse-driven systems planning is to define the scope for practicing reuse in
the corporation (by means of what organizational units, what life cycle phases, what
application areas and what types of reusable components will be involved). Finally,
she insists that management must establish the basic principles around the reuse of
various types of reusable components such as the use of packages, software
templates and software reuse libraries, as an alternative to building software from
scratch.

Eng Huat NG, M. Sarshar and D. Pountney have published a paper entitled
"An object-oriented learning system framework for domain oriented reuse"[8]. The

14

paper is based on a project entitled Intelligent Multimedia Learning System (IMLS).
The authors describe software reusability as a vital attribute of a high quality
software component. They also insist that software reusability means that ideas and
code are developed once, and then used to solve many software problems, thus
enchanting productivity, reliability and quality.

While referring to portability the authors mention that this is a special case of
software reusability where a whole application is reused from one environment to
another without any changes at all, or simply by making small changes and get
basically the same results. Then they make a reference to object technology claiming
that it offers significant benefits in the construction of individual programs, but the
real power of object-oriented information systems is that they are generally easier to
modify and maintain so that they can rapidly adjust to changing circumstances.

The authors insist that computer aided learning systems are costly and time-
consuming to develop. As a result, there are practical and economic motivations to
develop a reusable and portable learning system framework. Referring to the IMLS's
framework for domain oriented reuse they mention that it consists of four main
domain models, namely: tutor, student, assessor and electronic resource. The IMLS
project provides a framework to reuse the components of these domains. The authors
insist that this framework can be applied vertically in each of these domains and in
some cases horizontally to more than one of them.

Richard J. LcBlank, Stephen B. Ornburn and Spencer Rugaber have
published a paper entitled "Recognizing design decisions in programs" [18]. Through
this paper the authors describe a framework for documenting and manipulating
design information for maintenance and reuse purposes. This framework is based on
the analysis of programming language constructs. They claim that the only indication
of a decision is its resulting influence on the source code and that in order to
effectively maintain an existing system, it is essential to sustain previously made
decisions, unless the reasons for the decisions have also changed.

The whole design process is described as a process that is repeatedly taking a
description of intended behavior (whether specification, intermediate representation
or code) and refining it. Each refinement reflects to an explicit design decision,
which limits the solution to a class of implementations within the universe of
possibilities. The framework presented introduces six classes that characterize design
decisions made in programs. These are: composition and decomposition,
encapsulation and interleaving, generalization and specialization, representation, data
and procedure and the last is function and relation.

The authors claim that software maintenance and reuse activities require the
detection of design decisions in existing code. They insist that this is part of the
reverse engineering, which is the process of constructing a higher-level description
of a program from a lower level. Typically, this means constructing a representation
of the design of a program from its source code. The process is bottom-up and
incremental. Low-level constructs are detected and replaced by their high-level
counterparts. Then the authors claim that gradually the overall architecture of the
program emerges from the programming language details if this process is repeated.

It is pointed out that it is not sufficient to simply recognize design decisions
in code and that the decisions recognized must be organized in such a way, that they
can be used effectively by maintenance programmers and reuse engineers. The
authors insist that the organization chosen serves as a representation for design
information. Describing the design decisions in programs the authors admit that they

15

occur where the abstract models and theories of an application domain confront the
realities of limited machines and imperfect programming languages. Finally, they
mention that if the design decisions could be reconstructed, then there would be
greater hope for the software engineers to be able to maintain and reuse the
mountains of undocumented software confronting them.

Frank Svoboda has published a paper titled "Application of integrated process
definition to reverse engineering"[25] in the context of the Army/STARS/Unisys
Demonstration Project. This is a project that has successfully applied integrated
process definition to promote understanding of its reverse engineering process and to
communicate this understanding among the project team and to external
stakeholders. Through this paper the project's reverse engineering process and the
impact of an integrated approach to the definition of that process is highlighted.

The author mentions that software processes have traditionally been defined
informally through standards and policy manuals. He claims that these process
descriptions suffer from their inability to be analyzed, discussed, taught, learned and
changed. It is also mentioned that stable environments can hide problems caused by
informal process definitions that might surface when subjected to personnel or
technological change. The author also insists that integrated process notations help
gain control over software efforts and that by enabling quicker access and
understanding through coherent graphical organization the impact of change can be
minimized.

Referring to reengineering attempts the author claims that as funding for
major new projects becomes scarcer, non-developmental efforts, such as
reengineering, maintenance and reuse are becoming increasingly popular. It therefore
becomes incumbent upon software engineers to understand and perfect the processes
by which better use can be made of the legacy systems. He also insists that reverse
engineering should capture system understanding from artifacts across the entire life
cycle and not just code.

Arun Lakhotia has published a paper analyzing his experiences with
modifying large, real-world programs written by other programmers [31]. Lakhotia
insists that the functionality of a program is not only understood from its
documentation but also by executing it and inferring relations between its inputs and
outputs. He also claims that when deleting a function, the code implementing it is not
destroyed, only execution paths leading to it are disconnected; leaving behind dead-
code. The replicated and dead-code segments are major contributors to the difficulty
in understanding and modifying programs.

The author insists that software maintenance heavily relies on the
programmer's ability to comprehend programs and that this observation has
prompted several researchers to investigate the processes involved in understanding
programs. He also mentions that if a programmer is not knowledgeable about the
program's domain, it will make it harder for him to understand the code and
presented briefly some works relevant to the subject of analyzing computer
programs.

Lakhotia through this paper gives a narrative of four program modification
exercises performed on two real-world programs (GCC and WPIS). Some students
performed these exercises, while Lakhotia was structuring and observing them and in
the end he came out with some interesting conclusions. He claims that: "A
programmer may scan the code in search of information that may be used to create

16

hypotheses about a program's design. Scanning the code is different than reading the
code to understand each statement. It is also different from tracing control flow
paths. Scanning a code means flipping through text in search of beacons. Such a scan
may also be done by searching for occurrences of certain words or character
sequences of relevance to the context".

Lakhotia also mentions in his conclusions that: "The ease with which a
program may be understood depends on several factors. It depends on the
programmer's experience with modifying code and also his knowledge of the domain
and the relevant programming concepts. It is influenced by the programmer's ability
to create hypotheses about a program's design (or behavior) and the ability to test the
hypothesis using observed facts and logical reasoning. A system decomposed into
several levels of abstractions is easier to understand, than one with a more coarse
grained decomposition. He also insists that organizing the source code in a directory
hierarchy that reflects this decomposition can further help in comprehension of a
large system".

Spencer Rugaber and Richard Clayton in their paper entitled "The
representation problem in reverse engineering" [22] examine the representation
problem by presenting taxonomy of solutions. They make a distinction between the
mental activities involved in understanding a program and the representations
produced. It is also claimed that the reverse engineer is responsible for developing
mental models of what a program does and that representations and formal
representation techniques are tools for modeling and for expressing the results.

The authors believe that programmers are the people most likely to need a
detailed understanding of a software system. They also believe that programmers are
trained as model makers and so are likely to have both the skills to construct mental
models and an appreciation of the value in doing so. Furthermore, in this paper it is
mentioned that for reverse engineering to be successful, a representation must be
constructed describing the implementation architecture and how it relates to the
problem being solved by the software.

Rugaber and Clayton mention that there is a problem related to the fidelity of
the representation. They insist that there are many cases in which the corresponding
representation does not retain all of the information available in the source code.
They also believe that if the results of the reverse engineering are going to be used to
support other activities, such as maintenance and reengineering, then it is desirable to
be able to use the same representation for these activities as was used during the
reverse engineering. The authors define the application model as a description of the
problem the system is trying to solve. They claim that a successful reverse
engineering effort must include a description of what a system does and how it does
it. They also claim that representations of the initial code models are necessarily low
level because they are derived directly from the code. Finally, Rugaber and Clayton
make a meaningful observation mentioning that the ability to integrate
representations ensures that reverse engineers, using a collection of previously
created models, will be able to extract maximum value from them with minimum
effort.

Melody Moore, Spencer Rugaber and Phil Seaver through their paper entitled
"Knowledge-based User Interface Migration"[20] chronicle a study of user interface
migration issues, examining and evaluating current tools and techniques. They also

17

describe a case study undertaken to explore the use of knowledge engineering to aid
in migrating interfaces across platforms.

The authors insist that a significant problem in reengineering large systems is
adapting the user interface to a new environment and that portability across platforms
is a major concern in the software industry today. They claim that legacy systems are
being reengineered with portability and multi-platform considerations as priorities.

Referring to the user interface of an application, Melody Moore, Spencer
Rugaber and Phil Seaver insist that since many tools are based on high-level
abstractions, it is important that the user have the ability to fine-tune the interface
generated by a tool. They also believe that graphical user interface builders can
drastically speed up the development process, since much of the code can be
generated automatically. Finally, they claim that the fundamental problem, while
migrating the user interface, is to preserve the functionality of the original interface,
while accommodating the differing stylistic conventions.

2.3.2 Theory of patterns

Erich Gamma et al., in their paper entitled "Design Patterns: Abstraction and
Reuse of Object-Oriented Design" [6] describe how to express and organize design
patterns and introduce a catalog of them. The authors' experience in applying design
patterns to the design of object-oriented systems is also presented.

Design patterns are defined as reusable micro-architectures that contribute to
an overall system architecture. The authors believe that software architects, who are
familiar with a good set of design structures, can apply them immediately to design
problems without having to discover them. They also claim that design structures can
improve the documentation and maintenance of existing systems, by furnishing an
explicit specification of class and object interactions and their underlying intent.

A list of uses of design patterns in the object-oriented development process is
presented. Erich Gamma et al., insist that design patterns act as building blocks for
constructing more complex designs. They also insist that a good set of design
patterns effectively raises the level of the development process and that design
patterns help a novice perform more like an expert. Finally, as a conclusion the
authors insist that using design patterns early in the lifecycle may avert refactoring at
later stages of design.

Perdita Stevens and Rob Pooley in their paper entitled "Software
Reengineering patterns"[23] introduce the idea of software reengineering patterns
adapting the ideas of design patterns. This work identifies lessons in successful
reengineering projects and makes these lessons available to new projects.

The authors believe that the so-called legacy systems are normally, but not
necessarily, large systems built in an era before encapsulation and componentization
were regarded as fundamental tenets of design. It is also mentioned that software
practitioners have adopted patterns enthusiastically, because a pattern is an
effectively transferable unit of expertise.

Referring to legacy systems Stevens and Pooley insist that there seems no
reason to be confident that today's new systems are not also tomorrow's legacy
systems and that the problem of reengineering legacy systems is probably here to
stay. The authors also insist that it is almost universally accepted that a system that
consists of a loosely coupled collection of highly cohesive components, is easier to
adapt than one that is not.

18

Finally, while referring to the reengineered system, it is mentioned that its
architecture and high-level design are not identical with that of the original system
and that the best design for a reengineered system may not be achievable in practice,
but a sensible compromise may be available.

Perdita Stevens and Rob Pooley have also published a paper entitled
"Systems Reengineering Patterns" [24]. In this paper they claim that today's business
can only survive if they can adapt rapidly to a changing environment and take
advantage of new business opportunities. The authors aim also to understand the way
that software practitioners with a lot of experience undertake the reengineering of
legacy systems. With this knowledge the authors claim to be able to develop efficient
techniques and material for transferring expertise.

Stevens and Pooley believe that the wide range of factors, which must be
taken in to account in evaluating candidate solutions, exacerbates the problem of
becoming expert. They also believe that software engineers have great difficulty in
becoming expert engineers.

The authors define patterns as a successful, recurring solution to a common
problem in a given context. They insist that a reengineering pattern embodies
expertise about how to guide a reengineering project to a successful conclusion.
Using reengineering patterns they intend to address a problem in a way that takes
into account the needs of a software engineer who needs to make decisions about
reengineering in a reasoned way, taking advantage of the experience of others.
Stevens and Pooley regard the reengineering process as the process of applying
engineering principles to an existing system in order for it to meet new requirements.

Walter Zimmer in his paper entitled "Experiences Using Design Patterns to
Reorganize an Object-Oriented Application" [26] expresses his experiences in the
reorganization process of a hypermedia application, in which the design pattern
approach was used. Zimmer mentions that the team of the project used design
patterns as a major resource in the reorganization process for three main reasons. The
first is that the usage of design patterns promised to improve the design quality and
comprehensibility by reusing well-designed micro-architectures. The second is that
design patterns provide a common vocabulary for discussions and documentation.
The third is that design patterns raise the granularity level of design from classes,
methods and relationships (inheritances, components) to larger building blocks.

On the contrary, it is also mentioned that design patterns are only one design
approach and do not cover all aspects of software design. The author insists that
further support is needed for tasks like finding of design flows or the documentation
of the application. Concerning the reorganization of an application, the author insists
that it requires good knowledge and comprehension of the application. He also insists
that in order to be effective, the developer should have a good overview about
generic and domain-specific design patterns, their intentions (addressed design
problems) and their applicability (typical situation / context in which the design
pattern is applied).

Zimmer claims that the existence of a common vocabulary is the main
advantage of design patterns. He also claims that as reorganization is a time-intensive
task, effort should be focused on really critical issues. Besides experiences from the
original developers, scenarios and design metrics can be systematically used to
identify application deficiencies and to get suggestions for improvements ideally in
the form of design patterns. In addition, Zimmer claims that the complexity of the

19

reorganization task should be reduced as much as possible and that design of
important abstractions in the application domain (links, documents) often requires
the combination of several, interrelated design patterns.

The author wonders about the problem of organization and manipulation of
patterns in the case that their number grows fast. He insists that if larger collections
of design patterns (hundreds instead of twenty) are developed in the future and if the
application is really large (hundreds of classes), the developer would have to be
supported by tools. Those tools would help to manage complexity, to accelerate the
exploration of design alternatives, to learn / understand design patterns and to free
the developer form error-prone detail work.

2.3.3 Software testing theory

Stephane Barbey et al. in their paper entitled "From Requirements to Tests
via Object-Oriented Design" [1] study the testing procedure in an object-oriented
(OO) development process. This paper is based on a production cell CASE study.
The various problems that have appeared during the CASE study are reported. These
problems mainly concern controllability and observability issues. The authors insist
that these problems have caused some iteration and backtrack on OO analysis and
design.

The authors believe that software testing must be anticipated and prepared
during the whole development process, in order to be successful. They insist that
testing involves exercising the software by supplying it with input values. They also
insist that exhaustive testing is not tractable and that the tester faces the problem of
selecting a subset of input domain that is well suited for revealing the possible faults.

Formal testing methods are presented as an approach to reveal faults in a
program, by verifying its functionality, without analyzing the details of its code. The
authors believe that the goal is to answer the question: Does the program satisfy its
formal specification? Concerning the development environment of an application,
the authors insist that the classical development methods for procedural programs
involve a hierarchical decomposition of functions and that on the contrary, OO
development methods are characterized by decentralized architectures of objects.
The authors also insist that in order for the test to be effective this observation has to
be taken into account (i.e. traditional unit and integration levels of testing do not fit
well in OO development methods).

Stephane Barbey, Didier Buchs and Cecile Peraire have published a paper
entitled "A Theory of Specification-Based Testing for Object-Oriented Software"[2].
Through this paper the authors propose the adaptation to object-oriented software of
an existing theory of testing, for stateless abstract data types (ADT), to find errors in
a class, by checking that its implementation meets its specification. The authors
study the construction of the procedure that analyses the results of the tests, adapted
to object-oriented software.

The authors believe that although some people have assumed that object-
orientedness leads by itself to quality, experience has proved that object-oriented
software cannot escape to a validation and verification process. They also insist that
the main problem is to build a test set that has enough significance to find a maximal
number of errors, so that a 'yes ' answer gives confidence to the programmer that the
program meets its specification. Referring to testing systems that have been
developed using object-oriented technologies they claim that testing must take into

20

account the specifics of the object-oriented development methods and of the structure
of object-oriented software. They also claim that traditional strategies need
adaptation to fit object-oriented systems.

This paper is focusing -as mentioned in its title- on specification-based testing
methods. The authors call these methods black box methods. They define black box
methods as an approach to find errors in a program by validating its functionality,
without analyzing the details of its code, but by using the specification of the system.
It is mentioned that the goal is to answer the question: Does a program satisfy the
requirements of its specification ? or, in accordance to the goal of testing, to find if a
program does not satisfy its specification.

Answering the previous question the authors propose a specific strategy. This
strategy includes selecting from the specification the services required from the
system. For each service, the specification allows the selection of a number of
scenarios for the program under test. The set of all these scenarios makes up the test
set. Furthermore analyzing the test set, the authors mention that an exhaustive test set
should obviously contain all the tests that are required by the specification. Then they
admit that an exhaustive test set is generally infinite, and it is necessary to apply a
number of reduction hypotheses to the behavior of the program in order to obtain a
finite test set of reasonable size.

21

2.4 Commercial implementations concerning software reengineering

Software reengineering is not a new issue to the software development
community. In fact, it appeared along with the first pieces of source code. Initially
software reengineering was not well accepted because its results were not regarded
as original software but a replicate of others people software. This situation changed
as the amount of source code was growing rapidly. The need for software
reengineering and reusability became a necessity when software development tools
progressed and became mature and sophisticated. As new generations of
sophisticated and efficient development tools emerged, systems that were developed
with earlier tools were still used in business. This situation led to the so-called
software crisis, which characterized the software community during the last decade
of this century.

The reactions of the software engineering community against the problem of
software crisis had as a result the development of software tools that would be in a
position to transform the old software systems to new ones, embedding all the
advantages of the modern systems. It is widely admitted that the most time
consuming procedure is the definition of the requirements, specifications and design
of a software system rather than the implementation of the actual code. The software
reengineering tools are able to extract the specification and design information from
the source code of the old systems and, therefore, save valuable time in the
development process. Three typical systems that have been developed for software
reengineering purposes and are available for commercial use will be presented.

2.4.1 The DMS® Software Reengineering Toolkit

Semantic Designs Inc [45] have developed the DMS toolkit. DMS enables
the analysis, translation, and/or reverse engineering of large-scale software systems,
containing arbitrary mixtures of languages. It can also be used for domain-specific
program generation. DMS offers the reengineer the following capabilities:

- Robust parser and lexer generation.
- Automatic construction of abstract (not concrete) syntax trees.
- Semi-automated pretty-printer generation (to reverse the parsing
process), according to a specified layout information.
- Multi-pass attribute-evaluator generation from grammar.
- Sophisticated symbol-table construction facilities.
- Control-flow graph construction and data flow analysis framework
- Multiple domains can be represented at the same time.
- Transforms and patterns can be written directly in surface-to-surface
domain syntax form.
- A full Associative/Commutative rewrite engine that operates on trees
and DAGs, which can be used to apply sets of transforms.
- A metaprogramming language, XCL, provides the ability to control the
sequencing of the application of transforms and sets of transforms.
- An algebraic specification subsystem can be used to specify arbitrary
algebras (this is just a DMS domain!).
- Industrial Scale: DMS is designed to work on source systems with up to
1 million lines of specification.

22

While complex legacy grammars can be defined quickly for DMS use, there
are grammars for:

- ANSI C and C++ with intelligently managed preprocessor directives
- COBOL85, and IBM VS COBOL II with CICS/SQL, with COPYLIB
management, and name and type resolution
- Fortran95/90/77
-Java
- IBM JCL
- ISO Pascal
-PL/1
- Progress (a 4GL)
- SQL (SQL2 aka SQL 1992 and SQL3)
- Verilog
-VHDL
- Visual Basic

Application of DMS:

DMS can enable an organization to carry out a variety of useful analyses and
modifications on a large system. Some ideas are listed below:

Program modification
Application evolution, massive regular change, porting, restructuring,
optimization and Program Analysis

Program analysis
Metrics, organization style checking, programming information extraction,
domain information extraction, semantic faults, test coverage, Domain-
specific program generation

Domain-specific program generation
Partial differential equation solvers, factory control synthesis, entity
relationship compilers, protocol compilers, automated test generation Legacy
code reverse engineering

Legacy code reverse engineering
Design recovery to domain abstractions, incremental design capture, reusable
component extraction, component extraction for domains, legacy mergers,
business rule extraction

In addition, Semantic Designs Inc have another tool called CloneDR [44].
The CloneDR has a particular configuration designed to find exact and almost-
identical blocks of code ("clones") in large systems, and remove them by replacing
them with invocations of abstractions (macros, procedures, etc.). The technology is
generic enough so it is applied to COBOL, C/C++, Java, Fortran 90, (and recently as
an interesting experiment, to VHDL.). Someone can download a demo C/C++ clone
detector/remover.

23

2.4.2 George and James Software

George and James Software [47] provides some software reengineering
products. These are:

RE/2000

RE/m

This is a dedicated analysis tool designed to address year 2000
problems by identifying and classifying date related processing in M
source code. RE/2000 analyzes your source code looking for date related
processing and produces a set of hyperlinked documents that provide:
- A summary of problem instances, by severity level, for all routines
analyzed.
- An index of routines analyzed, with totals by severity level and by
application system.
- Routine source code listings in html format marked up with hyperlinks
that highlight date related processing.
- Each instance of date related processing has a link to a problem
explanation, which identifies possible problems with the highlighted
code.
- Each problem page has further links to a problem catalog, which
describes known problems in more detail and provides guidance on how
to deal with these problems.
- RE/2000 incorporates a library of over 500 problem primitives in 17
different problem classes that indicate date related processing. This
library can be user extended to incorporate date formats and algorithms
that are unique to your applications.
- The optional RE/parser add-on module allows additional problem
classes to be created giving maximum flexibility in extending the
capabilities of RE/2000 to meet the most demanding requirements.
RE/parser also enables code to be re-engineered allowing frequently
occurring problems to be corrected automatically.

This is a Reverse Engineering tool that has the following features:

- At the heart of RE/m is a repository containing information about the
programs and data that make up an application. This repository contains
the documentation needed to maintain and enhance any M application.
- Driving RE/m is a powerful code analyzer that performs the Reverse
Engineering process of extracting information from M routines, analyzing
it, and loading it into the repository.
- Sophisticated analysis tools then enable the analyst/programmer to
access comprehensive and accurate documentation to assist in the
support, maintenance and enhancement of an application.
- RE/parser is an add on module that can be user configured to meet
customer specific needs including automated syntax conversion and
advanced quality control.

24

RE/data
This tool is a member of the RE/m family of re-engineering tools.

It derives data dictionary information from the application code, M

databases and other sources, and uses it to create a data dictionary that
describes the structure and contents of your database. The dictionary
created can be used to automatically populate a range of dictionary driven
third party products including any product that can read standard SQL
DDL. It has the following features:
- RE/data is the fastest way of building a data dictionary for an existing M
application. Using RE/data, in ideal conditions, between 25 and 50
global nodes (tables) can be defined per day.
- RE/data promotes the re-use of attribute definitions. If an attribute such
as Patient Number is used throughout a database then RE/data allows all
instances of Patient Number to be consolidated into one attribute
definition. This achieves a highly consistent dictionary with
corresponding improvement and quality.
- RE/data assures quality by enabling the dictionary to be validated
against sample databases at any stage of the dictionary creation process.
This validation can be used periodically after the dictionary has been
created to ensure that your investment is protected.

RE/parser
This is a fully user configurable code parser. It can be used in two

ways, firstly as an add-on to RE/m, RE/data or RE/2000 it can help you to
get more information out of the code being analyzed by customizing the
products parser tables to understand more about the way your
applications are written. Secondly, as a stand-alone product RE/parser
can be used to re-engineer M code by replacing what it parses with user
specified constructs. RE/parser comprises three parts:
- Parser Engine - which reads M code and interprets it in accordance with
the rules defined in a Parser Table.
- Parser Table Editor - which enables the user to create and edit Parser

Tables.
- Parser Tables - that defines the complete M syntax in accordance with

the ANSI/MDC XI 1.1-1995 standard.

2.4.3 The Metamorphic™ COBOL Converter

The Metamorphic TM COBOL Converter [48] allows users to take existing

ANSI 85 COBOL programs and translate them to Java 1.2, Microsoft Visual Basic

5.0 or C++. By allowing the user to select his target language, he can select the

appropriate target platform and technology to solve his business problem today.

Metamorphic Computing, Corp. (MCC) advertises some sample COBOL source

code and how it is converted to Visual Basic and Java sources.
MCC announced a new product that allows programmers to migrate existing

legacy applications up to 100 times faster than previously possible. By running

COBOL code through the Metamorphic TM Converter the user gets compile-ready

code. The conversion is done by the customers or as a service by MCC. The purchase

25

options available are (1) straight conversion by MCC with no tuning - designed for
the fastest turnaround (2) conversion by MCC with tuning - designed for customers
who need help revolutionizing their existing process (3) direct purchase of the
converter.

2.5 Summary

In this chapter the analysis and study of existing documentation in the
research domain of reengineering and reuse of legacy software systems has been
investigated and presented. This domain includes general software engineering
concepts and especially reengineering concepts. Several computer theories have been
developed to provide answers to serious questions in this research domain. The most
important of those theories were presented and analyzed. These are the theory of
software objects, the software component classification theory, the representation
theory, the theory of patterns and the theory of software repositories.

The scientific papers found in the bibliography search, in the area of software
reengineering, were divided into three categories. The first category includes those
papers that refer to general reengineering issues. The second category consists of
papers that provide an approach to software reengineering through the theory of
patterns. Finally, the third category contains two papers that provide techniques for
testing the results of a software development process. Through the presentation of
these papers the problems that other engineers have faced in the area of software
reengineering and the solutions that they propose were outlined. These problems
include theoretic issues related to software reengineering as well as applied solutions
provided to specific demands.

Finally, three typical systems that have been developed for software
reengineering purposes and are available for commercial use have been presented.
These are the DMS reengineering toolkit, the tools from George and James Software
Inc and the Metamorphic COBOL Converter. The fact that some software companies
have already developed and marked some products concerning this research domain,
justifies the purposes for the implementation of this project. Through this thesis it is
envisioned that another theoretical point of view and another reengineering tool will
be provided adding another small rock in the mosaic of the whole research area of

software reengineering and reuse.

26

A formal mechanism for analysis and re-
implementation of legacy programs

Chapter 3

Requirements Analysis and Specifications

3.1 Introduction

The need to reuse pieces of software in the construction of an application
appeared in the early years of software development. One of the first steps towards
software reuse was the organization of special routines and functions into software
libraries, which were distributed to the programmers. The use of those libraries saved
time and manpower. The software pieces, which were included in them, were tested
and verified, so the possibility of a logical or implementation error during the
development of the software application was decreased.

In later years the software engineering community made significant progress
in software reuse. Software engineers invented tools and techniques in order to reuse
effectively software elements. Not only source code but also designs, requirements,
specifications, development processes and decision experiences are now also
candidates for reuse [10].

The mechanism, which is presented in this thesis, is another approach to the
aims of reengineering large software systems, which have been developed using 3rd
generation computer languages. This mechanism focuses in the process of the analysis
of software systems by software engineers who did not participate in the development
process of those software systems. It brings out information about the design and
implementation of a software system by scanning its source code. In order to get
information from a software system, it is very helpful to read its documentation.
However, it is very rare to find a documented software system. Also when such a
document is available it is usually inconsistent since it has not been kept up to date
with the modifications done to the software system. Therefore, the only definite
document of a program is its source code [32].

The 3rd generation development tools are designed to work using a compiler.
The compiler is a piece of software, which reads the source code and produces binary
files. These binary files may be directly executed by the operating system or a special
program, usually called runtime, is used to execute them. In the real world large
software systems are in use consisted of millions of lines of source code, which have
no documentation about their design and implementation. The information about their
design and implementation is necessary in order to maintain or reengineer those
systems. The formal way to regain such information is to have a team of software
engineers to read all the source code of the software application and try to understand
the architecture and the logic behind each routine. This procedure is time consuming
and as a result an expensive process. An alternative way is to develop a software
system to extract information concerning the structure, implementation and design of
an existing software application. This software system should function in a way
similar to the compiler of the computer language. It should be able to read the source

27

code of the application, but instead of producing the applications binary files it should
present information about its design and implementation.

In this document the requirements, which this software reengineering
mechanism will have to meet, are investigated and studied. Based on the investigation
and study of these requirements, a set of specifications, which this mechanism will
have to fulfill in order to meet its requirements, is developed.

3.2 Requirements analysis

Software engineers are interested in specialized pieces of information, which
are spread throughout the source code of the software application, in order to
understand the design and implementation analysis of the application. The meaning of
"pieces of information" is abstract and subjective. In software engineering, one could
find some "pieces of information", about an old application, important and at the
same time, someone else could characterize them meaningless. For example, if
someone needs to gain information about the implementation and design of a software
system, which has been developed for the needs of a hotel reception, he would search
for information about how this program handles the data of the customers, the rooms
and the reservations. This kind of information makes no sense in a software
application, which is used to control the productivity of a car factory! Additionally,
the computer language and all the software tools used in the development of a
software application, play pivotal role in the procedure of its design and
implementation analysis.

However, it is possible to provide general information about the design and
implementation of a software system by studying the specifications of the computer
language used to develop it. As McLure [35] mentions "reuse makes sense because
the similarity found across software systems is enormous and undeniable. This
includes code, design, functional and architectural similarities". This thesis, focuses
on reengineering software systems developed using 3rd generation computer
languages. These computer languages have common characteristics. By studying
those common characteristics, it is possible to design a software system, which will be
used to gain critical information about the design and implementation of a software
application, which has been developed using a 3rd generation computer language.

Three cases of common characteristics, of the 3rd generation computer
languages, are of major importance because they provide information of the
following:

 The database structure of the application
 The control flow of the application
 The organization of its source code

In the first case, the common characteristic is the existence of a separate
datafile for each data table of the database. Additionally, the structure of each datafile,
accessed by a program of the application, has to be defined in the source code of the
program. It is also possible to have two different definitions for the same datafile in
two different programs of the software application.

In the second case the commonly used GOTO statement affects the control
flow of a program. While this statement is widely used by the programmers, software
engineers believe that restructuring in the early days of structured programming
implied removing the GOTO statement [34]. There are also a number of statements,

28

which each 3rd generation language uses, in order to pass the control flow of the
application to external programs. It is also possible to pass information to the external
program, by supplying values to special variables, before the external program starts
running.

In the third case the common characteristic of the 3rd generation languages is
the organization of the source code in text files. These files could be spread in a
directory tree. During the compilation time, the compiler will have to read these
source files line by line and produce the binary programs of the application. There are
also special statements of the computer language, which instruct the compiler to use
additional source files while building the program. This mechanism enables the
developer to create his own libraries, which may be used by several programs of the
application.

The three cases of common characteristics of the 3rd generation computer
languages indicate that the requirements, which this software reengineering
mechanism will have to satisfy, should be divided in three main sections. The first is
the database analysis of the software application, the second is the control flow
analysis of the application and the third is the source code organization analysis.

3.2.1 Database Analysis

Every software application manipulates data. Some applications manipulate
small amounts of data while others deal with huge database files. Within the last
fifteen years great progress in the process of data manipulation has been achieved.
Software developers nowadays use modern tools and techniques to manipulate data.
One of the motives of this software reengineering mechanism is to provide
information about the database used by the old software application and propose tools
and techniques to move from the old database schema to a new one. This mechanism
should be in a position to: a) present the database structure of the software
application, b) provide information about the record structure of each table in the
database, and c) provide information concerning the table relations, which may occur
in the database.

3.2.1.1 Database structure

In order to analyze and reengineer a software application, which manipulates
large amounts of data, it is desirable to know the complete set of the datafiles, which
constitute its database. For each datafile used it is also important to know the set of
the programs or routines, which access this datafile. This kind of information can give
useful hints about the structure of the software system. Some datafiles are used to
store the basic information that the application manipulates, while others can be used
to store some details, which are 'less important'. Creating sets of programs of the
software application, which access specific datafiles, can be useful in the analysis of
the applications design and implementation. For example, in a hotel management
system there could be a set of programs used to manipulate the information about the
reservations of the hotel rooms and another set of programs to manipulate information
about the tourist offices, which make the reservations.

It is also helpful to find out the source files that define the structure of the
datafiles used. The 3rd generation languages need to have the complete definition of
the structure of each datafile accessed by a program, defined into the programs source
code. If two different programs inside the same software application access the same

29

datafile, then they must include the same definition of this datafile in their source
code. Nevertheless, in 3rd generation languages it is possible to have two different

programs access the same datafile, with different definitions for the structure of the
datafile, in their source code. These programs may execute without run-time errors,

but the results may be unpredictable since 3rd generation languages do not guarantee

the integrity of the data of the software application. In small software systems, it is

easy to control such a demand but in large systems constituted by thousands of

programs and hundreds of datafiles this is a very difficult and time spending
procedure.

3.2.1.2 Record structure

The identification of the format of each data table used by the software
application provides the basic information about the design of the database of the
application. Any possible indexes and relations must also be identified in order to
analyze the database structure. Almost every modern relational database management
system (RDBMS) provides tools that graphically represent the design of the database
in forms of tables, records, fields, indexes, relation etc. It is useful to provide the same
information about the database of a software system developed under a 3rd GL.

It would be helpful and time saving to identify the source files that contain the
definitions of each data table. Many programs inside the same software application
may share these source files. It is a common tactic the sharing of the same source file
in different programs, in order to define the structure of a specific datafile in these
programs. Using this technique the possibility of a mismatch between the two
different definitions is minimized. Once the record analysis, in the form of fields and
indexes, has occurred, design or implementation errors, which obstruct the normal
operation of the software system, can be easily identified. The 3rd GL's do not have
any tools to provide information concerning the record structure and the developer is
always responsible for the design and implementation of each datafile in every
program, which accesses the specific datafile. This may result to design and
implementation errors because the development tool does not apply restrictions in the
design of the database and people can always make logical errors.

3.2.1.3 Information concerning the table relations

Software engineers can unveil information about the relations that might exist
between two datafiles, by analyzing the record descriptions of the data tables and
comparing them. Although the 3rd generation languages do not support special

handling of relations between two separate datafiles, software developers have the
ability to implement such relations by generating special fields in the record that

match the related records between the separate datafiles. As a result, there is only one
valid procedure in order to investigate the existence of such relations. This procedure

is divided in three steps. In the first step the analysis of the structure of the record

description of each datafile takes place. In the second step the comparison of the
record description of each datafile against the record description of all the other

datafiles, which exist in the database, provides clues about the relations that might
exist among them. In the third step the existence of those relations is validated by

browsing the data of the possible related datafiles and comparing them.
The information concerning the relations among the datafiles can also be used

for creating sets of datafiles. Usually the datafiles, which are related to each other,

30

contain similar information. The grouping of datafiles according to the relations found
could create sets of datafiles, inside the same software system, which contain similar
information. In the previous mentioned example of the hotel management system
there could be a set of datafiles used to store information about the reservations of the
hotel rooms and another set of datafiles to store information about the tourist offices,
which make the reservations.

3.2.2 Control flow analysis

Knowledge of the control flow of a software application gives detailed
information about its structure and functionality. The control flow of a software
system is usually presented using control flow diagrams. Such diagrams illustrate the
control flow of each procedure of the software system in full detail, so studying those
diagrams may yield information concerning the applications design and
implementation. Nevertheless, it is not always desirable to have a diagram describing
the control flow of a software application. The control flow diagrams of large
software systems are huge and sometimes can approach infinity.

An alternative approach to present the control flow of a software system is to
use static analysis. Static analysis of a large software system presents all of its
components and describes their attributes. The information derived from the static
analysis of a software application is concise and substantial. It provides briefly critical
information about its structure and design so it is very useful for a software engineer
to obtain such information about a software system in order to commit reengineering
changes on it. It is possible to combine the information derived from the static
analysis of a software system and obtain information regarding its control flow.

The information needed from the static analysis of a software application, in
order to analyze its control flow, consists of three main parts. First of all, it is
necessary to know the complete set of programs, which constitute the software
application. Next, the calls among programs should be identified. Finally, it is
necessary to know the database attributes of each program.

3.2.2.1 The complete set of programs

It is important to identify all the programs that constitute the software system
in order to analyze its structure and design. In order to identify all the programs of the
software application, it is necessary to assign a unique name to each program. The
name of the program should be the internal name that the computer language uses to
reference it. In many 3rd GL this name is defined in the source code (COBOL is one
of them) while in others use the name of the source file of the program. The name of
the source file of the program is the external name that is used to store the source file
in the storage media (filesystem).

In order to compile a program many other components may be required in
addition to its source code. For example, it could use libraries, which could have been
developed by the programmer or be provided by the computer language used. These
libraries may be simple source files, without an internal name, which are patched in to
the source code of the main program. This means that each source file does not
necessary define an internal name to the program, even if the computer language
needs to assign an internal name to each program. As a result it is useful to have a
report that will present all the programs of the application and for each program, the

31

name of the source file that the compiler is instructed to read first in order to build it.
This is the main source file of the program.

3.2.2.2 The calls among programs

Other programs that are called from each program should also be identified in
the static analysis of the software application. For each program there should be a
report presenting all the external programs which are called. Using this information it
is possible to get a description of the control flow of the application. The information
provided by reporting the calls, which take place between the programs of the
software application, can illustrate a higher-level control flow description of the
application. Such information provides a brief view of the control flow of the
application and gives basic information about its design and implementation.

Examining the calls, which take place among the programs of the application,
it is also possible to create groups of the programs used by the software application.
For example, a software system developed to cover the needs of a commercial store
could use a set of programs to manipulate information of the customers and suppliers
and another set of programs to manipulate information of the product trades. It is
always possible to have calls between programs, which are not in the same group.
Nevertheless, the most common situation is to have the most calls between programs,
which belong in the same group.

3.2.2.3 The database attributes of each program

It is useful to know the datafiles, which are defined in the source code of a
program and the datafiles, which are accessed by this program. It is possible to have
the definitions of the datafiles in separate source files (user defined libraries), which
are referenced during compilation time. This tactic minimizes the possibility to have
different definitions referring to the same datafile in two different programs. In
adition, by examining the programs, which access common datafiles, it is possible to
create groups of programs, which implement similar functions.

Once all these attributes have been identified for each program of the software
application, a software engineer may retrieve useful information about the structure
and design of the application. First he can get a brief listing of all the programs
constituting the software system. Then he can focus on the properties of each program
and navigate from one program to another according to the questions he needs to get
answers for. For example, he can focus on program PI and find out that it affects the
datafile Fl. Then he might be interested in identifying all the programs that affect the
datafile Fl, for example program P2 is one of them. Then he could focus on program

P2 and so on.

32

3.2.3 Source code organization analysis

The 3rd generation languages use text files to store the source code of the
programs. These source code files are usually organized in a directory tree hierarchy
depending on their usage. For example, some routines or functions that are common
to many programs of the software application might be in a separate directory. While
it is interesting to know how the source code is organized in subdirectories, the most
important is to know how these source files are combined during compilation. The
compiler can be instructed to use additional source files in order to build a program.
Such instructions are passed to the compiler using special statements in the source
code of the program. This way the 3rd generation languages give the opportunity to
the developers to create their own libraries. As a result, for each program of the
application, it is necessary to know the complete set of source files used to build it, in
order to be able to study and analyze it.

As mentioned in section 2 of this document, the source files of the application
usually are located in different subdirectories for organizational reasons. For example,
the source files, which are used as user-defined libraries may lie in a separate
directory. This software reengineering mechanism should be in a position to locate the
source code files in the various subdirectories in order to filter the source code and
derive the desired information. In the usual form most software applications use a top-
level directory and all the source code files are located in a number of subdirectories
below this top-level directory. It is not good practice to have files that are not part of
the applications source code, for example the binary files of the application, mixed
with the source code files, although this situation is a usual phenomenon. Assuming
that the application has its source code files and only them, spread in a separate
directory tree, this mechanism should be in a position to scan all the subdirectories,
bellow the top-level directory of the source code of the application and locate all the

source code files.

3.3 Specifications

After the study of the requirements, which this software reengineering
mechanism will have to satisfy, the specifications must be outlined in order to design
and implement it. The requirements of this mechanism have been categorized in three
main sections namely database analysis, control flow analysis and source code
organization analysis. For each section, a number of specifications must be outlined,

in order to fulfill these requirements.
Tables 3.11 - 3.3 provide the specifications, which this reengineering

mechanism will have to fulfill. Table 3.1 provides the specifications of the database
analysis section, Table 3.2 provides the specifications of the control flow analysis
section and Table 3.3 provides the specifications for the source code organization

analysis section of this reengineering mechanism.

33

Table 3.1 - Database Analysis Specifications

1. Database analysis
1.1 The complete set of datafiles

All the datafiles, which exist inside the database of the software
application, must be reported. The software system, which will be
developed in order to implement the aims of this software reengineering
mechanism, should be capable of giving a report including all the datafiles
that the software application uses.

1.2 Access attributes
For each datafile there should be a separate report showing all

programs, which access the specific datafile.
1.3 Definition attributes

For each datafile there should be a separate report showing all the
programs or their source files, which define the specific datafile in their
source code. The user of this mechanism should be in a position to find
easily these definitions inside the source code of the software application.

1.4 Record description
For each datafile used by the software application there should be a

standard method providing its record description by reporting all the fields,
which constitute the record of the datafile.

1.5 Relation information
This mechanism should provide hints about relations, which may

_____possibly exist between the datafiles of the software application._______

Table 3.2 - Control Flow Analysis Specifications

2. Control flow analysis
2.1 The complete set of programs

The complete set of programs of the software application will have
to be reported. The software system, which will be developed in order to
implement the aims of this software reengineering mechanism, should be
capable of giving a report including all the programs that the software

application uses.
2.2 Name attributes

Each program has two names. The one is an internal name, which
can be defined in its source code. The other is the external name of its
source file. For each program both names should be reported.

2.3 Control flow attributes
Each program may call other programs at run time. For each

program, the complete set of programs, which may be called during run

time, should be reported.
2.4 Database access attributes

Each program may affect several datafiles in the form of adding or
deleting records in the datafile, or changing the contents of some records.
For each program, all the datafiles, which are affected by the program,

should be reported.

34

2.5 Datafile definition attributes
Each program may include several datafile definitions in its source

code. For each program, all the datafiles defined in its source code should
______be reported.____________________________________

Table 3.3 - Source Code Organization Analysis Specifications

3. Source code organization analysis
3.1 Source file location

This mechanism should be able to locate all the source files of the
application, which may exist in a directory tree, below a given top-level
directory.

3.2 Source file report
A report providing all the source code files used by the application

should be available.
3.3 Program-level source file report

For each program all the source files (libraries) that the compiler
____uses in order to built it should be reported.___________________

35

A formal mechanism for analysis and re-
implementation of legacy programs

Chapter 4

Design and Implementation Analysis of the SIS Setup

4.1 Introduction

The formal mechanism for analysis and re-implementation of legacy
programs, which is presented in this thesis, is divided in three main parts as illustrated
in Figure 4.1. In the first part, the source code of the legacy software application is
scanned line by line in search of useful pieces of information. These pieces of
information help in the recovery of the implementation and design analysis of the
legacy software application. The pieces of information, which have been gathered
from the source code of the legacy software application, are stored in a text file in a
form of transactions. In the second part of this mechanism the pieces of information,
which have been derived from the scanning of the source code of the legacy
application, are stored in a database. A special database schema will be developed
using the TELOS database [11] in order to store, maintain and provide these pieces of
information. Their storage into the TELOS database is implemented by executing the
transactions, which are stored in a text file after the end of the first part. The pieces of
information are stored in a specially configured TELOS database instance in the form
of objects and object attributes. The object attributes define relations between them
creating a semantic network. Navigation through this semantic network provides
powerful information regarding the implementation and design analysis of the legacy
application. In the third part of this mechanism, the information, which has been
stored in the TELOS database, is presented using a GUI. The presentation of the
information will be implemented using the SIS GAIN browser [12]. This software
tool will be configured to commit special queries to the TELOS database and present
the results on the screen. The SIS GAIN browser has a GUI with navigation facilities.
Once an object is shown on the screen the user can easily select it and see all the other
objects, which are related to it. Then he can select one of the related objects and so on.

This formal mechanism can be used to analyze software applications
regardless of the computer language used for their development. Nevertheless, for
each computer language, integration is necessary in order to setup the tools that will
scan the source code and maintain the information derived (parser and database). In
this thesis a software reengineering mechanism will be developed, which will be
capable to analyze legacy software applications developed using RM/COBOL - 85.

36

1. The COBOL parser scans the source
code of the application and extracts useful pieces
of information about the application

2. The information that the parser derived
from the sources is stored in a database in order to
be effectively browsed and easily accessed.

3. A graphical browser presents the
information stored in the database using a user-
friendly Graphical User Interface.

Figure 4.1 - A formal mechanism for analysis and re-implementation of legacy programs

4.2 Presentation of tools

A software tool that has been developed by the Foundation of Research and
Technology - Hellas will be used in order to manipulate the information concerning
the legacy application. This software tool is the Semantic Index System (SIS) and it is
constituted by three relative software systems. These software systems are: a database
engine called TELOS, a query execution mechanism called Query Interpreter (QI) and
a graphical browser called Graphical Analysis Interface (GAIN).

A software repository is implemented using a special TELOS design. QI and
GAIN are used to retrieve and provide the information stored in the repository.
TELOS belongs in the family of entity-relationship (E-R) models and it is designed
specifically for information system development applications [11]. There are many
implementations of the E-R model and the IBM Repository Manager/MVS [19] and
PCTE+OMS [3] are two examples of them. There are many reasons why TELOS was
chosen among those implementations. First is its treatment to the attributes and to
metaclasses, which makes it more expressive and extensible. Second is its simple and
elegant formal semantics. Using these semantics TELOS specifies data structures and
abstraction mechanisms in terms of a deductive relational database constituted by
only a few basic system facts, deduction rules and integrity constraints. This

simplicity offers advantages over existing object oriented DBMSs especially when
designing multiple related query interfaces such as QI and GAIN. Third is the
existence of GAIN and QI. GAIN is a powerful hypertext engine and in combination
with QI can execute queries in the database and provide the results on the screen.
With this hypertext engine and QI navigation through the objects of the database is
possible and thus there can be several approaches in order to design and implement

the presentation of the information, which is stored in the software repository.

37

4.2.1 Description of TELOS

TELOS is a knowledge representation language. Its framework is object
oriented. TELOS objects are grouped into individuals (entities, concepts, nodes) and
attributes (relationships, attribute links). It provides three structuring principles,
namely the classification (inverse instantiation) specialization (inverse generalization)
and the aggregation (inverse decomposition). It does not distinguish between schema
and data. Schema changes can be performed without loss of data at any time by
simple data-entry statements.

All data in TELOS are grouped into classes. Classes are sets of instances
(objects). TELOS has some built in classes that the user cannot change (delete them
or change their attributes). These built in classes can only be related by user-defined
attributes. Some of them can be directly instantiated while others cannot. Table 4.1
provides a list of the built in classes of TELOS.

Table 4.1 - Built in TELOS Classes
Classes that cannot be Object, Individual, Attribute, Class, IndividualClass,
directly instantiated by AttributeClass
the user
Classes that can be Token, S_Class, Mn_Class (n=l,2,...), Telos_Integer,
directly instantiated by Telos_Real, Telos_String, Telos_Time
the user

As every object in TELOS, classes must have a unique name as identifier.
Their instances may be classes again. Instances of a class must be declared explicitly.
There is no automatic classification. Classes may have no instances. All the user-
defined classes are instances of class.

All data a user can enter are regarded as instances of the object class. Each
object has a unique logical name as identifier. Objects are distinguished into
individuals and attributes. It is not allowed to define classes, which mix individuals
and attributes. As a result, class is partitioned into IndividualClass and
AttributeClass. The individual class includes all the objects, which correspond to real
things or sets of things or sets of sets of things etc. The attribute class includes all the
objects, which correspond to the relations among objects or sets of relations or sets of
sets of relations etc. Any object must be an individual or an attribute. One individual
together with a set of attributes and the related objects constitute a structured object.
Table 4.2 presents the hierarchy of the built-in TELOS classes, which cannot be
directly instantiated by the user. These classes are usually called hereto-defined

classes.

Table 4.2 - The hierarchy of the hereto-defined TELOS classes.
TelosjClass isA Telos_Object
IndividualClass isA Telos_Class
IndividualClass isA Individual
AttributeClass isA Telos_Class
AttributeClass isA Attribute

Token is defined as the class, which includes all the "simple" individuals or
attributes (i.e. those that are not classes). These "simple" objects are said to have the
"token instantiation level". Simple classes are those classes, which have exclusively

38

tokens as instances. These classes are said to have the "simple instantiation level" and
they are all instances of S_Class. Classes, which have exclusively "simple" classes as
instances, are metaclasses. They are all instances of MljClass and they are said to
have the "metaclass instantiation level". This scheme is deliberately continued and
forms the instantiation hierarchy in TELOS. These "level classes" constitute a
partitioning of the objects orthogonal to the individual-attribute partitioning. A user
can directly instantiate the intersections of one level class with either individual or
attribute, together with some pre-defined classes and nothing else. Finally, there are
four built-in individual simple classes for primitive values. These are Telos_Integer,
TelosReal, TelosString and TelosTime. The values of the individuals, which belong in
those classes cannot be created or deleted (an attribute is understood as a relation to
an object and not the object itself).

Every object in TELOS has some single and necessary values and two sets.
Table 4.3 shows these properties for each individual object, while Table 4.4 shows
these properties for each attribute object. All the properties that are mentioned in
Tables 4.3 and 4.4 must have a unique value except from the EN_set and ISA_set of
the attribute objects.

Table 4.3 - Individual object properties______________

Value properties of each TELOS individual object
SYSID Internal identifier
Sys_name Logical name
Sys_class Built-in class it is instance of

Set properties of each TELOS individual object
IN_set User defined classes it is an instance of
ISA_set______User defined superclasses_______

Table 4.4 - Attribute object properties

Value properties of each TELOS attribute object
SYSID Internal identifier
Sys_name Logical name
Sys_class Built-in class it is an instance of
Sys_from The relating object
Sys_to The related object

Set properties of each TELOS attribute object
IN_set User defined classes it is an instance of
ISA_set______User defined superclasses_______

All properties in Tables 4.3 and 4.4 are implemented by direct bi-directional
linkage. In a semantic network, such as the one that TELOS implements, there is no
preference of query direction. Furthermore, the IN_set and ISA_set properties are
used for the implementation of multiple instantiation, which is useful for classification
purposes. Finally, it should be mentioned that TELOS does not support ISA relations

at token level.
The logical name of an attribute is also called the label of the attribute and the

classes, which an attribute is instance of, are also called the categories of the attribute.

39

An attribute class relates two classes, Sys_from and Sys_to. All instances of that
attribute class must relate objects, which are instances of the Sysjfrom class, to
objects, which are instances of the Sys_to class. Finally, it should be mentioned that
an attribute object might relate objects, which are instances of different class level.
For example, object p, which is an instance of a S_Class, can be related to object q,
which is an instance of a Ml_Class.

ISA relations implement the specialization structuring principle in TELOS.
The user must declare explicitly every ISA relation in the semantic network. ISA
relations assume a subset relationship between the corresponding classes and they
must not be cyclic. Any two classes related by an ISA relation must belong to the
same instantiation level. Inheritance occurs automatically with ISA relations. For
example, if a class P is a specialization of class Q and Q is a specialization of class R
then P is also a specialization of class R.

TELOS uses two statements to manipulate objects into the database. These are
the TELL and the RETELL statements. The TELL statement provides the ability to
enter objects or classes of objects and also to define hierarchy relations among them.
TELOS provides two alternative ways for associating objects with attributes: a)
explicit definition using the Attribute declaration and b) implicit definition within the
individual declaration. Explicit definition allows defining all possible fields of an
attribute, while implicit definition assigns the individual declared explicitly as
Sys_from to all implicitly defined attributes. ISA relations and attributes of attributes
cannot be declared implicitly.

