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Abstract

This thesis provides a detailed description of the research undertaken into the creation 

of a framework that uses Semantic Web languages to implement a recently developed 

commonsense reasoning formalism called Discrete Event Calculus (DEC). It aims to 

show to what extent DEC reasoning can be applied to Semantic Web data, using the 

Semantic Web standards and supporting development environments available for the 

purpose in 2008, when the research programme commenced.

The research aims to provide an accurate and reusable DEC ontology using the 

languages defined in Semantic Web Standards. To this end, an ontology describing the 

DEC entities and axioms is defined in OWL and SWRL; this represents the core 

elements of the DEC formalism, namely its set of logical types and predicates and the 

relations between them. The ontology is used together with a proof-of-concept DEC 

resolver software that applies the ontology to an existing rules engine, so that new 

inferences can be created from a DEC domain. The design and implementation of the 

combined ontology and software framework are described in detail.

The methodological issues involved in reconciling a software model with an 

ontology model are also discussed and the capabilities of the framework are validated 

by a series of tests modelled on established AI benchmark scenarios that can be resolved 

correctly using DEC. The results confirm that the framework will create the appropriate 

inferences with reference to the benchmark problems, though they also highlight some 

of current limitations in the framework, notably to do with how it represents changing 

fluent values.

A detailed sample domain ontology is provided, which is based on the domain of 

turn-based multiplayer online games; this illustrates how the DEC ontology defined in 

this research could be extended for use with other domains. A further extension of the 

DEC ontology is proposed, which enables the resolver to represent real-world time 

values independently of the timepoints defined as part of the formalism.

Finally, the strengths and extant boundaries of the chosen approach are discussed 

and suggestions are provided for improvements that could form the basis of future 

work.
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Glossary

DAML-OIL – DARPA Agent Markup Language, a precursor to OWL

DEC – Discrete Event Calculus

EC – Event Calculus

ECA – Event-Condition-Action pattern

EDD – Event Driven Development

IDE – Integrated Development Environment

GRDDL – Gleaning Resource Data from Dialects of Languages

MDA – Model Driven Architecture

MVC – Model-View-Controller pattern

ODM – Ontology Definition Metamodel

OUP – Ontology UML Profile

OWL – Web Ontology Language, proposed 2004 (OWL 1) and extended and revised 

2008 (OWL 2)

OWL 1 – Original OWL proposal (2004), divided into 3 “species”:  , 

OWL 2 – updated OWL proposal (2008), divided into 3 profiles: OWL EL where 

reasoning can be performed in polynomial time

OWL DL – Description Logic species of OWL 1

OWL EL – OWL 2 profile for ontologies with a high number of classes and properties 

OWL Full – Complete species of OWL 1

OWL Lite – Lightweight species of OWL 1

OWL RL – OWL 2 profile for ontologies that need to be scalable with rules languages

OWL QL – OWL 2 profile for ontologies that will be used to create large knowledge 

bases with a large number of instances

OWL/SWRL – abbreviation for an ontology defined in OWL-DL that uses SWRL rules

RDF – Resource Description Framework 

RDFa – RDF (in attributes)

RDFS – RDF Schema

RIF – Rules Interchange Format 

SWRL – Semantic Web Rule Language
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SQWRL – Semantic Web Querying Rules Language 

SWRL – Semantic Web Rules Language

UML – Unified Modelling Language
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Chapter 1 Objectives and motivation

1.1 Background to the project

This project was started in late  2006 as a collaboration between Game Systems 

Incorporated Ltd (GSIL) and the Faculty of Advanced Technology at the University of 

Glamorgan, with funding provided via an ESPRC industrial CASE award.

The original project concept as outlined by the sponsoring company was to 

provide platform-neutral mobile services for game development using SIP and the initial 

intention was to achieve this through a coordinated research effort involving two 

separate research and development teams, with one team developing mobile game 

service clients and the other team looking into service implementation. The initial 

project document specified software services for game analysis as a fundamental output, 

specifically services that worked on data that could be created by games on any type of 

hardware platform and that would include software built around player statistics and 

game narratives.

The parallel collaboration between GSIL and Ericsson was separately arranged 

and prototype software for mobile devices was developed by teams working in tandem 

in Sweden and the UK. This work included development of a simple online turn-based 

multiplayer game; software services were to be built around this. However, the initial 

mobile phone collaboration did not develop as expected and the project proposal 

evolved to incorporate a more wide reaching approach to software service design which 

took into account recent work into Semantic Web technology.

Early surveys into the area of mobile software service development suggested 

that the risk of locking the service software design into a proprietary server framework 

needed to be offset by a standards-based approach to software service provision. The 

Semantic Web seemed to offer this opportunity and subsequently the research 

programme investigated Semantic Web standards as a basis for platform-neutral and 

network-agnostic software service development.

These developments led to the development of an enhanced proposal, which 

included development of a generic system for resolving Event-Condition-Action (ECA) 

sequences. Other research had already looked into interpreting ECA sequences in the 
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Semantic Web ([1] [2]) but these solutions did not exploit the expressive power of OWL 

for ontology development, as is explained in a later section (2.9.2). This proposal was 

motivated by the need for a more generic way of dealing with cause and effect in web 

based systems than currently offered, which could be expressed in OWL and thus 

merged with existing (or future) OWL application domain ontologies. 

An initial design for an ECA ontology was proposed and its application to game 

services was described in the author's PhD continuation report. An encouraging peer 

review response helped to confirm the  direction  of the ECA ontology; this prompted 

research into its potential uses in the domain of games service programming.

An ontology for ECA resolution was proposed and presented and the initial 

specification for an accompanying software framework was created [3]. However, 

limitations of the ECA mechanism became apparent at an early stage: it was suitable 

only for simple systems and could not scale up well to deal with application domain 

rules.

Event Calculus (EC) was investigated as a possible means of expressing more 

complex application domain rules in a Semantic Web context. EC comes from a line of 

of logic formalisms for commonsense reasoning, which started with the situation 

calculus. These have been applied to various problems in AI using different types of 

knowledge base technology. Initial research into the EC approach was influenced by an 

interesting online discussion between some of prominent Semantic Web researchers 

(including Ian Horrocks, one of the authors of OWL), which focused on the possibility 

of partly implementing situation calculus axiomatization using the Semantic Web Rule 

Language(SWRL) [4]. From this discussion there was a suggestion that it might be 

possible to apply a similar approach to the EC using SWRL in tandem with other 

Semantic Web technologies. 

Developing an EC framework in Semantic Web languages was an intriguing 

possibility and it was decided that the pursuit of a prototype EC resolver using OWL 

/SWRL could shed some light on the possibilities for commonsense reasoning systems 

in the Semantic Web. 

1.2 Motivation

The project was motivated by an interest in how the EC formalism in general and the 

5



DEC in particular could be applied to Semantic Web technology. The potential benefits 

of applying EC to the Semantic Web are that it provides a generic, flexible and tested 

approach to commonsense reasoning which is grounded in first-order logic, which is 

consistent with the logical foundations of Semantic Web languages. While the original 

domain under consideration was turn-based multiplayer games, it was clear that the 

application of EC formalisms to Semantic Web technology could be turned to many 

more applications.

Software development using Semantic Web languages is still in its infancy at the 

time of writing and the Semantic Web itself is still very much a buzzword in 

technology circles. However, the standpoint of the author is that the software 

development process stands to benefit from the Semantic Web in several ways. Firstly 

the increased interoperability of data will help to reduce problems associated with 

integration of relational database data. Secondly, the adaptation of Semantic Web data 

into ontologies will make it easier to incorporate established AI techniques into 

software. Thirdly, the use of the Web as a general platform will encourage the move 

towards hardware- and network-agnostic software development methodologies. These 

benefits are already becoming visible in large-scale commercial applications like the 

OpenCalais initiative, which provides an automated semantic annotation webservice for 

text and the forthcoming Chrome OS from Google, which places the browser at  the 

heart of the desktop and encourages software development based on webservices 

instead of standalone applications.

The EC formalism can be readily applied to event driven development (EDD) 

because both the formalism and the application development methodology are modelled 

on the concept of events. The chief difference between them seems to be this: that the 

EC is concerned with the consequences and effects of events, while EDD is concerned 

with the mechanisms of how to represent the dispatch and consumption of events in 

software. EDD offers a natural way of recording sequential application session data; this 

data can be enhanced with careful use of Semantic Web technology. Event-driven 

software encourages decoupling of components, so a generic DEC mechanism could be 

plugged into existing software systems with minimal adjustment to existing code. The 

combination of DEC with Semantic Web languages promises introduction of dynamic 

considerations to static ontologies; a good implementation would be able to exploit the 
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extensibility of the Semantic Web with the formal rigour of EC. The open world 

assumption means that the DEC ontology can be bolted onto another ontology without 

any adjustment being made to the original ontology. However, the closed world  

assumption that is implicit to EC makes it necessary to be able to deal with conflicting 

semantics, to enable the open and closed world assumptions to be supported side-by-

side in the same representational scheme. This issue is described at length in 

A proven method of commonsense reasoning could yield interesting and diverse 

application scenarios when applied to datasets produced from linked web data. This 

approach could become increasingly pertinent with the growing significance of web-

based application development. As a result, there is potentially a huge range of 

applications for Semantic Web based systems that use commonsense reasoning (EC or 

situation calculus or similar).

There is a gap in current research efforts in tying together EC with Semantic 

Web technology. Related work includes some implementations of EC entities without 

the axioms and some partial axiomatizations of EC that have been adapted for specific 

application scenarios. The Literature Review that follows this chapter will examine 

some of these research efforts in depth. However, there seems to be little existing work 

on how to implement EC in a Semantic Web context and this research thread looks at 

one way of achieving this goal. 

1.3 Initial goals

1.3.1 A DEC ontology defined in Semantic Web languages

The DEC ontology provides a way of expressing all of the EC sorts in OWL. These 

sorts provide the backbone of the EC. In addition most of the axioms of DEC can be 

expressed through SWRL although it is currently necessary to resolve some of them 

with help from a general purpose programming language owing to limitations of the 

SWRL language. This issue is discussed in greater depth in Section 2.4.2 and a 

workaround solution to implementing the missing functionality through a combination 

of SWRL and general purpose programming forms a large part of Section 7.

This programme of research looks at the limits of how far DEC functionality can 

be implemented with existing Semantic Web technology. Although DEC includes only a 

subset of the EC axioms it has been proved to be equivalent to the full event calculus, if 
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the timepoint sort is limited to integers [5]. Thus the outcomes of the research presented 

here will apply to future attempts to implement EC functionality with Semantic Web 

languages, not just the attempts to implement DEC. 

This project uses OWL and SWRL to create an ontology that defines the basic 

sorts of DEC and the axioms that are defined with it. The axiomatization used 

corresponds to the one defined by Mueller [6]. A prototype discrete event calculus 

resolver is presented, which uses a combination of SWRL rules and general purpose 

programming with Jena APIs to interpret the effects of events on fluents defined in DEC 

terms. The resolver creates inferences in the form of DEC statements comprised of 

instances of DEC predicates, fluents and events.

The limitations of SWRL and the currently available Semantic Web development 

environments are discussed. It is not the intention of this project to provide an optimal 

solution, but instead it is hoped that the solution presented could be used as a catalyst 

for further work. 

1.3.2 A software framework that can use the ontology for practical 

applications

The software prototype shows how a programmable DEC model can be implemented in 

a general purpose programming language, thus opening up opportunities for integrating 

the Semantic Web DEC into conventional applications. The software includes code that 

maps individuals defined in a knowledge base using the ontology with class instances in 

the general purpose language (Java in this case).  It includes methods for resolving DEC 

events and consequences in the narrative, observation and current timepoint models. 

Splitting the model into narrative, observation and current timepoint models mirrors the 

basic domain description of EC, which consists of the sequence of Happens statements, 

their events and timepoints (narrative), the set of (¬)HoldsAt statements and their fluents 

(observation) and the circumscription of other predicates (the state of the application at 

the most recent timepoint in a sequence of events, referred to in this project as the 

current timepoint.) In particular, the framework should be shown to be adaptable to 

defining domain models of turn-based games.

1.3.3 An accurate implementation of DEC

Problems faced by the EC and its predecessor, situation calculus, have been solved 

8



through the development of test scenarios, as presented for instance in  Some of these 

established scenarios have been described in this project and the developed prototype 

has been used to test the  implementation of the EC formalism.

A particular goal of this research is to develop a set of suitably rigorous tests that 

can establish that DEC reasoning procedures can be correctly maintained by a Semantic 

Web-based DEC resolver. These tests are described, together with their application to 

the DEC resolver framework, in Chapter 8

1.3.4 A reusable framework for DEC rule resolution

Although the software created as part of this project is of prototype quality, it can been 

applied to other DEC based application domains: as an illustration of this a simple 

ontology for boardgames has been created and this has been used to illustrate how the 

DEC ontology could be adapted to provide commonsense reasoning services for some 

simple online game scenarios (see Chapter 9).

1.3.5 An investigation into merging time ontology with DEC 

Although the ontology presented restricts the timepoint to positive integers, there is a 

case for incorporating an established ontology of time into the DEC ontology scheme. 

This proposal can be met by merging a DEC ontology with an established ontology of 

time such as OWL-Time [7], which helps to open up a broader set of inferences about 

events and their consequences. Furthermore, merging an established time ontology may 

make it easier to merge temporal application data using the DEC ontology with 

temporal data from other live, “real-world” data sources. 

1.4 Long term objectives

The implications of developing a well-rounded and usable EC framework for the 

Semantic Web are considerable. Although the project eventually became more specific 

in scope, focusing on commonsense reasoning and DEC for the Semantic Web, its 

results have implications relevant to a wider field than the domain of online game 

service software, although they still apply to this domain.

The EC is credited as being one of the most versatile formalisms for 

commonsense reasoning and so by developing an ontology based on EC it should in 

theory be possible to create commonsense based software agents that can usefully work 
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on the growing bodies of data, information and machine-processable knowledge stored 

in the Semantic Web. Although the intent in this project was not to provide an optimal 

implementation of DEC in the Semantic Web, it is hoped that the provided 

implementation might show how DEC could usefully be combined with current and 

future Semantic Web technologies to meet the needs of future application scenarios.

The implementation choice of SWRL and JESS was made by default, as at the 

time of writing there was little alternative to using Protege and the SWRLJessTab with 

JESS as the rules engine. Whilst this combination has been well represented in research 

projects, it now presents barriers to widespread commercial adoption, which are 

discussed, together with the more recent developments in Semantic Web IDEs, in 

Chapter 3.

The ontology and resolver software created as part of this project is intended as a 

starting point for improved implementations of commonsense reasoning methods in the 

Semantic Web. An anticipated side-effect of this project is to provide some discussion 

points on how newly emerging Semantic Web standards may be employed to create 

rule-based services that better suit the needs of commonsense reasoning applications.
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Chapter 2 Literature Review

2.1 Overview

2.1.1 Scope of this section

This section provides a detailed and critical review of the literature that informs the 

theoretical background to the chosen research thread. The review starts by defining the 

core terms of ontology, the Semantic Web and it introduces EC in the context of other 

logic-based representational formalisms. It then evaluates existing representations of 

time in the Semantic Web together with existing crossover points between the Semantic 

Web and EC.

2.1.2 Preliminary discussion

2.1.2.1 References to Semantic Web standards

In the course of this thesis when referring to Semantic Web standards, terms such as 

Proposed Recommendation, Candidate Recommendation and Working Draft  are 

precisely defined in the W3C Process Document that has been in use since 2005. These 

terms are defined in the context of the procedures that are adopted by the W3C in 

standards development [8]

2.1.2.2 Logic terms

The standard definitions of first-order and description logics have been used, as cited for 

instance by Baader et al in [9].

2.1.2.3 Rules

In the context of this research, rules take the form of implication rules containing an 

antecedent (body) and consequent (head) where antecedent ⇒ consequent.

2.2 Background to the Semantic Web

The Semantic Web shares its origins with the World Wide Web and in some respects the 

two concepts can be said to share the same original motivation. The original goal for the 
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project that became the World Wide Web was to help organize project development at 

CERN [10]. A hyptertext-based system was proposed to create pools of information that 

could grow and evolve alongside a project. Eventually this system started to evolve into 

the current Web, which  consists of billions of linkable documents. However, it is 

interesting to note that the original memo was not limited to linking of documents. It 

suggested that one of the limitations of existing documentation systems at the time was 

that they forced the user into searching through a fixed structure and in that sense these 

systems “[did] not reflect the real world.” This statement suggested that even at this 

early stage in the Web's development, the goal of the project was to encourage 

knowledge sharing. Although the first step in that procedure involved the introduction 

of hypertext on a massive scale, further steps could always be made through the 

development of data-centric markup languages. Indeed the proposal was for a “universal 

linked information system,” and both the document-based current web and the Semantic 

Web meet this definition.

Since this memo was written, there has been a considerable growth in interest in 

using the web as the grounding for machine-processable information and knowledge 

representation. 

Much of the groundwork for establishing the Semantic Web has been done by 

existing research into knowledge bases. The significance of knowledge processing in 

economic terms has long been understood ([11] [12].) Expert systems using knowledge 

base technologies have proved useful in all types of different academic disciplines and 

they enjoy widespread use in business (e.g. Exsys Corvid, which was used by over 50% 

of Fortune 500 companies at the time of writing). However, these systems have tended 

to be standalone and proprietary; furthermore the knowledge sources that they work 

with are centrally controlled. 

Early research into distributed knowledge bases was motivated by a desire to 

create a way of defining portable data that could be reused in different application 

contexts [13]. At this time the idea of assembling knowledge bases from reusable 

components was new and it offered the immediate advantage of saving on duplicated 

effort at the conceptual stage of knowledge base development. Some large scale 

ontology projects had already begun when this idea was first mooted. The most notable 

of these was Cyc, a large-scale encyclopedia of terms which was first proposed with the 
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aim of combating brittleness in software and reducing the time that software took to 

develop [14]. Significantly perhaps, Cyc is still in active development and is available 

as a Semantic Web ontology [15]. 

Indeed, the progress of Cyc from a standalone knowledge base to a Semantic 

Web ontology is indicative of a general trend from standalone knowledge base systems 

to Semantic Web based ones. The infrastructure of the web offers a new basis for the 

design of distributed knowledge bases built with Semantic Web standards. With the 

increasing adoption of Semantic Web standards it should become easier for systems to 

incorporate the contents of knowledge bases that have been developed separately. 

The core Semantic Web language standards have been in development since the 

release of the first draft of the RDF standard in 1999 and yet the Semantic Web has not 

provided an instant revolution in online data representation. The automated web-based 

agents that can automatically book a hospital appointment in a scenario taken from Tim 

Berners-Lee's early article on the Semantic Web have not yet translated into reality [16]. 

In spite of the lack of everyday intelligent Semantic Web software agents, however, it is 

fair to say that the Semantic Web is gaining traction in academic and business 

communities alike. The most visible expressions of this are the development of large 

scale projects like the ScienceCommons, which uses Semantic Web technology to 

promote greater collaboration and data-sharing in scientific research [17], the Gene 

Ontology Project (GOP)  [18], the Open Biomedical Ontologies (OBO) Foundry and the 

Spire project for bioinformatics [19]. From a more commercial perspective, it is 

important to note that major companies are now investing in Semantic Web 

development (e.g. Microsoft Bing, based on Powerset's enhanced search that uses 

Semantic Web technology, Google incorporating RDFa into search results in 

RichSnippets, Oracle providing Semantic Web API support to its latest db version). 

Academia and industry alike stand to benefit from the promise of the Semantic Web to 

provide integration and interoperability of business systems and the creation of new 

(and limitlessly expandable) data sharing infrastructures [20]. In addition, there is a 

growing interest in exploiting Semantic Web technologies to assist with organizing, 

standardizing and opening up governmental procedures in various Western countries 

including the UK, the US, Canada and Australia [21]. These government initiatives, and 

the commercial and academic projects listed above, have all been initiated since 2004. 
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There is clearly a great deal of contemporary interest in the Semantic Web and if the 

scale of these projects is anything to go by, that interest looks set to continue. It is no 

coincidence that a case is being made for the recognition of web science (the study of 

the relations between data on the web) as a new field of research. This proposal has the 

support of Tim Berners-Lee amongst others [22] and it forms the foundations of a 

proposed Institute of Web Science [23].

With such interest in the Semantic Web, it is pertinent to ask how the Semantic 

Web might affect software development in general. The Semantic Web standards 

encourage greater interoperability between systems through the creation of reusable and 

rich models. However, there is a space in the Semantic Web stack (or pyramid) for a set 

of standards for defining a language or a set of languages that can provide rules 

resolution functionality within Semantic Web knowledge bases. There is a strong case 

for applying AI techniques for defining intelligent agent software that can bring 

commonsense reasoning formalisms to Semantic Web data and knowledge. This 

research, in part, looks at how DEC [5] can be defined using the Semantic Web 

technology stack.

2.3 Ontology and the Semantic Web

2.3.1 Different interpretations of ontology

In the context of philosophy the term ontology can be interpreted as the study of being 

or existence; in essence it can be seen as the theory of objects – which may be real or 

imagined – and the relations between them. An ontology is realized in one's personal 

mental model of how objects and their relations can be defined. Loosely speaking, this 

definition makes every sentient being an ontologist, though not many would use the 

term to describe their way of making sense of the world. In computing and information 

science, ontology has come to refer to a machine-readable artifact that in some way 

represents the concepts of a knowledge domain [24]. It is assumed that an ontology can 

be represented in some form which may or may not be human-readable but will be 

machine-readable. An early appearance of the term in this sense is found in research 

into commonsense reasoning, where it is used to describe the way of categorizing things 

that exist in a logically defined context [25].

 The most widely used definition of ontology in computing is that it is an 
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“explicit specification of a conceptualization of a domain” [26]. It has been argued that 

this definition is too broad in that it does not require a taxonomical element, permitting 

arbitrary systems like catalogues  [27] but in response, it has been pointed out that a 

relational database containing a single columned table still conforms to the relational 

data model [24]. Ontologies can assume different forms although these forms will 

permit differing levels of expressive power [28]. 

The distinction between the definitions of ontology in computing and philosophy 

seems to be that in philosophical terms ontology is an abstraction of an individual's 

thoughts whereas in computing it is a structure that can be processed. The same 

distinction can be made about the way in which humans and machines interact with the 

Web. The Semantic Web is an attempt to open up the web in a way that encourages 

machines to interact with it more intelligently. This is summed up by Tim Berners-Lee 

and others in an early popular science article: “The Semantic Web will enable machines 

to comprehend semantic documents and data, not human speech and writings.” [16]

2.3.2 Motivation for ontology engineering

The purpose of an ontology is to provide way of modelling a domain of knowledge, in 

other words bringing order to a body of information. Ordered information can be 

processed more easily by machines than unordered information. Furthermore, if an 

ontology provides multiple relations to bind objects together, then it becomes easier to 

design reasoning systems that can extract meaningful inferences from the information 

created in a knowledge base defined with the ontology. 

General purpose programming typically suffers from lack of well-defined data 

models which inevitably leads to software redesign. Ontology may not be a “silver 

bullet” solution to the problems of software engineering (although this has in fact been 

suggested in the title of a book on ontologies for e-commerce [29]) but well defined 

ontologies can save user effort by providing domain definitions that can be endlessly re-

used across different applications. An interesting general consequence of the growing 

sophistication of software is that software development and computing theory has 

become more concerned with data knowledge representation and less about the 

functionality and procedural aspects of computer systems [27]

Inference is a key advantage of ontology development in computing. It can 
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throw new light on data by providing new facts about objects and their relations in an 

ontology. Inference engines have been key components of  expert systems in the past, 

though the data domains on which they have worked have been limited by the size of 

the available knowledge bases. The Semantic Web provides a new distributed context in 

which they can work across potentially boundless data sources provided by the web. 

2.3.3 Semantic web standards

As research into commonsense reasoning and knowledge bases has continued, ontology 

has become recognized as a layer in a knowledge based system, where definitions of 

objects and their relations can be created and reused across different applications and 

platforms [13], [30]. The Semantic Web extends this idea and applies it to web 

architecture, so that knowledge definitions can be spread freely across heterogeneous 

client machines. In addition the Semantic Web standards define capabilities for creating 

ontologies of different levels of complexity using languages of differing expressive 

power.

The Semantic Web is defined as an extension of the current web, expressed in a 

stack of markup languages and standards that can be fitted into the existing web stack.  

The three core Semantic Web languages, starting with the simplest are RDF ([31], [32]), 

RDFS [33] and OWL ([34], [35], [36]). RDF is concerned with recording elementary 

factual data and provides only a few key properties and types to define objects and their 

relations. RDF sits at the bottom of the Semantic Web stack as the base language for 

recording basic facts about things. In essence an RDF statement conforms to the most 

primitive definition of a statement in human language, containing a subject, an object 

and a relation that binds the two. RDFS is an extension of RDF that adds more formal 

types (rdfs:Class, rdfs:Property) and relations (rdfs:subClassOf) so that more 

complicated models can be created. The Web Ontology Language (OWL) adds more 

types and relations (owl:ObjectProperty, owl:DatatypeProperty, owl:maxCardinality) to 

allow even more complicated models to be built ([37], [38].)

In its first iteration, OWL was divided into three distinct sublanguages – OWL-

Lite, OWL-DL and OWL-Full – with the aim of providing different features for 

different user communities. OWL Lite was designed for users who needed little more 

than a classification hierarchy, while OWL-DL was grounded in Description Logic, a 
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subset of first-order logic that guarantees decidability and completeness from 

inferences, which is a desirable characteristic for computable ontologies. OWL Full was 

designed for users who wanted maximum expressiveness but who did not need 

decidability or completeness [35].

It is important to note that at the time of writing a set of W3C candidate 

Recommendations is being considered that defines a new iteration of OWL called OWL 

2. This new W3C Recommendation proposes a new set of OWL sub-languages, called 

profiles, which provide the ontology designer with different expressive capabilities that 

are fine-tuned for different requirements like querying, scalability, expressive power 

[39]. The implications of these changes are discussed in the concluding chapter of the 

thesis 10.5.1, but the body of the thesis will focus on work that has been completed 

using the first OWL standards, in particular OWL-DL.

The guiding principle in dividing the Semantic Web into different language 

layers was to provide support for different levels of model complexity required by 

different application use cases. The flexibility of Semantic Web technology makes it 

more declarative, more expressive, and more consistently repeatable than a general 

purpose programming language; this point has been stressed as part of the W3C's 

general business case for investing in Semantic Web technology [40]. 

The Semantic Web has been designed with the open world assumption [41] as 

one of its major tenets, which means that a statement can only be assumed to be false 

when it is specifically labelled as false. Thus in an empty RDF or OWL ontology, every 

possible statement is possibly true. This is clearly the opposite of an empty relational 

database,  in which no statement can be said to be true until some data is added to it. 

This characteristic of relational databases  illustrates negation as failure, an idea that 

originates from [42], where it describes how an atomic statement is assumed to be false 

if it cannot be found in a database, though this idea has been extended to knowledge 

bases as well, for example in [43] and  [44]. Negation as failure is thus completely 

absent from Semantic Web languages and the Semantic Web permits unlimited 

discourse by permitting contradictory statements, a point which is informally conveyed 

by the AAA slogan: Anyone can say Anything about Anything [45]. 

The lack of negation as failure in Semantic Web languages is connected with the 

open world assumption that underpins the Semantic Web philosophy. By default, a 
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statement that is not found in a Semantic Web knowledge base is not thought to be false, 

but instead it is not known to be true.

One consequence of the open world assumption in the Semantic Web is that 

there is no enforcement of unique identifiers for entities in a Semantic Web ontology: 

OWL is designed with the non-unique naming assumption [34]. A class instance will 

have at least one URI that points to it, but other class instances can be said to be 

equivalent to it, even though they may be defined at different URIs. An entity from one 

ontology can be known by many names in different contexts, and different class 

instances can represent different aspects of the same thing. Once again, this is the 

opposite of the relational database situation, where an entity, represented by a table row, 

needs to be uniquely identified in order to maintain referential integrity in the data 

model.

The open world assumption, the non-unique naming assumption and the lack of 

negation as failure all contribute to  the flexibility of the Semantic Web stack. However, 

these features also make the task of defining non-monotonic behaviours using Semantic 

Web languages more difficult although it should be stressed that it is not an impossible 

task. Research described in Section 2.10 and elsewhere shows how logical formalisms 

based on non-monotonic logic can be defined using the Semantic Web stack and the 

current project draws inspiration from these results.

2.3.4 Semantic web stack

The original Semantic Web stack [46] places the component languages of the Semantic 

Web between the layer of “self-describing documents” (or data serialization) and logic 

(rules). While the positioning of the rules component of the stack has been the  subject 

of debate, it is nevertheless agreed that the core languages of the Semantic Web should 

fit in between the data serialization and human interpretation layers.
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The Semantic Web layer cake has been through at least two different versions, with the 

earlier one putting rules in a single layer on top of OWL and the later one putting them 

in a column alongside of the Semantic Web languages. The earlier version features a 

layer of logic programming that sits on top of OWL. This rules layer has been the 

foundation for languages such as SWRL [47] It has been argued that the early version of 

the technology stack is too restrictive and cannot cope with the majority of rule-based 

applications [48]. According to this interpretation, a single upward-compatible cannot 

hope to deal with the future set of tasks that the Semantic Web will demand. An analogy 

is drawn with a music technology industry that forces gramophones to be used as a 

standard technology for future purposes, which would prohibit anything better from 

being invented . 

The newer stack version defined a discrete rules layer that does not depend on 

OWL, with the description logic part of the rules sitting in a separate layer between 

RDFS and OWL. Figure 2.2 is based on a version of this version of the stack, which is 

cited in a presentation given by Tim Berners-Lee at the International Semantic Web 

Conference in 2005 [49]
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However this schema has been criticized for semantic misunderstanding: it is necessary 

to adopt the closed world assumption to allow negation as failure, which is not 

compatible with the semantics of description logic programming, and therefore  it is 

inaccurate to place a DLP layer between RDFS and OWL [50].

The next iteration of the Semantic Web stack as illustrated by Figure 2.3 

deepened the rules layer in the stack and stretched it alongside the OWL and RDFS 

layers This meant that rules, like the SPARQL querying language, were at the same 

level of dependency. This version of the stack was visible in the latest Semantic Web 

online documentation [51].
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Note that there are two elements to the rule layer in the stack, RIF and SWRL. In 

contrast  to RIF, the Semantic Web Rules Language (SWRL), is specified as a complete 

language for all types of scenario. Currently SWRL is the most widely supported 

Semantic Web rules language and it predates the RIF project. In the light of the recent 

changes to the OWL standard it is quite possible that a rules language other than SWRL 

might emerge as the dominant standard for querying OWL models with first order logic.

It is not the intention of this project to delve too deeply into the details 

surrounding the different proposals for rules in the Semantic Web, although it is 

important to note that in 2009 the RIF framework has formally been presented as a 

Working Draft to the W3C [52].

The software developed as part of this project uses SWRL as the rules language, 

but at the time that the project started, it was really the only available option and 

definitely the best supported by Semantic Web IDEs. This point is explained in greater 

detail in 3.2.
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2.4 Rules and the Semantic Web

2.4.1 The need for rules in Semantic Web applications

The Semantic Web standards discussed so far permit certain types of rules to be defined 

but these are limited to classifications of objects. On their own, the Semantic Web 

languages RDF(S) and OWL do not permit definitions of Horn clauses, which limits the 

expressiveness of the rules they can define. The Semantic Web layer cake has a space 

for rules based on first order logic, which can sit alongside of, or on top of the RDF(S) 

and OWL stack.

The official W3C standards now incorporate a revised stack that puts rules 

alongside OWL instead of above. A special rules working group has been drawn up by 

the W3C to define a language (or set of languages) that can provide rules to enhance 

OWL and RDF(S) ontologies. The project that this group works on is called the Rules 

Interchange Format, (RIF). This framework has been formally defined [2] and a W3C 

Working Group has been established to co-ordinate its implementation [53]. This 

project offers a core rules language with a number of dialects; the motivation behind 

breaking the language up into dialects is to deal with the different types of basic 

requirements. Each dialect has its specific set of use cases: the Core Dialect is designed 

to fit in as a common subset to most rules engines, the Basic Logic Dialect provides 

positive Horn logic with equality and built-ins, while the Production Rules Dialect 

provides forward chaining rules and the ability to add or subtract information after a 

rule is fired. RIF became a W3C recommendation in October 2009.

2.4.2 SWRL

The Semantic Web Rule Language (SWRL) is based on a combination of OWL-DL and 

OWL Lite and Unary/Binary Datalog sublanguages of Rule-ML. It allows definition of 

implication rules containing a body (antecedent) and head (consequent.)  A rule is 

satisfied by an interpretation if and only if every binding that satisfies the body also 

satisfies the head. The SWRL language allows implication rules to be defined, that work 

by binding variables to elements in a domain. The language provides an extension 

mechanism through which new user-defined methods can be defined for rules [47]. The 

following example defines a Youngster as a person under 25 using a property hasAge 
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and the SWRL extension swrlb:lessThan

Youngster ? person∧hasAge ? person ,? a⇒ Person? person∧swrlb : lessThan? a ,25

The SWRL extension mechanism has formed the basis of a querying language 

called SQWRL (Semantic Query-Enhanced Web Rule Language) which permits SQL-

type queries on knowledge bases using SWRL rules [54]. SQWRL specifies select 

statements that appear in the heads of rules, so for example

Person? p∧hasAge? p ,? a∧swrlb : lessThan? a ,25⇒ sqwrl : select ? p ,? a

SWRL is limited in some ways, featuring no disjunction operator and not supporting 

negation as failure. It is based on monotonic rules and rules therefore cannot be revised 

or contradicted, while facts cannot be treated as default. A disjunction can be reworked 

into a negative conjunction of the form A  ¬B∧  and thus the lack of a disjunction 

operator in SWRL is not an insurmountable problem. More serious however is that the 

ability to bind to individuals that are not known causes undecidability. Once again, this 

problem can be dealt with, but a special “DL-safe” practice has to be enforced, as 

outlined by early research on OWL-DL and rules [55], which proposes DL-safe 

measures, adding special non-DL-literals to the rule body, and adding a fact for each 

individual which ensures that it is known.

OWL 1 lacks an “all-different”-type predicate to differentiate between different 

instances (individuals) in a knowledge base. This further complicates the task of 

defining SWRL rules because it necessitates a large number of owl:differentFrom 

property relations, each of which  indicates that two URI references refer to different 

individuals [56]. It should be noted that this requirement is met in OWL 2 by the 

Disjoint Union axiom as explained in the OWL 2 syntax document [39].

2.4.3 Decidability and rules

A key consideration in the design of OWL was that it should be able to create decidable 

models. In other words it had to be possible to design an algorithm that could determine 

whether or not one OWL ontology entails another, thus ensuring sound and complete 

decision making procedures [57]. Unlike OWL-Full, OWL-DL and OWL-Lite are both 

decidable. OWL-Lite performs better than OWL-DL for reasoning purposes, as 

inference in OWL-Lite is of worst-case deterministic exponential time (EXPTIME)  as 

opposed to nondeterministic exponential time (NEXPTIME) for OWL-DL.
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The emphasis on decidability in the OWL standard means that a rules language 

working with OWL ontologies should be decidable as well. SWRL is undecidable in its 

full form, and using SWRL rules in the context of an OWL-DL ontology can break the 

decidability of OWL-DL. 

Consequently, a notion of “DL-safe” rules has been developed by Motik et al 

[55]which involves adding special non-DL atoms to the body of a rule to ensure that

object variables that appear in the rules correspond to individuals defined in the 

ontology while datatype variables correspond to data values in the ontology. The idea of 

DL-safe rules is being adopted by OWLED (OWL: Experiences and Directions), an 

organization set up to shape the development of OWL [58].

 SWRL rules do not require classes in the head of a rule to correspond to named 

individuals in the rule body. However, in practice it is necessary to observe this pattern 

because reasoners like Pellet and KAON2 (described in 3.1.5) only permit DL-safe 

SWRL. Furthermore, IDEs can put restrictions on the type of rules that a user can 

design: for instance, Protégé 3.4 enforces DL-safety in its SWRLJessTab rule editor 

[59], which parses rules as they are being written and rejects them if the head contains 

individuals that are not defined in the body.
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2.5 Event Calculus in the context of temporal reasoning

2.5.1 Common concerns of temporal logics

2.5.1.1 Representation of intervals and timepoints

Different forms of temporal logic share a requirement to refer to a particular time and to 

relate it to different points in time. Even at this most general level, there is a choice to 

be made over how to represent time, namely whether it should be presented as a set of 

points or as an infinitely divisible continuum composed of intervals. 

Propositional Temporal Logic [60] considers time as a property that can be 

described as natural numbers, with a starting point and an infinite series of discrete 

numbered time points. This is combined with an operation (+) for moving from one 

point (t) to the next (t+1). If a representation of time is not limited to discrete time 

points and is measured with real numbers, then the concept of having a “next” point in 

time becomes impossible to resolve and it makes more sense to refer to timepoints as 

belonging to intervals rather than discrete sets of values. 

The Interval Temporal Logic devised by Moszkowski [61] is similar to 

Propositional Temporal Logic but deals with intervals rather than points; similarly Allen 

[62] devised a model for a formal representation of temporal systems, which deals with 

intervals that are related to each other by operators such as before, during and overlap.

It should be noted that the notion of overlapping intervals has been built into a 

different approach to representing time from events. Kamp [63] defined an Overlap 

predicate which, combined with Precedes, underpinned a set of axioms that could 

summarize event structures. This is significant with regard to Event Calculus because 

the long-standing belief, as described for instance in [64] that time is event-dependent is 

a core feature of event-centric formalisms.   

2.5.1.2 Cause and effect for temporal logics

Being able to represent cause and effect in the con text of temporal logic means that it is 

necessary to be able to make default assumptions about the state of the world over time, 

and to be able to revise those assumptions according to new information that may arise. 

Using monotonic logic is not sufficient for this purpose because it does not permit such 
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revision of assumptions. However,  first-order entailment is monotonic, so to be able to 

support non-monotonicity in first-order logic it is necessary to find ways of ensuring 

that entailment can be changed. 

2.5.1.3 Monotonic and non-monotonic entailment and proof

A brief discussion of monotonic and non-monotonic entailment follows. Loosely 

speaking, a formula  can be considered  true in relation to an Interpretation I  of a 

language of first order logic L  if  holds for every variable assignment in that  

interpretation (I , V ); this is written (I , V )   ⊨ . 

A formula   entails another formula , written     ⊨ ,  if for every 

interpretation such that  I   ⊨ , we also have  I   ⊨ . A formula  can be considered   

provable from another formula  if it can be inferred from a combination of  with   

logical axioms or other inferred formulae; this is written  ⊢ .

In first-order logic entailment is monotonic so that any implication      is still 

proved and entailed by the addition of another formula '

     ⊢   ∧ '    for every ' or           ⊨  ∧ '   for every '   

In other words the inference    is    provable from – and in addition entailed by –

  ∧ '   ,   which is another way of saying that the addition of a new fact like '  

cannot cancel the inference      even though our intuition might suggest that this 

new fact should cancel it. 

When new facts come to light it should be possible to make them affect existing 

facts – so,  for instance if we interpret  a s “The book is on the table” and ' a s 

“Herbert picks up the book” and  t o mean “The book stays on the table”. In the 

context of this example it becomes clear that first-order logic entailment is inadequate 

for representing even this simple collection of facts. Using monotonic first-order logic it 

is possible in theory to define which facts cancel out other facts, so in this example it 

would be necessary to create new inferences to define this explicitly, for instance “If  

Herbert picks up the book, the book does not stay on the table” and this would need a 

new formula ' t o represent that “The book is not on the table” together with statements 
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that made it clear that    ∧ ' could not apply together at the same time (this would be 

expressed in the formula ￢(   ∧ ') ). 

Already, it is clear that there is considerable complexity involved in determining 

even simple scenarios with monotonic logic alone. Whereas a problem domain should 

be about as complicated as the sum of the fluents and events, the actual number of 

axioms required in this type of logical implementation is the product of these two 

numbers. This point is developed fully by Shanahan's book-length analysis of the 

history of the frame problem and its influence on the history of AI development [65].

In other words, the desired outcome is non-monotonic logical entailment, which can be 

summarized as follows:

This situation is the reverse of that described above for first order logic. In the context 

of the example described above, non-monotonic entailment does not assume that the 

book will stay on the table ( )  if the book is on the table and is then picked up (   ∧ ').  

Indeed, the default assumption is the reverse: given that   , it does not follow that    

the combination of   ∧ '   .  

2.5.1.4 Circumscription for non-monotonic entailment and proof

A solution to the problem of providing non-monotonic entailment and proof in first 

order logic is offered by the technique of circumscription, which was introduced as a 

general method for non-monotonic reasoning by McCarthy [25] who later introduced it 

to commonsense reasoning and in particular EC [66]. Circumscription helps to 

overcome the frame problem by minimizing the extension of the EC predicates for a 

given narrative. 

2.5.1.5 The frame problem

The frame problem is concerned with representing the non-effects of events. It was first 

described  in relation to situation calculus [67], though it has also influenced other 

representation formalisms like the EC. It has also has been considered in relation to 

software engineering in the context of algorithms and interaction [68]. The essence of 

the problem is the difficulty of using logic to deal with events that do not happen, or 
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events that cause things not to happen, in other words introducing non-monotonicity to 

entailment.

2.5.1.6 The ramification problem

A variation of the frame problem is the ramification problem, which is essentially the 

frame problem in the context of actions with indirect effects. This problem was first 

described by Shanahan in relation to circumscription [69] but he later offered a solution 

using the predicates Initiated, Terminated, Started and Stopped in an article that focused 

in particular on the ramification problem in EC [70].  The forced separation technique 

described above was developed as a part of this solution.

2.5.1.7 Inertia

The fact that properties or fluent values tend to stay the same until they are affected by 

external events is known as the commonsense law of inertia. The concept originally 

originated in reference to non-monotonic logic in the situation calculus [71] and it 

became central to the development of EC [65] [72].

2.6 Event Calculus

2.6.1 Origins and general characteristics of Event Calculus

Event Calculus (EC) is defined in many-sorted first order logic, which is an extension to 

first order logic that provides the notion of types (sorts). The presence of typing makes 

it possible to specify semantics through logic. For instance, there might be a sort to 

represent living things, of which humans might comprise one sub-sort, and another sort 

to represent edible things, and a predicate Eats which expects a living thing and an 

edible thing as arguments. Thus in the statement Eats(Will, apple), Will would be of the 

person and apple would be the edible thing. There is an analogy between the logical 

sorts and the types used in general purpose programming languages. It follows naturally 

that Eats could correspond to a function (or method) signature requiring parameters of 

types, which for the sake of argument might be defined as Person (which extends 

LivingThing) and EdibleThing. 

Central to EC is the idea that events, their consequences and their conditions can 

all be represented with the Horn clause subset of classical logic, i.e. in the form of 
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clauses with at most one positive atom. EC defines general axioms about events and 

temporal relationships and it also includes axioms that describe how events and fluents 

interact. For instance, it specifies how an event might stop a state from holding true 

after a certain tine. Furthermore EC offers a means of representing uncertainty with 

reference to any fluent in the system. EC makes use of non-monotonic reasoning, a term 

which describes logical systems that allow formulas to reduce the consequences of other 

formulas [73]. Thus some rules in EC are able to defeat others and events are able to 

determine the truth values of fluents.

However, EC also includes observations which record the truth values of fluents 

at different times, and narratives, which record the sequence of events, and these 

knowledge bases are monotonic. The idea of a narrative of events that can be described 

in logic derives from work on situation calculus [74] and it can be defined as a course of 

real events that may only contain incomplete information. In the DEC axiomatization 

this corresponds to Happens statements as described below. An observation can be 

understood as a statement about whether a fluent holds true or not, which corresponds to 

the HoldsAt predicate or whether it is subject to change at a certain point, as described 

by the Releases and ReleasedAt predicates, as introduced to EC by Shanahan [65].

An update to the observation or narrative consists of the addition of new 

knowledge to a knowledge base; it is not possible to delete knowledge, only to add new 

facts. This premise still holds in the latest incarnations of EC, as illustrated for example 

by [75] [76] and [77]. A change of state in a fluent is modelled by adding a new fact 

representing that fluent's current state, rather than by replacing one value with another.

Characteristics of the EC formalism

2.6.1.1 Parsimony of representation

EC allows the frame problem to be dealt with using a minimal amount of new 

information, as circumscription ensures that it is sufficient just to state the effects of 

events, and it is not necessary to state their non-effects. This ensures that EC 

representation is much more sparing (parsimonious) than a naïve representation of EC 

axioms that does not use circumscription [65].
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2.6.1.2 Expressive flexibility

The expressive flexibility of EC is shown in its ability to cope with a wide range of 

representational requirements including concurrent events, defeasible events, 

contradictions, nondeterminism and continuous change. These requirements have all 

been applied to the EC in the literature through benchmark scenarios, some of which 

form the basis of validation tests in 8.2, 8.3, 8.4 and 8.5.

2.6.1.3 Elaboration tolerance

According to McCarthy's definition, a logical formalism is elaboration tolerant to the 

extent that the amount of effort required to add new information to a representation is 

proportional to the complexity of that information [78]. EC qualifies as an elaboration 

tolerant formalism because adding a new fact (for instance, a fluent value) to an EC 

knowledge base only requires the addition of a single new sentence and does not require 

any further adjustment to the existing knowledge base.

2.6.2 Basic sorts and form

The three basic sorts in the EC are events, fluents and timepoints. It also includes a 

number of predicates. The version defined here follows the cut-down DEC defined in 

[6]

2.6.2.1 Events (actions) 

An event can be defined as an action that may happen in the world. In the literature 

event and action are sometimes used interchangeably as Shanahan explains [72].

2.6.2.2 Fluents 

A fluent is defined as a function whose domain is the space of situations [67]. This 

definition is adapted in the EC to mean a time varying property of the world. A fluent 

can be a variable or a boolean statement. Although other research into time-based OWL 

ontologies uses the concept of fluents [79] this does not treat fluents as a basic sort, but 

confines them to nothing more than properties that hold at a specific moment in time.

2.6.2.3 Timepoints 

Timepoints are used in the EC to enforce sequence in the EC. In the simple version of 
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the EC used in this project timepoints are limited to positive integers, and the operators 

<, <=, >= and > are used to compare them. 

2.6.2.4 Predicates

The basic form of the EC features the following predicates:

Happens(e, t) - This captures an event e that occurs at timepoint t

Initiates(e, f, t) - This expresses that a certain event e triggers a fluent f to hold at 

timepoint t; this will create a HoldsAt statement if executed.

Terminates(e, f, t) - This expresses a certain event e that causes a fluent f not to hold at 

timepoint t.

HoldsAt(f, t) - This expresses a fluent f that holds true at a given timepoint t

ReleasedAt(f, t) - This says that fluent f is released from the commonsense law of inertia 

at time t

Releases(e,f,t) - This says that an event e releases fluent f from the commonsense law of 

inertia at timepoint t

Trajectory(f1,t1,f2,t2) - This says that if fluent f1 holds at t1 then it will cause f2 to hold 

at timepoint t2 

AntiTrajectory(f1,t1,f2,t2) - This says that if fluent f1 holds at t1 then it will cause f2 not  

to hold at timepoint t2

These predicates are loosely speaking common to modern implementations of the EC 

though there are variations in precise naming. The predicates and types are used in 

different axiomatizations that provide different versions of the EC. 

2.6.2.5 EC domain description

The term domain description is used to describe theories that deal with the behaviour of 

actions (events) on properties of the world (fluents) [80]. This description thus applies 

to other formalisms like situation calculus and Temporal Action Logics. In essence a 

domain description encompasses the axioms that describe the theory combined with 

observations about fluent states and the sequence of events that influence them. 

Formally speaking, an EC domain description can be described as:
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CIRC [ ; Initiates ,Terminates , Releases ] ∧ CIRC [ ; Happens ]
∧ CIRC [ ; Ab1 ,... , Abn ] ∧∧ ∧  ∧  ∧ EC

The different conjunctions making up a general EC domain description can be 

summarized in the following table:

Conjunction Formulae Forms

Positive axioms ⇒ Initiates e , f , t 

Negative axioms ⇒Terminates e , f , t

Effect constraints ∧1 e , f1 ,t ⇒2 e , f2 , t 

Release axioms ∧1 e , f1 ,t ⇒2 e , f2 , t 

 Event occurrences and timepoints Happens e , t 

 Cancellation axioms Ab1, ... , Abn

 Unique names axioms U [1,... ,n ]

 State constraints 1,1⇒2 or 1⇔2

Action precondition axioms Happense , t ⇒

Event occurrence constraints Happense1 , t ∧
⇒ ¬Happens e2 , t 

 Trajectory axioms ⇒Trajectory  f1 , t1 , f2 , t2 

Antitrajectory axioms ⇒ Antitrajectory f1, t1, f2 , t2 

 Observations HoldsAt f , t 

ReleasedAt

EC EC axiomatization Various

KEY: e , e1 ,... , en=event; f , f1 ,... fn=fluent; =condition; 
=Initiates  or Terminates statement; t= timepoint; =function symbol

Table 2.1: conjunctions making up an EC domain description

2.6.3 Representational capabilities of EC

2.6.3.1 Circumscription in EC

In the context of EC, circumscribing Happens unambiguously limits the narrative of 

events to things that are known to have happened, which closes off the context in which 

events happen so that reasoning is only executed against known events. Circumscribing 
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the HoldsAt predicates closes off the set of possible fluent values to the known ones. 

Circumscribing Initiates as well makes it impossible for a logical reasoner to conclude 

that unexpected effects may be set off by events that are not noted. 

In EC circumscription is applied to all predicates; in the DEC, the Initiates,  

Terminates and Releases predicates are circumscribed together, and separately from the 

Happens and HoldsAt predicates. 

Taking Σ as the conjunction of effects, Δ as the conjunction of events (Happens 

statements) and Γ as the conjunction of observations (HoldsAt and ReleasedAt  

statements and their complements.)

The technique of circumscribing Initiates, Terminates and Releases axioms separately 

from Happens and HoldsAt axioms is known as forced separation and it was introduced 

to EC by Miller and Shanahan [81], though they adapted a similar idea from earlier 

research into reasoning about action and change ([82], [83]). 

The current project avoids the need for explicit circumscription because the 

expression of predicates in a knowledge base ensures that EC rules are only run on the 

known instances of the predicates, i.e. the instances of the relevant classes found in the 

knowledge base. Thus a Semantic Web rules engine should know only to consider the 

known occurrences and consequences of events as the valid ones, because only they can 

be applied in the target OWL/SWRL knowledge base. This point is illustrated in the 

following SWRL rule:

In this case, the Happens predicate is limited to the instances of the ece:Happens class 

defined in the current timepoint knowledge base and the Initiates predicate is limited to 
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CIRC [ ; Initiates , Terminates , Releases ]∧ CIRC[ ; Happens] ∧ 

ece:Happens(?ece:happens)  ∧  ece:Initiates(?ece:initiates)   
 ∧ swrlx:makeOWLThing(?ece:holdsAt, ?ece:initiates) 
 ∧ ece:Event(?ece:e)   ∧  ece:Fluent(?ece:f)   ∧ ece:hasEvent(?ece:initiates, ?
ece:e)   
 ∧ ece:hasTime(?ece:initiates, ?ece:t)   ∧  ece:hasEvent(?ece:happens, ?ece:e)
 ∧ ece:hasTime(?ece:happens, ?ece:t)   ∧ ece:hasFluent(?ece:initiates, ?ece:f)  
 ∧ swrlb:add(?ece:t2, ?ece:t, 1)
⇒ ece:HoldsAt(?ece:holdsAt)   ∧  ece:hasFluent(?ece:holdsAt, ?ece:f)
 ∧ ece:hasTime(?ece:holdsAt, ?ece:t2)



instances of ece:Initiates; a rules engine will know to apply the rule only to those class 

instances.

2.6.3.2 Defeasible reasoning

Non-monotonic logic requires that conclusions can be revised, or defeated by reasoning. 

The problem of representing changing facts in logic has been approached through the 

mathematics of argument structures [84] and from the standpoint of semantics [85] 

other approaches have been made, as summarized in [86]. 

In EC the Terminates predicate makes it possible to stop a fluent from holding 

true at a certain timepoint. The predicate takes an event, a fluent and a timepoint as its 

arguments, Terminates(e,f,t), which means that event e terminates (or will attempt to 

terminate) f after time t. Conversely, the Initiates(e,f,t) predicate causes fluent to hold 

true after time t. In this way, it is possible for a model's default assumptions to be 

challenged, by potentially changing the truth values of fluent states at given times. 

Formulae associated with the Initiates and Terminates predicates are known as effects; 

the DEC effects axioms are described with reference to the DEC resolver in 6.9

The concept of the commonsense law of inertia is first defined with reference to 

situation calculus by Lifschitz [87] where it is introduced as the law that ensures that a 

fluent holds true by default after it has been made true by an action. This translates into 

EC in the Releases and ReleasedAt predicates, introduced to EC by Miller and 

Shanahan [88]. A statement of the form Releases (e,f,t) says that event e releases a fluent 

f at time t, meaning that its state becomes subject to change, while a ReleasedAt(f,t) 

statement is an observation that fluent f is released from the commonsense law of inertia 

at t. The DEC resolver implementations of these predicates are described in 6.8.

2.6.3.3 Handling contradictions

It is possible to deal contradictory observations about facts in EC. For a fluent f and 

timepoint t the two statements HoldsAt (f, t) and  ¬HoldsAt(f, t) will be contradictory if 

they appear in the set of observations for the same EC knowledge bas, as will 

Initiates(e1,f,t) and Terminates(e2,f,t). In this way, the sources of contradictions should 

be traceable from a set of EC statements.

It is possible to resolve potential contradictions using nondeterministic 

reasoning. For instance, the simple example of tossing a coin, as described by Miller 
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and Shanahan [81], can be represented as a disjunction of Happens statements: 

Happens(tossCoin, t) ⇒ [Happens(tossHead, t)  v Happens(tossTail, t)].

2.6.3.4 Continuous change

The need to represent continual change is a well established requirement in AI 

representation schemes; an early discussion on the subject dates from 1973, long before 

the development of situation calculus or EC [89]. Early versions of the situation 

calculus did not deal with continuous  change, but Miller and Shanahan modified the 

formalism to include it [74]. This feature is provided in EC by Trajectory and 

Antitrajectory predicates; each predicate defines a transition between fluent states over a 

defined interval. Trajectory appears first in Shanahan's early work on EC [69]; the 

Antitrajectory predicate was a later addition to EC by Shanahan and Miller [88]. A 

trajectory is triggered by a condition and takes the form cond ⇒ Trajectory(f1, t1, f2, t2) 

where f1 and f2 represent a fluent that changes over interval i where t1 <= i < t2. If an 

event initiates f1 then f2 should hold at t2  The Antitrajectory predicate takes a similar 

form, except that it is triggered when a fluent is terminated, rather than initiated.

The axioms dealing with Trajectory and Antitrajectory, and their implementation 

in the DEC resolver, are dealt with in 6.7

2.6.3.5 Concurrency

Concurrency is comparatively easy to represent in EC; two events can be thought of as 

concurrent if they occur at the same timepoint. In fuller EC axiomatizations events may 

be assigned a duration, making it possible for two events to occur during the same 

interval. However in DEC events are assumed to be instantaneous. 

In all versions of EC, fluents can be used to represent processes that occur over 

intervals and in order to represent two fluent states f1 and f2 occurring concurrently it is 

only necessary to have two HoldsAt statements HoldsAt(f1, t1) and HoldsAt(f2, t2):by 

default, f1 and f2 will be assumed to hold concurrently over any interval for which t1 

and t2 overlap.

2.7 Discrete Event Calculus

The first definition of DEC is provided by Mueller [5]; this includes a full 

axiomatization of DEC together with an explanation of how it is equivalent to EC for 
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integer timepoints. The correctness of DEC is validated using a number of benchmark 

scenarios, some of which are used in Chapter 8.

Recent versions of EC ([72], [6], [90]), include a three argument version of the 

Happens predicate, based on work on the SC by Shanahan and Miller [74]. This takes 

the form Happens(e,t1,t2) where e is an event that occurs from timepoint t1 to timepoint 

t2. In DEC this predicate only takes one timepoint. Full EC accounts for the premature 

clipping of events with duration, using predicates Clipped and Declipped. DEC lacks 

these predicates and as a result it has a simpler axiomatization. 

Since its introduction in the literature, DEC has been applied to a variety of 

different problems, including branching time [91] (for hypothetical situations) and web 

service configuration [92]. The versatility of DEC does not appear to hinder its ability to 

support performant reasoning systems, however. Mueller uses known benchmark 

problems to compare the performance of his own DEC Reasoner [93] with that of the 

Causal Calculator [94] – perhaps unsurprisingly, the DEC Reasoner comes out 

favourably [5].
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2.7.1 An example DEC sequence with equivalent EC sequence

A sequence of events and fluent changes in DEC might involve initiation and 

termination of one or more fluent states. A simple illustration of DEC interactions might 

be represented by the following sequence in Figure 2.4: 

Two events e1 and e2 occur simultaneously.

At timepoint 0, there are two known fluents f1 and f2 and f1 holds true, while f2 does  

not.

Event e1 causes fluent f1 not to hold at timepoint 1; e2 initiates f2 and in the absence of  

any conflicting events to turn f2 off, it is made to hold at timepoint 1

Event e3 terminates fluent f2 at timepoint 2, causing it not to hold at timepoint 3.
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Figure 2.4: A sample DEC scenario with three events and two fluents

e1

f1

e2

Happens(e1,0)

Happens(e2, 0)

HoldsAt(f1, 0) ¬HoldsAt(f1, 1) ¬HoldsAt(f1, 2) ¬HoldsAt(f1, 3)

Terminates(e1, f1, 0)

Initiates(e2, f2, 0)

HoldsAt(f2, 1) HoldsAt(f2, 2)

Terminates(e3, f2, 0)

¬HoldsAt(f2, 3)¬HoldsAt(f2, 0)

f2

0 1 2 3 4

Happens(e3, 2)



These interactions are illustrated in Figure 2.4, where events are represented as discrete 

points and fluents are represented as a set of connected points. The DEC formalism 

ensures that events can only occur, and fluent state can only be changed at these points.

The ability of the DEC formalism to represent concurrency is illustrated by the fact that 

any number of interactions between events and fluents can be represented side by side 

in this way. Since DEC is a subset of EC, all DEC scenarios like these can be 

represented in EC, the main difference being that timepoints are permitted to be real 

values as opposed to integers, and the truth value of a fluent can be changed at any time, 

not at set intervals as dictated by DEC. Hence in EC a fluent can be thought of as a 

continuum rather than a discrete set of values. A diagram showing interactions for e2, e3 

and f2 in EC is presented in Figure 2.5 for comparison:
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Figure 2.5: the same scenario for e2, e3  and f2 represented in EC

0 1 2 3 4

e2
Happens(e2, 0)

Initiates(e2, f2, 0)

HoldsAt(f2, 1) HoldsAt(f2, 2)

Terminates(e3, f2, 0)

¬HoldsAt(f2, 3)¬HoldsAt(f2, 0)

f2

Happens(e3, 2)



2.8 Alternative formalisms to Event Calculus

EC has been chosen over other temporal formalisms as the basis for this research and 

there are numerous different reasons for this choice. The following review of other 

formalisms explains on a case-by-case basis why EC was chosen over the others.

2.8.1 Situation calculus

Perhaps the earliest known formalism for action and change is the situation calculus, 

outlined by McCarthy and Hayes in a paper from 1969 [67]. The situation calculus 

provides logical definitions for   the concepts of fluent values and action: these 

definitions have been used as starting points for other formalisms like EC and fluent 

calculus. The frame problem was first identified by name in this paper as well, though 

the original situation calculus was not able to represent the commonsense law of inertia, 

indirect effects or other aspects of the frame problem.

The main differences between the situation calculus and the EC are that situation 

calculus deals with hypothetical events and creates a branched graph of possible 

situations from events. It does not deal so readily with actual or concurrent events 

although extensions have been proposed to deal with these conditions . 

Whereas the HoldsAt statement in EC shows the value of a fluent at a timepoint, 

a fluent in situation calculus is resolved against a situation. EC and situation calculus 

both represent the effects of events (actions) on fluent values. In situation calculus, the 

state of all fluents in a situation is given as the combination of negative and positive 

effects, written γ F
+ (α, σ) ^ γ F

- (α, σ), where α is an action, σ is a situation and γ F
(+)(-) is 

the combination of positive and negative effects. Resolution of these effects is 

performed by the successor function which in the original McCarthy and Hayes paper is 

given as result( ,  α, σ), where  represents an agent.

There is a strong analogy between the positive and negative effects in situation 

calculus and the Initiates and Terminates predicates in EC and although there is a 

fundamental difference in the way the two formalisms represent time, they are both 

concerned with representing the changing of states according to events. Certain versions 

of the situation calculus and EC have been proved to be equivalent [95] although many 

versions of both formalisms exist. Increasingly it seems that a merging of the two 

formalisms can provide greater power of representation. For instance, recent research 
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shows that the EC can be made to deal with hypothetical events by borrowing the 

branching concept from situation calculus [91]. 

Since situation calculus does not have the concept of a timeline, it is not as 

intuitively compatible with EDD as EC, which is based on the idea of representing the 

sequence of events and fluent changes as they occur along a timeline.  For the purposes 

of this research, EC is more suitable than situation calculus because it fits better into a 

theory of events and state changes that underpins EDD, as featured in the applications in 

Chapter 9. 

2.8.2 Fluent calculus

Fluent calculus [96] is a formalism that extends concepts from situation calculus and 

adds the concept of a state, which corresponds to a collection of fluents. The way in 

which fluent calculus represents changing states is through state update axioms, which 

are represented in the form ∆(s)  State(Do(a,s))  ∘ υ - = State(s)  ∘ υ + where ∆(s) is the 

set of conditions acting on situation s, State is a predicate which relates a situation to the 

state of the world in that situation, Do(a,s) represents the situation that results from 

execution of action a in situation s,  is an operator that joins a fluent value to a state.∘  

The effects of actions are described in terms of state updates, where actions may alter 

the state of the world by adding (υ +)  and subtracting υ - sets of fluents from it. 

Fluent calculus shares some similarities with EC, using a Holds predicate to 

describe fluents that hold true in a situation. Note however that there is no primitive 

value to represent a point in time or an interval using fluent calculus; it uses the concept 

of a situation, and is based on branching rather than linear time. When a fluent state 

changes, it is brought about by modifying the existing situation. For instance, consider 

this rule from the Yale Shooting Scenario, which is discussed in Chapter 8: Poss(Shoot,  

s) ^ Holds(Loaded) ^ Holds(Alive,s)   State(s)  –∘ Dead. This is analogous to the rule 

HoldsAt (Loaded, t) ⇒Terminates(Shoot , Alive ,t) as defined in EC. 

In certain contexts, fluent calculus becomes more verbose than EC in some 

contexts,  for example when it comes to representing concurrent actions, where it 

requires three rules and a great deal of notation where EC can express the same thing 

with one: this point has been made in [97]. Generally fluent calculus needs its own 

specific programming language like FLUX [98] for describing scenarios and defining 
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rules: this makes fluent calculus more legible but it adds another level of abstraction.

For the purposes of this research, EC offers a more comprehensible syntax than 

fluent calculus. On a practical level, it is likely that rules in fluent calculus will be more 

verbose than equivalents in EC, especially in cases where time-based considerations are 

important, as fluent calculus lacks the concept of timepoints. 

2.8.3 PMON and TAL

The Pointwise Minimisation of Occlusion with Nochange premises (PMON) is a family 

of logics for representing action and change that originated from Sandewall's research 

into the classification of temporal action logics  [99]

PMON is similar to EC in that it represents fluents and actions (which are 

analogous to events) and assumes a law of inertia. PMON defines an Occlude predicate 

to indicate release from inertia, which resembles the ReleasedAt predicate in EC and an 

Occurs predicate which resembles EC Happens. 

The PMON family of logics uses two languages, a rules language L(FL) 

(Language for Fluent Logic) and a surface language L(SD) (Language for Scenario 

Descriptions) for action scenario descriptions. PMON has been extended in order to 

deal with issues such as the ramification problem and the representation of concurrent 

events . 

PMON has been assessed as correct for K-IA, though its original version is not 

capable of dealing with indirect effects of events. An extended version of PMON, called 

PMON+, has been devised to deal with indirect effects [100].

  It is arguably easier to work with EC statements than it is to work with TAL. 

Working with TAL necessitates translation of statements of L(ND) into L(FL). The 

syntax of L(ND) and L(FL) is arguably more difficult to understand than that of EC, 

though EC and TAL can both be turned to the same classes of problem. 

For instance, it is possible to state in EC and TAL that a given event e stops a 

fluent value f from holding true at a timepoint t. In EC, this is summarized in a 

Terminates statement: Terminates (e,f,t). The TAL version of this is less friendly to the 

human reader: [t, t+1] e →  ([t] γ → [t1, t2] f := F). On a large scale, reading through 

formulae following the TAL form could be more difficult than reading the equivalent 

EC formulae. In addition, the translation from L(ND) to L(FL) that TAL requires is an 
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extra step for which there is no equivalent in EC. 

2.8.4 K-IA classification of temporal logic formalisms

While Propositional and Interval Temporal Logics may be sufficient for representing 

narratives about time intervals and the order of events, they do not provide the ability to 

reason about cause and effect. Allen's interval algebra provides a set of temporal 

relations for intervals but it has been proved inadequate for representing continuous 

change [101] Furthermore, interval algebra does not provide a suitable apparatus for 

resolving the frame problem, or for that matter the qualification or ramification 

problems.

The need for more powerful formalisms gave rise to new logical formalisms, 

together with sets of benchmark problems against which they could be tested. A 

standardized way of assessing the capabilities of these different formalisms was 

provided by Sandewall [99] in the form of K-IA classification.

In Sandewall's method, an individual problem is classified according the features 

required of representational scheme. For instance the Yale Shooting Scenario (see 8.3) is 

Ksp-IA, meaning that it requires complete Knowledge about the world (K), I means that 

inertia is represented and A says that the problem requires representation of the 

alternative effects of conditional or non-deterministic actions. 

Sandewall's classification scheme can also be used to characterize different 

logical formalisms. Brandano [102] defines the current version of Event Calculus as 

K sp-IA. This classification can be reduced to  K s + K Cp, where s represents full 

knowledge about the initial state of the world as viewed by the model, while Cp 

represents that in the initial knowledgebase there are no observations about any 

timepoint after the initial one. 

2.8.5 General remarks

There are many similarities between EC and the formalisms reviewed in this section. 