The RETELL statement updates the attributes of an object inside the database.
Table 4.5 shows the features of the RETELL statement. In addition, there are two
formats of the RETELL statement. The first, which is also simple, updates an object
that already exists in the database. The second format of the RETELL statement is
closer to that of the TELL statement and is used in order to update an object that does
not necessarily exist in the database. For this reason the second format of the
RETELL statement redefines all the properties of the object and not only the possible
changes. Update operations can be additions, deletions or changes. However, changes
are internally implemented in the form of deletions followed by the proper additions.

Table 4.5 - Features of the RETELL statement
1. Syntax of RETELL is as close as possible to that of the TELL statement.
2. The RETELL statement might redefine anything that the TELL statement

might define except the assignment of an object to the built-in system class
(Sys_class).

3. No redundant information is required. RETELL needs only information to
identify the object or the set of objects to be changed added or deleted and the
corresponding action to be taken.

4. Apply several changes to an object within one RETELL statement.
5. More than one RETELL statement for the same object might exist in the same

transaction. In that case the updates are executed in the order they are found

inside the transaction. ________________

40

4.2.2 Description of Query Interpreter

Query Interpreter (QI) is a program that uses the Programmatic Query
Interface (PQI) to access a TELOS database. The PQI is a set of functions that can be
used to express queries in a TELOS database. Using QI the users can execute queries
to the TELOS database. Although QI has its own user interface to enter queries and
then execute them to the database, its input can be redirected. Using this mechanism,
query macros can be edited in text files and then passed to QI for execution. QI can
also be used inside programs as an interpreter for batch execution of queries. Finally,
it should be mentioned that the GAIN browser uses QI not only for batch execution of
queries, but as a configuration mechanism for its parameters as well.

An existing object in the TELOS database should be set as the current object
each time QI starts. The sen (set current node) PQI command is used for that purpose.
Every query command is always applied on the current object. The answer of a query
command is stored to the current set of objects. It is also possible to have a query
command applied on every object existing in the current set of objects, which has
been created by a previous query command. The answer to a query can be viewed by
projecting the contents of the current set using special PQI projection commands.

Navigation through the objects, which exist in the TELOS database, is
possible by executing queries to the current object or to the current set of objects. The
results of the queries are stored in the current set of objects so the next queries might
be applied on these objects and so on. This is a technique that will be used by the
software reengineering mechanism, in order to navigate through the programs of a
software application and view their properties.

4.2.3 Description of Graphical Analysis Interface

The combination of the GAIN browser with QI provides a mechanism to
retrieve information from the SIS base and present it on the screen in two ways:
graphically or textually. The graphical presentation is implemented using the window
of the graphical subsystem of the GAIN browser, while the textual presentation is
implemented using a simple text screen.

Initially, when the GAIN browser is executed the window shown in Figure
4.2 appears on the screen. The window is divided into the following areas: a) The
menu bar, b) The query info area, c) The query results area, and d) The output
control area.

41

~ Semantic Index System

File Edit View Tree Views Queries Tools Window

Query Target

Text View Items: 0

Figure 4.2 - Initial window of the SIS GAIN browser.

The standard menu bar of the GAIN browser consists of seven drop-down
menus. The user can add menus or items to the standard menus of the menu bar by
creating special objects in the TELOS database that the GAIN browser connects to,
when it initializes. Table 4.6 describes the standard drop-down menus of the menu

bar of the GAIN browser.

Table 4.6 - The standard drop-down menus of the menu bar of the GAIN browser

File Includes the options that are used for file and program operations.
Edit Includes the options offering text operations in the query result area.
View Includes the options, which control the appearance of the user interface

and also settings, which affect the graph and text output.
Tree Views Includes the options that are used for controlling the display mode and

executing predefined recursive queries, which are displayed in

graphical mode.
Queries Includes the options that are used for executing predefined queries,

which are displayed in textual mode.
Tools Includes options that are used for communication with external tools.

Window Includes the options that give all the available output representations.

The query info area consists of six sub-areas: a) The query target text editor, b)

The exec button, c) The history button, d) The find button, e) The query type label,
and f) The items label. Table 4.7 describes the six sub-areas of the query info area of

the GAIN browser's initial window.

42

Table 4.7 - The six sub-areas of the query info area
Query text editor It is a single line text editor. It is used to display the object to

which a query is applied on.
Exec button It is used for executing the last graphical query type selection on

the object pointed by the query text editor.
History button It displays a popup frame, which is used for retrieving previous

query commands.
Find button It displays the Pattern Search Card, which is used to search a

pattern in the textual or graphical window.
Query type label It displays the current query type (textual or graphical).
Items label It displays the number of objects included in the answer set of
___________the query._______________________________

The query results area is used to display the objects included in the answer set
of the query. It can be scrolled left-right or up-down. The results of a textual query are
displayed using a scrollable text window, while the results of a graphical query are
displayed using a graphical subsystem, which is responsible for drawing the graphs.
The query results area can be toggled between the two display modes (textual and
graphical) without loosing its contents.

Finally, the output control area consists of just two buttons: Text and Graph.
The Text button is used to switch the display mode to text mode, while the Graph
button is used to switch the display mode to graph mode.

Initially, the GAIN browser connects automatically to a TELOS database. It
reads special environment variables, which instruct the GAIN browser which database
it should connect to and how to implement the connection. After it successfully
connects to the database, it reads from it special configuration parameters. Specific
database objects are used to configure the name and number of the menus in the menu
bar. The same mechanism is used to configure the names of the additional graphical
or textual queries in the corresponding menus and also describe these queries. It is
also possible to give a special name to the window of the GAIN browser using this
mechanism.

4.3 Design analysis

The design of the SIS setup, which will serve the needs of the proposed
software reengineering mechanism, is divided in two sections namely: a) GAIN
browser setup design and b) Database instance design. Since all the information
concerning the design and implementation of a software application is presented using
the GAIN browser, the design of the GAIN browser setup will occur first, aiming to
cover the specifications of the reengineering mechanism. The database instance
design follows, aiming to cover the demands of the GAIN browser setup design.

4.3.1 GAIN browser setup design

The GAIN browser includes two separate menus in its menu bar concerning
the database queries. These menus are the Queries menu and the Tree Views menu.
The Queries menu includes four text-view queries, as illustrated in Figure 4.3 that
provide special sets of objects, while the Tree Views menu includes ten graphical-

43

view queries, as illustrated in Figure 4.4 that can only be applied on the current
object.

; RMCobol

File Edit View Jjee Views

Query Target

Include Tree

Tools Window

Iff : List Source Files

;8 List Data Files

List All Programs

List Affecting Programs

Figure 4.3 - The queries menu of the GAIN browser

The Queries menu of the GAIN browser is shown in Figure 4.3. This menu
includes four text-view queries. The first query of the Queries menu is named List
Source Files and corresponds to the Source Code Organization Analysis section of
specifications. It lists all the text files, which include the source code of the software
application. The second query is named List Data Files and corresponds to the
Database Analysis section of specifications. It lists all the files that the software
application uses to store its data. This query uses the internal name that the
application uses in order to reference the datafile in order to represent the datafile in
the report. The third query is named List All Programs and it lists all the programs of
the software application. Beside each program, in a second column, appears the name
of the source file that the compiler is instructed to read first, in order to build the
program, which is also called the main source file of the program. The fourth query is
named List Affecting Programs and lists all the programs of the software application,
which affect at least one datafile and beside each program, in a second column,
appears the name of its main source file. The third and fourth queries correspond to
the Control Flow Analysis section of the specifications (see Chapter 3 -

Requirements and Specifications Analysis).

44

0e Edit View

Query Target ! AG

Queries

Star View

Classification Tree

Can Tree

Called By Tree

Both CaB Trees

Affect Tree

Affected By Tree

Both Affect Trees

!ne<ucte Tree

Included By Tree

Both Include Trees

Figure 4.4 - The tree views menu of the GAIN browser

The Tree Views menu of the GAIN browser is shown in Figure 4.4. This
menu includes ten graphical-view queries. Since these queries can only be applied on
the current object, the user must edit the name of an existing database object before
executing one of these queries. There are two ways to edit the name of an object in the
query text editor. The first is to simply type it, after clicking with the mouse in the
query text editor area of the GAIN browser. The second is to execute one of the text-
view queries and after the objects included in the result set of the query appear on the
screen, simply select one of those objects by clicking on it using the mouse.

The first query of the Tree Views menu is named Star View. This query
presents the current object and all the objects, which are related to it under any of its
attributes. The second query is named Call Tree. This query presents the current
object, which must be a COBOL program and all the COBOL programs, which are
called'by this program. It is a recursive query and thus it presents all the COBOL
programs, which are called by the programs, which are called by this program and so
on The third query is named Called By Tree. This query presents the current object,
which must be a COBOL program and all the COBOL programs, which call this
program It is a recursive query and thus it presents all the COBOL programs, which
call the programs, which call this program and so on. The fourth query is named Both
Call Trees and it provides the information that both the two previous queries provide
for the current object, which must also be a COBOL program. The fifth query is
named Affect Tree. This query provides the same information with the Call Tree query
and additionally for each COBOL program presents all the datafiles, which are
accessed by the program. The sixth query is named Affected By Tree This query
provides the same information with the Called By Tree query and additionally for
each COBOL program presents all the datafiles, which are accessed by the program.
The seventh query is named Both Affect Trees. This query provides the same

45

information with the Both Call Trees query and additionally for each COBOL
program presents all the datafiles, which are accessed by the program. The eighth
query is named Include Tree. This query presents the current object, which must be a
source file and all the source files, which the compiler is instructed to also read
(include) while reading this source file. It is a recursive query and thus it presents all
the source files, which are included by the source files, which are included by this
source file and so on. The ninth query is named Included By Tree. This query presents
the current object, which must be a source file and all the source files, which include
this source file. It is a recursive query and thus it presents all the source files, which
include the source files, which include this source file and so on. The tenth and final
query of the Tree Views menu is named Both Include Trees. This query provides the
information that both the two previous queries provide for the current object, which
must also be a source file.

Figure 4.5 shows an example of the graph, which is generated by the Star
View graphical query, applied on an individual object. The current object is
represented by a color box, which includes the name of the object. The attribute
objects, which are related to the current object, are also represented with a color box
and an arrow, starting from the current object and pointing to them. An attribute
object is always used in order to relate two individual objects. Thus, the individual
objects, which are related with the current object, are represented with a color box
and an arrow starting from the attribute object that implements the relation and
pointing to them.

In the special case that there are too many individual objects related under the
same attribute object to the current object, at the end of the arrow appears only one
color box including the word many and the name of the attribute object. Once this box
is clicked with the mouse, a separate window, which presents all the individual
objects related to the current object under this attribute object, appears on the screen.
This window is called Many List Card.

Once the user makes a click with the mouse on an individual object appearing
on the screen, this object becomes the current object and its name appears in the
query text editor. If the user makes a double-click on an individual object, this object
becomes the current object, appears in the query text editor and the last executed
graphical query is automatically executed again for this object.

46

File Edit View Tree Views Queries Tools Window

iduery Target JAGARSEE

Star View

figure 4.5 - A "Star View" graphical query example.

4.3.2 Database instance design

All the pieces of information extracted from the legacy application source
code are stored into the TELOS database in the form of objects. In this section the
design of a special model, which has been developed aiming to maintain and represent
the analysis of a COBOL software application, is presented. This model has the form
of a specially configured TELOS database instance. Individual objects represent the
components of the software application, such as source files and programs and
attribute objects represent their properties such as calls between programs and
database affects. Table 4.8 presents the classes of individual objects that have been
defined in the database. For each individual object, all the attribute objects, which
constitute its properties, are presented. Figure 4.6 provides a graphical representation
of those classes and Figures 4.7 - 4.11 show a representation of those objects
provided by the SIS.

All the software objects of the software application are grouped in to five
classes namely NodeType, SourceType, CobolData, CobolNode and SourceFile.
NodeType is a superclass of CobolNode and SourceType is a superclass of SourceFile
thus, CobolNode inherits the attributes of NodeType and SourceFile inherits the
attributes of SourceType.

NodeType is an instance of the Ml_Class built-in TELOS class and also a
superclass of the CobolNode class. Since it is possible to use more than one computer
language to implement a software application, the various programs of the application
should be categorized in more than one class, depending on the computer language
used to implement them. NodeType is a superclass of all the classes of programs of
the software application. NodeType has an attribute called Node_ref, which is a cyclic
relation to itself. This attribute is inherited to all the subclasses of NodeType.

47

Node_ref is used as a category of all the attributes that relate a program of the
software application with another program.

SourceType is an instance of the Ml_Class built-in TELOS class and also a
super class of the SourceFile class. Since many different computer languages may be
used in the development of a software application, as mentioned in the previous
paragraph, the various source files of the application should be categorized in more
than one class, depending on the computer language source code that they include.
SourceType contains all the classes of source files of the software application.
SourceType has an attribute called Sourcejref, which is a cyclic relation to itself. This
attribute is inherited to all the subclasses of SourceType. Source_ref is used as a
category of all the attributes that relate a source file of the software application with
another source file.

CobolData is an instance of the S_Class built-in TELOS class and contains all
the data files of the software application. The internal names that the software
application uses in order to access those data files are used in order to represent those
data files in the CobolData class. CobolData has two attributes namely affect and
select. Affect is used to relate the data file with all the programs of the software
application that access this data file. Select is used to relate the data file with all those
programs that define the structure of the data file in their main source file.

CobolNode is an instance of the S_Class built-in TELOS class and of the
NodeType class. It contains all the COBOL programs of the software application. The
internal names that the software application uses in order to refer to those programs
are used in order to represent them in the CobolNode class. CobolNode has six
attributes namely affect, call, include, name, select and source. The affect attribute
relates each program with all the data files that it accesses. The call attribute relates
each program with all the programs of the software application that it invokes at run
time. The include attribute relates each program with all the source files, except the
main source file of the program, that are used by the compiler in order to build the
program (COBOL COPY statements). The name attribute is the internal name that
COBOL demands to be defined for each program (COBOL Program Identification
Entry). The select attribute is used to relate each program with all the data files that
have their structure defined in the main source file of the program (COBOL SELECT
statements). Finally, the source attribute is used in order to relate each program with
its main source file.

SourceFile is an instance of the S_Class built-in TELOS class and of the
SourceType class. It contains all the source files of the software application, which
are regarded to be COBOL source files. The name of the source file that is used in
order to store the source file in the directory tree of the source code of the software
application is used to represent the source file in the SourceFile class. The SourceFile
class has three attributes namely contain, source and include. The contain attribute is
used to relate each source file with all the source files that the compiler is instructed to
read additionally while reading this source file and building a program. The source
attribute is used to relate each main source file of the software application with the
COBOL program that is built by it. The include attribute is used to relate each source
file with all the programs that use the source file in addition to their main source file.

48

Table 4.8 - TELOS individual objects and their attributes

SourceFile

TELOS
Superclasses
Ml Class

Object Name

NodeType

SourceType Ml_Class

CobolData S_Class

CobolNode S_Class,
NodeType

S_Class,
SourceType

Object Attributes

Node_ref (NodeType)

Source_ref (SourceType)

affect (CobolNode), select (CobolNode)

name (TelosjString), source (SourceFile), affect
(CobolData), select (CobolData), call
(CobolNode), include (SourceFile)

contain (SourceFile)

Figure 4.6 - A graphical representation of the TELOS database instance design

49

Oe !! Edit View Tree Views ''" Qcieries Tools Window "•'

Query Target JNodeType

:ar View

Figure 4.7 - SIS representation of the NodeType object class.

'%e Edit Vfew Tree

Query TargM jSourceTypej

;•• Star View

JBJ^j

Items: *

SourceTypec—•• source_ret .J-i aflribute 1-
-.S*»*K<W1S«W>^«B*<SK*; -^,t(-VW«SiW^«W^tSWK»'J .(tAvmmWHm'^iH^"

attribute)" ! source_ref|—•SourceTyj^

INSTANCE

Figure 4.8 - SIS representation of the SourceType object class.

50

: RMCobol
Fte Edit View Tree Views Queries Tgols Window

Query Target jCobolNode

Star View

Cobo»*>cleJ .noctej'et'.

INSTAI

Items:'

sourcej-
inductej-
affect^ —

sttribute '-^ si

"SourceFile!
-SourceFaef
-CoboCataf

node ref.; call —»CobolNode

Figure 4.9 - SIS representation of the CobolNode object class.

}Fte Ed* 5>§evv Xi Tree Views Queries Toote

Query Target

K.:: Star View

ode!—•>. affect •)

Kerns: '

±1

Figure 4.10 - SIS representation of the CobolData object class.

51

Qte Edit View IreeViewS Queries fools' \ynciow r ^ ' =

Query Target |sourceniej"

SourCeTyisS

He *• contain -i source ref

\.sotjrce , SourceFile,j jourcej-ef ,-i contain.:,—* Source

iCobolNode - include'% attribute%

INST/i

Figure 4.11 - SIS representation of the SourceFile object class.

4.4. Implementation Analysis

The implementation of both GAIN browser setup and database instance
structure is achieved by creating special objects and object attributes inside a TELOS
database instance. The source code of the transactions that create these objects is
stored in text files. TELOS reads those text files, commits the transactions and thus,
creates the objects in the database instance.

4.4.1 GAIN browser setup implementation

There are several objects that the GAIN browser must find in the TELOS
database when it initializes in order to setup its environment. It is outside the scope of
this document to describe all these objects and how they are created in the database
except from the Tree Views menu, the Queries menu and their contents. The tree
views menu includes ten queries namely Star View, Call Tree, Called By Tree, Both
Call Trees, Affect Tree, Affected By Tree, Both Affect Trees, Include Tree, Included By
Tree and Both Include Trees. Appendix 1 presents the transactions that define the
Tree Views menu, the queries in the Tree Views menu, the Queries menu and the
queries in the Queries menu into the database instance. Appendix 2 presents the
source code of the queries included in the Queries menu and Appendix 3 presents the
source code of the queries included in the Tree Views menu.

Whenever a query is selected for execution, the GAIN browser passes its
source code and if necessary the current object to QI. QI executes the specified query
and returns a set of objects to the GAIN browser. If the executed query is a graphical-
view query then the objects included in the resulting set represent software

52

components and attributes, which have the form of relations between the software
components of the resulting set. The GAIN browser displays all those objects of the
resulting set on the screen using its hypertext engine. If the executed query is a text-
view query then the objects included in the resulting set represent only software
components and are simply displayed on the screen using a text window.

4.4.2 Database instance implementation

The design of the database instance is implemented by executing a number of
TELOS transactions that create the software object classes and their attributes as
described in Table 4.8 inside a new TELOS database instance. The source code of
each of those transactions is presented in Appendix 4. NodeType and SourceType
object classes must be created first inside the TELOS database instance since they are
superclasses for the CobolNode and SourceFile object classes. All other object classes
may be defined without any special order.

4.4.3 Database instance creation procedure

The procedure followed in order to implement this particular SIS setup is
constituted of the seven steps presented in Table 4.9.

Table 4.9 - The procedures followed to create the TELOS database.
1. Set values to environment variables regarding general SIS configuration.

2. Set values to environment variables regarding special SIS configuration
concerning the specific database instance.

3. Assure that the database directory is empty.

4. Start the TELOS database.

5. Execute the transactions that create the objects concerning the GAIN browser
setup.

6. Execute the transactions that create the objects concerning the structure of the
database instance.

7. Execute the transactions that create the objects concerning the queries that the
GAIN browser will execute. _________

In step 1 some environment variables are evaluated to provide general
configuration values to SIS such as the name of the server in which SIS is running,
the top-level directory of the SIS engine and the directory of the SIS binaries. In step
2 some environment variables are evaluated to provide configuration values to SIS
concerning the TCP port that the database server will listen to, the directory of the
database files and the name of the application that the database is serving. In step 3
the contents of the directory that includes the database files are erased in order to
create new and empty database files when the database engine starts. In step 4 the
database server starts executing and initially it creates an empty database. In step 5 a
special program, which is called TELOS parser, reads the source files that include the

53

RETELL statements shown in Appendices 1-3 and creates the database objects that
configure the GAIN browser. In steps 6 and 7 the same procedure if followed in order
to create the database objects concerning the structure of the database instance and the
queries that the GAIN browser will execute.

54

A formal mechanism for analysis and re-
implementation of legacy programs

Chapter 5

Design and Implementation Analysis of the COBOL Parser

5.1 Introduction

The formal mechanism for analysis and re-implementation of legacy
programs, which is presented in this thesis, is divided in three main parts as shown in
Figure 4.1 in Chapter 4. The design and implementation analysis of the SIS setup
has already been presented in Chapter 4. In this chapter the design and
implementation analysis of the source code parser is presented. Even though the
source code scanning phase belongs in the first part of the software analysis
procedure, the design and implementation analysis of the SIS setup is presented first
and the design and implementation analysis of the source code parser follows. It is
necessary to follow this order because the model, which is used in order to represent
the analysis of each software application, has the form of a specially configured
TELOS database instance. The source code parser must follow this model and
produce the appropriate output that is necessary to store the information derived from
the source code into the specially configured TELOS database instance. Thus, the
source code parser must be designed and implemented according to the TELOS
database instance specifics.

This formal mechanism has been designed and implemented to be capable of
analyzing software applications regardless of the computer language used for their
development. Nevertheless, for each computer language used, integration is necessary
in order to implement the setup of the tools that will scan the source code and
maintain the information derived (parser and database instance). In this thesis a
software reengineering mechanism will be developed, which will be capable to
analyze legacy software applications developed using RM/COBOL-85 and thus the
source code parser will also be referred to as COBOL parser.

5.2 Presentation of tools

The COBOL parser has been developed in a Unix operating system
environment. The main computer language used in its development is the AWK
pattern scanning and processing language (see Appendix 5). AWK has been chosen
since it is a very powerful filtering language. Its ability in filtering text files,
recognizing multiple patterns and formatting the output text, which is the result of the
filtering process, are the main reasons for the selection of AWK among other
computer languages. The simple and powerful mechanism of the AWK language,
regarding the scanning of text files, is used in order to scan the source files of the old
software application. The powerful mechanism of the AWK language, regarding the
pattern recognition inside text files, is used in order to identify the COBOL statements

55

that include the necessary pieces of information, which will be stored into the TELOS
database instance in the form of software objects and attributes. In addition, the
powerful mechanism of the AWK language regarding the formatting of text is utilized
for the creation of the TELOS statements that constitute the TELOS transaction,
which will store the pieces of information of the old software application into the
properly designed TELOS database instance. Many other computer languages, such as
C++, could be used for the development of the COBOL parser, but the mentioned
features of AWK should be implemented as separate routines in that case.

The programs that have not been developed using AWK are script programs
that have been developed using the bash (Bourne Again Shell) Unix shell
environment and some Unix native tools such as sort and grep.

A shareware distribution of RedHat Linux-6.1 has been used for the
development of the COBOL parser. This distribution includes the GNU Project
versions of AWK, bash, sort and grep*.

5.3 Design analysis of the COBOL Parser

The COBOL parser is a program that works as a mini compiler of the source
code, which was used to build the old software application. The COBOL parser is
able to read the source code line by line, is able of understanding some of the
RM/COBOL-85 statements and for each statement can recognize some of its
operands. According to the specifications that have been outlined for this software
reengineering mechanism a small number of RM/COBOL-85 statements have been
identified that include the necessary information concerning the implementation and
design of the software application (see Table 5.2).

5.3.1 The COBOL Parser segments

All the files that constitute the COBOL parser lie in a separate directory tree.
The COBOL parser is constituted of five segments namely: awk, bin, log, tls and tmp.
The awk segment of the COBOL parser contains the AWK pattern scanning and
processing language programs. All the programs that are used to scan line by line the
source code of the old software application have been implemented using AWK.
These programs are not directly executable by the operating system but the AWK run­
time system is needed in order to read these source files and execute the programs.
The bin segment contains all the executable programs of the COBOL parser. The log
segment contains all the log files that the COBOL parser generates at execution time.
The tls segment contains all the TELOS source files that are generated while scanning
the source code. Finally, the tmp segment contains all the temporary information that
the COBOL parser needs while scanning the source code.

There is a separate directory inside the top-level directory of the COBOL
parser for each segment. The awk directory contains the text files that include the
source code of the AWK programs. The bin directory contains the text files that
include the source code of the bash (Bourne Again Shell) script programs of the
COBOL parser. The log directory contains the log files that are generated during the
scanning procedure of the applications source code. The tls directory contains the

* The GNU Project offers free, open source software. More information can be found in the location

http://www.gna.org

56

resulting TELOS source files that constitute the TELOS transaction, which includes
all the pieces of information gathered by the parser from the source code of the
software application. Finally, the tmp directory contains temporary files that the
COBOL parser generates while executed. The top-level directory tree can be
anywhere in the filesystem. The names of the files included in each directory are

presented in Table 5.1. Appendix 6 provides a detailed description of each of the
files referred in Table 5.1.

Table 5.1 - The contents of the top-level directory of the COBOL parser

Directory .
name Flles contamed

awk Attributes.awk, CobolData.awk, CobolNode.awk, SourceFile.awk,
SourceFileName.awk, checktls.awk, make-dependencies.awk

bin CreateSisTransaction, find-Attributes, find-CobolData, find-CobolNode,
find-SourceFile, loginit, parser, tlsinit, tmpinit

log CheckDuplicates.log, attributes.log, coboldata.log, cobolnode.log
tls 1-SourceFile.tls, 2-CobolData.tls, 3-CobolNode.tls, 4-Attributes.tls,

application-structure.tls
tmp CobolData.tmp, CobolNode.tmp, SourceFile.tmp, coboldata.tmp,
_______cobolnode.tmp, sourcefile.tmp, srcfilenames.tmp______________

5.3.2 The COBOL Parser phases

The presentation and analysis of the control flow of a software application
always provides critical information about its structure and design. Nevertheless, one
of the aims of this software reengineering effort is to provide information regarding
the control flow of a software application. Figure 5.1 provides the control flow of the
COBOL parser. It presents the phases of the COBOL parser and the programs that
constitute each phase. It also presents the order that these programs are invoked while
the COBOL parser is executed. This is a higher-level control flow presentation since
it does not present the control flow of each of the programs that constitute each phase.
All these programs are analyzed in this chapter and a control flow chart is provided,
whenever it is necessary. In addition, Appendix 6 provides a description of each of

these programs and can be used as a quick reference.
Figure 5.1 shows that the COBOL parser consists of three phases. These are

namely Initialization, Application Scanning, and Final Merging phase. The
application scanning phase is the main phase of the COBOL parser and is divided in
two sub-phases. These are namely Filesystem Scanning and Source Code Scanning
phase. Although Figure 5.1 presents all these phases as separate phases, information

is exchanged among them using parameter values and temporary files.

During the initialization phase the COBOL parser sets up the environment and
the workspace which will be used by the processes that take place in the phases that
will follow This includes information such as: the filesystem location where the
COBOL parser has been installed, the filesystem location where the source code of

the application, which is about to be scanned, lies and the cleanup of the temporary

space.

57

The application scanning phase is the main phase of the COBOL parser. It is
divided in two sub-phases, as shown in Figure 5.1, which are: the filesystem scanning
phase and the source code scanning phase. In the filesystem scanning phase the
COBOL parser scans the directory tree of the source code of the old application to
locate all the source files. After the end of this phase the TELOS statements that
define the corresponding SourceFile objects in the TELOS database are created and
stored in a separate text file. Some temporary files are also created in order to pass
information, which was found while scanning the directory tree, to the next phase of
the COBOL parser, which is the source code scanning phase. In the source code
scanning phase the parser scans each file that contains source code line by line three
times. The first time the parser scans each sourcefile searching for the data files that
the software application uses to store its data, locates the CobolData objects and
creates the TELOS statements that define the corresponding CobolData objects in the
TELOS database instance. The second time the parser scans each sourcefile searching
for the programs of the software application, locates the CobolNode objects and
creates the TELOS statements that define the corresponding CobolNode objects in the
TELOS database instance. The third time the parser scans each source file searching
for the attributes of each CobolNode and SourceFile object and creates the TELOS
statements that redefine the corresponding CobolNode and SourceFile objects
together with all their attributes in the TELOS database instance.

The final merging phase merges the output that the previous phases have
stored in text files while scanning the software application in one file. This file is then
filled with some statements of the TELOS Data Entry Language in order to take the
final form of a transaction that will be used to store the software objects in the
specially designed TELOS database instance.

58

Figure 5.1 - Control flow of the COBOL parser

59

5.4. Implementation analysis of the COBOL Parser

5.4.1 The initialization phase

The initialization phase of the COBOL parser begins as soon as the parser
starts to execute. Initially the parser gives standard values to its variables PATH and
PARSERHOME. The PATH variable is used for the location of the executable files.
This variable is inherited from the operating system environment and the "." directory
is appended to it. The PARSERHOME variable has the value of the top-level
directory of the parser directory tree. The parser prompts the user to enter the value of
the cobolroot variable. This variable declares the top-level directory of the directory
tree that the source code of the software application resides. All other subdirectories
that might exist below this directory are also supposed to contain source files of the
software application.

The first program that the parser invokes during the initialization phase is the
tmpinit. This program initializes the workspace where the temporary files reside. The
temporary files are created from the parser and used during the source code parsing
procedure. The procedure of initializing the temporary space of the COBOL parser
includes the removal of any old temporary files that might exist in the temporary
workspace area. It also includes the initialization of all the temporary files (see
Appendix 6) that will be used while the parser is executed.

The second program that the parser invokes during the initialization phase is
the tlsinit. This program initializes the workspace where the TELOS files reside. This
workspace area is also called the output area of the COBOL parser since it contains
the files, which are assumed to be the output of the COBOL parser. These files are
created while scanning the source code of the old software application. This
initialization procedure includes the removal of any old TELOS files that might exist
in the output workspace area of the parser. It also includes the initialization of all the
TELOS files (see Appendix 6) that will be generated while the parser is executed.

Finally, the third program that the parser invokes during this phase is the
loginit. This program initializes the workspace where the log files reside. The log files
are generated during the software application parsing procedure. This workspace area
is also called the logging area of the COBOL parser. This initialization procedure
includes the removal of any old log files that might exist in the logging workspace
area of the parser. It also includes the initialization of all the log files (see Appendix
6) that will be generated while the parser is executed.

5.4.2 The filesystem scanning phase

The filesystem scanning phase together with the source code scanning phase
constitute the application scanning phase, which is the main part of the COBOL
parser. The software tools that are used in this phase are the AWK pattern scanning
and processing language together with a few other (mainly Unix) utilities such as grep

and sort.
The only program that the COBOL parser invokes entering this phase is the

find-SourceFile program. The parser invokes this program passing the top-level
directory of the source code directory tree of the application as a parameter. At this
point the procedure of locating all the source code files that constitute the software

60

application (that the parser aims to analyze) starts. The filenames of the source code
files are stored in the srcfilenames.tmp temporary file in a full path form.

After the location of all the source files, which constitute the software
application, the COBOL parser creates the SourceFile.tls file. The SourceFile.tls file
is a text file that contains all the TELOS statements that define the SourceFile
individual objects into the TELOS database instance. The COBOL parser creates this
file by reading the srcfilenames.tmp temporary file and using the AWK pattern
scanning and processing language. The name that is used to store the source file in the
filesystem is also used to represent the source file in the TELOS database instance.

The temporary file srcfilenames.tmp contains the names of the source files in a
full-path form. The SourceFile.awk AWK program reads each line of the
srcfilenames.tmp temporary file, discards the preceding directory names, which are
separated by the "/" character and keeps the final name which is the name of the
source file. The TELOS statement that is generated in order to define the SourceFile
individual objects in the TELOS database instance has the form:

For each SourceFile individual object found by the parser a separate statement
of the previous form is appended in the SourceFile.tls file.

61

the previofisiiriiesa$<a
SourceFile object in the TELOS

database ,a4id,aDDeiid it to the

Figure 5.2 - Control flow of the find-SourceFile program

5.4.3 The Source Code Scanning Phase

The second part of the Application Scanning Phase is the Source Code
Scanning Phase (see Figure 5.1). During this phase the parser scans the source code
of the application line by line three times. The first time that the parser scans the
source code it searches for CobolNode individual objects. The second time that the
parser scans the source code of the application it searches for the CobolData
individual objects. Finally, the third time that the parser scans the source code of the
application it redefines the CobolNode and SourceFile individual objects and all of
their attributes. The reason why the CobolNode and SourceFile individual objects are
initially defined into the TELOS database instance without any attributes is that the
object attributes are implemented inside TELOS in the form of relations to other
objects. If a relation between two database objects is defined and one of the related
objects does not exist into the database instance then the transaction gets discarded.
As a result all the database objects are defined initially without any attributes and then
a redefinition of them together with all of their attributes occurs.

62

The find-CobolNode program is the first program that the COBOL parser
invokes during the source code scanning phase. The find-CobolNode program scans
line by line the srcfilenames.tmp file and for each entry invokes the CobolNode.awk
AWK program to scan line by line corresponding source file to determine whether
this source file is the main source file of a program of the old software application.
Each main source file of a program contains a PROGRAM-ED paragraph. The internal
name of the COBOL program is defined in the PROGRAM-ED paragraph and if that
paragraph is present in the source file then it is a main source file of a program. If the
source file is identified as a main source file of a program then the find-CobolNode
program creates a TELOS statement that has the following form:

The previous TELOS statement defines the corresponding CobolNode object
into the TELOS database instance. The find-CobolNode program appends the
statement in the CobolNode.tmp temporary file. The name that is used in order to
define the CobolNode object into the TELOS database instance is the same as the
name of the corresponding SourceFile individual object but without any ".cbl" or
".CBL" extensions. After all the source files have been scanned then the
CobolNode.tmp temporary file is checked against the possibility to contain duplicate
entries. If duplicate entries are found then only one of them is kept and the fact is
logged into the CheckDuplicates.log log file. Then the CobolNode.tls text file is
created with the same contents with the CobolNode.tmp temporary file but without
any duplicate entries. All other error messages that may be produced while the find-
CobolNode program is executed are logged into the cobolnode.log log file.

While analyzing the procedure of computing the TELOS statement shown
above it is easy to see why it is possible to have duplicate lines in the CobolNode.tmp
temporary file. The name of each source file of the application is stored in the
srcfilenames.tmp temporary file in a full path form. While computing the TELOS
statement that defines the name of the source file as a CobolNode in the TELOS
database the preceding directory names are discarded. It is possible though to have
two different files, located in different directories, sharing the same filename.
Although it is not a good practice to have two programs sharing the same name while
located in different directories, this fact has to be faced by the COBOL parser.

63

program passing the name ot

!obolNode.awk program to tn

in rherkDuplicates.log and droo

Figure 5.3 - Control flow of the find-CobolNode program.

64

that defines this programasa

Figure 5.4 - Control flow of the CobolNode.awk AWK program.

65

The second program the COBOL parser invokes in the source code scanning
phase is the find-CobolData program. This program reads line by line the
srcfilenames.tmp temporary file and for each entry in this temporary file it executes
the CobolData.awk AWK program passing the name of the source file to be scanned
as a parameter to it.

The CobolData.awk AWK program reads line by line the file indicated by the
find-CobolData executable in search for SELECT statements. The SELECT statement
defines the structure of a COBOL data file. This statement links the filename of the
data file in the filesystem with an internal name that is used whenever this data file is
referenced from within the COBOL application. The name, which COBOL uses
internally to reference the data file, is also used to identify this data file inside the
TELOS database. The CobolData.awk AWK program understands the syntax of the
COBOL SELECT statements and identifies the data files defined with these
statements. For each SELECT statement found in the source file a RETELL statement
is produced that has the following form:

The previous RETELL statement defines the <data file> as a CobolData object
in the TELOS database instance. Figure 5.5 presents the control flow of the find-
CobolData executable including the CobolData.awk AWK program.

66

am passing the name of
? --.--^'<s.W- • ;..; v-v . v •*;-, \ - ;.: :; •

ciata file as a CobolData object in the
TELOS .databasejmd put it in the
^.-rfi^&-!^:',.<^' : '&^.-^.&%^'i ^£^:.»~&:,\^

67

.;"!----<-, » -f*-' l.*r*t*-^-K-WP/-t --i~V" •'-"''-'' '•» '*--r'»^S^"-'^f *"" '•'''-•?•' ;:S^

m CMcJcDup1icates.log an

Figure 5.5 - Control flow of the find-CobolData program.

The last program that the COBOL parser invokes during the application
scanning phase is the find-Attributes program. This program scans every source file
of the application line by line and if the scanned source file is the main source file of a
program of the software application then it redefines the corresponding CobolNode
individual object together with all of its attributes. If the source file includes attributes
regarding the corresponding SourceFile individual object then the find-Attributes
program redefines the corresponding SourceFile individual object with all of its
attributes. All the attributes that a CobolNode individual object might have are name,
include, call, affect and select. The only attribute that a SourceFile individual object
might have is contain. Table 5.2 provides the COBOL statements that assign the
attributes to the CobolNode individual objects*.

* For a complete description of the COBOL statements referred in the above Table see RM/COBOL-85
Reference Manual.

68

Table 5.2 - The COBOL statements that assign attributes to the CobolNode objects

Attribute Description
Name This attribute is defined by the Program-Id COBOL paragraph, which

defines the internal name of the COBOL program.

Include The COBOL COPY statement defines this attribute. COBOL uses the
COPY statement to include in the program source code that is located
in another source file indicated by the operands that follow the COPY
statement.

Call The COBOL CALL statement defines this attribute. COBOL uses the
CALL statement to invoke other programs during run-time.

Affect The COBOL OPEN statement defines this attribute. COBOL uses the
OPEN statement to affect (read, write or append) a data file.

Select The COBOL SELECT clause defines this attribute. COBOL uses the
SELECT clause to define the attributes (such as the internal name,
location in the filesystem etc) of a data file.

By the time the find-Attributes program is invoked, it creates two temporary
files. The first temporary file created is named cobolnode.tmp. This file is created by
reading the CobolNode.tls file line by line and dropping just the names of the
CobolNode objects, which are defined by the RETELL statements included in the
CobolNode.tls file, in it. The temporary file created next is named coboldata.tmp.
This file is created by reading the CobolData.tls file line by line and dropping just the
names of the CobolData objects, which are defined by the RETELL statements
included in the CobolData.tls file, in it. As a result these two temporary files contain
only the names of the CobolNode and CobolData individual objects identified so far
by the Cobol parser.

These temporary files are created for data integrity reasons. Whenever an
attribute is defined, the TELOS database checks the types of the related objects. If the
types don't match the transaction, which defines the relation, gets discarded. For
example whenever an affect relation is defined, TELOS expects it to be between a
CobolNode and a CobolData object. So if an OPEN statement is found while scanning
the source code the names of the files referred by the OPEN statement have to be
validated within the names of the CobolData objects defined so far. If no match is
found then the relation is not defined and a log entry is entered in the coboldata.log
log file. This is a necessary validation check mainly because a lot more than one
attribute or software object is defined per transaction. In fact, the definition into the
TELOS database of all the software objects and attributes, which were identified
while scanning the software application, occurs in just one transaction. As a result, the
definition of even one attribute, referring to non-existing object, will destroy the
whole application parsing process!

69

For each program of the old software application, which has previously been
defined as a CobolNode object, the find-Attributes program creates a RETELL
statement of the following form:

Table 5.3 - Inside the RETELL statement every keyword in the right of a with
keyword represents the kind of the relations that follow (see Table 5.2).

The find-Attributes program uses the Attributes.awk AWK program to scan
each source file. The Attributes.awk AWK program is invoked with the name of the
source file to be scanned as a parameter. Before the Attributes.awk AWK program
starts scanning the source file reading it line by line, it gets into an initialization
phase. This phase divided in two parts, which are namely the variable initialization
part and the Junction definition part.

All the variables that will be used during the scanning process are initialized
with desirable values. Although the AWK programming language does not require the
initialization or declaration of all variables in a certain part of the program, such as
COBOL does, this initialization occurs in this program to make it easier to understand
whenever someone reads its source code and for structural reasons. Appendix 7
describes the usage of each variable inside the Attributes.awk AWK program, while
Appendix 8 describes its functions.

70

After the variable initialization and function declaration the Attributes.awk
AWK program starts reading the source file line by line in search of attributes for the
corresponding CobolNode or SourceFile individual objects. The first check in the
loop procedure for the current line identifies whether the line continues an OPEN
statement, found earlier in a previously scanned line. Normally, every COBOL
statement ends with a trailing "." character. It is possible though for the "." character
not to be used in the end of a COBOL statement, for example whenever this statement
is inside an IF statement. In this case some operands of the OPEN statement, which
indicate CobolData objects, may be continued in the next line. The read_opens
Boolean variable is used to indicate such a case. Whenever a line starting with an
OPEN statement is found it is checked against the possibility to end with the "."
character. If this happens then this variable is set to the FALSE value, indicating that
the next line is not a part of the current OPEN statement. If no "." character is found
in the end of the line this variable is set to the TRUE value indicating that the next
line is possibly continuing the OPEN statement. When the next line is read and the
read_opens variable is TRUE then the line is checked against the possibility to start
with a valid COBOL statement. If yes, this is the case that the previous OPEN
statement finished in the previous line without a trailing "." character. In this case the
value of the read_opens variable is turned to FALSE and the scanning process
continues. If not then the Attributes.awk program regards that the words that belong
in this line are CobolData objects defined by the OPEN statement of a previous line
and it continues with the declaration of the corresponding affect relations inside the
RETELL statement.

Before a word of the line is finally identified as a CobolData object, a number
of checks take place to validate the identification. First, the word is checked against
the possibility to be a phrase of the OPEN statement such as input, output and io. If so
the word is discarded. Next, the word is checked against the possibility not to be one
of the CobolData objects identified in previous phases, which are included in the
coboldata.tmp temporary file. If the word is not included in the coboldata.tmp
temporary file, it also gets discarded. Finally, the word is checked to find out whether
the same CobolData object has also been defined earlier, while scanning this source
file. This can happen by a previously found OPEN statement. It is not desirable to
define the same affect relation more than one time although it is absolutely normal for
a COBOL program to open many times, using more than one time the OPEN
statement, the same data file. If no one of the three above cases happens then the word
is regarded to be a valid CobolData object and the affect attribute of the
corresponding CobolNode object is updated to include the specified value.

Next, the line is filtered to determine if the PROGRAM-ID paragraph is
defined in it. If it is, then the name attribute of the corresponding CobolNode object is
updated to include the specified value.

Next, the line is checked against the possibility to begin with a COPY
statement. If the line starts with a COPY statement then the word following the COPY
statement is compared with the names of the valid SourceFile objects, which have
been stored into the sourcefile.tmp temporary file. If it is a valid SourceFile object
then the include attribute of the corresponding CobolNode object and the contain
attribute of the corresponding SourceFile object are updated to include the specified
value. If the word is not a valid SourceFile object, it gets discarded.

Next, the line is filtered in search for a CALL statement in the beginning of it.
In this case the word following the CALL statement is compared with the valid

71

CobolNode objects, which have been stored into the cobolnode.tmp temporary file. If
the word is identified between the valid CobolNode objects, then the call attribute of
the corresponding CobolNode object is updated to include the specified value.

Next, the line is filtered in search for an OPEN statement in the beginning of
it. In this case the same procedure that has been described earlier for the definition of
an affect relation is also used here to define the affect relations indicated by the OPEN
statement. After their definition, the "." character is sought in the end of the current
line. If the "." character is found then the read_opens variable gets the FALSE value
indicating that the next line of the source file does not append the OPEN statement
found in the current line. Otherwise, the read_opens variable gets the TRUE value
indicating the possible continuation of the current OPEN statement in the next line.

Finally, the line is checked in search for a SELECT statement in the beginning
of the line. In this case the word following the SELECT statement is checked against
the valid CobolData objects the names of which have already been stored into the
coboldata.tmp temporary file. If the word represents a valid CobolData object, then
the select attribute of the corresponding CobolNode object is updated to include the
corresponding value. This is the last examination of a line. After it has finished a new
loop starts examining the next line of the source file.

After the last line of the source file has been examined the Attributes.awk
program examines if the source file is the main source file of a program of the
software application. If it is, then the RETELL statement that redefines the
corresponding CobolNode object together with all of its attributes into the TELOS
database instance is printed in the standard output. In addition the Attributes.awk
program examines whether any attributes of the corresponding SourceFile object have
been identified during the parsing procedure and. In this case the RETELL statement
that redefines the corresponding SourceFile object together with all of its attributes
into the TELOS database instance is printed in the standard output. The find-
Attributes program redirects the standard output of the Attributes.awk program into
the Attributes.tls file.

It has to be mentioned that during the source code parsing procedure the
CobolData objects are not directly assigned any attributes. Only the CobolNode
objects are assigned attributes referring to CobolData objects. The CobolData objects
just inherit these attributes from the CobolNode objects.

72

INode object defined in

IData object defined in
'£ the line and append it

Figure 5.6 - Control flow of the find-Attributes program.

73

74

75

Figure 5.7 - Control flow of the Attributes.awk AWK program.

76

5.4.4 The final merging phase

The final merging phase is the last phase of the COBOL parser. It includes
only one program named CreateSisTransaction. This program creates the application-
structure.tls file, which includes the TELOS transaction that will define all the
software objects and attributes, which have been found while scanning the source
code of the old software application, into the properly designed TELOS database
instance.

The CreateSisTransaction program implements six tasks. In the first task it
appends a line including the BEGINTRANSACTION instruction of TELOS into the
application-structure.tls file. In the second task it appends the contents of the
SourceFile.tls file into the application-structure.tls file. In the third task it appends the
contents of the CobolNode.tls file into the application-structure.tls file. In the fourth
task it appends the contents of the CobolData.tls file into the application-structure.tls
file. In the fifth task it appends the contents of the Attributes.tls file into the
application-structure.tls file. Finally, in the sixth task the CreateSisTransaction
program appends a line including the ENDTRANS ACTION instruction of TELOS
into the application-structure.tls file and exits.

After the completion of the CreateSisTransaction program the COBOL parser
displays a message on the screen informing the user for the location of the
application-structure.tls file and exits.

77

A formal mechanism for analysis and re-
implementation of legacy programs

Chapter 6

Application and Testing of the Software Reengineering
Mechanism

6.1 Introduction

The formal mechanism for analysis and re-implementation of legacy
programs is divided in three main parts as illustrated in Figure 4.1 in Chapter 4. The
subject of this chapter is to apply the software reengineering mechanism in a real
software system and test its results. A large software application, which is consisted
of approximately 650000 lines of source code, will be used as a pilot in order to test
the efficiency of this formal software reengineering mechanism. The information that
this mechanism will present concerning the design and implementation of this specific
legacy software application will be compared against the specifications that have been
set for this software reengineering mechanism. The information, which is presented in
this chapter regarding the XPERT Hotel software system, is brief and only for the
purposes of testing the software reengineering mechanism. A more detailed analysis
of XPERT Hotel takes place in Chapter 7.

6.2 Application

The application of the software reengineering mechanism on the legacy
software application is implemented in three stages as shown in Figure 4.1. Initially,
the COBOL parser scans the source code of the legacy software application and
extracts useful pieces of information concerning its design and implementation. Next,
this information is stored in a specially designed TELOS database instance. Finally,
the SIS GAIN browser is used in order to present the information concerning the
implementation and design of the legacy software application, which has been stored
into the TELOS database.

6.2.1 The source code parsing procedure

The name of the legacy software application that will be analyzed is XPERT
HOTEL. This software application manages the repositories and the financial issues
regarding the supplies of a hotel. The source code of this software application is
spread in three directories. The top directory of the directory tree of the source code is
named src and contains 2349 source files. A separate directory named dvp lies below
the top-level directory and contains only one subdirectory named ken400, which
contains 202 source files. All the source files contain approximately 650000 lines of
source code.

78

Initially, the COBOL parser prompts the user to enter the top-level directory
of the directory tree of the software application. Then the parser scans all the source
files of the software application, identifies the software objects and their attributes and
creates the TELOS statements that will define those objects together with their
attributes in the specially designed TELOS database instance. The parser exits
informing the user for the location of the application-structure.tls file, which is a text
file that contains all the TELOS statements created by the parser. The application-
structure.tls file that the parser created for the XPERT HOTEL application contains
6309 TELOS statements.

After the completion of the source code parsing procedure of the XPERT
HOTEL application, the log files that the COBOL parser has created are examined.
The coboldata.log and cobolnode.log files only mention that the COBOL parser could
not open three files for scanning, which are namely hotelsrc, dvp and ken400. This
information is expected since these files are the three directories, which include the
source files of the XPERT application and not regular text files. The same information
is included in the attributes.log file. Additionally, the attributes.log file mentions
repeatedly (seven entries) that the PRG(WHAT-WAY string could not be located in
the contents of the cobolnode.tmp temporary file and that the command that tried to
locate the string exited with error. The error is justified by the fact that the COBOL
parser uses the grep Unix command to identify the cobolnode objects within the
cobolnode.tmp file and that this command handles parenthesis as a special character
inside the string that is to be matched and thus exits with an error code. Finally, the
CheckDuplicates.log file indicates that seventeen duplicate source files, seven of
which are main source files, have been identified while locating the source files of the
legacy software application. Obviously these source files reside both in the hotelsrc
and ken400 directories. The CheckDuplicates.log file also indicates that there are 632
duplicate definitions of the data files of the software application!

All this information that has been logged while scanning the source code
provides helpful hints while analyzing the implementation and design of the software
application. For the XPERT HOTEL application the coboldata.log and cobolnode.log
files do not contain information that must be analyzed furthermore. The attributes.log
file includes some hints that should be analyzed, while the CheckDuplicates.log file
offers information that should be carefully studied while analyzing the software
application. The information included in the log files will be examined in detail in the
next chapter while analyzing the XPERT HOTEL software application.

6.2.2 Information storage into the TELOS database instance

In order to store the software objects that the COBOL parser has identified
regarding the legacy software application, it is necessary to create a new and empty
TELOS database instance. After its creation this database instance is specially
configured for the needs of the software reengineering mechanism. Finally, the
software objects that the COBOL parser has identified together with their attributes
are stored in this database instance.

In order to create a new and empty TELOS database instance all the contents
of the data directory of the TELOS database engine are deleted when the database
engine is inactive. When the database engine initializes, it checks the contents of its
data directory and creates a new and empty database instance if this directory is found
empty.

79

After the new TELOS database instance is created, it is configured specially
for the needs of this software reengineering mechanism by creating special objects
that define the structure of the database instance. For the definition of the structure of
the database instance, initially, the TELOS parser executes the TELOS statements that
create the objects that configure the menus of the GAIN browser. Next, the TELOS
parser executes the TELOS statements that create the classes of the software objects
and their attributes. Finally, the TELOS parser executes the TELOS statements that
create the objects that define the queries that the GAIN browser is able to execute.
This procedure is described in detail in Chapter 5.

After the new TELOS database instance is created and configured, the TELOS
parser reads the application-structure.tls file and executes the 6309 TELOS statements
that the COBOL parser has created, while scanning the source code of the software
application. After the execution of all these TELOS statements, all the software
objects that the COBOL parser has identified, regarding the old software application,
together with their attributes have been defined into the specially designed TELOS
database instance. Appendix 9 describes the programs, the batch files and the order
they are executed, in order to accomplish the described procedure.

6.2.3 Presentation of the information using the SIS GAIN browser

The third and final part of this software reengineering mechanism includes the
presentation of the information, regarding the design and implementation of the
legacy software application. The presentation of the information is accomplished
using the GAIN browser in cooperation with the TELOS database instance. First, the
TELOS database instance starts executing and waits for query transactions. Then the
GAIN browser starts executing, connects to the database instance and waits for the
user to trigger the available queries. Appendix 10 describes the programs, the batch
files and the order they are executed, in order to start the TELOS database instance
and the GAIN browser.

The four text view queries of the GAIN browser provide general information
regarding the software components (source files, programs and data files), which
apart the XPERT HOTEL application (see Chapter 4 named "Design and
Implementation Analysis of the SIS Setup"). After the identification of all the
software components it is easy to concentrate on each of those components and get
information regarding their properties using the graphical view queries of the GAIN
browser.

The first text view query in the Queries menu of the GAIN browser is named
List Source Files. This query reports the names of 2537 source files that constitute the
XPERT HOTEL application. In section 2.1 of this document is mentioned that the
XPERT HOTEL application is constituted by 2349 source files in the hotelsrc
directory and 202 source files in the ken400 directory. In section 2.2 of this document
is mentioned that there are 17 duplicate source files that reside in both hotelsrc and
ken400 directories of the XPERT HOTEL application. As a result the GAIN browser
should report 2349 + 202 - 17 = 2534 source files. Examining the names of the source
files, which are reported by the GAIN browser, it is observed that the names of the
hotelsrc, dvp and ken400 directories are included in the report. This fact justifies the
resulting summary of 2537 source files. Nevertheless, it is not necessary and maybe
not right to include the names of the directories of the source code of a software
application in the report of its source files. This can be one of the future
improvements of the COBOL parser.

80

The second text view query in the Queries menu of the GAIN browser is
named List Data Files. This query reports the names of 288 data files that constitute
the database of the XPERT HOTEL application. In section 2.1 of this document is
mentioned that there are 632 duplicate definitions of the datafiles of the XPERT
HOTEL application. Comparing these two numbers it is easy to see that many data
files have duplicate definitions throughout the source code of the XPERT HOTEL
application. This fact leads in the examination of those definitions in search for
possible errors as long as enhancements of the source code of this software
application.

The third text view query is named List All Programs. This query reports that
1155 programs constitute the XPERT HOTEL application. The comparison of the
number of programs with the number of source files, which is 2534, provides a clue
concerning the organization of the source code of the application. Since the number of
source files is more than twice the number of programs, it is assumed that some pieces
of source code that are identical among different programs have been isolated in
separate source files. Nevertheless, it has already been observed that many data files
have duplicate definitions throughout the source code. These duplicate definitions
should also be isolated in separate text files in order to minimize structural database
problems and errors. As a result, it is expected that the source code of the XPERT
HOTEL application is not very well organized. Some of the identical source code
pieces may be isolated in separate source files, while other pieces of source code that
should be identical are located in more than one source files, increasing the possibility
of a logical or implementation error.

The fourth text view query is named List Affecting Programs. This query
reports that 967 of the 1155 programs that constitute the XPERT HOTEL application
affect the contents of at least one datafile. The fact that approximately 84% of the
complete set of programs affect at least one datafile identifies that the XPERT
HOTEL application is mainly a data processing application. As a result, the process of
the analysis regarding the implementation and design of the XPERT HOTEL
application should concentrate in the analysis of the database of the application and
the data flow within each program rather than the control flow of each program
individually.

81

6.3 Testing

The Documentation Study and Analysis section of this thesis presents two
research papers concerning special techniques for testing software [1] [2]. There are a
great number of research papers within the research area of software testing. The two
selected research papers propose a method for testing object oriented software
systems to certify if the software systems meet their specifications or not. The
software testing method that these two papers propose has been chosen, since the
software reengineering mechanism is an object oriented software system, which has
been developed in order to satisfy a predefined set of specifications (see Chapter 3
entitled "Requirements Analysis and Specifications").

6.3.1 The testing method

One of the most powerful benefits of the proposed software reengineering
mechanism is that with the use of the COBOL parser it is able to identify software
objects and software object attributes within the source code of a procedural computer
language such as COBOL. These software objects together with their attributes are
stored in a specially designed TELOS database instance. The GAIN browser connects
to the database instance and is capable of executing special queries, the results of
which provide critical information in the process of the implementation and design
analysis of the old software application. These queries can be faced as events that
require specific input values and produce the desired output information when
triggered. Concerning the development environment of an application, the authors of
[1] and [2] insist that the classical development methods for procedural programs
involve a hierarchical decomposition of functions and that on the contrary, OO
development methods are characterized by decentralized architectures of objects. The
authors claim that in order for the test to be effective this observation has to be taken
into account.

The requirements that this software reengineering mechanism should meet are
studied in Chapter 3. In the same chapter a set of specifications that the proposed
software reengineering mechanism should fulfil has been developed according to
these requirements. Stephane Barbey, Didier Buchs and Cecile Peraire [2] focus on
specification-based testing methods. The authors call these methods black box
methods. They define black box methods as an approach to find errors in a program
by validating its functionality, without analyzing the details of its code, but by using
the specification of the system. They insist that the goal is to answer the question:
Does a program satisfy the requirements of its specification? or, in accordance to the
goal of testing, to find if a program does not satisfy its specification.

In order to identify whether a program meets its specification or not, Stephane
Barbey, Didier Buchs and Cecile Peraire propose a specific method. This method
includes selecting from the specification the services required from the system. For
each service, the specification allows the selection of a number of scenarios for the
program under test. The set of all these scenarios makes up the test set. Furthermore
analyzing the test set, the authors mention that an exhaustive test set should obviously
contain all the tests that are required by the specification. Then, they admit that an
exhaustive test set is generally infinite and it is necessary to apply a number of
reduction hypotheses to the behavior of the program in order to obtain a finite test set
of reasonable size.

82

The proposed test procedure is as follows:

Given:
• SPEC Class of all specifications
• PROG Class of all programs
• TEST Class of all tests
• |= Satisfaction relationship on PROG X SPEC, expressing the validity

of a program with respect to the specification

• f=o Satisfaction relationship on PROG X TEST, deciding if the tests are
successful or not

Steps:
Stepl Selection of a test set from a specification of the system and from a set of

hypothesis on the program under test
Step2 Execution of the program under test using the test set
StepS Analysis of the results obtained during the execution of the program

The test procedure is successfully finished as long as:

(V P e PROG and V T e TEST) => P (=o T

6.3.2 Applying the testing method to the software reengineering mechanism

The specifications of the software reengineering mechanism are divided in
three sections. These sections are namely: I) database analysis, II) control flow
analysis and HI) source code organization analysis (see section named Requirements
Analysis and Specifications). For each section of specifications a separate test set is
built and verified. The XPERT HOTEL application that has already been parsed will
be used in order to implement and verify the test sets. The fact that the mechanism
will be tested only for its application to the XPERT HOTEL software system does not
guarantee that it is error-free to every software system that has been developed with
RM/COBOL-85. Nevertheless, as mentioned in [2] it is always necessary to apply
some reduction hypothesis to the behavior of the program, to obtain a test set of
reasonable size. The reduction hypothesis of applying the software reengineering
mechanism to the XPERT HOTEL software system and then testing it against its
specifications, is regarded fair enough, since the XPERT HOTEL software system
does not have any specifics that have been additionally studied while designing and
implementing the software reengineering mechanism. The mechanism is supposed to
provide equivalent results if tested when applied to any other software system that has
been developed with RM/COBOL-85. Another reduction hypothesis is that each test
will not be applied to all the software objects (programs, datafiles and source files)
that it is referred to, since the XPERT HOTEL application consists of several
thousands of software objects, which constitute a huge test set. The software objects
that are candidates for testing will be sorted based on the number of attribute relations
that they have and the top three of them will constitute the test set. Appendix 11
presents the software objects of the XPERT application that are candidates for testing.
The fact that only three of the complete set of software objects are tested increases the
possibility of an undetected error condition inside the whole software system. On the

83

contrary the fact that these three software objects have the most attribute relations
increases the possibility of an error condition to exist in one of these software objects
than any other software object of the software system. Nevertheless, the process of
applying the tests to the complete set of software objects of the XPERT HOTEL
application would require a whole team of software programmers in order to apply
these tests in a reasonable period of time. Thus, this reduction hypothesis is judged to
be fair enough for the purposes of this project.

6.3.2.1 Specifications regarding the database analysis

The specifications of the software reengineering mechanism, regarding the
database analysis of the legacy software application, are shown in Table 3.1 in
Chapter 3. A detailed analysis of the specifications of the software reengineering
mechanism occurs in Chapter 3 named Requirements Analysis and Specifications.

As indicated by specification 1.1 the mechanism should provide a report of all
the datafiles used by the legacy software application. This report is provided by the
List Data Files text-view query of the GAIN browser. The report represents the
datafiles using the names that the old application uses to reference them in its source
code. According to Table A11.2 in Appendix 11 programs EMP-APO, MAKOIKO
and YPOK-APO are the three top programs of the XPERT HOTEL application that
define the most datafiles in their main source file. The source code of these programs
has been examined in search for SELECT statements. The datafiles that are defined in
the source code of the programs were located inside the report produced by the List
Data Files text-view query of the GAIN browser. The result of this test indicates that
the information provided by this report is valid.

Specification 1.2 requires a separate report for each datafile presenting all the
programs that access the datafile. The GAIN browser provides this report by focusing
on the specific datafile and executing the Star View graphical query. This query will
produce a graph having the datafile in the center of the graph and all the objects
related to it categorized by the type of relation. All the programs that are related with
the datafile with the affect relation are those programs that access the datafile.
According to Table A11.6 in Appendix 11 datafiles APO-FILE, APOMA-FILE and
APANAL-FILE are the top affected datafiles of the XPERT HOTEL application. The
information provided by the Star View graphical query, concerning the programs that
access a specific datafile, is incomplete. After the location of all the OPEN statements
inside the source code of the XPERT HOTEL application that refer to these three
datafiles it was proved that all the programs mentioned in the report were actually
affecting these datafiles. In addition there were a number of additional programs
affecting the contents of these datafiles, which were not reported by the GAIN
browser. The problem is focused in the fact that the COBOL parser creates an affect
relation to each program, after examining the main source file of the program. The
source code that is included to the program but exists in additional source files is not
examined for affect relations. This result indicates that the software reengineering
mechanism did not pass successfully this specific test and needs to be improved in
this point.

Specification 1.3 requires a separate report for each datafile that presents all
the programs that define the specific datafile in their source code. The GAIN browser
provides this report by executing the Star View graphical query after focusing on each
datafile. All the programs related with the datafile with the select relation define the
datafile in their source code. According to Table A11.7 in Appendix 11 datafiles

84

SEQ-FELE, PRINT-FILE and APO-FILE are the top three files with the most select
relations. The same problem with the previous report has also been identified in the
case of this report. The COBOL parser creates a select relation to each program, after
examining the main source file of the program. The source code that is included to the
program but exists in additional source files is not examined for select relations. This
result indicates that the software reengineering mechanism did not pass successfully
this test.

Specification 1.4 requires a standard method to provide for each datafile its
record description. The method that the software reengineering mechanism provides
for this purpose is to find all the programs that define the specific datafile in their
source code and find the record description of the datafile by reading their source
code. This method is valid as long as the software reengineering mechanism reports
correctly the programs that define each datafile.

Finally, specification 1.5 requires a method to provide hints about relations,
which may possibly exist among the datafiles of the legacy application. The method
that the software reengineering mechanism provides for this purpose is to isolate the
record descriptions of the datafiles and compare them. The fields of different datafiles
that have the same size and similar names are candidates for the implementation of a
relation. This method is valid as long as the software reengineering mechanism
reports correctly the programs that define each datafile.

6.3.2.2 Specifications regarding the control flow analysis

The specifications of the software reengineering mechanism, regarding the
control flow analysis of the legacy software application, are shown in Table 3.2 in
Chapter 3.

As indicated by specification 2.1 the mechanism should provide a report of all
the programs that constitute the legacy software application. This report is provided
by the List All Programs text-view query of the GAIN browser. This report represents
each program using the name that the XPERT HOTEL application uses to reference
the program in its source code (internal name). The main source files of all the
programs listed in the report were examined one by one and the results of the report
were validated. The rest source files of the XPERT HOTEL application were also
examined one by one and none of them was found to constitute a valid RM/COBOL-
85 program. This result indicates that the information provided by this report is valid.

Specification 2.2 requires both the internal name and the name of the main
source file of the program to be reported. The List All Programs text-view query
provides the name of the main source file of each program in a second column in the
right of the internal name of each program of the legacy software application. While
applying the previous test, regarding the complete set of programs of the XPERT
HOTEL application, this information was also validated.

Specification 2.3 requires for each program of the legacy software application
all the programs that are called by it at run time to be reported. The GAIN browser
provides this report in two ways. The first is to execute the Star View graphical query
after focusing on a specific program. As mentioned earlier this query will produce a
graph having the selected object in the center of the graph and all the objects related
to it categorized by the type of relation. All the objects related with the selected object
with the call relation are the programs that are called by the selected program. This
query also presents the programs that call the selected program separately. The second
is to execute the Call Tree graphical query of the GAIN browser. After focusing to a

85

specific program of the legacy application and executing the Call Tree graphical
query a graph is generated showing all the programs that are called by this program.
This query is recursive so the programs that are called by the programs that are called
by the focused program are also reported and so on. According to Table A11.4 in
Appendix 11 programs APOPEN, APIN and TIMOPEN are the top three programs
with the most call relations. For these three programs the information provided by the
software reengineering mechanism was validated, by examining the CALL COBOL
statements inside their source code. Nevertheless, this result was regarded to be
incidental since it is already known from the previous tests that the COBOL parser
examines only the main source file of a program when it identifies its relations. Thus,
the programs APOMASTN, TIMEIS and TIMAG, which according to Table All.l
in Appendix 11 are the three top programs with the most include relations, were also
examined. For these programs the results were not validated since there was found to
be several calls to external programs that were coded in the additional source files of
the programs that were not included in the report. This result indicates that the
software reengineering mechanism did not pass successfully this test.

Specification 2.4 requires a separate report for each program of the old
software application showing all the datafiles that are affected by the program. The
GAIN browser provides this report in two ways. The first is to execute the Star View
graphical query after focusing on a specific program. All the objects related with the
selected program with the affect relation are the datafiles that are affected by the
program. The second is to execute the Affect Tree graphical query of the GAIN
browser. After focusing to a specific program of the legacy application and executing
the Affect Tree graphical query a graph is generated showing all the datafiles that the
program affects, all the programs that are called by this program and for each called
program all the datafiles that it affects. This query is recursive so the programs that
are called by the programs that are called by the focused program and the datafiles
that they affect, are also reported and so on. According to Table A11.2 in Appendix
11 programs V3-APO, TIMEIS and TIMEKD are the top three programs with the
most affect relations. For these three programs the information provided by the report
was found to be correct for the V3-APO program and incomplete for TIMEIS and
TIMEKD. The datafiles that were reported for TIMEIS and TIMEKD were actually
affected by these programs, but additional datafiles were found to be affected by these
two programs that were not included in the report. This problem occurs since the
COBOL parser does not examine the additional source files that constitute a program
when it identifies its attributes. The OPEN statements that were not identified by the
software reengineering mechanism were located in the additional source files that
were used to build these two programs. This result indicates that the software
reengineering mechanism did not pass successfully this test.

Finally, specification 2.5 requires a separate report for each program of the old
software application showing all the datafiles that are defined in its source code. This
report is provided by the Star View graphical query of the GAIN browser. After
focusing on a specific program and executing the Star View graphical query all the
objects that are related with the focused program are shown on the screen. The
datafiles that are related with the select relation with the focused program are those
that are defined in the source code of the program. According to Table A 11.3 in
Appendix 11 programs EMP-APO, MAKOIKO and YPOK-APO are the top three
programs with the most select relations. For these three programs the information
provided by the report was found to be correct for the EMP-APO and MAKOIKO
programs and incomplete for YPOK-APO. The datafiles that were reported for

86

YPOK-APO were actually defined in the source code of the program, but additional
datafiles were found to be defined in the source code that were not included in the
report. This problem occurs since the COBOL parser does not examine the additional
source files that constitute a program when it identifies its attributes. The SELECT
statements that were not identified by the software reengineering mechanism were
located in the additional source files that were used to build these two programs. This
result indicates that the software reengineering mechanism did not pass successfully
this test.

6.3.2.3 Specifications regarding the source code organization analysis

The specifications of the software reengineering mechanism, regarding the
source code organization analysis of the legacy software application, are shown in
Table 3.3 in Chapter 3.

Specification 3.1 requires that the mechanism should be able to locate all the
source files of the application, given the top-level directory of the directory tree of the
source code of the old application. When the COBOL parser starts executing, it
prompts the user to enter the top-level directory of the directory tree, where the source
code of the software application resides. Then it uses the UNIX command find to
locate all the source files that exist in the directory tree and stores their names in a full
path form in a text file (srcfilenames.tmp). After locating one by one all the source
files of the XPERT HOTEL application, by browsing the lists of the contents of the
directory tree of the application, the information that the COBOL parser identified,
concerning the complete set of source files of the application, was validated.

Specification 3.2 requires a report of all the source files that are used by the
old software application. This report is provided by the List Source Files text-view
query of the GAIN browser. This query reports the names of 2537 source files that
constitute the XPERT HOTEL application. In section 2.1 of this document is
mentioned that the XPERT HOTEL application is constituted by 2349 source files in
the hotelsrc directory and 202 source files in the ken400 directory. In section 2.2 of
this document is mentioned that there are 17 duplicate source files that reside in both
hotelsrc and ken400 directories of the XPERT HOTEL application. As a result the
GAIN browser should report 2349 + 202 - 17 = 2534 source files. Examining the
names of the source files, which are reported by the GAIN browser, it is observed that
the names of the hotelsrc, dvp and ken400 directories are included in the report. This
fact justifies the resulting summary of 2537 source files. The information provided by
this report was validated, by browsing the contents of the directories, where the
source files of the XPERT HOTEL application reside.

Finally, specification 3.3 requires a separate report for each program showing
all the source files that the compiler is instructed to read in order to build the program.
This report is provided by the Include Tree graphical query of the GAIN browser.
After focusing on the main source file of a specific program and executing the Include
Tree graphical query, all the source files that the compiler is instructed to read
(COBOL COPY statement) in order to build the program are reported recursively.
According to Table All.l in Appendix 11, APOMASTN, TIMEIS and TIMEKD are
the three top programs with the most include relations. The information provided by
this report was validated, by reading all the source code of these programs and
locating the COPY statements. This result indicates that the software reengineenng
mechanism passed the test successfully.

87

6.4 Conclusions

After studying the results of the tests performed to the software reengineering
mechanism, it has been proved that the mechanism covers all the specifications, for
which it has been designed and implemented, but in many cases it provides
incomplete information. The incompleteness of the information is located in the fact
that the COBOL parser assigns the attributes to the programs of the software
application by parsing only their main source file. In order for the information to be
complete it is necessary for each program to also parse all the additional source files
that are used by the compiler while building the program. No other errors were
detected while testing the software reengineering mechanism, using this specific
software testing method.

The revision of the software reengineering mechanism, which was used to
apply the tests, is revision 1.2. After the identification of the incomplete information
that was provided by special reports, the software reengineering mechanism was
corrected and improved. The final revision that passes all the previous tests
successfully is revision 1.8. The improvements and corrections that were implemented
in the intermediate revisions until revision 1.8 are described in Appendix 12. The
revision 1.8 of the software reengineering mechanism is regarded to be stable and will
be used in the analysis of the XPERT HOTEL application that takes place in the next
chapter.

88

A formal mechanism for analysis and re-
implementation of legacy programs

Chapter 7

Analysis of the XPERT Hotel Application

7.1 Introduction

The analysis of the XPERT Hotel software system with the help of the formal
reengineering mechanism is the subject of this chapter. The XPERT Hotel software
application is mainly a data processing application, which has been developed for the
management of hotel repositories. The revision 1.8 of the software reengineering
mechanism will be used in order to commit the analysis of the XPERT Hotel software
system. As mentioned in Chapter 6 named "Application and Testing of the Software
Reengineering Mechanism", revision 1.8 is the final stable revision of the software
reengineering mechanism, which covers all the specifications that were set in
Chapter 3 named "Requirements Analysis and Specifications". The software testing
procedure, which was performed to revision 1.2 of the COBOL parser in Chapter 6,
was also performed to revision 1.8 and all the tests were passed successfully.

The same procedure, which has been presented in the previous chapter for the
revision 1.2 of the formal reengineering mechanism, is used in order to apply the
revision 1.8 to the XPERT Hotel software system. After the scanning of the source
code by the COBOL Parser, a TELOS database instance is created and four log files.
The detailed examination of the contents of the TELOS database instance and the
information included in the log files will lead the process of the XPERT Hotel
software system analysis.

7.2 Description of the XPERT Hotel software system

The XPERT Hotel software system manipulates the data concerning all the
products bought from the suppliers of a hotel company, the internal manipulation of
these products by the hotel staff and finally, the selling of the new products to the
clients of the hotel. For example, one such procedure is the food and beverage system.
The hotel company buys the ingredients of the food, the chef cooks the food and
finally, the food is served to the hotel clients. The developers of the XPERT Hotel
software application mention that the application has been designed and implemented
in such a way that it is capable of covering the needs of hotel companies that own
more than one hotel. Such companies need to have complex information regarding the
various segments of all their hotels combined in a single report.

Too many programmers have been involved in the development of the XPERT
Hotel software system from time to time. According to information that the current
developers provided the quality of the source code is not good even after the willing
efforts to improve it while fixing the Y2K problem. For example, the developers
believe that a lot of source files have been unlinked from the main application,

89

without being completely removed from the set of source files, leaving behind dead
code [31]. The main reason that justifies the existence of such a low quality source
code is the fact that too many programmers have contributed in the development of
this software system without being supervised by a fairly qualified software engineer.

7.3 Source code level analysis

7.3.1 Source code location

The source code of the XPERT Hotel application is organized in three
directories. The top-level directory of the directory tree of the XPERT Hotel
application is named hotelsrc. This directory contains 2350 source files and 1
directory named dvp. Directory dvp contains only one directory named ken400.
Finally, directory ken400 contains 202 source files. Table 7.1 shows the three
directories of the XPERT Hotel application and their contents.

Table 7.1 - The directories of the XPERT Hotel application source code
Directory Name Number of source files
hotelsrc 2349 source files, 1 directory
dvp 1 directory (ken400)
ken400 202 source files

The checkduplicates.log log file points out that there are 17 duplicate source
files. These source files exist both in the src and ken400 directories of the XPERT
Hotel application. It is not easy to find out which of the duplicate source files is really
used in the working system, since there is no standard procedure for building the
XPERT Hotel application. The RM/COBOL-85 manual mentions that the value of a
special environment variable named RMPATH determines the order by which the
source code directories are searched in order to locate the appropriate source code
files during compilation. While inspecting the environment that is used for the
development of the XPERT Hotel application, it was pointed out that a special Unix
account is used by all the programmers, which contribute to the development of the
application. Each time a programmer logs into the system using this account, the
initialization scripts assign a specific value to this variable. According to this value
the src directory has a priority against the src/dvp/ken400 directory and as a result the
real source code files should be the ones which are found in the src directory.
Nevertheless, since someone could manually change the value of this environment
variable right before compiling a program, it is not absolutely safe to make decisions
about which of the duplicate source code files is the correct depending on the value
that the user initialization scripts give to this variable. Thus, this information should
be used as a hint and not as a standard. The final decision should be made by reading
the duplicate source code files, compiling them, running the programs which use these
source code files and finally, comparing the results against those of the real
application. As mentioned by the developers of the application, directory ken400
contains the source code of programs or routines that are common to all the software
applications of the company. For example, one such routine is LOXWOOD.PRC and
is used to count the number of days between two certain dates. This information is
useful to all software applications of the company. One question that comes out,
having in mind this information, is what does the source code of a program or routine,

90

which is commonly used to all software applications of the company, have to do
among the main source code of it, which is lying in the hotelsrc directory. As
mentioned earlier there are 17 source code files existing in both directories and this
fact points out signs of slovenly implementation.

7.3.2 Organization of the source code

As shown in Appendix 13 RM/COBOL source files are distinguished in three
main categories. These are the main source files, the source code library files and the
structured text files containing global parameters of the software application. The
main source files are those that are directly compiled by the RM/COBOL compiler
and specifically those that contain the PROGRAM-ID statement. The source code
library files contain RM/COBOL source code that cannot be directly compiled by the
RM/COBOL compiler, but they are patched into main source files at compilation time
(COBOL COPY statements) instead. These source files generally contain special
routines or datafile definitions that are commonly used throughout the entire software
application.

XPERT Hotel software application is totally constituted by 2534 source files
with a total of 643716 lines of source code. There are 1153 (45,5%) main source files
with a total of 494732 lines of source code, 1289 (50,8%) library files with a total of
127267 lines of source code and 92 (3,7%) parameter files with a total of 21717 lines
of text. These numbers indicate that XPERT Hotel is a large software application. A
software application of this size must be very well designed and implemented in order
to keep on running successfully and effectively. If a software application of this size
contains design or implementation errors then the process of maintenance or further
development becomes very difficult. In cases like this the need for a software tool that
implements the process of automated software analysis becomes crucial.

While examining the complete list of source files (see Appendix 13) it was
observed that many of those source code files have special suffixes. Each suffix is
used to declare a special kind of source file depending on its usage. For example all
the source code files that have the '.prc' suffix contain global procedures that are used
by many programs of the software application. Table 7.2 presents the five categories
of source files identified throughout the XPERT Hotel software application according
to the suffix of their name.

It is now possible to check the usage of these libraries throughout the entire
software application and make decisions regarding the normal development of the
software application. For example it is expected to find out that all the definitions of
the datafiles of the software application are stored in special .SEL and .REC source
code files and all the programs that access a datafile get its definition from the same
library file. This example is studied in more detail in section five of this document
where the database analysis of the XPERT Hotel software application occurs. Here it
is just mentioned that many datafiles, according to Appendix 17, have several
definitions throughout the source code of the XPERT Hotel application. This fact
indicates data mismatches, runtime errors and generally unexpected conditions, which
usually lead to program crashes and data corruption.

91

Table 7.2 - The source code file categories of the XPERT Hotel application
Prefix Description of category

.CBL The main source file of a complete program

.PRC The source file contains procedures used by many programs of the
software application

.WORor.WS The source file contains variable declarations (Working storage
section of RM/COBOL-85 language), which are that same to many
different programs of the software application

•SEL The source file contains datafile structure definitions (Input output
section of RM/COBOL-85 language)

.REG The source file contains datafile record descriptions (File section of
the Data division of RM/COBOL-85 language)

The fact that a systematic organization of the source code libraries inside the
software application exists, declares that this software application has been well
designed in the beginning. The fact that these source code libraries are not
systematically used throughout the entire software application declares that this
software application was bad implemented.

7.3.3 Dead code

The compilation process of each main source code file of the XPERT Hotel
software application referred that 82 of 1153 (7,11%) source code files did not
compile successfully. These main source files consist of 85059 lines of source code
out of 494732 (17,2%) total lines of source code in main source files. These main
source code files have to be programs that were never successfully completed,
because of change of plans in the development of the software application, or stopped
being used for some reason and so they were never maintained. Some of them are also
backups of programs that came out during the development or maintenance process of
the actual programs and the programmers did not erase them in the end. Such main
source files usually have the .STD suffix, while the actual source code file has the
.CBL suffix.

While checking each source code file of the XPERT Hotel software
application it was observed that many of them where not main source files of a
complete program inside the application nor were used by any program in the form of
a library. This fact means that these source files were used in the past as library files
and now they have been unlinked from the main source code files leaving behind dead
code. This form of dead code occupies disk space and makes the development of the
software application more complex since the programmers don't know for sure if
these source code files are actually used in the application or not. Nevertheless, at
compilation time this dead code is not included in any active program of the software
application and thus it does not consume computer power at run time. As shown in
Appendix 13 382 useless library source code files where identified among the source
files of the XPERT Hotel software application. These are 29,64% of the total library
source code files of the application or 15,07% of the total application source files.
After counting the source code lines included in these source files it was observed that
43463 source code lines are included in these useless files out of totally 127267
(34,15%) source code lines included in source code library files.

92

The main source code files that do not compile successfully are useless files
and their existence increases the level of difficulty in the process of distinguishing the
dead code apart from the healthy source code. When determining whether a library
source file is still used by the application it is necessary to check if any other main
source file or library source file includes the code of this source file at compilation
time (COBOL COPY statements). At this time it is not checked if the main program
compiles successfully or not. As a result it is necessary to remove all the main source
files that do not compile successfully before the COBOL parser starts scanning the
source code of the software application. For research reasons the COBOL parser
scanned the source code of the XPERT Hotel software application two times. The first
time including the broken main source code files and the second without them. The
second time where identified 64 more unlinked library files (dead code) out of 318
(20,12%) unlinked library files that were identified the first time.

In many programs of the XPERT Hotel software application too many
datafiles are defined in their source code, which are not actually accessed by the
program. This fact can easily be observed by executing the 'open tree' graphical
query of the GAIN browser for each main source file of the application. The reason
for this fact is that the datafiles of the application have been categorized and there are
certain source files that define all the datafiles of each category. For example the
source file PRO.REC contains all the record descriptions of the datafiles concerning
the suppliers of the hotel. When a new program is built in order to manipulate data
concerning the hotel suppliers all the definitions of the files concerning the hotel
suppliers are copied into it. However, only a few of the defined files are actually
affected by the program. This tactic generates dead code and the only way to remove
it is to identify which datafiles are actually affected by the program and keep only
those datafile definitions in its source code. Otherwise the program occupies much
more memory at run time and executes much slower.

7.4 Program level analysis

7.4.1 The complete set of programs

As shown in Appendix 14 the XPERT Hotel software application consists of
1054 programs. 15 of these programs have two main source files while one of them
has three. As a result there is a total of 1071 main source files and this information is
in accordance to Appendix 13 where it is mentioned that the XPERT Hotel
application has 1071 main source files (not including those that do not compile
successfully).

RM/COBOL has two mechanisms when calling an external program. The first
is used to call a program, which is part of a library consisting of several programs.
The second is used to call a separately compiled program. In the first case the
PROGRAM-ID paragraph of the main source file defines the name of the program
that is used in order to identify it. In the second case, the name of the main source file
of the program is used without the .CBL or .COB suffix. In both cases the name of the
program is case insensitive. The XPERT Hotel software application does not have any
program libraries including more than one programs. It is parted of separate programs
and the second mechanism is always used when calling an external program. Th.s
information provides a clue that the 17 duplicate mam source files, wh.ch exist ms.de
the XPERT Hotel application are probably useless (dead code), but wh.ch of those arc

93

the good ones and which are useless? They all compile successfully so only the
XPERT Hotel programmers may know the answer. Probably the one that has the
latest modification date is the good one but this is not for sure. Since there is no
documentation describing the organization and architecture of the XPERT Hotel
software application, the only way to be sure in this case is to read the source code,
then compile each main source file and check the program against the one of the
working application.

7.4.2 Program names

Appendix 14 lists all the programs of the XPERT Hotel application referring
to them using the name of the main source file without the .CBL or .COB suffix. As
mentioned above this is the name that is used in order to call a program from another
program inside the software application. The name that is given to a program in the
PROGRAM-ED paragraph of its main source file is also available but not in
Appendix 14. in order to find out the name, which is assigned to a program in the
PROGRAM-ID paragraph it is necessary to start the TELOS database and the GAIN
browser, edit the program name in the Query Target text line editor and execute the
star view graphical query. This query provides all the attributes of a program. The
'name' attribute shows the name that was found in the PROGRAM-ID paragraph of
the main source file of the program when it was scanned line by line by the COBOL
parser (see Figure 7.1).

Ecfi View Tree Views " "Queries l! Tools'^ WWow*'
tr "^

Query Target

Star View terns: *

Figure 7.1 - Program attributes as provided by the GAIN Browser.

94

Many programs of the XPERT Hotel application have different name in the
PROGRAM-ID paragraph than the name of their main source file. This fact is not
abnormal for RM/COBOL development but the general policy in the development of
this application is to have the same name for both the main source file and the
PROGRAM-ID paragraph. Nevertheless, since the name defined in the PROGRAM-
ID paragraph is not used, as mentioned earlier, in order to call the program from
another one inside the application, many of the main source files are just copies of
other main source files of similar programs that where simply modified in order to
create the new program. Thus, the name defined in the PROGRAM-ID paragraph
remained the same as the one in the old program.

7.4.3 Control flow description

The XPERT Hotel software system is constituted by 1054 standalone
(separately compiled) programs. These programs are loaded using a special menu
driven system, which is implemented by the MENRTS program. This program reads a
configuration file (Xbas.mtd) describing the programs that are available in the menus
and can be selected by the user. As a result in order to study the control flow of the
software application it is necessary to study the control flow of each standalone
program.

The 'call' attribute of a CobolNode (program) object inside the semantic
network points out that a COBOL CALL statement was identified within the main
source file of the program and joins the two programs, the calling and the called
program. It is also possible for a program to include one or more additional source
files and inside the source code of these additional source files to have CALL
statements. The 'invoke' attribute of a SourceFile object inside the semantic network
points out that a COBOL CALL statement was identified within the source file and
joins the source file with the called CobolNode object.

Appendix 18 presents the information given by the GAIN browser after
executing the 'call tree' graphical query for the PRSTAT program. The graph
contains 53 objects, which are programs that are called at run time or additional
source files used at compilation time. This is a small example that was chosen just
because the output graph fits in a single page. Many programs of the XPERT Hotel
software application produce a much bigger graph when executing the 'call tree'
graphical query to them. For example, the graph produced for the TIMEIS program
contains 533 objects! It is much easier for a new programmer to modify a program
like this after studying the produced graph than to read all of the source code. Even
the old developers of the application may have forgotten many programs that are
called by such a big program or many additional source files (libraries) that are used
in order to compile it.

7.4.4 Database access of each program

It is possible to have datafile access in a program and the source code
statements that implement the datafile access to exist in additional library files that are
used at compilation time. It is also possible to have run time calls to external
programs, which in turn access additional datafiles. As a result it is very difficult in
large programs, which use many additional library files at compilation time or make
many external program calls at run time, to find out the complete set of datafiles,
which are affected at run time by the program. In such a case the value ol the

95

information, which is presented by the 'affect tree' query of the GAIN browser is
inestimable. One small example of this case is presented in Appendix 18. The graph,
which is produced by the GAIN browser after executing the 'affect tree' graphical
query to the PRSTAT program contains 61 software objects. These software objects
are additional libraries that are used at compilation time, external programs called at
run time or datafiles affected at run time. At this point it should be mentioned that if a
software object is referenced more than once, the GAIN browser counts the object as
many times as it is referenced by the other objects of the semantic network in the total
number of objects retrieved by the query. Then it presents the object on the screen
once and the total number of counts can be justified by the total number of TO'
relations of the object. For example EKT-FILE is affected both by the PRSEL and the
PRTEIS external programs, which are both called at run time by the PRSTAT
program. The GAIN browser has counted twice this datafile in the total number of
software objects included in the PRSTAT program but it has presented the software
object on the screen once showing two affect relations, one with the PRTSEL and
another with the PRTEIS external programs.

The PRSTAT program is a small program, which was chosen as an example
because it produces a representative and at the same time small graph that fits in a
single page. Nevertheless, the usual situation in the XPERT Hotel software
application is to have a lot more than 61 software objects related with one program.
The TIMEIS program is one of the biggest programs of the XPERT Hotel application
and the graph that is produced by the GAIN browser, after executing the 'affect tree'
graphical query on this program, is constituted by 651 software objects related with
each other. It would really need a big plotter to print such a big graph on the paper,
but the information that comes out of such a graph is invaluable. It would really take
too much time and manpower to a new programmer to get all this information by just
reading the source code of this program, the source code of all the external libraries
that are used by it at compilation time, the source code of all the external programs
that are called by it at run time and finally the source code of the external libraries that
are used at compilation time by the programs that are called at run time. Even the old
programmers of the application may not have such a higher-level view of a big
program, like TIMEIS is, in their mind. In cases like this it is impossible for a human
to have in his mind all this complex information and it is very easy to make an error
when modifying such a program and spend much more time than necessary to find out
where the error comes from.

7.4.5 Datafile definitions

The definition of the structure or the record description of each datafile within
the source code of a program plays pivotal role in software development when using
3rd GL's such as COBOL. Specifically, in the XPERT Hotel software application the
definitions of the most datafiles exist in separate library source code files, which in
general are used by the programs of the application at compilation time. Nevertheless,
many programs have their own definitions for some datafiles. Appendix 15 provides
the complete list of source code files, which contain datafiles record descriptions or
datafile structure definitions. Appendix 17 provides the complete list of datafiles and
for each datafile all the source code files that contain record descriptions or structure
definitions for the datafile. The fact that many programs have their own definitions for
some datafiles, may cause data corruption but it is also possible to be on purpose, m
order to implement some special interventions to the datafile. For this reason it is

96

necessary to know whether a program has a special definition for a specific datafile,
which is affected by it and in this case to inspect whether this special definition
should exist in the source code of the program or not. The information provided in
Appendix 15 comes out by focusing on each source file and checking its select and
define relations. The information provided in Appendix 17 comes out by focusing on
each datafile and checking its select and define relations.

According to Appendix 15, 163 main source files contain datafile structure
definitions or datafile record descriptions. According to Appendix 13 the total
number of main source files of the XPERT Hotel software application is 1071, which
means that the 15,21% of the application main source files have their own definitions
for some datafiles. Additionally there are 87 source files, which have been unlinked
from the main application or are main source files that do not compile successfully
(dead code in both cases) that also contain datafile structure definitions or datafile
record descriptions. After excluding the dead code there are 123 source code files
containing datafile record descriptions, 98 source code files containing datafile
structure definitions and 131 source files containing both datafile record descriptions
and datafile structure definitions. After excluding the main source code files there are
121 library source code files that contain datafile record descriptions and 68 that
contain datafile structure definitions.

7.5. Database level analysis

7.5.1 The complete set of datafiles

The XPERT Hotel software application has 286 datafiles, which are listed in
Appendix 16. This information comes out after executing the 'List All Datafiles'
text-view query of the GAIN browser. An observation that comes out after reading the
list of the datafile names in Appendix 16 is that the most datafiles have the -FILE
suffix in their name. This tactic was followed in order to easily recognize the name of
a datafile from the name of a routine or external program call within the source code
of the software application. Another observation is that many of these datafiles have
similar names. One example is AGD-FILE, AGDXFILE and WAGD-FILE. In this
example the filename that is used to store the data into the filesystem (physical
storage media) is the same (agdelt.dat) for each datafile. These datafiles have also
similar structure definitions and the same record description. This observation points
out that these three datafiles are not completely separate. It is one main datafile
(AGD-FILE) and the other two are just used to commit special interventions in some
abnormal circumstances and are not used within the normal control flow of the
application. There are totally 37 datafiles that have the same name with other datafiles
plus the letter W in the front of their name and other 36 that have the XFELE suffix
instead of the -FILE suffix in their name. This observation decreases the actual total
number of datafiles from 286 to 213 (25,52%).

7.5.2 Access attributes

Specification 1.2 (see Chapter 3 named "Requirements Analysis and
Specifications") of the software analysis mechanism refers that all the datafiles of the
analyzed software application should be reported and additionally, for each datafile all
the programs that access the datafile should also be reported. This information can be

97

retrieved by the GAIN browser after focusing in a specific datafile and executing the

Tree View graphical-view query. The 'affect' relations are those that identify he

programs that include an OPEN statement for the datafile in their mam sou^ e f le

The open relations are those that identify the source files that include an OPEN

statement for the datafile. In order to avoid executing 286 times the Tree Vkw

graphical-view query (one for each datafile) a new text-view query has been created

named List All Datafile Affects'. This query produces a three'columnreport Inthe

first column appears the name of each datafile. In the second column, beside the name

flTht d Tn £' T" "^ °f a11 ^ ̂ ^ *at indude -OPEN stateTn
for the datafile m their mam source file. In the third column appear the names of the

source files that include an OPEN statement for the datafile

Aff , ?yf CheCldng th£ C°ntentS °f the reP°rt Produced by the "List All Datafile

Affects text-vew query of the GAIN Browser for the XPERT Hotel software

application it can easily be identified which datafiles are mostly accessed by the

programs of the application. Table 7.3 shows the top ten datafiles, which are accessed

by the most programs. While looking at the contents of Table 7 3 it must be

mentioned that PRINT-FILE, which is affected by 171 programs, has'no standard

definition as it is just used to produce printing output. ANAL-FILE, which is affected

by 113 programs, uses two different external filenames to store the data in the

physical storage media. According to the information provided in Appendix 17 these

filenames are "pelanal.dat" and "promanal.dat". The contents of "pelanal dat" include

information regarding the customers of the hotel company, while the contents of

"promanal.dat" include information regarding the suppliers of the hotel company. In

this point it must be mentioned that it is not a good tactic to share the same name

between two separate datafiles because this way it is impossible to access both

datafiles from the same program. Nevertheless, the developers of the XPERT Hotel

software application insist that it will never be necessary to access the contents of

"pelanal.dat" and "promanal.dat" at the same time from the same program since no

program handles customer and supplier data at the same time. On the other hand, too

many programs and library files affect those datafiles and thus it is a time spending

procedure to change the internal name assigned to them. This change is also risky

since it is possible to have program run time errors and crashes by a single mistake

while implementing this change in a source file. The expence of time and the risk for

errors are the two main reasons why these two datafiles still share the same name in

the XPERT Hotel software application.

Table 7.3 — Top ten accessed datafiles
DataFile
APO-FILE
APOMA-FILE
AP ANAL-FILE
APTM-FILE
APTEAM-FILE
AP01-FILE
PELAT-FILE
PRINT-FILE
PROM-FILE
ANAL-FILE

Affects
382
261
206
196
187
182
176
171
154
113

98

The report produced by the "List All Datafile Affects" text-view query shows
that there are 43 datafiles out of 286 total (15,03%), which are defined in the source
code of the XPERT Hotel software application, but have no "affect" or "open"
relations. This fact indicates that their contents are not accessed by any program of the
software application and as a result they are useless datafiles. A normal explaination
for the existence of those datafile definitions inside the source codeis that in the past
there might be some programs accessing their contents, but these programs were
unlinked some other time from the main application and their source code was
destroyed. This observation leads to the result that the source code, which is used for
those datafile definitions, is also dead code that must be removed.

7.5.3 Datafile structure definition and datafile record description analysis

Specifications 1.3 & 1.4 of the software analysis mechanism refere that for
each datafile there should be a separate report presenting all the programs or library
source code files, which contain structure definitions or record descriptions for the
datafile. This information can be retrieved for each datafile fom the GAIN browser by
focusing on a specific datafile and then executing the "Tree View" graphical-view
query. The "select" relations of the datafile point out which source code files contain
structure definitions for the datafile and the "define" relations of the datafile point out
which source code files contain record descriptions for the datafile. Since there are too
many datafiles in the XPERT Hotel software application, a new text-view query has
been created, which is named "List All Datafile Definitions". The report produced by
this query has three columns. In the first column appears the name of each datafile.
For each datafile in the second column appear all the source files that contain
structure structure definitions for the datafile. Finally, for each datafile in the third
column appear all the source files that contain record descriptions for the datafile.

Appendix 17 presents the report produced by the "List All Datafile
Definitions" text-vew query for the XPERT Hotel software application. The red
source files are those that are characterized in Appendix 13 as dead code. The green
source files are those that are main source files of a program. For each datafile that
has more than one structure definitions or record descriptions, a comparison among
them has taken place and in the fourth column of the report is mentioned if any
mismatches were found or not. Finally, in the fifth column of the report is presented
the external name of the datafile, which is used to store the actual data in the physical
storage media. The information that appears in columns 4 & 5 was retrieved by just
reading the appropriate source code files. In this case the software analysis
mechanism only helped in the process of identification of the appropriate source code
files for each datafile in order to retrieve the desired information.

The report, which is presented in Appendix 17 points out that there are 33
datafiles out of 286 total (11,53%) that are defined only in source code files that are
characterized in Appendix 13 as dead code. This fact points out that these datafiles
are useless. This information can be combined information provided in section 5.2,
which mentions that there are 43 datafiles that are not affected by any program of the
XPERT Hotel software application. The total number of datafiles that are not affected
by any program or their definitions lye in dead code is 60 out of 286 total (20,97%),
which means that there are 16 datafiles that are not affected by any program and their
definitions lye in dead code.

Table 7.4 reports the top ten datafiles, for which the most datafile structure
definitions were identified throughout the XPERT Hotel software application source

99

code. It has to be mentioned that SEQ-FILE, PRINT-FILE and TMP-FILE are just
used as temporary files and have no standard definitions or external names. For
example the PRINT-FILE file is used to store printing output. The external name of
the datafile is usually passed as a parameter from the program that created the printing
output to another external program that is responsible for passing the printable data,
which are the contents of PRINT-FILE datafile, to the printing device. This is the
standard printing procedure of the XPERT Hotel software application.

Table 7.4 - Top ten datafiles with the most structure definitions
Datafile Name
SEQ-FILE
PRINT-FILE
APO-FILE
PELAT-FILE
WAPO-FILE
TMP-FILE
PROM-FILE
WANAL-FILE
ANAL-FILE
ARTHRO-FILE

Structure Definitions
47
33
22
20
18
17
17
16
16
16

Another observation that can be made by examining the contents of Table 7.4
is that two couples of datafiles are identified among them, which are: APO-FILE with
WAPO-FILE and ANAL-FILE with WANAL-FILE. As mentioned in section 5.1,
datafiles that have the same name with an additional W prefix are redefinitions of the
same datafile, which are used in order to commit special datafile interventions. The
fact that a datafile appears in the contents of Table 7.4 indicates that too many special
interventions take place to the contents of that datafile or the datafile is accessed by
too many bad implemented programs. The fact that these two couples appear in the
contents of Table 7.4 indicates that much too many special interventions take place to
the contents of APO-FILE and ANAL-FILE.

Table 7.5 reports the top ten datafiles, for which the most datafile record
descriptions were identified throughout the XPERT Hotel software application source
code. The same observation for datafiles SEQ-FILE, PRINT-FILE, and TMP-FILE
that was made earlier while studying the contents of Table 7.4, regarding the datafile
structure definitions, can also be made for these datafiles regarding their record
descriptions, since they are also included in Table 7.5.

The two datafile couples that were identified in Table 7.4, APO-FILE with
WAPO-FILE and ANAL-FILE with WANAL-FILE, are also identified within the
contents of Table 7.5. This fact reensures the observation that much too many special
interventions take place to the contents of APO-FILE and ANAL-FILE datafiles.

100

Table 7.5-To) ten datafiles with the most record descriptions
Datafile Name
SEQ-FILE
PRINT-FILE
WAPO-FILE
APO-FILE
PELAT-FILE
WANAL-FILE
TMP-FILE
WAP ANAL-FILE
ANAL-FILE
APTEAM-FILE

Record Descriptions
38
33
18
16
16
16
15
14
13
12

As mentioned in section 3.2, it is a good tactic to have two separate library
source code files regarding the definition of each datafile. One to contain the structure
definition of the datafile and another to contain the record description of the datafile.
The normal procedure, when a standalone program needs to access the contents of a
datafile, is to include these two source files, which define the structure and record
description of the datafile in its main source code (COBOL COPY statements).
Nevertheless, many datafiles of the XPERT Hotel software application do not have
separate librarly source code files to include their definitions. Table 7.6 presents the
datafiles that actualy have two separate library source code files, one including just
their structure definition and one including just their record description. As shown in
Table 7.6, 27 datafiles out of 286 total (9,44%) have separate library source code files
for their definition.

As mentioned in sectrion 5.2 of this document, ANAL-FILE uses two
different external filenames (pelanal.dat and promanal.dat according to Appendix 17)
to store the data in the physical storage media. This fact justifies the existence of two
different source files for the structure definition and for the record description of this
datafile in the contents of Table 7.6.

101

Table 7.6 - Datafiles which have their definitions in separate library source code files
Datafile
ANAL-FILE

APANAL-FILE
APO-FILE
AP01-FILE
APOGR-FILE
APOMA-FILE
APTIMCH-FILE
APTM-FILE
APUPD-FILE
APTR-FILE
ASUPD-FLLE
EPU-FILE
GRL-FILE
MENSPT-FILE
MENU-FILE
ORPH-FILE
ORPI-FILE
FARM-FILE
PELAT-FELE
SYNT-FILE
SYSENV-FILE
TAMDEL-FILE
TRA-FILE
TRWH-FILE
VAR-FILE
WAPO1-FILE
WINSEL-FILE

Structure Definition
PEL.SEL, PR2.SEL

APANAL.SEL
APOMAST.SEL
APOM1.SEL
APOGR.SEL
APOMA.SEL
APTMCH.SEL
APTM.SEL
APUPD.SEL
APTR.SEL
ASUPD.SEL
EPI.SEL
GRL.SEL
MENSPT.SEL
MEN.SEL
ORPH.SEL
ORPI.SEL
PARM.SEL
PELAT.SEL
APSYN.SEL
SYSENV.SEL
TAMDEL.SEL
TRA.SEL
TRWH.SEL
VAR.SEL
WAP01.SEL
WINSEL.SEL

Record Description
PELANAL.REC,
PRANALREC.CBL
APANAL.REC
APOMAST.REC
APOM1.REC
APOGR.REC
APOMA.REC
APTIMCH.REC
APTM.REC
APUPD.REC
APTR.REC
ASUPD.REC
EPI.REC
GRL.REC
MENSPT.REC
MEN.REC
ORPH.REC
ORPI.REC
PARM.REC
PELMAST.REC
APSYN.REC
SYSENV.REC
TAMDEL.REC
TRAREC.CBL
TRWH.REC
VAR.REC
WAPO1.REC
WINSEL.REC

An observation, which can be made by studying the contents of Appendices
15 & 17, is that there are many library source files that contain structure definitions or
record descriptions for more than one datafile. This points out that the developers of
the XPERT Hotel software application have created groups of datafiles. Each time
they need to access a specific group of datafiles, they just include the appropriate
library source code file into the main source file in order to define all the datafiles of
the group. Nevertheless, it is also observed that in many programs too many datafiles
are defined but only a few of them actually affected by the program. This observation
points out that when the programmers wanted to access the contents of a subset of the
group of datafiles, they included all the code, which defines the whole group of
datafiles, into the main source file of the program. This is a bad programming
technique, which leads to dead code that makes a programm bigger in size, memory
consuming and slower at execution time. Table 7.7 presents the groups of datafiles
that were identified in the XPERT Hotel software application and the library source
code files that led to the identification of each group.

102

Table 7.7 - Groups of Datafiles identified in the XPERT Hotel software aoolication
Group

A

B

C

D

E

Description
Datafiles containing information concerning the hotel
repositories
Datafiles containing information concerning the hotel clients

Datafiles containing information concerning the hotel
suppliers
Datafiles containing information concerning the hotel buys

Datafiles containing information concerning the hotel sales

Sourcefiles
APO.SEL,
APO.REC
PEL.SEL,
PEL.REC
PRO.SEL,
PRO.REC
AGO.SEL,
AGO.REC
T1M.SEL,
TIM.REC

7.5.4 Relation information

According to specification 1.5 (see Chapter 3 - Requirements Analysis and
Specifications), this mechanism should provide hints about relations, which may
possibly exist between the datafiles of the software application. In Chapter 6 it is
mentioned that the method that the software reengineering mechanism provides for
this purpose is to isolate the record descriptions of the datafiles and compare them.
The fields of different datafiles that have the same size and similar names are
candidates for the implementation of a relation. After all the candidate relations are
identified, the validation of existence of these relations is investigated by browsing
the data contained in the possibly related datafiles and checking the contents of the
relating fields.