Sandewall's classification of temporal logics provides a way of proving the expressive 

powers of different logics and this shows that EC is just one of many different logical 

approaches to representing changes of state over time. However, EC rivals other 

formalisms for ease-of-use and conciseness; furthermore, the fact that it is based on the 
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concept of events occurring over a timeline makes EC more compatible with EDD than 

formalisms like situation and fluent calculus, which are based on changing situations 

over branching time. 

2.9 Existing work on time and event-based Semantic Web 

ontologies

2.9.1 Time based Semantic Web ontologies 

There is a need for a time based ontology in the Semantic Web so that data can be 

situated in a temporal context. Time, including instants, durations, intervals, is clearly a 

very fundamental knowledge domain, essential for recording change or the absence of 

change. Semantic web standards do not include time definition but an ontology for time 

called OWL-Time is currently being developed as a W3C Working Draft [103], [7]. 

OWL-Time provides temporal concepts for defining instants, intervals and the relations 

between them and it brings this together with information about durations and date-time 

information.  OWL-Time is founded on previous work, pre-dating the OWL standard, 

for describing the temporal content of Web pages and the temporal properties of Web 

services [104]. This previous work forms part of the DAML project which can be 

considered as the natural predecessor of the OWL standard [105].

The OWL-Time standard defines OWL classes such as Instant, 

DurationDescription, ProperInterval (which has DateTimeInterval as a subclass); it also 

defines properties for describing whether one interval fits inside another 

(intervalDuring), when it finishes (intervalFinishedBy); there are also properties 

describing when an interval or an instant starts or finishes (hasBeginning, hasEnd) as 

well as comparison operators (before, after). 

The open world assumption implicit in the Semantic Web could be seen as a 

weakness in that it means that unreasonable statements can always be made. For 

instance, although before and after are defined in OWL-Time as inverse properties of 

each other, there is no rule stipulating that instant A must actually have a smaller value 

than instant B if A comes before B. The open world assumption ensures that no 

constraints are made as to the correctness of statements using these terms. It is up to the 

application to ensure that it deals appropriately with statements about time. This point is 
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outlined in a list of facts about which the ontology is silent [103], like whether intervals 

are uniquely determined by their starts and ends, or whether intervals consist of instants, 

or whether there are intervals that are not proper intervals as defined by the following 

formulae:

Although OWL-Time offers a means of describing fundamental units and relations 

associated with time, it does not express how states can change over time. The lack of 

context awareness in OWL ontologies has been noted, and has motivated research into 

extending the OWL-Time ontology with cause-and-effect. TOWL [79] is presented as a 

solution to the lack of temporal formalisms underlying context awareness in Semantic 

Web applications. This formalism has some similarity with the EC, using the concept of 

a fluent to describe a property that holds at a certain point in time. In this interpretation 

fluents are not first class objects. TOWL presents an ontology called 4dFluents which 

describes fluents as properties that hold at a specific moment in time that may be an 

instant or an interval. The interpretation of a fluent in this ontology is different from that 

offered in the situation calculus or the EC, in that it does not define fluents as entities in 

their own right, but instead limits them to a period of time. Thus the TOWL ontology 

does not include rules that can be used to define cause and effect relationships; there is 

no associated definition of an event or a situation. Interestingly this approach deals with 

Frame Problem by forcing all timeslices to be associated with a time interval at which 

the timeslices hold true; thus a timeslice in this ontology corresponds to a system state 

(fluent) as well as a point in time.

2.9.2 Event based Semantic Web ontologies

Some notable research has been carried out into event-driven rules schemes for 

Semantic Web applications. One such scheme is the RDF Triggering Language 

(RDFTL) [106], which proposes an Event-Condition-Action language based on RDF for 

monitoring and processing changes on RDF repositories. Another project is ECA-

RuleML, which aims to bring event-based processing to knowledge bases (potentially 

including Semantic Web knowledge bases) by means of interval-based event logic 
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ProperInterval (T) ≡ Interval(T) ∧ begins(t1,T) ∧ ends(t2,T) ⇒ t1 ≠ t2  
ProperInterval(T) ∧ begins(t1, T) ∧ ends(t2,T) ⇒ before (t1,t2)  



defined with a RuleML-based syntax [1]. 

Other research has been undertaken that makes use of SWRL and event 

processing. Examples using SWRL include Information Learning Technology context 

[107] location-aware context software services for museum exhibitions [108] and also 

in product configuration [109] and the  conversion of product information models into 

ontology form [110]. These approaches could be considered to be event-driven, but they 

stop short of using formal EC, relying more on informal ECA-type schemes.

2.10 Existing work incorporating EC and the Semantic Web

An early proposal to integrate EC axioms with OWL-DL came out of Japanese-led 

research in 2004 [111]. This proposal is interesting for the fact that it does not 

incorporate rules beyond those provided by OWL-DL. It establishes definitions of EC 

entities and axioms using an extended version of OWL-DL called OWL(EC), which 

does not incorporate SWRL or any equivalent rules language for the Semantic Web. 

cAxioms created in the OWL(EC) must be translated to Prolog for it to execute. This 

proposal appears not to have gained widespread acceptance and is not endorsed by the 

W3C.

A more recent and substantial project incorporating EC ideas is provided by 

Berges et al  [112], who define a partial expression of EC axioms in SWRL. This 

project looks at the definition of social commitments between agents and uses the EC to 

add cause and effect functionality to the generic COMMONT ontology that it proposes. 

EC axioms are incorporated into the ontology to describe actions (events) and their 

effects (fluents.) 

Note that the Initiates predicate in this instance is expressed as a SWRL property in the 

rule head - initiates(x,c) - not as a class. Indeed the Fluent class is the only part of the 

EC expressed as a class in this ontology. There is a limitation in defining predicates as 

properties, because it is not possible to express some of the EC axioms by limiting 

predicates as properties. This point is made in an interesting email thread from a Protégé 
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Request(x) ∧ hasSender(x,s) ∧ hasReceiver(x,r) ∧ hasContent(x,p) 
 ∧ hasCommit(x,c) ∧ isConditionedTo(c,a) ∧ atTime(x,t) 
 ⇒ initiates(x,c) ∧  hasDebtor(c,r) ∧ hasCreditor (c,s) ∧ hasCondition(c,p)
∧ Acceptance (a) ∧ hasSignatory(a,r) ∧ hasAddressee(a,s)
∧ hasObject(a,p) ∧ atTime(c,t)



mailing list about defining situation calculus statements in SWRL [4]. It is not possible 

to express property negation in SWRL owing to lack of negation as failure and therefore 

it would be impossible using this ontology to express some of the EC or DEC axioms 

e.g. Axiom DEC 10 of the DEC, Happens(e,t) Terminates(e,f,t)  ⇒ ¬HoldsAt(f,t+1),

since there is no way to express the equivalent of the ¬HoldsAt atom using a SWRL 

property because SWRL does not support negation as failure. The only way to express 

this in OWL/SWRL is to use classical negation, by defining the complement of HoldsAt 

as an OWL class (NotHoldsAt). 

An ontology that defines some of the terms of the DEC and extends them for 

further richness of detail is provided by Ermolayev et al [113] where an action is 

distinguished from an event by its implied association with an agent and an action is a 

type of event initiated by an agent according to a decision that it makes. Similarly, a 

Happening is defined as an Event that gets observed by an Agent. This research 

indicates how these new terms could be used as foundations for new software services, 

but there is no mention of the EC axioms or how a DL reasoner or theorem prover might 

be applied to them.

Other recent research proposes an EC based methodology for service discovery 

[114], seeking to automate the processes of web service discovery and combination so 

as to enable the creation of new software services. This proposal uses an abductive 

theorem prover to piece together a plan for combining web services as they are 

discovered and it includes a mapping between OWL-S and certain EC statement types. 

Once again the EC is not fully implemented here, but some of its principles are applied 

to solving a certain type of problem, in this case abductive reasoning for plan 

generation.

A DEC based approach has recently been applied to agent communication 

protocols. This research has met with some success; it is noted to have been useful both 

in the specification of metamodel concepts and in the application of these concepts to 

time-based interaction ([115], [116], [76]) However this research has stopped short of 

implementing complete axiomatizations of the DEC owing to limitations with regard to 

using it directly for agent communication protocol definitions. The obstacles cited  are 

performance issues and the difficulty of creating an interface between their 

implementation of DEC and existing agent communication frameworks.
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The EC has been partially applied to event-driven processing by combining 

reactive rules with ontologies; this has been applied to the problem of recognizing 

similarities in complex event patterns [117]. However it should be noted that this 

particular piece of research only incorporates EC operators and does not seem to make 

use of the EC predicates or sorts.

2.11 Resolving  the open and closed world assumptions: 

closing off the open world

There is a need to close off the open world assumption for the purpose of resolving EC 

scenarios because EC is founded on nonmonotonic logic, which assumes a world of 

limited knowable facts. EC reasoning allows for new facts to cancel out previous ones, 

which is not permitted in an open world. As the OWL Language Guide states, “New 

information cannot retract previous information. ” [34]  This is the opposite of  the 

closed world assumption which underpins nonmonotonic logic. However, it is still 

possible to constrain the facts that get resolved by an EC resolver that uses OWL for its 

representational language. By using some of the features built into OWL, it is possible 

to close off the open world. 

OWL permits three main types of closure: disjunctions,  restrictions and boolean 

combinations. An OWL restriction is a class that describes a set of individuals; this is 

represented by an instance of the owl:Restriction class. There are two important 

restriction types that can be used to restrain the effects of the open world assumption. 

These restrictions are expressed as subclasses of owl:Restriction. The first of these is 

owl:oneOf, which denotes an enumeration of class members. The other Restriction used 

in closing off the open inference is owl:differentFrom, which enforces mutual exclusion 

between  individuals. 

OWL also defines a complementOf operator which equates to a boolean NOT 

(¬), which can be used to reduce the set of possible members of a class. For instance, a 

complementOf statement that describes a class A can be refined with a property 

restriction to constrain the permissible values of a property for A. Statements of this 

type will take the form owl:Class A owl:complementOf 

(owl:Restriction(owl:ObjectProperty owl:someValuesFrom(owl:Class B)))

Moreover, OWL provides a disjunction operator owl:disjointWith, which ensures 
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that an individual that is a member of one class cannot simultaneously be an instance of 

a specified other class. 

More generally, a class can be described as the complement of another (using the 

owl:complementOf operator), which means that it describes the set of all individuals that 

are not members of a class. As the OWL standard states [37], this usually means that a 

complement usually defines a very large set of individuals and the practical 

consequence of this is that a compliment class is generally qualified with further 

restrictions to ensure that it makes sense in context. [45]

For instance, owl:Class X owl:complementOf (owl:Class Y) means that class X 

encompasses every single possible individual that is introduced to the knowledge base, 

regardless of its class, provided it is not a member of Y. 

The ontologies defined in this research make use of disjunctions and the 

complement operator. Specific details are provided in 6.4.

2.12 Conclusions

The review of existing literature related to EC and the Semantic Web has directed the 

course of this research at all stages. It argues that the EC is a useful formalism for 

commonsense reasoning. It also suggests that there is scope for adapting this formalism 

to the Semantic Web, thus eventually bringing to Semantic Web knowledge analysis 

some of the advantages that EC has yielded in traditional knowledge base environments. 

The potential benefits from applying commonsense reasoning techniques to Semantic 

Web data are considerable: the development of meaningful data and knowledge schemes 

(as embodied by the Semantic Web) could be assisted by commonsense reasoning 

schemes (as typified by EC and DEC.)

The location of the rules layer(s) has not been as stable in the Semantic Web as 

the location of the RDF(S) and OWL layers, though the recently adopted RIF standards 

may become equally well established as it becomes more widespread. Thus the 

implementation of DEC presented here is not in any way proposed as the optimal 

solution; instead it is intended as a proof of concept deliverable that may at a later stage 

be used as the starting point for a more performance driven solution.

The recent circumscriptive form of EC has been formally proved to deal well 

with the frame problem and offers expressive flexibility and elaboration tolerance in 
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addition. The literature is well supplied with scenarios that have been used to 

demonstrate how certain types of representation problem are met by the EC, such as the 

Yale Shooting Scenario, the Lightswitch Scenario and the Blocks World Scenario. These 

scenarios form the basis of some of the tests in the evaluation (chapter 8)

The review of literature relating to EC shows that it is a good choice of logic-

based formalism to represent state changes. Given that OWL-DL and SWRL are also 

grounded in logic, it should be possible to express EC using OWL/SWRL, opening up 

some of the power of the EC representation mechanism to semantic applications. It 

should by noted that attempts have already been made to integrate EC methods with 

Semantic Web technologies, though previously it has been more difficult to implement 

axiomatization of EC or DEC in Semantic Web languages given the relative immaturity 

of the semantic language stack.
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Chapter 3 Technology Review

3.1 Overview

3.1.1 Scope of this section

The technical review aims to illustrate the background to the practical aspects of the 

research project, namely the available technical resources for implementing EC in 

Semantic Web languages. It distinguishes the different working parts of a typical 

Semantic Web application at the time of writing. It looks briefly at some of the different 

approaches to reasoning in the Semantic Web  with reference to available technology; it 

also notes some of the major software development environments and frameworks that 

are now used to in Semantic Web application development. The research prototype 

development is discussed in relation to the differing characteristics and capabilities of 

these technologies in chapter 4.

3.1.2 Definitions of terms

3.1.2.1 Inference engine

The standard definition of an inference engine is a piece of software that can infer 

logical consequences from a set of asserted facts or axioms.

3.1.2.2 Semantic reasoner

A semantic reasoner (sometimes referred to as a rules engine) is a generalized form of 

inference engine that produces inferences defined in an ontology language. In the 

context of this research semantic reasoners are assumed to be compatible with Semantic 

Web standards, in particular OWL-DL.

3.1.2.3 Semantic web APIs

In the context of this project the term Semantic Web API denotes a programming 

interface that is used for manipulating and representing Semantic Web models and 

knowledge bases with a general purpose programming language (e.g. Java, Python, C#)
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3.1.2.4 Semantic web IDEs

We describe the graphical development environments available for visually editing 

Semantic Web models as Semantic Web IDEs. These will include the ability to 

incorporate reasoners, ontology debuggers, visualizers and other tools as 

plugins/extensions to assist with the development process.

3.1.3 General remarks

The Semantic Web is still in its infancy in comparison to established major technologies 

for information management and consequently there is a lack of Semantic Web 

applications and of Semantic Web driven software engineering methodologies.

However Semantic Web applications share common features, such as inference 

engines, reasoners, Semantic Web APIs and triple stores. A recent general purpose guide 

to Semantic Web programming [118] makes the general distinction between a semantic 

framework which it defines as the set of tools, and a knowledge base, which it defines as 

the capability or concept of what a framework can achieve. The framework is divided 

into components which are grouped together under the general headings of storage, 

inference and access. With respect to the research presented here, the general research 

output combining the DEC ontology and DEC resolver can be referred to as a 

framework, as it features all three of these component parts.

The relationship between IDEs, APIs and reasoners should be clarified here. A 

Semantic Web API provides a means of manipulating Semantic Web ontology structures 

in a general purpose programming language. A Semantic Web IDE is a piece of software 

designed to assist with the process of designing and maintaining Semantic Web 

ontologies and typically this will be built around a certain API; for instance Protege 4 is 

built around the OWL-API, while earlier versions of Protege are built on Protege-OWL. 

Essentially these are development tools. Reasoners and inference engines, in contrast, 

are used at runtime and they provide the software created with the IDE/API with the 

ability to create new inferences and to execute rules.
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3.1.4 Reasoning approaches

3.1.4.1 Hybrid forward and backward chaining

Forward and backward chaining are two reasoning strategies. Forward chaining 

involves data-driven inference, which means that a conclusion is derived from existing 

data in a knowledge base by applying rules to that data. Forward chaining is the default 

mode of reasoning for production systems where there may be many correct solutions to 

a problem. 

Backward chaining involves goal-driven inference, meaning that an hypothesis 

is verified by checking backwards through a set of rules, starting from the rule goals. In 

this way a problem is broken down into a series of sub-goals that can be checked against 

the initial hypothesis. It is typically used in problems that require category 

identification. 

3.1.4.2 RETE and RETE II

The RETE algorithm was first proposed in the 1970s as a means of enabling forward 

chaining to work more quickly by reducing the set of conflicts after a rule has fired 

[119]. A subsequent version designed in the 1980s extended the algorithm to deal with 

backward chaining, resulting in a considerable gain in performance. The internals of the 

RETE II algorithm are still closed-source and the algorithm is licensed to Production 

Systems Technologies Inc and used in commercial rule engines such as OPS/R2 [120]

3.1.4.3 Tableau based algorithms for DLs

Tableau algorithms are used to provide decision procedures for Description Logics. 

They are at the heart of most Semantic Web reasoners, including Pellet, Racer and 

FaCT++. In particular they can be used to check whether a knowledge base is sound and 

complete with regard to DL. The basic mechanism used by tableau algorithms is to 

attempt the construction of a model consistent with  the axioms in the knowledge base 

that is being tested.

3.1.4.4 Translation of ontology into DDL program (KAON2)

In contrast to tableau based algorithms, the DDL translation approach involves 

transforming an OWL-DL ontology into first order formulae and then into disjunctive 
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datalog. The motivation for this approach is to provide more efficient reasoning over 

OWL-DL knowledge bases with large ABoxes.

3.1.4.5 The DIG quasi-standard

The DIG standard ([121], [122]) proposes an implementation-neutral mechanism for 

accessing Description Logic reasoner functionality. The interface enforces a standard 

XML-based request and response mechanism across HTTP that a reasoner is expected 

to implement. Initially the DIG standard was supported by major DL reasoners like 

Pellet and FaCT++ but recently support has been discontinued. 

3.1.5 Reasoners 

3.1.5.1 Pellet  

The Pellet reasoner has been built for reasoning over OWL-DL ontologies [123]. Its use 

has been widespread in early Semantic Web applications and it features as the default 

reasoner choice for Protégé 3.x. When it was first released in 2004 Pellet was the first 

sound and complete OWL-DL reasoner to offer user-defined datatypes and debugging 

support. 

3.1.5.2 Racer

The Renamed ABox and Concept Expression Reasoner or RACER, is the result of early 

research into the SHIQ description logic and later adapted for use with the description 

logic variants used  in OWL variants ([124], [125]) . Its main product, RacerPro is a 

commercially licensed reasoning system that can be used for Semantic Web ontologies, 

although it is also usable in other contexts as well, for instance in modal logics. 

RacerPro does not work completely against the OWL-DL standard as it does not 

support user-defined datatypes or nominals, in other words individuals appearing in 

concept definitions, as expressed in enumerations in OWL-DL. It can work with large 

sets of data defined with OWL or RDF; this contrasts with other reasoners like Pellet 

which are optimized to work only with OWL.

3.1.5.3 JESS

JESS is a forward chaining rules engine that is also capable of backwards chaining. It is 

53



based on the RETE algorithm, although this is modified to enable JESS to perform 

backward chaining. The latest version of JESS uses an XML-based syntax, which 

improves performance for Semantic Web knowledge bases. JESS is the only rules 

engine to be supported by default in the Protégé-OWL API and consequently it was the 

natural choice for the implementation of the DEC resolver. The DEC resolver's use of 

Jess is outlined in 5.5.2 and 6.3.1. 

3.1.5.4 BaseVISor

The BaseVISor rules engine uses forward chaining and like JESS is based on the RETE 

algorithm, but with an implementation that is tailored to use simple RDF statement 

datastructures rather than arbitrary lists. This makes for improved pattern matching 

performance, which at one stage gave it an advantage over other inference engines like 

JESS [126], although this advantage may now have been negated by the recent adoption 

of a native XML format in version 7 of JESS. 

3.1.5.5 KAON2

Unlike Pellet, Racer and most other Semantic Web reasoners, KAON2 is not based on a 

tableau algorithm, but instead relies on the translation of OWL-DL into disjunctive 

datalog. This is achieved in KAON2 using a special reduction algorithm, which yields 

performance advantage in reasoning with knowledge bases that have large ABoxes and 

comparatively small Tboxes[127] although it should be noted that KAON2 performs 

worse than other reasoners for knowledge bases with smaller ABoxes and larger 

TBoxes.

3.2 Semantic web IDEs and editors

3.2.1 TopBraid

The TopBraid Semantic Web development environment is marketed as a set of 

integrated semantic solution products that should plug directly into existing IT systems 

[128]. The complete product suite encompasses three different versions with different 

emphases: Composer is a fully fledged modeling and application development 

environment, Ensemble is a web-based toolset for Rich Internet Applications (RIAs), 

while Live is an enterprise application platform for the rapid deployment of ontologies 
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that supports W3C standards-based data integration and swift integration with existing 

databases.

TopBraid offers a full suite of Semantic Web software services that include 

scalable database backends for Oracle, Sesame and others, as well as import and export 

features for XML, Excel, RDBMSs and other data formats. In addition, TopBraid 

supports SWRL and Jena rule composition and SPARQL query building.

The TopBraid suite offers some features that Protégé does not support, such as 

simultaneous editing of different ontology files from the same application instance. 

However the prototyping has not used TopBraid as the initial programming experiments 

were built with the Protégé-OWL API and there appears to be no equivalent for the 

(very useful) SQWRL part of the Protégé API in the TopBraid feature list. 

3.2.2 Protégé

Protégé is an open-source ontology editor and knowledge base framework with  an 

extensive plugin API . Protégé is a project that has grown out of biomedical application 

research at Stanford University and it was originally intended for use in biomedical 

contexts before being further developed as a generic knowledge acquisition system 

[129]. Since Protégé pre-dates the OWL standard it was not originally developed with 

OWL support; OWL had to be supported via a plugin that was introduced soon after the 

language was established as a W3C Standard [130].

The Protégé environment encompasses the editor itself, the underlying Protégé-

OWL API which is used for ontology manipulation and rules definition and the Protégé 

Frames APIs which present a standardized way of building Java-based graphical 

Protégé plugins for ontology editing and visualization [131].

Two major versions of the editor are currently supported, 3.x and 4.x; there are 

still features of 3.x that have not been ported into 4.x, including the SWRLJessTab 

which allows direct editing of SWRL rules through a graphical interface to the Jess 

rules language [59]. 

The software created from this research programme has used Protégé 

extensively. Most of the ontology development beyond initial experiments has used 

Protégé and the codebase for the Java part of the prototype development has all been 

written with the Protégé-OWL API. We have kept the development environment frozen 
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at a 3.4 because later versions based on Protégé 4.x are still lacking in some features 

that were judged valuable during project development, in particular the SWRLJessTab 

user interface plugin.

The Protégé-OWL API is based on Jena and so for instance the classes 

representing different types of ontology model in the Protégé-OWL API wrap around 

the original ones defined in Jena: creating an OWL model in Protégé-OWL requires a 

call to createJenaOWLModel() or createJenaOWLModelFromReader(Reader r), both of 

which are defined in the ProtegeOWL class. There are methods in the Protégé-OWL 

API to get hold of the underlying Jena model should the need arise.

3.2.3 SemanticWorks

Altova SemanticWorks is a standalone Semantic Web ontology editor, with a standard 

set of syntax checking capabilities for RDF/S and OWL 1 ontologies [132]. It supports 

consistency checking for OWL-Lite and OWL-DL documents but does not include a 

reasoner plug-in, nor does it support rules. It is not strictly speaking an IDE because it 

lacks plugin support; it is therefore marketed as a “Semantic Web Tool” rather than an 

IDE. SemanticWorks was used at the initial stage of the research project, as a tool for 

creating quick sketches of OWL ontologies.

3.3 Semantic web APIs and frameworks

3.3.1 Jena

Jena is a Java-based Semantic Web framework first developed by Hewlett-Packard 

research lab as an “RDF toolkit,” [133] which was later extended to support RDFS and 

OWL [134]. Jena is comprised of a core Model API that includes interface definitions 

for working with different types of resource, model and statement (RDF, RDFS, OWL 

and other modelling languages like DAML-OIL). 

The Jena framework now has a built-in reasoners that uses forward and 

backward chaining. Other APIs have been built on top of the Model API, including 

Protégé-OWL.

Although Jena is primarily intended for developers working with OWL, the 

framework is still capable of supporting DAML-OIL projects using a generic OntModel 

interface defined in the main API. Until recently Jena still supported a separate DAML-
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OIL API; however, this has been removed as of Jena 2.6.

3.3.2 Protégé-OWL and Protégé-Frames APIs

The Protégé-OWL and Protégé-Frames APIs are the building blocks of the Protégé IDE 

described above. Protégé-Frames defines a set of UI components that can be used for 

viewing and editing ontologies, while Protégé-OWL defines the mechanisms for 

representing and manipulating OWL models programmatically. Both APIs are 

exclusively Java-based.

These APIs are tied to Protégé development IDE and form part of the same 

project. They are built on top of Jena, but they provide additional features that are 

lacking in the Jena framework, notably support for controlling SWRL rule sets 

programmatically. 

At the time of writing, Protégé-OWL does not support OWL 2 and in view of the 

fact that the latest version of Protégé (4.1) uses the OWL API instead of Protégé-OWL, 

it is unlikely that such support will be provided in the future.

3.3.3 OWL API; this prompted research into its potential uses in the 

domain of games service programming

The OWL API is based on the work of researchers from Manchester University and it 

has been under development since the early 2000s. The latest version of the API can be 

found together with documentation in [135].

The OWL API was originally based on the OWL 1.1 specification and its main 

objective was to provide a high level, reusable component to be used in Semantic Web 

editors, query agents and annotation tools [136]. A core design principle in the OWL 

API was to make it user friendly to the extent that it might encourage developers to 

experiment with it; in this respect the OWL API was consciously modelled on Sun's 

DOM API,  which is widely used for XML application development. A guiding 

motivation in the development of the OWL API was to alleviate some of the low-level 

concerns with ontology development using OWL, such as namespaces and schema 

versions [137]. As the name suggests, the OWL API is tied to OWL, not designed to 

work with any other ontology languages. Like Jena and the Protégé-OWL API, the 

OWL API provides a common interface for reasoners.

An important advantage of the OWL API is that it now supports the OWL 2 
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standard; consequently the OWL API looks set to become the de facto standard API for 

Semantic Web development, at least for those using Java as their development language, 

as it is used to power the two main Java-based IDEs, TopBraid and (as of version 4.x) 

Protégé.

3.4 Conclusions

The general implications of the technology context on this research programme have 

been considerable. The need for a rules engine became obvious at an early stage of the 

research, at which point it became clear that SemanticWorks would no longer be 

adequate as the main ontology editor on account of its lack of support for rules. 

The author's attention was first drawn to the Protégé IDE by its active forum 

which leant heavily towards academic research contexts and provided useful guidance 

on how to work with the IDE and APIs. Indeed, some of the fundamental design 

decisions for creating the DEC framework were inspired by detailed discussions 

amongst experts, most notably the decision to encode DEC predicates as classes [4]. 

The decision to use Protégé was further influenced by the fact that it featured 

widely in the literature, especially in articles that were slanted towards Semantic Web 

application development. Consequently much of the early prototyping was done with 

the Protégé-OWL API and JESS and since the design and implementation of a working 

DEC prototype – not an optimized one – has always been the focus of the project, it 

seemed prudent to keep with Protégé throughout. More specifically, the IDE version 

was kept at Protégé 3.x, and was not upgraded to 4.x on account of the lack of a 

SWRLJessTab for rule editing in the later version.

By electing to “lock down” the development environment to Protégé 3.4, it was 

effectively decided to forego the opportunities presented by the OWL API, which 

underpins the latest 4.x versions of Protégé; consequently, the DEC ontology has not 

been applied to the new OWL 2 profiles. The possible implications of OWL 2 with 

reference to this research are revisited in section 10.5.1.

Another important factor in the choice of IDE was the existence of SQWRL 

[54], a SWRL extension in the Protégé framework. The SQWRL language has enabled 

querying of the contents of the OWL/SWRL DEC knowledge base from within the 

software prototype in a convenient way and it became useful in the context of general 

58



software design – this point is explained more fully in the DEC resolver software design 

as described in in section 7.4.3.
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Chapter 4 Methodological issues in DEC resolver 

design

4.1 Overview

A significant component of this project was to explore the possibility of implementing 

DEC reasoning using Semantic Web standards. It was within the remit of the project to 

determine the extent to which it is possible to use Semantic Web languages to define an 

ontology and accompanying rules for DEC and so the project offers insight into how the 

current Semantic Web standards fall short of this objective. Consequently, a prototype 

DEC resolver framework is proposed, which defines an ontology defining DEC entities 

and predicates in OWL and attempts to provide the DEC axioms with OWL/SWRL. 

From the outset is was clear that the DEC axioms could not be expressed solely 

through SWRL owing to the lack of support for non-monotonicity in the language. A 

proof-of-concept framework was proposed that defined two ontologies: an OWL 

ontology for basic sorts and predicates and an OWL/SWRL ontology that defined a set 

of rules that corresponded as closely to the DEC axioms as possible. To enable DEC 

resolution it was necessary to provide a software prototype that could use a reasoner to 

process some of the output from the OWL/SWRL; furthermore this prototype had to 

emulate some of the DEC axioms which turned out to be impossible to express in 

SWRL.

In order to create the necessary framework for designing the ontologies and 

accompanying prototype software it was necessary to devise a methodology that could 

enable the design, implementation and evaluation of such a framework. Particular 

attention was paid to Model Driven Architecture (MDA), which was found to offer a 

useful basis on which to define and translate between the DEC OWL ontologies and 

their corresponding software implementations. The Unified Modelling Language 

(UML) offered an ideal means of expressing the software and ontology models and the 

relationships between them.

This chapter presents the general methodological issues involved in designing 

the DEC ontology and its accompanying prototype. It describes the choice of ontology 

and rules languages and the provides justification for them. It also provides a 
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methodology founded on the Unified Process and MDA and situates this methodology 

in the context of established ontology development methodologies. A selection of the 

more interesting features and interactions in the software and ontology models is 

described in UML.

4.2 Methodological considerations

The general scope of the project involved the expression of the DEC formalism in a 

language that could be used for the Semantic Web and the development of 

complementary software capable of resolving DEC statements. In order to achieve this 

it was decided that a DEC ontology should be formulated in OWL/SWRL while the 

software should use the Protégé-OWL API, for reasons given in Chapter 3 above.

The scope of the project dictated that it was crucial to be able to translate 

between different representations of the DEC formalism. On the one hand there was a 

representation of DEC in first order logic, on the other there were models constructed of 

the essential components of the formalism, which were used to enable DEC reasoning 

using Semantic Web technology. 

At a high level a logic formalism like DEC can be reduced to three separate 

layers of decreasing levels of generality, where the first layer corresponds to the 

language in which the formalism is expressed, the second corresponds to the axioms and 

sorts used to define the formalism and the third consists of statements that are created 

with it. An illustration of the original first order logic specification of DEC and its 

corresponding implementation in OWL/SWRL is provided by Figure 4.1.
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This Figure presents some of the concepts of a hierarchical model-based approach to 

developing the ontology and software; these concepts are revisited in greater detail in 

Section 4.5 with reference to Model Driven Architecture (MDA).

For a Semantic Web based model to execute, however, it needs to be applied to 

an existing software framework. As discussed in Sections 3.1.3, 3.2 and 3.3 there are 

many available choices for application frameworks and Semantic Web reasoner 

systems, but in the context of the DEC resolver their overall function is the same – to 

provide an execution environment for DEC resolution. The methodological 
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Figure 4.1: outline of the different layers of abstraction in DEC as defined in first  

order logic and translated into OWL
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considerations involved in designing the software framework are similar to those 

involved with the ontology development: chiefly, the software needs to be able to 

represent the DEC formalism in a way consistent with the first order logic version. 

However, the software framework faces the additional responsibility of ensuring that 

DEC resolution can actually be performed, meaning that the software must incorporate 

a reasoner capable at least of making inductive inferences. It must also ensure that the 

inferences made by the reasoner will conform to the DEC formalism.

It was decided at an early stage that a collection of existing DEC benchmark 

problems could provide a meaningful test of the DEC resolver framework's 

conformance to the formalism. The tests chosen in chapter 8 have all been developed to 

illustrate different types of reasoning problem and all of them have been related at one 

stage or another to EC. The benchmarks can thus be used to evaluate the DEC resolver 

framework in terms of its completeness and correctness.

4.3 Established methodologies for ontology development

The methodology used in creating the DEC ontology can be related to established 

procedures for ontology creation and before describing the approach taken here, it is 

pertinent to refer to some of the main threads in ontology design methodology in the 

literature.

In comparison to software engineering, ontology engineering is a young 

discipline and consequently it is not as well represented in the literature as software 

engineering. There is however a healthy amount of interest in methodological 

approaches to ontology development. A comprehensive survey of ontology engineering 

methodologies until circa 2006 is provided by Sure et al [138]. The overall picture of 

ontology engineering methodology is of a praxis that has grown out of commercial 

interest and has later been influenced by software engineering. For instance, Uschold 

and King ([139], [140]) make the assumption that ontologies are to be used first and 

foremost in enterprise contexts and the resulting output is summarized as the Enterprise 

Ontology. The emphasis in these models is on organizing domain knowledge through 

continual contact between domain experts and ontology implementers. Knowledge 

reuse is seen as a commercially important benefit of ontology development, as stressed 

in early work on knowledge bases and computer-defined ontologies [141] 
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The HCOME Human-Centered Ontology Engineering Methodology ([142] 

[143]) and its associated software environment HCONE [144] present a collaborative 

strategy to ontology design. The HCOME methodology works under the assumption 

that ontologies are edited by multiple users and it divides ontologies across distinct 

spaces, the Personal (for individual users), Shared (for all users to access during 

ontology development) and Agreed (for completed ontologies that have been accepted 

for release by participants). In this sense the HCOME methodology directs ontology 

editors into version-control style procedures that have been widely accepted in software 

engineering since the development of SCCS in 1975 [145]. HCONE software provides a 

version-control software environment to support these procedures specifically for 

ontology files.

Like HCOME/HCONE, the Holsapple methodology [146] stresses collaborative 

development, though in contrast to HCOME/HCONE the Holsapple methodology lacks 

specific software tool support and is founded on a relatively  informal approach 

involving the exchange of questionnaires and feedback between an ontology engineer 

and a panel of domain experts. 

The DILIGENT methodology ([147], [148]) promises domain experts in a 

distributed setting to engineer and evolve ontologies with the help of a fine-grained 

methodological approach based on Rhetorical Structure Theory DIstributed, Loosely-

controlled and evolvInG Engineering of oNTologies. This methodology is grounded on 

lexical analysis of texts and is therefore suited to crafting ontologies from natural 

language corpora. Indeed initial experiments with DILIGENT have focused on creating 

an ontology from an existing biological taxonomy that has been evolving over the past 

200 years [125]. An ontology derived from “grey literature” such as this taxonomy 

clearly has a different function to the DEC ontology presented here. Consequently, the 

DEC ontology has not made use of the DILIGENT methodology procedure, although 

DILIGENT could prove useful for defining application ontologies that make use of 

DEC rules.

Later methodological approaches to ontology engineering have closer parallels 

to software engineering practice. This trend has been noted in the literature and general 

software engineering approaches to ontology design are now proposed [149]. The 

Methontology approach [146] offers an iterative process model that divides the 
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ontology development process into distinct phases which include conceptualization, 

configuration, implementation and integration. This echoes the influential Spiral Model 

of software development as described by Boehm [150], which is a familiar model in 

software engineering.

 Specifically, the influence of design patterns and UML is now carrying over 

from software engineering into ontology engineering. The concept of design patterns, 

first introduced in the early 1990s [151] has gained considerable traction in software 

engineering and has now been brought to ontology engineering [152]. The motivation 

behind design patterns is to promote code re-use through established and elegant 

solutions to specific problems in application development. The original work on design 

patterns was written with object-oriented programming languages in mind, but since 

then the principle has been extended to other areas including ontology development. 

Recent literature has applied design patterns to specific application domains [153], 

[154], [155]. In a more general context, NeON [156] promotes ontology design patterns 

in the context of evolving  ontology networks, in other words, groups of related 

ontologies built collaboratively by teams of developers. NeON encourages the use of 

ontology design patterns to promote reuse of structures from ontologies and other 

sources.

UPON , the  Unified Process for Ontology building [157] is deliberately related 

to the Unified Software Development Process [158] that is used as a de facto standard in 

software development at large. 

The fact that the DEC ontology presented here is intended only as proof-of-

concept means that some of the typical methodological considerations for ontology 

development do not apply in this case. The phase of the UPON methodology that deals 

with consultation with domain experts was rendered unnecessary by the fact that the 

domain knowledge for DEC is formally  defined in EC literature. The ontology 

presented here is based on the axiomatization proposed by Mueller [5] which itself is 

based on an EC axiomatization of Miller and Shanahan [81]. 

The fact that this ontology is founded on a formally defined domain means that 

the information gathering task was easier from a practical standpoint: one has only to 

find the DEC axioms and to interpret the sorts and predicates in the target ontology 

language(s). However, this is not to say that the ontology design task was an easy one 
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because the DEC ontology needed to preserve all of the constituent rules to be valid, 

whereas “real-world” ontology domains may not require such a degree of rigour and 

may well be incomplete. Thus the methodology adopted for the DEC ontology 

development did not religiously follow any single established methodological practice 

outlined in the literature.

However, it should be noted that the development process for the DEC ontology 

followed the UPON model more closely than any of the others. Future work would 

undoubtedly look more closely at incorporating UPON practice into the ontology design 

process, since the combination of UPON and UML seems to offer the most consistent 

approach to a project that combined ontology engineering and application development 

using a general purpose programming language.

4.4 Established methodologies for software development

Clearly software development has been practised for longer than ontology development 

and the range of available methodologies for software development is much wider. 

Some methodologies have been designed for building and maintaining large distributed 

enterprise systems, others are designed with smaller projects in mind.

The spiral [150] and waterfall [159] models of software methodology are widely 

recognised and they have helped to shape the practice of  software engineering. A 

notable feature of these models is that they both share the separation of the development 

process into requirements engineering, design, implementation and testing phases; 

furthermore, both models are documentation intensive. However, in recent years there 

has been a tendency towards leaner, less prescriptive methodologies that encourage a 

faster process 

The general move towards faster software development process is expressed in a 

methodology known as agile development ([160], [161]) which at the time of writing 

has a strong web-based presence with its own community called the Agile Alliance 

([162]). The agile methodology is a response to the need for greater flexibility and 

adaptability in software development procedures in general, which arguably suits the 

changeable demands of software better than the more prescriptive approach enforced by 

previous approaches. The main tenets of agile development are an increased focus on 

the executable deliverable and a swifter, more adaptive approach to documentation of 
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the phases of software development. 

The important point about agile development in relation to this research is that it 

is well suited to smaller software projects and it places the emphasis on creating an 

executable as quickly as possible; once the executable is created, it can then be used as 

the starting point for further refinements. This is the generic approach taken to develop 

the software for the DEC resolver.

While the DEC resolver software is not a trivial system, it is intended only as a 

proof-of-concept executable that is intended to test one approach to expressing DEC 

reasoning in the Semantic Web. As such, it makes sense to consider the methodological 

advice offered on rapid system prototyping provided in [163], which places importance 

on answering research questions before any other considerations. In terms of software 

engineering practice, the requirements phase of the prototype can be substituted with the 

research goals that the prototype should try to meet.

These research goals have been listed in the Objectives and motivation chapter 

(the first chapter of the thesis); the general design, implementation and evaluation 

strategy of the prototype is provided by the remainder of Chapter 5 and subsequently 

Chapter 7, while the evaluation  is covered by Chapter 8.

4.5 MDA methodology for software and ontology development

MDA is a widely-understood methodology for defining accurate, predictable and 

understandable abstractions of different systems that may use different vocabularies and 

concepts. It has been developed by the Object Management Group (OMG) and on its 

initial release in 2001 it was endorsed by leading technology vendors including Oracle, 

IBM and Sun [164].

It should be noted that although MDA is widely understood, it has not been 

adopted as a standard in the sense that (for instance) might be applied to web standards. 

The various implementations of MDA by different vendors were never completely 

consistent which gave rise to scepticism about its ability to provide a universal and 

uniform approach to software engineering.

The OMG's vision is stated in the MDA Guide as “a vision of integrated 

systems, applications that can be deployed, maintained and integrated with far less cost 

and overhead than that of today.” [164] In somewhat poetic terms, this vision is 
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contrasted with  “the myth of the standalone application, never needing repair, never 

needing integration, with data models inviolate and secret” which, it claims, “died a 

long and painful death through the end of the Twentieth Century.” However, it should be 

noted that the impact of MDA on software engineering has evidently not transformed 

the landscape of software engineering to the extent of banishing standalone applications 

altogether. Indeed, there were some sceptical reactions to the bold claims made in 

favour of MDA by the OMG, with one analyst remarking that very few of the early 

adopters of the emerging standard had wholeheartedly adopted it [165], while a 

response from a leading online software development journal asked whether the 

existence of a meta-model for UML for many abstractions conferred any value beyond 

“mere” academic interest [166]. Significantly, perhaps, the MDA Guide document is 

still at a “draft” stage and the newest version available on the OMG website [167] dates 

from 2003. 

The extent of MDA's influence on software engineering highlights the fact that 

there is still no universally accepted standard process for defining software models and 

metamodels, in spite of the good intentions of the OMG. However, it should be noted 

that MDA and UML provide a working vocabulary and set of processes for this task.

The theory underpinning MDA depends on the concept of a modeling space, 

which defines the concepts associated with a type of model. The modelling space is 

divided into increasingly abstract layers, with the target (which could be the “real 

world” on which a model is based) at the bottom layer, followed by model and 

metamodel layers with the meta-metamodel layer at the top. Starting at the top, each 

layer provides the terms that define the layer below it: the meta-metamodel is self-

defining, i.e. it provides all of the terms that it needs to define itself. These layers are 

labelled M0 – M3, with M0 representing the target (“real world”) level and M3 

representing the meta-metamodel.

MDA permits the modeling of different model contexts, referred to in MDA 

literature as technical spaces ([168], [169]) and it can be used to show the relationships 

between the different types of model that may be used in an application scenario. These 

different technical spaces use different metamodels and meta-metamodels: for instance, 

a C++ programming space includes a C++ grammar metamodel, which descends from 

the Extended Backus Naur Form (EBNF) meta-metamodel. Of course, other 
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programming languages would include their own grammar metamodels, but these too 

would descend from EBNF. For Semantic Web ontologies, the meta-metamodel is 

RDF(S), which provides the terms to describe itself as well as OWL and SWRL.

In the case of the DEC resolver there are two different models that exist side by 

side, namely a software model (the DEC resolver software) and an ontology model (the 

OWL/SWRL ontology). These two models rely on different fundamental assumptions: 

as discussed in 2.3.3, the open world assumption is implicit in any ontology defined in a 

Semantic Web language, while on the other hand a general purpose programming 

language such as Java is based on closed world assumptions. This fact means that 

comparable concepts in OWL and Java are actually implemented quite differently, so 

for instance inheritance in Java defines the capabilities of a class (i.e. a class definition 

and its related hierarchy define the class's methods and attributes), whereas an OWL 

class's location in an inheritance hierarchy can be inferred from its capabilities.

The MDA methodology offers a way of explaining the relationships between 

such diverging models. The DEC resolver framework presented here relies on three 

different models: the XML serialization in OWL files, the in-memory model of the 

ontology in the Java software and the OWL/SWRL ontology itself. The first two of 

these models are Java and XML based and they represent the OWL/SWRL ontology. In 

MDA terms, the first two models are based on the EBNF meta-metamodel, while the 

ontology is based on an RDF(S) meta-metamodel, so the Java and XML representations 

of the ontology can be presented in the same technical space as each other (since they 

share a meta-metamodel) while the ontology is in a different space. This situation is 

outlined in Figure 4.2 overleaf.

This prototype DEC framework relies on different implementations of the same 

model, i.e. the DEC ontology. On the one hand the DEC is specified in terms of first 

order logic. On the other hand, it is necessary to translate the DEC axioms and sorts into 

Semantic Web terms. Using UML with the MDA approach it is possible to define 

separate models for the ontology and its corresponding software artefact and to model 

the relationships between them. 
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The main advantage of this approach is that it supports a range of different views across 

the system, from class structures and algorithms through to physical deployment on 

machines and networks. Using UML it is possible to describe ontology and software 

models in detail: this point is discussed in 4.6.

It is important to note that MDA is not incompatible with the lean procedures 
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promoted by the agile software development methodology. Indeed, recent work has 

highlighted the utility of combining MDA and agile development, treating the finished 

platform-independent model of developed software as an “executable model,”, or in 

other words the equivalent of the executable in pure agile software development ([170], 

[171].)

4.6 UML as a language for ontology and software specification 

In practical terms, it is useful to have a common modeling language with which to 

represent not only the ontologies as described in this section and in chapter 6 below, but 

also the accompanying software, which includes the DEC resolver (described in chapter 

7) and the test harnesses used to validate the DEC framework as a whole (as described 

in chapter 8.) 

The general requirement for a modeling language can be met by UML, which 

has been turned to ontology development by Gasevic et al [169]. UML provides a 

language for describing different types of model and although it has its origins in the 

general purpose programming languages that are most commonly used in software 

engineering, it is flexible enough to be able to represent ontology models as well. It is 

very useful for the purposes of this project to have a common modelling language to 

describe both the software-related and ontology-related parts of the model. The bindings 

between the ontology model entities and their corresponding Protégé-OWL classes are 

described in Section 5.5.1.

Throughout this thesis a UML based diagramming scheme has been adopted, as 

UML provides a well-established mechanism for representing views on data models of 

all types, which can encompass ontologies and software applications. A UML profile of 

OWL 1 has been described in the literature [172] and this has been formalized by the 

Object Management Group (OMG) in its standard Ontology Definition Model (ODM) 

[173] [174]. Other attempts have been made to define a UML profile for OWL; one 

such attempt, which builds on the ODM, is called the Ontology UML Profile (OUP). 

The OUP has been developed in response for a proposal request by the ODM for 

defining a language suitable for modeling Semantic Web languages in line with MDA 

principles. This profile was developed by Gašević et al and explained in their book on 

MDA and ontology development [169] and it is available online [175].
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There is a lack of reliable support for the ODM in the software chosen for UML 

diagramming. The ODM standard is available as an XMI file from the OMG website, 

but this particular XMI file would not import properly into the MagicDraw 15.1 UML 

development environment (see 3.4). Instead, the alternative OUP profile for OWL was 

chosen for the purposes of modeling the DEC ontology using UML.

The relationships between the Java-based DEC resolver UML model and the 

OUP-based UML model are described in Figure 4.3 below

As Figure 4.3 shows, the UML and OUP metamodels both depend on a meta-

metamodel labelled MOF: this initialism stands for “Meta Object Facility” and it is 

defined in the MDA Guide as a meta-metamodel that encompasses object-based 

languages including UML [164].

4.7 Conclusions

While this research project has not adopted the MDA methodology wholesale, it has 

nonetheless drawn extensively on MDA principles for its methodological approach. In 
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Figure 4.3: the DEC ontology UML model and the DEC resolver UML 

model as depicted in MDA terms
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particular these principles were found to be useful in describing the origins of and 

relationships between the software and ontology models that form the backbone of this 

research. 

Furthermore the MDA methodology promotes the use of UML, which has been 

used extensively throughout the project to provide views on the structures and processes 

that make up the ontology and software models. However, the development 

methodology used for this research is tailored to the design, implementation and testing 

of rapidly deployable prototypes, to suit the scale and nature of the software 

development task.
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Chapter 5 Overview of DEC resolver framework

5.1 Overview of interactions between DEC resolver and 

OWL/SWRL ontology

The DEC resolver software presented here is intended to provide a way of executing 

DEC rules using the DEC ontology defined in this section and in chapter 6 below. The 

DEC resolver's task is to interpret a DEC domain description that uses the DEC 

ontology and to resolve event narratives as they occur. The DEC resolver takes as input 

a domain ontology that imports the DEC ontology (by default the ECE and DECAX 

ontologies defined in 5.4.2 and 5.4.3.) It counts through a range of timepoints, checking 

the observations and events that occur at each one and it resolves the rules to infer new 

observations. If a new observation is made, then it is transferred into the domain 

description at the next timepoint. The DEC resolver's design is described in detail in 

chapter 7.

The proof-of-concept DEC resolver framework presented here is composed of 

several distinct parts. These constituent parts include combination of ontologies and 

general purpose programming source code (Java in this instance). The software created 

for the framework reuses existing software components: the inference procedure is 

delegated to an existing rules engine, while the in-memory OWL/SWRL model is 

handled by the Protégé-OWL API, which itself depends on the Jena API (as described in 

3.3.1.)

The DEC resolver framework is intended to achieve four basic goals. The first of 

these is to provide an OWL ontology representing basic EC sorts. The second is to 

provide an implementation of DEC functionality using OWL/SWRL where possible

The third goal for the framework prototype is to be able to interpret DEC domain 

descriptions and resolve them using inference controlled by a rules engine (JESS in this 

instance). Finally, the framework should offer a means of recording the changes to a 

DEC domain description over time given a known initial set of rules, observations and 

events.
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5.2 Considerations for DEC ontology design

5.2.1 Use of Description Logic for defining DEC  

Description Logic  (DL) underpins the OWL-DL species of OWL. The correspondence 

between OWL-DL and description logic means that OWL can make use of an 

established representational formalism that has already been established in the context 

of knowledge base development. DL can be considered as a fragment of first order 

predicate logic.

A DL knowledge base consists of a TBox, which contains the terminology or 

vocabulary of a knowledge domain and an ABox, which makes assertions about 

individuals that have been defined in  terms of the TBox vocabulary. The TBox consists 

of concepts, roles and individuals combined with a set of operators. Concepts are unary 

predicates that can be considered as sets of individuals in a knowledge base, while roles 

are binary predicates that represent the relationships between individuals. In OWL 

concepts are expressed as classes and roles correspond to datatype and object properties, 

while individuals are expressed as instances of classes. Thus an OWL property can only 

express the relationships between instances of a domain (which will always be a set of 

classes) and a range (which may be a class for an owl:ObjectProperty or a primitive 

type for owl:DatatypeProperty). This point was used in the decision to model predicates 

as classes rather than properties, as described in 6.2.2.1.

The EC defines some binary predicates, for instance Happens(e,t) and 

HoldsAt(f,t). Therefore these predicates could be interpreted as roles in DL and by 

implication they could be represented as properties in an OWL-DL ontology. However, 

it is important to note that the majority of DEC predicates require more than one 

argument and so these cannot be modelled as properties in OWL because properties 

would only be capable of representing predicates that take a single argument. 

Representing the predicates as classes and marrying them to arguments with properties 

allows for representation of predicates that take any number of arguments. Furthermore, 

OWL-DL does not support negation of properties but does support negation for classes 

and thus it is better to use classes  to represent negated forms of predicates, for example 

¬HoldsAt, which is used for instance in axiom DEC 10 (see  6.9.4) 

Temporal extensions to DL have been proposed, for example in [176] and [177] 
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which both share a complicated ontological assumption known as perdurantism, which 

gives each fluent in a domain a temporal part. In other words even physical objects are 

viewed as having a time dimension that defines them. The EC and DEC can be related 

to perdurantism if all fluents can be considered valid (when HoldsAt(f,t) applies 

explicitly or implicitly to f at t). For this reason, such perdurantist DL extensions are not 

semantically compatible with the DEC or EC as they are already expressed by EC/DEC 

predicates. These DL extensions do not therefore form part of the DEC ontology 

presented in this thesis.

5.2.2 Choice of ontology and rules languages

The ontology languages in the Semantic Web stack cater for applications of varying 

degrees of complexity. Some of the required features for elements of DEC, like 

functional properties, cardinality of properties, disjoint classes, complementary classes, 

are absent from the RDF(S) standards [178]. OWL was chosen as the ontology language 

for the DEC ontology prototype because of its support for these features.

Furthermore, SWRL was designed to operate with OWL, not RDF(S); although 

research has been conducted into combining SWRL with RDF [179], the resulting 

software prototype has not been developed since 2005 according to the accompanying 

project website [180] and it cannot deal with reasoning beyond RDFS inheritance.

SWRL is a necessary accompaniment to OWL in order to express Horn clauses 

in the ontology. OWL is capable of representing certain types of implication, i.e. 

transitive properties (through owl:TransitiveProperty) and generalization (through 

owl:SubClassOf) but it cannot represent rules through Horn clauses, as described in 

2.4.1. SWRL is designed as an extension of OWL to provide such arbitrary rules i.e. 

Horn clauses, as stated in the SWRL standard [47].

5.3 Representation of the DEC domain description

In an interpretation of DEC through Semantic Web technology, the domain description 

of the knowledge base can be achieved by splitting up the representation into three 

parts, which correspond to the separately circumscribed parts of EC as described in 

2.6.2.5. Thus the DEC domain description can be represented as the sum of three 

different knowledge bases: the narrative, observations and the collection of statements 

that apply at the current timepoint (hereafter referred to as the “current frame” 
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knowledge base.) In the DEC resolver presented here, these three knowledge bases are 

stored in working memory. In implementation terms they exist as instances of 

protege.owlx.OWLModel as illustrated in the following diagram:

The use of Protégé APIs in the design of the DEC resolver is discussed in section 7.4 

and the algorithms for ensuring the consistency of these knowledge bases are described 

in section 7.6. The DECModelFacade class mentioned in the diagram acts as the access 

point for operations that are made on the three different models in the resolver.

5.4 Structure of DEC ontology

5.4.1 Overview

The DEC ontology presented here consists of two distinct parts, the EC entities and the 

DEC axioms. These parts are specified in two distinct but complementary ontologies, 

with the DEC axioms in OWL/SWRL importing the EC entity ontology to make use of 

the terms it defines. Two distinct namespaces were chosen for these ontologies, ECE for 

event calculus entities and DECAX for the DEC axioms. A further ontology layer is 

provided by domain ontologies, which import the terms from the DECAX ontology 

(and thus also the ECE ontology). Thus a hierarchy of ontologies is defined, with ECE 
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providing the core DEC entities, DECAX defining the rules and other ontologies 

importing the DECAX namespace. Figure 5.2 is a package diagram describing this 

structure.

The motivation for this structure is mainly to ensure that the DEC ontology is not too 

closely tied to SWRL, to allow different future implementations of the DEC axioms to 

take the place of the DECAX ontology, which is implemented in OWL/SWRL, which 

may turn out not to be the best Semantic Web rules language for the job.

The decoupling of entities (sorts) in the ECE ontology from axioms in DECAX 

is desirable because it allows different rules languages to be used in future rules 
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Figure 5.2: package diagram dependencies between ontologies and basic class  
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implementations. For example, rules languages based on the emerging RIF standards 

may prove to be more appropriate for the purposes of expressing DEC axioms than 

SWRL. Indeed there are two reasons why this may hold true. Firstly, RIF dialects do not 

exclude the possibility of negation as failure. Secondly, since RIF is now presented in 

the Semantic Web stack as the recommended standard for of enhancing OWL ontologies 

with rules, it seems reasonable to assume that RIF dialects will be compliant with future 

revisions of the OWL standard, whereas the SWRL recommendation is unlikely to keep 

up without such strong support from W3C standardization. Decoupling the rules from 

the entities in this way should make it simpler to compare the performance of different 

rules languages to express DEC axioms in different application contexts. 

Thus if the DECAX ontology was rewritten in a RIF language then this could be 

slotted into the framework without necessitating any change to the ECE ontology, as the 

RIF language should also work with OWL-DL. This possibility is discussed in 10.5.2.

A further reason for this decoupling strategy is that it can readily be adapted to 

alternative EC axiomatizations, for instance the full EC or  DEC with branching time. 

Furthermore, the ECE ontology can be imported by future alternative implementations 

of the DEC axioms in SWRL so as to enable easier comparative benchmarking between 

those different implementations. The fact that the ECE ontology is a valid OWL-DL 

ontology means that decidable reasoning procedures can be used on it. 

5.4.2 Event Calculus Entities ontology (ECE) 

The ECE ontology contains the basic EC sorts (i.e. entities), namely the classes 

representing events, fluents and predicates. It also contains the properties that bind the 

predicates with their domains and ranges: for instance the ece:hasFluent property has a 

range of ece:Fluent while its domain is the set of DEC predicates that take a fluent 

parameter, i.e. ece:HoldsAt, ece:Initiates, ece:Terminates etc. The breakdown of this 

ontology is described in greater detail in Section 6.2 below.

5.4.3 Discrete Event Calculus Axioms ontology (DECAX, using ECE)

The DECAX ontology provides the SWRL rules that are intended to convey the DEC 

axioms as described in Sections 6.6 to 6.9. These rules are applied to the current state of 

the domain, which is encapsulated in the current frame knowledge base as described in 

5.3 above. The axioms are constructed as implication rules, which typically involve the 
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creation of new predicate and fluent instances when they are matched in the current 

frame knowledge base. The proof-of-concept OWL/SWRL implementation of these 

axioms forms the bulk of Chapter 6. The limitations of this approach to DEC axiom 

definition – inefficiency of rule execution and impracticality of rule composition –  are 

discussed in 6.8 and some performance improvements are suggested for future work in 

10.4

5.4.4 Domain ontologies (using ECE + DECAX)

Before the DEC ontology can be validated, it is necessary to have the facility to define 

new knowledge domains that use the terms and rules defined in the DEC ontology. Thus 

the benchmark scenario tests defined in Chapter 8 all include ontologies for the different 

sets of rules and entities involved in the benchmarks. Thus, for instance, a yaless:Load 

event class is defined for the Yale Shooting Scenario test scenario (see 8.3). While this 

approach does actually produce useful domain ontologies that can be used to model 

established benchmark tests, it nevertheless is subject to the same practical limitations 

that are discussed in Chapter 6: for instance, a domain rule cannot rely on negation-as-

failure.

5.5 Structure of DEC resolver software

5.5.1 Java EC entities generated by Protégé-OWL (created from 

ontologies)

The Protégé-OWL API works with an in-memory model called OWLModel. The API 

includes interfaces that define the bare bones of an OWL ontology, namely OWLClass, 

OWLIndividual, OWLObjectProperty and OWLDatatypeProperty. There are also 

SWRLIndividual and SWRLStatement interfaces for defining SWRL rules that act on an 

OWL ontology that has been defined with Protégé.

The DEC resolver software uses classes that make use of this API to represent 

the basic sorts of DEC (event, fluent etc) as well as the more specific classes and 

properties demanded by the test scenarios (eg Load from yaless). An illustration of the 

class hierarchies involved is provided in the following class diagram (Figure 5.3):
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While this figure does not disclose the full interface hierarchy involved in defining the 

event.model.entities.Initiates interface, it nevertheless shows how it is related to some of 

the principal interfaces and classes used in the Protégé-OWL API, notably the 

OWLIndividual and SWRLIndividual, which are used to describe instances of classes in 

an OWL/SWRL knowledge base that is represented by an implementation of the 

OWLModel. The base class for Protégé-OWL API generated classes is 

AbstractCodeGeneratorIndividual, which defines common methods for all generated 

classes. 

DefaultInitiates is the implementation class generated by Protégé, which defines 

the methods that are needed to access and modify property values associated with this 

class – for instance, addHasEvent(Event e) is used to attribute an event (i.e. an instance 

of event.mnodel.entities.Event) to an instance of the DefaultInitiates class. So when an 

Initiates(e,f,t) statement is created by the DEC resolver software, e is set by this method. 

The DEC resolver software uses a large number of such classes and interfaces 

and these are not all documented; however all of the generated entities follow the same 

basic pattern as Initiates above, so all of them have  default implementations and 
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interfaces that fit into the general system in the same way.

5.5.2 DEC resolver software (using JESS +Java EC entities)

There are three principal components to the DEC resolver software: ontology, resolver 

and rules engine. The resolver software uses code generated from the ontology that is 

encapsulated in an OWLModel instance.  The rules engine is directed by the resolver 

software to create inferences from the existing statements in the current frame 

knowledge base.

The implementation diagram above (Figure 5.4) illustrates how the Protégé-OWL code 

generator converts the ECE OWL classes and properties into Java source code. The 
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Figure 5.4: generation of Java target interfaces and classes from ECE ontology
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diagram shows how the outputted source files are used to define a set of classes and 

interfaces that can then be used by the DEC resolver software. It shows the relationships 

between the physical source files (modeled as artefacts in UML) and the Java and OWL 

entities (modeled as classes and interfaces). The Protégé-OWL code generator 

mechanism is represented here as a component: the mechanisms that it uses to create the 

Java source from the OWL model are complex and a full description of these lies 

outside the project scope. 

Note that the OWL object and data properties are not specified as separately defined 

classes in the generated Java source; instead they are implemented as instance methods 
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Figure 5.5: generation of Java interface for ece:Happens predicate and associated  

properties ece:hasEvent and ece:hasTime
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inside the classes that represent OWL classes. For example, the ece:hasTime  and 

ece:hasEvent properties listed in Figure  5.5 are implemented in a series of getter and 

setter methods (getHasTime(), setHasTime(int t)) and utility methods for accessing the 

underlying datastructures that hold references to the property values 

(listHasEvent():Iterator and getHasEvent(): Collection). These methods are added to 

the interface, as illustrated in Figure 5.5 for the ece:Happens interface:

The OWLModel that contains the definitions for ece:Happens, ece:hasEvent and 

the other properties and classes in the ECE ontology is loaded into memory when the 

DEC resolver software starts. The following implementation diagram (Figure 5.6) 

shows an overview of the structure of the  DEC resolver, with relationships between the 

OWLModel, SWRLFactory and SWRLJessBridge classes provided by Protégé-OWL. 
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Figure 5.6: relationships between Resolver class and principal Protégé-OWL classes  

and interfaces for model building and rule execution
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5.6 Rule resolution using DEC ontology and software

Unfortunately it is not possible completely to define the DEC formalism in 

OWL/SWRL. As discussed in Chapter  6, the SWRL language does not support some of 

the first order logic features required by the DEC axioms. In particular, the 

commonsense law of inertia cannot be sufficiently represented, as discussed later in 6.8. 

In view of this, it is necessary to make up for the lack of support for these first order 

logic features in SWRL with a supporting software framework that can  effectively 

execute the rules that cannot be defined in SWRL. The main rules execution algorithm 

involves the Resolver class calling the infer() method on the SWRLJessBridge; as a 

result, the bridge prepares the OWLModel statements so that the RETE algorithm 

implemented by Jess can be applied to them. Figure 5.7 shows the sequence of method 

calls involved at a high level.
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Figure 5.7: sequence of method calls in SWRLJessBridge following call to infer()

The sequence of method calls entailed by calling the run() method on the 

SWRLJessBridge is substantially low-level and is not given here; however, sequence 

diagrams are provided in Appendices E-2.1 and E-2.2 to give a more precise description 

of how the SWRLJessBridge's runRuleEngine()  method works. There is also an 

overview of how the bridge is created in E-2.3.
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bridge : SWRLJessBridgeresolver : Resolver

reset()2: 

importSWRLRulesAndOWLKnowledge(ruleGroupNames=)3: 

run()4: 

writeInferredKnowledge2OWL()5: 

infer(ruleGroupNames=)1: 



Chapter 6 Design of DEC ontology

6.1 Overview

One fundamental question in developing the DEC ontology was how to represent the 

sorts and predicates of DEC in OWL. Another fundamental question was how to 

organize the ontology in such a way that the basic EC sorts, DEC axioms and domain 

rules could all be kept loosely coupled. A related issue concerned the representation of 

the domain description for DEC in the knowledge base. The answers to these questions 

form the basis of this section.

 This chapter explains how the DEC ontology presented in this research is 

divided between EC entities and DEC axioms. It also describes the issues involved in 

choosing an ontology and rules language for representing DEC in a Semantic Web 

context and justifies the choices of language and structure. The design of the DEC 

ontology is described in detail, with explanations of how the basic sorts and predicates 

are represented. Furthermore the partitioning of the DEC knowledge base into 

observations, narrative and current timepoint is described and explained.

This section also describes the axiomatization of DEC in detail as described by 

Mueller [6]. It explains how changes in state over time can be accurately represented 

with DEC and describes how it can be used to deal with established benchmark 

problems in AI representation. The section then outlines the main issues involved in 

expressing this axiomatization together with circumscription with Semantic Web 

technology. Particular attention is given to the limitations of SWRL for representing 

commonsense law of inertia axioms (see section 6.8). The method adopted in this 

research for dealing with these limitations involved programmatic workarounds that are 

discussed in greater detail in 7.6.

6.2 Representation of predicates and sorts in DEC ontology

6.2.1 Basic sorts

6.2.1.1 Events

Events can be modeled as classes in an ontology. If the ontology language supports 
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generalization then it may be an advantage to be able to specify specific types of events 

that descend from a general Event type in an inheritance hierarchy. The ECE ontology 

defines an Event class (ece:Event), which can be extended by other domain ontologies 

to define more specific event types. Although an event can be thought of as being tied to 

a timepoint in EC, this is only achieved through the appropriate predicates, eg 

Happens(e,t) and Initiates(e,f,t). Therefore in the author's opinion it would be a mistake 

to define an Event type as the domain of a time-based property, which might look like 

hasTime(e,t). In the ECE ontology presented here the Event type is a “marker” class that 

is not defined as the domain of any property.

6.2.1.2 Fluents

Like events, fluents can be modeled with a general type. In one of the earliest 

appearances of the term with reference to situation calculus, a fluent is defined as a 

predicate or function [181]. In terms of the EC as described by Shanahan [72] a fluent 

can be described as “anything whose value is subject to change over time”, which could 

be a quantity whose value is subject to change, or a statement whose truth could vary 

with time. A Fluent class is defined in the ECE ontology (ece:Fluent), which can be 

extended by other domain ontologies that import the ECE ontology. The fluent type 

defines only a state in a system, which makes it very nebulous, like the event type. The 

fact that a fluent can be used to represent any type of modifiable state in any system 

means that it can be realised as a numeric or boolean or object type, or as a function 

with parameters like happy(?person). The fluent sort has been kept simple, with no 

restrictions defined on it. However, as revealed in the Hot Air Balloon benchmark test in 

Section 8.5, this simplicity entails limitations with regard to representing fluents that 

represent changing variables.

6.2.1.3 Timepoints

Unlike events or fluents, timepoints can feasibly be modeled as numeric types; time is a 

measurable quantity that can meaningfully be represented by numbers in a way that 

would not suit events or fluents. There is a case for defining a timepoint as an object 

type however, as it then becomes possible to relate it to existing temporal types defined 

in ontologies. In the case of OWL, and in DAML-OIL before it, such types already 

exist, defined in ontologies like OWL-Time and DAML-Time. The advantages of re-
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using such types is that those temporal ontologies may already be used in different 

contexts, making it easier to align an ontology importing a DEC ontology with an 

existing domain ontology. OWL-Time includes detailed definitions for intervals and 

comparators that enable a large range of time-specific expressions to be made about 

time in relation to individuals in an OWL ontology.