Using this method, 6 relations where easily identified in the XPERT Hotel
database. The datafile, which was mostly related with other datafiles, is APANAL-
FILE. The external name for this datafile is apanal.dat and is used to keep detailed
information for each product sale taking place in the hotel. It is possible to exist more
datafile relations in the database of the XPERT Hotel software application than those
already identified, since the investigation of the hints that lead to the identification of
these relations was not extensive. Nevertheless, the most complicated and important
set of datafile relations is the one including AP ANAL-FILE and this information was
validated by the developers of the application.

Table 7.8 presents the relations that were identified in the XPERT Hotel
database. Columns 1 and 4 of the table contain the names of the related datafiles.
Columns 2 and 3 contain the names of the relating fields.

Table 7.8 - Datafile relations identified in the XPERT Hotel software application

APANAL-FILE

ANAL-FILE
ANAL-FILE

PELAT-KOD
PELAT-KOD

APANAL-KOD
APANAL-APTM

ANAL-KOD
ANAL-KOD

ANAL-KOD
PELAT-KEY

APO-KEY
APTM-KEY
PELAT-KEY
PROM-KEY

ANAL-FILE
PELAT-FILE

APO-FDJE
APTM-FILE
PELAT-FILE
PROM-FILE

As mentioned in sectrion 5.2 of this document, ANAL-FILE uses two
different external filenames (pelanal.dat and promanal.dat according to Appendix 17)
to store the data in the physical storage media. This fact justifies the appearance of

103

this datafile twice in the contents of the 1 st column of Table 7.8. The external name of
ANAL-FILE related with PELAT-FILE is pelanal.dat and the external name of
ANAL-FILE related with PROM-FILE is promanal.dat. ANAL-FILE also appears
related with APANAL-FILE according to Table 7.8. The external name of ANAL-
FILE related with APANAL-FILE is pelanal.dat.

7.6 Conclusions

The XPERT Hotel software system manipulates the data concerning all the
products bought from the suppliers of a hotel company, the internal manipulation of
these products by the hotel staff and finally, the selling of the new products to the
clients of the hotel. The application has been designed and implemented in such a way
that it is capable of covering the needs of hotel companies that own more than one
hotel and need to have complex information regarding the various segments of all
their hotels combined in a single report.

As mentioned in section 3.2 of this chapter, the XPERT Hotel software
application consists of 643.716 lines of RM/COBOL-85 source code. 45,5% of the
source code is located in main source files, 50,8% in source code library files and
3,7% in parameter files. The application has 1054 standalone, separately compiled
programs, which are loaded directly by a special menu-driven mechanism or
indirectly, in the form of external program calls. Finally it must be mentioned that the
XPERT Hotel database consists of 286 datafiles. All these facts make XPERT Hotel a
large data-processing software application of industrial level.

The source files of the application are grouped into 5 categories according to
Table 7.2. Nevertheless, a big part of the application does not follow this grouping. In
addition, according to Appendix 13, approximately 22% of the application source
code is dead code.

As shown in Table 7.7, a grouping of the datafiles takes place in the source
code of the application. This is a good organizational tactic but the fact that many
programs contain in their source code the definitions of all the datafiles of a group,
while affecting only a few of them, shows signs of bad implementation. In addition,
according to section 5.3, approximately 21% of the defined datafiles are useless,
meaning that they are not affected by any program or their definition lies in dead
code.

The conclusion that comes out, after studying the evidence reported in this
chapter, is that XPERT Hotel is a large data-processing software application of
industrial level that was well designed in the beginning but it was not perfectly
implemented and maintained. This fact is typical to software applications of this level
and is one of the main motives for the development of this research project.

104

A formal mechanism for analysis and re-
implementation of legacy programs

Chapter 8

Conclusions and Future improvements

8.1 Conclusions

8.1.1 Philosophical matters regarding software reengineering

The last ten years of this century have been characterized as a period of
software crisis. The need for information is growing day by day and the formal
development tools have been proven insufficient to serve this need. This led software
engineers to the creation of new technologies that would be more efficient in the
manipulation of the data and the development of software systems. Large software
systems have been developed using these new technologies. These systems have been
proven efficient and satisfying. However, what will happen with all those large
software applications that have been developed in the past, under formal development
tools such as 3rd Generation Languages (GLs)? In the real world there are too many
software applications, developed using 3rd GLs, still working in business. There are
many reasons why these applications need to be modified in order to keep on running
effectively. The introduction of EURO as global currency in Europe is a well-known
problem concerning these old applications. In most cases the documentation
describing the requirements, design and implementation of the legacy software
systems does not exist or is too poor to make sense. This thesis provided a mechanism
to regain design and implementation information of a software system examining its
source code. There are certain problems that occur in the reengineering process of
large data-processing software application systems, which have been developed using
legacy software development tools, such as the complexity of the code combined with
the absence of computer-aided software engineering (CASE) tools. This project
studied the requirements, design and developed a software system that helps, by
means of providing critical information, to speed up this process. A real data-
processing software system, which has been developed using the RM/COBOL-85
computer language, has been analyzed using this mechanism.

8.1.2 Who would need this mechanism and why

Billions of lines of 3rd GL source code have been written for the development
of millions of legacy software applications. These legacy applications now are very
difficult to maintain or further develop. The development tools of 3rd GLs used for the
implementation of software applications (mainly those that manipulate big amounts of
data) are primitive compared to the 4th GL development tools. Thus, a lot of time and
manpower is wasted in the maintenance or further development of legacy
applications. Thus it is necessary to gain the design and implementation analysis of a

105

legacy software application in small period of time in order to reengineer it or create a
new one based on the recovered analysis.

Due to the robust and effective tools that the 4th GLs provide in the
development of software applications and to the simple solutions that have been given
to problems that 31 GLs face, there are yet not many software developers left to deal
with all those applications that have been developed using 3rd GLs. In addition, 3rd
GLs are not taught any more in modern schools and universities. As a result, all new
software developers work using modern tools and techniques. Nevertheless, there are
many applications that have been developed in the past using old development tools
and now only need a minor alterations or improvements. In this case all the necessary
information that can be extracted from the old application, is required in a short
period of time. The proposed formal software reengineering mechanism helps
locating the problem, in order to commit the necessary changes, having as a result an
improved, working application.

Other software developers could use this tool in order to keep version
information for their applications. This tool can help them to keep truck of the
characteristics of every version of their application, by scanning the sources of their
application in a regular basis and keeping records of the databases, which are
produced each time.

8.1.3 Documentation

In this chapter the analysis and study of existing documentation in the research
domain of reengineering and reuse of legacy software systems has been investigated
and presented. The research domain of reengineering and reusing legacy software
systems includes general software engineering concepts and especially reengineering
concepts. Several computer theories have been developed to provide answers to
serious questions in this research domain. The most important of those theories are the
theory of software objects, the software component classification theory, the
representation theory, the theory of patterns and the theory of software repositories.

The scientific papers found in the bibliography search, in the area of software
reengineering, were divided into three categories. The first category includes those
papers that refer to general reengineering issues. The second category consists of
papers that provide an approach to software reengineering through the theory of
patterns. Finally, the third category contains two papers that provide techniques for
testing the results of a software development process. Through the presentation of
these papers the problems that other engineers have faced in the area of software
reengineering and the solutions that they propose were outlined. These problems
include theoretic issues related to software reengineering as well as applied solutions
provided to specific demands.

Finally, three typical systems that have been developed for software
reengineering purposes and are available for commercial use have been presented.
These are the DMS reengineering toolkit, the tools from George and James Software
Inc and the Metamorphic COBOL Converter. The fact that some software companies
have already developed and marked some products concerning this research domain,
justifies the purposes for the implementation of this project.

106

8.1.4 Testing the software reengineering mechanism

After studying the results of the tests performed to the revision 1.2 of the
software reengineering mechanism, it has been proved that the mechanism covers all
the specifications, for which it has been designed and implemented, but in many cases
it provides incomplete information. The incompleteness of the information is located
in the fact that the COBOL parser assigns the attributes to the programs of the
software application by parsing only their main source file. In order for the
information to be complete it is necessary for each program to also parse all the
additional source files that are used by the compiler while building the program. No
other errors were detected while testing the software reengineering mechanism, using
this specific software testing method.

After the identification of the incomplete information that was provided by
special reports, the software reengineering mechanism was corrected and improved.
The final revision that passes all the previous tests successfully is revision 1.8. The
improvements and corrections that were implemented in the intermediate revisions
until revision 1.8 are described in Appendix 12. The revision 1.8 of the software
reengineering mechanism is regarded to be stable and was used in the analysis of the
XPERT HOTEL application that takes place in the next chapter.

8.1.5 The XPERT Hotel software application

The XPERT Hotel software system manipulates the data concerning all the
products bought from the suppliers of a hotel company, the internal manipulation of
these products by the hotel staff and finally, the selling of the new products to the
clients of the hotel. The application has been designed and implemented in such a way
that it is capable of covering the needs of hotel companies that own more than one
hotel and need to have complex information regarding the various segments of all
their hotels combined in a single report.

The XPERT Hotel software application consists of 643.716 lines of
RM/COBOL-85 source code. 45,5% of the source code is located in main source files,
50,8% in source code library files and 3,7% in parameter files. The application has
1054 standalone, separately compiled programs, which are loaded directly by a
special menu-driven mechanism or indirectly, in the form of external program calls.
Finally it must be mentioned that the XPERT Hotel database consists of 286 datafiles.
All these facts make XPERT Hotel a large data-processing software application of
industrial level.

The source files of the application are grouped into 5 categories according to
Table 7.2. Nevertheless, a big part of the application does not follow this grouping. In
addition, according to Appendix 13, approximately 22% of the application source
code is dead code.

As shown in Table 7.7, a grouping of the datafiles takes place in the source
code of the application. This is a good organizational tactic but the fact that many
programs contain in their source code the definitions of all the datafiles of a group,
while affecting only a few of them, shows signs of bad implementation. In addition,
according to section 5.3, approximately 21% of the defined datafiles are useless,
meaning that they are not affected by any program or their definition lies in dead
code.

All the mentioned facts indicate that XPERT Hotel is a large data-processing
software application of industrial level that was well designed in the beginning but it

107

was not perfectly implemented and maintained. This fact is typical to software
applications of this level and was one of the main motives for the development of this
research project.

8.2 Future improvements

A software application may be developed using more than one computer
language. Nevertheless, the software reengineering mechanism was designed and
implemented only to recognize and present the analysis of RM/COBOL-85 programs.
The fact that it would be necessary to update the mechanism in order to support more
than one computer language has already been faced. The model that represents the
analysis of a software application includes superclasses, which contain the classes of
COBOL programs (CobolNode) and COBOL source code files (SourceFile). These
superclasses are NodeType for CobolNode and SourceType for SourceFile. Into these
superclasses could be added two more classes such as PascalNode as a subclass of
NodeType class for the Turbo Pascal programs and PascalSource as a subclass of
SourceType class for the Turbo Pascal source code files.

Not only the model, but the source code parser should be updated in order to
recognize the source code of the additional 3rd GL. The current implementation of the
source code parser does not support this improvement so it would require to add an
additional segment to recognize Pascal keywords. Nevertheless, it would be very
interesting to improve it by making it support simultaneously another 3rd GL such as
Turbo Pascal.

References

[I] Barbey, S.; Buchs, D.; Gaudel, M.; Matte, B.; Peraire, C; Fosse, P.;
Waeselynck, H. (1998): From Requirements to Tests via Object-Oriented
Design, DeVa Third Year Report, December 1998, pp. 331-384

[2] Barbey, S.; Buchs, D.; Peraire, C. (1996): A Theory of Specification-Based
Testing for Object-Oriented Software, Proc. 2nd European Dependable
Computing Conference (EDCC2), Taormina, Italy, October 1996

[3] Boudier, G. (1988): An overview of PCTE and PCTE+, Proc. ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, ACM Software Engineering Notes,
Vol. 13 No. 5, November 1988, pp. 248-257

[4] Burd, E.; Munro, M. (1998): A Method for the Identification of Reusable
Units through the Reengineering of Legacy Code, The Journal of Systems
and Software, Vol. 44 No. 2, December 1998, pp. 121-134

[5] Canfora, G.; Cimitile, A.; De Lucia, A.; Di Lucca, G. (2001): Decomposing
Legacy Systems into Objects: an Electic Approach, Information and
Software Technology, Vol. 43 No. 6, May 2001, pp. 401-412

[6] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. (1993): Design Patterns:
Abstraction and Reuse of Object-Oriented Design, ECOOP 1993, pp. 406-
431

[7] Gravley, J.; Lakhotia, A. (1996): Identifying Enumeration Types Modeled
with Symbolic Constants, Proc. 3rd Working Conference on Reverse
Engineering, © IEEE CS Press, November 1996

[8] Huat, E.; Sarshar, M.; Poutney, D. (1995): An Object-Oriented Learning
System Framework for Domain Oriented Reuse, 3rd Annual Conference on
the Teaching of Computing, CTI'95, Dublin, Ireland, September 1995

[9] Konstantopoulos, P.; Doerr, M. (1995): Component Classification in the
Software Information Base, Object-Oriented Software Composition, Prentice
Hall, 1995

[10] Konstantopoulos, P.; Doerr, M.; Vassiliou, Y. (1993): Repositories for
Software Reuse: The Software Information Base, Proc. IFEP WG 8.1
Conference on Information System Development Process, Como, Italy,
September 1993

[II] Konstantopoulos, P.; Jarke, M.; Mylopoulos, J.; Vassiliou, Y. (1995): The
Software Information Base: A Server for Reuse, VLDB Journal, Vol. 4, No.
1, January 1995, pp. 1-43

[12] Konstantopoulos, P.; Pataki, E. (1992): A Browser for Software Reuse, Proc.
4th International Conference on Advanced Information Systems Engineering
(CAiSE '92), Manchester, UK, May 1992

[13] Lakhotia, A. (1993): Construction of Call Multigraphs Using Dependence
Graphs, Proc. 20th POPL, ACM Press, November 1993, pp. 273-284

[14] Lakhotia, A. (1994): What is the Appropriate Abstraction for Understanding
and Reengineering a Software System?, Reverse Engineering Newsletter,
IEEE Computer Society, November 7, September 1994, pp. 1-2

[15] Lakhotia, A. (1995): Wolf: A Tool to Recover Dataflow Oriented Designs of
Software Systems, 5 th Systems Reengineering Technology Workshop, CA,
February 1995

[16] Lakhotia, A. (1997): A Unified Framework for Expressing Software
Subsystem Classification Techniques, Journal of Systems and Software, ©
Elsevier Science Inc., Vol. 36, March 1997, pp. 211-231

[17] Lakhotia, A.; Gravley, J. (1995): Toward Experimental Evaluation of
Subsystem Classification Recovery Techniques, Proc. 2nd Working
Conference on Reverse Engineering, © IEEE CS Press, July 1995

[18] LeBlank, R.;Ornburn, S.; Rugaber, S. (1990): Recognizing design decisions
in programs, IEEE Software Vol. 7 No. 1, 1990, pp. 46-54

[19] Low, C. (1988): A Shared, Persistent Object Store, Proc. ECOOP'88, 1988
[20] Moore, M.; Rugaber, S.; Seaver, P. (1994): Knowledge-based User Interface

Migration, Proc. Internationa] Conference on Software Maintenance,
Victoria, British Columbia, September 1994

[21] Peraire, C.; Barbey,S.; Buchs, D. (1998): Test Selection for Object-Oriented
Software Based on Formal Specifications, IFIP Working Conference on
Programming Concepts and Methods (PROCOMET'98), Shelter Island,
New York, USA, June 1998, Chapman & Hall, 1998, pp. 385-403

[22] Rugaber, S.; Clayton, R. (1993): The Representation Problem in Reverse
Engineering, Proc. 1 st Working Conference on Reverse Engineering,
Baltimore, Maryland, May 21-23, 1993

[23] Stevens, P.; Pooley, R. (1998): Software Reengineering patterns, SEBPC
Workshop, 1998

[24] Stevens, P.; Pooley, R. (1998): Systems Reengineering Patterns, Proc.
ACM-SIGSOFT, 6th International Symposium on the Foundations of
Software Engineering, pp. 17-23, ISBN 1-58113-108-9

[25] Svoboda, F. (1994): Application of Integrated process Definition to Reverse
Engineering, SEI Software Engineering Workshop, Pittsburgh, PA, May
1994

[26] Zimmer, W. (1995): Experiences Using Design Patterns to Reorganize an
Object-Oriented Application, FZI Publication, Forschungszentrum
Informatik Karlsruhe, January 1995

Bibliography

[27] BAI Reengineering Team (1996): Software Reengineering Technique
Classification, URL: http://users.erols.com/bai/srtclass.htmlft771613

[28] Barbey, S.; Buchs,D.; Peraire, C. (1996): Issues and Theory for Unit Testing
of Object-Oriented software, Tagungsband, Basel, October 1996, pp. 73-112

[29] Breuer, P.; Lano, K. (1991): Creating Specifications from Code, Journal of
Software Maintenance: Research and Practice, Vol. 3, 1991, pp. 145-162

[30] Demeyer, S.; Rieger, M.; Tichelaar, S. (1998): Three Reverse Engineering
Patterns, Writing Workshop at EuroPLOP'98, April 1998

[31] Lakhotia, A. (1993): Analysis of Experiences with Modifying Computer
Programs, URL: http://www.cacs.usl.edu/~amn/ftp-index.htmltfpublications,
May 1993

[32] Lakhotia, A. (1994): Architecture Recovery Techniques: a unified view and
a measure of their goodness,
URL: http://www.cacs.usl.edu/~arun/papers/TR-94-5-9.pdf, May 1994

[33] Lakhotia, A. (1998): DIME: A Direct Manipulation Environment for
Evolutionary Development of Software, Proc. 6th International Workshop on
Program Comprehension (IWPC'98), Ischia, Italy, EEEE Computer Society
Press, June 1998, pp. 72-79

[34] Lakhotia, A; Deprez, J. (1999): Restructuring Functions with Low Cohesion,
Proc. 6th Working Conferenceon Reverse Engineering (WCRE'99), Atlanta,
GA, IEEE Computer Society Press, October 1999

[35] McLure, C. (1995): Model-Driven Software Reuse. Practing Reuse
Information Engineering Style, Extended Intelligence Inc.,
URL: http://www.reusability.com/papers2.html, 1995

[36] Nierstrasz, O.; Papathomas, M. (1990): Viewing Objects as Patterns of
Communicating Agents, OOPSLA/ECOOP 1990, pp. 38-43

[37] Spanoudakis, G.; Konstantopoulos, P. (1993): Similarity for Analogical
Software Reuse: A Conceptual Modeling Approach, Proc. 5th International
Conference on Advanced Information Systems Engineering (CAiSE '93),
Paris, France, June 1993

[38] Spanoudakis, G.; Konstantopoulos, P. (1994): Measuring Similarity between
Software Artifacts, Proc. 6th International Conference on Software
Engineering and Knowledge Engineering (SEKE'94), Jurmala, Latvia, June
1994

[39] Spanoudakis, G.; Konstantopoulos, P. (1994): On Evidential Feature
Salience, Proc. 5th International Conference on Database and Expert Systems
Applications (DEXA '94), Athens, Greece, September 1994

[40] Spanoudakis, G.; Konstantopoulos, P. (1994): Similarity for Analogical
Software Reuse: A Computational Model, Proc. 11 th European Conference
on Artificial Intelligence (ECAI '94), Amsterdam, The Netherlands, August
1994

[41] Stevens, P. (1998): Report of Working Group on Reengineering Patterns,
VMCAT'98, August 1998

[42] Svoboda, F. (1994): Reuse Based Reengineering, Software Technology
Conference, Salt Lake City, UT, April 1994

[43] Svoboda, F. (1994): Reuse-Based Reengineering. Notes from the
Underground, 4th Systems Reengineering Technology Workshop, Monterey,
CA, February 1994

[44] Svoboda, F. (1995): The 3 "R's" of Mature System Development: Reuse,
Reengineering and Architecture, 5 th Systems Reengineering Technology
Workshop, February 1995

Commercial Implementations

[45] Semantic Designs Inc - The DMS Software Reengineering Toolkit
Location: http://www.semdesigns.com/Products/DMS/DMSToolkit.html

[46] Semantic Designs Inc - CloneDR
Location: http://www.semdesigns.com/Products/Clone/index.html

[47] George and James Software
Location: (http://www.georgejames.com/marl/gjs22Q.htm)

[48] Metamorphic Computing Corporation
Location: http://www.metamorphic.com/html/cobol.html

108

Appendix 1
The following RETELL statements define the Queries and Tree Views objects

and their contents in the TELOS database. When the GAIN browser initializes will
recognize these objects and configure its Queries and Tree Views menus.

Definition of both Queries and Tree Views menus

RETELL Individual COBOLMenus in Token, MenuDescription
with queryMenu

(Queries) : COBOLTextMenus
with viewMenu

(Tree_Views) : COBOLTreeQuery
end

Definition of the Queries menu contents

RETELL Individual COBOLTextMenus in Token, SubMenu
with commands

(List_Source_Files) : COBOLFileList ,-
(List_Data_Files) : COBOLDataList;
(List_All_Programs) : COBOLProgList ,
(List_Af f ecting_Programs) : COBOLIOProgList

end

Definition of the Tree Views menu contents

RETELL Individual COBOLTreeQuery in Token, SubMenu
with commands

(Call_Tree)
(Called_By_Tree)
(Both_Call_Trees)
(Affect_Tree)
(Affected_By_Tree)
(Both_Affect_Trees)
(Include_Tree)
{Included_By_Tree)
(Both_Include_Trees)

COBOLCallTree;
COBOLCallTreelnv;
COBOLCallTreeBoth;
COBOLAffTree;
COBOLAf fTreelnv;
COBOLAffTreeBoth;
COBOLInclTree;
COBOLInclTreelnv;
COBOLInclTreeBoth

end

109

Appendix 2
The following RETELL statements store the source code of the queries

included in the Queries menu in the TELOS database. Whenever one of these queries
is triggered the corresponding TELOS statements are passed to QI with the order that
the numbers before the statements define. For example whenever the List Source Files
query is triggered by the user, QI is instructed by the GAIN browser to execute first
the "sen SourceFile" statement and then the "gai" statement and return all the
corresponding objects to the GAIN browser.

The List Source Files query

RETELL Individual COBOLFileList in Token, QueryMacro
with code
(1) : "sen SourceFile";
(2) : "gai"

end

The List Data Files query

RETELL Individual COBOLDataList in Token, QueryMacro
with code
(1) : "sen CobolData";
(2) : "gai"

end

The List All Programs query

RETELL Individual COBOLProgList in Token, QueryMacro
with code
(1) : "sen CobolNode";
(2) : "gai";
(3) : "sc CobolNode source 1 end end"
with iterator

: "rf"
with outputHeader

: "Program Sourcefile"
end

The List Affecting Programs query

RETELL Individual COBOLIOProgList in Token, QueryMacro
with code
(1) "sen CobolData";
(2) "gai";
(3) "gltc CobolNode affect";
(4) "gfv";
(5) "sc CobolNode source 1 end end"
with iterator

"rf"
with outputHeader

"Program Sourcefile"
end ______————————————

110

Appendix 3
The following RETELL statements store the source code of the queries

included in the Tree Views menu in the TELOS database. Whenever one of these
queries is triggered the corresponding TELOS statements are passed to QI with the
order that the numbers before the statements define. For example, whenever the Call
Tree query is triggered by the user, QI is instructed by the GAIN browser to execute
first the "sc CobolNode call 1 end end" statement then the "sdep -1" statement and
finally the "tc 0" statement. After the execution of those statements QI returns all the
corresponding objects to the GAIN browser. The fact that the inputType attribute is
set to CobolNode defines that this query is available by the GAIN browser whenever
the current object belongs in the CobolNode class.

The Call Tree query

RETELL Individual COBOLCallTree in Token, QueryMacro
with inputType

: "CobolNode"
with code
(1) : "sc CobolNode call 1 end end";
(2) : "sdep -1";
(3) : "tc 0"
with iterator

: " rn"
end

The Called By Tree query

RETELL Individual COBOLCallTreelnv in Token, QueryMacro
with inputType

: "CobolNode"
with code
(1) : "sc CobolNode call 2 end end";
(2) : "sdep -1";
(3) : "tc 0"
with iterator

: " rn"
end

The Both Call Trees query

RETELL Individual COBOLCallTreeBoth in Token, QueryMacro
with inputType

: "CobolNode"
with code
(1) : "sc CobolNode call 3 end end";
(2) : "sdep -1";
(3) : "tc 0"
with iterator

: " rn"
end

Ill

The Affect Tree query

RETELL Individual COBOLAffTree in Token, QueryMacro
with inputType

: "CobolNode"
with code
(1) : "sc CobolNode call 1 CobolNode affect 1 end end'
(2) : "sdep -1";
(3) : "tc 0"
with iterator

: " rn"
end

The Affected By Tree query

RETELL Individual COBOLAffTreelnv in Token, QueryMacro
with inputType

: "CobolNode"
with code
(1) : "sc CobolNode call 2 CobolNode affect 1 end end'
(2) : "sdep -1";
(3) : "tc 0"
with iterator

: " rn"
end

The Both Affect Trees query

RETELL Individual COBOLAffTreeBoth in Token, QueryMacro
with inputType

: "CobolNode"
with code
(1) : "sc CobolNode call 3 CobolNode affect 1 end end"
(2) : "sdep -1";
(3) : "tc 0"
with iterator

: "rn"
end

The Include Tree query

RETELL Individual COBOLInclTree in Token, QueryMacro
with inputType

: "SourceFile"
with code
(1) : "sc SourceFile contain 1 end end";
(2) : "sdep -1";
(3) : "tc 0"
with iterator

: " rn"
end

112

The Included By Tree query

RETELL Individual COBOLInclTreelnv in Token, QueryMacro
with inputType

: "SourceFile"
with code
(1) : "sc SourceFile contain 2 end end";
(2) : "sdep -1";
(3) : "tc 0"
with iterator

. ii rn n
end

The Both Include Trees Query

RETELL Individual COBOLInclTreeBoth in Token, QueryMacro
with inputType

: "SourceFile"
with code
(1) : "sc SourceFile contain 3 end end";
(2) : "sdep -1";
(3) : "tc 0"
with iterator

: " rn "

end

113

Appendix 4

The following RETELL statements create the software object classes and their
attributes as shown in Table 9 of Chapter 4 into the TELOS database instance.

The NodeType object class

RETELL Individual NodeType in Ml_Class
with attribute

node_ref : NodeType
end

The SourceType object class

RETELL Individual SourceType in Ml_Class
With attribute

source_ref : SourceType
end

The CobolData object class

RETELL Individual CobolData in S Class end

The SourceFile object class

RETELL Individual SourceFile in S__Class, SourceType
with source_ref

contain : SourceFile
end

The CobolNode object class

RETELL individual CobolNode in S_Class, NodeType
with attribute

name
source
include
affect
select

with node_ref
call

Telos_String,- {Program Internal Name)
SourceFile; {Program Source File Name}
SourceFile; {COBOL COPY statements}
CobolData; {COBOL OPEN statements}
CobolData {COBOL SELECT statements}

CobolNode {COBOL CALL statements}
end

114

Appendix 5

A brief description of GAWK

GAWK is the GNU Project's implementation of the AWK programming
language. It conforms to the definition of the language in the POSIX 1003.2
Command Language And Utilities Standard. This version is based on the description
of The AWK Programming Language, by Aho, Kernighan and Weinberger, with the
additional features found in the System V Release 4 version of UNIX AWK. GAWK
also provides more recent Bell Labs awk extensions, and some GNU-specific
extensions.

An AWK program consists of a sequence of pattern-action statements and
optional function definitions.

pattern {action statements}
function name(parameter list) { statements }

AWK first reads the program source from the program file(s) if specified,
from arguments to —source, or from the first non-option argument on the command
line. The -f and —source options may be used multiple times on the command line.
AWK will read the program text as if all the program-files and command line source
texts had been concatenated together. This is useful for building libraries of AWK
functions, without having to include them in each new AWK program that uses them.
It also provides the ability to mix library functions with command line programs.

The environment variable AWKPATH specifies a search path to use when
finding source files named with the -f option. If this variable does not exist, the
default path is ".:/usr/local/share/awk". (The actual directory may vary, depending
upon how AWK was built and installed.) If a file name given to the -f option
contains a "V" character, no path search is performed.

Gawk executes AWK programs in the following order. First, all variable
assignments are performed. Next, AWK compiles the program into an internal form.
Then, AWK executes the code in the BEGIN block(s) (if any), and then proceeds to
read each file specified in the command line. If there are no files specified in the
command line, AWK reads the standard input.

If a filename on the command line has the form var=val it is treated as a
variable assignment. The variable var will be assigned the value val. This happens
after any BEGIN block(s) have been run. Command line variable assignment is most
useful for dynamically assigning values to the variables AWK uses to control how
input is broken into fields and records. It is also useful for controlling state if multiple
passes are needed over a single data file.

For each record in the input, gawk tests to see if it matches any pattern in the
AWK program. For each pattern that the record matches, the associated action is
executed. The patterns are tested in the order they occur in the program.

Finally, after all the input is exhausted, gawk executes the code in the END
block(s) (if any).

115

Appendix 6
The following five Tables describe the usage and operation of each of the files

that are located in the five subdirectories of the top-level directory of the directory
tree of the COBOL parser.

Table A6.1 - The contents of subdirectory awk

File Name Description of operation

CobolData.awk Defines the CobolData objects. It is used by the find-
CobolData executable.

CobolNode-simple.awk

CobolNode.awk

SourceFile.awk

SourceFileName.awk

Checktls.awk

make-dependencies.awk

Defines all the CobolNode objects in a simple way
(without any of their attributes). It is used by the find-
CobolNode-simple executable.

Redefines all the CobolNode objects together with their
attributes. It is used by the find-CobolNode executable.

Defines all the SourceFile objects. It is used by the find-
SourceFile executable.
It is used as a filter. It takes as its input the name of a file
in full path representation and returns its name discarding
the full path representation. It is used by the find-
CobolNode executable.

Scans a file in search for contiguous duplicate lines. Its
output is the same file without the duplicate lines. Every
duplicate line found in the input file is logged in a separate
log file that is generated for that purpose. It is used by the
find-CobolData and find-CobolNode-simple executables.

It is used by the find-CobolNode executable in order to
create two temporary files. The first file contains the
names of the CobolNode objects found by find-
CobolNode-simple executable and the second file contains
the names of the CobolData objects found by the find-
CobolData executable.

116

Table A6.2 - The contents of subdirectory bin
File Name
CreateSisTransaction

find-CobolData

find-CobolNode

find-CobolNode-simple

find-SourceFile

loginit

parser

tlsinit

tmpinit

Description of operation
Merges the four files, that describe the TELOS objects
found by the COBOL parser and creates a file that
includes the final SIS transaction, which describes the
structure of the scanned application.

Scans the source files of the application in search of
CobolData objects. It uses srcfilenames.tmp,
CobolData.awk, CobolData.tmp, Checktls.awk. The
CobolData objects found are stored in CobolData.tls file.

Scans the source files of the application and defines the
CobolNode objects and their relations. It uses make-
dependencies.awk, CobolNode-simple.tls, CobolData.tls,
cobolnode.tmp, coboldata.tmp, srcfilenames.tmp,
SourceFileName.awk, CobolNode.awk and
CobolNode.tls.

Defines all the CobolNode objects in a simple way
(without any of their attributes). It uses the find-
CobolNode-simple.awk, srcfilenames.tmp, CobolNode-
simple.tmp, Checktls.awk and CobolNode-simple.tls.

Locates the source file names of the application starting
from a predefined (by the user) directory. Then it defines
the SourceFile objects. It uses srcfilenames.tmp,
SourceFile.awk and SourceFile.tls.
Initializes the workspace where the log files, which are
created from the parser during the source code parsing
procedure, reside.

The main executable file that is used to start and control
the parsing procedure. This executable is used to invoke
separate executable files that reside in directory bin in a
certain order to handle the several parts of the COBOL
source code parsing procedure.

Initializes the workspace where the various TELOS files,
which are created from the parser during the source code
parsing procedure, reside.

Initializes the workspace where the temporary files, which
are created from the parser and used during the source
code parsing procedure, reside.

117

Table A6.3 - The contents of subdirectory log

File Name

CheckDuplicates .log

coboldata.log

cobolnode.log

Content description

Instances that are found to be duplicate instances during
the parsing procedure are logged in this file to inform the
user about this special case.

Warnings and errors, which are produced during the
execution of the source code parsing procedure, which
examines the database of the application, are logged in
this file.

Warnings and errors, that are produced while the parser
executes the part of the source code parsing procedure that
examines the internal structure of the application, are
logged in this file

Table A6.4 - The contents of subdirectory tls

File Name Content description
SourceFile.tls The parser stores in this file the SourceFile individuals

(objects) that are recognized during the application
parsing procedure.

CobolNode-simple.tls

CobolNode.tls

CobolData.tls

application-structure.tls

The parser stores in this file the CobolNode individuals
(objects) that are recognized during the application
parsing procedure. In this file these objects are identified
without any attributes (relations with other objects etc) for
internal processing reasons.

The parser stores in this file the CobolNode individuals
(objects) that are recognized during the applications
source code parsing procedure. In this file these objects
are identified together with their attributes (relations with
other objects etc).

The parser stores in this file the CobolData individuals
(objects) that are recognized during the applications
source code parsing procedure.

The CreateSisTransaction executable concatenates the
four files above in this file with a certain order. This
executable also fills the file with some TELOS Data Entry
Language statements in order to give to the file the final
form of a TELOS transaction. This file contains all the
information that the COBOL parser has derived from the
application while scanning it (except from the logging
information, which is just used for notification).

118

Table A6.5 - The contents of subdirectory tmp
File Name Content description
CobolData.tmp The parser stores in this file the CobolData individuals

(objects) that are recognized during the applications
source code parsing procedure before creating the
CobolData.tls file. The CobolData.tls file is produced
from this file after sorting it and discarding any possible
duplicate entries.

CobolNode-simple.tmp

coboldata.tmp

cobolnode.tmp

Srcfilenames.tmp

The parser stores in this file the CobolNode individuals
(objects) that are recognized during the applications
source code parsing procedure before creating the
CobolNode-simple.tls file. The CobolNode-simple.tls file
is produced from this file after sorting it and discarding
any possible duplicate entries.

The COBOL parser stores in this temporary file only the
names of the CobolData objects that have been found
during the source code scanning procedure just for
internal processing reasons.

The COBOL parser stores in this temporary file only the
names of the CobolNode objects that have been found
during the source code scanning procedure just for
internal processing reasons.

The COBOL parser stores in this temporary file the name
of each source file of the application in a full path form to
identify the exact position of each source file in the
filesystem.

119

Appendix 7

Description of variables used by the Attributes.awk program.

Variable Name
telos_state
telos_class
var_source
var_programid

var_individualname

var_call

var_open

var_select

var_if

read_opens

var_end
kw

op_kw

coboldata

mtr individualname

cdin
c

Description
String - Has the constant value of "RETELL Individual (".
String - Has the constant value of ") in Token, CobolNode".
String - Has the value of "with source (<filename>)"
String - Is set to the "Programld" attribute (if any) of the
CobolNode being scanned.
String - Is set to the name of the source code file being
scanned.
String - Is set to the "call" attribute (if any) of the CobolNode
being scanned.
String - Is set to the "affect" attribute (if any) of the
CobolNode being scanned.
String - Is set to the "select" attribute (if any) of the
CobolNode being scanned.
Numeric - The calling parameter of the "ifjix" function (see
Table 9).
Boolean - 1 if the current line is part of an OPEN statement,
which started in a previous line and is not over yet. 0
otherwise.
String - Has the constant value of "end".
String (Table of 46 variables) - Each variable is a COBOL
statement. All COBOL (RM/COBOL - 85) statements are
stored in this Table.
String (Table of 11 variables) - Each variable is a phrase used
by the OPEN (RM/COBOL - 85) statement. All the phrases
used by the OPEN statement are stored in this Table.
String (Table of 1 line and variable length of columns) - It
contains the names of the data files (CobolData objects)
affected by this CobolNode. Each CobolData object found is
checked against the contents of this Table. If at least one
match is found it gets discarded. If no match is found an
"affect" relation is created and then its name is appended to
this Table. It is used just not to make twice the same attribute
declaration (a specific dada file can be OPENed more than one
time in a COBOL program).
String (Table of 2 variables) - It is used just to split the name
of the source file in two pieces (divided by the "." character).
If the second variable (of the Table) has the value "CBL" or
"cbl" the value of the first variable is given as a "name" of the
CobolNode. Otherwise the CobolNode is named after the
name of the source file.
Counter.
String - It is used by the "strfix" function.
Counter

120

Appendix 8

Description of functions defined and used by the Attributes.awk program.

Function name
strfix (string)

offspaces (string)

arrfind (string,string
array)

Description
String - The string parameter is checked against the possibility
to have heading or trailing characters that are not (capital or
lower case) letters or numbers. If so these characters are
discarded. The new string (without any of the bad heading or
trailing characters) is returned.
String - The string parameter is checked against the possibility
to contain trailing space characters. If so the trailing space
characters are discarded. The new string (without any trailing
space characters) is returned.
Boolean - The string parameter is checked against each of the
elements of the second parameter (string array). The function
returns the "TRUE" value (1) if at least one match is found.
"FALSE" otherwise.

121

Appendix 9

The procedure followed to create a new and empty TELOS database instance,
configure it and then store all the information gathered by the COBOL parser into the
database instance is described in the next steps. More information concerning the
detailed description of all these steps and why they must take place can be found in
the SIS manual page.

Stepl Execute the mainsetup.bat batch file, which is located in the \sis\env
directory. This batch file sets all the environment variables that the TELOS
database and the GAIN browser examine when they initialize, concerning
values that describe the characteristics of the computer (e.g. the computer
name).

Step2 Execute the HotelR12_Setup.bat batch file, which is located in the \sis\env
directory. This batch file sets all the environment variables that the TELOS
database and the GAIN browser examine when they initialize, concerning
values that describe the characteristics of the specific TELOS database
instance (e.g. the TCP port that the TELOS database instance will listen to).

Step3 Delete all the contents of the data directory of the TELOS database instance.
Step4 Start the TELOS database instance by executing the command "start

sisserver %sis_port%" from the \sis\bin directory.
StepS Execute the gr_dos_script, which resides in the

\sis\applications\HotelR12\Telos_Sources directory. This batch script
invokes the TELOS parser and executes the queries, which are located in the
query-menus.tls, cobol-nodes.tls and query-transactions.tls files (see "Design
and Implementation of the TELOS Database Instance").

122

Appendix 10

The procedure followed to start TELOS database engine and the GAIN
browser is described in the next steps. More information concerning the detailed
description of all these steps and why they must take place can be found in the SIS
manual page.

Stepl Execute the mainsetup.bat batch file, which is located in the \sis\env
directory. This batch file sets all the environment variables that the TELOS
database and the GAIN browser examine when they initialize, concerning
values that describe the characteristics of the computer (e.g. the computer
name).

Step2 Execute the HotelR12_Setup.bat batch file, which is located in the \sis\env
directory. This batch file sets all the environment variables that the TELOS
database and the GAIN browser examine when they initialize, concerning
values that describe the characteristics of the specific TELOS database
instance (e.g. the TCP port that the TELOS database instance will listen to).

StepS Execute the runserver.bat batch file that initializes the TELOS database
engine.

Step4 Execute the rungain.bat batch script that initializes the GAIN browser.

Appendix 11

123

Table All.l - Programs with the most Include relations

Number of relations

Program
APOMASTN
TIMEIS
TIMAG
APDIAK
ORDEIS
APEVRKIN
TDPREIS
PAREIS1

Include

66
62
56
55
55
54
53
51

Affect
16
19
8
4
10
13
18
10

Select
0
0
0
0
0
0
0
0

Call

6
6
2
17
4
3
2
3

Summary

88
87
66
76
69
70
73
64

Table A11.2 - Programs with the most Affect relations

Number of relations

Program

V3-APO
TIMEIS
TIMEKD
YPOK-APO
TDPREIS
TGEKD

Include
19
62
46
3

53
45

Affect
28
19
19
19
18
18

Select
14
0
0

23
0
0

Call
0
6
0
0
2
1

Summary
61
87
65
45
73
64

Table A11.3 - Programs with the most Select relations
Number of relations

Program

EMP-APO
MAKOIKO
YPOK-APO
EMP-TM

Include

2
1
3
2

Affect

13
4
19
12

Select

24
24
23
15

Call

0
0
0
0

Summary

39
29
45
29

124

Table A11.4 - Programs with the most Call relations

Number of relations

Program

APOPEN
APIN
TMOPEN
TIMIN
AGOPEN
AGIN

Include
1
0
3
0
3
0

Affect

0
0
0
0
0
0

Select
0
0
0
0
0
0

Call

25
16
16
16
15
15

Summary

26
16
19
16
18
15

Table A11.5 - Source

Source File

APOMASTN.CBL
TIMEIS.CBL
TIMAG.CBL
APDIAK.CBL
ORDEIS.CBL
APEVRKIN.CBL
TDPREIS.CBL
PAREIS1.CBL

files with the most Contain relations
Number

of
Contain
relations

66
62
56
55
55
54
53
51

Table A 11.6 -Data

Data File
APO-FILE
APOMA-FILE
APANAL-FILE
APTM-FILE
APTEAM-FILE
APO1-FILE

files with the most Affect

Number of

Affect
345
239
193
177
175
165

relations

Select
20
2
9
1

10
2

relations

Summary

365
241
202
178
185
167

125

Table A11.7 - Data files with the most Select relations

Number of relations

Data File

SEQ-FILE
PRINT-FILE
APO-FILE
PELAT-FILE
TMP-FILE
SORT-FILE
WAPO-FILE

Affect

45
156
345
149
15
0
18

Select

47
30
20
18
17
16
16

Summary

92
186
365
167
32
16
34

126

Appendix 12

The
nitiuc tO the sunwaic icciigiiiccimg m
until its final stable revision (Rev 1.8)

Table A12.1 - Improvements and corrections made to each revision

/4|J|JCUU1A 14

?he following table presents all the improvements and corrections (bug fixes)
made to the software reengineering mechanism from its first stable revision (Rev 1.2)

final otoV\lo tv»\/i 01 /-\n /l?£»i/ 1 Q\

Revision Improvements and corrections

Rev 13 Added the "open" relation to the SourceFile object.

Rev 14 Moved the "select" relation from the CobolNode object to the
SourceFile object. (Bug Fix)
Added the "define" relation to the SourceFile object.

Rev 15 Log all the discarded relations.

Rev 16 Support for .cbl and .CBL extentions in COPY statements. (Bug Fix)

Rev 17 Make CobolNode and CobolData objects to be case insensitive (Bug
Fix)

Rev 18 Added the invoke attribute to the SourceFile objects.___________

127

Appendix 13

In this appendix the presentation and analysis of source code files of the XPERT
Hotel software application takes place.

Sign Description
V Libraries. RM/COBOL source code or RM Panel binary libraries, which

are included in programs that compile successfully.
V Dead Code. The source file has been unlinked from the main application

or the only program using it compiles with errors.
* Main Source Code File. The file is the main source file of a program that

compiles successfully.
* Dead Code. Program compiles with errors.
+ Structured Text File. The file contains global application parameters or

is an executable shell script.
+ Garbage. Completely useless text or binary.

X ACHK.CBL
V AFM.WOR

X AGARSEE.CBL
V AGDAPEN.CBL

X AGDEIS.CBL
X AGDEVR23.CBL

V AGDREC.CBL
X AGEVR.CBL
V AGHMER.WOR
V agkk-ap.prc
V AGKOST.PRC
•>/ AGO.SEL

X AGOPOL.CBL
V agparmtr.ws

X AGPEIS.CBL
V AGPREC.CBL

V ADP.PRC
X AFMFIX.CBL
X AGARSEEP.CBL
X AGDATOP.CBL
X AGDEL.CBL
X AGDEVRDT.CBL
X AGDTIM.CBL
X AGFLCHK.CBL
X AGHMEROL.CBL
V agkk-ap.ws
X AGLINKOP.CBL
V AGO.WOR
V AGOVAR.WOR

X AGPCNTOP.CBL
X AGPEVR4.CBL
X AGPTIM.CBL

X AFM.CBL
X ag-ekt.cbl
X AGARTOP.CBL
X AGDCHK.CBL
X AGDEVR.CBL
X AGDOP.CBL

•4 AGEPIB.PRC
X AGFORTEID.CBL
X AGIN.CBL
i/ agkk-pel.prc
V AGO.MOV

X AGOPCNT.CBL
X AGPAR.CBL

V AGPCNTREC.CBL
X AGPEVR123.CBL
X AGTCHK.CBL

V AFM.PRC
X AG2HMER.CBL
X AGARTP.CBL
X AGDEFPAR.CBL
X AGDEVR4.CBL
X AGDPAR.CBL
V AGEPIK.CBL

X AGFORTSYN.CBL
X AGINVOP.CBL

V agkk-pel.ws
V AGO.REC

X AGOPEN.CBL
^ agparmtr.prc

X AGPDELCBL
X AGPOP.CBL
X AGTCHKI.CBL

128

X AGTDEL.CBL
X AGTEIS.LST
X AGTEIS3.CBL
X AGTPAR.CBL
X AGTYPEIS.CBL
X AIT-TIM.CBL

V ALLFEAT.WOR
V AMUPADTE.CBL
A/ AMUPD.REC
+ amupdmv
•*/ ANTO.PRC

X AP-AP.CBL
X AP-MOVE1.CBL
X AP1CLEAR.CBL
X APAIT2EX.CBL

V APALBRI.REC
X APALBRI9.STD
V APALEIS.WOR

X APALOP.CBL
X APANAL.CBL
V APANAL.WOR

X APANALX.CBL
X APANFL1.CBL
V APANLOG.PRC

X APANREAD1.CBL
X APANUSER.CBL
V apaptm.ws

X APASFAL.CBL
X apchkxbl
X APCOSTAN.CBL

V APD-JOB.PRC
X APDGEN.CBL
X APD1AK.LST
V APDMAT.PRC
V APDPR.REC

X APDPROP.CBL
X APEIDFPA.CBL
X APEIDMAN.CBL
i/ apeidmtk.prc
•>/ apeidstk.ws

X APEIDTIM.CBL
V APENHM.TIM

X APETIK.CBL
V APEVROO.PRC

X APEVR01.LST
X APEVREI2.CBL
X APEVRGEN.CBL
X APEVRKIN.STD
V APEVRSTK.WOR

X APEXAG.CBL
V APF.PRC
V APF1.REC
>/ APF1L.REC

X APF1OP.CBL
V APFEACH.WOR
i/ APFEREC.CBL

X APFDCCN.CBL
V APFL1.PRC

X APFLOP.CBL
V APFLTR1.PRC

X APFPA.CBL
V APFPA.WOR
V apfpr.prc
V apfpr.ws

X APFPREVR.CBL
X APG1CNLT.CBL
X APG1LST1.CBL
X APG1TO3.CBL
X APG2EIS2.CBL
X APG2TAKT.CBL
X APG3EIS2.CBL
X APG3LST4.CBL

•V agtdisc.win
X AGTEIS.STD
X AGTOMEIS.CBL
V AGTREC.CBL
X AGTYPOP.CBL
X AITEXAG.CBL
V ALLPELF.WOR
V AMUPD.DCL
V AMUPD.SEL
X AMUPREAD.CBL
•>/ any-win.prc
X AP-DEL.CBL
X AP-UPD.CBL
X AP2HMER.CBL
V APAL.REC
V APALBRI.SEL
X APALEIS.CBL
X APALGCH.CBL
X APAN-MTK.CBL
V APANAL.MOV
X APANALAA.CBL
X APANALY.CBL
X APANFL2.CBL
V APANLOG.REC
V APANREC.CBL
X APAPOGR1.CBL
•J apar.prc
X APCHANCE.CBL
X APCLEAR.CBL
X APCOSTS.CBL
V APD.REC
X APDGEN1.CBL
V apdiak.prc
V APDMAT.WOR
•\l apdpr.win
V APDPRREC.CBL
V apeidfpa.prc
%' apeidman.prc
V apeidmtk.ws
X APEIDSYN.CBL
•</ apeidtim.prc
V APENHM.WOR
X APETIKCH.CBL
V APEVROO.REL
V APEVREI.ACC
X APEVREI6.CBL
X APEVRICL.CBL
X APEVRMAN.CBL
X APEVRTA1.CBL
X APEXAHTL.CBL
V APF.REC
V apfl.win
X APF1LINK.CBL
V APF1REC.CBL
V apfeatl.prc
X APFILTER.CBL
V APFL.PRC
X APFLCHK.CBL
•J apflprd.win
V APFLTR2.PRC
V APFPA.PRC
V APFPAREC.CBL
•i APFPR.REC
X APFPREIS.CBL
^ APFPRT.PRC
X APG1DIAF.CBL
X APG1LST2.CBL
X APG2CNLT.CBL
X APG2LST1.CBL
X APG3CNLT.CBL
X APG3LST1.CBL
X APG3TAKT.CBL

X AGTEIS.CBL
X AGTEIS1.CBL
X AGTOMOP.CBL
X AGTSYGDT.CBL
X AGVEW.CBL
X AITEXALL.CBL
X ALPHATEST.CBL
V AMUPD.MOV
V AMUPD.WOR

X ANALMAKE.CBL
V any-win.wor

X AP-GET.CBL
X AP.CBL
X apaddtrs.cbl
V APAL.WIN
V APALBRI.WOR
V APALEIS.PRC
V APALGCH.PRC

X APAN.CBL
V APANAL.REC
V apanalho.rec

X APANAL_N.CBL
X APANLGOP.CBL

V APANLOG.WOR
X APANRPRV.CBL
X APAPOGR2.CBL
V apar.ws

X APCHANGE.CBL
V apcode2.win
V APCOSTS.PRC

X APDEL.CBL
X APDIAFOR.CBL
V apdiak.ws

X APDOP.CBL
X APDPREVR.CBL
V APDREC.CBL
V apeidfpa.ws
V apeidman.ws

X APEIDSTK.CBL
V apeidsyn.prc
V apeidtim.ws
V APENMTK.PRC

X APEVMON.CBL
V APEVROO.WOR

X APEVREI1.CBL
X APEVRET.CBL
X APEVRKI2.CBL
X APEVRSTK.CBL
X APEVRTA2.CBL
X APEXEKT.CBL
V APF.WIN
V APF1.WDV
V apflink.win