6.2.2 Predicates and predicate expressions

6.2.2.1 Predicate classes in OWL ECE ontology

It was decided at an early stage in this research that an ontology should be able to 

represent predicates as classes. The rationale for this was taken from comments on a 

research proposal to model situation calculus predicates, which could not represent 

predicates as OWL properties but instead had to use classes [4]. These comments 

supported the intuition that it would be difficult to represent the EC predicates using 

OWL properties alone owing to the fact that OWL properties are by definition binary 

predicates, as discussed in Section 5.2.1 above.

The predicates are described by classes in the ECE namespace. It is important to 

note that representing these predicates in OWL requires separate definition of negated 

versions of the predicates, i.e. ¬HoldsAt etc. In the DEC ontology presented here, a 

class is provided to represent ¬HoldsAt but other predicates are not represented with 

negated version. The reason for this omission is that the negations of these predicates do 

not figure in the axioms for DEC, although they could be used in the context of a 

specific domain; for example, ¬StoppedIn appears in the falling objects benchmark 

problem described by Shanahan [65].

6.2.2.2 Properties in OWL ECE ontology

The ECE ontology defines properties that marry together predicates and their 

parameters. These properties have been given obvious names, hasEvent(?predicate, ?

event) hasFluent(?predicate, ?fluent),  hasFluentClass(?fluent, ?name), hasTime(?

predicate, ?t), hasStartTime(?predicate, ?t), hasEndTime(?predicate, ?t). The first two 

of these are OWL object properties, others are OWL datatype properties. All of them are 

defined as functional properties, which ensures a 1:1 mapping between a particular 

predicate instance and a particular property value. The assumption behind making these 
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properties functional is that each separate instance of a predicate represents part of a 

unique statement; thus the same predicate cannot have different values simultaneously 

for its target fluent or its originating event. 

The hasFluentClass property was a necessary step to sure that ontologies 

extending the DEC ontology can define rules that target fluents by class rather than by 

instance. In other words this property allows rules to specify the parameter of a 

predicate as a class of fluents, rather than just an individual fluent instance. This is a 

necessary addition to the system because it ensures that Initiates, Terminates effects can 

implemented on a class-specific basis and not just an individual-specific one.

6.2.3 Summaries of basic sorts and predicates in Appendices

Detailed summaries of the classes used to represent sorts and predicates, together with 

the properties used to pass parameters to predicates are provided in in Appendix B ECE

and DECAX ontologies. Table B-1.2.1 summarizes the classes, while B-1.2.2 

summarizes the OWL properties used in ECE ontology, together with their domains and 

ranges.

6.3 Translation of DEC from first order logic into OWL/SWRL

There are a number of points to note about the general translation procedure between 

the first order logic definition of DEC and its representation in OWL/SWRL. 

6.3.1 Resolving DEC rules using a rules engine

When a SWRL rule is run through a rules engine (e.g JESS), the rules engine performs 

instance matching where a class is declared in the head of the rule. The head of the rule 

may contain additional limitations on how to match instances of that class, for instance 

the Happens(e,t) predicate where e is an event and t is a timepoint is matched by the 

following pattern in the head of a rule: ece:Event(?e)  ece:Happens(?e,?t)∧ .  

Where a new atom is introduced in the body of the rule, for instance the HoldsAt 

predicate in DEC 3 below (section 6.7.2 and 6.7.3), it is necessary to create an 

individual placeholder object  in the head of the rule so that the variable can be 

initialized. In DEC 3 for instance, the ?holdsAt variable must refer to a named instance 

in the head of the rule, so it must be created in the head. Note however that the class is 

only defined in the body of the rule, i.e. the ?holdsAt variable will only be treated as an 
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instance of the HoldsAt predicate if the rule is successfully executed and the body of the 

rule is reached. Unless the rule is successfully executed, the variable will be treated only 

as an instance of owl:Thing. 

6.3.2 The unique and non-unique naming assumptions

In first order logic, it is necessary to use unique identifiers for every event and fluent to 

ensure that different terms can relate to the same event or fluent. In first order logic 

there is nothing to say that Will and Table refer to different concepts and so a unique 

naming scheme is necessary to ensure that such different concepts can be distinguished. 

Event Calculus relies on this ability to distinguish between different concepts.

A significant problem with the translation of DEC to OWL/SWRL concerns the 

uniqueness of identifiers; while the non-unique naming assumption is inherently part of 

the Semantic Web as discussed in 2.3.3, the assumption in DEC is that all formulae can 

be uniquely identified (see for instance [72], [6].) The unique naming assumption is in 

fact an essential component of DEC, EC and other formalisms: unique names axioms 

were first proposed by Lifschitz for situation calculus [87]. 

In the Semantic Web, the non-uniqueness assumption is realized through the fact 

that any number of different URIs can point to the same OWL resource [34]. In contrast, 

however, SQWRL relies on the unique naming assumption, which is exactly what the 

DEC requires [54]. The SQWRL language is used in the DEC resolver to query the 

DEC ontology to obtain the distinct existing instances of the different events, fluents 

and predicates. Thus the results from SQWRL queries can be trusted to return sets of 

unique results without duplicates. The resolver's use of SQWRL is described in detail in 

7.4.4. 

6.3.3 Circumscription

Circumscription was described in 2.6.3.1 as the method of implementing default 

reasoning in Event Calculus. Specifically, it is the method of ensuring that the events 

that are represented in an EC narrative are limited to the known events, while the 

recorded observations are limited to known observations. 

In the DEC resolver, circumscription is achieved through SQWRL queries that 

gather the instances of statements according to their DEC predicates. For instance, The 

SQWRL query to gather up the Initiates statements in the current frame knowledge base 
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is as follows

Ignoring the finer points of the SWRL/SQWRL syntax for the time being, it should be 

clear from this example that the query is gathering up the Initiates statements, together 

with their associated Event, Fluent and timepoint references. When this SQWRL query 

is passed as the argument to the createImp method SQWRLFactory, the factory returns a 

result set, which contains every Initiates statement in the current knowledge base. This 

can be seen as equivalent to the circumscription of Initiates:

 (e=?e  ∧ f=?f) ≡ Initiates (e,f,t)

The general use of SQWRL in the DEC resolver is treated in greater depth in 7.4.4 and 
in the descriptions of algorithms in 7.5.

6.3.4 Negated predicates

Negations of predicates (e.g. ¬HoldsAt) are represented by complements of the 

corresponding OWL classes (e.g. ece:NotHoldsAt represents ¬HoldsAt). The OWL 

complements are defined with the owl:complementOf construct. The rationale for this is 

described in 6.4.

6.3.5 State constraints

Some rules apply instantly, without reference to time and they carry implications that 

hold for a  fixed state, regardless of timepoints. In DEC these can be expressed in 

relationships between observations, or in other words (¬)HoldsAt statements. So for 

instance, a transitive relation can be written as  HoldsAt(R(x,y),t) ∧ HoldsAt(R(y,z),t) ⇒ 

HoldsAt(R(x,z),t) 

In the OWL/SWRL DEC ontology this could be expressed in the rule

92

ece:Event(?ece:e) ∧ ece:Fluent(?ece:f)  ∧  ece:Initiates(?ece:initiates)  ∧ 
ece:hasEvent(?ece:initiates, ?ece:e)   ece:hasFluent(?ece:initiates, ?ece:f)  ∧ 
ece:hasTime(?ece:initiates, ?ece:t) ∧  ece:hasFluentClass(?ece:initiates, ?ece:c) ∧ 
swrlb:equal(?ece:t, [timepoint] ) ⇒ sqwrl:select(?ece:initiates, ?ece:e, ?ece:f, ?
ece:t, ?ece:c)



Clearly this is a more complicated way of describing the relation. The OWL/SWRL 

version of the rule given here has the advantages of being decidable and applicable to a 

domain ontology in OWL-DL. However, this method of encoding a transitive relation 

becomes unnecessary in the light of OWL 2's support for transitive properties [39].

6.4 Use of OWL constraints to permit closed-world reasoning

The issues that underlie an attempt to enable closed-world reasoning in an OWL 

ontology have already been discussed in 2.11.   

The ECE ontology makes use of two of the features described in that section, 

namely disjoint and complement classes. Each of the top-level classes in the ECE 

ontology is defined as owl:disjointWith all of its siblings, so for instance ece:Event is 

disjoint with ece:Fluent and all the predicate classes. This can be seen in Appendices B-

1.1.1 and B-1.1.2. In this way, the ontology makes a distinction between the basic sorts 

and the predicates defined in DEC, even though the syntax of OWL permits an 

individual to be an instance of any class. Any individual that is defined as an instance of 

more than one disjoint classes, for instance ece:Event and ece:Fluent, will break the 

DEC knowledge base by introducing an inconsistency.

Another OWL feature used by the ECE ontology for closure is the 

owl:complementOf operator, which is used to define negated versions of some of the 

predicates. The ece:HoldsAt and ece:NotHoldsAt classes are defined as complements of 

one another, as shown in Appendix B-1.1.2. The ece:Stopped and ece:Started classes 

are defined similarly (Appendix B-1.1.1).

6.5 Use of SWRL built-in functions

In this implementation, the custom Protégé function swrlx:makeOWLThing is used to 

create the new individual, for instance swrlx:makeOWLThing(?ece:notStopped, ?

ece:initiates) from DEC 3 as described in 6.7.2. By using this built-in function it is 

possible to add new facts to an OWL/SWRL knowledge base, though this can break 

93

ece:HoldsAt(?holdsAt) ∧ R(?r) ∧ R(?r2) ∧ X(?x) ∧ Y(?y) ∧ Z(?z)  ∧ 
ece:hasRelation(?holdsAt, ?r) ∧ ece:hasRelation(?holdsAt, ?r2) ∧ ece:hasDomain(?
r, ?x) ∧ ece:hasRange(?r, ?y) ∧ ece:hasDomain(?r2, ?z) ⇒ hasRelation(?holdsAt, ?
r3) ∧ ece:hasDomain(?r3, ?x) ∧ ece:hasRange(?r3, ?z)



non-monotonicity. The swrlx: extension to SWRL provides some rules that can change 

the contents of a knowledge base by adding new assertions to the ABox. As has been 

documented, this can break the monotonicity of an OWL/SWRL knowledge base [127]

Other extensions used in the DEC ontology and in some of the domain 

ontologies created as part of the tests in Chapter 8 include some basic arithmetic 

operations like swrlb:add().

The SWRL built-in extension mechanism is designed in such a way as to make it 

possible to define builtins that are not DL-safe. An example from the Protégé online 

documentation [182] serves to illustrate this point:  

Although this rule looks quite harmless, it is actually very dangerous. The immediate 

outcome of invoking the rule is that a new value for ?age is created for ?d; 

unfortunately, the rule will then be invoked against the new value of the hasAge 

property and  for every new value created thereafter. In other words, the rule will never 

terminate, which will play havoc with a reasoner.

In the DEC resolver framework, this issue has affected the way in which the 

problem of representing changing variables is tackled, as described in 8.5.

6.6 Definitions: Stopped and Started

The Stopped and Started predicates were introduced to EC to deal with causal 

constraints [72]. To translate these axioms into rules it is necessary to support existential 

quantification and two way implication.

6.6.1 DEC1

This states that a fluent f is stopped between timepoints t1 and t2 if there is an event that 

terminates f  after t1 and before t2.

6.6.2 The interpretation of DEC1 in SWRL

The SWRL interpretation used in the prototype DEC ontology takes the following form:
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StoppedIn (t1, f, t2)≡  ∃ e, t (Happens(e, t) ∧ t1  t  t2   ∧ Terminates(e, f, t))

Driver(?d) ∧hasAge(?d, ?age)∧ swrlb:add(?newage, ?age, 1) ⇒ hasAge(?d, ?newage)



6.6.3 DEC2

This states that a fluent f is started between timepoints t1 and t2 if there is an event that 

initiates f after t1 and before t2.

6.6.4 The interpretation of DEC2 in SWRL

6.7 Trajectory and Antitrajectory

6.7.1 Overview

The concepts of trajectory and antitrajectory derives from the need to represent 

continual change,  which is a well established requirement in AI representation schemes 

[89]The event calculus uses the Trajectory and AntiTrajectory predicates to deal with 

this requirement, as first introduced in [88]. In the DEC change is represented as a 

gradual, rather than a continuous process , so change is approximated to a representation 

across a group of timepoints that are measured out according to the granularity of the 

time scale chosen to represent it. Rules based on these axioms will require the ability to 

represent complements of atoms(for the ¬StoppedIn and ¬StartedIn predicates), 

conjunction, addition function for integers
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ece:Happens(?ece:happens) ∧ ece:Event (?ece:e) ∧ ece:Terminates(?ece:terminates)
 ∧ ece:StoppedIn(?ece:stopped) ∧ ece:hasTime (?ece:happens, ?ece:t)
 ∧ ece:hasStartTime(?ece:stopped, ?ece:t2) 
 ∧ ece:hasEndTime (?ece:stopped, ?ece:t2)
 ∧ ece:hasTime(?ece:terminates, ?ece:t) ∧ ece:hasEvent (?ece:terminates, ?ece:e)
 ∧ ece:hasFluent (?ece:terminates, ?ece:f) ∧ swrlb:lessThan (?ece:t2, ?ece:t)
 ∧ swrlb:lessThan (?ece:t, ?ece:t2)
 ⇒ece:hasFluent (?ece:stopped, ?ece:f)

StartedIn (t1, f, f2) ≡  ∃ e, t (Happens (e, t) ∧ t1 < t < t2 ∧ Initiates (e, f, t))

ece:Happens (?ece:happens) ∧ ece:Event (?ece:e) ∧ ece:Initiates (?ece:initiates)
 ∧ ece:StartedIn(?ece:started) ∧ ece:hasTime (?ece:happens, ?ece:t)
 ∧ ece:hasStartTime (?ece:started, ?ece:t2) ∧ ece:hasEndTime (?ece:started, ?ece:t2)
 ∧ ece:hasTime (?ece:initiates, ?ece:t) ∧ ece:hasEvent (?ece:initiates, ?ece:e)
 ∧ ece:hasFluent (?ece:initiates, ?ece:f) ∧ swrlb:lessThan (?ece:t1, ?ece:t)
 ∧ swrlb:lessThan (?ece:t, ?ece:t2)
  ⇒ ece:hasFluent (?ece:started, ?ece:f)



The representation of changing values over time is dealt with in DEC by the 

trajectory and antitrajectory axioms,  DEC 3 and DEC 4. These are discussed in 6.7. A 

decision was made to implement a naïve solution that involves creating multiple fluents 

to represent a value at different points in time (as implemented for the Height fluent in 

Section 8.5). However, the process of managing these fluent values introduced its own 

set of problems in the DEC resolver implementation: these problems are discussed in 

8.5.3 and 8.5.6; some suggestions for improvement are given in 10.4.3.2.

6.7.2 DEC3

This states that if an event occurs to initiate fluent f1 at time t1 and if there is a 

trajectory that makes this fluent trigger another fluent f2 after a period of time t2, then 

the fluent f2 will hold at t1+t2, assuming that f1 is not stopped between t1 and t1+t2.

6.7.3 The interpretation of DEC3 in SWRL

6.7.4 DEC4

This defines the equivalent to DEC3 for antitrajectories, so if an event occurs to 
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Happens(e, t2) ∧ Initiates(e, f2, t2 ) ∧ 0 < t2 ∧ Trajectory (f1,t1, f2, t2)
 ∧ ¬StoppedIn(t1, f1, t1 + t2) ⇒ HoldsAt (f1, t1 + t2)

ece:Happens(?ece:happens) ∧ ece:Event (?ece:e) ∧ ece:Fluent (?ece:f1)
 ∧ ece:Fluent (?ece:f2) ∧ ece:Initiates(?ece:initiates)
 ∧ swrlx :makeOWLThing (?ece:notStopped, ?ece:initiates)
 ∧ ece:Trajectory (?ece:trajectory) 
 ∧ swrlx :makeOWLThing(?ece:holdsAt, ?ece:initiates)
 ∧ ece:hasEvent (?ece:happens, ?ece:e) ∧ ece:hasTime (?ece:happens, ?ece:t2)
 ∧ ece:hasEvent (?ece:initiates, ?ece:e) ∧ ece:hasFluent (?ece:initiates, ?ece:f2)
 ∧ ece:hasTime(?ece:initiates, ?ece:t2) ∧ swrlb :lessThan(0, ?ece:t2)
 ∧ ece:hasStartFluent (?ece:trajectory, ?ece:f1) 
 ∧ ece:hasEndFluent (ece:trajectory, ?ece:f2)
 ∧ ece:hasStartTime(?ece:trajectory, ?ece:t2) 
 ∧ ece:hasEndTime (?ece:trajectory, ?ece:t2)
 ∧ ece:hasStartTime(?ece:notStopped, ?ece:t2) ∧ swrlb :add (?ece:t2, ?ece:t2, ?ece:t2)
 ∧ ece:hasEndTime (?ece:notStopped, ?ece:t2) 
 ∧ ece:hasFluent (?ece:notStopped, ?ece:f1)
⇒ece:NotStoppedIn(?ece:notStopped) ∧ ece:HoldsAt (?ece:holdsAt)
 ∧ ece:hasFluent (?ece:holdsAt, ?ece:f2) ∧ ece:hasTime (?ece:holdsAt, ?ece:t3)

Happens(e, t1) ∧ Terminates(e, f1, t1) ∧ 0 < t2 ∧ AntiTrajectory (f1,t1, f2, t2) ∧ 
¬StartedIn (t1, f1, t1+ t2)⇒ HoldsAt (f2, t1 + t2)



terminate fluent f1 at time t1 and an antitrajectory makes f1 trigger f2 at t1+t2, then f2 

will hold at t1+t2, assuming that f1 is not re-started between t1 and t1+t2.

6.7.5 Interpretation of DEC4 in SWRL

6.8 Commonsense Law of Inertia 

6.8.1 Overview

Explanation closure axioms are the axioms used to represent inertia in EC; they show 

that fluents do not change over time unless certain events occur. They ensure that a 

statement like HoldsAt(BookOnTable, 1) will naturally lead to HoldsAt(BookOnTable,  

2) unless an event intervenes to change the truth value of the BookOnTable fluent. In 

addition, the explanation closure axioms ensure that a fluent's value can only be 

changed when that fluent has been released from the commonsense law of inertia – or in 

other words, has been allowed to change. In DEC, explanation closure is defined in 

axioms DEC 5 through to DEC 8, covered by this section.

These axioms all include existentially quantified statements that are negated (¬∃ 

(x)). If a rules language does not support these features, then these statements will not 

be expressible in the rules. Indeed all SWRL variables are treated as universally 

quantified, as  specified in the W3C Member Submission document [47]. Thus it is not 

possible to write these rules directly in SWRL; they need to be expressed through 
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ece:Happens (?ece:happens) ∧ ece:Event (?ece:e) ∧ ece:Fluent (?ece:f2)
 ∧ ece:Fluent (?ece:f2) ∧ ece:Terminates (?ece:terminates)
 ∧ swrlx:makeOWLThing (?ece:notStarted, ?ece:terminates)
 ∧ ece:AntiTrajectory (?ece:antiTrajectory)
 ∧ swrlx:makeOWLThing (?ece:holdsAt, ?ece:terminates) ∧ ece:hasEvent (?
ece:happens, ?ece:e)
 ∧ ece:hasTime (?ece:happens, ?ece:t1) ∧ ece:hasEvent (?ece:terminates, ?ece:e)
 ∧ ece:hasFluent (?ece:terminates, ?ece:f1) ∧ ece:hasTime (?ece:terminates, ?ece:t1)
 ∧ swrlb:lessThan(0,?ece:t2) ∧ ece:hasStartFluent (?ece:antiTrajectory, ?ece:f1)
 ∧ ece:hasEndFluent (?ece:antiTrajectory, ?ece:f2)
 ∧ ece:hasStartTime (?ece:antiTrajectory, ?ece:t1)
 ∧ ece:hasEndTime (?ece:antiTrajectory, ?ece:t2) ∧ ece:hasStartTime(?ece:notStarted,  
?ece:t1)
 ∧ swrlb: add (?ece:t3, ?ece:t1, ?ece:t2) ∧ ece:hasEndTime(?ece:notStarted, ?ece:t3)
 ∧ ece:hasFluent (?ece:notStarted, ?ece:f1)
⇒ece:NotStartedIn(?ece:notStarted) ∧ ece:HoldsAt (?ece:holdsAt)
 ∧ ece:hasFluent (?ece:holdsAt, ?ece:f2) ∧ ece:hasTime(?ece:holdsAt, ?ece:t3)



general purpose programming. 

6.8.2 DEC5

This states that if a fluent f holds at time t and is not released from the commonsense 

law of inertia at time t and an event does not occur at t to terminate fluent f at time t, 

then the fluent f will hold at the next timepoint, i.e. t+1.

6.8.3 The interpretation of DEC5 through software

The lack of an existential quantifier in SWRL means that it is impossible to express 

DEC 5 in SWRL alone. Thus it is necessary to employ a different approach to 

interpreting the axiom; we have chosen to implement this axiom through an algorithm 

in the DEC resolver, which is described in detail in section 7.6.2 below.

6.8.4 DEC6

This is identical to DEC5 except it deals with cases where fluent f does not hold at t and 

by implication at t+1.

6.8.5 The interpretation of DEC 6 through software

For the reasons described in section 6.8.3 above it is not possible to express DEC 6 in 

SWRL alone. The same algorithm in the DEC resolver is used to deal with DEC 5. In 

this case, the algorithm looks for Initiates statements to determine whether the 

¬HoldsAt statement can carry on from timepoint t to t+1.

6.8.6 DEC7

This states that if fluent f is released from the commonsense law of inertia at time t and 

an event does not occur at t to terminate fluent f at time t, then the fluent f will still be 
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HoldsAt (f, t) ∧ ¬ReleasedAt (f, t+1) ∧ ¬∃e (Happens(e, t) ∧ Terminates(e, f, t ))
⇒ HoldsAt (f, t+1)

¬HoldsAt (f, t) ∧ ¬ReleasedAt (f, t+1) ∧ ¬  ∃ e (Happens (e, t) ∧ Initiates(e, f, t))
⇒¬HoldsAt (f, t+1)

ReleasedAt (f, t) ∧ ¬  ∃ e(Happens(e,t) ∧ (Initiates (e, f, t) Terminates(e, f, t∨ )))
⇒ ReleasedAt (f, t 1 )



released from the commonsense law of inertia at the next timepoint, i.e. t+1. In addition 

to negated existential quantification, DEC 7 requires disjunction; however this could be 

written out as two separate rules in the absence of conjunction in the rules language, 

assuming that it is possible to deal with the other requirements.

6.8.7 The interpretation of DEC 7 through software

This axiom is dealt with in a main algorithm that is described in 7.6.2 and Appendix A-

1.3. The main purpose of the algorithm is to deal with the negation-as-failure part of the 

axiom, i.e. ¬  ∃ e(Happens(e,t) ∧ (Initiates (e, f, t) Terminates(e, f, t∨ )). This is achieved 

with the help of SQWRL queries.

6.8.8 DEC 8

This is identical to DEC7 except it deals with cases where f is not released at t and by 

implication t+1

6.8.9 The interpretation of DEC 8 through software

Like DEC 5-7, this axiom is dealt with in the general algorithm outlined in 7.6.2 and 

like DEC 7 it is based on source code from Appendix A-1.3. Here the algorithm deals 

with resolving ¬∃e (Happens (e, t) ∧ Releases (e, f, t)).

6.9 Effect and release axioms

6.9.1 Overview

The effect and release axioms are all concerned with the way that events affect fluents, 

i.e. with the axioms that involve Initiates, Terminates  and ReleasesAt predicates. These 

axioms require most of the features already listed in the summaries above.

6.9.2 DEC 9

This states that if an event e initiates fluent f at time t then f will hold at t+1  
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¬ReleasedAt (f, t) ∧ ¬∃e (Happens (e, t) ∧ Releases (e, f, t)) ¬ReleasedAt (f, t⇒ 1 )

Happens(e, t) ∧ Initiates(e, f, t)  HoldsAt (f, t⇒ 1 )



6.9.3 The interpretation of DEC9 in SWRL

This makes use of the swrlb built-in function to increment the timepoint for the HoldsAt  
statement from t to t+1

6.9.4 DEC 10

This states that if event e terminates f at t then f will not hold at t+1. If DEC 9 and DEC 

10 both apply to f at t, then there will clearly be a conflict between the two results; it is 

the responsibility of the application domain to resolve such conflicts appropriately. 

6.9.5 The interpretation of DEC10 in SWRL
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ece:Happens (?ece:happens) ∧ ece:Initiates(?ece:initiates) ∧ 
swrlx:makeOWLThing (?ece:holdsAt, ?ece:initiates) ∧ ece:Event (?ece:e)
 ∧ ece:Fluent (?ece:f) ∧ ece:hasEvent (?ece:happens, ?ece:e)
 ∧ ece:hasTime (?ece:happens, ?ece:t) ∧ ece:hasEvent (?ece:initiates, ?ece:e)
 ∧ ece:hasTime (?ece:initiates, ?ece:t) ∧ ece:hasFluent (?ece:initiates, ?ece:f)
 ∧ swrlb: add (?ece:t2, ?ece:t, 1)
⇒ece:HoldsAt (?ece:holdsAt) ∧ ece:hasFluent (?ece:holdsAt, ?ece:f)
 ∧ ece:hasTime (?ece:holdsAt, ?ece:t2)

Happens(e, t) ∧ Terminates(e, f, t)⇒¬HoldsAt(f, t+1)

ece:Happens(?ece:happens) ∧ ece:Terminates (?ece:terminates)
 ∧ swrlx :makeOWLThing (?ece:holds, ?ece:terminates)
 ∧ ece:Event (?ece:e) ∧ ece:Fluent (?ece:f ) ∧ ece:hasEvent (?ece:happens, ?ece:e)
 ∧ ece:hasTime (?ece:happens, ?ece:t) ∧ ece:hasEvent (?ece:terminates, ?ece:e)
 ∧ ece:hasTime (?ece:terminates, ?ece:t) ∧ ece:hasFluent (?ece:terminates, ?ece:f)
 ∧ swrlb: add (?ece:t2, ?ece:t, 1)
⇒ece:NotHoldsAt (?ece:holds) ∧ ece:hasFluent (?ece:holds, ?ece:f)
 ∧ ece:hasTime (?ece:holds, ?ece:t2)



6.9.6 DEC 11

The final two axioms deal with the effects of events on the commonsense law of inertia 

as it applies to the fluents that they affect. Essentially, the axioms state that a fluent 

cannot be released from inertia unless it is affected by the Releases predicate.

Axiom DEC 11 states that if an event e happens at t and it releases fluent f at 

time t then f will be released from the commonsense law of inertia at time t+1.

6.9.7 The interpretation of DEC11 in SWRL

6.9.8 DEC 12

As a complement to DEC 11, this states that if event e initiates or terminates fluent f at t 

then f will not be released from the commonsense law of inertia at t+1. 
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Happens(e, t) ∧ Releases(e, f, t)⇒ ReleasedAt (f, t 1 )

ece:Happens(?ece:happens) ∧ ece:Releases (?ece:releases) ∧ ece:ReleasedAt (?
ece:released)
 ∧ ece:Event (?ece:e) ∧ ece:Fluent (?ece:f ) ∧ ece:hasEvent (?ece:happens, ?ece:e)
 ∧ ece:hasTime(?ece:happens, ?ece:t) ∧ ece:hasEvent (?ece:releases,?ece:e)
 ∧ ece:hasTime(?ece:releases, ?ece:t) ∧ ece:hasFluent (?ece:releases, ?ece:f)
 ∧ swrlb: add(?ece:t2, ?ece:t, 1)
⇒ece:hasFluent (?ece:released, ?ece:f) ∧ ece:hasTime(?ece:released, ?ece:t2)

Happens(e, t) ∧ (Initiates(e, f, t)  ⋁ Terminates (e, f, t))⇒¬ReleasedAt (f, t+1)



6.9.9 The interpretation of DEC12 in SWRL

This axiom has to be divided into two separate SWRL rules to cater for the ⋁ 

conditions, i.e. Initiates(e, f, t) and Terminates(e, f, t)
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ece:Happens(?decaxioms:happens)  ∧
ece:Terminates(?decaxioms:terminates)  ∧
ece:Event(?decaxioms:e)  ∧
ece:Fluent(?decaxioms:f)  ∧
ece:hasEvent(?decaxioms:happens, ?decaxioms:e)  ∧
ece:hasTime(?decaxioms:happens, ?decaxioms:t)  ∧
ece:hasEvent(?decaxioms:terminates, ?decaxioms:e)  ∧
ece:hasTime(?decaxioms:terminates, ?decaxioms:t)  ∧
ece:hasFluent(?decaxioms:terminates, ?decaxioms:f)  ∧
swrlb:add(?decaxioms:t2, ?decaxioms:t, 1)  ∧
swrlx:makeOWLThing(?decaxioms:notReleasedAt, ?decaxioms:terminates) 
  ⇒ ece:NotReleasedAt(?decaxioms:notReleasedAt)  ∧
ece:hasFluent(?decaxioms:notReleasedAt, ?decaxioms:f)  ∧
ece:hasTime(?decaxioms:notReleasedAt, ?decaxioms:t2)

ece:Happens(?ece:happens) ∧ 
ece:Initiates(?ece:initiates) ∧
swrlx :makeOWLIndividual (?ece:notReleased, ece:NotReleasedAt) ∧ 
ece:Event (?ece:e) ∧ 
ece:Fluent (?ece:f ) ∧ 
ece:hasEvent (?ece:happens, ?ece:e) ∧ 
ece:hasTime(?ece:happens, ?ece:t) ∧ 
ece:hasEvent (?ece:initiates, ?ece:e) ∧ 
ece:hasTime(?ece:initiates, ?ece:t) ∧ 
ece:hasFluent (?ece:initiates, ?ece:f) ∧ 
swrlb: add(?ece:t2, ?ece:t, 1)

 ece:NotReleasedAt(?decaxioms:notReleasedAt) ⇒ ∧
ece:hasFluent (?ece:notReleased, ?ece:f) ∧ 
ece:hasTime (?ece:notReleased, ?ece:t2)



Chapter 7 Design of DEC resolver prototype

7.1 Overview

7.1.1 Scope of this chapter

This section outlines the requirements and design principles behind the DEC resolver 

software used in conjunction with the DEC ontology to perform reasoning functions on 

the DEC ontology axioms. The requirements for the DEC resolver are established in 

section 7.2 and these are followed by an analysis of the package structure, UML 

descriptions of relationships between the main classes and interfaces and explanations 

of the main algorithms used in the software.

The prototype design section relates to the initial motivation by helping to show 

how the DEC axiomatization presented in 6 can be implemented with Semantic Web 

technology. The DEC resolver software provides the means by which a DEC model can 

be implemented in a general purpose programming language. The software is 

implemented in Java, as a consequence of the choice of the Protégé-OWL API: some 

other Semantic Web APIs use different languages, as shown in chapter 3.3.

7.1.2 Organization of this chapter

In 7.2 the main requirements of the DEC resolver software are laid out and the 

remainder of chapter 7 describes in detail how the DEC resolver software has been 

designed to meet these requirements. The use of Protégé-OWL classes and interfaces is 

extensively discussed in 7.4, the design of the DEC resolver classes and interfaces, 

including their use of design patterns, is dealt with in 7.5 and algorithms are detailed in 

7.6.

7.1.3 Code references

Each of the algorithms described in the following sections is derived from a 

corresponding Java source code listing from Appendix A.
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7.2 Specific requirements for DEC resolver prototype

7.2.1 Maintain consistent current timepoint representation

New ABox assertions can be made at any timepoint and the DEC resolver should be 

able to resolve these correctly. Specifically, it should keep a record of the domain 

description as it applies at each individual timepoint. When the observations change and 

a new (¬)HoldsAt or (¬)ReleasedAt statement is created as a result of an event, the DEC 

resolver should keep a record of this and the current timepoint should contain this 

statement at the timepoints at which it applies. If this statement is overridden by 

another, then the original statement will be removed from the current timepoint 

representation. 

7.2.2 Maintain consistent EC domain representation (observations 

and narrative)

In order to implement the separation of narrative and observations from the DEC 

axioms and domain rules it should be possible to manage these parts of the knowledge 

base independently of each other. The observations and narrative should contain 

statements consistent with the DEC domain description. Unlike the current timepoint 

knowledge base, the observations and narrative do not get cleared of statements as they 

record the time-ordered lists of events and observations over a given time interval.

7.2.3 Understand OWL/SWRL ontologies that import DEC ontology

The DEC resolver should be able to read a domain ontology that imports the DEC 

ontology and it should be able to parse and resolve any DEC rules that it may contain. 

Thus with reference to the lightswitch scenario the system should be expected to 

represent the domain-specific fluents lightOn and lightOff and the SwitchLightOn and 

SwitchLightOff events. In implementation terms the DEC resolver should be able to 

represent subclasses of Event and Fluent types in the ontology in its underlying Java 

based programmatic model. Indeed, the domain ontologies that have been created for 

the test scenarios in Chapter 8 define events and fluents that extend the ece:Event and 

ece:Fluent classes and when these tests are run, the DEC resolver incorporates these and 

manipulates them in the narrative, observation and current frame knowledge bases.

104



7.2.4 Resolve DEC rules

The system should be able to process SWRL rules in an OWL/SWRL ontology. It 

should be able to run the rules against a changing knowledge base in which new ABox 

assertions may be made at each time point. It should be possible to represent a DEC 

domain in OWL/SWRL using the DEC ontologies provided here; the DEC resolver 

should be able to interpret this domain description and to output the correct narrative 

and set of observations. The narrative and observations should be outputted as new 

statements which are automatically added to the knowledge bases mentioned in 7.2.2.

7.3 Design overview

7.3.1 Package structure
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Figure 7.1: package dependencies for DEC resolver

stanford::smi::protegex::owl::model

stanford::smi::protegex::owl::swrl event::model::entities

event::model::builder event::model::facade

event::model



An overall picture of the package structure for the DEC resolver framework is provided 

by Figure 7.1 Online Javadoc documentation is available for the Protégé and Protégé-

OWL APIs [183] and for the JUnit API 

Note the pattern of dependencies, which shows that the user defined 

(event.model) and external (edu.stanford.smi.protegex.owl...) packages all ultimately 

depend on the edu.stanford.smi.protegex.owl.model package, which is described in 

7.4.2. This dependency reflects the fact that the edu.stanford.smi.protegex.owl.model 

package contains the core interfaces of the Protégé-OWL API, i.e. the fundamental 

building blocks for models, as well as the OWLModel interface itself.

7.3.2 Organization of packages in DEC resolver

The classes and interfaces defined in the DEC resolver are divided under two main 

packages, event, which is further divided into model.entities, model.builder, facade and 

model.listener sub-packages and test, which contains the JUnit test harnesses that define 

the benchmark tests that form the subject of Chapter 8.

7.4 External classes and interfaces (from Protégé-OWL, JUnit)

The Protégé framework includes the ability to generate Java classes that can be used to 

create individuals that fit into an in-memory OWL knowledge base with the Protégé-

OWL API.

7.4.1 Model setup (edu.stanford.smi.protegex.owl)

This package contains the ProtegeOWL placeholder class used for generic services like 

creating OWLModel instances and setting the directory for plugins. This class is used to 

obtain a reference to the underlying Jena models for the narrative, observations and 

current frame when the DEC resolver is first being set up. When creating a new 

OWLModel instance from a source URI it is necessary to call the static method 

ProtegeOWL.createJenaOWLModelFromReader(Reader r); there is also a parameter-

free version of this method, which is used when creating a model without a source. In 

the DEC resolver, the current frame model is created from a source URI, which points 

to the source ontology used for the current application domain, while the observation 

and narrative models are created “blank” and so the parameter-free version is used for 

these.
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7.4.2 OWL models (edu.stanford.smi.protegex.owl.model)

The model package contains the core classes used for creating and manipulating OWL 

models and their constituent OWL classes, properties and individuals.

Firstly, the package contains the OWLModel interface, which is used as the in-

memory representation of a knowledgebase. As outlined in section 5.3 the  DEC domain 

description is split into the narrative, observation and current timepoint knowledge 

bases.  The DEC resolver creates an instance of OWLModel for each of these three 

component knowledge bases and it updates them with new statements when rules are 

executed.

The edu.stanford.smi.protegex.owl.model package also contains the 

OWLNamedClass interface, which is used in creating individual instances of classes in 

the observations, narrative and current frame knowledge bases. In addition this package 

contains the OWLIndividual interface, which is used for creating owl:Individual 

instances in the narrative and observation knowledge bases, e.g., OWLIndividual  

happens = narrative.getOWLNamedClass("Happens"). createOWLIndividual (h). 

This interface is also used where the DEC resolver has to obtain a reference to an 

owl:Individual from a knowledge base, e.g. in the case where it has to add a new 

HoldsAt(f,t) statement to the observations and needs to find the reference to the fluent f  

for which it applies: OWLIndividual fluent = observations.getOWLIndividual(f);

Other notable interfaces defined in this package are the OWLDatatypeProperty 

and OWLObjectProperty, which are used in the DEC resolver software to define the 

ece:hasEvent, ece:hasFluent and ece:hasTimepoint properties outlined in 6.2.2.2. 

edu.stanford.smi.protegex.owl.model.event.ModelListener;

7.4.3 SWRL (edu.stanford.smi.protegex.owl.swrl)

The SWRLFactory [184] is the entry point for the creation of SWRL statements in the 
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Figure 7.2: test.LightswitchScenarioTest class

LighswitchScenarioTest

~turnOn1 : TurnOn1
~turnOn2 : TurnOn2
~on1 : On1
~on2 : On2

<<JavaElement>> <<setter>>+setUp() : void{JavaAnnotations = "@Before"}
<<JavaElement>>+testLightswitchScenario() : void{JavaAnnotations = "@Test"}



Protégé-OWL API. It also defines the methods for executing statements and 

manipulating their results.

In the main DEC resolver algorithm (described in 7.6.1), the Resolver class (see 

7.5.1) asks the SWRLRuleEngineBridge [185] to call its infer() method. Consequently, 

this method call sends further calls to the JESS rules engine: these method calls perform 

the  inference procedures on the current frame knowledgebase by running the SWRL 

rules. The infer() method defined in the SWRLRuleEngineBridge triggers off a sequence 

of other methods that process the SWRL rules. The sequence of me is as follows: the 

rules and ABox assertions are loaded into the bridge, then they are dispatched to the 

rules engine, after which the engine is run and inferred knowledge is written back into 

the current frame knowledge base. As a result, new statements are added to the 

knowledgebase, and subsequently the knowledge base is queried using the SQWRL 

engine as detailed in 7.4.4.

7.4.4 SQWRL (edu.stanford.smi.protegex.owl.swrl.sqwrl)

SQWRL is used in the DEC resolver software as a way of querying the current frame 

knowledge base so that the different predicate statements can be separated and resolved 

appropriately in the resolver, as described in 7.6.1 and 7.6.2. The SQWRL language is 

an extension of SWRL that executes queries on OWL/SWRL ontologies in order to get 

information out of them. SQWRL queries can only work on known individuals 

(instances) in an ontology but they do not permit any alterations to the information that 

they might extract from the ontology. In essence SQWRL is a querying language that 

provides a feature similar to the well-established SELECT operator in SQL [186].

Although SQWRL is executed via the SWRL built-ins mechanism [187], the 

SQWRL operators work differently to other built-ins defined in SWRL in that they build 

up data structures that exist outside an ontology. These data structures are tables that 

could be compared to SQL result sets. 

An interface called SQWRLQueryEngine defines the methods that control the 

execution of SQWRL queries. Only two methods are defined and both of these are used 

in the DEC resolver prototype; runSQWRLQueries() which runs all the SQWRL queries 

defined in a knowledge base and getSQWRLResult(String queryName) which fetches 

the SQWRLResultSet for a given SQWRL query. 
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7.4.5 Utilities 

The OWLModelContentWriter interface, found in the Protégé-OWL API under the 

edu.stanford.smi.protegex.owl.writer.rdfxml.rdfwriter package, is used for writing the 

OWLModel out to XML, which can then be saved to file or outputted to the screen. 

7.4.6 Testing (org.junit)

JUnit provides a  framework for creating robust and extensible unit tests ([188]) and 

JUnit 4.0 is used for defining the tests that evaluate the DEC resolver. The Eclipse IDE 

features comprehensive support for running JUnit tests inside Eclipse projects, which 

made the test design and execution processes easier to handle.

The general procedure taken by the JUnit tests are described in general terms in 

8.1.3, while the individual tests are covered in subsequent subsections in Chapter 8.

The two main classes from org.junit are annotations, @Before and @Test. The @Test 

annotation indicates to JUnit to run the annotated method as a unit test, checking for 

failed test assertions and exceptions: a @Test method will fail if it executes failed 

assertions or throws an exception. @Before is used to create objects that one or more 

test methods may need to use. A method that is annotated @Before is guaranteed to run 

before a method annotated with @Test. 

7.5 DEC Resolver class and interface summaries

7.5.1 DEC resolution (event.model.Resolver)

At the top level of the event.model hierarchy are the main classes used by the DEC 

resolver. The Resolver is the “entry point” class for DEC resolution, containing the 

methods that compose the main algorithms described in 7.6. An overview of the 

methods and attributes defined in the event.model.Resolver class is provided by Figure 

7.3. Note that the attributes include SQWRLResults for each of the different DEC 

statement types (i.e. happensResult, holdsAtResult, releasedAtResult and the rest.) These 

are used in the main DEC algorithm outlined in 7.6.1 and in the algorithms that update 

different parts of the current frame knowledge base as shown for example in 7.6.2, 7.6.3 

and 7.6.4. Note also that there are methods for creating and resolving these queries. 

These create and resolve methods are used in the main DEC resolver algorithm.

In addition the Resolver defines methods that are used to add certain types of 
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statement to certain knowledge bases, like addHoldsAtStatementToObservations, the 

algorithm for which is described in 7.6.4. Essentially these methods all work along 

similar lines, though they differ in their precise details because of the varied parameter 

requirements for recording the predicates.

The only public methods defined in the Resolver class are the ones used for 

running the resolver process, i.e. runTimepoint(int t) which runs the DEC scenario for 

timepoint t and runToTimepoint(int t)  which runs the scenario from timepoint 0 up to 

and including t.
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Figure 7.3: event.model.Resolver class

Resolver

-instance : Resolver
-observations : OWLModel = OWLModelFacade.getInstance().getObservations()
-entityFactory : EntityFactory2 = EntityFactory2.getInstance()
-notHoldsAtObservationsFluentMap : OWLIndividual [0..*] = new HashMap<OWLIndividual,OWLIndividual>()
-holdsAtObservationsFluentMap : OWLIndividual [0..*] = new HashMap<OWLIndividual,OWLIndividual>()
-releasedAtObservationsFluentMap : OWLIndividual [0..*] = new HashMap<OWLIndividual,OWLIndividual>()
-notReleasedAtObservationsFluentMap : OWLIndividual [0..*] = new HashMap<OWLIndividual,OWLIndividual>()
-holdsAtNextFrameMap : OWLIndividual [0..*] = new HashMap<OWLIndividual,OWLIndividual>()
-notHoldsAtNextFrameMap : OWLIndividual [0..*] = new HashMap<OWLIndividual,OWLIndividual>()
-releasedAtNextFrameMap : OWLIndividual [0..*] = new HashMap<OWLIndividual,OWLIndividual>()
-notReleasedAtNextFrameMap : OWLIndividual [0..*] = new HashMap<OWLIndividual,OWLIndividual>()
-releasesResult : SQWRLResult
-releasedAtResult : SQWRLResult
-happensResult : SQWRLResult
-holdsAtResult : SQWRLResult
-timeProperty : OWLDatatypeProperty = currentFrame.getOWLDatatypeProperty("ece:hasTime")
-fluentProperty : OWLObjectProperty = currentFrame.getOWLObjectProperty("ece:hasFluent")
-currentTimepoint : OWLIndividual
~createdIndividuals : OWLIndividual [0..*]

<<constructor>>-Resolver()
<<getter>>+getInstance() : Resolver
+runToTimepoint( endTimepoint : int ) : void
+runTimepoint( timepoint : int ) : void
-addReleasedAtStatementsToObservations( f : String, c : Collection, timepoint : int ) : void
-addNotReleasedAtStatementsToObservations( f : String, c : Collection, timepoint : int ) : void
-advanceFrame() : void
-runRules() : void
-resolveHappensStatements( timepoint : int ) : void
-resolveInitiatesStatements( timepoint : int ) : void
-resolveTerminatesStatements( timepoint : int ) : void
-resolveReleasesStatements( timepoint : int ) : void
-resolveReleasedAtStatements( timepoint : int ) : void
-addHappensStatementToNarrative( e : String, timepoint : int ) : void
-resolveHoldsAtStatements( timepoint : int ) : void
-addNotHoldsAtStatementToObservations( f : String, c : Collection, timepoint : int ) : void
-createHappensQuery( timepoint : int ) : SWRLImp
-createHoldsAtQuery( timepoint : int ) : SWRLImp
-createNotHoldsAtQuery( timepoint : int ) : SWRLImp
-createReleasesQuery( timepoint : int ) : SWRLImp
-createReleasedAtQuery( timepoint : int ) : SWRLImp
-createNotReleasedAtQuery( timepoint : int ) : SWRLImp
-createTerminatesQuery( timepoint : int ) : SWRLImp
-createInitiatesQuery( timepoint : int ) : SWRLImp
<<getter>>+getRDFIndividualsForNamespaces( uris : String"..." ) : Collection
-addHoldsAtStatementToObservations( f : OWLIndividual, timepoint : int ) : void



The runRules() method here simply calls the methods to get the SWRLFactory to run its 

inference procedures.

An important point to note about the Resolver class is its use of the Singleton 

design pattern as described by Ehrlich and Gamma [189], which ensures that any class 

conforming to it can only exist in a single instance at runtime. This feature is desirable 

in a gateway class like the Resolver, which should be created only once for any instance 

of the DEC resolver application. In the Resolver class, as in other classes mentioned 

here like the EntityFactory (7.5.2), ModelBuilder (7.5.4) and OWLModelFacade (7.5.3), 

the pattern uses a private constructor, which is accessible only via a public static method 

called getInstance(). When the constructor is called in getInstance(), it creates an 

instance of the enclosing class and puts it in an instance variable.

7.5.2 Entity representation (event.model.entities)

The entities package contains the classes and interfaces that define the DEC predicates 

and sorts as represented in the ECE ontology described in 6.2.1 and 6.2.2. These classes 

and interfaces have been generated using the  Protégé API code generation feature that 

ships with Protégé 3.4, which was discussed in 3.3.2. The EntityFactory is used as the 

main point for creating new instances of predicates, events or fluents. It defines a 

number of self-explanatory accessor methods, marked <<setter>> or <<getter>> in the 

class diagram depending on whether they are meant to alter a value or simply get a 

reference to it. This class has been modified by hand to include some additional utility 

methods that are used in testing. For instance, EventFactory.createHoldsAt(Fluent f, int  

timepoint) combines the generated methods that are used for creating the HoldsAt 

statement, creating the fluent and assigning the fluent to the statement at the timepoint. 
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The generated Java interfaces in the entities package correspond to the class definitions 

in the ontologies. Thus, there is an event.entities.Event interface defining the methods 

used to get a Protégé-OWL representation in Java of the ece:Event class from the ECE 

ontology The entities package has a sub-package called impl, which contains an 

implementation class for each of the entities defined in these interfaces. The ECE sorts 

and predicates are all represented. Two examples are presented in the following class 

diagrams, event.entities.impl.DefaultHappens and event.entities.impl.DefaultEvent

Figures 7.5 and 7.6 both show the methods implemented by basic entities that are used
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Figure 7.5: event.model.entities.impl.DefaultEvent class

DefaultEvent

<<constructor>>+DefaultEvent( owlModel : OWLModel, id : FrameID )
<<constructor>>+DefaultEvent()
<<JavaElement>> <<getter>>+getReferencedInstances( set : Set ) : void{JavaAnnotations = "@Override"}

Figure 7.4: event.model.entities.EntityFactory class

<<constructor>>-EntityFactory2( owlModel : OWLModel )
<<getter>>+getInstance() : EntityFactory2
+<X>create( javaInterface : Class<X>, name : String ) : X
<<getter>>+getReleasesClass() : RDFSNamedClass
+createReleases( name : String ) : Releases
<<getter>>+getReleases( name : String ) : Releases
<<getter>>+getAllReleasesInstances() : Set<Releases>
<<getter>>+getAllReleasesInstances( transitive : boolean ) : Set<Releases>
<<getter>>+getNotReleasedAtClass() : RDFSNamedClass
+createNotReleasedAt( name : String ) : NotReleasedAt
<<getter>>+getNotReleasedAt( name : String ) : NotReleasedAt
<<getter>>+getAllNotReleasedAtInstances() : Set<NotReleasedAt>
<<getter>>+getAllNotReleasedAtInstances( transitive : boolean ) : Set<NotReleasedAt>
<<getter>>+getTrajectoryClass() : RDFSNamedClass
+createTrajectory( name : String ) : Trajectory
<<getter>>+getTrajectory( name : String ) : Trajectory
<<getter>>+getAllTrajectoryInstances() : Set<Trajectory>
<<getter>>+getAllTrajectoryInstances( transitive : boolean ) : Set<Trajectory>
<<getter>>+getInitiatesClass() : RDFSNamedClass
+createInitiates( name : String ) : Initiates
<<getter>>+getInitiates( name : String ) : Initiates
<<getter>>+getAllInitiatesInstances() : Set<Initiates>
<<getter>>+getAllInitiatesInstances( transitive : boolean ) : Set<Initiates>
<<getter>>+getEventClass() : RDFSNamedClass
+createEvent( name : String ) : Event

EntityFactory

-ID : long
-owlModel : OWLModel
-instance : EntityFactory2

+createHoldsAt( f : Fluent, t : int ) : HoldsAt



 in the DEC resolver. The DefaultEvent class is notably simpler because it does not have 

to implement any methods from the event.model.entities.Event interface. On the other 

hand the DefaultHappens class has to implement accessor methods like getHasEvent() 

and setHasEvent(...) that control access to the properties defined by the 

event.model.entities.Happens interface.
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Figure 7.6: event.model.entities.impl.DefaultHappens class

DefaultHappens

<<constructor>>+DefaultHappens( owlModel : OWLModel, id : FrameID )
<<constructor>>+DefaultHappens()
<<getter>>+getHasEvent() : Collection
<<getter>>+getHasEventProperty() : RDFProperty
+hasHasEvent() : boolean
+listHasEvent() : Iterator
+addHasEvent( newHasEvent : Event ) : void
+removeHasEvent( oldHasEvent : Event ) : void
<<setter>>+setHasEvent( newHasEvent : Set ) : void
<<getter>>+getHasTime() : int
<<getter>>+getHasTimeProperty() : RDFProperty
+hasHasTime() : boolean
<<setter>>+setHasTime( newHasTime : int ) : void
<<JavaElement>> <<getter>>+getReferencedInstances( set : Set ) : void{JavaAnnotations = "@Override"}
<<setter>>+setHasEvent( newHasEvent : Collection ) : void



7.5.3 Facades for complex subsystems (event.model.facade)

|This package contains a number of classes that provide access to complex subsystems 

in line with the Facade pattern that Gamma and others developed [189]. Chief among 

the Facade classes created in this package is the OWLModelFacade, which acts as the 

access point for the observations, narrative and current frame knowledge bases in the 

system. There is also a SWRLFactoryFacade for accessing the factory methods for the 

specific SWRLFactory instance that is created to resolve SWRL statements in the DEC 

resolver.

The OWLModelFacade class in Figure 7.7 includes the accessor methods for 

accessing and modifying the OWL models. Note that this class includes utility methods 

for printing the different OWLModels and and exporting them to file. There are also 

addModelListener(...) methods to assign a model listener reference to the current frame 

model, so that an event handler as described in 7.5.5 can be set to respond to new events 

occurring in the current frame.
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Figure 7.7: event.model.facade.OWLModelFacade

OWLModelFacade

-instance : OWLModelFacade

<<constructor>>-OWLModelFacade()
<<getter>>+getInstance() : OWLModelFacade
+createEvent( eventType : String ) : Event
+createEvent( eventType : String, sourceValue : Object, targetValue : Object ) : Event
+createFluent() : Fluent
+createFluent( effect : String ) : Fluent
+createEntity( name : String ) : OWLIndividual
+createTestEntity() : OWLIndividual
<<getter>>-getModelString( model : OWLModel ) : String
-writeModel( model : OWLModel, name : String ) : void
-printModel( model : OWLModel ) : void
+printCurrentFrameModel() : void
+printNarrativeModel() : void
+printObservationsModel() : void
+writeCurrentFrameModel() : void
+writeNarrativeModel() : void
+writeObservationsModel() : void
+addModelListener( listener : ModelListener ) : void
+addModelListener( listener : ModelListener, event : String ) : void
-createEventIndividual( eventType : String ) : Event
<<getter>>+getModel( uri : String ) : OWLModel
<<setter>>+setCurrentFrameModel( uri : String ) : void
<<setter>>+setNarrativeModel( uri : String ) : void
<<setter>>+setObservationsModel( uri : String ) : void
<<getter>>+getCurrentFrame() : OWLModel
<<getter>>+getNarrative() : OWLModel
<<getter>>+getObservations() : OWLModel
<<getter>>+getEntityFactory() : EntityFactory2
<<getter>>+getSQWRLQueryEngine() : SQWRLQueryEngine
+holdsAt( f : Fluent, timepoint : int ) : boolean

...



7.5.4 Builder classes (event.model.builder)

The Builder pattern is intended to provide the ability to create a complex object where 

the algorithm for creating the object is independent of the parts that make up that object. 

In the ModelBuilder for instance, there are separate methods for building the narrative, 

observation and current frame models. The event.model.builder package is intended to 

hold classes that can be used for building different types of statements. 

7.5.5 Event handling interfaces and classes (event.model.listener)

Although the model listener package is currently not part of the evaluation tests, it is 

included as an important component of future work using the DEC resolver. It contains 

a collection of classes and interfaces that can be used to implement generic event 

handling. While some implementation is left to be done on the event handling 

mechanism, the essential principle is to implement the ModelListener and 

PropertyListener interfaces provided in the edu.stanford.smi.protegex.owl.model.event 

package, to listen out for changes to the narrative model. 

An event listener can be tailored to listen out for specific events based on their type or 

on other conditions. 

7.5.6 Unit tests (event.test)

The benchmark scenario tests discussed in chapter 8 are based on JUnit 4.0. Each 

scenario is tested with its own JUnit test class and an example of one of these is 

illustrated in Figure 7.8

Note that the two methods defined here, setUp() and testLightswitchScenario(), fit into a 

general pattern defined for the tests. The pattern of initializing variables in the setUp() 
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Figure 7.8: event.model.builder.ModelBuilder class

ModelBuilder

-instance : ModelBuilder
-DEFAULT_NARRATIVE_URI : String = "ontology/development/narrative.owl"
-DEFAULT_OBSERVATIONS_URI : String = "ontology/development/observations.owl"
-DEFAULT_REASONER_URI : String = "http://localhost:8081"

<<constructor>>-ModelBuilder()
<<getter>>+getInstance() : ModelBuilder
+build( modelURI : String ) : void
+buildNarrative( narrativeURI : String ) : void
+buildObservations( observationsURI : String ) : void
+buildDomainRulesModel( domainRulesModelURI : String ) : void



method and running, debugging and outputting results in the test... method ensures a 

similar pattern for all of the different tests defined for the system so that the correct 

objects are initialized when the tests are run. This point is revisited in chapter 8.

7.6 Algorithms

7.6.1 Main DEC processing algorithm

The DEC resolver's main algorithm keeps track of the current timepoint, gathers 

SQWRL select statements for different statement types by creating a separate query for 

each statement type and then processes the queries. The main task of this algorithm is to 

make the appropriate adjustments to the current frame knowledgebase to ensure that  the 

non-monotonic parts of the reasoning procedure can be executed. In terms of the DEC 

axiomatization this means the execution of the commonsense law of inertia axioms, i.e. 

DEC 5 through to DEC 8, as described in 6.8. 

The algorithm encompasses several methods that ensure that the current frame 

knowledge base is cleared of OWLIndividuals that only apply for the current timepoint. 

So, for instance, there is a method to resolve HoldsAt statements 7.6.2 and another to 

ensure that Happens statements at the current timepoint t are deleted from the current 

frame knowledgebase execution because they will not apply to the current frame when 

the timepoint moves to t+1. 

The main algorithm is based on source code that is cited in Appendix A-1.1 and 

it can be summarized as follows:

resolveDEC (int t) {

set timepoint to t;

run the rules (see section   below);

create the SQWRL query for Happens statements for timepoint t 

create the SQWRL query for HoldsAt statements for timepoint t 

create the SQWRL query for NotHoldsAt statements for timepoint t

create the SQWRL query for Releases statements for timepoint t

create the SQWRL query for Terminates statements for timepoint t

create the SQWRL query for Initiates statements for timepoint t

run all of the above queries using the SQWRLFactory
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resolve the statements created by Happens query for timepoint t

resolve the statements created by HoldsAt  query for timepoint t

resolve the statements created by NotHoldsAt  query for timepoint t

resolve the statements created by Releases  query for timepoint t

resolve the statements created by Terminates  query for timepoint t

resolve the statements created by Initiates  query for timepoint t

end;

}

7.6.2 Current frame knowledge base update algorithm

In order to ensure that HoldsAt and NotHoldsAt statements can be stored until they no 

longer apply, the system uses hash maps that store instances of these statements. These 

have the following declarations: HashMap holdsAtNextFrameMap <Fluent f, HoldsAt  

h>, notHoldsAtNextFrameMap<Fluent f, NotHoldsAt h>.

These hash maps are keyed to the relevant Fluent instances. In the DEC 

ontology each fluent instance is an instance of ece:Fluent that holds for the 

ece:hasFluent property as defined in section 6.2.2.2 above.

The algorithm iterates through the HoldsAt statements in the current frame 

knowledge base from a SQWRL select query, looking for these statements in the 

holdsAtNextFrameMap. Where a statement is not found in the map, it is then deleted 

from the current frame knowledge base in memory.

Using a hash map data structure it is thus possible to store the (¬)HoldsAt and 

(¬)ReleasedAt statements that apply to the following timepoint (t+1). The algorithm 

described below applies to HoldsAt statements but the same sequence of operations 

applies to NotHoldsAt statements as well.

Note that all of the HoldsAt statements that apply to timepoint t are added to the 

observations knowledge base. However, only those HoldsAt statements that are added to 

the holdsAtNextFrameMap will be added to the observations knowledge base at 

timepoint t+1.  The algorithm is based on source code cited in Appendix A-1.2

resolveHoldsAtStatements (int t) {

use a SQWRL query to gather collected HoldsAt instances from timepoint t;
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this query will select the fluents f associated with the difference HoldsAt 

instances;

store the result set as holdsAtResult;

use a SQWRL query to gather collected Terminates instances applying to 

timepoint t;

store the result set as terminatesResult;

use a SQWRL query to gather collected ReleasedAt statements applying to 

timepoint t;

store the result set as releasedAtResult;

for each HoldsAt statement h in the SQWRL result set holdsAtResult {

if  the holdsAtStatements map does not contain h then {

delete h from the current frame knowledge base;

}

}

for each HoldsAt statement in the result {

set transfer flag to true;

check the releasedAtResult for f at timepoint t+1;

if a ReleasedAt statement is found in which  f is released at t+1 then {

set transfer flag to false;

}

check the terminatesResult for an event that happens at timepoint t to 

terminate f;

if a terminating event exists, then {

set transfer flag to false;

}

add the statements to the Observations knowledge base;

if(transfer is true) {

add time t+1 for the hasTime property of fluent f;

}

}

}
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This algorithm implements the logic behind the axioms DEC 5 and DEC 6, as described 

in Chapter 6 (6.8.2 through to 6.8.5.

The treatment of (¬)ReleasedAt statements is slightly different, though like the 

(¬)HoldsAt statements they are resolved in axioms that need negation-as-failure, i.e. 

DEC 7 and DEC 8, as described in Chapter 6 (6.8.6 to 6.8.9.) The algorithm for 

resolving ReleasedAt statements follows that for HoldsAt statements that is given above, 

though it checks for Initiates and Terminates statements acting at t, i.e.

...
for each ReleasedAt statement in the result {

set transfer flag to true;
check the terminatesResult for an event that happens at timepoint t to 

terminate f;
if a terminating event exists, then {

set transfer flag to false;
}
check the initiatesResult for an event at t to initiate f;
...

}

Another point is that ¬ReleasedAt statements are affected only when a Releases 

statement is found acting on the current fluent f  at t. The source code for the 

resolveReleasedAtStatements algorithm is listed in Appendix A-1.3.

7.6.3 Narrative knolwedge base update algorithm

As described in 5.3, the DEC domain description has been divided into three 

OWL/SWRL knowledge bases encompassing current frame, observation and narrative.

After the DEC resolver has updated the current frame knowledge base by running the 

SWRL rules, it updates the observation and narrative knowledge bases. The narrative 

knowledge base consists of a sequence of Happens statements, ordered by timepoint. 

This knowledge base resides in memory as an instance of 

edu.stanford.smi.protegex.owl.model.OWLModel. It is updated during the main 

algorithm, after the rules have been run and the current frame knowledge base has been 

modified as described in 7.6.2. The Happens predicate exists in the OWLModel 

implementation as an instance of event.model.entities.Happens. The associated event  is 

created on the fly by a call to narrative.getOWLNamedClass("Event").  

createOWLIndividual(e), where e is the unique URI identifier for the event instance that 
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has been automatically generated by the model.

The Happens predicate instance is updated by setting the hasEvent property with 

the event instance and the hasTime property with the current timepoint value.

addHappensStatementToNarrative (String eventName, int t){

create a new Happens instance (happens) for the narrative OWL model;

create a new Event instance (event) for the narrative OWL model, passing 

eventName as a parameter to ensure the instance reference is correct;

get a reference to the hasEvent property for the narrative OWL model;

get a reference to the hasTime property for the narrative OWL model;

assign event as the hasEvent property value for happens;

assign t as the hasTimepoint property value for happens;

}

7.6.4 Observations knowledge base update algorithm

The observations knowledge base consists of a sequence of (¬)HoldsAt and 

(¬)ReleasedAt statements ordered by timepoint. This is stored in memory as an 

OWLModel. It is updated each time an individual (¬)HoldsAt statement is resolved, in 

the loop described in the algorithm in section 7.6.2.

In summary, the obsevations updating algorithm looks for the individual fluents 

which are present as instances of OWLIndividual in the OWLModel instance that 

represents the observations knowledge base in memory. If a corresponding instance is 

not found, this means that the fluent is being added to the observations knowledge base 

for the first time and so it has to be instantiated. 

If the fluent instance is not found, then there will be no corresponding instance of the 

event.model.HoldsAt class in the holdsAtObservationsFluentMap and therefore it will 

have to be instantiated as well. 

The algorithm creates the HoldsAt statement by setting the hasTimepoint  

property with the current timepoint and the hasFluent property with the fluent instance. 

A pseudocode description can be written as follows:

addHoldsAtStatementToObservations (String f, int t){
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get a reference to the hasFluent property in the observations knowledge base;

look in the observations knowledge base for a reference (fluent) to the fluent 

with the URI f;

if the fluent does not exist in the observations knowledge base {

create a new instance of Fluent, passing f as its URI

}

attempt to obtain a reference (holdsAt) to the HoldsAt statement;

if the holdsAt does not exist in the observations knowledge base {

create holdsAt as a new instance of HoldsAt;

}

assign fluent as the hasFluent property value for holdsAt;

assign t as the hasTime property value for holdsAt;

}
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Chapter 8 Evaluation: Benchmark Scenarios

8.1 Testing strategy and test designs

8.1.1 Principles behind using benchmark scenarios

The motivation for this research was to explore how DEC could be applied to Semantic 

Web technology, and it was decided that the best way of measuring a Semantic Web 

implementation of DEC would be by modelling established benchmark scenarios and 

judging the implementation's ability to express and resolve them. 

The scenarios presented in this chapter have all been used in the literature to 

describe features of the EC and they have been adapted in this section to evaluate the 

approach to DEC resolution presented in this thesis. Failure to produce the correct 

results from the scenarios reflects shortcomings in the approach but such shortcomings 

could potentially reveal useful insights into the limitations of different aspects of the 

approach.

The development of EC has evolved with the help of a number of benchmark 

scenarios which have been designed to express different types of representational 

problem. Since the procedures for these tests and their expected results are widely 

known, it seems natural to adopt them in the testing strategy for this project.

There is a wide range of established tests to choose from and the selection 

presented here is in no way comprehensive. However, the tests that have been chosen 

here reflect the main representational features of DEC, including continuous change, 

concurrency and representation of the commonsense law of inertia. In terms of the 

applications of DEC, the original application domain envisaged for this research (turn-

based games) needs a system that can support these representational features. This point 

is discussed in Chapter 9.

The success or failure of the results of these tests give a reflection of the range of 

DEC features that have been successfully adapted.

8.1.2 Procedure for benchmark scenario test design

The main purpose behind the test design is to check whether the expected results from 

each benchmark scenario can be successfully captured by the DEC framework ontology 
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and the DEC resolver software.

8.1.2.1 Create domain descriptions for scenarios

The scenarios all consist of a set of rules and a narrative. The DEC resolver's task is 

therefore to infer the correct set of observations in accordance with these rules and 

events. 

The rules and narratives are presented as separate OWL/SWRL ontologies that 

import the decax ontology (and by extension the ece ontology), as provided in Appendix 

B. The domain rules are described in ece and decax terms in these ontologies. However, 

the instances or predicates, fluents and events are explicitly added in the JUnit tests as 

described below.

8.1.2.2 Define JUnit test

Each benchmark test includes a Java test harness. JUnit 4 [190] was chosen as a generic 

unit testing framework and it was used here to define unit tests accompanying that 

control the setup and execution of all of the benchmark scenarios described in this 

section. 

8.1.2.3 Compare actual results to expected result. 

The actual result from running a test typically involves the creation of new statements 

including predicates, events, fluents, bound together with the properties from the ece 

ontology, as described briefly in section 5.6 and in greater detail in the algorithm 

descriptions between 7.6.1 and 7.6.4. The results for each test are analysed in the 

context of the expected results that have been established for the benchmarks.

8.1.3 Use of JUnit 

8.1.3.1 Structure of unit tests

The JUnit tests follow a similar pattern. Each test defines a setUp method and a generic 

test method. The setUp method is used to create the predicate, event and fluent instances 

necessary for the domain description and to join them together with the appropriate 

properties, thereby establishing the initial narrative and observations in the domain 

description. The test... method then goes on to run the timepoints in turn, outputting the 
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narrative and observation knowledge base snapshots where required.