X APFEACH.CBL
V apfeatl.ws
V APFILTER.PRC
V APFL.REC

X APFLEIS.CBL
V APFLREC.CBL
V APFLTR3.PRC
V APFPA.REC

X APFPR.CBL
•V APFPR.SEL

X APFPREN1.CBL
V APFPRT.REL

X APG1EIS1.CBL
X APG1LST3.CBL
X APG2DIAF.CBL
X APG2LST2.CBL
X APG3DIAF.CBL
X APG3LST2.CBL
X APGARXH.CBL

V AGTE1S.LNK
X AGTEIS2.CBL
X AGTOP.CBL
V agtvalue.win

X AGVffiWl.CBL
V ALLAPF.WOR

X ALPHATEST2.CBL
V AMUPD.PRC

X AMUPDATE.CBL
~<l answers.wor

X AP-DEL.CBL
X AP-MOVE.CBL
X APO.CBL
X APAGLAST.CBL
X APALBRI.CBL
X APALBRI9.CBL
V APALEIS.WIN
V APALGCH.WOR

X APANAHTL.CBL
V APANAL.SEL

X APANALN.CBL
X APANCHK.CBL
X APANLOG.CBL
X APANREAD.CBL
X APANTEST.CBL
V apaptm.prc

X APARTPOP.CBL
X APCHK.CBL

V apcode3.win
V APCOSTS.WOR

X APDEL1.CBL
X APDIAK.CBL
X APD1EK.CBL

V APDPR.PRC
X APDPRICE.CBL
X APEIDFP3.CBL
X APEIDMA3.CBL
X APEIDMTK.CBL
V apeidstk.prc
-^ apeidsyn.ws
V APENHM.PRC

X APEPANEK.CBL
X APEVROO.CBL
X APEVR01.CBL
X APEVREI1.STD
X APEVRET1.CBL
X APEVRKDM.CBL

V APEVRSTK.PRC
X APEVRTAM.CBL

V APEXPREC.CBL
V APF.WOR

X APF1EIS.CBL
V APF1LREC.CBL
N APFEACH.PRC

X APFEIS.CBL
V APFELTER.WOR
•j APFL.WOR
V apfleis.win
V APFLTR.PRC

X APFOP.CBL
V APFPA.WIN
V APFPR.MOV
V APFPR.WOR

X APFPRENH.CBL
V APFREC.CBL

X APG1EIS2.CBL
X APG1TAKT.CBL
X APG2EIS1.CBL
X APG2LST3.CBL
X APG3EIS1.CBL
X APG3LST3CBL
X APGARXH1.CBL

129

X APGARXH2.CBL
X APGDEL1.CBL
X APGDIAF1 CBL
V apgeis2.prc

X APGENYP.CBL
V APGK.MOV
V APGK.WOR
•>/ apgkey.win

X APGLIST2.RST
V APGLP.PRC
V apgper.win

X APGSTART.STD
X APHMEROL.CBL
X APHOSPOP.CBL
X APHOTEL.CBL

•^ aphpl.prc
X APHSPHTL.CBL
X APISOZ1.CBL
X APK1SYG.CBL
X APKATEL.CBL
V apkk.prc
V APKO2.REC
V APKODEREC.CBL

X APKOSTEIS.CBL
X APLABEL.CBL
V APLGCH.PRC
V APLTIMAG.PRC

X APMANTAM.CBL
X APMEZEV1.CBL
X APMEZHTT.CBL
X APMHNSTA.CBL
V APMHNYP.WOR

X APMODOP.CBL
V APMON.REC

X APMONOP.CBL
X APMRINS.CBL
X APMRREAD.CBL

V APMTK.LNK
X APMTKCMP.CBL
X APNCLEAR.CBL
X APO-DESC.CBL
i/ APO.DCL
V APO.REC
V APO.WRK

X APO1CHK.CBL
X APOGCHK.CBL
X APOGOPO.CBL
V APOGR.LNK
i/ APOGR.REC

X APOGRDEL.CBL
V APOINS.PRC
V APOM1.REC
V APOMA.PRC
•v/ APOMA.WOR
V apomacp.prc

X APOMANEW.CBL
V APOMAST.MOV
V APOMAST.WOR

X APOMAST3.CBL
X APOMASTN.NEW
V APOMAX.DCL

X APOMEIS.CBL
X APOPANAL.CBL
X APOPMR.CBL
V APOTAM1.WIN
V APOX.SEL

X APPEIS.CBL
X APPELO.CBL

V APPEL2.PRC
X APPFPA.CBL
V APPL.WOR
V APPL5B1.PRC

X APGCNLT3.CBL
X APGDEL2.CBL
X APGEIS1.CBL
V APGEIS2.WOR
V APGENYP.PRC
V APGK.REC
X APGKEIS.CBL
X APGKOPEN.CBL
X APGLIST2.STD
V APGLP.REL
X APGSTAR1.CBL
X APGTACNL.CBL
V aphosp.prc
X APHOSPP2.CBL
V aphotel.prc
•J aphpl.ws
X APHTLCOS.CBL
X APK1EIDA.CBL
X APK1YPOL.CBL
X APKATEL1.CBL
%' APKK.WOR
V APKO2REC.CBL
X APKODTAM.CBL
X APKOSTKER.CBL
V APLABEL.PRC
V APLGCH.WOR
V APLTMAG.WOR
V apmaster.prc
X APMEZEV2.CBL
X APMEZMTM.CBL
X APMHNSTF.CBL
V APMOD.REC
X APMODPRT.CBL
V APMON.WOR
i/ APMONREC.CBL
X APMRMET.CBL
->/ APMTIM.PRC
V APMTK.PRC
X APMTKCMP.RUN
X APNEW.CBL
V APO-P.WIN
V apo.metaxa.doc
T) APO.SEL
V APO1.PRC
N1 APO2.WIN
X APOGEIS2.CBL
X APOGOP1.CBL
V APOGR.MOV
V APOGR.SEL
X APOGRMOV.CBL
X APOKARTA.CBL
V APOM1.SEL
V APOMA.REC
X APOMA2TR.CBL
V apomacp.ws
X APOMANOO.CBL
V APOMAST.REC
X APOMAST1.CBL
X APOMASTN.BKP
V apomastn.prc
V APOMAX.REC
X APOMEVR.CBL
X APOPEN.CBL
X APOPTIMCH.CBL
V APOTEST.PRC
V APOX.WOR
X APPEL.CBL
V APPELO.PRC
V APPEL2.WOR
X APPFPA1.CBL
X APPL5A.CBL
V APPL5C.PRC

X APGCNLTA.CBL
X APGDEL3.CBL
X APGEIS2.CBL
V apgeis2.ws
V APGENYP.REL
V APGK.SEL
V apgkeis.prc

X APGLIST1.CBL
X APGLIST3.CBL
V APGLP.WOR

X APGSTAR2.CBL
X APGTAKT.CBL
V aphosp.ws

X APHOSPPL.CBL
V aphotel.ws

X APHPLEIS.CBL
X AP1N.CBL
X APKHSOZ.CBL
X APKARTEL.CBL
X APKDCHK.CBL
V apkk.ws

X APKODCHK.CBL
V APKOS.REC
V APKOSTME.CBL
V APLABEL.WOR

X APLGEIDOS.CBL
X APMUOIN.CBL

V apmaster.ws
X APMEZEVR.CBL
X APMHN.CBL
X APMHNYP.CBL
X APMODEL.CBL
V APMODREC.CBL

X APMONEIS.CBL
X APMRCLS.CBL
X APMRMOV.CBL

V APMTIM.WOR
X APMTKOOO.CBL
X APMTKEID.CBL
X APNOKIN.CBL
V APO-TAM.WIN
V APO.MOV
V APO.WIN
V AP01.SEL

X APOCOMP.CBL
X APOGLST.CBL
X APOGPR.CBL
V apogr.prc
V APOGR.WOR
V APOGRNEW.REC
V APOKK.WOR
V APOM1REC.CBL
V APOMA.SEL
V APOMA3.WIN

X APOMAFEX.CBL
X APOMAREAD.CBL
V APOMAST.SEL
V APOMAST1.SEL

X APOMASTN.CBL
X APOMASTN.STD
V APOMAX.SEL
V APOMT.REC

X APOPFPA.CBL
•V APOREAD.PRC

X APOUPD1.CBL
V APP.REC
V APPEL.PRC
V APPELO.WOR

X APPEL3.CBL
V APPIC.CBL

X APPL5B.CBL
V APPL5C1.PRC

X APGCONV1.CBL
X APGDELET.CBL

V APGEIS2.CPY
X APGENDEL.CBL
V APGENYP.WOR
V APGK.WIN
V apgkeis.ws

X APGLIST2.CBL
X APGHST4.CBL
X APGOTHER.CBL
X APGSTART.CBL
X APGTAKT3.CBL
X APHOSPHT.CBL
X APHOSPTR.CBL
X APHOTELO.CBL
X APHPLEVR.CBL
X APISOZ.CBL

V APK1REC.CBL
X APKARTHT.CBL

V APKK.PRC
V APKKFIL.CBL
V APKODE.REC
V APKOSREC.CBL

X APKSHOW.CBL
X APLGCH.CBL
X APLGEVR.CBL
X APM2JOIN.CBL
X APMCLEAR.CBL
X APMEZHTL.CBL
X APMHNST.CBL
V APMHNYP.PRC
V apmodel.win
V APMON.PRC

X APMONHTL.CBL
X APMRCRE.CBL
X APMRMOVO.CBL
V APMTIMPK.PRC

X APMTKAPL.CBL
X APMTKSYN.CBL
X APNREAD.CBL
X APO-TR.CBL
V APO.PRC
•J APO.WOR
V APO1.WOR

X APODEL.CBL
X APOGOP.CBL
X APOGR-OP.CBL
V APOGR.REO
V apogr.ws
V APOHO.SEL
V APOKODE.PRC

X APOMA-TR.CBL
V APOMA.WIN

X APOMACHK.CBL
X APOMANAF1.CBL

V APOMAST.LNK
V APOMAST.WIN

X APOMAST2.CBL
X APOMASTN.LST
V apomastn.ws
^ APOMAX.WOR

X APOP1MR.CBL
X APOPFPR.CBL
V APOREC.CBL
V APOX.REC

X APPARCBL
V APPEL.WOR

X APPEL2.CBL
X APPEL22CBL

V APPL.PRC
V APPL5B.PRC

X APPOL3CBL

130

X APPOP.CBL
X APPRICE.CBL
V APPROM.WOR

X APPROM5.CBL
V APRD.REC

X APRECOS1.LST
•J APRECOST.PRC
V APRECSYN.PRC
V APREL.REC

X APRELEIS.CBL
X APRELOP.CBL
X APROL3.CBL
X APSCLEAR.CBL
X APSORT.CBL
X APSTKEID.CBL
X APSTOCK9.LST
V APSYN.SEL
V APT.REC

X APTAMMAN.CBL
X APTAMPOS.CBL
X APTAMPR.CBL

V aptamtim.ws
V APTE1REC.CBL

X APTEAMOP.CBL
V APTIMCH.PRC

X APTIMCHF.CBL
X APTEMO.CBL
V aptm-ext.ws
V APTM.MOV
V APTM.WIN

X APTMEVR.CBL
V aptmsel.win

X APTMXEIS.CBL
X APTPR2MZ.CBL
X APTREIS.CBL
X APTURN.CBL

V APUPD.MOV
V APUPD.WOR
+ apupdmv
X APWEEKST.CBL

V APYPOLO.PRC
V APYPREC.CBL
V ARTP.MOV

X ASC-AP.CBL
X ASC-APAN.CBL
X ASC-PEL1.CBL
X ASC-PROM1.CBL
X ASC.CBL
V ASUPD.REC

X BACKUP.CBL
X boxask.cbl
X calc.std
X CALL.CBL
X CANCPRT.CBL
+ candiarm
V cent-y.prc
V CLOCK.PRC

X COMPANY.LST
X COMPMEN.CBL
+ cpl
V cu-apo.prc
V DATE.PRC
V DATECN.WOR
+ datelist
V DAYNAME.PRC
V DB.REC

X DBEXEC.CBL
V dbfld.win
V dbscrn.win
V DED.SEL
V deductio.win
V deltio.prc

appos.prc
X APPROFIT.CBL
X APPROM2.CBL
V APPROM5.PRC
X APRDOP.CBL
V APRECOS1.PRC
V APRECOST.WOR
V APRECSYN.STD
V APREL.SEL
V APRELEIS.PRC
X APREPHTL.CBL
X APSALES.CBL
X APSCREEN.CBL
X APSTAT.CBL
X APSTKMET.CBL
X APSYG.CBL
V APSYNREC.CBL
X APTAMDEL.CBL
V aptammon.prc
V aptampos.prc
X APTAMPR.STD
X APTCHADD.CBL
V APTEAM.PRC
V APTEAMREC.CBL
•V APTIMCH.REC
V APTIMCHREC.CBL
X APTIMPO.CBL
V aptm-win-wor
V APTM.PRC
V APTM.WOR
X APTMFILL.CBL
V aptmwor.win
V APTMXREC.CBL
V APTR.REC
X APTROP.CBL
V APUNITS.PRC
•V APUPD.PRC
X APUPDAT3.CBL
X APUPDMV.CBL
V APWEVOL.PRC
V APYPOLO.WOR
X APZERO.CBL
V ARTP.REC
X ASC-APO.CBL
X ASC-CODE.CBL
X ASC-PEL3.CBL
X ASC-PROM3.CBL
V ASUPD.DCL
V ASUPD.SEL
+ BACKUP. WRN
V boxask.lib
V calc.wor
X CALL1.CBL
+ CANCPRT.WRN
+ candiatr
V cent-y.wor
V CLOCK.WOR
+ COMPANY.WRN
V confirm.lib
X CR-L.CBL
T/ cu-apo.ws
V DATE.WOR
V DATECTRL.PRC
X DAY.CBL
V DAYNAME.WOR
V DB.SEL
V DBEXEC.PRC
•V dblink.win
V DECL.PRC
V DED.WOR
V deductio.ws
V deltio.ws

appos.ws
X APPROM.CBL
X APPROM3.CBL

V APPROM5.WOR
%f APRDREC.CBL
V APRECOS1.WOR

X APRECSY1.CBL
V APRECSYN.WOR
V APREL.WOR
V APRELEIS.WIN

X APREPORT.CBL
V apsales.prc
V APSELTM.PRC

X APSTAT1.CBL
X APSTKPER.CBL
X APSYGYP.CBL

V APSYNT.PRC
V aptameis.prc
V aptammon.ws
V aptarapos.ws

X APTAMTIM.CBL
V APTE1.REC
V APTEAM.REC

X APTEAMS.CBL
V APTMCH.SEL

X APTIMEID.CBL
X APTIMTAM.CBL
\' APTM.CPY
V APTM.REC

X APTMEIS.CBL
X APTMJOIN.CBL

V APTMX.PRC
X APTOTAL.CBL
X APTRANS.CBL

V APTRREC.CBL
V APUNITS.WOR
V APUPD.REC

4- apupdate
X APUPDSAY.CBL
X APYPOL.CBL
X APYPOL1.CBL
X AP_CHK.CBL
V ARTP.SEL

X ASC-AP1.CBL
X ASC-LGAN.CBL
X ASC-PEL4.CBL
X ASC-TEAM.CBL

V ASUPD.MOV
V ASUPD.WOR

X BAR.CBL
V boxask.wor

X calctest.cbl
X CALLAPREL.CBL
+ candia
+ cbl
V CKEY.WOR

X COMPANY.ALX
+ compile
i/ confirm.prc

X CR-L1.CBL
V CUSTOM.REC
V DATE1.PRC
V DATECTRL.WOR
V DAY.PRC

X DB.CBL
^ DB.WOR
V dbf.win

X DBMARK.CBL
V DED.MOV

X DEDEIS.CBL
•V delt.prc
+ demo

V APPREC.CBL
V APPROM.REL

X APPROM4.CBL
V APRCSYN.PRC

X APRECOS1.CBL
X APRECOST.CBL
X APRECSYN.CBL

V APREL.MOV
X APRELATE.CBL
V APRELEIS.WOR

X APREPSTK.CBL
V apsales.ws
V APSELTM.WOR

X APSTATUS.CBL
X APSTOCK9.CBL

V APSYN.REC
X APSYNTEV.CBL

V aptameis.ws
X APTAMOV.CBL
V APTAMPOS.WS
i/ aptamtim.prc

X APTE10P.CBL
V APTEAM.WRK

X APTIMCH.CBL
V APTIMCH1.PRC

X APTIMMEZ.CBL
V aptm-ext.prc
V aptm.hlp
V APTM.SEL

X APTMENU.CBL
X APTMOP.CBL
V APTMX.REC

X APTOTAL.LST
V APTREC.CBL

X APTRWHOP.CBL
V APUPD.DCL
V APUPD.SEL

X APUPDATE.CBL
X APWEEK.CBL
X APYPOLO.CBL
X APYPOLB.CBL
X ap_chk.cbl

V ARTP.WOR
X ASC-AP2.CBL
X ASC-PEL.CBL
X ASC-PROM.CBL
X ASC-TEAM2.CBL

•J ASUPD.PRC
X ASUPDATE.CBL
+ BB
X calc.cbl
X CALL-EIS.CBL
+ CANCPR.WRN
+ candiain
+ cbllist
V ckeys.lib

X COMPANY.CBL
+ compilelist
V confinn.ws

X CS-L.CBL
->/ DATE.ACC
V DATE1.WOR
V DATECTRX.PRC
V DAY.WOR
V DB.MOV
V dbase.win
V dbfdesc.win

X DBPRNT.CBL
V DED.REC
V deductio.prc
V delt.ws
V digit3.prc

131

V digits. ws
•>/ DOC.REC
V dpp_parm.win
V EKTREC.CBL

X EMP-PEL.CBL
X entypo2.cbl
X EPDATE.CBL
X EPDEL3.CBL
V EPI.REC
V EPI1.REC

X EPIT1OPMR.CBL
X EPITEIS1.CBL
X EPITMEN.CBL
X EPITPEL.CBL
X EPITS1.CBL
X EPMET.CBL
X EPTBL3.CBL
X EPWEIS.CBL
X EXEC.CBL
X EXMONEIS.CBL

V expeis2.ws
•\/ expense. ws
V expsale2.ws

X fhandle.cbl
V filename.cbl

X FINIT.CBL
X FLAGO.CBL
V FLT.REC
V mext.wor
V formbin.sel
V formvar.sel
V frm-head.prc
V FRM.PRC
•\| frm.wor
V GEN1.PRC
+ ggg.95
X GP.CBL
V GRA.REC
\f GRA1.REC

X GRADATE1.CBL
X GRAM1OPEN.CBL
V GRAM1TREC.CBL

X GRAMEIS1.CBL
X GRAMET1.CBL
X GRAMOPTRAN.CBL

V GRAMREC.CBL
X GRATRAP1.CBL
V GRCNT1REC.CBL

X GREPIN.CBL
V GRL.REC

X GRTBEX2.CBL
V GSEL.WOR
V H232.WOR
V HEAD.WOR
V HEAD80.WOR
V HEADAP.WOR
V headprf.win
V hlp.sel
V HOSP.MOV
V HOSP.WOR
V HOTEL.MOV
V HOTEL. WOR
V HPL.SEL

X HTLEXAG.CBL
X ICL-CHK.CBL
X ICL-IN.CBL
X ICLSALES.CBL

V IOSP.REC
X K2NEW.CBL

ken400
V kk-ap.ws
V kk-prom.ws

•J dimen.win
V DOC.SEL

dvp
V emf.cbl
X EMP-PRO.CBL
X EP2PROM.CBL
X EPDATE1.CBL
X EPDEL4.CBL
V EPI.SEL
V EPI1.SEL
V EPIT1REC.CBL
X EPITKAT.CBL
X EPITMEN1.CBL
X EPITPROM.CBL
X EPITSYN.CBL
X EPMET1.CBL
X EPTBL4.CBL
X EPWEIS1.CBL
^ exeis.prc
•J expeis.prc
V expeis3.prc
V expsale.prc
V f-keys.wor
V fhandle.lib
V filepara.cbl
X FINm.CBL
X FLAG1.CBL
V FLT.SEL

Hh form.men
V formbin.wor
V formvar.wor
V frm-tail.prc
V frm.prc
V FRM.WOR
V GEN1.WRK
+ ggg-96
V GR-US.PRC
V GRA.SEL
V GRA1.SEL
X GRADEL.CBL
X GRAM1OPMR.CBL
X GRAMDATE.CBL
X GRAMEN.CBL
X GRAMKAT.CBL
X GRAMPEL.CBL
X GRAMTRAP.CBL
X GRCMENU.CBL
V GRCNTREC.CBL
X GREPOPEN.CBL
V GRL.SEL
V grtbex2.win
•V GWIN.REC
V HEAD.CBL
V HEADO.PRC
V HEAD163.WOR
V header, win
+ help. men
V hlp.wor
V HOSP.REC
V HOTEL.LIB
V HOTEL.REC

hotelsrc
V HPL.WEN
+ htlexag.prt
X ICL-CHK.STD
X ICL-OUT.CBL
V imd.lib
•V IOSP.SEL
+ ken. doc
V KEY.VAL
V kk-pel.prc
X KODACC.CBL

V DOC.MOV
V DOC.TXT

X EKTEIS.CBL
X EMP-AGO.CBL
X EMP-TIM.CBL
V EPAGREC.CBL

X EPDEL.CBL
X EPESYN.CBL
V EPI.WOR
V EPI1.WOR

X EPITDEL2.CBL
X EPITKAT1.CBL
X EPITOPMR.CBL
V EPITREC.CBL
V EPITTRAN.CBL

X EPSYN.CBL
X EPTRAP.CBL
+ ERR
V exeis.ws
V expeis.ws
V expeis3.ws
V expsale.ws

X FEANEW.CBL
+ file.grep
V FILTER.PRC

X FKAPOLG.CBL
X FLAG2.CBL

V FLT.WOR
V form.wor
V formbial.wor
V formvarl.wor

X FRM.CBL
V FRM.SPT
V GEN.PRC
+ ggg-93
+ ggg-97
X GR1CNT.CBL
V GRA.WOR
V GRA1.WOR

X GRADEL1.CBL
X GRAM1OPTR.CBL
X GRAMDEL.CBL
X GRAMEN1.CBL
X GRAMOPEN.CBL

•V GRAMPLHR.CBL
V GRAMTRREC.CBL

X GRCNT.CBL
X GRDEL1.CBL
X GRIN.CBL
V GRL.WOR

X GRTBL1.CBL
i/ GWIN.SEL
V HEAD.PRC
V HEADO.REL
V HEADAP.PRC
A/ headerl.win
V hip
V hlpl
V HOSP.SEL
V HOTEL.LNK
V HOTEL.SEL
V HPL.MOV
V HPL.WOR
+ h apo.men
X ICL-CHR.CBL

V icl-seq.rec
V INSUPDEL.PRC
V 1OSP.WOR
+ ken. men
V KEYS. WOR
V kk-pel.vvs

X KODE.CBL

+ doc.prt
V DOC.WOR

X EKTEPIL.CBL
X EMP-APO.CBL
X entypo.cbl
V EPAGRECI.CBL

X EPDEL1.CBL
V EPI.MOV
V EPI1.MOV
V EPIMASTER.CBL

X EPITEIS.CBL
X EPITKEY.CBL
X EPITOPTRAN.CBL
X EPITS.CBL
V EPITTRANSR.CBL

X EPSYN1.CBL
X EPTRAP1.CBL
V EXEC

X EXFEIS.CBL
V expeis2.prc
V expense.prc
V expsale2.prc
%' FEATURE.PRC
+ filel
^ filter, win

X FDCMTK1.CBL
V FLT.MOV
•J fhext.prc
V formbin.rec
V formvar.rec
V frm-dmy.prc
i/ frm.dcl
V FRM.WIN
V GEN.WRK
+ ggg-94
X GNFLCHK.CBL
V GRA.MOV
V GRA1.MOV

X GRADATE.CBL
X GRAKAT1.CBL

V GRAM1REC.CBL
X GRAMEIS.CBL
X GRAMET.CBL
X GRAMOPMR.CBL
X GRAMPROM.CBL
X GRATRAP.CBL
X GRCNT1.CBL
X GRDEL2.CBL
V GRL.MOV
V GRPROMREC.CBL

X GRTBL2.CBL
V GWIN.WOR
V HEAD.REL
V HEADO.WOR
V HEADAP.REL
%' headplf.win
V hlp.rec
V hlpwin.wor
V HOSP.WIN
+ hotel.men
V HOTEL. WIN
A/ HPL.REC
V HPL2.WIN

X ICL-ALL.CBL
+ icl-in
X ICLREAD.CBL
V IOSP.MOV

X K1NEW.CBL
+ ken. mid
V kk-ap.prc
V kk-prom prc
V KODE.GET

132

•>/ KODE.PRC
V KODE.WRK
V LEM.MOV

X lg-ekt.cbl
X LGDEL.CBL
X Igpelupd.cbl
X LINKMENU.CBL
V log.sel
•>/ logl.sel
V LOXWOOD.WOR
V MAIN.HLP
V MAIN.REC

X MAK+APAN.CBL
X MAK-APN.CBL
X MAK999KE.CBL
X MAKAGD.CBL
X MAKagp.CBL
X MAKAP-CS.CBL
X MAKAPO-ll.CBL
X MAKAP2.CBL
X MAKAPAN2.CBL
X makapch.cbl
X MAKAPDF.CBL
X MAKAPFL.CBL
X MAKAPLST.CBL
X MAKAPMR1.CBL
X MAKAPOGR.CBL
X MAKAPPOL.CBL

V MAKAPPR.PRC
X makapseq.cbl
X MAKAPTO-ll.CBL
X MAKAPTEAM.CBL
X MAKAPYP.CBL
X MAKARG.CBL
X MAKCNT.CBL
X MAKDPD.CBL
X MAKEPIT1.CBL
X MAKINV.CBL
X MAKOIKO.CBL
X MAKPEL.CBL
X MAKPL2.CBL
X MAKPLAN4.CBL
X MAKPLEVR.CBL
X MAKPLPR.CBL
X MAKPOL1.CBL
X MAKPOLDF.CBL
X makpr.cbl
X MAKPRAN3.CBL
X MAKSYN1.CBL
X MAKSYNT.CBL
X MAKTYPE.CBL
X MAK_AGDAT.CBL
X mak_apan.cbl
X mak plpol.cbl
X MAK_PRAN.CBL
+ maris.prt
+ MENCPL
V MENCPL.SEL
V MENDOC.REC

X MENREFR.CBL
+ MENRTS.WRN
V MENSPT.REC

X MERSRT.CBL
V ML.WOR
V MLDNLD.SEL
V mlprod.win
V MLTERM.MOV
V MLTERM.WOR
\f MNFYIMAS.REC
V MNREFR.REC
V MNUSR.PRC
V mnusr.wor
V MNUSREIS.PRC

V KODE.READ
X KODEOP.CBL
V LEM.REC
X LG-PL.CBL
X Igempupd.cbl
X Igproupd.cbl
V LINKREC.CBL
V logl.nam
V LOX6.PRC
V LOXWOOD.WRK
V MAIN.HLP.STD
V MAIN.SEL
X MAK+POLHS.CBL
X mak-apy.cbl
X MAK999MA.CBL
X MAKAGD1.CBL
X MAKagtCBL
X makap.cbl
X MAKAP1-2.CBL
X MAKAPAN.CBL
X MAKAPAN3.CBL
X MAKAPCH.CBL
X MAKAPDF.STD
X MAKAPGK.CBL
X MAKAPMON.CBL
X makapo.cbl
X MAKAPOM1.CBL
X MAKAPPOL1.CBL
i/ MAKAPPR.WOR
X MAKAPSY.CBL
X MAKAPTCH.CBL
X MAKAPTIMCH.CBL
X MAKAR.CBL
X MAKart.CBL
X MAKCOUNT.CBL
+ Makefile
X MAKGRAM.CBL
X MAKLINK.CBL
X MAKOYBA.CBL
X MAKPL-CS.CBL
X MAKPLAN.CBL
X MAKPLAN10.CBL
X MAKPLHELP.CBL
X MAKPOL.CBL
X MAKPOLD.CBL
X MAKPOLHS.CBL
X MAKPR8.CBL
X MAKPRMR.CBL
X MAKSYN2.CBL
X MAKtim.CBL
X MAKUNIT2.CBL
X mak_agt.cbl
X MAK.PLAN.CBL
X mak__pol.cbl
X mak__pran.cbl
X MARK.CBL
X MENCPL.CBL
+ MENCPL. WRN
V MENDOC.SEL
X MENRTS.CBL
V MENSEL.PRC
V MENSPT.SEL
V metag.win
i/ mlcust.win
V MLDNLD.WOR
V mlprom.win
V MLTERM.REC
V MNFYI.REC
V MNFYIMAS.SEL
V MNREFR.SEL
V MNUSR.REC
V MNUSR.WOR
V MNUSRE1S.PRG

V KODE.REC
V kost.prc
V LEM.SEL

X Ig.cbl
V Igink.cbl
V link.cbl
+ list
V logl. par
V LOX6.WOR

X MA1N.ALX
V MAIN.LIB
V main.ws

X mak-ap.cbl
X MAK-PEL.CBL
X MAKAG.CBL
X MAKAGDF.CBL
X MAKAGTO-l.CBL
X MAKAP.CBL
X makapl.cbl
X MAKAPANO.CBL
X MAKAPAN4.CBL
X MAKAPD1.CBL
X MAKAPF.CBL
X MAKAPGO.CBL
X MAKAPMR.CBL
X MAKAPO1.CBL
X MAKAPOMA.CBL
X MAKAPPOL2.CBL
X MAKAPRD.CBL
X MAKAPSYN.CBL
X MAKAPTE.CBL
X MAKAPTY2.CBL
X MAKARADD.CBL
X MAKART.CBL
X MAKDISC.CBL
X MAKEMP.CBL
X MAKGRAM1.CBL
X MAKMAIN.CBL
X MAKPARO-l.CBL
X MAKPL.CBL
X MAKPLAN1.CBL
X MAKPLC-D.CBL
X MAKPLMR.CBL
X MAKpol.CBL
X MAKPOLD1.CBL
X MAKPR-CS.CBL
X MAKPRALT.CBL
X MAKpro.CBL
X MAKSYN3.CBL
X MAKTIM1.CBL
X mak_agd.cbl
X mak_agtl.cbl
X mak_plan.cbl
X mak_poll.cbl
X mak_pml.cbl

V MEN.REC
V MENCPL.REC
+ MENDOC
X MENEXT.CBL
X MENRTS.LNX

V MENSEL2.PRC
V MENSPT.WOR

X MINIE-APO.CBL
V MLDNLD.DCL
V mlfilter.win
V MLTERM.DCL
V MLTERM.SEL
V MNFYI.SEL
V MNFYIMAS.WOR
i MNREFR.WOR
V MNUSR.SEL

X MNUSREIS.CBL
i/ MNUSRE1S.WOR

V KODE.SEL
V kost.ws
V LEM.WOR

X Igag.cbl
V Iglink.cbl
V LINK.HLP
V log.rec
V logl.rec
V LOXWOOD.PRC

X MAIN.CBL
^i main.prc

X MAINDOS.CBL
X MAK-AP.CBL
X MAK-PR.CBL
X makag.cbl
X MAKAGP.CBL
X MAKANAL2.CBL
X MAKAPO-l.CBL
X MAKAP1.CBL
X MAKAPAN1.CBL
X MAKAPANAL.CBL
X MAKAPD2.CBL
X MAKAPFE.CBL
X MAKAPLG.CBL
X makaprnr.cbl
X makapol.cbl
X MAKAPPO.CBL
X MAKAPPR.CBL
X MAKAPREL.CBL
X MAKAPTO-l.CBL
X MAKAPTE1.CBL
X MAKAPTYP.CBL
X MAKARDEL.CBL
X MAKARTHRO.CBL
X MAKDPCNT.CBL
X MAKEPIT.CBL
X MAKGRX.CBL
X MAKMENU.CBL
X MAKpeLCBL
X MAKPL1.CBL
X MAKPLAN3.CBL
X MAKPLCD.CBL
X MAKPLNPO.CBL
X makpol.cbl
X MAKPOLD2.CBL
X MAKPR.CBL
X MAKPRAN.CBL
X MAKPROM.CBL
X MAKSYN5.CBL
X MAKTRAN.CBL
X MAK AGD.CBL
X MAK_APAN.CBL
X mak_plnl.cbl
X mak_pol2.cbl

V mama
i/ MEN.SEL
+ mencpl.scr
X MENDOC.CBL
X MENFYI.CBL
X MENRTS.OLD

V MENSPT.PRC
+ menu
X MINIE-PEL.CBL
V MLDNLD.REC
V mlfilter.wor
V MLTERM.LNK
V mlterm.win
V MNFYI.WOR
+ mnrefr.dat
V MNUSR.MOV
V mnusr.win
%' MNUSREIS DCL
V MNUSRPER.REC

133

V MNUSRPER.SEL
•>/ MON.WRK

X MSSEQ.CBL
V NAME.CBL
V ndprod.win
•J ndterm.win

X NENREFR.CBL
V NEOS-PEL.SEL

+• newcpl
V nor-lnk.wor
+ nor-menu.spt
X normark.cbl

•V numtext.lib
V OFF.WOR
V OFFH.REC
V OFFI.MOV
•v/ oikod.prc

X oldnumxbl
X ORDAPTM1.CBL
X ORDEIS.CBL
X ORDSCAN.CBL

V ORP.WOR
V ORPH.WIN
V ORPI.SEL
V OVFLOW.PRC
V PAR-VAR1.PRC
V PARAGREC.CBL

X PARDATE2.CBL
V parm-ago.ws
V parm-gen.ws
-\/ parm-pro.ws
V pann-tim.ws
\f PARM.SEL

X PARPEL3.CBL
V PASSWD.WOR
\f PEL.REC
V PEL.WRK
V PELAT.MOV
V PELAT.WOR
V PELDISC.PRC
V PELF.WOR
•j PELFREC.CBL
V PELMAST.REC

X PELOPEN.CBL
X PELSEQ.CBL
X PELYPOP.CBL
X PFORTSYN.CBL
V pkwin.wor
V PLAFM.PRC

X PLA1M2.CBL
X PLANAL1.CBL
V PLANAL2.PRC
•V PLANAL3.WOR

X PLAPEMP.CBL
X PLCHKAFM.CBL
V PLCOM.WOR

X PLEKPT.CBL
V PLEP.WOR

X PLEVRET1 CBL
V PLFAIMEV.PRC

X PLFILTER.CBL
V PLGFP.PRC
V PLGPP.WOR
V PLHELPREC.CBL

X PLISOZ.CBL
V PLLIST.PRC
V PLMHN.PRC

X PLMHNPEP.CBL
V PLMHNSP.WOR

X PLMYF.CBL
X PLNMOP.CBL

V MNUSRPER.WOR
X msg.cbl
X MYF.CBL
•>/ ndcust.win
V ndremark.prc
X NEAXR.CBL
V NEOS-APO.FIL
V NEOS-PRO.FIL
X NEWPRG.CBL
X nor-menu.cbl
•^ nor-pelat.rec
V num2str.wor
V OFF.MOV
V offers.prc
V OFFH.SEL
V OFF1.REC
V oikod.ws
X OM-OM.CBL
X ORDDATE2.CBL
V ORDER.REC
V ORP.MOV
V ORPH.MOV
V ORPH.WOR
V ORPI.WOR
+ par-anf.prt
V PAR-VAR2.PRC
i/ parametr.prc
X PARDATE2.MARK
V parm-apo.prc
V parm-pel.prc
V pann-sys.prc
X PARMCBL
V PARM.WOR
X PARPEL3.MARK
V PEL.DCL
•V PEL.SEL
V PEL1.SEL
V PELAT.REC
V PELAT2.WIN
V PELDISC.WOR
X PELFEIS.CBL
X PELIDX.CBL
X PELNEW.CBL
X PELPROD.CBL
X PELTEAM.CBL
V PERIOD.WIN
X pkmenu.cbl
X PL-AFM.CBL
V PLAGE.PRC
X PLANAL.CBL
V PLANAL1.PRC
V PLANAL2.WOR
X PLANCHK.CBL
X PLAPOGR.CBL
V PLCHKAFM.PRC
X PLCOMMEN.CBL
V PLEKPT.PRC
X PLEPYPOL.CBL
X PLEVRET2.CBL
V PLFAIMEV.WOR
V PLFILTER.PRC
V PLGLP.PRC
V PLGPP1.PRC
X PLHSMHN.CBL
V PLISOZ.PRC
V PLLIST.WOR
V PLMHN.WOR
X PLMHNSP.CBL
X PLMHNSPP.CBL
V PLNM.PRC
X PLNS.CBL

V MON.PRC
V msg.lib

X MYMAIN.CBL
V ndfiher.win
V ndremark.win

X NEAXR.STD
V NEOS-APO.SEL
V NEOS-PRO.SEL

X nor-create.cbl
V nor-menu.rec
V nor-pelat.sel

X numdis.cbl
V OFF.REC
V offers.ws
V OFFH.WIN
V OFFI.SEL
V OKCANC.PRC
V ORD-TLN.WOR

X ORDEID.CBL
V order .win
V ORP.REC
V ORPH.REC
V ORPI.MOV
+ out
+ par-mas.prt
X PARACHK.CBL
V parametr.ws

X PAREIS1.CBL
V parm-apo.ws
V parm-pel.ws
V parm-sys.ws
V PARM.PRC

X PAROP.CBL
V PASS.REC
V PEL.MOV
V pel.sel

X PEL2HPL.CBL
V PELAT.SEL

X PELDEL.CBL
V PELDREC.CBL

X PELFOP.CBL
X PELINK.CBL
V pelnme.prc
%' pelprod.win

X PELYPEVR.CBL
X PFORTEID.CBL
V pkmenu.wor

X PL-MOVE.CBL
V PLAGE.WOR
V PLANAL.PRC
V PLANAL1 .WOR

X PLANAL3.CBL
X PLANREAD.CBL
X PLCHK.CBL
V PLCHKAFM.WOR

X PLCRDB.CBL
V PLEKPT.WOR

X PLETIK.CBL
X PLFAIM.CBL
X PLFAIML.CBL
V PLFILTER.WOR
V PLGLP.WOR
V PLGPP1.PRDC

X PLHSMHNP.CBL
V PLISOZ.WOR

X PLLOGI.CBL
X PLMHNP.CBL
X PLMHNSP.MARK
X PLMHNSYN.CBL
X PLNMDT.CBL
X PLOPANALCBL

V MON.WIN
X MSMAKAN.CBL
V NAIOXI.WOR
V ndfilter.wor
V ndremark.ws

X NEAXRDOS.CBL
V NEOS-PEL.FIL

X NEWANAL.CBL
X nor-get.cbl

V nor-menu.sel
+ norand.men
X numtext.cbl
V OFF.SEL
V OFFH.MOV
V OFFH.WOR
V OFFI.WOR
+ olddates
V ORD-VAR1.PRC

X ORDEIDDT.CBL
X ORDOP.CBL
V ORP.SEL
V ORPH.SEL
V ORPI.REC
V over.cbl

+• par-std.prt
X PARAGOP.CBL
V PARCNTREC.CBL
V parm-ago.prc
V parm-gen.prc
V parm-pro.prc
V parm-tim.prc
V PARM.REC

X PAROPCNT.CBL
V PASSWD.PRC
V PEL.PRC
V PEL. WOR
V PELANAL.REC
V PELAT.WIN

X PELDISC.CBL
V PELF.PRC
V PELFPRT.PRC
V PEL1NS.PRC
V PELNMEREC.CBL
V PELREAD.PRC

X PELYPOM.CBL
X PFORTEID2.CBL
V pkwin.prc

X PL-PL.CBL
X PLAIM1.CBL
V PLANAL.WOR

X PLANAL2.CBL
V PLANAL3.PRC

X PLANSRT.CBL
X plchk.cbl
V PLCOM.PRC
V PLDECL.PRC
V PLEP.PRC

X PLEVRET.CBL
X PLFAIMEV.CBL
V PLFAMREC.CBL

X PLFLCHK.CBL
V PLGPP.PRC
V PLGPP1.WOR

X PLIN.CBL
X PLKATEL.CBL
X PLMHN.CBL
X PLMHNPE.CBL

V PLMHNSP.PRC
X PLMRE1S.CBL
X PLNMECBL
X PLOPMRCBL

134

X PLPELISOZ.CBL
V PLPERISOZ.WOR
V PLPERYPOL.WOR

X PLPREAD.CBL
X PLRANGE.CBL
V PLSRT.WOR
V PLSTD.CBL

X PLTREIS.CBL
V PLYPL.WOR
V PLYPREC.CBL

X PLZERO.CBL
X POLREAD.CBL
V POS.SEL

X PR-MOVE.CBL
V PR1.SEL
V PR2.WOR
V PR4.MOV
V PR5.SEL
V PR6.WOR
V PRAGE.PRC
V PRANAL.WOR

X PRAPEMP.CBL
X prchk.cbl

V PRCHKAFM.WOR
V prdsel.prc

X PREVRET6.CBL
V PRF.WOR
V PRFPRT.PRC
V PRGEIS.WOR
V PRGLP.WOR

X PRIN.CBL
X PRISOZ.CBL
V PRLIST.PRC

X PRMERGE.CBL
X PRMHNSYN.CBL
V PRO.MOV
V PRO.SEL

X PROD-ASC.CBL
X PROFFCHK.CBL
X PROFFEVP.CBL
V PROMX.DCL
•J PROMX.WOR

X PROPMR.CBL
V PRORD.REC

X PRORDEKD.CBL
V prorders.ws
V PRPERISOZ.WOR
V PRPERYPOL.WOR

X PRRANGE.CBL
V PRSTAT.PRC

X PRSYGALFA.CBL
V PRT.WOR
V prt232.rec

X PRTEIS.LST
V prtlist.sel

X PRTSEL.CBL
V PRUPD.DCL
V PRUPD.SEL

X PRUPREAD.CBL
X PRYPOL.CBL
X pr_chk.cbl
V pwin_dow.wor
V REC1.REC
V recprn.wor
V reBOO.rec

X RELPEL.CBL
X RESTLIST.CBL
X rhandle.cbl
V rmpanel.ws

X SALES-ASC.STD
V SCRPRT.WOR

X PLPEREVR.CBL
X PLPERSYG.CBL
X PLPOLREP.CBL
X PLPRYP.CBL
X PLREAD.CBL
X PLSTAT.CBL
X PLSYG.CBL
X PLYPAGE.CBL
X PLYPOL.CBL
X PLYPSEND.CBL
X pLchk.cbl
V POLREC.CBL
V POS.WIN
X PR-PR.CBL
V PR1.WOR
V PR3.MOV
V PR4.SEL
V PR5.WOR
V PR11.SEL
V PRAGE.WOR
V PRANALREC.CBL
X PRAPOGR.CBL
X PRCHK.CBL
V PRCOM.PRC
V prdsel.ws
V PREVRET6.PRC
X PRFEIS.CBL
V PRFREC.CBL
V PRGFP.PRC
V PRGLP132.PRC
+ printer.lin
V PRISOZ.PRC
V PRLIST.WOR
X PRMHN.CBL
X PRMREIS.CBL
V PRO.REC
V PRO.WOR
X PROD-ASC.STD
X PROFFERS.CBL
V PROM.WIN
V PROMX.MOV
X PROMX2PR.CBL
X PRORD-OP.CBL
V PRORD.SEL
X PRORDERS.CBL
X PRPEREVR.CBL
X PRPERSYG.CBL
X PRPLYP.CBL
X PRSCREEN.CBL
V PRSTAT.WOR
V prt&bin.win
^ prt!32.rec
V prt232.sel
X PRTEIS.OLD
V prtlistwor
X PRTSEL.OLD
V PRUPD.MOV
V PRUPD.WOR
X PRYPAGE.CBL
T/ PRYPOL.PRC
V PSCR2.CBL
V REC.REC
V REC1.SEL
+ recs
V rel300.se!
X RELPROCBL
+ RESTLIST.WRN
V rhandle.lib
V rmpanels.ws
X SALES-ASC1 CBL
V seira.win

X PLPERISOZ.CBL
X PLPERYPOL.CBL
X PLPRANAL.CBL
V PLPRYP.PRC

X PLSALE1.CBL
V PLSTAT.PRC

X PLSYGALFA.CBL
X PLYPFAST.CBL
V PLYPOL.PRC
V PLYPSEND.PRC
V POLD-JOB.PRC
V POS.MOV
V POS.WOR
V PR 1.MOV
V PR2.MOV
V PR3.SEL
V PR4.WOR
V PR6.MOV
V PRAFM.PRC

X PRANAL.CBL
X PRANCHK.CBL
+ PRC
X PRCHKAFM.CBL
V PRCOM.WOR

X PREVRET.CBL
V PREVRET6.WOR

X PRFLCHK.CBL
X PRG-TIM.CBL

V PRGLP.PRC
V PRGLP132.WOR
V printer, var
->/ PRISOZ.WOR

X PRLOGI.CBL
V PRMHN.PRC

X PRMYF.CBL
V pro.rec
V PRO1.SEL

X PROD-ASC1.CBL
X PROFFEV1.CBL
V PROM2.WEM
V PROMX.REC

X PROPANAL.CBL
V prord.acc
V PRORD.WIN
T/ prorders.prc

X PRPERISOZ.CBL
X PRPERYPOL.CBL
V PRPLYP.PRC

X PRSTAT.CBL
V PRSTD.CBL
V PRT.REC
V prtl32.sel
V prt232.wor
+ PRTEIS.WRN
X PRTPLYP.CBL

V PRTSTYAP.PRC
V PRUPD.PRC

X PRUPD1.CBL
X PRYPAGE.MARK

V PRYPOL.WOR
V PSCR3.CBL
V REC.SEL
V REC1.WOR
V reBOO.mov
•V re!300.wor

X reply.cbl
X RESTORE.CBL
X rhandle.lst
+ rmpath
V SAORSU.PRC
V SELECTKK.PRC

V PLPERISOZ.PRC
V PLPERYPOL.PRC
V PLPRANAL.PRC
V PLPRYP.WOR

X PLSCREEN.CBL
V PLSTAT.WOR
^ pltmove.win
V PLYPLPRC
V PLYPOL.WOR
V PLYPSEND.WOR
V polhs.win
V POS.REC

X PR-AFM.CBL
V PR1.REC
V PR2.SEL
V PR3.WOR
V PR5.MOV
V PR6.SEL

X PRAFMAK.CBL
V PRANAL.PRC

X PRANREAD.CBL
V prc-date.lib
V PRCHKAFM.PRC

X PRDEL.CBL
X PREVRET1.CBL

V PRF.PRC
X PRFOP.CBL

V PRGEIS.PRC
V PRGLP.REL
V pricetyp.win
V printer.wor

X PRKATEL.CBL
V PRMASTRECCBL
V PRMHN.WOR
V PRNM.PRC
V pro.sel
+ PROBLEMS
X PROFF-OP.CBL
X PROFFEV2.CBL
X promhq.cbl

V PROMX.SEL
X PROPEN.CBL
V PRORD.MOV
V PRORD.WOR
+ prorders.prt
V PRPERISOZ.PRC
%' PRPERYPOL.PRC
V PRPLYP.WOR

X PRSTAT.GEN
X PRSYG.CBL
V PRT.SEL
V prt!32.wor

X PRTEIS.CBL
V prtlistrec

X PRTREIS.CBL
•V PRTSTYLE.PRC
V PRUPD.REC

X PRUPDATE.CBL
X PRYPFAST.CBL
X PRZERO.CBL
X puzzle.cbl

V REC.WOR
+ reclist
V reBOO.prc

X RELAPO.CBL
V reply.lib
+ RESTORE.WRN
X rhandle.old
X SALES-ASCCBL

V SCRPRTPRC
V SELECTKKWOR

135

X SEQ-OTH.CBL
X SEQREAD.CBL

V SNF.REC
V SNFLMOV
V SNFI.WOR
V SPECIAL.NAM

X STATEAR1.CBL
X STATPRT1.CBL
X STATPSAP.CBL
X STELIOS.CBL

V str-fcts.wor
X SYNCHK.CBL
X SYNTOO.CBL
X SYNTPR.CBL
+ SYSDESC.WRN
V SYSENV.SEL
V TAG.SEL
V TAG3.REC
V TAMDEL.MOV
V TAMDEL.WOR
V TAPOMREC.CBL
V TAPQNTY.SEL
V TARTHROREC.CBL
V TBL.WOR

X TCOMOP.CBL
V TDLN.WOR

X TDPEKT.CBL
V TDPREC.CBL
V temp-kk.wor
V TEMP.WOR

X TEST.CBL
V TFEAT.PRC

X TGEIS.CBL
X TGGEN.CBL
V TGGENRP2.PRC

X THELPOP.CBL
•v' thmpa.prc
V TIM.REC

X TIMAG.CBL
X TMCNT.CBL
X TIMEIS.CBL
X TIMGEN.CBL
X TIMOPEN.CBL
X TINVLIST.CBL
X title.cbl
X titlent.cbl
X TLINKCP.CBL
X TMETEIS.CBL
V TMOV1.CBL
V TMP.REC
V TMPI.WIN
V TOMREC.CBL

X TOPCNT.CBL
V TPLOMREC.CBL
V TPOLDREC.CBL

X tpolsee.cbl
V TRA.MOV
V TRAN.REC

X TRAPCMENU.CBL
V TRAPREC.CBL
V TRWH.REC

X TSTEIS.CBL
X TTMETOP.CBL
X TYPOMEIS.CBL
V typom_win.wor
+ usr
X V3-EPGR1.CBL
X V3-XPERT.CBL

V VAR.MOV
V VAR1.MOV
V VARML1.PRC
V VARTD2.PRC

V SEQKST.REC
-i SETYPE.PRC
V SNF.SEL
V SNFI.REC
V SORT.PRC
+ srcupd
X STATBAR2.CBL
X STATPRT2.CBL
X STATPSAS.CBL
X STEL1OS1.CBL
V STYAP.PRC
X SYNT.CBL
V synthof.prc
V SYS.WOR
V SYSDOS.WOR
V SYSENV.WOR
V TAG.WOR
X TAMAPTM.CBL
V TAMDEL.PRC
V TAPOM.WIN
X TAPQNTY.CBL
V TAPQNTY.WOR
X TARTHROSEE.CBL
X TCNTGEN.CBL
V TCOMREC.CBL
X TDMET.CBL
X TDPEKT1.CBL
X TDPREIS.CBL
i/ TEMP.MOV
V TEMPA.REC
X TESTPRG.CBL
X TFORTEID.CBL
X TGEKD.CBL
X TGGEN1.CBL
V TGGENRP2.WOR
V THELPREC.CBL
T/ thmpa.ws
V T1M.SEL
X TMAGHLP.CBL
V TtMCNTREC.CBL
X TIMEKD.CBL
X TIMGEN1.CBL
V timpelf.win
X TCMVOP.CBL
X titleden.cbl
X titlepka.cbl
X TLINKOP.CBL
X TMETOP.CBL
V TMOV2.CBL
V tmp.sel
+ tmplist
V tom_win.prd
X TOPPOLHS.CBL
X TPOL2HMER.CBL
X TPOLHMEROL.CBL
X TPROMEIS.CBL
V TRA.REC
V TRAN.SEL
X TRAPEIS.CBL
V TRAREC.CBL
V TRWH.SEL
X TSTEIS1.CBL
X TVIEW.CBL
X TYPOMOP.CBL
V updprice.win
X V3-AGO.CBL
X V3-PEL.CBL
X V5MAKUPD.CBL
V VAR.REC
V VAR1.PRC
V VARML2.PRC
V W-APANAL.REC

V SEQMST.REC
X SKT.CBL
V SNF.WIN
V SNFI.SEL
V SORT.REC

X STATAPS.CBL
X STATBAR3.CBL
X STATPRT3.CBL
X STATPSSP.CBL
X str-fcts.cbl

V STYLE.CBL
V synt.prc
V synthof.ws

X SYSCALL.CBL
X SYSENV.CBL
V TAG.MOV
V TAG1.REC
V tamcdsel.prc
V TAMDEL.REC

X TAPOMEIS.CBL
V TAPQNTY.MOV

X TAPQNTYR.CBL
X TARUNL.CBL
X TCOMEIS.CBL
V TCOUNTREC.CBL
V TDP.MOV

X TDPEKT2.CBL
V team-nam.prc
V TEMP.REC
V TEMPB.REC

X TESTPRG.CBL,v
X TFORTEID2.CBL
X TGEVR.CBL
X TGGENRP1.CBL
X TGMET.CBL
V THLP.CBL
V TIM.MOV
V TBM.WOR

X TIMAKYR.CBL
X TIMDEL.CBL
X TIMEVR.CBL
X TIMIN.CBL
V TMREC.CBL
V TINVREC.CBL

X titledet.cbl
X titleter.cbl
V TLN-PAR.WOR
V TMETREC.CBL
+ tmp
V TMP.SEL

X TOMEIS.CBL
V tom_win.wor

X TPLOMEIS.CBL
X TPOL3HMER.CBL
V TPOLHSREC.CBL

X TPROMOP.CBL
V TRA.SEL
V TRAN.WOR

X TRAPEVR.CBL
V TRGETREC.CBL
V TRWH.WIN
V TSYMP.CBL

X TVIEW1.CBL
V TYPOMREC.CBL

X UPDTRS.CBL
X V3-APO.CBL
X V3-PRO.CBL
V valid-ch.prc
^ VAR.SEL
V VAR2.PRC
V vars.win
V WAPO.MOV

V SEQPRO.REC
V SNF.MOV
V SNF.WOR
V SNFI.WIN
V SORT.SEL

X STATBAR.CBL
X STATPRT.CBL
X STATPSAL.CBL
X STATSALE.CBL
V str-fcts.prc
V STYLE.PRC
V synt.ws

X SYNTOP.CBL
X SYSDESC.CBL
V SYSENV.REC
V TAG.REC
V TAG2.REC
V tamcdsel.ws
V TAMDEL.SEL

X TAPOMOP.CBL
^ TAPQNTY.REC
V TARTHREC.CBL
V TBL.PRC
V TCOMMENT.CBL

X TDEFPAR.CBL
V TDPCREC.CBL

X TDPINF.CBL
V team-nam.ws
V TEMP.SEL
+ terminfo.cfg
+ TESTPRG.WRN
X TGAKYR.CBL
X TGEVR1.CBL
X TGGENRP2.CBL
X TGSEE.CBL
V THLPREC.CBL
->j tim.prc
V tim.ws

X TIMCHK.CBL
X TMEBAR.CBL
X TIMEVR1.CBL
X TIMINF.CBL
V timunitwin

X TDPAR.CBL
X titlekar.cbl
X TITLOP.CBL

V TLN.WOR
X TMFLCHK.CBL
+ tmp.cp
V TMP.WOR

X TOMOP.CBL
X TOPARTHR.CBL
X TPLOMOP.CBL
X TPOLDOP.CBL
X TPOLSEE.CBL

V TPROMREC.CBL
•V TRA.WOR
V TRAPANREC.CBL

X TRAPOP.CBL
V TRWH.MOV
V TRWH.WOR

X TTMETEIS.CBL
V typln.wor
\' typom_win.prd
V UPPER-LOWER

X V3-EPGR.CBL
X V3-TM.CBL
V valid-ch.ws
^ VAR.WOR
V VARLAP.PRC
V VARTD1PRC
\' WAPO.REC

136

V WAPO.SEL
•>/ WAPO1.WOR
V win.wor
•\| window.allf
V window.apt
V window.comm
A/ window.exed
•J window.expf
V window.fea
V window.kpar
^ window.pkey
V window.pper
V window.psel
V window.wor

X WINSEL.CBL
V WINSEL.SEL

X WINSEL1.CBL
V win_dow.apf
V win_dow.apt
V win_dow.ep2
•>/ win_dow.inv
•^ win_dow.par
V win_dow.prck
i/ win_dow.prmk
V win_dow.tra
•J win_dowl.par
^ win_dow2.prd
V win_ord.prc
V win_plm.prc
V win_tim.prc
V wpel.prc
V wpel.wor
V WPRO.REC
V wprom.prc
+ Xago.CANDLA
+ Xbas.doc
+ Xemp.men
X XP1-1.CBL
V XPERT-PRO.PRC
+ Xpro.CANDIA
X YEARMEN.CBL
X YPOK-PEL.CBL
X YPOMKNEW.CBL
X BL01TEST.CBL

V WAPO.WOR
•V WAPOM1.REC
V wind-sta.prc
V window.allp
V window.cdl
V window.dp
V window.exm
i/ window.expr
V window.fpa
V window.mon
V window.pkp
V window.prc
V window.timp
V WINDOWS.REC
V WINSEL.PRC
V WINSEL.SEL®
X WINSEL2.CBL
V win_dow.apg
V win_dow.com
V win_dow.epa
V win_dow.kk
V win_dow.pco
•^ win_dow.prd
V win_dow.tig
V win_dow.wor
T/ win_dowl.prd
V win_dow3.prd
V win_par.prc
V win_plml.prc
+ worlist
^ WPEL.REC
V wpe!2.prc
V WPRO.SEL
%' wprom2.prc
+ Xago.meu
+ Xbas.meu
+ Xgra.men
+ Xpel.men
V XPERT-TM.PRC
+ Xpro.men
+ YEARMEN.WRN
X YPOK-PRO.CBL
X YPOMNEW.CBL

V WAPOl.PRC
•</ web.prc
V wind-sta.ws
V window.alpr
V window.cd2
V window.exaf
V window.exmn
V window.exsd
V window.ftr
V window.oma
V window.plf
V window.prd
V window.type
V window_f.all
V WINSEL.REC
V WINSEL.WOR
V wintap.prc
V win_dow.apk
V win_dow.dpp
V win_dow.ept
V win_dow.kod
V win_dow.plc
V win_dow.prdk
V win_dow.tim
V win_dow.wor.ol
V win_dowl.tim
V win_dow4.prd
V win_plf.prc
V win_prf.prc
V wpel.cbl
i/ WPEL.SEL
V wpelS.prc
V wpro.wor
V wprora3.prc
+ Xapo.CANDIA
+ Xbas.mtd
+ Xlog.men
V XPERT-APO.PRC
+ xpert06
+ Xsta.men
X YP-YP.CBL
X YPOK-TM.CBL
X IL01.CBL

V WAPO1.SEL
V wcb.wor
V window.alia
V window.apf
V window.cd3
V window.excr
V window.exp
V window.faim
V window.hlp
V window.pdp
V window.ply
V window.prf
V window.unit
V wiadow_p.all
V WINSEL.REC@
V WINSEL.WOR®
V win_buf.wor
•>/ win_dow.app
V win_dow.epl
V win_dow.hlp
V win_dow.met
V win_dow.prc
V win_dow.prm
V win_dow.tom
V win_dowl .inv
V win_dow2.inv
V win_lap.prc
V win_plh.prc
V win_tap.prc
^ WPEL.MOV
T/ WPEL.WOR
V WPRO.MOV
%f WPRO.WOR
V ws-date.Iib
+ Xapo.men
+ Xcp
X XPO-l.CBL
V XPERT-PEL.PRC

X XPERTDB.CBL
+ Xtim.men
X YPOK-APO.CBL
X YPOKGET.CBL
X _IL01CHK.CBL

137

Appendix 14

This appendix presents the complete set of programs of the XPERT Hotel software
application and their main source code file(s).