Each test is written for a specific scenario and it only sets up the predicate, event 

and fluent instances for the specific narrative and set of observations that form part of 

that scenario's domain description.

8.1.3.2 General algorithm for unit tests

A summary of the general pattern of the JUnit tests devised for this project would read 

as follows

Inputs: 

URI for test domain ontology to be used

Outputs: 

Completed narrative and observation knowledge bases at final timepoint (RDF files)

Collection of current frame knowledge base outputs for each timepoint

Procedure: runUnitTest() {

Load the appropriate ontology and create the initial current frame, narrative and 

observation models using the ModelBuilder.build(...) method

Obtain a reference to the the EntityFactory singleton instance.

Use the factory to create instances of the events, fluents and predicates that form 

part of the narrative. 

Associate the fluents and events with the appropriate predicate instances

Call Resolver.run(...) for the desired number of timepoints

}

8.1.4 A note on performance

The proof-of-concept software was not designed with performance in mind, beyond the 

fact that it had to be able to run the tests defined in Chapter 8. However, it is worth 

noting the bottlenecks in execution time, which are shared across the different tests. The 

tests were run on a mid-range laptop, with an Intel Core2 Duo processor and 4 

gigabytes of RAM. 

At the start of each test run, the test ontology has to be loaded into memory 
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using the ProtegeOWL.createJenaOWLModelFromReader method, which is called in 

the OWLModelFacade's getModel() method at the start of each test to load the contents 

of the test ontology OWL file into memory. 

Since SWRL rules are encoded in the OWL knowledge base as collections of 

OWL Individuals, these need to be loaded into memory when the test starts. The 

number of individuals is fairly consistent across different tests, though it varies slightly 

with the complexity of the test rule set. For instance, the Yale Shooting Scenario starts 

off with 525 individuals in the model, while the Hot Air Balloon example (which has 

more complex rules) starts with 611.

This method call proves to be the most expensive individual operation in each 

test, taking over 1500 ms even for the simplest test (1624 ms is the average for the 

Lightswitch Scenario example) and sometimes running over 2500ms (2548 was 

recorded for the Hot Air Balloon Scenario example).

Following that, the next most expensive part of code appears to be the SQWRL 

resolution part of the Resolver (see Chapter 7) which creates and executes the SQWRL 

queries on the knowledge base after the SWRL rules have been executed. The SQWRL 

queries take in the order of 3-400ms for each timepoint resolution in the Yale Shooting 

Scenario example. The next most expensive part is the main SWRL resolution itself, 

taking on average 220 ms for Yale Shooting Scenario timepoint resolutions.

The SWRL rules themselves are not optimised for performance. It should be 

noted that the current rules involve more calls to the swrlx:createOWLThing built-in 

function than necessary.  At many points in the SWRL rules, this built-in function is 

called to create and add a new instance of OWLIndividual to the body of a rule, which 

may be used in the rule's head. The following fragment of rule DEC-09 illustrates an 

example of this: […] swrlx:makeOWLThing(?holdsAt, ?initiates) ⇒  

ece:HoldsAt(?holdsAt)  ece:hasFluent(?holdsAt, ?f)  ece:hasTime(?holdsAt, ?t2)∧ ∧  

[...]. Here, the SWRL rule creates an instance of HoldsAt automatically in the body of 

the rule, regardless of whether the condition in the body is met.

This rule could be optimised by making sure that only one HoldsAt statement 

ever exists for one timepoint, and by giving the hasFluent and hasEvent properties 1:m 

cardinality so that one HoldsAt instance could be associated with many different 

instances of Fluent that match this rule, instead of creating a new one for every 
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matching fluent. Running the first timepoint of the Yale Shooting Scenario 10 times 

using an optimised version of the rule revealed a very slight but noticeable difference in 

execution time, 209 ms vs 220 ms.

Finally it should be noted that the memory requirements for these tests are 

considerable and the proof-of-concept software may not scale well to larger rule sets. 

Adding 1000 different fluents to the Yale Shooting Scenario test did not affect 

performance noticeably, but 10000 slowed the test down by a factor of about 5, resulting 

in an average run-time of about 19.4 seconds against of 4.8 and 100000 resulted in an 

out of memory error.

It is likely that optimising the SQWRL queries and SWRL rules used in the main 

Resolver algorithm would improve the overall performance of the software. However, it 

is unclear at this stage how much the SWRL and SQWRL resolution overheads can be 

reduced in the context of the DEC ontology.

8.2 Lightswitch Scenario (frame problem)

8.2.1 Domain description

The Lightswitch Scenario was first described by Denecker et al [191] although it also 

appears in [65] It was used to illustrate how circumscription of the effect axioms with 

cancellation axioms and HoldsAt statements CIRC [Σ; Ab; Holds] deals to an extent 

with the commonsense law of inertia, although this is only possible if the possible 

abnormalities in a domain are well known. It is a scenario that tracks the state of a light 

when it is switched on and off, given the events SwitchLightOn and SwitchLightOff, the 

fluents lightOn and lightOff and the following rules and narrative:

Initiates (TurnOn1, On1, t) (LS1)

Initiates (TurnOn2, On2, t) (LS2)

¬HoldsAt (On1, 0) (LS3)

¬HoldsAt (On2, 0) (LS4)

Happens (TurnOn2, 0) (LS5)

In formal terms, as described above in Section 2.6.2.5, these axioms can be summarized 

as follows:
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Σ  = LS1 ∧ LS2; Δ = LS5; Γ = LS3 ∧ LS4

There are no cancellation axioms and no trajectory or antitrajectory statements and so Θ 

and Π are empty. Note that the unique names axioms part of the DEC domain (Ω) is 

dealt with separately by the fact that each entity in the DEC ontology is labelled with its 

own URI which unambiguously identifies it. This point was discussed in 6.3.2.

8.2.2 Expected results

If the scenario is correctly implemented then the current timepoint should be expected 

to hold the following statements at timepoint 1. The observations knowledge base 

should now contain the following statements:

¬HoldsAt(On1, 0)
¬HoldsAt(On1, 1)
¬HoldsAt(On2, 0)
HoldsAt(On2, 1)

The first and third of these statements already holds from the initial domain description, 
so they will automatically be included in the observations.

A proof for this result is provided in Appendix F-2.

8.2.3 Test description

Unlike the other scenarios tested in this section, the Lightswitch Scenario occurs over a 

single timepoint, i.e. from t=0 to t=1. The test is comparatively simple, with a single call 

to Resolver.run(0) in the test method. Appendix A-2.1 provides the Lightswitch 

Scenario JUnit test source code.

8.2.4 Results

The observations knowledge base at timepoint 1 is provided in Appendix D-1.1 below. 

A close inspection of this output reveals an ece:NotHoldsAt statement that indicates the 

On1 fluent does not hold at timepoints 0 or 1. It also shows an ece:NotHoldsAt 

statement indicating that On2 does not hold at timepoint 0, but there is an ece:HoldsAt 

statement showing that On2 does hold at timepoint 1. This result conforms to the 

expectations outlined above in Section 8.2.2, containing the following statements:

• Two fluents, instances of lightswitch:On1 and lightswitch:On2 
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• An ece:NotHoldsAt statement with a ece:hasFluent value referring to the On1 
instance with two associated ece:hasTime values for confirming that the 
lightswitch:On1 fluent does not hold for timepoints 0 or 1

• An ece:NotHoldsAt statement with an ece:hasFluent value referring to the On2 
instance with a ece:hasTime value of 0

• An ece:HoldsAt statement with an ece:hasFluent value referring to On2 with an 
ece:hasTime value of 1

The narrative knowledge base at timepoint 1 is provided in Appendix D-1.2 Narrative. 

Cursory inspection of this file reveals that it contains a single Happens statement 

referring to the lightswitch:TurnOn2 event. Further narrative knowledge base extracts 

are not included in the appendices: they are relatively trivial to produce in relation to the 

observations and current frame knowledge bases as they contain only the Happens 

statements in the initial narrative.

8.2.5 Analysis

This test is comparatively simple to set up and from the result it is clear that this 

scenario can be modelled correctly using this DEC framework. 

8.3 Yale Shooting Scenario (frame problem + negative effects)

The Yale Shooting Scenario was devised by Hanks and McDermott as a way of 

illustrating how the simple circumscription of CIRC [Σ; Ab; Holds] was an inadequate 

answer to the frame problem. Although the Yale Shooting Scenario is very simple, 

running to only eight statements with a handful of events and fluents, it shows the need 

for a more complete strategy for dealing with the problem of the undefined effects of 

events on fluents.

The version of the Yale Shooting Scenario presented here includes effect axioms 

that define Alive and Dead to be mutually exclusive fluents, so only one of them will 

ever apply at any time.

8.3.1 Domain description

In the Yale Shooting Scenario there are three events, Load, Shoot and Wait and two 

fluents, Alive and Loaded. The basic idea is that Loaded holds after the Load event, and 

Alive does not hold after Shoot. However, no definition is given for the Wait event and 

in the original article by Hanks and McDermott [192] this point is used to show that 
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anomalous models can be produced in formalisms that lack a way of minimizing events 

and predicates in the ways that the situation calculus and EC do. In fact the Yale 

Shooting Scenario has been used to illustrate how the EC can deal with the unexplained 

consequences of events with circumscription, as described above in Section 2.6.3.1. The 

rules and narrative are as follows:

Initiates (Load, Loaded , t) (YS1)

HoldsAt (Loaded, t) ⇒Terminates(Shoot , Alive ,t) (YS2)

HoldsAt (Loaded, t) ⇒Terminates (Shoot , Loaded , t) (YS3)

¬HoldsAt (Alive, t )  ⇒ HoldsAt (Dead , t) (YS4)

HoldsAt (Alive, t)  ⇒ ¬HoldsAt (Dead , t) (YS5)

HoldsAt (Alive, 0) (YS6)

¬HoldsAt (Loaded, 0) (YS7)

Happens (Load, 0) (YS8)

Happens (Wait, 1) (YS9)

Happens (Shoot, 2) (YS10)

Formally speaking, the domain description for this scenario could be summarized as

Σ = YS1 ∧ YS2 ∧ YS3 ∧ YS4 ∧ YS5; Δ = YS8 ∧ YS9 ∧ YS10; Γ = YS6 ∧ YS7

8.3.2 Expected results

The resulting set of observations from this test is as follows

• HoldsAt(Alive, 0); HoldsAt(Alive, 1); HoldsAt(Alive, 2)
• ¬HoldsAt(Alive, 3)
• HoldsAt(Dead, 3)
• ¬HoldsAt(Loaded,0)
• HoldsAt(Loaded, 1); HoldsAt(Loaded, 2)
• ¬HoldsAt(Loaded,3)

A proof for these results is provided in Appendix F-3

8.3.3 Test description

The JUnit test runs from timepoints t=0 to t=3 and it produces a set of observations 

covering all four timepoints. The developed source code for the implementation is 

presented in Appendix A-2.2.

 The observations and narrative knowledge bases are outputted at t=3. In order 
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for the effect defined by YS4 and YS5 to work, it was necessary to create an instance of 

yaless:Dead at the initial stage. As discussed in the analysis below (8.3.5) a consequence 

of this fact is that it is not always possible to create fluent values in the consequent parts 

of SWRL rules. 

The test ontology defines the domain specific events and fluents and it also 

defines the three rules YS1 – YS3 in three separate SWRL rules. 

8.3.4 Results

The actual output of the test is given in Appendix D-2. This observations knowledge 

base extract contains the HoldsAt and NotHoldsAt statements that correspond to the 

expected results outlined above. In summary, the contents are:

• Three fluent instances, one each of yaless:Alive, yaless:Dead and yaless:Loaded.
• An ece:HoldsAt statement with an ece:hasFluent statement linking it to the 

yaless:Alive fluent and three hasTimepoint statements with the values 0,1,2.
• An ece:NotHoldsAt statement linked to the yaless:Alive fluent and an 

ece:hasTime property value of 3.
• An ece:HoldsAt statement with hasTime value of 3 and hasFluent linking it to 

the yaless:Dead fluent
• An ece:NotHoldsAt statement with ece:hasFluent linked to the yaless:Loaded 

fluent and ece:hasTime values of 0 and 3
• An ece:HoldsAt statement with ece:hasFluent linked to the yaless:Loaded fluent 

and ece:hasTime values of 1 and 2

8.3.5 Analysis

The result conforms to the expectations outlined in Section 8.3.2 above. However, some 

points should be noted. 

Firstly, the indirect effect ¬HoldsAt(Alive, t) ⇒ HoldsAt(Dead,t) and 

¬HoldsAt(Dead, t) ⇒ HoldsAt(Alive, t) can only be implemented in this DEC resolver 

prototype if the Dead fluent exists in the current frame knowledge base at timepoint t. 

This fact underscores a potential performance problem with this naïve implementation 

of indirect effects. It would be preferable to have a means of creating indirect effect 

fluents like Dead as and when they are needed, instead of creating them at the outset.

Secondly, while this test shows that OWL/SWRL can be used to model the Yale 

Shooting Scenario accurately it should be stressed that not all of the rule resolution is 

being done by SWRL. As discussed in Section 6, the axioms governing the 
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commonsense law of inertia (DEC5 – DEC8, described in Section 6.6) rely on the 

Resolver algorithms (described in Section 7.4.3) to provide negation as failure type 

reasoning that allow the system to check whether or not an event has happened that 

might have the effect of initiating or terminating a fluent at a certain time.

A further point to make is that running a test like this one is that it relies on 

extensions to SWRL in order to create the new class instances that are required for the 

heads of rules.

8.4 Russian Turkey Scenario (frame problem, negative effects,  

release from commonsense law of inertia)

8.4.1 Domain description

 Initiates (Load, Loaded, t) (RT1)

HoldsAt (Loaded, t) ⇒ Terminates (Shoot, Alive, t) (RT2)

HoldsAt (Loaded, t) ⇒ Terminates (Shoot, Loaded, t) (RT3)

HoldsAt (Loaded, t) ⇒Releases (Spin, Loaded, t) (RT4)

HoldsAt (Alive, 0) (RT5)

¬HoldsAt (Loaded, 0) (RT6)

¬ReleasedAt (Alive, 0) (RT7)

¬ ReleasedAt (Loaded,0) (RT8)

Happens (Load, 0) (RT9)

Happens (Spin, 1) (RT10)

Happens (Shoot, 2) (RT11)

The Russian Turkey scenario extends the Yale Shooting scenario described above by 

accounting for release from the commonsense law of inertia. Note that the indirect 

effects relating the Alive and Dead fluent are not included in this test because it was 

decided that there should be no need to re-test this behaviour.

The formal domain description could be summarized as 

Σ = RT1 ∧ RT2 ∧ RT3 ∧ RT4; Δ = RT9 ∧ RT10 ∧ RT11; 
Γ = RT5 ∧ RT6 ∧ RT7 ∧ RT8

131



8.4.2 Expected result

The set of expected observations from running the test is as follows

• HoldsAt(Alive, 0); HoldsAt(Alive, 1); HoldsAt(Alive, 2)
• ¬HoldsAt(Alive, 3)
• ¬HoldsAt(Loaded,0)
• HoldsAt(Loaded, 1); HoldsAt(Loaded, 2)
• ¬HoldsAt(Loaded,3)
• ¬ReleasedAt(Loaded, 0); ¬ReleasedAt(Loaded, 1)
• ReleasedAt(Loaded, 2)
• ¬ReleasedAt(Loaded, 3)
• ¬Released(Alive, 0); ¬Released(Alive, 1); ¬Released(Alive, 2);
• ¬Released(Alive, 3); 

8.4.3 Test description

The JUnit test runs from timepoints t=0 to t=3 and it produces a set of observations 

covering all four timepoints. It is presented in Appendix A-2.3.

The observations and narrative knowledge bases are outputted at timepoint 3. 

The test ontology defines the rules RS1 – RS4 in four separate SWRL rules. Essentially 

the first three rules RS1-RS3 are identical to YS1-YS3 as this scenario is a variant on 

the Yale Shooting Scenario; these rules are therefore not presented in the appendices. 

However the rule RS4 defines the way that the Shoot event releases the Loaded fluent 

from the commonsense law of inertia and this rule is presented in Appendix C-3.2.1

8.4.4 Results

Output from this test can be found in Appendix D-3. Once again the observations 

knowledge base contains the expected set of fluents, events and predicates. The output 

is considerably longer than that provided by the previous two tests owing to the number 

of ReleasedAt statements it includes. In summary, the observations contain the 

following:

• An ece:HoldsAt statement with an ece:hasFluent statement linking it to the 
russianturkey:Alive fluent and three ece:hasTime property values 0,1,2.

• An ece:NotHoldsAt statement linked to the russianturkey:Alive fluent and an 
ece:hasTime property value of 3.

• An ece:NotReleasedAt statement linked to the russianturkey:Alive fluent with 
the ece:hasFluent property and with ece:hasTime property values of 0,1,2,3

• An ece:NotReleasedAt statement linked to the russianturkey:Loaded fluent with 
the values 0,1,3

• An ece:ReleasedAt statement linked to the russianturkey:Loaded fluent with the 
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value 2 

8.4.5 Analysis

While these results suggest that the mechanism for representing rules for releasing 

fluents from the commonsense law of inertia are working properly in the DEC resolver, 

they cannot confirm beyond all doubt that there are no software bugs that might prevent 

it from working properly. However, this point aside, the results show that OWL/SWRL 

and SWRL extensions can be used to represent the behaviour of the Releases predicate 

in DEC on fluent values.

It should be stressed that two of the DEC axioms that deal with (¬)ReleasedAt  

statement resolution (i.e. DEC7 and DEC8 (see Sections 6.6.5 – 6.6.8)) are not 

expressed in SWRL owing to the need for negation-as-failure.

8.5 Hot Air Balloon Scenario (continuous change (trajectory))

8.5.1 Domain description

The Hot Air Balloon scenario first appeared in an article by Miller and Shanahan [88]. It 

is intended to illustrate the use of trajectory and antitrajectory axioms for modelling 

continuous change and release from the commonsense law of inertia. In fact this 

scenario accompanied the introduction of the Trajectory and Antitrajectory predicates to 

the EC formalism. The scenario models the changing velocity of a hot air balloon as the 

heater is turned on and off. 

The scenario includes events TurnOnHeater and TurnOffHeater which affect the 

fluents HeaterOn and HeaterOff. Turning on the heater causes the balloon to move at 

constant velocity and height can be calculated from the velocity and the time elapsed 

since the heater was turned on. 

There is a variable fluent Height  which is bound to a datatype value by an 

OWLDatatypeProperty hasIntValue (domain:Height, range:int). The reason for binding 

the Height fluent to a datatype value in this way is that the overall concept of Height 

must combine the function of a fluent in DEC with a primitive type value, in this case 

an integer.

The value for t2 is the duration of the trajectory or antitrajectory. After the heater 

has been turned off at timepoint 2, the balloon should be at height h+(V·t2).
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Initiates(TurnOnHeater, HeaterOn, t) (HAB1)

 Terminates(TurnOffHeater, HeaterOn, t) (HAB2)

HoldsAt(Height(h1),t)   ∧ HoldsAt(Height(h2), t)   ⇒ h1=h2 (HAB3)

HoldsAt(Height(h), t1)  Trajectory (HeaterOn, t1, Height(h+(V·t2)))⇒ (HAB4)

HoldsAt(Height(h), t1)  AntiTrajectory (HeaterOff, t1, Height(h-(V·t2)))⇒ (HAB5)

HoldsAt(Height(0), 0) (HAB6)

ReleasedAt(Height(h), t) (HAB7)

Happens(TurnOnHeater, 0) (HAB8)

Happens(TurnOffHeater, 2) (HAB9)

8.5.2 Expected result

From the domain description, the expected set of observations after running the scenario 

from timepoints 0-2 is as follows:

• HoldsAt(Height(0), 0); HoldsAt(Height(2), 2)

• HoldsAt(HeaterOn, 1); HoldsAt(HeaterOn, 2)

• ReleasedAt(Height(0), 0); ReleasedAt(Height(1), 1); ReleasedAt(Height(2), 2)

• ¬ReleasedAt(HeaterOn, 1); ¬ReleasedAt(HeaterOn, 2)

• HoldsAt(HeaterOff, 3)

A proof for the first of these statements is provided by Appendix F-5.

8.5.3 Problems relating to this benchmark test

This test ran into problems on account of the difficulty of associating a variable value 

with a fluent. In the implementation presented here, the Height fluent is – like all fluent 

values in the DEC ontology and the domain ontologies that use it – defined as a 

subclass of the ece:Fluent class (see Section 6.2.1.2 above.) The intuitive thing to do is 

to be able to create an instance of that class and to reset its hasHeight property at 

different timepoints. However, this proved difficult to achieve in the context of the DEC 

ontology implemented here. 

In fact, this issue highlights another place in the DEC resolver where non-

monotonic reasoning needs to be applied. Already, the DEC resolver has used a non-

monotonic procedure to ensure that negation-as-failure can be applied for the axioms 
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DEC5 to DEC8 as shown in (7.6.2). Here, the situation is different because the non-

monotonic procedure involves replacing one value with another.

8.5.4 Test description

The JUnit test for this scenario is designed to do more work than the other JUnit tests 

because the test involves an additional level of abstraction, namely the need to interpret 

a changeable fluent value. The test source code can be found in AppendixA-2.4. The 

original plan for this test was to define all of its rules in a separate domain ontology, in 

line with the other tests mentioned. However in this case the interactions between the 

rules proved too complex to translate into OWL/SWRL and so the rules were 

approximated in the JUnit test harness.

In addition, it should be noted that the antitrajectory rule from the domain 

description (HAB5 above) is not implemented as part of the test, the reason being that it 

follows exactly the same principle as the trajectory rule (HAB4) and implementing 

HAB5 can probably be regarded as trivial if HAB4 can be properly implemented.

The setUp method in the test harness involves creating all of the predicate and 

fluent instances and associating them programmatically using methods defined in the 

EntityFactory. For instance, the Initiates statement is created using 

factory.createInitiates(turnOnHeater, heaterOn, 0) where turnOnHeater is the event 

instance, heaterOn is the fluent to be initiated and 0 is the timepoint value at which the 

fluent is initiated. It is impossible to alter property values in SWRL owing to the non-

monotonic nature of the language; in the system presented here, a single changing value 

can only be represented using multiple fluents to represent the value as it changes. Thus 

height in the test harness in A-2.4 is replaced with height2 after the trajectory occurs in 

timepoint 2.

The test method in the harness runs the scenario from timepoints 0-2 and prints 

the observations. Since it does not model the effect of the antitrajectory rule, the test 

does not need to run further than timepoint 3

8.5.5 Results

Two fluents are used here to describe one value, which seems counter-intuitive. This is 

not necessarily a good way of modelling a value that changes over time and indeed it 
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leads to an inconsistent result. 

After running this test the observations knowledge base is in the state described in 

Appendix D-4. In summary, this consists of the following

• Two instances of the hotairballoon:Height fluent, one to represent the initial 

Height state and one to represent the changed state. These fluent instances have 

hotairballoon:hasHeight values of 0 and 2 respectively.

• An instance of the hotairballoon:Velocity fluent with an associated 

hotairballoon:hasVelocity value of 1 

• An ece:HoldsAt statement referring to the initial hotairballoon:Height fluent 

with ece:hasTime values of 1,2

• An ece:NotHoldsAt statement referring to this fluent with an ece:hasTime value 

of 3

• An instance of the hotairballoon:Velocity fluent

• An ece:HoldsAt statement referring to the final hotairballoon:Height fluent with 

an ece:hasTime value of 3

• ece:ReleasedAt statements for the two hotairballoon:Height fluents, with 

ece:hasTime values 0,1,2,3.

• An ece:NotReleasedAt statement for the HeaterOn fluent with ece:hasTime 

values 0,1,2,3

• An ece:HoldsAt statement for hotairballoon:Velocity fluent with ece:hasTime 

values 0,1,2,3

8.5.6 Analysis

The results reflect the problematic nature of representing change of value over time. 

Although the fluent values and statements described in 8.5.1 above are mostly in line 

with the expected results in 8.5.2, there are two anomalies that illustrate that the DEC 

resolution is not completely correct.

With relation to the resolution of the Trajectory predicate, the results show that 

trajectory can be calculated correctly, but the ability to change a fluent variable value 

lies outside the scope of OWL/SWRL. In the OWL/SWRL implementation, the Height 

fluent is represented by an OWL class hotairballoon:Height with an accompanying 

datatype property hasHeight that defines the variable quality. Thus the instance of 
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hotairballoon:Height acts as a wrapper around the variable quality, which is here 

presented as an integer. Likewise, the hotairballoon:Velocity uses a property 

(hasVelocity) to link the fluent instance to an integer value. 

The benchmark test dictates that it should be possible to change the values 

associated with these fluents, so that for instance Height(0) can become Height(2) after 

a trajectory has completed. However, SWRL does not support directly changing values 

to properties because it does not support non-monotonic behaviour. It is thus not 

possible to define a rule that replaces one value of hotairballoon:hasHeight with 

another; any rule designed for this purpose is likely to lead to disaster, causing the rules 

engine to enter an infinite loop as it endlessly adds new hasHeight statements to the 

knowledge base. (This point was made in 6.5.)

Using two fluent instances to describe a changing value does not represent an 

optimal solution to the problem, but this route was chosen because it was simpler to 

implement in the context of a proof of concept experiment. A more elegant solution to 

the problem of representing variable fluents would involve general purpose 

programming to enforce the non-monotonic behaviour; this requirement in itself would 

not entail a radical departure for a DEC resolver using OWL/SWRL because the 

problem of representing axioms DEC5 – DEC8 also requires non-monotonicity.

8.6 Conclusions

General remarks

The results demonstrate that our approach to DEC rule resolution is sound in some 

respects but deficient in others. In particular, the issue of representing trajectory and 

antitrajectory statements as they impact on fluent variables needs to be addressed 

properly. 

An alternative to representing states that change over time is suggested in the 

proposed ontology improvements outlined in 10.4.3.1; the approach here involves 

abstracting a fluent's variable state from its state in DEC terms (its state in relation to 

the DEC axioms as opposed to the value associated with it.)

The results are not meant to prove that DEC reasoning is possible using only 

OWL/SWRL; indeed, they suggest that this is not possible without the help of a general 

purpose programming strategy to guide the reasoning process. The fact that axioms 
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DEC 5-8 require non-monotonic reasoning is proof enough that the general purpose 

programming is needed if OWL/SWRL are used to define the ontology and rules. 

However, the fact that the correct inferences are made (with the exception of 

trajectory/antitrajectory rules) in the benchmark scenario tests described above suggests 

that the general proof-of-concept DEC resolution method proposed here has some merit.

Inevitably, there are complications with the implementation. For instance, in 

rules using the swrlx:makeOWLThing extension it is impossible to implement an 

indirect effect that creates the instance of the resulting fluent at runtime, e.g. looking at 

8.3.1, the rule YS4 ¬HoldsAt(Alive, t) ⇒ HoldsAt(Dead, t) requires the existence of the 

fluent Dead when the effect occurs. It is necessary in here to create part of the model in 

advance of the rules being fired. In terms of the amount of objects residing in the system 

it would be better to be able to create fluents as and when they are needed.

As with the fluent variables problem mentioned earlier in this section, a solution 

would involve a large amount of rework to the existing codebase and the reader is once 

again invited to look at the proposed improvements to the proof-of-concept DEC 

resolver framework in  Chapter 10, which also deal with other practical details at the 

level of implementation.
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Chapter 9 Applications and extensions

9.1 Overview

This chapter examines some possible applications of the ECE and DECAX ontology 

and rules. It describes how the ontology might be extended to deal with real-world time 

as well as EC timepoints; it also includes suggestions for wider application contexts. 

The centrepiece of this chapter is a proposal to use the DEC resolver in turn-based 

games and an example implementation is provided for a word-based boardgame.

9.2 Extended timepoint representation in ECE ontology

9.2.1 A discrete ece:Timepoint class and associated properties

The main concepts in extending the representation of timepoints in the ECE ontology 

are a ece:Timepoint class to represent an ECE timepoint and some properties that 

associate a ece:Timepoint instance with predicates and separate values for the EC 

timepoint and the actual timestamp, i.e. the “real-world” time associated with the 

timepoint. The idea behind having separate values for “real-world” and EC time is to 

show that these two measurements can co-exist without impacting on each other, though 

they are both useful. For instance, to measure the length of time a DEC reasoner is 

taking to resolve different types of statements, it is helpful to know the timestamps of 

the different predicates as they occur.

The distinction between turn-based and non-turn-based games is significant in 

relation to this concept. In a non-turn-based setting, DEC would work against a regular 

“heartbeat” in which queues of events and fluents are resolved at set real-world time 

intervals. In complete contrast, a turn-based game relies on triggers from player actions 

(events) and so DEC resolution happens in the context of event listening, which is not 

necessarily tied to real-world time intervals at all. So in a non-turn-based game, the 

intervals between timepoints correspond to a set value determined by the heartbeat, 

whereas in a turn-based game the intervals will almost certainly be irregular, as 

timepoint changes are only triggered by the execution of player events, which will never 

follow a perfectly regular pattern in terms of real-world time. 

However, even in strictly turn-based games it will be useful to have an idea of 
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how the events unfold with respect to “real-world” time as opposed to DEC time (which 

correlates to game time.)

Several points should be noted about this modification to the ECE ontology. Firstly, it 

introduces the concept of ece:Timepoint as a class, which replaces the integer value 

previously used to denote the timepoint. The ece:Timepoint is defined as being 

equivalent to the temporal:ValidInstant class, using the owl:equivalentClass property: 

thus all instances of ece:Timepoint are also temporal:ValidInstant classes and vice 

versa.
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Figure 9.1: Extension to ECE ontology to use concepts from Protégé temporal  

ontology
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Two OWL datatype properties use ece:Timepoint as their domain: 

temporal:hasTime and ece:hasTimepointValue. The latter of these properties conveys 

the timepoint sequence, in other words the value previously conferred by ece:hasTime 

as defined in 6.2, while the former attributes a timestamp to the timepoint using a 

standard definition of date/time (in this case the XML schema dateTime datatype.)

A distinction between timestamp and timepoint means that information 

expressed in this ontology can be associated with a reference point to “real-world” time 

as well as the “timepoint” time that describes the occurrence of EC predicates. In other 

words, the progress of an EC narrative can now be measured in realtime in the ontology. 

For instance, returning to the Lightswitch Scenario ontology defined in 8.2, the 

observations output at timepoint 1 would include new instances of the ece:Timepoint 

class, one for timepoint 0 and the other for timepoint 1. Apart from that, the observation 

statements might be similar to the results documented in 8.2.4. A predicted observation 

output is presented in Appendix D-5. This output presents the ece:Timepoint instances 

and their association with ece:HoldsAt and ece:NotHoldsAt statements. 

9.2.2 Using SWRL builtins for Protégé temporal ontology

The Protégé temporal ontology is complemented by a collection of SWRL functions 

that assist with time-related queries using the ontology. These functions are described in 

detail in the Javadoc documentation for the sourcecode to the SWRLBuiltInLibraryImpl  

class, found in the edu.stanford.smi.protegex.owl.swrl.bridge.builtins.temporal package 

[193]. Some of these functions act as comparators for times, like temporal:before(?t1, ?

t2), which can take validTime or strings as arguments and returns true or false. Other 

functions, like temporal:add(?t1, ?t2, ?count, ?granularity) can serve as aggregate 

functions although they can still be used to query facts rather than introduce new ones. 

For instance, temporal:add will return true if the arguments are bound first timestamp 

argument is equal to the second timestamps argument plus the third count argument at 

the granularity specified by the fourth argument, but if the first argument is unbound, 

then the result of the addition is assigned to it. 

The temporal builtins provide ready functionality for incorporating time 

comparisons and aggregations into SWRL rules. This makes the builtins potentially 

useful in a wide range of contexts. For instance, in the case of turn based games 
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presented in the following sections, the temporal:interval builtins could be used to 

derive the time taken by a player to make his or her move, by calculating the time 

interval between a tbg:TurnStartedEvent and the corresponding tbg:TurnEndedEvent. In 

a more general scenario, if the DEC resolver was being used to analyse statements made 

in natural language, perhaps using an ontology based on the research outlined in 9.5.2, 

the Protégé temporal built-ins could be used to put a conversation to a timeline that 

covers the start and end of every speech and potentially enables a system to answer 

questions about when an interlocutor has made a particular statement.

9.3 A model DEC domain: Turn-based game ontology (TBG)

9.3.1 Chosen definition of a turn-based game

A turn-based game can be defined as a game which is divided into discrete and visible 

parts, which make up the game narrative. The important point in a turn-based game is 

that it gives a player a certain amount of time (which may be infinite) to make a valid 

move. The action in a turn-based game does not typically progress concurrently, but the 

game narrative unfolds as the players make their moves in turn.

The turn-based paradigm can be incorporated into a theory of events. A turn can 

be considered as a sequence of events that represents individual players' moves in the 

course of the turn and other events that represent consequences (such as modifications 

to score); a game can be considered as a sequence of these turn events. In terms of DEC 

the narrative of any boardgame can be represented as a sequence of turn events and the 

game states can be captured as sets of fluents organized by timepoint. 

Table 9.1: Event sequences, fluent changes and event triggers in TBG ontology 

Timepoint (=Turn) Event Fluent modification Triggered event(s)

0 GameStartedEvent GameStarted set
CurrentPlayer set

TurnStartedEvent

TurnStartedEvent

Game specific Events Game specific Game specific 

TurnEndedEvent CurrentPlayer set TurnStartedEvent

1 TurnStartedEvent

Game specific Events Game specific Game specific 
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The boardgame model is a good illustration of how the DEC resolver might be used, 

because it has strong Rules component and a small set of events and fluents.