Program

ACHK
AFMFK
AG2HMER
AGARSEEP
AGARTP
AGDCHK
AGDEIS
AGDEVR
AGDEVR23
AGDOP
AGDTIM
AGFLCHK
AGFORTSYN
AGIN
AGLINKOP
AGOPEN
AGPAR
AGPDEL
AGPEVR4
AGPOP
AGTCHK
AGTDEL
AGTEIS.STD
AGTEIS2
AGTOMEIS
AGTOP
AGTSYGDT
AGTYPOP
AGVIEW1
AITEXAG
ALPHATEST2
AMUPREAD
AP
AP-AP
AP-GET
AP-MOVE1
APO
AP2HMER
APAGLAST
APALBRI
APALBRI9.STD
APALGCH
APAN
APANAHTL
APANALN

Source File(s) Program

ACHK.CBL
AFMFK.CBL
AG2HMERCBL
AGARSEEP.CBL
AGARTP.CBL
AGDCHK.CBL
AGDEIS.CBL
AGDEVR.CBL
AGDEVR23.CBL
AGDOP.CBL
AGDTIM.CBL
AGFLCHK.CBL
AGFORTSYN.CBL
AGIN.CBL
AGLINKOP.CBL
AGOPEN.CBL
AGPAR.CBL
AGPDEL.CBL
AGPEVR4.CBL
AGPOP.CBL
AGTCHK.CBL
AGTDEL.CBL
AGTEIS.STD
AGTEIS2.CBL
AGTOMEIS.CBL
AGTOP.CBL
AGTSYGDT.CBL
AGTYPOP.CBL
AGVIEW1.CBL
AITEXAG.CBL
ALPHATEST2.CBL
AMUPREAD.CBL
AP.CBL
AP-AP.CBL
AP-GET.CBL
AP-MOVE1.CBL
APO.CBL
AP2HMER.CBL
APAGLAST.CBL
APALBRI.CBL
APALBRI9.STD
APALGCH.CBL
APAN.CBL
APANAHTL.CBL
APANALN.CBL

AFM
AG-EKT
AGARSEE
AGARTOP
AGDATOP
AGDEFPAR
AGDEL
AGDEVR4
AGDEVRDT
AGDPAR
AGEVR
AGFORTEID
AGHMEROL
AGINVOP
AGOPCNT
AGOPOL
AGPCNTOP
AGPEIS
AGPEVR123
AGPTIM
AGTCHK1
AGTEIS
AGTEIS1
AGTEIS3
AGTOMOP
AGTPAR
AGTYPEIS
AGVIEW
AIT-TIM
ALPHATEST
AMUPDATE
ANALMAKE
AP--DEL

AP-DEL
AP-MOVE
AP-UPD
AP1CLEAR
APADDTRS
APAIT2EX
APALBR19
APALEIS
APALOP
APAN-MTK
APANALAA
APANALX

Sourcefile(s)

AFM.CBL
ag-ekt.cbl
AGARSEE.CBL
AGARTOP.CBL
AGDATOP.CBL
AGDEFPAR.CBL
AGDEL.CBL
AGDEVR4.CBL
AGDEVRDT.CBL
AGDPAR.CBL
AGEVR.CBL
AGFORTEID.CBL
AGHMEROL.CBL
AGINVOP.CBL
AGOPCNT.CBL
AGOPOL.CBL
AGPCNTOP.CBL
AGPEIS.CBL
AGPEVR123.CBL
AGPTIM.CBL
AGTCHK1.CBL
AGTEIS.CBL
AGTEIS l.CBL
AGTEIS3-CBL
AGTOMOP.CBL
AGTPAR.CBL
AGTYPEIS.CBL
AGVIEW.CBL
AIT-TIM.CBL
ALPHATEST.CBL
AMUPDATE.CBL
ANALMAKE.CBL
AP--DEL.CBL
AP-DEL.CBL
AP-MOVE.CBL
AP-UPD CBL
AP1CLEAR.CBL
apaddtrs.cbl
APAIT2EX.CBL
APALBRI9.CBL
APALEIS.CBL
APALOP.CBL
APAN-MTK.CBL
APANALAA.CBL
APANALX.CBL

138

APANALY
APANCHK
APANFL2
APANLOG
APANREAD1
APANTEST
APAPOGR1
APARTPOP
APCHANCE
APCHK

APCOSTAN
APDEL
APDGEN
APDIAFOR
APDIEK
APDPREVR
APDPROP
APEIDFPA
APEIDMAN
APEIDSTK
APEIDTIM
APETIK
APEVMON
APEVR01
APEVREI1.STD
APEVREI6
APEVRICL
APEVRKIN
APEVRMAN
APEVRTA1
APEVRTAM
APEXEKT
APF1LINK
APFEACH
APFILTER
APFLCHK
APFLOP
APFPA
APFPREIS
APFPRENH
APG1CNLT
APG1EIS1
APG1LST1
APG1LST3
APG1TO3
APG2DIAF
APG2EIS2
APG2LST2
APG2TAKT
APG3DIAF
APG3EIS2
APG3LST2
APG3LST4
APGARXH

APANALY.CBL
APANCHKCBL
APANFL2.CBL
APANLOG.CBL
APANREAD1.CBL
APANTEST.CBL
APAPOGR1.CBL
APARTPOP.CBL
APCHANCE.CBL
APCHK.CBL
apchk.cbl
APCOSTAN.CBL
APDEL.CBL
APDGEN.CBL
APD1AFOR.CBL
APDIEK.CBL
APDPREVR.CBL
APDPROP.CBL
APEIDFPA.CBL
APEIDMAN.CBL
APEIDSTK.CBL
APEIDTIM-CBL
APETIK.CBL
APEVMON.CBL
APEVR01.CBL
APEVREI1.STD
APEVREI6.CBL
APEVRICL.CBL
APEVRKIN.CBL
APEVRMAN.CBL
APEVRTA1.CBL
APEVRTAM.CBL
APEXEKT.CBL
APF1LINK.CBL
APFEACH.CBL
APFILTER.CBL
APFLCHK.CBL
APFLOP.CBL
APFPA.CBL
APFPREIS.CBL
APFPRENH.CBL
APG1CNLT.CBL
APG1EIS1.CBL
APGILST1.CBL
APG1LST3.CBL
APG1TO3.CBL
APG2DIAF.CBL
APG2EIS2.CBL
APG2LST2.CBL
APG2TAKT.CBL
APG3DIAF.CBL
APG3EIS2.CBL
APG3LST2.CBL
APG3LST4CBL
APGARXH CBL

APANALJ4
APANFL1
APANLGOP
APANREAD
APANRPRV
APANUSER
APAPOGR2
APASFAL
APCHANGE
APCLEAR

APCOSTS
APDEL1
APDGEN 1
APDIAK
APDOP
APDPRICE
APE1DFP3
APEIDMA3
APEIDMTK
APEIDSYN
APEPANEK
APETIKCH
APEVROO
APEVREI1
APEVREI2
APEVRGEN
APEVRKI2
APEVRKIN.STD
APEVRSTK
APEVRTA2
APEXAHTL
APF1EIS
APF1OP
APFEIS
APFEXCN
APFLEIS
APFOP
APFPR
APFPREN1
APFPREVR
APG1DIAF
APG1EIS2
APG1LST2
APG1TAKT
APG2CNLT
APG2EIS1
APG2LST1
APG2LST3
APG3CNLT
APG3EIS1
APG3LST1
APG3LST3
APG3TAKT
APGARXH 1

APANAL_N.CBL
APANFL1.CBL
APANLGOP.CBL
APANREAD.CBL
APANRPRV.CBL
APANUSER.CBL
APAPOGR2.CBL
APASFAL.CBL
APCHANGE.CBL
APCLEAR.CBL

APCOSTS.CBL
APDEL1.CBL
APDGEN1.CBL
APDIAK.CBL
APDOP.CBL
APDPRICE.CBL
APEIDFP3.CBL
APEIDMA3.CBL
APEIDMTK.CBL
APEIDSYN.CBL
APEPANEK.CBL
APETIKCH.CBL
APEVROO.CBL
APEVREI1.CBL
APEVREI2.CBL
APEVRGEN.CBL
APEVRKI2.CBL
APEVRKIN.STD
APEVRSTK.CBL
APEVRTA2.CBL
APEXAHTL.CBL
APF1EIS.CBL
APF10P.CBL
APFEIS.CBL
APFKCN.CBL
APFLEIS.CBL
APFOP.CBL
APFPR.CBL
APFPREN1.CBL
APFPREVR.CBL
APG1DIAF.CBL
APG1EIS2.CBL
APG1LST2.CBL
APG1TAKT.CBL
APG2CNLT.CBL
APG2EIS1.CBL
APG2LST1.CBL
APG2LST3.CBL
APG3CNLT.CBL
APG3EIS1.CBL
APG3LST1.CBL
APG3LST3.CBL
APG3TAKT.CBL
APGARXH1 CBL

139

APGARXH2
APGCNLTA
APGDEL1
APGDEL3
APGDIAF1
APGEIS2
APGENYP
APGKOPEN
APGLIST2
APGLIST2.STD
APGLIST4
APGSTAR1
APGSTART
APGTACNL
APGTAKT3
APHOSPHT
APHOSPP2
APHOSPTR
APHOTELO
APHPLEVR
APHTLCOS
APISOZ
APK1EIDA
APKARTEL
APKATEL1
APKODCHK
APKOSTEIS
APKSHOW
APLGCH
APLGEVR
APM2JOIN
APMCLEAR
APMEZEV2
APMEZHTL
APMEZMTM
APMHNST
APMHNSTF
APMODEL
APMODPRT
APMONHTL
APMRCLS
APMRINS
APMRMOV
APMRREAD
APMTKAPL
APMTKEID
APNCLEAR
APNREAD
APO-TR
APOCOMP
APOGCHK
APOGLST
APOGOP1
APOGR-OP

APGARXH2.CBL
APGCNLTA.CBL
APGDEL1.CBL
APGDEL3.CBL
APGDIAF1.CBL
APGEIS2.CBL
APGENYP.CBL
APGKOPEN.CBL
APGLIST2.CBL
APGHST2.STD
APGLIST4.CBL
APGSTAR1.CBL
APGSTART.CBL
APGTACNL.CBL
APGTAKT3.CBL
APHOSPHT.CBL
APHOSPP2.CBL
APHOSPTR.CBL
APHOTELO.CBL
APHPLEVR.CBL
APHTLCOS.CBL
APISOZ.CBL
APK1EIDA.CBL
APKARTEL.CBL
APKATEL1.CBL
APKODCHK.CBL
APKOSTEIS.CBL
APKSHOW.CBL
APLGCH.CBL
APLGEVR.CBL
APM2JOIN.CBL
APMCLEAR.CBL
APMEZEV2.CBL
APMEZHTL.CBL
APMEZMTM. CBL
APMHNST.CBL
APMHNSTF.CBL
APMODEL.CBL
APMODPRT.CBL
APMONHTL.CBL
APMRCLS.CBL
APMRINS.CBL
APMRMOV.CBL
APMRREAD.CBL
APMTKAPL.CBL
APMTKE1D.CBL
APNCLEAR.CBL
APNREAD.CBL
APO-TR.CBL
APOCOMP.CBL
APOGCHK.CBL
APOGLST.CBL
APOGOP1.CBL
APOGR-OP.CBL

APGCNLT3
APGCONV1
APGDEL2
APGDELET
APGEIS1
APGENDEL
APGKEIS
APGLIST1
APGLIST2.RST
APGLIST3
APGOTHER
APGSTAR2
APGSTART.STD
APGTAKT
APHMEROL
APHOSPOP
APHOSPPL
APHOTEL
APHPLEIS
APHSPHTL
APIN
APISOZ1
APK1ISOZ
APKATEL
APKDCHK
APKODTAM
APKOSTKER
APLABEL
APLGEIDOS
APMUOIN
APMANTAM
APMEZEV1
APMEZEVR
APMEZHTT
APMHN
APMHNSTA
APMHNYP
APMODOP
APMONEIS
APMONOP
APMRCRE
APMRMET
APMRMOVO
APMTKOOO
APMTKCMP
APMTKSYN
APNOKDM
APO-DESC
AP01CHK
APODEL
APOGEIS2
APOGOP
APOGPR
APOGRDEL

APGCNLT3.CBL
APGCONV1.CBL
APGDEL2.CBL
APGDELET.CBL
APGEIS1.CBL
APGENDEL.CBL
APGKEIS.CBL
APGLIST1.CBL
APGLIST2.RST
APGLIST3.CBL
APGOTHER.CBL
APGSTAR2.CBL
APGSTART.STD
APGTAKT.CBL
APHMEROL.CBL
APHOSPOP.CBL
APHOSPPL.CBL
APHOTEL.CBL
APHPLEIS.CBL
APHSPHTL.CBL
APIN.CBL
APISOZ1.CBL
APKtISOZ.CBL
APKATEL.CBL
APKDCHK.CBL
APKODTAM.CBL
APKOSTKER.CBL
APLABEL.CBL
APLGEIDOS.CBL
APMUOIN.CBL
APMANTAM.CBL
APMEZEV1.CBL
APMEZEVR.CBL
APMEZHTT.CBL
APMHN.CBL
APMHNSTA.CBL
APMHNYP.CBL
APMODOP.CBL
APMONEIS.CBL
APMONOP.CBL
APMRCRE.CBL
APMRMET.CBL
APMRMOVO.CBL
APMTKOOO.CBL
APMTKCMP.CBL
APMTKSYN.CBL
APNOKIN.CBL
APO-DESC.CBL
APO1CHK.CBL
APODEL.CBL
APOGEIS2.CBL
APOGOP.CBL
APOGPR.CBL
APOGRDEL.CBL

140

APOGRMOV
APOMA-TR
APOMACHK
APOMANAF1
APOMANOO
APOMAST1
APOMAST3
APOMASTN.BKP
APOMASTN.STD
APOP1MR
APOPEN
APOPFPR
APOPTIMCH
APPAR
APPEL
APPEL2
APPFPA
APPL5A
APPOL3
APPRICE
APPROM
APPROM3
APPROM5
APRJECOS1
APRECSY1
APRELATE
APRELOP
APREPORT
APROL3
APSCLEAR
APSORT
APSTAT1
APSTKEID
APSTKPER
APSYG
APTAMDEL
APTAMOV
APTAMPR.STD
APTCHADD
APTEAMOP
APTIMCH
APTIMEID
APTIMO
APTMTAM
APTMENU
APTMFILL
APTMOP
APTOTAL
APTREIS
APTRWHOP
APUPDAT3
APUPDMV
APWEEK
APYPOL

APOGRMOV.CBL
APOMA-TRCBL
APOMACHK.CBL
APOMANAF1.CBL
APOMANOO.CBL
APOMAST1.CBL
APOMAST3.CBL
APOMASTN.BKP
APOMASTN.STD
APOP1MR.CBL
APOPEN.CBL
APOPFPR.CBL
APOPTIMCH.CBL
APPAR.CBL
APPEL.CBL
APPEL2.CBL
APPFPA.CBL
APPL5A.CBL
APPOL3.CBL
APPRICE.CBL
APPROM.CBL
APPROM3.CBL
APPROM5.CBL
APRECOS1.CBL
APRECSY1.CBL
APRELATE.CBL
APRELOP.CBL
APREPORT.CBL
APROL3.CBL
APSCLEAR.CBL
APSORT.CBL
APSTAT1.CBL
APSTKEID.CBL
APSTKPER.CBL
APSYG.CBL
APTAMDEL.CBL
APTAMOV.CBL
APTAMPR.STD
APTCHADD.CBL
APTEAMOP.CBL
APTIMCH.CBL
APTIMEID.CBL
APTIMO.CBL
APTIMTAM.CBL
APTMENU.CBL
APTMF1LL.CBL
APTMOP.CBL
APTOTAL.CBL
APTREIS.CBL
APTRWHOP.CBL
APUPDAT3.CBL
APUPDMV.CBL
APWEEK.CBL
APYPOL.CBL

APOKARTA
APOMA2TR
APOMAFDC
APOMANEW
APOMAREAD
APOMAST2
APOMASTN
APOMASTN.NEW
APOMEIS
APOPANAL
APOPFPA
APOPMR
APOUPD1
APPEIS
APPELO
APPEL3
APPFPA 1
APPL5B
APPOP
APPROFTT
APPROM2
APPROM4
APRDOP
APRECOST
APRECSYN
APRELEIS
APREPHTL
APREPSTK
APSALES
APSCREEN
APSTAT
APSTATUS
APSTKMET
APSTOCK9
APSYNTEV
APTAMMAN
APTAMPR
APTAMTIM
APTE1OP
APTEAMS
APTMCHF
APTIMMEZ
APTIMPO
APTMEIS
APTMEVR
APTMJOIN
APTMXEIS
APTPR2MZ
APTROP
APTURN
APUPDATE
APUPDSAY
APWEEKST
APYPOLO

APOKARTA.CBL
APOMA2TR.CBL
APOMAFLX.CBL
APOMANEW.CBL
ATOM ARE AD.CBL
APOMAST2.CBL
APOMASTN.CBL
APOMASTN.NEW
APOMEIS.CBL
APOPANAL.CBL
APOPFPA.CBL
APOPMR.CBL
APOUPD1.CBL
APPEIS.CBL
APPELO.CBL
APPEL3.CBL
APPFPA1.CBL
APPL5B.CBL
APPOP.CBL
APPROFIT.CBL
APPROM2.CBL
APPROM4.CBL
APRDOP.CBL
APRECOST.CBL
APRECSYN.CBL
APRELEIS.CBL
APREPHTL.CBL
APREPSTK.CBL
APSALES.CBL
APSCREEN.CBL
APSTAT.CBL
APSTATUS.CBL
APSTKMET.CBL
APSTOCK9.CBL
APSYNTEV.CBL
APTAMMAN.CBL
APTAMPR.CBL
APTAMTIM.CBL
APTE1OP.CBL
APTEAMS.CBL
APTMCHF.CBL
APTIMMEZ.CBL
APTIMPO.CBL
APTMEIS.CBL
APTMEVR.CBL
APTMJOIN.CBL
APTMXEIS.CBL
APTPR2MZ.CBL
APTROP.CBL
APTURN.CBL
APUPDATE.CBL
APUPDSAY.CBL
APWEEKST.CBL
APYPOLO.CBL

141

APYPOLB
AP_CHK
ASC-AP
ASC-AP1
ASC-AP AN
ASC-LGAN
ASC-PEL3
ASC-PROM
ASC-PROM3
ASC-TEAM2
BACKUP
BOXASK
CALC.STD
CALL
CALL1
CANCPRT
COMPANY.ALX
DAY
DBEXEC
DBPRNT
EKTEIS
EMP-AGO
BMP-PEL
EMP-TIM
ENTYPO2
EPDATE
EPDEL
EPDEL3
EPESYN
EPITDEL2
EPITEIS1
EPITKAT1
EPITMEN
EPITOPMR
EPITPEL
EPITS
EPITSYN
EPMET1
EPSYN1
EPTBL4
EPTRAP1
EPWEIS1
FEANEW
FINFT
FKAPOLG
FLAG1
GNFLCHK
GR1CNT
GRADATE1
GRADEL1
GRAM 1 OPEN
GRAMDATE
GRAMEIS
GRAMEN

APYPOLB.CBL
ap_chk.cbl
ASC-AP.CBL
ASC-AP1.CBL
ASC-APAN.CBL
ASC-LGAN.CBL
ASC-PEL3.CBL
ASC-PROM.CBL
ASC-PROM3.CBL
ASC-TEAM2.CBL
BACKUP.CBL
boxask.cbl
calc.std
CALL.CBL
CALL1 .CBL
CANCPRT.CBL
COMPANY.ALX
DAY.CBL
DBEXEC.CBL
DBPRNT.CBL
EKTEIS. CBL
EMP-AGO CBL
EMP-PEL.CBL
EMP-TIM.CBL
entypo2.cbl
EPDATE.CBL
EPDEL.CBL
EPDEL3.CBL
EPESYN.CBL
EPITDEL2.CBL
EPITEIS1.CBL
EPITKAT1.CBL
EPFTMEN.CBL
EPITOPMR.CBL
EPrTPEL.CBL
Eprrs.cBL
EPITSYN.CBL
EPMET1.CBL
EPSYN1.CBL
EPTBL4.CBL
EPTRAP1.CBL
EPWEIS1.CBL
FEANEW.CBL
FINIT.CBL
FDCAPOLG.CBL
FLAG1.CBL
GNFLCHK.CBL
GR1CNT.CBL
GRADATE1.CBL
GRADEL1.CBL
GRAM1OPEN.CBL
GRAMDATE.CBL
GRAMEIS.CBL
GRAMEN.CBL

APZERO
ASC
ASC-APO
ASC-AP2
ASC-CODE
ASC-PEL
ASC-PEL4
ASC-PROM 1
ASC-TEAM
ASUPDATE
BAR
CALC
CALCTEST
CALL-EIS
CALLAPREL
COMPANY
COMPMEN
DB
DBMARK
DEDEIS
EKTEPIL
EMP-APO
EMP-PRO
ENTYPO
EP2PROM
EPDATE1
EPDEL1
EPDEL4
EPIT10PMR
EPITEIS
EPITKAT
EPFTKEY
EPITMEN 1
EPITOPTRAN
EPITPROM
EPITS I
EPMET
EPSYN
EPTBL3
EPTRAP
EPWEIS
EXEC
FHANDLE
FINIT1
FLAGO
FLAG2
GP
GRADATE
GRADEL
GRAKAT1
GRAM10PMR
GRAMDEL
GRAMEIS1
GRAMEN1

APZERO.CBL
ASC.CBL
ASC-APO.CBL
ASC-AP2.CBL
ASC-CODE.CBL
ASC-PEL.CBL
ASC-PEL4.CBL
ASC-PROM1.CBL
ASC-TEAM.CBL
ASUPDATE.CBL
BAR.CBL
calc.cbl
calctest.cbl
CALL-EIS.CBL
CALLAPREL.CBL
COMPANY.CBL
COMPMEN.CBL
DB.CBL
DBMARK.CBL
DEDEIS.CBL
EKTEPIL.CBL
EMP-APO.CBL
EMP-PRO.CBL
entypo.cbl
EP2PROM.CBL
EPDATE1.CBL
EPDEL1.CBL
EPDEL4.CBL
EPIT1OPMR.CBL
EPITE1S.CBL
EPITKAT.CBL
EPITKEY.CBL
EPITMEN 1.CBL
EPITOPTRAN.CBL
EPITPROM.CBL
EPITS 1.CBL
EPMET.CBL
EPSYN.CBL
EPTBL3.CBL
EPTRAP.CBL
EPWEIS.CBL
EXEC.CBL
fhandle.cbl
FINITl.CBL
FLAGO.CBL
FLAG2.CBL
GP.CBL
GRADATE.CBL
GRADEL.CBL
GRAKAT1.CBL
GRAM10PMR.CBL
GRAMDEL.CBL
GRAMEIS1 CBL
GRAMEN 1.CBL

142

GRAMET
GRAMKAT
GRAMOPMR
GRAMPROM
GRATRAP
GRCMENU
GRCNT1
GRDEL2
GREPOPEN
GRTBEX2
GRTBL2
ICL-CHK
ICL-IN
ICLREAD
K1NEW
KODACC
KODEOP
LG-EKT
LGAG
LGEMPUPD
LGPROUPD
MAIN
MAINDOS
MAK+POLHS

MAK-APN
MAK-PEL
MAK999KE
MAKAG

MAKAGD1
MAKAGP

MAKAGTO-1
MAKAP
MAKAPO-1
MAKAP1
MAKAP2
MAKAPANO
MAKAPAN2
MAKAPAN4
MAKAPD1
MAKAPDF
MAKAPF
MAKAPFL
MAKAPGO
MAKAPMON

MAKAPMR1
MAKAP01

MAKAPOM1
MAKAPPO
MAKAPPOL1
MAKAPPR
MAKAPREL
MAKAPSY

GRAMET CBL
GRAMKAT.CBL
GRAMOPMR.CBL
GRAMPROM.CBL
GRATRAP.CBL
GRCMENU.CBL
GRCNT1.CBL
GRDEL2.CBL
GREPOPEN.CBL
GRTBEX2.CBL
GRTBL2.CBL
ICL-CHK.CBL
ICL-IN.CBL
ICLREAD.CBL
K1NEW.CBL
KODACC.CBL
KODEOP.CBL
Ig-ekt.cbl
Igag.cbl
Igempupd.cbl
Igproupd.cbl
MAIN.CBL
MAINDOS.CBL
MAK+POLHS.CBL

MAK-APN.CBL
MAK-PEL.CBL
MAK999KE.CBL
MAKAG.CBL
makag.cbl
MAKAGD1.CBL
MAKAGP.CBL
MAKagp.CBL
MAKAGTO-1. CBL
MAKAP.CBL
MAKAPO-1. CBL
MAKAP1.CBL
MAKAP2.CBL
MAKAP ANO.CBL
MAKAP AN2.CBL
MAKAP AN4.CBL
MAKAPD1.CBL
MAKAPDF.CBL
MAKAPF.CBL
MAKAPFL.CBL
MAKAPGO.CBL
MAKAPMON.CBL

MAKAPMR1.CBL
MAKAPO1.CBL
makapol.cbl
MAKAPOM1.CBL
MAKAPPO.CBL
MAKAPPOL1.CBL
MAKAPPR.CBL
MAKAPREL.CBL
MAKAPSY.CBL

GRAMET1
GRAMOPEN
GRAMPEL
GRAMTRAP
GRATRAP1
GRCNT
GRDEL1
GREPIN
GRIN
GRTBL1
1CL-ALL
ICL-CHR
ICL-OUT
ICLSALES
K2NEW
KODE
LG
LG-PL
LGDEL
LGPELUPD
LINKMENU
MAIN.ALX
MAK+APAN
MAK-AP

MAK-APY
MAK-PR
MAK999MA
MAKAGD

MAKAGDF
MAKAGT

MAKANAL2
MAKAP-CS
MAKAPO-11
MAKAP1-2
MAKAPAN
MAKAPAN1
MAKAPAN3
MAKAP ANAL
MAKAPD2
MAKAPDF.STD
MAKAPFE
MAKAPGK
MAKAPLG
MAKAPMR

MAKAPO
MAKAPOGR

MAKAPOMA
MAKAPPOL
MAKAPPOL2
MAKAPRD
MAKAPSEQ
MAKAPSYN

GRAMET1.CBL
GRAMOPEN.CBL
GRAMPEL.CBL
GRAMTRAP.CBL
GRATRAP1.CBL
GRCNT.CBL
GRDEL1.CBL
GREPIN.CBL
GRIN.CBL
GRTBL1.CBL
ICL-ALL.CBL
ICL-CHR.CBL
ICL-OUT.CBL
ICLSALES. CBL
K2NEW.CBL
KODE.CBL
Ig.cbl
LG-PL.CBL
LGDEL.CBL
Igpelupd.cbl
LINKMENU.CBL
MAIN.ALX
MAK+APAN.CBL
MAK-AP.CBL
mak-ap.cbl
mak-apy.cbl
MAK-PR.CBL
MAK999MA.CBL
MAKAGD.CBL

MAKAGDF.CBL
MAKagt.CBL

MAKANAL2.CBL
MAKAP-CS.CBL
MAKAPO- 11. CBL
MAKAP1-2.CBL
MAKAPAN.CBL
MAKAPAN1.CBL
MAKAPAN3.CBL
MAKAPANAL.CBL
MAKAPD2.CBL
MAKAPDF.STD
MAKAPFE.CBL
MAKAPGK.CBL
MAKAPLG.CBL
MAKAPMR.CBL
makapmr.cbl
makapo.cbl
MAKAPOGR.CBL

MAKAPOMA.CBL
MAKAPPOL.CBL
MAKAPPOL2.CBL
MAKAPRD CBL
makapseq.cbl
MAKAPSYN.CBL

143

MAKAPTO-l
MAKAPTCH
MAKAPTEAM
MAKAPTY2
MAKAPYP
MAKARADD
MAKARG

MAKARTHRO
MAKCOUNT
MAKDPCNT
MAKEPIT
MAKGRAM
MAKGRX
MAKLINK
MAKMENU
MAKOYBA
MAKPEL

MAKPL1
MAKPLAN
MAKPLAN3
MAKPLAN 10
MAKPLEVR
MAKPLMR
MAKPLPR

MAKPOL1
MAKPOLD1
MAKPOLDF
MAKPR

MAKPR8
MAKPRAN
MAKPRMR
MAKPROM
MAKSYN2
MAKSYN5
MAKTM
MAKTYPE
MAK_AGD

MAK_AGT
MAK_APAN

MAK_PLN1
MAK_POL
MAK_POL2

MAK_PRN1
MENCPL
MENFYI
MENRTS.LNX
MERSRT
MIN IE-PEL
MSMAKAN
MYF

MAKAPTO-l. CBL
MAKAPTCH.CBL
MAKAPTEAM.CBL
MAKAPTY2.CBL
MAKAPYP.CBL
MAKARADD.CBL
MAKARG.CBL

MAKARTHRO.CBL
MAKCOUNT.CBL
MAKDPCNT.CBL
MAKEPIT.CBL
MAKGRAM.CBL
MAKGRX.CBL
MAKLINK.CBL
MAKMENU.CBL
MAKOYBA.CBL
MAKPEL.CBL
MAKpel.CBL
MAKPL1.CBL
MAKPLAN.CBL
MAKPLAN3.CBL
MAKPLAN10.CBL
MAKPLEVR.CBL
MAKPLMR.CBL
MAKPLPR.CBL

MAKPOL1.CBL
MAKPOLD1.CBL
MAKPOLDF.CBL
MAKPR.CBL
raakpr.cbl
MAKPR8.CBL
MAKPRAN.CBL
MAKPRMR.CBL
MAKPROM.CBL
MAKSYN2.CBL
MAKSYN5.CBL
MAKtim.CBL
MAKTYPE.CBL
MAK.AGD.CBL
mak_agd.cbl
mak_agt.cbl
MAK_APAN.CBL
mak_apan.cbl
mak_plnl.cbl
mak_pol.cbl
mak_po!2.cbl

mak_prnl.cbl
MENCPL.CBL
MENFY1.CBL
MENRTS.LNX
MERSRT.CBL
MINIE-PEL.CBL
MSMAKAN.CBL
MYFCBL

MAKAPTO-11
MAKAPTE
MAKAPTIMCH
MAKAPTYP
MAKAR
MAKARDEL
MAKART

MAKCNT
MAKDISC
MAKDPD
MAKEPIT1
MAKGRAM I
MAKINV
MAKMAIN
MAKOIKO
MAKPARO-1
MAKPL

MAKPL2
MAKPLAN 1
MAKPLAN4
MAKPLC-D
MAKPLHELP
MAKPLNPO
MAKPOL

MAKPOLD
MAKPOLD2
MAKPOLHS
MAKPR -CS

MAKPRALT
MAKPRAN3
MAKPRO
MAKSYN1
MAKSYN3
MAKSYNT
MAKTIM1
MAKUNIT2
MAK_AGDAT

MAK_AGT1
MAK_PLAN

MAK_PLPOL
MAK_POL1
MAK.PRAN

MARK
MENEXT
MENRTS
MENRTS.OLD
MINIE-APO
MSG
MSSEQ
NEAXR

MAKAPTO-11. CBL
MAKAPTE.CBL
MAKAPTIMCH.CBL
MAKAPTYP.CBL
MAKAR.CBL
MAKARDEL.CBL
MAKART.CBL
MAKart.CBL
MAKCNT.CBL
MAKDISC.CBL
MAKDPD.CBL
MAKEPIT1.CBL
MAKGRAM1.CBL
MAKINV.CBL
MAKMAIN.CBL
MAKOIKO.CBL
MAKPARO-1. CBL
MAKPL.CBL

MAKPL2.CBL
MAKPLAN 1. CBL
MAKPLAN4.CBL
MAKPLC-D.CBL
MAKPLHELP.CBL
MAKPLNPO.CBL
MAKPOL.CBL
MAKpol.CBL
makpol.cbl
MAKPOLD.CBL
MAKPOLD2.CBL
MAKPOLHS.CBL
MAKPR-CS.CBL

MAKPRALT.CBL
MAKPRAN3.CBL
MAKpro.CBL
MAKSYN1.CBL
MAKSYN3.CBL
MAKSYNT.CBL
MAKTIM1.CBL
MAKUNIT2.CBL
MAK_AGDAT.CBL

mak_agtl.cbl
MAKJ>LAN.CBL

mak_plpol.cbl
mak_poll.cbl
MAK_PRAN.CBL
mak_pran.cbl
MARK.CBL
MENEXT.CBL
MENRTS.CBL
MENRTS.OLD
MINIE-APO.CBL
msg.cbl
MSSEQ.CBL
NEAXRCBL

144

NEAXR.STD
NEW ANAL
NOR-MENU
NUMTEXT
OM-OM
ORDDATE2
ORDEIDDT
ORDOP
PARACHK
PARDATE2
FARM
PAROPCNT
PARPEL3.MARK
PELDEL
PELFEIS
PELIDX
PELNEW
PELPROD
PELTEAM
PELYPOM
PFORTEID
PFORTSYN
PL-AFM
PL-PL
PLAIM2
PLANAL1
PLANAL3
PLANREAD
PLAPOGR

PLCHKAFM
PLCRDB
PLEPYPOL
PLEVRET
PLEVRET2
PLFAIMEV
PLFILTER
PLHSMHN
PLIN
PLKATEL
PLMHN
PLMHNPE
PLMHNSP
PLMHNSYN
PLMYF
PLNME
PLNS
PLOPMR
PLPEREVR
PLPERSYG
PLPOLREP
PLPRYP
PLREAD
PLSCREEN
PLSYG

NEAXR.STD
NEWANAL.CBL
nor-menu.cbl
numtext.cbt
OM-OM.CBL
ORDDATE2.CBL
ORDEIDDT.CBL
ORDOP.CBL
PARACHK.CBL
PARDATE2.CBL
PARM.CBL
PAROPCNT.CBL
PARPEL3.MARK
PELDEL.CBL
PELFEIS.CBL
PELIDX.CBL
PELNEW.CBL
PELPROD.CBL
PELTEAM.CBL
PELYPOM.CBL
PFORTEIDCBL
PFORTSYN.CBL
PL-AFM.CBL
PL-PL.CBL
PLAIM2.CBL
PLANAL1.CBL
PLANAL3.CBL
PLANREAD.CBL
PLAPOGR.CBL

PLCHKAFM.CBL
PLCRDB .CBL
PLEPYPOL.CBL
PLEVRET.CBL
PLEVRET2.CBL
PLFAMEV.CBL
PLFILTER.CBL
PLHSMHN.CBL
PLIN.CBL
PLKATEL.CBL
PLMHN.CBL
PLMHNPE.CBL
PLMHNSP.CBL
PLMHNSYN.CBL
PLMYF.CBL
PLNME.CBL
PLNS.CBL
PLOPMR.CBL
PLPEREVR.CBL
PLPERSYG.CBL
PLPOLREP.CBL
PLPRYP.CBL
PLREAD.CBL
PLSCREEN.CBL
PLSYG.CBL

NEAXRDOS
NEWPRG
NUMDIS
OLDNUM
ORDAPTM1
ORDEID
ORDEIS
ORDSCAN
PARAGOP
PAREIS1
PAROP
PARPEL3
PEL2HPL
PELDISC
PELFOP
PELINK
PELOPEN
PELSEQ
PELYPEVR
PELYPOP
PFORTEID2
PKMENU
PL-MOVE
PLAMl
PLANAL
PLANAL2
PLANCHK
PLANSRT
PLCHK

PLCOMMEN
PLEKPT
PLETIK
PLEVRET1
PLFAIM
PLFAML
PLFLCHK
PLHSMHNP
PLISOZ
PLLOGI
PLMHNP
PLMHNPEP
PLMHNSPP
PLMRE1S
PLNMDT
PLNMOP
PLOPANAL
PLPELISOZ
PLPERISOZ
PLPERYPOL
PLPREAD
PLRANGE
PLSALE1
PLSTAT
PLSYGALFA

NEAXRDOS.CBL
NEWPRG.CBL
numdis.cbl
oldnum.cbl
ORDAPTM1.CBL
ORDEID.CBL
ORDEIS.CBL
ORDSCAN.CBL
PARAGOP.CBL
PAREIS1.CBL
PAROP.CBL
PARPEL3.CBL
PEL2HPL.CBL
PELDISC.CBL
PELFOP.CBL
PELINK.CBL
PELOPEN.CBL
PELSEQ.CBL
PELYPEVR.CBL
PELYPOP.CBL
PFORTEID2.CBL
plctnenu.cbl
PL-MOVE.CBL
PLAIMI.CBL
PLANAL.CBL
PLANAL2.CBL
PLANCHK.CBL
PLANSRT.CBL
PLCHK.CBL
plchk.cbl
PLCOMMEN.CBL
PLEKPT.CBL
PLETIK.CBL
PLEVRET1.CBL
PLFAIM.CBL
PLFAIML.CBL
PLFLCHK.CBL
PLHSMHNP.CBL
PLISOZ.CBL
PLLOGI.CBL
PLMHNP.CBL
PLMHNPEP.CBL
PLMHNSPP.CBL
PLMREIS.CBL
PLNMDT.CBL
PLNMOP.CBL
PLOPANAL.CBL
PLPELISOZ.CBL
PLPERISOZ.CBL
PLPERYPOL.CBL
PLPREAD.CBL
PLRANGE.CBL
PLSALE1.CBL
PLSTAT.CBL
PLSYGALFA.CBL

145

PLTREIS
PLYPFAST
PLYPSEND
PL_CHK
PR-AFM
PR-PR
PRANAL
PRANREAD
PRCHK

PRDEL
PREVRET1
PRFEIS
PRFOP
PRIN
PRKATEL
PRMERGE
PRMHNSYN
PRMYF
PROD-ASC.STD
PROFF-OP
PROFFERS
PROFFEV2
PROPANAL
PROPMR
PRORDERS
PRPERISOZ
PRPERYPOL
PRRANGE
PRSTAT
PRSYGALFA
PRTPLYP
PRTSEL
PRUPREAD
PRYPFAST
PRZERO
PUZZLE
RELPRO
RESTLIST
RHANDLE
SALES-ASC
SALES- ASC1
SEQREAD
STATAPS
STATBAR1
STATE AR3
STATPRT1
STATPRT3
STATPSAP
STATPSSP
STELIOS
STR-FCTS
SYNT
SYNTOP
SYSCALL

PLTREIS.CBL
PLYPFAST.CBL
PLYPSEND.CBL
pLchk.cbl
PR-AFM.CBL
PR-PR.CBL
PRANAL.CBL
PRANREAD.CBL
PRCHK.CBL
prchk.cbl
PRDEL.CBL
PREVRET1.CBL
PRFEIS.CBL
PRFOP.CBL
PRINCBL
PRKATEL.CBL
PRMERGE.CBL
PRMHNSYN.CBL
PRMYF.CBL
PROD-ASC.STD
PROFF-OP.CBL
PROFFERS.CBL
PROFFEV2.CBL
PROPANAL.CBL
PROPMR.CBL
PRORDERS.CBL
PRPERISOZ.CBL
PRPERYPOL.CBL
PRRANGE.CBL
PRSTAT.CBL
PRSYGALFA.CBL
PRTPLYP.CBL
PRTSEL.CBL
PRUPREAD.CBL
PRYPFAST.CBL
PRZERO.CBL
puzzle.cbl
RELPRO.CBL
RESTLIST.CBL
rhandle.cbl
SALES-ASC.CBL
SALES-ASC1.CBL
SEQREAD.CBL
STATAPS.CBL
STATBAR1.CBL
STATBAR3.CBL
STATPRT1.CBL
STATPRT3.CBL
STATPSAP.CBL
STATPSSP.CBL
STELIOS.CBL
str-fcts.cbl
SYNT.CBL
SYNTOP.CBL
SYSCALL.CBL

PLYPAGE
PLYPOL
PLZERO
POLREAD
PR-MOVE
PRAFMAK
PRANCHK
PRAPOGR
PRCHKAFM

PREVRET
PREVRET6
PRFLCHK
PRO-TIM
PRISOZ
PRLOGI
PRMHN
PRMREIS
PROD-ASC
PROD-ASC1
PROFFCHK
PROFFEV1
PROMX2PR
PROPEN
PRORD-OP
PRPEREVR
PRPERSYG
PRPLYP
PRSCREEN
PRSYG
PRTEIS
PRTREIS
PRUPDATE
PRYPAGE
PRYPOL
PR_CHK
RELPEL
REPLY
RESTORE
RHANDLE.OLD
SALES-ASC.STD
SEQ-OTH
SKT
STATBAR
STATE AR2
STATPRT
STATPRT2
STATPSAL
STATPSAS
STATSALE
STELIOS 1
SYNCHK
SYNTOO
SYNTPR
SYSDESC

PLYPAGE.CBL
PLYPOL.CBL
PLZERO.CBL
POLREAD.CBL
PR-MOVE.CBL
PRAFMAK.CBL
PRANCHK.CBL
PRAPOGR.CBL
PRCHKAFM.CBL

PREVRET.CBL
PREVRET6.CBL
PRFLCHK.CBL
PRG-TM.CBL
PRISOZ.CBL
PRLOGI.CBL
PRMHN.CBL
PRMREIS.CBL
PROD-ASC.CBL
PROD-ASC1.CBL
PROFFCHK.CBL
PROFFEV1.CBL
PROMX2PR.CBL
PROPEN.CBL
PRORD-OP.CBL
PRPEREVR.CBL
PRPERSYG.CBL
PRPLYP.CBL
PRSCREEN.CBL
PRSYG.CBL
PRTEIS.CBL
PRTREIS.CBL
PRUPDATE.CBL
PRYPAGE.CBL
PRYPOL.CBL
pr_chk.cbl
RELPEL.CBL
reply.cbl
RESTORE.CBL
rhandle.old
SALES-ASC.STD
SEQ-OTH.CBL
SKT.CBL
STATE AR.CBL
STATE AR2.CBL
STATPRT.CBL
STATPRT2.CBL
STATPSAL.CBL
STATPSAS.CBL
STATSALE.CBL
STELIOS l.CBL
SYNCHK.CBL
SYNTOO.CBL
SYNTPR.CBL
SYSDESCCBL

146

SYSENV
TAPOMEIS
TAPQNTY
TARTHROSEE
TCNTGEN
TCOMOP
TDMET
TDPEKT1
TDPINF
TESTPRG
TFORTEID
TGAKYR
TGEKD
TGEVR1
TGGENRP1
TGMET
THELPOP
TIMAKYR
TIMCNT
TIMEBAR
TMEKD
TMEVR1
TMGEN1
TIM INF
TINVLIST
TIPAR
TTTLEDEN
TTTLEKAR
TITLEPKA
TTTLOP
TLINKOP
TMETOP
TOMEIS
TOPARTHR
TOPPOLHS
TPLOMOP
TPOLDOP
TPOLSEE

TPROMOP
TRAPEIS
TRAPOP
TSTEIS1
TTMETOP
TVIEW1
TYPOMOP
V3-AGO
V3-EPGR1
V3-PRO
V3-XPERT
WINSEL
WINSEL2
XP1-1
YP-YP
YPOK-PEL

SYSENV.CBL
TAPOMEIS.CBL
TAPQNTY.CBL
TARTHROSEE.CBL
TCNTGEN.CBL
TCOMOP.CBL
TDMET CBL
TDPEKT1.CBL
TDPINF.CBL
TESTPRG.CBL
TFORTEID.CBL
TGAKYRCBL
TGEKD.CBL
TGEVR1.CBL
TGGENRP1.CBL
TGMET.CBL
THELPOP.CBL
TMAKYR.CBL
TIMCNT.CBL
TIMEBAR.CBL
TIMEKD.CBL
TMEVR1.CBL
TMGEN1.CBL
TIMINF.CBL
TINVLIST.CBL
TIPAR.CBL
titleden.cbl
titkkar.cbl
titlepka.cbl
TTTLOP.CBL
TLINKOP.CBL
TMETOP.CBL
TOMEIS.CBL
TOPARTHR.CBL
TOPPOLHS.CBL
TPLOMOP.CBL
TPOLDOP.CBL
TPOLSEE.CBL
tpolsee.cbl
TPROMOP.CBL
TRAPEIS.CBL
TRAPOP.CBL
TSTEIS1.CBL
TTMETOP.CBL
TV DEW 1. CBL
TYPOMOP.CBL
V3-AGO.CBL
V3-EPGR1.CBL
V3-PRO.CBL
V3-XPERT.CBL
WINSEL.CBL
WINSEL2.CBL
XP1-1.CBL
YP-YP.CBL
YPOK-PEL.CBL

TAMAPTM
TAPOMOP
TAPQNTYR
TARUNL
TCOMEIS
TDEFPAR
TDPEKT
TDPEKT2
TEST
TESTPRG.CBL.V
TFORTEED2
TGEIS
TGEVR
TGGEN1
TGGENRP2
TGSEE
TIMAGHLP
TIMCHK
TMDEL
TEMEIS
TIMEVR
TIMGEN
TIM IN
TIMOPEN
TINVOP
TITLE
TITLEDET
TITLENT
TITLETER
TLINKCP
TMETEIS
TMFLCHK
TOMOP
TOPCNT
TPLOMEIS
TPOL2HMER
TPOLHMEROL
TPROMEIS

TRAPCMENU
TRAPEVR
TSTEIS
TTMETEIS
TVIEW
TYPOMEIS
UPDTRS
V3-EPGR
V3-PEL
V3-TIM
V5MAKUPD
WINSEL1
XPO-1
YEARMEN
YPOK-APO
YPOK-PRO

TAMAPTM.CBL
TAPOMOP.CBL
TAPQNTYR.CBL
TARUNL.CBL
TCOMEIS.CBL
TDEFPAR.CBL
TDPEKT.CBL
TDPEKT2.CBL
TEST.CBL
TESTPRG.CBL,v
TFORTEID2.CBL
TGEIS.CBL
TGEVR.CBL
TGGEN1.CBL
TGGENRP2.CBL
TGSEE.CBL
TIMAGHLP.CBL
TIMCHK.CBL
TIMDEL.CBL
TIMEIS.CBL
TIMEVR.CBL
TIMGEN.CBL
TIMIN.CBL
TIMOPEN.CBL
TINVOP.CBL
title.cbl
titledet.cbl
titlent.cbl
titleter.cbl
TLENKCP.CBL
TMETEIS.CBL
TMFLCHK.CBL
TOMOP-CBL
TOPCNT.CBL
TPLOMEIS. CBL
TPOL2HMER.CBL
TPOLHMEROL.CBL
TPROMEIS. CBL

TRAPCMENU.CBL
TRAPEVR.CBL
TSTEIS.CBL
TTMETEIS.CBL
TVIEW.CBL
TYPOMEIS.CBL
UPDTRS .CBL
V3-EPGR.CBL
V3-PEL.CBL
V3-TIM.CBL
V5MAKUPD.CBL
WINSEL1.CBL
XPO-l.CBL
YEARMEN.CBL
YPOK-APOCBL
YPOK-PROCBL

147

YPOK-TIM YPOK-TIM.CBL YPOMKNEW YPOMKNEW.CBL
YPOMNEW YPOMNEW.CBL _IL01CHK JL01CHK.CBL

148

Appendix 15

This appendix presents the complete list of the source code files that contain datafile
definitions. For each source file all the datafiles, which are defined in its source code,
are listed in columns 2 & 3. Column 2 presents the names of the datafiles for which
the source file contains a record description. Column 3 presents the names of the
datafiles for which the source file contains a structure definition.

Source File Datafiles Defined
Record Description

Datafiles Defined
Structure Definition

AGDREC.CBL
AGFORTEID.CBL

AGFORTSYN.CBL

AGO.SEL

AGPCNTREC.CBL
AGPREC.CBL
AGTREC.CBL
AGVIEW1.CBL
AITEXAG.CBL
AITEXALL.CBL
AMUPD.SEL
AMUPD.REC
AP CHK.CBL

AP2HMER.CBL
apaddtrs.cbl
APAIT2EX.CBL
APALBRI.SEL
APALBRI.REC
APAL.REC
APANAL.SEL
apanalho.rec
APANAL.REC
APANLOG.REC

APANREC.CBL

AP-AP.CBL

APDGEN.CBL
APDPR.REC

AGD-FILE
PFORT-FILE
PRINT-FILE

PFORT-FILE
PRINT-FILE

AGPCNT-FILE
AGP-FILE
AGT-FILE
WARTHRO-FILE
WAPTM-FILE
WAPTM-FILE

AMUPD-FILE

HELP-FILE
APUPD-FILE
WAPTM-FILE

APALBRI-FILE
APAL-FILE

APANAL-FILE
APANAL-FILE
APANLOG-FILE
APANAL-FILE

APO-FILE
WAPO-FILE
WAPTM-FILE

APDPR-FILE

PFORT-FILE
PRINT-FILE
PFORT-FILE
PRINT-FILE
AGD-FILE
AGP-FILE
AGPCNT-FILE
AGT-FILE
COUNT-FILE
INV-FILE
LGLINK-FILE
POLHS-FILE
TDPR-FILE
TDPRC-FILE
THELP-FILE
TMET-FILE
TOM-FILE
TYPOM-FILE

WARTHRO-FILE
WAPTM-FILE
WAPTM-FILE
AMUPD-FILE

WAPANAL-FILE
WAPO-FILE
WK1-FILE
WK2-FILE
WYPOM-FILE
WYPOMK-FILE
HELP-FILE
APUPD-FILE
WAPTM-FILE
APALBRI-FILE

APANAL-FILE

APO-FILE
WAPO-FILE

WAPTM-FILE

149

APDPRREC.CBL
APD.REC

APDREC.CBL
APF1LREC

APF1LREC.CBL
APF1.REC

APF1REC.CBL
APFEREC.CBL

APFLREC
APFLREC.CBL

APFPA.REC
APFPR.SEL
APFPAREC.CBL
APFPR.REC
APF.REC
APFREC.CBL
AP-GET.CBL

APGK.REC
APGK.SEL
APHMEROL.CBL
APKATEL1 .CBL
APKATEL.CBL

APKO2.REC
APKO2REC.CBL
APKODE.REC
APKODEREC.CBL

APKOS.REC
APKOSREC.CBL
APM2JOIN.CBL
APMOD.REC
APMODREC.CBL

APMON.REC
APMONREC.CBL

APNEW.CBL
APO.SEL

APDPR-FILE
APD-FILE
APD-FILE
APF1LNK-FILE
APF1LNK-FILE

APF1-FILE
APF1-FILE

APF-FILE
APFL-FILE

APFL-FILE
APFPA-FILE

APFPA-FILE
APFPR-FILE

APF-FILE
APF-FILE
APO-FILE
WAPO-FILE

APGK-FILE

HELP-FILE
HELP-FILE
HELP-FILE
SYNT-KOS-FILE
SYNT-KOS-FILE

KODE-FILE
KODE-FILE
KOS-FILE

KOS-FILE
WAPO1-FILE
APMOD-FILE
APMOD-FILE
MON-FILE
MON-FILE
WAPO-FILE

APFPR-FILE

APO-FILE
WAPO-FILE

APGK-FILE
HELP-FILE
HELP-FILE
HELP-FILE

WAPO1-FILE

WAPO-FILE
APAL-FILE
APANLOG-FILE
APD-FILE
APDPR-FILE
APF-FILE
APF1-FILE
APF1LNK-FILE
APFL-FILE
APFPA-FILE
APMOD-FILE
APP-FILE
APRD-FILE
APTEAM-FILE
APTEAM1-FILE
APTMX-FILE
APTR-FILE
KODE-FILE
KOS-FILE
MON-FILE
SYNT-KOS-FILE
TAPOM-FILE

150

APO1.SEL

APOGRNEW.REC
APOGR.REO
APOGR.REC

APOHO.SEL
APOHO.SEL

APOGR-RLE
APOGR-FILE
APOGR-FILE

APOM1.REC
APOM1.SEL
APOM1 REC.CBL
APOMANEW.CBL

APOMA.REC

APOMA.SEL
APOMAST.REC

APOMAST.SEL

APOMAST1.SEL

APOMT.REC

APOREC.CBL

APOPMR.CBL

APPOL3.CBL

APP.REC
APPREC.CBL

APO1-FILE

APO1-FILE
APOMA-FILE
WAPOMA-FILE

APOMA-FILE

APO-FILE

TAPOM-FILE

APO-FILE

HLP-FILE

APP-FILE
APP-FILE

APD-FILE
APDPR-FILE
APF-FILE
APF1-FILE
APF1LNK-FILE
APFL-FILE
APFPA-FILE
APMOD-FILE
APP-FILE
APRD-FILE
APTEAM-FILE
APTEAM1-FILE
APTMX-FILE
APTR-FILE
KODE-FILE
KOS-FILE
MON-FILE
SYNT-KOS-FILE
TAPOM-FILE

APOGR-FILE
APANAL-FILE
APD-FILE
APDPR-FILE
APF-FILE
APF1-FILE
APF1LNK-FILE
APFL-FILE
APFPA-FILE
APMOD-FILE
APO-FILE
APO1-FILE
APOGR-FILE
APP-FILE
APRD-FILE
APTEAM-FILE
APTEAM1-FILE
APTIMCH-FILE
APTM-FILE
APTMX-FILE
APTR-FILE
KODE-FILE
KOS-FILE
MON-FILE
SYNT-FILE
SYNT-KOS-FILE
TAPOM-FILE

AP01-FILE

APOMA-FILE
WAPOMA-FILE

APOMA-FILE

APO-FILE
APO-FILE

APO-FILE
APOMA-FILE
APO1-FILE

HLP-FILE

151

APRD.REC

APRDREC.CBL
APRELREC

APREL.SEL

APROL3.CBL

APSTAT1.CBL
APSTAT.CBL

APSTATUS.CBL

APSYN.REC
APSYN.SEL
APSYNREC.CBL
APTE1.REC

APTE1REC.CBL
APTEAM.REC
APTEAMREC.CBL
APTIMCH.REC
APTIMCH.SEL
APTM.SEL
APTIMCHREC.CBL
APTMJOIN.CBL
APTM.REC
APTMX.REC
APTMXREC.CBL
APTRANS.CBL

APT.REC
APTREC.CBL
APTR.REC

APTRREC.CBL

APUPD.REC

APUPD.SEL
APYPREC.CBL

ARTP.REC
ARTP.SEL
ASC-AP.CBL

ASC-APO.CBL

ASC-AP1.CBL

ASC-AP2.CBL

ASC-APAN.CBL

APRD-FILE
APRD-FILE
APREL-FILE

HLP-FILE
HLP-FILE
HLP-FILE

APSTAT-FILE

SYNT-FILE

SYNT-FILE
APTEAM1-FILE

APTEAM1-FILE
APTEAM-FILE
APTEAM-FILE
APTIMCH-FILE

APTIMCH-FILE
WAPTM-FILE
APTM-FILE
APTMX-FILE
APTMX-FILE
WAPANAL-FILE
WAPO-FILE
WK1-FILE
WK2-FILE
WYPOM-FILE
WYPOMK-FILE
APTR-FILE
APTR-FILE
WAPANAL-FILE
WAPO-FILE
WK1-FILE
WK2-FILE
WYPOM-FILE
WYPOMK-FILE
WAPANAL-FILE
WAPO-FILE
WK1-FILE
WK2-FILE
WYPOM-FILE
WYPOMK-FILE

APUPD-FILE

YPOM-FILE

ARTP-FILE

SEQ-FILE
WAPO-FILE

SEQ-FILE
APO-FILE

APREL-FILE

HLP-FILE
HLP-FILE
HLP-FILE

APSTAT-FILE

SYNT-FILE

APTIMCH-FILE
APTM-FILE

WAPTM-FILE

WAPANAL-FILE
WAPO-FILE
WK1-FILE
WK2-FILE
WYPOM-FILE
WYPOMK-FILE

APUPD-FILE

ARTP-FILE
SEQ-FILE
APO-FILE
SYNT-FILE

SEQ-FILE
APO-FILE

SEQ-FILE
WAPO-FILE

SEQ-FILE
APO-FILE

APANAL-FILE
CNV-FILE
SEQ-FILE

152

ASC-LGAN.CBL

ASC-PELCBL

ASC-PEL1.CBL

ASC-PEL3.CBL

ASC-PEL4.CBL

ASC-PROM.CBL

ASC-PEL.CBL

ASC-PROM1.CBL

ASC-PROM3.CBL

ASC-TEAM2.CBL

ASC-TEAM.CBL

CANCPRT.CBL

CR-L.CBL
CS-L.CBL
DB.REC
DB.SEL
DED.REC
DED.SEL
EKTREC.CBL
EKTEIS.CBL
EKTEPIL.CBL
EMP-AGO.CBL

SEQ-FILE
LINK-FILE

SEQ-FILE
LINK-FILE

SEQ-FILE
PELAT-FILE

SEQ-FILE
PELAT-FILE

SEQ-FILE
CNV-FILE

SEQ-FILE
PELAT-FILE

SEQ-FILE
LINK-FILE

SEQ-FILE

SEQ-FILE
APTEAM-FILE

SEQ-FILE
APTEAM-FILE

PRTIND-FILE
PRTLIST-FILE

DB-FILE

DED-FILE

EKT-FILE

AGD-FILE
AGT-FILE
TOM-FILE
TYPOM-FILE
WTOM-FILE
WTYPOM-FILE
WAGD-FILE
WAGT-FILE

SEQ-FILE
LINK-FILE

SEQ-FILE
PELAT-FILE

SEQ-FILE
PELAT-FILE
LINK-FILE

SEQ-FILE
PELAT-FILE

SEQ-FILE
PELAT-FILE

SEQ-FILE
PROM-FILE
CNV-FILE

SEQ-FILE
LINK-FILE

SEQ-FILE
PROM-FILE

SEQ-FILE
APTEAM-FILE

SEQ-FILE
APTEAM-FILE

PRTIND-FILE
PRTLIST-FILE

DB-FILE

DED-FILE

EKT-FILE
EKT-FILE
AGD-FILE
AGT-FILE
TOM-FILE
TYPOM-FILE
WTOM-FILE
WTYPOM-FILE
WAGD-FILE
WAGT-FILE

153

EMP-APO.CBL

EMP-PELCBL

EMP-PRO.CBL

EMP-TIM.CBL

entypo2.cbl

entypo.cbl

APANAL-FILE
APD-FILE
APFPA-FILE
APO-FILE
APTIMCH-FILE
K1-FILE
K2-FILE
MON-FILE
PRTIM-FILE
WAPANAL-FILE
WAPD-FILE
WAPF-FILE
WAPFPA-FILE
WAPO-FILE
WAPO1-FILE
WAPP-FILE
WAPTEAM-FILE
WAPTEAM1-FILE
WAPTIMCH-FILE
WAPTM-FILE
WKODE-FILE
WMON-FILE
WTAPOM-FILE
YPOM-FILE

ANAL-FILE
ARTHRO-FILE
EPAG-FILE
PELAT-FILE
PER-FILE
PLYP-FILE
POL-FILE
POLD-FILE
WANAL-FILE
WARTHRO-FILE
WPELAT-FILE
WPELF-FILE
WPLYP-FILE
WPOLD-FILE
ANAL-FILE
ARTHRO-FILE
EPAG1-FILE
PERI-FILE
POLD-FILE
PROM-FILE
WANAL-FILE
WARTHRO-FILE
WPOLD-FILE
WPRF-FILE
WPROM-FILE

COMM-FILE
COUNT-FILE
DELTEKD-FILE
EKPOLHS-FILE
POLHS-FILE
TIM-FILE
TIMCNT-FILE
TOM-FILE
TYPOM-FILE
WCOMM-FILE
WCOUNT-FILE
WINV-FILE
WPOLHS-FILE
WTOM-FILE
WTYPOM-FILE
TITLOS-FILE
ENTYPA
ETER
PRINT-FILE

TITLOS-FILE
ENTYPA
ETER
PRINT-FILE

APANAL-FILE
APD-FILE
APFPA-FILE
APO-FILE
APTIMCH-FILE
K1-FILE
K2-FILE
MON-FILE
PRTIM-FILE
WAPANAL-FILE
WAPD-FILE
WAPF-FILE
WAPFPA-FILE
WAPO-FILE
WAP01-FILE
WAPP-FILE
WAPTEAM-FILE
WAPTEAM1-FILE
WAPTIMCH-FILE
WAPTM-FILE
WKODE-FILE
WMON-FILE
WTAPOM-FILE
YPOM-FILE

ANAL-FILE
ARTHRO-FILE
EPAG-FILE
PELAT-FILE
PER-FILE
PLYP-FILE
POL-FILE
POLD-FILE
WANAL-FILE
WARTHRO-FILE
WPELAT-FILE
WPELF-FILE
WPLYP-FILE
WPOLD-FILE
ANAL-FILE
ARTHRO-FILE
EPAG1-FILE
PER1-FILE
POLD-FILE
PROM-FILE
WANAL-FILE
WARTHRO-FILE
WPOLD-FILE
WPRF-FILE
WPROM-FILE

COMM-FILE
COUNT-FILE
DELTEKD-FILE
EKPOLHS-FILE
POLHS-FILE
TIM-FILE
TIMCNT-FILE
TOM-FILE
TYPOM-FILE
WCOMM-FILE
WCOUNT-FILE
WINV-FILE
WPOLHS-FILE
WTOM-FILE
WTYPOM-FILE
TITLOS-FILE
ENTYPA
ETER
PRINT-FILE

TITLOS-FILE
ENTYPA
ETER
PRINT-FILE

154

EPAGREC1.CBL
EPAGREC.CBL
EPESYN.CBL

EPI.SEL

EPI1.SEL
EPIMASTER.CBL
EPIT1REC.CBL

EPITDEL2.CBL

EPITKEY.CBL
EPITOPTRAN.CBL
EPITREC.CBL

EPITTRAN.CBL
EPITTRANSR.CBL
EPMET.CBL
FEANEW.CBL

fhandle.cbl

FLT.REC

FLT.SEL

formvar.rec
fornwar.sel
GR1CNT.CBL

GRA1.REC
GRA1.SEL

GRAM1OPTR.CBL
GRAMOPTRAN.CBL

GRAM1REC.CBL
GRAM1TREC.CBL
GRAMPLHR.CBL

GRAMREC.CBL
GRAMTRREC.CBL

GRA.REC
GRA.SEL

GRCNT1REC.CBL
GRCNTREC.CBL

GRLREC

GRLSEL
GRPROMREC.CBL

hlp.sel

hlpl
HOSP.REC
HOSP.SEL
HOTELREC

HOTEL.SEL

HPL.REC

HPL.SEL
HTLEXAG.CBL

EPAG1-FILE
EPAG-FILE
EPIT1-FILE

EPIT-FILE
EPIT-FILE

EPIT-FILE
TRANS-FILE

TRANS-FILE

POL-FILE
PER-FILE
EPAG-FILE
PELF-FILE
TXTFILE
PRINTFILE

FLT-FILE
FLTHEAD-FILE

VAR-FILE

GRCNT1-FILE
GRCNT1-FILE

GRAM-FILE
TRANS-FILE
GRAM-FILE
GRAM-FILE
TRANS-FILE
GRCNT-FILE

GRCNT1-FILE

GRCNT-FILE
GRL-FILE

PROM-FILE

PELAT-FILE

HOSP-FILE

HOTEL-FILE

HPL-FILE

WAPTM-FILE

EPIT1-FILE
SORT-FILE

EPIT-FILE
EPIT-FILE

EPIT-FILE
EPIT-FILE
TRANS-FILE

PROM-FILE
POL-FILE
PER-FILE
EPAG-FILE
PELF-FILE
TXTFILE
PRINTFILE

FLT-FILE
FLTHEAD-FILE

VAR-FILE
GRCNT1-FILE

GRAM-FILE
GRCNT1-FILE

TRANS-FILE

TRANS-FILE

GRAM-FILE
GRCNT-FILE

GRL-FILE

TAPOM-FILE
TPLOM-FILE

HOSP-FILE

HOTEL-FILE

HPL-FILE
WAPTM-FILE

155

ICL-IN.CBL

ICLREAD.CBL

K1NEW.CBL

K2NEW.CBL

KODE.REC
KODE.SEL

LEM.REC
LEM.SEL

LG-PLCBL

LINKREC.CBL
Iog1 .rec

Iog1 .sel

log. rec

IDX-FILE
SEQ-FILE

IDX-FILE
SEQ-FILE

APTEAM-FILE
WK1-FILE

K2-FILE
WK2-FILE

KODE-FILE

LINK-FILE

LGEMPO
LGMAST
WPELAT-FILE

LGLINK-FILE
ALOG
ANALAA
ANALBB
ANALCC
FANT
LGDATE
LGEMPO
LGINFO
LGKATHG
LGKFPA
LGKKEID
LGMAST
LGMASTN
LGPARFPA
LGPFPA
SORTRAN
TRANCC

ANALAA
ANALBB
ANALCC
FANT
LGCNT
LGDATE
LGINFO
LGKATHG
LGKFPA
LGKKK
LGMAST
LGMASTN
LGPARFPA
LGPFPA
LGTADATE
LGTAM
SORTRAN

IDX-FILE
SEQ-FILE

IDX-FILE
SEQ-FILE

APTEAM-FILE
WK1-FILE

K2-FILE
WK2-FILE

KODE-FILE

LINK-FILE
LGEMPO
LGMAST
WPELAT-FILE

ALOG
ANALAA
ANALBB
ANALCC
FANT
LGDATE
LGEMPO
LGINFO
LGKATHG
LGKFPA
LGKKEID
LGMAST
LGMASTN
LGPARFPA
LGPFPA
SORTRAN
TRANCC

156

log.sel

MAIN.REC
MAIN.SEL
MAKAG.CBL

MAKAGD.CBL
MAKagt.CBL

MAKAPO-11 .CBL

MAKAPO-1.CBL

MAKAP1-2.CBL

MAKAPAN2.CBL
MAK_APAN.CBL

rnak__apan.cbl

MAK+APAN.CBL

MAKAPANAL.CBL
MAK-AP.CBL

mak-ap.cbl

makapl .cbl
MAKAP-CS.CBL

MAK-APN.CBL

makapo! .cbl
makapo.cbl
makapseq.cbl

MAKAPTO-11.CBL

MAKAPTO-1.CBL

mak-apy.cbl

MAKAR.CBL
MAKARADD.CBL
MAKARDELCBL

MAKARG.CBL

MAIN

AGD-FILE
ARTHRO-FILE
WARTHRO-FILE

APO-FILE
APO1-FILE

APO-FILE
WAPO-FILE

APO-FILE
WAPO-FILE

WAPANAL-FILE
APANAL-FILE
WAPANAL-FILE

APANAL-FILE
WAPANAL-FILE

APANAL-FILE
WAPANAL-FILE

APO-FILE
WAPO-FILE

APO-FILE
WAPO-FILE

APO-FILE
WAPO-FILE

APANAL-FILE
WAPANAL-FILE

APO-FILE
APO-FILE
WAPANAL-FILE
HAPANAL-FILE

APTEAM-FILE
APTEAM1-FILE

APTEAM-FILE
WAPTEAM-FILE

APTEAM-FILE
YPOM-FILE

ANALAA
ANALBB
ANALCC
FANT
LGCNT
LGDATE
LGINFO
LGKATHG
LGKFPA
LGKKK
LGMAST
LGMASTN
LGPARFPA
LGPFPA
LGTADATE
LGTAM
SORTRAN

MAIN
AGT-FILE
ARTHRO-FILE

AGD-FILE
ARTHRO-FILE
WARTHRO-FILE

APO-FILE
APO1-FILE

APO-FILE
WAPO-FILE

APO-FILE
WAPO-FILE

WAPANAL-FILE
APANAL-FILE
WAPANAL-FILE

APANAL-FILE
WAPANAL-FILE

APANAL-FILE
WAPANAL-FILE

APANAL-FILE
APO-FILE
WAPO-FILE

APO-FILE
WAPO-FILE

APO-FILE
APO-FILE
WAPO-FILE

APANAL-FILE
WAPANAL-FILE

APO-FILE
APO-FILE
WAPANAL-FILE
HAPANAL-FILE

APTEAM-FILE
APTEAM1-FILE

APTEAM-FILE
WAPTEAM-FILE

APTEAM-FILE
YPOM-FILE

ARTHRO-FILE
ARTHRO-FILE
ARTHRO-FILE

ARTHRO-FILE

157

MAKart.CBL

MAKART.CBL
MAKARTHRO.CBL
MAKEPIT.CBL

MAKEPIT1.CBL
MAKGRAM.CBL

MAKGRAM1.CBL
MAKGRX.CBL

MAKINV.CBL
MAKOIKO.CBL

ARTHRO-FILE
WARTHRO-FILE

MAKPARO-1 .CBL

MAK-PELCBL

MAKPLAN3.CBL

MAK_PLAN.CBL

mak_plan.cbl

MAKPLCD.CBL

MAKPL-CS.CBL

mak_pln1 .cbl

MAKPLPR.CBL

MAKPRAN3.CBL

MAK_PRAN.CBL

mak_pran.cbl

MAK-PR.CBL

MAKPR-CS.CBL

mak jirnl .cbl

GRAM-FILE
WGRAM-FILE

WINV-FILE

APANAL-FILE
APD-FILE
APFPA-FILE
APO-FILE
APTIMCH-FILE
K1-FILE
K2-FILE
MOM-FILE
PRTIM-FILE
WAP ANAL-FILE
WAPD-FILE
WAPF-FILE
WAPFPA-FILE
WAPO-FILE
WAPO1-FILE
WAPP-FILE
WAPTEAM-FILE
WAPTEAM1-FILE
WAPTIMCH-FILE
WAPTM-FILE
WKODE-FILE
WMON-FILE
WTAPOM-FILE
YPOM
OLDPAR-FILE

PELAT-FILE
WPELAT-FILE

ANAL-FILE
WANAL-FILE

ANAL-FILE
WANAL-FILE

ANAL-FILE
WANAL-FILE

WPELAT-FILE

WPELAT-FILE

ANAL-FILE
WANAL-FILE

PELAT-FILE
PROM-FILE

ANAL-FILE
WANAL-FILE

ANAL-FILE
WANAL-FILE

ANAL-FILE
WANAL-FILE

PELAT-FILE
WPELAT-FILE

WPROM-FILE

ANAL-FILE
WANAL-FILE

ARTHRO-FILE
WARTHRO-FILE

ARTHRO-FILE

ARTHRO-FILE
EPIT-FILE
EPIT-FILE
GRAM-FILE

GRAM-FILE
GRAM-FILE
WGRAM-FILE

WINV-FILE
APANAL-FILE
APD-FILE
APFPA-FILE
APO-FILE
APTIMCH-FILE
K1-FILE
K2-FILE
MON-FILE
PRTIM-FILE
WAPANAL-FILE
WAPD-FILE
WAPF-FILE
WAPFPA-FILE
WAPO-FILE
WAPO1-FILE
WAPP-FILE
WAPTEAM-FILE
WAPTEAM1-FILE
WAPTIMCH-FILE
WAPTM-FILE
WKODE-FILE
WMON-FILE
WTAPOM-FILE
YPOM
OLDPAR-FILE
PAR-FILE

PELAT-FILE
WPELAT-FILE

ANAL-FILE
WANAL-FILE

ANAL-FILE
WANAL-FILE

ANAL-FILE
WANAL-FILE

PELAT-FILE
WPELAT-FILE

PELAT-FILE
WPELAT-FILE

ANAL-FILE
WANAL-FILE

PELAT-FILE
PROM-FILE

ANAL-FILE
WANAL-FILE

ANAL-FILE
WANAL-FILE

ANAL-FILE
WANAL-FILE

PELAT-FILE
WPELAT-FILE

PROM-FILE
WPROM-FILE

ANAL-FILE
WANAL-FILE

158

MAKPROM.CBL

MAKTRAN.CBL

MENCPLREC

MENCPLSEL

MEN.REC
MEN.SEL
MERSRT.CBL

MINIE-APO.CBL

MINIE-PEL.CBL

MLTERM.REC

MLTERM.SEL

MNFYIMAS.REC
MNFYIMAS.SEL

MNFYI.REC

MNFYI.SEL
MNREFR.REC
MNREFR.SEL
MNUSRPER.REC

MNUSR.REC
MNUSR.SEL
MNUSRPER.SEL

MSMAKAN.CBL

MSSEQ.CBL

OFFH.REC

OFFH.SEL

OFFI.REC

OFFI.SEL
OM-OM.CBL

ORDEID.CBL

PROM-FILE
WPROM-FILE

APANAL-FILE
ANAL-FILE

MENCPL-FILE
MENMDF-FILE

MENU-FILE

CANAL-FILE
SANAL-FILE
SMOANAL-FILE

MORFH-APO
WAPD-FILE
WAPF-FILE
WAPFPA-FILE
WAPO-FILE
WAPO1-FILE
WAPP-FILE
WAPTEAM-FILE
WAPTEAM1-FILE
WAPTIMCH-FILE
WAPTM-FILE
WKODE-FILE
WMON-FILE
WTAPOM-FILE

MORFH-PEL
WPELAT-FILE
WPELF-FILE
WANAL-FILE
WPOLD-FILE
WARTHRO-FILE
WPLYP-FILE

MLTERM-FILE
MLPOLHS-FILE

MNFYIMAS-FILE

MNFYI-FILE

MNREFR-FILE

MNUSRPER-FILE
TMPPER-FILE

MNUSR-FILE

MSANAL-FILE
WMSANAL-FILE

MSANAL-FILE
WMSANAL-FILE

OFFH-FILE

OFFI-FILE

K1-FILE
APTEAM-FILE

PFORT-FILE

PROM-FILE
WPROM-FILE

APANAL-FILE
ANAL-FILE

MENCPL-FILE
MENMDF-FILE

MENU-FILE
SMANAL-FILE
CANAL-FILE
SANAL-FILE
SMOANAL-FILE

MORFH-APO
WAPD-FILE
WAPF-FILE
WAPFPA-FILE
WAPO-FILE
WAP01-FILE
WAPP-FILE
WAPTEAM-FILE
WAPTEAM1-FILE
WAPTIMCH-FILE
WAPTM-FILE
WKODE-FILE
WMON-FILE
WTAPOM-FILE

MORFH-PEL
WPELAT-FILE
WPELF-FILE
WANAL-FILE
WPOLD-FILE
WARTHRO-FILE
WPLYP-FILE

MLTERM-FILE
MLPOLHS-FILE

MNFYIMAS-FILE

MNFYI-FILE

MNREFR-FILE

MNUSR-FILE
MNUSRPER-FILE
TMPPER-FILE

MSANAL-FILE
WMSANAL-FILE

MSANAL-FILE
WMSANAL-FILE

OFFH-FILE

OFFI-FILE

K1-FILE
APTEAM-FILE

PFORT-FILE

159

ORDEIDDT.CBL
ORDER.REC
ORPH.REC
ORPH.SEL

ORPI.REC
ORPI.SEL

PARAGREC.CBL
PARCNTREC.CBL

PARM.REC
PARM.SEL
PELSEL

PEL1 .SEL

PELANAL.REC
PELAT.REC
PELAT.SEL
PELFREC.CBL

PELIDX.CBL
PELMAST.REC
PELNEW.CBL

PELNMEREC.CBL
PELSEQ.CBL

PFORTEID2.CBL

PFORTEID.CBL

PFORTEID2.CBL

PFORTSYN.CBL

PL-AFM.CBL

PLFAIMREC.CBL

PLOPMR.CBL

PFORT-FILE
ORD-FILE
ORPH-FILE

ORPI-FILE

PAR-FILE
PARCNT-FILE

PARM-FILE

ANAL-FILE
PELAT-FILE

PELF-FILE

SPELAT-FILE
PELAT-FILE
PELAT-FILE
WPELAT-FILE

PELNME-FILE
PELAT-FILE
SPELAT-FILE

PFORT-FILE
PRINT-FILE

PFORT-FILE
PRINT-FILE

PFORT-FILE
PRINT-FILE

SEQ-FILE
PELAT-FILE
WPELAT-FILE

PLFAIM-FILE

PL-PL.CBL

PLPOLREP.CBL

PELAT-FILE
WPELAT-FILE

HLP-FILE
PRINT-FILE

PFORT-FILE

ORPH-FILE

ORPI-FILE

PARM-FILE
ANAL-FILE
PELF-FILE
POLD-FILE
ARTHRO-FILE
PLYP-FILE
PLFAIM-FILE
PELNME-FILE
TPLOM-FILE

ANAL-FILE
PELF-FILE
POLD-FILE
ARTHRO-FILE
PLYP-FILE
PLFAIM-FILE
PELNME-FILE
TPLOM-FILE

PELAT-FILE

SPELAT-FILE

PELAT-FILE
WPELAT-FILE

PELAT-FILE
SPELAT-FILE

PFORT-FILE
PRINT-FILE
PFORT-FILE
PRINT-FILE

PFORT-FILE
PRINT-FILE

SEQ-FILE
PELAT-FILE
WPELAT-FILE

PELAT-FILE
ANAL-FILE
PELF-FILE
POLD-FILE
ARTHRO-FILE
PLYP-FILE
PLFAIM-FILE
PELNME-FILE
TPLOM-FILE

PELAT-FILE
WPELAT-FILE

HLP-FILE
PRINT-FILE

160

PLPREAD.CBL

PLSTAT.CBL

PLYPREC.CBL

POLREC.CBL

PR1.REC
PR1.SEL
PR11.SEL

PR2.SEL
PR3.SEL
PR4.SEL

PR5.SEL
PR6.SEL
PR-AFM.CBL

PRANALREC.CBL
PRFREC.CBL
PRMASTREC.CBL

PRORD.REC

pro.rec
pro.sel
PROPMR.CBL

PR-PR.CBL

PRORD.SEL

PRSTAT.CBL
PRSTAT.GEN
PRTEIS.CBL
PRTEIS.OLD
PRTSELCBL
PRTSEL.OLD
PRUPD.REC
PRUPD.SEL

REC1.REC

REC1.SEL

recpm.wor
REC.REC

REC.SEL

RELAPO.CBL

RELPELCBL
RELPRO.CBL

rhandle.cbl

PELAT-FILE
PROM-FILE

HLP-FILE
PLYP-FILE

POL-FILE
PROM-FILE

SEQ-FILE
PROM-FILE
WPROM-FILE

ANAL-FILE
PRF-FILE
PROM-FILE
PRORD-FILE
PRORDCNT-FILE

PROM-FILE

PROM-FILE
WPROM-FILE

HLP-FILE
HLP-FILE

PRUPD-FILE

W ANAL-FILE
WARTHRO-FILE

EKT-FILE
WAPANAL-FILE
WANAL-FILE
WARTHRO-FILE

WAPO-FILE

TXTFILE
PRINTFILE

PELAT-FILE
PROM-FILE

HLP-FILE

PROM-FILE
PROM-FILE
ANAL-FILE
POLD-FILE
ARTHRO-FILE
TPROM-FILE
PRF-FILE
SEQ-FILE
PROM-FILE
WPROM-FILE

PROM-FILE
PROM-FILE
ANAL-FILE
POLD-FILE
ARTHRO-FILE
TPROM-FILE
PRF-FILE

PROM-FILE
WPROM-FILE

PRORD-FILE
PRORDCNT-FILE

HLP-FILE
HLP-FILE
EKT-FILE
EKT-FILE
EKT-FILE
EKT-FILE

PRUPD-FILE

WANAL-FILE
WARTHRO-FILE

WANAL-FILE
WAPANAL-FILE
WARTHRO-FILE

APO-FILE
WAPO-FILE

PELAT-FILE

PROM-FILE
TXTFILE
PRINTFILE

161

rhandle.old

SALES-ASC1.CBL

SALES-ASC.CBL

SALES-ASC.STD

SEQREAD.CBL

SYSENV.CBL

SYSENV.REC
SYSENV.SEL
TAG 1. REG
TAG3.REC
TAG. REG
TAG.SEL
TAMDEL.REC
TAMDELSEL
TAPOMREC.CBL
TAPQNTY.REC
TAPQNTY.SEL
TARTHREC.CBL

TARTHROREC.CBL
TCOMREC.CBL

TCOUNTREC.CBL
TDPCREC.CBL

TDPEKT2.CBL

TDPREC.CBL
TAG2.REC
TFORTEID2.CBL
TFORTEID.CBL
THELPREC.CBL
TIMCNTREC.CBL

TIMREC.CBL
TIM.SEL

TXTFILE
PRINTFILE

IDX-FILE
SEQ-FILE
SEQ-MS-FILE

IDX-FILE
SEQ-FILE
SEQ-MS-FILE

IDX-FILE
SEQ-FILE
SEQ-MS-FILE

PRINT-FILE
WAPANAL-FILE

SYSCFG-FIE
SYSENV-FILE
SYSOUT-FILE

SYSENV-FILE

TIMAG-FILE
TIMAG-FILE

TIMAG-FILE

TAMDEL-FILE

TAPOM-FILE
TAPQNTY-FILE

ARTHRO-FILE
ARTHRO-FILE
COMM-FILE
COUNT-FILE
TDPC-FILE
PFORT-FILE
TMP-FILE

TDPR-FILE
TIMAG-FILE
PFORT-FILE
PFORT-FILE
THELP-FILE
TIMCNT-FILE

TIM-FILE

TXTFILE
PRINTFILE

IDX-FILE
SEQ-FILE
SEQ-MS-FILE

IDX-FILE
SEQ-FILE
SEQ-MS-FILE

IDX-FILE
SEQ-FILE
SEQ-MS-FILE

PRINT-FILE
WAPANAL-FILE

SYSCFG-FIE
SYSENV-FILE
SYSOUT-FILE

SYSENV-FILE

TIMAG-FILE

TAMDEL-FILE

TAPQNTY-FILE

TINVREC.CBL

title.cbl

titleden.cbl

titledet.cbl

INV-FILE

ENTYPA
ETER
TITLOS-FILE

ENTYPA

ETER

PFORT-FILE
TMP-FILE

PFORT-FILE
PFORT-FILE

COMM-FILE
COUNT-FILE
INV-FILE
LGLINK-FILE
ORD-FILE
PAR-FILE
PARCNT-FILE
POLHS-FILE
TIM-FILE
TIMCNT-FILE
TMET-FILE
TOM-FILE
TYPOM-FILE

ENTYPA
ETER
TITLOS-FILE

ENTYPA

ETER

162

titlekar.cbl

titlent.cbl
titlepka.cbl

titleter.cbl
TITLOP.CBL
TMETREC.CBL
TMP.REC
TMP.SEL

TOMREC.CBL

TPLOMREC.CBL
TPOLDREC.CBL
TPOLHSREC.CBL
TPROMREC.CBL
TRA.SEL
TRAN.REC

TRAN.SEL

TRAPREC.CBL
TRAREC.CBL
TRGETREC.CBL

TRWH.REC

TRWH.SEL
TVIEW1.CBL
TYPOMREC.CBL

VAR.REC

VAR.SEL

WAPOM1.REC
WAPO.REC

WAPO.SEL

WAPO1.SEL

WINSELREC
WINSELREC®

WINSELSEL

WINSELSEL®

WPEL.REC

WPELSEL

WPRO.REC

WPRO.SEL

ENTYPA
ETER
TITLOS-FILE

ENTYPA
ENTYPA
ETER
TITLOS-FILE

ETER
TITLOS-FILE

TMET-FILE
HLP-FILE

TOM-FILE
TPLOM-FILE

POLD-FILE
POLHS-FILE
TPROM-FILE

WAPANAL-FILE
WAPO-FILE
WAPOMA-FILE
WAPTEAM-FILE

TRA-FILE
TRA-FILE
WANAL-FILE
WAPANAL-FILE
WARTHRO-FILE

TRWH-FILE

WARTHRO-FILE

TYPOM-FILE
BIN-FILE
VAR-FILE

WAPO1-FILE
WAPO-FILE
WAPO1-FILE
WAPOMA-FILE

WINSEL-FILE

WINSEL-FILE

WPELAT-FILE

WPROM-FILE

ENTYPA
ETER
TITLOS-FILE

ENTYPA
ENTYPA
ETER
TITLOS-FILE

ETER

TITLOS-FILE

HLP-FILE

TRA-FILE

WAPANAL-FILE
WAPO-FILE
WAPOMA-FILE
WAPTEAM-FILE

TRWH-FILE
WARTHRO-FILE

BIN-FILE
VAR-FILE

WAPO-FILE
WAPO1-FILE
WAPOMA-FILE

WAPO1-FILE

WINSEL-FILE

WINSEL-FILE

WPELAT-FILE

WPROM-FILE

163

XPERTDB.CBL

YPOK-APO.CBL

YPOKGET.CBL

YPOK-PELCBL

YPOK-PRO.CBL

AGART-FILE
AGOD-FILE
APANAL-FILE
PRANAL-FILE

APD-FILE
APFPA-FILE
APO-FILE
APTM-FILE
K1-FILE
K2-FILE
MEG-FILE
MON-FILE
WAPD-FILE
WAPF-FILE
WAPFPA-FILE
WAPO-FILE
WAPO1-FILE
WAPP-FILE
WAPTEAM-FILE
WAPTEAM1-FILE
WAPTIMCH-FILE
WAPTM-FILE
WKODE-FILE
WMON-FILE
WTAPOM-FILE
YPOM-FILE
YPOMK-FILE

EPAG-FILE
PELAT-FILE
PER-FILE
POL-FILE
POLD-FILE
WANAL-FILE
WARTHRO-FILE
WPELAT-FILE
WPELF-FILE
WPLYP-FILE
WPOLD-FILE

PROM-FILE
PER1-FILE
EPAG1-FILE
POLD-FILE
WPROM-FILE
WANAL-FILE
WPOLD-FILE
WARTHRO-FILE
WPRF-FILE

AGART-FILE
AGOD-FILE
PRANAL-FILE

APD-FILE
APFPA-FILE
APO-FILE
APTM-FILE
K1-FILE
K2-FILE
MEG-FILE
MON-FILE
WAPD-FILE
WAPF-FILE
WAPFPA-FILE
WAPO-FILE
WAP01-FILE
WAPP-FILE
WAPTEAM-FILE
WAPTEAM1-FILE
WAPTIMCH-FILE
WAPTM-FILE
WKODE-FILE
WMON-FILE
WTAPOM-FILE
YPOM-FILE
YPOMK-FILE
WAPANAL-FILE
WANAL-FILE
WARTHRO-FILE

EPAG-FILE
PELAT-FILE
PER-FILE
POL-FILE
POLD-FILE
WANAL-FILE
WARTHRO-FILE
WPELAT-FILE
WPELF-FILE
WPLYP-FILE
WPOLD-FILE

PROM-FILE
PER1-FILE
EPAG1-FILE
POLD-FILE
WPROM-FILE
WANAL-FILE
WPOLD-FILE
WARTHRO-FILE
WPRF-FILE

YPOK-TIM.CBL

YPOMKNEW.CBL

YPOMNEW.CBL

YP-YP.CBL

COMM-FILE
COUNT-FILE
TIM-FILE
TIMCNT-FILE
TOM-FILE
TYPOM-FILE
WCOMM-FILE
WCOUNT-FILE
WINV-FILE
WPOLHS-FILE
WTOM-FILE
WTYPOM-FILE

APTEAM-FILE
WYPOMK-FILE

APTEAM-FILE
WYPOM-FILE

APTEAM-FILE
YPOM-FILE

COMM-FILE
COUNT-FILE
TIM-FILE
TIMCNT-FILE
TOM-FILE
TYPOM-FILE
WCOMM-FILE
WCOUNT-FILE
WINV-FILE
WPOLHS-FILE
WTOM-FILE
WTYPOM-FILE

APTEAM-FILE
WYPOMK-FILE

APTEAM-FILE
WYPOM-FILE

APTEAM-FILE
YPOM-FILE

164

165

Appendix 16

The complete set of datafiles of the XPERT Hotel software application.

AGART-FILE
AGP-FILE
AGTXFILE
AMUPDXFILE
ANALBB
APALBRI-FILE
APANLOG-FILE
APDXFILE
APFL-FILE
APGKXFILE
APO1-FILE
APOGRXFILE
APP-FILE
APSTAT-FILE
APT1MCHXFILE
APTRXFILE
ARTHRO-FILE
ASUPD-FILE
CANAL-RLE
COUNTXFILE
DOC-FILE
EPAG-FILE
EPITXFILE
FLT-FILE
GRAMXFILE
HAPANAL-F1LE
HOSPXFILE
IDX-FILE
K2-FILE
LGDATE
LGKFPA
LGMAST
LGTADATE
MEG-FILE
MENSPT-FILE
MLTERM-FILE
MNUSR-FILE
MORFH-PEL
NOR-MENU-FILE
OFFH-FILE
ORD-FILE
PAR-FILE
PELAT-FILE
PELNME-FILE
PLFAIM-FILE
POLD-FILE
POS-FILE
PRINT FILE

AGD-FILE
AGPCNT-FILE
ALOG
ANAL
ANALCC
APANAL-FILE
APD-FILE
APF-FILE
APFPA-FILE
APMOD-FILE
APO1XFILE
APOMA-FILE
APRD-FILE
APTEAM-FILE
APTM-FILE
APUPD-FILE
ARTHROXFILE
ASUPDXFILE
CNV-FILE
DB-FILE
EKPOLHS-FILE
EPAG1-FILE
ERROR-FILE
FLTHEAD-FILE
GRCNT-RLE
HELP-FILE
HOTEL-FILE
INV-FILE
KODE-FILE
LGEMPO
LGKKEID
LGMASTN
LGTAM
MENCPL-FILE
MENU-FILE
MNFYI-FILE
MNUSRPER-F1LE
MORFH-PRO
NOR-PELAT-FILE
OFFI-FILE
ORDXFILE
PARCNT-FILE
PELATXRLE
PER-FILE
PLHELP-FILE
POLDXFILE
PRANAL-FILE
PRINTFILE

AGDXFILE
AGPXRLE
ALPHA-FILE
ANAL-FILE
ANALXF1LE
APANAL1-RLE
APDPR-RLE
APF1-RLE
APFPR-FELE
APMODXFILE
APOGR-FILE
APOMAX-FILE
APRDXFILE
APTEAM1-RLE
APTMX-RLE
APUPDXFILE
ARTP-RLE
BAT-RLE
COMM-RLE
DED-FILE
EKT-RLE
EPIT-RLE
ETER
FORMPRT-FILE
GRCNT1-FILE
HLP-FILE
HOTELXRLE
IOSP-RLE
KOS-FILE
LGINFO
LGKKK
LGPARFPA
LINK-RLE
MENDOC-RLE
MLPOLHS-FILE
MNFYIMAS-RLE
MON-RLE
MSANAL-RLE
NORRLT-RLE
OLD-FILE
ORPH-FILE
FARM-FILE
PELF-RLE
PERI -RLE
PLYP-FILE
POLHS-FILE
PRF-FILE
PROM FILE

AGOD-RLE
AGT-FILE
AMUPD-RLE
ANALAA
APAL-FILE
APANALXFILE
APDPRXRLE
APF1LNK-FILE
APGK-RLE
APO-FILE
APOGR1-RLE
APOX-RLE
APREL-FILE
APTIMCH-FILE
APTR-FILE
AREA-RLE
ARX
BIN-FILE
COUNT-RLE
DELTEKD-RLE
ENTYPA
EPITl-FILE
FANT
GRAM-FILE
GRL-RLE
HOSP-RLE
HPL-FILE
Kl-RLE
LGCNT
LGKATHG
LGLINK-FILE
LGPFPA
MAIN
MENMDF-RLE
MLPOLHSXFILE
MNREFR-FILE
MORFH-APO
NEW-RLE
OANAL-FILE
OLDPAR-FILE
ORPI-FILE
PARXRLE
PELFXRLE
PFORT-FILE
POL-FILE
POLHSXFILE
PRFXF1LE
PROMX-FILE

166

PROMXFILE
PRTIND-FILE
REL-FILE
SMANAL-FILE
SORT-FILE
SYNT-FILE
SYSOUT-FILE
TDPR-FILE
THELP-FILE
TMXFILE
TMPI-FILE
TPLOM-FILE
TRANS-FILE
TYPOM-FILE
WANAL-FILE
WAPFPA-FILE
WAPP-FILE
WAPTM-FILE
WGRAM-FILE
WK2-FILE
WPELAT-FILE
WPOLHS-FILE
WTOM-FILE
YPOM-FILE

PRORD-FILE
PRTLIST-FILE
SANAL-FILE
SMOANAL-FILE
SORTED-FILE
SYNT-KOS-FILE
TAMDEL-FILE
TDPRC-FILE
TIM-FILE
TITLOS-FILE
TMPPER-F1LE
TPROM-FILE
TRWH-FILE
VAR-FILE
WAP ANAL-FILE
WAPO-FILE
WAPTEAM-FILE
WARTHRO-FILE
WINSEL-FILE
WKODE-F1LE
WPELF-FILE
WPRF-FILE
WTYPOM-FILE
YPOMK-FILE

PRORDCNT-FILE
PRUPD-FILE
SEQ-FILE
SNF-FILE
SORTRAN
SYSCFG-FILE
TAPOM-FILE
TDPRXFILE
TIMAG-FILE
TMET-FILE
TOM-FILE
TRA-FILE
TRWHXFILE
WAGD-FILE
WAPD-FILE
WAPO1-FILE
WAPTE AMI -FILE
WCOMM-FILE
WINV-FILE
WMON-FILE
WPLYP-FILE
WPROM-FILE
WYPOM-FILE
YPOMK-FILE

PRTIM-F1LE
PRUPDXFILE
SEQ MIS-FILE
SNFI-FILE
SPELAT-F1LE
SYSENV-FILE
TAPQNTY-FILE
TEMP-FILE
TIMCNT-FILE
TMP-FILE
TOTAL-FILE
TRANCC
TXTFILE
WAGT-FILE
WAPF-FILE
WAPOMA-FILE
WAPTIMCH-FILE
WCOUNT-FILE
WK1-FILE
WMSANAL-FILE
WPOLD-FILE
WTAPOM-FILE
WYPOMK-FILE
YPOMK-FILE

167

Appendix 17
This appendix presents the complete set of datafiles of the XPERT Hotel software
application and their definition attributes. For each datafile all the source code files
that contain a structure definition for the datafile are listed in column 2 and all the
source code files that contain a record description for the datafile are listed in column
3. Any mismatches identified among those definitoins are reported in column 4.
Column 5 reports the external name of the datafile, which is used in order to store the
datafile in the physical storage media (filesystem).

Table Name Select File Define File Mismatches FileName

AGART-FILE
AGD-FILE

AGDXFILE
AGOD-FILE
AGP-FILE
AGPXFILE
AGPCNT-FILE
AGT-FILE

XPERTDB.CBL
AGO.SEL
EMP-AGO.CBL
MAKAGD.CBL

V3-AGO.CBL
XPERTDB.CBL
AGO.SEL
V3-AGO.CBL
AGO.SEL
AGO.SEL
EMP-AGO.CBL
MAKAG.CBL

XPERTDB.CBL
AGDREC.CBL
EMP-AGO.CBL
MAKAGD.CBL

V3-AGO.CBL
XPERTDB.CBL
AGPREC.CBL
V3-AGO.CBL
AGPCNTREC.CBL
AGTREC.CBL
EMP-AGO.CBL

AGTXFILE
ALOG
ALPHA-FILE

AMUPD-FILE
ANAL
ANAL-FILE

V3-AGO.CBL
Iog1 .sel
ALPHATEST.CBL
ALPHATEST2.CBL

AMUPD.SEL
MAKEMP.CBL
EMP-PELCBL
EMP-PRO.CBL
MAKPLAN3.CBL
MAKPRAN3.CBL
MAKTRAN.CBL
mak_plan.cbl
MAK_PLAN.CBL
mak__pln1 .cbl
mak_pran.cbl
MAK_PRAN.CBL
mak_prn1 .cbl
PEL.5EL
PEL1.SEL
PLOPMR.CBL
PR2.SEL
PROPMR.CBL

V3-AGO.CBL
logl.rec
ALPHATEST.CBL
ALPHATEST2.CBL

AMUPD.REC
MAKEMP.CBL
EMP-PELCBL
EMP-PRO.CBL
MAKPLAN3.CBL
MAKPRAN3.CBL
MAKTRAN.CBL
mak_plan.cbl
MAK_PLAN.CBL
mak_pln1.cbl
mak^pran.cbl
MAK_PRAN.CBL
mak_prn1.cbl
PEUANAL.REC
PRANALREC.CBL

No
Define

No
No

No
Define

No

No
No

agart.dat
agdelt.dat

agpdel.dat

agpcnt.dat
agtim.dat

amupd.trs

Select & Define pelanal.dat [PEL.SEL]
promanal.dat [PR2.SEL]

ANALXFILE

ANALAA

ANALBB

ANALCC

APAL-FILE
APALBRI-FILE

V3-PEL.CBL
V3-PRO.CBL

log.sel
Iog1.se!
log.sel
Iog1.se!
log.sel
Iog1.se!
APO.SEL
APALBRI.SEL

V3-PEL.CBL
V3-PRO.CBL

log.sel
Iog1 .sel

log.rec
logl.rec

log.rec
Iog1 .rec

APAL.REC
APALBRI.REC

No

No

Select & Define

No
No

apal.dat
apalbri.dat

168

APANAL-FILE APANAL.SEL
APOHO.SEL
ASC-APAN.CBL
EMP-APO.CBL
MAK+APAN.CBL
MAK-APN.CBL
MAKAPANAL.CBL
MAKOIKO.CBL
MAKTRAN.CBL
mak_.apan.cbl
MAK_APAN.CBL

APANAL.REC
apanalho.rec
APANREC.CBL
EMP-APO.CBL
MAK+APAN.CBL
MAK-APN.CBL
MAKOIKO.CBL
MAKTRAN.CBL
mak__apan.cbl
XPERTDB.CBL

Select & Define apanal.dat

APANALXRLE

APANAL1-FILE

APANLOG-FILE
APD-FILE

APDXFILE
APDPR-FILE

APDPRXFILE
APF-FILE

APF1-FILE

APF1LNK-FILE

APFL-FILE

APFPA-FILE

APFPR-FILE
APGK-FILE
APGKXFILE
APMOD-FILE

V3-APO.CBL

ANALMAKE.CBL
APO.SEL
APO.SEL
APO1.SEL
APOHO.SEL
MAKOIKO.CBL
EMP-APO.CBL
YPOK-APO.CBL

V3-APO.CBL
APO.SEL
APO1.SEL
APOHO.SEL

V3-APO.CBL
APO.SEL
APO1.SEL
APOHO.SEL

APO.SEL
APO1.SEL
APOHO.SEL

APO.SEL
APO1.SEL
APOHO.SEL

APO.SEL
APO1.SEL
APOHO.SEL

APO.SEL
AP01.SEL
APOHO.SEL
EMP-APO.CBL
MAKOIKO.CBL
YPOK-APO.CBL

APFPR.SEL
APGK.SEL
V3-APO.CBL
APO.SEL
APO1.SEL
APOHO.SEL

V3-APO.CBL
ANALMAKE.CBL
APANLOG.REC
APD.REC
APDREC.CBL
EMP-APO.CBL
MAKOIKO.CBL
YPOK-APO.CBL

V3-APO.CBL
APDPR.REC
APDPRREC.CBL

V3-APO.CBL
APF.REC
APFEREC.CBL
APFREC.CBL

APF1.REC
APF1REC.CBL

APF1L.REC
APF1LREC.CBL

APFL.REC
APFLREC.CBL

APFPA.REC
APFPAREC.CBL
EMP-APO.CBL
YPOK-APO.CBL
MAKOIKO.CBL

APFPR.REC
APGK.REC
V3-APO.CBL
APMOD.REC
APMODREC.CBL

No
No

No apanlog.dat
Select & Define apdate.dat

No
No

No
No

apdate.dat

apf.dat

No apf 1 .dat

No apf1lnk.dat

No apfl .dat

Select & Define apfpa.dat

APMODXFILE V3-APO.CBL V3-APO.CBL

No
No
No
No

No

apfpr.dat
apgk.dat

apmod.dat

169

APO-FILE AP-AP.CBL
AP-GET.CBL
APOHO.SEL
APOMAST.SEL
APOMAST1 .SEL
APOPMR.CBL
ASC-AP.CBL
ASC-APO.CBL
ASC-AP2.CBL
EMP-APO.CBL
mak-ap.cbl
MAK-AP.CBL
MAKAP-CS.CBL
MAKAPO-1 .CBL
MAKAPO-11.CBL
MAKAP1-2.CBL
makapl .cbl
makapo.cbl
makapol .cbl
MAKOIKO.CBL
RELAPO.CBL
YPOK-APO.CBL

AP-AP.CBL
AP-GET.CBL
APOMAST.REC
APOREC.CBL
ASC-AP2.CBL
EMP-APO.CBL
mak-ap.cbl
MAK-AP.CBL
MAKAP-CS.CBL
MAKAPO-1.CBL
MAKAPO-11.CBL
MAKAP1-2.CBL
makapo.cbl
makapol .cbl
MAKOIKO.CBL
YPOK-APO.CBL

Select & Define apo.dat

APOX-FILE
APO1-FILE

APO1XFILE
APOGR-FILE

APOGRXFILE
APOGR1-FILE
APOMA-FILE

APOMAX-FILE
APP-FILE

APRD-FILE

APRDXFILE
APREL-FILE
APSTAT-FILE
APTEAM-FILE

APOX.SEL
APOHO.SEL
APOM1.SEL
APOPMR.CBL
MAKAPO-11.CBL

V3-APO.CBL
APOGR.SEL
APOHO.SEL

V3-APO.CBL
APGCONV1.CBL
APOMA.SEL
APOMANEW.CBL
APOPMR.CBL

APOMAX.SEL
APO.SEL
AP01.SEL
APOHO.SEL

APO.SEL
APO1.SEL
APOHO.SEL

V3-APO.CBL
APRELSEL
APSTATUS.CBL
APO.SEL

APOX.REC
APOM1.REC
APOM1REC.CBL
MAKAPO-11.CBL

V3-APO.CBL
APOGR.REO
APOGR.REC
APOGRNEW.REC

V3-APO.CBL
APGCONV1.CBL
APOMA.REC
APOMANEW.CBL

APOMAX.REC
APP.REC
APPREC.CBL

APRD.REC
APRDREC.CBL

V3-APO.CBL
APRELREC
APSTATUS.CBL
APTEAM.REC

APO1.SEL
APOHO.SEL
ASC-TEAM.CBL
ASC-TEAM2.CBL
K1NEW.CBL
mak-apy.cbl
MAKAPTO-1.CBL
MAKAPTO-11 .CBL
OM-OM.CBL
YP-YP.CBL
YPOMKNEW.CBL
YPOMNEW.CBL

APTEAMREC.CBL
ASC-TEAM.CBL
ASC-TEAM2.CBL
K1NEW.CBL
mak-apy.cbl
MAKAPTO-1.CBL
MAKAPTO-11 .CBL
OM-OM.CBL
YP-YP.CBL
YPOMKNEW.CBL
YPOMNEW.CBL

No
Define apo1.dat

No
Select & Define apogr.dat

No
No

Select & Define apoma.dat

No
No app.dat

No aprd.dat

No
No aprelate.dat
No pstat.[time]

Select & Define apteam.dat

170

APTEAM1-FILE

APTIMCH-FILE

APTIMCHXFILE
APTM-FILE

APTMX-FILE

APTR-FILE

APTRXFILE
apupd

APUPD-FILE

APUPDXFILE
AREA-FILE

APO.SEL
APO1.SEL
APOHO.SEL
MAKAPTO-11.CBL

APOHO.SEL
APTIMCH.SEL
EMP-APO.CBL
MAKOIKO.CBL

V3-APO.CBL
APOHO.SEL
APTM.SEL
YPOK-APO.CBL

APO.SEL
APO1.SEL
APOHO.SEL

APO.SEL
APO1.SEL
APOHO.SEL

V3-APO.CBL
APUPD.SEL
apaddtrs.cbl
APUPD.SEL
apaddtrs.cbl

V5MAKUPD.CBL
GWIN.SEL

APTE1.REC
APTE1REC.CBL
MAKAPTO-11.CBL

APTIMCH.REC
APTIMCHREC.CBL
EMP-APO.CBL
MAKOIKO.CBL

V3-APO.CBL
APTM.REC
YPOK-APO.CBL

APTMX.REC
APTMXREC.CBL

APT.REC
APTREC.CBL

V3-APO.CBL
APUPD.REC
apaddtrs.cbl
APUPD.REC
apaddtrs.cbl

V5MAKUPD.CBL

No apteam1.dat

Select & Define aptimch.dat

No
Select & Define aptm.dat

Select & Define aptmx.dat

No aptr.dat

No
Select & Define apupd.trs

Select & Define apupd.trs

Select & Define
No

ARTHRO-FILE EMP-PELCBL
EMP-PRO.CBL
MAKAG.CBL
MAKagLCBL
MAKAR.CBL
MAKARADD.CBL
MAKARDEL.CBL
MAKARG.CBL
MAKarLCBL
MAKART.CBL
MAKARTHRO.CBL
PEL.SEL
PEL1.SEL
PLOPMR.CBL
PR4.SEL
PROPMR.CBL

EMP-PELCBL
EMP-PRO.CBL
MAKagtCBL
MAKart.CBL
TARTHREC.CBL
TARTHROREC.CBL

Select & Define arthro.dat [PEL.SEL]
agart.dat [PR4.SEL]

ARTHROXFILE

ARTP-FILE
ARX

ASUPD-FILE
ASUPDXFILE
BAT-FILE
BIN-FILE

CANAL-FILE
CNV-FILE

COMM-FILE

COUNT-FILE

V3-PELCBL
V3-PRO.CBL

ARTP.SEL
LGDEL.CBL
MAKLINK.CBL

ASUPD.SEL
V5MAKUPD.CBL
ICLSALES.CBL
formbin.sel
VAR.SEL
MERSRT.CBL
ASC-APAN.CBL
ASC-PROM.CBL

EMP-TIM.CBL
TIM.SEL
YPOK-TIM.CBL

AGO.SEL
EMP-TIM.CBL
TIM.SEL
YPOK-TIM.CBL

V3-PELCBL
V3-PRO.CBL

ARTP.REC
LGDEL.CBL
MAKLINK.CBL

ASUPD.REC
V5MAKUPD.CBL
ICLSALES.CBL
formbin.rec
VAR.REC

MERSRT.CBL
ASC-APAN.CBL
ASC-PROM.CBL

EMP-TIM.CBL
TCOMREC.CBL
YPOK-TIM.CBL

EMP-TIM.CBL
TCOUNTREC.CBL
YPOK-TIM.CBL

No agartp.dat

No
No
No

No

Select & Define tcom.dat

Select & Define agcnt.dat [AGO.SEL]
count.dat [TIM.SEL]

171

COUNTXFILE

DB-FILE
DED-FILE
DELTEKD-FILE
DOC-FILE
EKPOLHS-FILE
EKT-FILE

ENTYPA

EPAG-FILE

EPAG1-FLE

EPIT-FILE

EPITXFILE

EPIT1-FILE
ERROR-FILE

ETER

FANT

FLT-FILE
FLTHEAD-FILE
FORMPRT-FILE
GRAM-FILE

GRAMXFILE

GRCNT-FILE

V3-AGO.CBL
V3-TIM.CBL

DB.SEL
DED.SEL
EMP-TIM.CBL
DOC.SEL
EMP-TIM.CBL
EKTEIS.CBL
EKTEPIL.CBL
PRTEIS.CBL
PRTEIS.OLD
PRTSEL.CBL
PRTSEL.OLD

entypo.cbl
entypo2.cbl
title.cbl
titleden.cbl
titlekar.cbl
titlent.cbl
titlepka.cbl

EMP-PEL.CBL
FEANEW.CBL
YPOK-PEL.CBL

EMP-PRO.CBL
YPOK-PRO.CBL

EPI.SEL
EPI1.SEL
EPITDEL2.CBL
EPITKEY.CBL
MAKEPIT.CBL
MAKEPIT1.CBL

V3-EPGR.CBL
V3-EPGR1.CBL

EPESYN.CBL
ICL-CHK.CBL
ICL-CHK.STD
ICL-CHR.CBL

entypo.cbl
entypo2.cbl
title.cbl
titledet.cbl
titlekar.cbl
titlepka.cbl
titleter.cbl

log.sel
Iog1.se!

FLT.SEL
FLT.SEL
prtlist.sel
GRA.SEL
GRA1.SEL
MAKGRAM.CBL
MAKGRAM1.CBL
MAKGRX.CBL

V3-EPGR.CBL
V3-EPGR1.CBL

GRA.SEL

V3-AGO.CBL
V3-TIM.CBL

DB.REC
DED.REC
EMP-TIM.CBL
DOC.REC
EMP-TIM.CBL
recprn.wor
EKTREC.CBL

entypo.cbl
entypo2.cbl
title.cbl
titleden.cbl
titlekar.cbl
titlent.cbl
titlepka.cbl

EMP-PEL.CBL
EPAGREC.CBL
FEANEW.CBL
YPOK-PEL.CBL

EMP-PRO.CBL
EPAGREC1.CBL
YPOK-PRO.CBL

EPIMASTER.CBL
EPIT1REC.CBL
EPITREC.CBL

V3-EPGR.CBL
V3-EPGR1.CBL

EPESYN.CBL
ICL-CHK.CBL
ICL-CHK.STD
ICL-CHR.CBL

entypo.cbl
entypo2.cbl
title.cbl
titledet.cbl
titlekar.cbl
titlepka.cbl
titleter.cbl

log.rec
logl.rec

FLT.REC
FLT.REC
prtlist.rec
GRAM1REC.CBL
GRAMPLHR.CBL
GRAMREC.CBL
MAKGRX.CBL

V3-EPGR.CBL
V3-EPGR1.CBL

GRA.REC
GRCNTREC.CBL

No
No
No
No
No

db.dat
ded.dat

prt.dat *

Select ent.dat *

peljob.dat

prjob.dat

epitdat [EPI.SEL]
epit1.dat[EPI1.SEL]

epit1.dat

No eter.dat

Define

filter.dat
flthead.dat

gram.dat

grcountl .dat

172

GRCNT1-FILE

GRL-FILE
HAPANAL-FILE
HELP-FILE

HLP-FILE

HOSP-FILE
HOSPXFILE
HOTEL-FILE
HOTELXFILE
HPL-FILE
IDX-FILE

INV-FILE

IOSP-FILE
K1-FILE

K2-FILE

KODE-FILE

KOS-FILE

LGCNT
LGDATE

LGEMPO

LGINFO

LGKATHG

LGKFPA

LGKKEID
LGKKK

GR1CNT.CBL
GRA1.SEL

GRL.SEL
makapseq.cbl
AP2HMER.CBL
APHMEROL.CBL
APKATEL.CBL
APKATEL1 .CBL

APPOL3.CBL
APROL3.CBL
APSTAT.CBL
APSTAT1 .CBL
PLPOLREP.CBL
PLSTAT.CBL
PRSTAT.CBL
PRSTAT.GEN
TMP.SEL

HOSP.SEL
V3-APO.CBL
HOTELSEL
V3-APO.CBL
HPL.SEL
ICL-IN.CBL
ICLREAD.CBL
SALES-ASC.CBL
SALES-ASC.STD
SALES-ASC1.CBL

AGO.SEL
TIM.SEL

IOSP.SEL
EMP-APO.CBL
MAKOIKO.CBL
OM-OM.CBL
YPOK-APO.CBL

EMP-APO.CBL
K2NEW.CBL
MAKOIKO.CBL
YPOK-APO.CBL

APO.SEL
APO1.SEL
APOHO.SEL
KODE.SEL

APO.SEL
APO1.SEL
APOHO.SEL

log.sel
log.sel
Iog1.se!
LG-PL.CBL
Iog1 .sel
log.sel
Iog1.se!
NEAXR.STD

log.sel
Iog1.se!
log.sel
Iog1 .sel
Iog1 .sel
log.sel

GR1CNT.CBL
GRA1.REC
GRCNT1REC.CBL

GRLREC
makapseq.cbl
AP2HMER.CBL
APHMEROL.CBL
APKATEL.CBL
APKATEL1 .CBL

APPOL3.CBL
APROL3.CBL
APSTAT.CBL
APSTAT1 .CBL
PLPOLREP.CBL
PLSTAT.CBL
PRSTAT.CBL
PRSTAT.GEN
TMP.SEL

HOSP.REC
V3-APO.CBL
HOTELREC
V3-APO.CBL
HPL.REC
ICL-IN.CBL
ICLREAD.CBL
SALES-ASC.CBL
SALES-ASC.STD
SALES-ASC1.CBL

TINVREC.CBL

IOSP.REC
APK1REC.CBL
EMP-APO.CBL
MAKOIKO.CBL
OM-OM.CBL
YPOK-APO.CBL

EMP-APO.CBL
K2NEW.CBL
MAKOIKO.CBL
YPOK-APO.CBL

APKODE.REC
APKODEREC.CBL
KODE.REC

APKOS.REC
APKOSREC.CBL

log.rec
log.rec
Iog1 .rec
LG-PL.CBL
logl.rec
log.rec
logl.rec
NEAXR.STD

log.rec
logl.rec

log.rec
Iog1 .rec
logl.rec
log.rec

grcountl .dat

No grlink.dat
No

Select & Define aphelp.dat

Select & Define hlp.dat

No
No
No
No
No
No

No

No

hosp.dat

hotel.dat

hpl.dat
ts[date].idx

agparmtr.dat [AGO.SEL]
parametr.dat [TIM.SEL]

No kode.dat

No apkos.dat

No

No
No

l??kkp??.dat

173

LGLINK-FILE

LGMAST

LGMASTN

LGPARFPA

LGPFPA

LGTADATE
LGTAM
LINK-FILE

MAIN
MEG-FILE
MENCPL-FILE
MENDOC-FILE
MENMDF-FILE
MENSPT-FILE
MENU-FILE
MLPOLHS-FILE
MLPOLHSXFILE
MLTERM-FILE
MNFYI-FILE
MNFYIMAS-FILE
MNREFR-FILE
MNUSR-FILE
MNUSRPER-FILE
MON-FILE

MORFH-APO

MORFH-PEL

MORFH-PRO
MSANAL-FILE

NEW-FILE
NOR-MENU-FILE
NOR-PELAT-FILE
NORFILT-FILE
OANAL-FILE
OFFH-FILE
OFFI-FILE
OLD-FILE

OLDPAR-FILE
ORD-FILE
ORDXFILE
ORPH-FILE
ORPI-FILE

AGO.SEL
TIM.SEL
LG-PL.CBL
log.sel
Iog1.se!

log.sel
Iog1 .sel
log.sel
Iog1 .sel
log.sel
Iog1 .sel
log.sel
log.sel
ASC-LGAN.CBL
ASC-PEL1.CBL
ASC-PROM1.CBL
LEM.SEL

MAIN.SEL
YPOK-APO.CBL
MENCPLSEL
MENDOC.SEL
MENCPLSEL
MENSPT.SEL
MEN.SEL
MLTERM.SEL
V3-AGO.CBL
MLTERM.SEL
MNFYI.SEL
MNFYIMAS.SEL
MNREFR.SEL
MNUSR.SEL
MNUSRPER.SEL
APO.SEL
APO1.SEL
APOHO.SEL
EMP-APO.CBL
MAKOIKO.CBL
YPOK-APO.CBL

MINIE-APO.CBL
NEOS-APO.SEL
makap.cbl

MINIE-PELCBL
NEOS-PELSEL

NEOS-PRO.SEL
MSMAKAN.CBL
MSSEQ.CBL

NEWANALCBL
nor-menu.sel
nor-pelat.sel
normark.cbl
PLANSPT.CBL
OFFH.SEL
OFFI.SEL
APO-DESC.CBL
APO-TR.CBL
APOMA-TR.CBL
APOMA2TR.CBL

MAKAPO-1.CBL
TIM.SEL
V3-TIM.CBL
ORPH.SEL
ORPI.SEL

LINKREC.CBL

LG-PL.CBL
log.rec
logl.rec

log.rec
logl.rec
log.rec
logl.rec
log.rec
logl.rec
log.rec
log.rec
ASC-LGAN.CBL
ASC-PEL1.CBL
ASC-PROM1.CBL
LEM.REC

MAIN.REC
YPOK-APO.CBL
MENCPLREC
MENDOC.REC
MENCPLREC
MENSPT.REC
MEN.REC
MLTERM.REC
V3-AGO.CBL
MLTERM.REC
MNFYI.REC
MNFYIMAS.REC
MNREFR.REC
MNUSR.REC
MNUSRPER.REC
APMON.REC
APMONREC.CBL
EMP-APO.CBL
MAKOIKO.CBL
YPOK-APO.CBL

MINIE-APO.CBL
NEOS-APO.FIL
makap.cbl

MINIE-PELCBL
NEOS-PELFIL

NEOS-PRO.FIL
MSMAKAN.CBL
MSSEQ.CBL

NEWANALCBL
nor-menu.rec
nor-pelat.rec
normark.cbl
PLANSPT.CBL
OFFH.REC
OFFI.REC
APO-DESC.CBL
APO-TR.CBL
APOMA-TR.CBL
APOMA2TR.CBL

MAKAPO-1.CBL
ORDER. REC
V3-TIM.CBL
ORPH.REC
ORPI.REC

No

No

Select & Define

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

Select & Define

No
Select & Define

No
No
No
No
No
No
No

No
No
No
No
No

lgaglink.dat

l??mas??.dat

polfile.dat

maineter.dat

99999979 999

99999999 999

mlpolhs.dat

mnfyi.dat
mnfyimas.dat
mnrefr.dat
mnusr.dat
mnusrper.dat
apmon.dat

msanal.dat
msanal.seq

offh.dat
offi.dat

order.dat

orph.dat
orpi.dat

174

PAR-FILE

PARXFILE
PARCNT-FILE
PARM-FILE
PELAT-FILE

TIM.SEL
MAKPARO-1 .CBL

V3-TIM.CBL
TIM.SEL
PARM.SEL
ASC-PELCBL
ASC-PEL1.CBL
ASC-PEL3.CBL
ASC-PEL4.CBL
EMP-PELCBL
MAK-PELCBL
MAK-PR.CBL
MAKPL-CS.CBL
MAKPLCD.CBL
MAKPLPR.CBL
PELSEL
PELAT.SEL
PELNEW.CBL
PELSEQ.CBL
PL-AFM.CBL
PL-PL.CBL
PLOPMR.CBL
PLPREAD.CBL
RELPEL.CBL
YPOK-PEL.CBL

PARAGREC.CBL

V3-TIM.CBL
PARCNTREC.CBL
PARM.REC
ASC-PEL.CBL
ASC-PEL3.CBL
ASC-PEL4.CBL
EMP-PELCBL
hlpl
MAK-PELCBL
MAK-PR.CBL
MAKPLPR.CBL
PELAT.REC
PELMAST.REC
PELNEW.CBL
PELSEQ.CBL
PL-AFM.CBL
PL-PL.CBL
PLPREAD.CBL
YPOK-PEL.CBL

No paragel.dat

No parcnt.dat
No parm.dat

Select & Define pelat.dat

PELATXFILE
PELF-FILE

PELFXFILE
PELNME-FILE

PER-FILE

PER1-FILE

PFORT-FILE

V3-PELCBL
FEANEW.CBL
PELSEL
PEL1.SEL
PLOPMR.CBL

V3-PEL.CBL
PEL.SEL
PEL1.SEL
PLOPMR.CBL

EMP-PELCBL
FEANEW.CBL
YPOK-PELCBL

EMP-PRO.CBL
YPOK-PRO.CBL

AGFORTEID.CBL

V3-PELCBL
FEANEW.CBL
PELFREC.CBL

V3-PELCBL
PELNMEREC.CBL

EMP-PELCBL
FEANEW.CBL
YPOK-PEL.CBL

EMP-PRO.CBL
YPOK-PRO.CBL

AGFORTEID.CBL
AGFORTSYN.CBL
ORDEID.CBL
ORDEIDDT.CBL
PFORTEID.CBL
PFORTEID2.CBL
PFORTSYN.CBL
TDPEKT2.CBL
TFORTEID.CBL
TFORTEID2.CBL

AGFORTSYN.CBL
ORDEID.CBL
ORDEIDDT.CBL
PFORTEID.CBL
PFORTEID2.CBL
PFORTSYN.CBL
TDPEKT2.CBL
TFORTEID.CBL
TFORTEID2.CBL

No
No pelf.dat

No pelnme.dat

Define

Define

perioxh.dat
perioxh.data

perioxh1.dat
perioxhl.data

Select & Define pf.[time]
pfort.data

PLFAIM-FILE

PLHELP-FILE
PLYP-FILE

POL-FILE

PEL.SEL
PEL1.SEL
PLOPMR.CBL

MAKPLHELP.CBL
EMP-PEL.CBL
PEL.SEL
PEL1.SEL
PLOPMR.CBL

EMP-PEL.CBL
FEANEW.CBL
YPOK-PEL.CBL

PLFAIMREC.CBL

MAKPLHELP.CBL
EMP-PELCBL
PLYPREC.CBL

EMP-PELCBL
FEANEW.CBL
POLREC.CBL
YPOK-PEL.CBL

No

Define

No

plfaim.dat

pelypom.dat

polhth.dat
polhth.data
wpolhth.dat

175

POLD-FILE EMP-PELCBL
EMP-PRO.CBL
PEL.SEL
PEL1.SEL
PLOPMR.CBL
PR3.SEL
PROPMR.CBL
YPOK-PELCBL
YPOK-PRO.CBL

EMP-PELCBL
EMP-PRO.CBL
TPOLDREC.CBL
YPOK-PEL.CBL
YPOK-APO.CBL

Select & Define agdate.dat [PR3.SEL]
poldate.dat [PEL.SEL]

POLDXFILE

POLHS-FILE

POLHSXFILE

POS-FILE
PRANAL-FILE
PRF-FILE

PRFXFILE
PRINT-FILE

V3-PEL.CBL
V3-PRO.CBL

AGO.SEL
EMP-TIM.CBL
TIM.SEL

V3-AGO.CBL
V3-TIM.CBL

POS.SEL
XPERTDB.CBL
PR6.SEL
PROPMR.CBL

V3-PRO.CBL
AFM.CBL

V3-PELCBL
V3-PRO.CBL

EMP-TIM.CBL
TPOLHSREC.CBL

V3-AGO.CBL
V3-TIM.CBL

POS.REC
XPERTDB.CBL
PRFREC.CBL

V3-PRO.CBL
AFM.CBL

Define

ag-ekt.cbl
AGFORTEID.CBL
AGFORTSYN.CBL
APCHK.CBL
PISOZ1.CBL
APK1SYG.CBL
APSYG.CBL
entypo.cbl
entypo2.cbl
EPITSYN.CBL
GRAMDATE.CBL
GRAMTRAP.CBL
Ig-ekt.cbl
MAKPLEVR.CBL
MAKPR8.CBL
PFORTEID.CBL
PFORTEID2.CBL
PFORTSYN.CBL
PLCHK.CBL
PLMHNP.CBL
PLPOLREP.CBL
PLYPFAST.CBL
PRCHK.CBL
PRT.SEL
prt132.sel
prt232.sel
PRYPFAST.CBL
SEQREAD.CBL
SKT.CBL
STATAPS.CBL
TDMET.CBL
TGMET.CBL

agdp.dat [AGO.SEL]
polhs.dat [TIM.SEL]

No

No

prf.dat

ag-ekt.cbl
AGFORTEID.CBL
AGFORTSYN.CBL
APCHK.CBL
PISOZ1 .CBL
APK1SYG.CBL
APSYG.CBL
entypo.cbl
entypo2.cbl
EPITSYN.CBL
GRAMDATE.CBL
GRAMTRAP.CBL
Ig-ekt.cbl
MAKPLEVR.CBL
MAKPR8.CBL
PFORTEID.CBL
PFORTEID2.CBL
PFORTSYN.CBL
PLCHK.CBL
PLMHNP.CBL
PLPOLREP.CBL
PLYPFAST.CBL
PRCHK.CBL
PRT.SEL
prt132.sel
prt232.sel
PRYPFAST.CBL
SEQREAD.CBL
SKT.CBL
STATAPS.CBL
TDMET.CBL
TGMET.CBL

PRINTFILE rhandle.cbl
fhandle.cbl
rhandle.old

rhandle.cbl
fhandle.cbl
rhandle.old

176

PROM-FILE

PROMX-FILE
PROMXFILE
PRORD-FILE
PRORDCNT-FILE
PRTIM-FILE

PRTIND-FILE
PRTLIST-FILE
PRUPD-FILE
PRUPDXFILE
REL-FILE
SANAL-FILE

ASC-PROM.CBL
ASC-PROM1.CBL
ASC-PROM3.CBL
EMP-PRO.CBL
EPMET.CBL
MAKPLPR.CBL
MAKPR-CS.CBL
MAKPROM.CBL
PLPREAD.CBL
PR-AFM.CBL
PR-PR.CBL
PR1.SEL
PR11.SEL
pro.sel
PROPMR.CBL
RELPRO.CBL
YPOK-PRO.CBL

PROMX.SEL
V3-PRO.CBL
PRORD.SEL
PRORD.SEL
EMP-APO.CBL
MAKOIKO.CBL

CANCPRT.CBL
CANCPRT.CBL
PRUPD.SEL
V5MAKUPD.CBL
rel300.se!
MERSRT.CBL
PLANSRT.CBL

EMP-PRO.CBL
GRPROMREC.CBL
MAKPLPR.CBL
MAKPROM.CBL
PLPREAD.CBL
PR-AFM.CBL
PR-PR.CBL
PR1.REC
PRMASTREC.CBL
pro.rec
YPOK-APO.CBL

PROMX.REC
V3-PRO.CBL
PRORD.REC
PRORD.REC
EMP-APO.CBL
MAKOIKO.CBL

CANCPRT.CBL
CANCPRT.CBL
PRUPD.REC
V5MAKUPD.CBL
relSOO.rec
MERSRT.CBL

Select & Define prom.dat

No
No
No
No

No
No
No
No
No

prord.dat
prordcntdat

prtind.dat
prtlist.dat
prupd.trs

177

SEQ-FILE

SEQ-MIS-FILE

SMANAL-FILE

AFM.CBL
AGFLCHK.CBL
APFLCHK.CBL
ASC-AP.CBL
ASC-APO.CBL
ASC-AP1.CBL
ASC-AP2.CBL
ASC-APAN.CBL
ASC-LGAN.CBL
ASC-PEL.CBL
ASC-PEL1.CBL
ASC-PEL3.CBL
ASC-PEL4.CBL
ASC-PROM.CBL
ASC-PROM1.CBL
ASC-PROM3.CBL
ASC-TEAM.CBL
ASC-TEAM2.CBL
ASC.CBL
GNFLCHK.CBL
GP.CBL
ICL-ALL.CBL
ICL-CHK.CBL
ICL-CHK.STD
ICL-CHR.CBL
ICL-IN.CBL
ICL-OUT.CBL
ICLREAD.CBL
ICLSALES.CBL
MYMAIN.CBL
PL-AFM.CBL
PLFLCHK.CBL
PR-AFM.CBL
PRFLCHK.CBL
PROD-ASC.CBL
PROD-ASC.STD
PROD-ASC1.CBL
SALES-ASC.CBL
SALES-ASC.STD
SALES-ASC1.CBL
SEQ-OTH.CBL
TMFLCHK.CBL
V3-XPERT.CBL
V5MAKUPD.CBL
JL01.CBL
JL01CHK.CBL
JL01TEST.CBL

SALES-ASC.CBL
SALES-ASC.STD
SALES-ASC1.CBL

MERSRT.CBL

AFM.CBL
AGFLCHK.CBL
APFLCHK.CBL
ASC-AP.CBL
ASC-APO.CBL
ASC-AP1 .CBL
ASC-AP2.CBL
ASC-APAN.CBL
ASC-LGAN.CBL
ASC-PELCBL
ASC-PEL1.CBL
ASC-PEL3.CBL
ASC-PEL4.CBL
ASC-PROM.CBL
ASC-PROM1.CBL
ASC-PROM3.CBL
ASC-TEAM.CBL
ASC-TEAM2.CBL
ASC.CBL
GNFLCHK.CBL
GP.CBL
ICL-ALL.CBL
ICL-CHK.CBL
ICL-CHK.STD
ICL-CHR.CBL
ICL-IN.CBL
ICL-OUT.CBL
icl-seq.rec
ICLREAD.CBL
ICLSALES.CBL
MYMAIN.CBL
PL-AFM.CBL
PLFLCHK.CBL
PR-AFM.CBL
PRFLCHK.CBL
PROD-ASC.CBL
PROD-ASC.STD
PROD-ASC1.CBL
SALES-ASC.CBL
SALES-ASC.STD
SALES-ASC1.CBL
SEQ-OTH.CBL
TMFLCHK.CBL
V3-XPERT.CBL
V5MAKUPD.CBL
JL01.CBL
JL01CHK.CBL
JL01TEST.CBL
SALES-ASC.CBL
SALES-ASC.STD
SALES-ASC1.CBL

No ts[date].txt

SMOANAL-FILE MERSRT.CBL MERSRT.CBL
SNF-FILE SNF.SEL SNF.REC
SNFI-FILE SNFI.SEL SNFI.REC

No
No
No

smoanal.ftime]

178

SORT-FILE AG2HMER.CBL
AGHMEROL.CBL
APK1EIDA.CBL
APLGEIDOS.CBL
APLGEVR.CBL
APPRICE.CBL
EPESYN.CBL
EPITS.CBL
EPITS1.CBL
MAKPLEVR.CBL
PLNS.CBL
PRMERGE.CBL
SORT.SEL
TINVLIST.CBL
TPOL2HMER.CBL
TPOL3HMER.CBL
TPOLHMEROL.CBL

SORTED-FILE

SORTRAN

SPELAT-FILE

SYNT-FILE

SYNT-KOS-FILE

SYSCFG-FILE
SYSENV-FILE

SYSOUT-FILE
TAMDEL-FILE
TAPOM-FILE

TAPQNTY-FILE
TDPR-FILE
TDPRC-FILE
TDPRXFILE
TEMP-FILE

THELP-FILE
TIM-FILE

GRTBEX2.CBL
PELINK.CBL
PLANAL1.CBL
PLANAL2.CBL
PLANAL3.CBL
PLTREIS.CBL

log.sel
Iog1 .sel

PELIDX.CBL
PELSEQ.CBL

APOHO.SEL
APSYN.SEL
ASC-AP.CBL

APO.SEL
APO1.SEL
APOHO.SEL

SYSENV.CBL
SYSENV.CBL
SYSENV.SEL

SYSENV.CBL
TAMDEL.SEL
APO.SEL
AP01.SEL
APOHO.SEL
hlp.sel

TAPQNTY.SEL
AGO.SEL
AGO.SEL
V3-AGO.CBL
APANFL2.CBL
APPEL3.CBL
APPROM3.CBL
PELTEAM.CBL
PLPRANAL.CBL
PLPRYP.CBL
PRPLYP.CBL
TEMP.SEL
TPOL3HMER.CBL

AGO.SEL
EMP-TIM.CBL
TIM.SEL
YPOK-TIM.CBL

GRTBEX2.CBL
PELINK.CBL
PLANAL1.CBL
PLANAL2.CBL
PLANAL3.CBL
PLTREIS.CBL

log.sel
Iog1 .sel

PELIDX.CBL
PELSEQ.CBL

APSYN.REC
APSYNREC.CBL

APKO2.REC
APKO2REC.CBL

SYSENV.CBL
SYSENV.CBL
SYSENV.REC

SYSENV.CBL
TAMDELREC
APOMT.REC
TAPOMREC.CBL

TAPQNTY.REC
TDPREC.CBL
TDPCREC.CBL
V3-AGO.CBL
APANFL2.CBL
APPEL3.CBL
APPROM3.CBL
PELTEAM.CBL
PLPRANAL.CBL
PLPRYP.CBL
PRPLYP.CBL
TEMP.REC
TPOL3HMER.CBL

THELPREC.CBL
EMP-TIM.CBL
TIMREC.CBL
YPOK-TIM.CBL

No pelat.seq

Select & Define apsynt.dat

Define

No
No
No
No

No
Define

apkost2.dat

No
No

No
No
No

sysenv.cfg
sysenv.dat

tamdel.dat
tapom.dat

tapqnty
tdpr.???
tdprc.???

thelp.dat
tim???

179

I IMAG-FILE

TIMCNT-FILE

TIMXFILE
TITLOS-FILE

TMET-FILE

TMP-FILE

TMPI-FILE
TMPPER-FILE
TOM-FILE

TOTAL-FILE

TPLOM-FILE

TPROM-FILE

TRA-FILE

TAG.SEL

TIM.SEL

V3-TIM.CBL
V3-TIM.CBL
TITLOP.CBL
entypo.cbl
entypo2.cbl
title.cbl
titlekar.cbl
titlepka.cbl

AGO.SEL
TIM.SEL

APANALY.CBL
APDGEN1.CBL
APGCNLTA.CBL
APGDIAF1.CBL
APGLIST2.CBL
APGLIST2.RST
APGLIST2.STD
APGTACNL.CBL
APGTAKT.CBL
APGTAKT3.CBL
APMHNST.CBL
APMHNSTF.CBL
APPL5A.CBL
APPL5B.CBL
PLCRDB.CBL
PRMERGE.CBL
TDPEKT2.CBL

PRORDERS.CBL
MNUSRPER.SEL
AGO.SEL
EMP-AGO.CBL
EMP-TIM.CBL
TIM.SEL
YPOK-TIM.CBL

TDPEKT.CBL
TDPEKT1.CBL

PEL.SEL
PEL1 .SEL
PLOPMR.CBL
hlp.sel

PR5.SEL
PROPMR.CBL

TRA.SEL

TAG.REC
TAG1.REC
TAG2.REC
TAG3.REC

EMP-TIM.CBL
TIMCNTREC.CBL
YPOK-TIM.CBL

V3-TIM.CBL
V3-TIM.CBL
TITLOP.CBL
entypo.cbl
entypo2.cbl
title.cbl
titlekar.cbl
titlepka.cbl

TMETREC.CBL

APANALY.CBL
APDGEN1.CBL
APGCNLTA.CBL
APGDIAF1.CBL
APGLIST2.CBL
APGLIST2.RST
APGLIST2.STD
APGTACNL.CBL
APGTAKT.CBL
APGTAKT3.CBL
PLCRDB.CBL
PRMERGE.CBL
TDPEKT2.CBL
TEMPA.REC
TEMPB.REC

PRORDERS.CBL
MNUSRPER.REC
EMP-AGO.CBL
EMP-TIM.CBL
TOMREC.CBL
YPOK-TIM.CBL

TDPEKT.CBL
TDPEKT1.CBL

TPLOMREC.CBL

TPROMREC.CBL

TRAPREC.CBL

TRANCC
TRANS-FILE

TRWH-FILE
TRWHXFILE
TXTFILE

Iog1.se!
EPITOPTRAN.CBL
GRAM1OPTR.CBL
GRAMOPTRAN.CBL

TRWH.SEL
V3-APO.CBL
rhandle.cbl
rhandle.old
fhandle.cbl

TRAREC.CBL
Iog1 .rec
EPITTRAN.CBL
EPITTRANSR.CBL
GRAM1TREC.CBL
GRAMTRREC.CBL

TRWH.REC
V3-APO.CBL
rhandle.cbl
rhandle.old
fhandle.cbl

Define

No

No
Define

timag.dat

timcnt.???

tit.data

No

Select & Define

tmet.dat
ttmet.dat

No
No

Define
TMPPER.DAT
tom.dat
agtom.dat

No tplom.dat

No

Define

No

tprom.dat

trapeza.dat

Select & Define epittran.data
gramtran.data
gramtranl.data

No
No
No

trwh.dat

180

TYPOM-FILE

VAR-FILE

WAGD-RLE
WAGT-FILE
WANAL-FILE

AGO.SEL
EMP-AGO.CBL
EMP-TIM.CBL
TIM.SEL
YPOK-TIM.CBL

VAR.SEL
formvar.sel

EMP-AGO.CBL
EMP-AGO.CBL
EMP-PEL.CBL
EMP-PRO.CBL
MAKPLAN3.CBL
MAKPRAN3.CBL
mak_plan.cbi
MAK_PLAN.CBL
mak_pln1 .cbl
mak_pran.cbl
MAK_PRAN.CBL
mak_prn1.cbl
MINIE-PEL.CBL
REC.SEL
REC1.SEL
YPOK-PELCBL
YPOK-PRO.CBL
YPOKGET.CBL

EMP-AGO.CBL
EMP-TIM.CBL
TYPOMREC.CBL
YPOK-TIM.CBL

VAR.SEL
formvar.sel

EMP-AGO.CBL
EMP-AGO.CBL
EMP-PELCBL
EMP-PRO.CBL
MAKPLAN3.CBL
MAKPRAN3.CBL
mak plan.cbl
MAK_PLAN.CBL
makjDlnl.cbl
mak__pran.cbl
MAK_.PRAN.CBL
mak_prr>1.cbl
MINIE-PELCBL
REC.REC
REC1.REC
TRGETREC.CBL
YPOK-PELCBL
YPOK-PRO.CBL

No agtypom.dat
typom.dat

Select & Define

No agdelt.dat
No agtim.dat

Select & Define pelanal.dat

WAPANAL-FILE APTRANS.CBL
AP_CHK.CBL
EMP-APO.CBL
MAK+APAN.CBL
MAK-APN.CBL
MAKAPAN2.CBL
makapseq.cbl
MAKOIKO.CBL
mak_apan,cbl
MAK_APAN.CBL
REC.SEL
SEQREAD.CBL
TRAN.SEL
YPOKGET.CBL

APTRANS.CBL
APTR.REC
APTRREC.CBL
CR-L.CBL
CS-L.CBL
MAK+APAN.CBL
MAK-APN.CBL
MAKAPAN2.CBL
makapseq.cbl
MAKOIKO.CBL
mak_apan.cbl
MAK+APAN.CBL
EMP-APO.CBL
SEQREAD.CBL
YPOKGET.CBL

Select & Define apanal.dat

WAPD-FILE

WAPF-FILE

WAPFPA-FILE

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

No apdate.dat

No apf.dat

No apfpa.dat

181

WAPO-FILE AP-AP.CBL
AP-GET.CBL
APNEW.CBL
APTRANS.CBL
AP_CHK.CBL
ASC-AP1.CBL
EMP-APO.CBL
mak-ap.cbl
MAK-AP.CBL
MAKAP-CS.CBL
MAKAPO-1.CBL
MAKAP1-2.CBL
MAKOIKO.CBL
MINIE-APO.CBL
RELAPO.CBL
TRAN.SEL
WAPO.SEL
YPOK-APO.CBL

AP-AP.CBL
AP-GET.CBL
APNEW.CBL
APTRANS.CBL
AP_CHK.CBL
ASC-AP1 .CBL
EMP-APO.CBL
mak-ap.cbl
MAK-AP.CBL
MAKAP-CS.CBL
MAKAPO-1.CBL
MAKAP1-2.CBL
MAKOIKO.CBL
MINIE-APO.CBL
RELAPO.CBL
TRAN.REC
WAPO.REC
YPOK-APO.CBL

Select & Define apo.dat

WAP01-FILE APM2JOIN.CBL
EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
WAPO.SEL
YPOK-APO.CBL
WAPO1.SEL

APM2JOIN.CBL
EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
WAPO.REC
YPOK-APO.CBL
WAPOM1.REC

Define apol .dat

WAPOMA-FILE

WAPP-FILE

WAPTEAM-FILE

APOMANEW.CBL
TRAN.SEL
WAPO.SEL

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

EMP-APO.CBL
MAKAPTO-1 .CBL
MAKOIKO.CBL
MINIE-APO.CBL
TRAN.SEL
YPOK-APO.CBL

APOMANEW.CBL
TRAN.SEL
WAPO.REC

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

EMP-APO.CBL
MAKAPTO-1.CBL
MAKOIKO.CBL
MINIE-APO.CBL
TRAN.REC
YPOK-APO.CBL

Define apoma.dat
wapoma.dat

No app.dat

Select apteam.dat
apteam.seq

WAPTEAM1-FILE

WAPTIMCH-FILE

WAPTM-FILE

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

AITEXAG.CBL
AITEXALL.CBL
APAIT2EX.CBL
APDGEN.CBL
APTMJOIN.CBL
EMP-APO.CBL
HTLEXAG.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

AITEXAG.CBL
AITEXALL.CBL
APAIT2EX.CBL
APDGEN.CBL
APTMJOIN.CBL
EMP-APO.CBL
HTLEXAG.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

No affects!!! -No file

No affects!!!-No file

Select & Define aptm.dat

182

WARTHRO-FILE AGVIEW1.CBL
EMP-PELCBL
EMP-PRO.CBL
MAKagt.CBL
MAKart.CBL
MiNIE-PEL.CBL
REC.SEL
REC1.SEL
TVIEW1.CBL
YPOK-PEL.CBL
YPOK-PRO.CBL
YPOKGET.CBL

AGVIEW1.CBL
EMP-PELCBL
EMP-PRO.CBL
MAKagt.CBL
MAKart.CBL
MINIE-PEL.CBL
REC.REC
REC1.REC
TRGETREC.CBL
TVIEW1.CBL
YPOK-PELCBL
YPOK-PRO.CBL

Select & Define agart.dat
arthro.dat

WCOMM-FILE

WCOUNT-FILE

WGRAM-FILE
WINSEL-FILE

WINV-FILE

WK1-FILE

WK2-FILE

WKODE-FILE

WMON-FILE

WMSANAL-FILE

WPELAT-FILE

EMP-TIM.CBL
YPOK-TIM.CBL

EMP-TIM.CBL
YPOK-TIM.CBL

MAKGRX.CBL
WINSELSEL
WINSELSEL®

EMP-TIM.CBL
MAKINV.CBL
YPOK-TIM.CBL

APTRANS.CBL
AP CHK.CBL
K1NEW.CBL

APTRANS.CBL
AP_CHK.CBL
K2NEW.CBL

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

MSMAKAN.CBL
MSSEQ.CBL

EMP-PEL.CBL
LG-PL.CBL
MAK-PELCBL
MAK-PR.CBL
MAKPL-CS.CBL
MAKPLCD.CBL
MINIE-PEL.CBL
PELNEW.CBL
PL-AFM.CBL
PL-PL.CBL
WPEL.SEL
YPOK-PEL.CBL

EMP-TIM.CBL
YPOK-TIM.CBL

EMP-TIM.CBL
YPOK-TIM.CBL

MAKGRX.CBL
WINSELREC
WINSELREC®

EMP-TIM.CBL
MAKINV.CBL
YPOK-TIM.CBL

APTR.REC
APTRREC.CBL
K1NEW.CBL

APTR.REC
APTRREC.CBL
K2NEW.CBL

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

MSMAKAN.CBL
MSSEQ.CBL

EMP-PELCBL
LG-PL.CBL
MAK-PELCBL
MAK-PR.CBL
MAKPL-CS.CBL
MAKPLCD.CBL
MINIE-PEL.CBL
PELNEW.CBL
PL-AFM.CBL
PL-PL.CBL
WPELSEL
YPOK-PEL.CBL

No

No

No
No

No

tcom.dat

count.dat

[timej.tmp

parametr.dat

Select & Define k1 .seq [APTRANS.CBL]
wk1.data[K1NEW.CBL]

Select & Define k2.seq [APTRANS.CBL]
wk2.data [K2NEW.CBL]

No kode.dat

No apmon.dat

No wmsanal.dat

Select & Define pelat.dat

WPELF-FILE

WPLYP-FILE

WPOLD-FILE

EMP-PELCBL
MINIE-PEL.CBL
YPOK-PELCBL

EMP-PELCBL
MINIE-PEL.CBL
YPOK-PEL.CBL

EMP-PEL.CBL
EMP-PRO.CBL
MINIE-PEL.CBL
YPOK-PEL.CBL
YPOK-PRO.CBL

EMP-PELCBL
MINIE-PEL.CBL
YPOK-PEL.CBL

EMP-PELCBL
MINIE-PEL.CBL
YPOK-PELCBL

EMP-PELCBL
EMP-PRO.CBL
MINIE-PEL.CBL
YPOK-PEL.CBL
YPOK-PRO.CBL

No pelf.dat

No pelypom.dat

No poldate.dat
agdate.dat

183

WPOLHS-FILE

WPRF-FILE

WPROM-FILE

EMP-TIM.CBL
YPOK-TIM.CBL

EMP-PRO.CBL
YPOK-PRO.CBL

EMP-PRO.CBL
MAKPR-CS.CBL
MAKPROM.CBL
PL-AFM.CBL
PR-PR.CBL
WPRO.SEL
YPOK-PRO.CBL

EMP-TIM.CBL
YPOK-TIM.CBL

EMP-PRO.CBL
YPOK-PRO.CBL

EMP-PRO.CBL
MAKPR-CS.CBL
MAKPROM.CBL
PL-AFM.CBL
PR-PR.CBL
WPRO.REC
YPOK-PRO.CBL

No polhs.dat

No prf.dat

Define prom.dat

WTAPOM-FILE

WTOM-FILE

WTYPOM-FILE

WYPOM-FILE

WYPOMK-FILE

YPOM-FILE

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

EMP-AGO.CBL
EMP-TIM.CBL
YPOK-TIM.CBL

EMP-AGO.CBL
EMP-TIM.CBL
YPOK-TIM.CBL

APTRANS.CBL
APJDHK.CBL
YPOMNEW.CBL

APTRANS.CBL
AP_CHK.CBL
YPOMKNEW.CBL

EMP-APO.CBL
mak-apy.cbl
MAKOIKO.CBL
YP-YP.CBL
YPOK-APO.CBL

EMP-APO.CBL
MAKOIKO.CBL
MINIE-APO.CBL
YPOK-APO.CBL

EMP-AGO.CBL
EMP-TIM.CBL
YPOK-TIM.CBL

EMP-AGO.CBL
EMP-TIM.CBL
YPOK-TIM.CBL

APTR.REC
APTRREC.CBL
YPOMNEW.CBL

APTR.REC
APTRREC.CBL
YPOMKNEW.CBL

APYPREC.CBL
EMP-APO.CBL
mak-apy.cbi
MAKOIKO.CBL
YP-YP.CBL
YPOK-APO.CBL

No tapom.dat

No

No

tom.dat
agtom.dat

typom.dat
agtypom.dat

Select & Define apypom.seq
wapypom.data

Select & Define apypomk.seq
wypomk.data

Select & Define apypom.dat
apypom.data

YPOMK-FILE YPOK-APO.CBL YPOK-APO.CBL No apypomk.data

184

Appendix 18

The next figure presents the graph produced by the gain browser after
executing the 'call tree' graphical query to the PRSTAT program. 53 software objects,
which are additional libraries used at compilation time or external programs called at
run time, as well as the way that they are related with each other are presented in the
graph.

185

The next figure presents the graph produced by the gain browser after
executing the 'affect tree' graphical query to the PRSTAT program. 61 software
objects, which are additional libraries used at compilation time, external programs
called at run time or datafiles affected at run time, as well as the way that they are
related with each other are presented in the graph.