9.3.2 Core entities

A minimal turn-based game encompasses three main concepts: a game, a set of players 

and a set of turns. Each of these concepts is described as an OWL class. The tbg:Game 

class is the root class for any game defined using the TBG ontology As a way of 

consolidating the concept of a turn with that of a timepoint, the tbg:Turn class is defined 

as equivalent to the ece:CurrentTimepoint class proposed in 9.2.1

A tbg:Player is a placeholder class representing an AI or human player. An 

associated property tbg:hasFOAFAccount allows a Player instance to be associated with 

a FOAF URI, thereby encouraging easier linkage between game data and the wider web 

[194]. 

9.3.3 Datastructures

The ontology uses a list structure to store references to tbg:Player instances. This list 

datastructure is derived from the OWLList pattern defined in Protégé (based on work by 

Drummond et al  [195]), which consists of a linked set of OWLList individuals each of 

which holds an individual of a certain class. The set of list elements is given a sequence 

by the properties tbg:hasNext (a functional property, reflecting the fact that an element 

will have at most one immediate neighbour) and tbg:isFollowedBy (a transitive 

property, reflecting the fact that an element can have more than one non-immediate 

neighbour). The  tbg:hasContents property binds an OWLList element to the individual 

that it contains.

In the TBG ontology, the OWLList pattern is used to define PlayerList, which 

represents the sequence of players taking part in a turn-based game. 

9.3.4 Fluents

9.3.4.1 Parameterized fluents

There are three parameterized fluents in this ontology, reflecting the three core state 

changes that are defined. The fluents used to describe the current player 

(tbg:currentPlayer) and the state of a game
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9.3.5 Events

9.3.5.1 tbg:TurnStartedEvent, tbg:TurnEndedEvent

These events signify the start and end of a turn respectively. A valid turn will consist of 

one of each of these events, with the timepoint of TurnStartedEvent at time t and 

TurnEndedEvent at t+1. The game-specific narrative, consisting of all of the game-

specific events, is described in turn-by-turn increments.

9.3.5.2 tbg:GameStartedEvent, tbg:GameEndedEvent

These events signify the start and end of a game. A valid completed game narrative will 
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Figure 9.2: Turn Based Game ontology (tbg namespace)
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consist of one of each of these events, with the timepoint of the tbg:GameStartedEvent 

being less than or equal to that of the tbg:GameEndedEvent. Between these two events 

will be at least one tbg:TurnStartedEvent and a corresponding tbg:TurnEndedEvent. 

9.4 A sample turn based game ontology: Scrabble ontology

9.4.1 Summary

The game ontology and rule set presented here is modelled on the rules and layout of 

Scrabble™ [196] though the rules modelled here are simpler and omit details such as 

score modifiers. 

Some of the more involved SWRL rules are not provided as they have not been 

fully implemented in the proof-of-concept. However, general implementation details are 

suggested.

This ontology and rule set are created in the context of a distributed application 

with different elements: Clients (which deal with player-related actions and facts), a 

Game Server (which administers most of the modifications to the game's model) and a 

Dictionary Server (whose only purpose is to check the words placed on the board 

against a dictionary.) These different elements are brought together by the Update 

Manager, which keeps track of the complete models (narrative and observations) for the 

game and whose job it is to ensure that only the relevant facts from the models  are sent 

to the application elements.

Note that the namespace prefix ece: has been dropped from the cited SWRL 

rules to improve readability.

9.4.2 Overview of rules and design assumptions

9.4.2.1 Rules

SCR-1 Firstly, one of the Clients requests a new game. This is expressed in a 

GameRequestedEvent, which carries a PlayerList parameter. The PlayerList contains a 

set of Player instances with minimal details, name and score properties. A 

TurnStartedEvent is fired by the Game Server.

The Update Manager then sets the timepoint to 1. 
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SCR-2-1… 2-3 The Client generates a TilePlacement, a TurnSkipped or a TileSwapped 

fluent, depending on what the player wants to do. This is routed to the Game Server by 

the Update Manager and the appropriate rule (SCR-2-1... 2-3) is triggered. 

SCR-3-1… 3-5 If a TilePlacement fluent is created at this turn, a set of rules will 

execute to check through the combinations of tiles created by the placement and to 

populate a WordList with the words that they create. 

SCR 3-6 If a TileSwapped fluent is created, the Game Server adjusts the board state to 

reflect the swap.

SCR-4-1, 4.2 If the Game Server receives a list of words, it they are sent to the 

Dictionary Server, which checks each one in turn and passes it to the Accepted or 

Rejected fluent.

SCR-5-1, 5.2 Finally, the Game Server updates the Game and Board states. These states 

are updated according to whether the Tile Placement has been accepted. The Game 

Server then applies the Accepted or Rejected fluent to the previous move. A 

TurnEndedEvent is fired by the Game Server

The Update Manager then sets the timepoint to 2.

If the Game has not yet ended, the Game Server waits for the next Client request. 

SCR-6 If the Game has ended, the Game Server takes the steps to see who (if anyone) 

has won; 

9.4.2.2 Overview of design assumptions

The set of rules that accompany this ontology are simple state constraints of the form 

HoldsAt(f1, t)  HoldsAt(f2, t)... ⇒ State constraints are used here because they simplify 

the execution of rules; using action preconditions (Happens(e,t)  HoldsAt(f2, t)⇒ ) would 

be an alternative, but this would increase the size of the ontology somewhat by 

introducing an event type as well as a fluent. For the sake of this ontology, the events 

are limited to those defined in the previous section, all of which describe the process of 

a turn-based game.
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9.4.3 Entities

9.4.3.1 Board, Square, Tile

The Board is an ordered collection of Squares and a Square represents a space on the 

board that can be occupied by at most one Tile. A Square may or may not confer a score 

bonus affecting a word or an individual Tile. A Tile instance has an associated value, 

expressed in the OWL datatype property hasTileValue.

9.4.3.2 Move

This represents a move that is made by a player in a game, which may be linked to a 

TilePlacement or a set of tiles to exchange

9.4.4 Collections

9.4.4.1 TileList

This is a list, drawing on the OWLList pattern described in 9.3.3, which holds references 

to instances of the game tiles.

9.4.4.2 WordList, TileExchangeList

This list is composed of the words that are created by a given tile placement. Depending 

on the position of the tiles and their relation to other tiles on the board, the word list 

may contain one or more different words. These are checked against the valid game 

dictionary. In a similar way, the TileExchangeList has references to tile instances that 

the player elects to exchange with unused tiles from the tile bag.

9.4.5 Fluents

9.4.5.1 CurrentPlayer

The CurrentPlayer fluent is a marker for the player in the game that is currently taking a 

turn. It is also used to describe the currently indexed tile when the board is being 

scanned after a player's move (see SCR-3-2)
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9.4.5.2 TileOrientation

This fluent records the orientation of a set of tiles on the board (vertical or horizontal)

9.4.5.3 VerticalScan, HorizontalScan, AddingScore

The scanning fluents are used in resolving the search for newly created words on the 

board when a new TilePlacement is added; the AddingScore fluent is used in SCR-3-5 

to add a tile value to the total word value when the tiles making up a word are being 

resolved.

9.4.5.4 Accepted, Rejected

These parameterized fluents present the state of Word instances and Move instances. A 

rejected word will always lead to the associate Move being rejected as well, as modelled 

by rules  SCR-4-3 and 4-4.

9.4.5.5 TilePlacement, TurnSkipped, TileSwapped 

These fluents represent the changes to the game state initiated by the player (Client) as 

resolved by rules SCR-2-1, 2-2 and 2-3. The TilePlacement structure is a list that refers 

to a sequence of tiles that has been placed on the board. The sequence is provided by an 

OWLList; an instance of OWLList is linked to the TilePlacement.
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Some of these fluents and datastructures and the properties that bind them are illustrated 

in Figure 9.3

A move is accepted or rejected by the game server on the basis that every word created 

by the move is valid (i.e. is contained in the Dictionary defined for the game.) In the 

deployment presented here, a Dictionary Server will take care of  checking for the 

words defined and it will send a corresponding accepted or rejected event to the Game 

Server depending on the result of the search (see 9.4.8).
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Figure 9.3: Datastructures and fluents in the SCR ontology, with associated  

properties
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The structure of this part of the ontology is illustrated in Figure 9.4

9.4.6 SCR-1-1 / SCR-1-2 / SCR-1-3

Happens(GameRequestEvent(PlayerList), 0) ⇒  
Initiates(GameRequestEvent(PlayerList), Started(Game(PlayerList), 0))  

Initiates(GameRequestEvent(PlayerList), Started(Turn), 0)∧  
Initiates(GameRequestEvent(PlayerList),CurrentPlayer(PlayerList[0]))∧

When a Client generates a GameRequestEvent, the Update Manager routes the event to 

the Game Server, which handles the following rule. Here, the Started(Game) fluent is 

initiated.

The Stared(Game) fluent triggers the Game Server to select the current Player as the 

next Player instance in the PlayerList that was passed as a parameter by the 

GameRequestEvent. 

This update is routed to Clients and the Game Server by the Update Manager. 

(The Clients should update this fact somehow in their user interfaces).
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Figure 9.4: Accepted and Rejected fluents and associated  

classes and property
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9.4.6.1 SCR-1-2 / SCR-1-3

These rules are simple event triggers

HoldsAt(Started(Game), t)  Happens(GameStartedEvent, t)⇒

HoldsAt(Started(Turn), t)  Happens(TurnStartedEvent, t)⇒

9.4.7 SCR-2-1 / SCR-2-2 / SCR-2-3 

9.4.7.1 SCR-2-1

From this point, the Game Server waits for a move from the first Client. This move will 

be one of three different types of event, to cover each of the three possibilities: 

placement of tiles, tile swapping or game concession. These possibilities are expressed 

in the appropriate different types of change: TilesPlaced, TileSwapped and 

TurnSkipped. The rule cited below is triggered when a TilesPlaced is created (SCR-2-

1). The rule is cited in first order logic form and then in SWRL. This pattern is repeated 

later in other rules, to give an idea of the way in which the rules are implemented in 

SWRL.
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GameRequestEvent(?e)  Happens(?happens) ∧
CurrentPlayer(?currentPlayer)∧
 hasTime(?happens, ?t) ∧
 hasParameter(?GameRequestEvent, ?playerList)∧
 hasNext(?playerList, ?player)∧
 isResolved(?e, ?false)∧
 swrlx:makeOWLThing(?game, ?e) ∧
 swrlx:makeOWLThing(?turn, ?e) ∧
 swrlx:makeOWLThing(?initiates, ?e) ∧
 swrlx:makeOWLThing(?started, ?e)∧

⇒ Game(?game) 
 Turn(?turn) ∧
 Started(?started) ∧
 hasParameter(?started, ?game) ∧
 hasParameter(?started, ?turn) ∧
 hasPlayer(?c, ?player)∧
 hasParameter(?game, ?playerList)∧
 isResolved(?e, true)∧
 Initiates(?initiates)∧
 hasEvent(?initiates, e) ∧
 hasFluent(?initiates, ?started) ∧
 hasFluent(?initiates, ?currentPlayer)∧
 hasTime(?t)∧



HoldsAt(TilePlacement, t) HoldsAt(Move(TilePlacement), t)⇒

9.4.7.2 SCR-2-2 and 2-3

Rules SCR-2-2 and 2-3 are very similar:

HoldsAt(TileSwapped, t)  HoldsAt(Move(TileSwapped), t)⇒

HoldsAt(TurnSkipped, t)  HoldsAt(Move(TurnSkipped), t)⇒

The SWRL for these is very similar to that for SCR-2-1.

9.4.8 SCR-3-1 / SCR-3-2 / SCR-3-3 - 6

9.4.8.1 SCR-3-1

The following rule determines that a word has been found from the Tile Placement. 

(SWRL implementation is not provided) In order to work out which new words have 

been formed by the TilePlacement, the software needs to be able to scan the adjacent 

squares on the board. The following rule starts a vertical search up the Board starting at 

a given Square, switching the value of the Current fluent to a a new Square each time. 

The VerticalScan fluent signifies that the scan will continue from the current Tile.

HoldsAt(Move(TilePlacement), t)  HoldsAt(HasTiles(TilePlacement, List), t) ∧ ∧  
HoldsAt(HasNext(List, Tile),t)  HoldsAt(HasY(Tile, y),t) ∧  HoldsAt(Occupied∧  
(Square2, y-1), t)   HoldsAt(Found(NewWord), t) ⇒ ∧  
HoldsAt(TileOrientation(NewWord, VERTICAL), t) HoldsAt(VerticalScan(Square2), t)  

 HoldsAt(TilePlacement(NewWord))∧

9.4.8.2 SCR-3-2

This rule is subsequently triggered for each Square above the previous one which is 

occupied by a Tile.

HoldsAt(VerticalScan(Square), t)  HoldsAt(CurrentSquare(Square), t) ∧ ∧  
HoldsAt(HasY(Square, y), t)  HoldsAt(Occupied(Square), t) ∧ ∧  
HoldsAt(HasY(Square2, y-1), t)  HoldsAt(CurrentSquare(Square2), t) ⇒ ∧
HoldsAt(VerticalScan(Square2), t)
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HoldsAt (?holdsAt)  
 hasTime(?holdsAt, ?t) ∧
 TilePlacement(?tilePlacement)  ∧
 swrlx:makeOWLThing(?move, ?tilePlacement) ∧

⇒  Move(?move)  
 hasFluent(?holdsAt, ?move)  ∧
 hasTime(?holdsAt, ?t)  ∧
 hasParameter(?move, ?tilePlacement) ∧



9.4.8.3 SCR-3-3

When an unoccupied square is found, the search terminates and the following rule is 

triggered. Here, the Start fluent is created and the Word and Square are passed to it, i.e. 

the square that holds the starting tile for the word. Now that the scan is complete, the 

VerticalScan fluent is not set and SCR-3-2 will not now be triggered.

HoldsAt(VerticalScan(Square), t)  HoldsAt(CurrentSquare(Square), t) ∧ ∧  
HoldsAt(HasY(Square, y), t)   ¬HoldsAt(Occupied(Square, y+1),t) ∧ ⇒  
HoldsAt(Start(Word, Square), t)

9.4.8.4 SCR-3-4

If a new Word has been found and its starting Square is known, then add the score value 

for that Square to the Word's score

HoldsAt(Found(Word), t)  HoldsAt(Start(Word, Square), t) ∧ ∧  
HoldsAt(Occupied(Square, y+1),t)  HoldsAt(HasTile(Square, Tile),t) ∧ ∧  
HoldsAt(HasY(Square2, y+1),t)   HoldsAt(HasTile(Square2, Tile2),t)∧  

HoldsAt(Value(Tile, v),t)  HoldsAt(Score(Word, s),t)   HoldsAt(Score(Word, s +∧ ∧ ∧⇒  
v),t)  HoldsAt(AddingScore(Tile2), t) ∧

9.4.8.5 SCR-3-5

The next step is to combine the tiles found so that they form a word. After the start 

index of the word is found, another rule reads downwards and adds all of the tiles to the 

newly created word. The word's score is calculated by adding the values together. 

HoldsAt(AddingScore(Tile), t)  HoldsAt(Occupied(Square, y+1),t) ∧ ∧  
HoldsAt(HasTile(Square, Tile),t)   HoldsAt(HasY(Square2, y+1),t) ∧ ∧  
HoldsAt(HasTile(Square2, Tile2),t) HoldsAt(Value(Tile, v),t)  HoldsAt(Score(Word,∧ ∧  
s),t)  HoldsAt(Score(Word, s + v),t)  HoldsAt(AddingScore(Tile2), t) ⇒ ∧

9.4.8.6 SCR-3-6

This process (SCR-3-1 to SCR-3-5) is repeated for all of the tiles placed when a new 

TilePlacement is added to the board. This rule is triggered when all of the Tiles in a 

TilePlacement have been checked. Once all of the Tiles found in the TilePlacement have 

been checked, the TilePlacementChecked fluent is set for that TilePlacement

HoldsAt(Move(TilePlacement), t)  HoldsAt(HasTiles(TilePlacement, List), t) ∧ ∧  
¬HoldsAt(HasNext(List, Tile),t)  HoldsAt(TilePlacementChecked(TilePlacement), t)⇒
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9.4.9 SCR-4-1 / SCR-4-2 / SCR-4-3 / SCR-4-4

9.4.9.1 SCR-4-1 

The TilePlacement fluent triggers the following rule, which is resolved by the 

Dictionary Server. The rule also makes use of a user-defined SWRL built-in function 

inDictionary which executes the dictionary lookup method in the Dictionary Server to 

check whether the word in the TilePlacement list is valid. 

HoldsAt(Move(TilePlacement(Word)), t)  HoldsAt(InDictionary(Word), t) ∧ ∧  
HoldsAt(Score(Word, s1),t)   Score(Move, s2)  HoldsAt(Accepted(Word), t) ∧ ⇒ ∧  
HoldsAt(Score(Move, s2+s1), t)

The equivalent SWRL rule uses the isResolved property to ensure that the score is not 
incremented indefinitely.

9.4.9.2 SCR-4-2

The complement of this rule differs slightly. If a word is rejected, then the overall Move 

is rejected as well.

HoldsAt(Move(TilePlacement(Word)), t)  ¬HoldsAt(InDictionary(Word), t) ∧ ⇒  
HoldsAt(Rejected(Word), t) HoldsAt(Rejected(Move))∧

The following piece of the SWRL rule shows the key differences

9.4.10 SCR-5-1 / SCR-5-2

9.4.10.1 SCR-5-1

If all of the words found in a TilePlacement are accepted, then the overall Move is 

accepted as well. 
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HoldsAt(?holdsAt) ∧ Move(?move) TilePlacement(?tilePlacement)  Found(?∧ ∧
found)  ∧ Word(?word) ∧ hasParameter(?found, ?word)  hasFluent(?holdsAt, ?∧
move) hasTime(?holdsAt, ?t)∧

 inDictionary(?word, true)   Score(?s1)   hasParameter(?s1, ?word)   Score(?∧ ∧ ∧ ∧
s2)   hasParameter(?s2, ?move)   isResolved(?s1, false)  hasFluent(?holdsAt,∧ ∧ ∧  
s1)   hasFluent(?holdsAt, s2) ∧ Accepted(?accepted)  hasParameter(?a⇒ ∧ ccepted, ?
word)  hasFluent(?holdsAt, ?accepted)   isResolved(s1, true)∧ ∧

...inDictionary(?word, false) 
 swrlx:makeOWLThing(?rejected, ?word)∧

⇒ Rejected(?rejected)  ∧ hasParameter(?rejected, ?word)  hasFluent(?holdsAt, ?∧
rejected)



This rule is triggered when the TilePlacementChecked fluent is set for the current 

Move's TilePlacement

HoldsAt(TilePlacementChecked(TilePlacement),t) ⇒ HoldsAt(Accepted(Move), t)

The SWRL is as follows

9.4.10.2 SCR-5-2

And if a Move is accepted, then the current player's score is modified. 

HoldsAt(Accepted(Move), t)   HoldsAt(Score(Player, s), t)   HoldsAt(Score(Move,∧ ∧  
s2)  HoldsAt(Score(Player, s+s2), t) ^ Happens(TurnEndedEvent, t)⇒

The SWRL implementation is as follows. Once again the isResolved property is set to 
true for the Tile Placement in the head of this rule, meaning that the rule will only be 
executed once
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HoldsAt(?holdsAt) 
Move(?move)∧  
 Accepted∧ (?accepted) 
 hasFluent(?holdsAt, ?accepted) ∧
 hasTime(?holdsAt, ?t) ∧
 hasParameter(?accepted, ?move) ∧
 hasParameter(?move, ?tilePlacement) ∧
 Player(?player) ∧
 hasParameter(?current, ?player) ∧
 hasScore(?player, ?s) ∧
isResolved(?s, false)∧
hasScore(?tilePlacement, ?tp_score) ∧
swrlx:makeOWLThing(?turnEndedEvent, ?move)∧
swrlb:add(?s2, ?s, ?tp_score) ∧
 hasParameter(?accepted, ?move) isResolved(?s, true)⇒ ∧
TurnEndedEvent(?turnEndedEvent)∧
 hasEvent(?happens, ?turnEndedEvent)∧

HoldsAt(?holdsAt) Move(?move)∧   Accepted∧ (?accepted)  hasFluent(?holdsAt, ?∧
accepted)  hasTime(?holdsAt, ?t) ∧  hasParameter(?accepted, ?tilePlacement) ∧ ∧  
hasParameter(?move, ?tilePlacement)  hasParameter(?accepted, ?move) ⇒



9.4.11 Controlling model updates with the Update Manager

The Update Manager's purpose is to ensure that the different parts of the system get 

updated with the appropriate facts in the system. In other words, the Update Manager 

keeps a record of which elements of the system want to be informed when a particular 

fluent changes or when a particular event is fired. Different elements of a system tell the 

Update Manager that they are interested in certain parts of the model and the Update 

Manager ensures that only the appropriate facts (i.e. the facts pertaining to the relevant 

parts of the model) are routed to those system elements. For instance, the Dictionary 

Server in this example is only interested in instances of Word, while the Game Server is 

interested in many different types of object.

The Update Manager controls the running of rules between the different system 

elements, by acting as a way for the system elements to register which rules relate to 

them. So the Dictionary Server in this instance will register its interest in rules SCR-4-1 

and SCR-4-2 because these are the only ones that involve the need to check words, 

while the Game Server will register with all of the other rules because it deals with most 

aspects of the Game.

Thus, different elements of the system will have different types of access to the 

different parts of the observations model. This situation is illustrated in Figure 9.5 
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Figure 9.5: The Update Manager as intermediary between rules, model and system 

elements
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9.4.12 A sample turn

This is a short description of the procedures involved to resolve a typical first game 

turn. The sequence tracked in this section starts at the point before a game is set up and 

goes on to describe how the model changes as the turn is resolved during the turn and 

just after it. Appendix D-6 gives a sample of the observations that apply at timepoint 1; 

however, it should be noted that not all of the applicable statements are recorded here 

because some of the SWRL rules (e.g. 3-1, 3-2) are not yet implemented.

9.4.12.1 Timepoint 0

A Player requests a new game from the Game Server. 

This involves the player's Client creating a GameRequestedEvent and sending it to the 

Update Manager.

The Update Manager receives the GameRequestedEvent, adds it to its own narrative 

and checks it against the complete Rule Set. It sees that rule SCR-1-1 is triggered and 

resolves the rule. It also sees that the Game Server is interested in rule SCR-1-1 and 

routes the GameRequestedEvent to it, so that the Game Server's narrative now includes 

it.

This event has three positive effects: Initiates(GameRequestedEvent, Started(Game), 0)  

and Initiates(GameRequestedEvent, Started(Turn), 0) Initiates(GameRequestedEvent,  

CurrentPlayer(PlayerList[0]), 0). The Update Manager resolves these in the current 

frame knowledge base (as described in Chapter 7.) It then updates the timepoint to 1.

9.4.12.2 Timepoint 1

At timepoint 1, the following statements are added to the observations: 

HoldsAt(Started(Game), 1), HoldsAt(Started(Turn),1) and 

HoldsAt(CurrentPlayer(Player)). 

These facts are also sent to the Game Server, because they result from SCR-1-1.

The Update Manager then sees that rules SCR-1-2 and SCR-1-3 are triggered and it 

fires off the GameStartedEvent  and TurnStartedEvent.

The Update Manager now waits until one of SCR-2-1, 2-2 or 2-3 is triggered.
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In this case, the current Player places some tiles on the board, so 

HoldsAt(TilePlacement, 1) is added and SCR-2-1 is triggered. As a result, a Move is 

created and the following statement is added to the observations: 

HoldsAt(Move(TilePlacement), 1).

The Update Manager sees that the Game Server and Clients are all interested in rule 

SCR-2-1, so both of these statements are sent to Game Server and Clients.

(On the Client side at this stage, we would expect to see a message saying that Player 1 

has placed the tiles.)

The Update Manager now sees that rule SCR-3-1 is triggered. It searches through the 

list of Tiles placed by this move and creates a Word from them. The following facts are 

added:

HoldsAt(Found(Word), 1); HoldsAt(TileOrientation(Word), HORIZONTAL, 1);  

HoldsAt(Score(Word, 20), 1); HoldsAt(TilePlacementChecked(TilePlacement), 1)

These facts are also sent to the Game Server and Clients

Now the Update Manager sees that SCR-4-1 is triggered. The placed Word is sent to the 

Dictionary Server, which responds positively. HoldsAt(Accepted(Word),1) and 

HoldsAt(Score(Move, 20), 1) are added to the main observations.

Since all of the words placed have been accepted, 4-3 is triggered, so 

HoldsAt(Accepted(Move), 1) and HoldsAt(Score(Player, 20), 1) are added to the main 

observations. These facts are also added to the observations for the Clients and the 

Game Server.

Finally, SCR-5-1 and SCR-5-2 are triggered, prompting the Game Server to advance the 

current Player reference and to fire a TurnEndedEvent. The Update Manager increments 

the timepoint to 2.

9.4.12.3 Timepoint 2

Once again, the Update Manager waits until one of SCR-2-1, 2-2 or 2-3 is triggered.

A similar sequence will follow for the next player, and so on until the SCR-6 rule is 
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triggered to resolve the end of the game

9.4.13 Patterns in narratives and observations

Score analysis could be done at much greater depth; recording the breakdown of word 

scores as semi-structured RDF based data is intuitive. If the real-time extension of the 

DEC ontology was being used then game analysis could include calculations based on 

the delays between different events. 

For instance the delay between a TurnStartedEvent and a TurnEndedEvent might 

indicate the time taken for a player to make a move, while the delay between 

HoldsAt(TilesPlaced, t) and the HoldsAt(Accepted(TilePlacement), t) might indicate the 

time taken for the Dictionary Server to find a word. Analysis of different aspects of the 

game could be added by introducing new rules that are triggered from different 

statements. For instance, a software element could be added with a set of rules triggered 

by TilePlacement fluents, and these rules might look for patterns in playing style like 

the number of words created on average by a particular player's moves, their average 

word size and the frequency with which the player fails to place a correct word, or 

swaps tiles instead of placing a word. Of course such information could be recorded 

with simpler software development techniques, but the fact that this data can be exposed 

and manipulated directly as RDF (instead of in RDBMS tables) means that it can 

potentially be easier to combine with other types of data than would be the case if it was 

siloed in an RDBMS. 

Perhaps a software agent would want to look at data that is not strictly part of the 

game, but which can be inferred by querying data sources that might be linked to a 

player across the Web (for instance a FOAF profile, or an RDF-ized version of public 

Facebook data.) In this way, new inferences might be made by querying the 

characteristics of players against the demographic details brought up by their public 

data.
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9.5 Ideas for other applications

9.5.1 Non turn-based games

A DEC-based approach to general game AI has already been proposed by Fuchs [197] 

and the rationale behind this research is that DEC provides the potential to fulfill a 

number of significant challenges currently laid open for game AI. These challenges 

include realtime monitoring ofplayer and game properties, efficient evaluation and re-

evaluation of rules and a general level of context awareness that can deal with 

management and generation of sophisticated behaviour and complex storylines.

Non turn-based computer games work under the premise that actions can happen 

concurrently and in sequence. Such games are typically organized around a game 

“heartbeat”, which represents a point at which game state changes. It is possible to align 

this concept with the DEC concept of time measurement, using timestamps to ensure 

that events can be handled in the correct sequence against the backdrop of a continual 

game heartbeat. The heartbeat can be measured out by timepoints in DEC, but the 

granularity of the game timing can be set so that a timepoint corresponds to a set 

interval (perhaps in microseconds, if the hardware permits). 

As with the turn-based scenario outlined above, the events might come from 

different sources, i.e. from different client machines and game server processes. In fact, 

the only fundamental difference between the turn-based and non turn-based 

architectures is that the non-turn-based one is measured out by intervals of real-time, 

whereas the turn-based one is organized into turn intervals, which are probably not 

related to real-time.[77]

9.5.2 Linguistic analysis

Event Calculus has been used as the foundations for an approach to language 

representation that has been proposed by van Lambalgen and Hamm [198]. Briefly 

summarized, this involves the use of Event Calculus to code the semantics of tense and 

aspect in language. 

Van Lambalgen and Hamm show how Event Calculus can be used to represent 

verbs and verb phrases in natural language. They define an Eventuality structure which 

can express the goal-driven aspect of a verb phrase. An Eventuality consists of a 
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combination of the following:

An Eventuality can be turned to represent any type of linguistic-aspectual class 

(Aktionsart), which include states (know, be happy), activities (run, talk),  

accomplishments (write a thesis), achievements (start, finish) and points (blink). Each of 

these Aktionsarten has its own Eventuality pattern in terms of f1, f2, e and f3 above: a 

point is simply the event (e), an activity is just the first fluent (f1), while an achievement 

consists of (e, f3), i.e. an event leading up to the goal and a goal state. 

An accomplishment may consist of all of the components of an Eventuality (f1,  

f2, e , f3). This is a more complicated structure that makes use of implied events and 

fluents encoded in the phrase. For instance, the phrase “write a thesis” contains an 

activity (f1 = finish), a parameterized object (“f2 = thesis(x), where x is a value 

representing “stage x of completion”) and an associated goal event (e =start, implied 

by the fact that “write” is a verb that has a starting point and an end) and a goal state (f3  

= thesis(c), where c is a constant value representing “the completed state”) This 

theory is very heavily tied into linguistic analysis and it lies outside the scope of this 

thesis. However, the fact that van Lambalgen et al have chosen to use Event Calculus as 

their way of explaining the comptational properties of grammar suggests that the Event 

Calculus may well prove to be useful in general language processing systems in the 

future. 

While the DEC resolver presented in this research may not currently support the 

full set of EC axioms, it might shed some light on how to develop more full-featured EC 

resolver systems that can use this approach for natural language syntax analysis. This 

development has enormous implications for games and all types of other applications, 

encompassing text processing, sentiment analysis, artificial life and other areas of AI.

9.5.3 Social network software: Facebook and OpenGraph

Facebook's adoption of OpenGraph in April 2010 was a potentially significant 

development for Semantic Web application development because OpenGraph is 
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f1 a fluent representing an activity or something exerting a force
f2 a parameterized fluent representing a parameterized object or state, driven by f1
e a culminating event representing the goal
f3 a fluent representing the state of having achieved the goal



implemented in RDFa (RDF in attributes), which is a syntax for embedding RDF into 

Web pages as HTML attributes [199]. Essentially the Facebook APIs now expose user 

data in this way [200].

In view of the fact that Facebook alone is becoming a major platform for casual 

games (for instance, the largest multiplayer games by player count in April 2010 are 

hosted on Facebook [201]) it seems fair to suggest that the use of RDFa at the core of 

the new Facebook APIs could prompt a growth in games making use of Semantic Web 

standards.

The chief implication of this development in the context of the research 

presented here is that it provides an entry point to a major source of semi-structured data 

that could broaden the reach of games developed with Semantic Web standards.

9.6 Conclusions

In conclusion, this chapter has proposed some ideas for applying the DEC resolver 

framework to the domains of turn-based and (to a lesser extent) non turn-based games. 

Some ideas were offered as to how a sample board game might be implemented and 

deployed. A generic model update mechanism formed part of this proposal; the purpose 

of this was to administer the communication between different parts of the system in a 

way that was compatible with Event Calculus, with different elements of the system 

holding their own views on the underlying observations and narrative knowledge bases.

It was also shown that non turn-based games could also be represented using the 

DEC resolver framework, with some extension to the representation of timepoints that 

permitted simultaneous representation of DEC time and real-time.

A point that should be made here is that the sample implementations provided 

are somewhat unwieldy. It is clear at this point that defining rules for application 

domains making use of the DEC ontology is not a simple procedure and the resulting 

code is not pleasing to the eye or easy to follow. Of course these applications are not 

implemented because the DEC resolver itself is only proof-of-concept; however there is 

mileage in the ideas presented. 

Another point to make is that a Semantic Web based approach to online games 

may yield interesting new possibilities thanks to the way in which data sources can be 

combined more easily with RDF than with RDBMS techniques. The brief overview of 
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emerging technologies at the end of this Chapter presented two very different domains 

that could well intersect with web-based games in the future as and when Semantic Web 

standards become more widely used.
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Chapter 10 Conclusions and future work

10.1 Overview

This chapter draws the final conclusions and summarizes the overall contribution of the 

research to the emerging field of commonsense reasoning based application 

development for the Semantic Web. 

The conclusions presented here are divided into four parts. Firstly, there is a 

discussion of the research output in terms of how it has responded to the original 

research motivation and how it has met – or failed to meet – its initial goals. Secondly, 

there is a detailed summary of the contribution to knowledge that this thesis offers. 

Thirdly, the chapter closes with a discussion of how the DEC resolver framework could 

be developed in future work.

10.2 Assessment of research with regard to motivation and  

initial goals

10.2.1 Motivation

The initial project description as described in Chapter 1 was to investigate technologies 

to provide platform-neutral and network-agnostic services for game development. It was 

decided that Semantic Web standards offered strong foundations for building a platform 

for these services. Simultaneously, to enhance the flexibility of such a platform, it was 

decided to incorporate an established AI formalism, namely DEC. This research has 

worked from the assumption that Semantic Web standards can be used to define the 

structures and knowledge bases on which formalisms like DEC can operate. 

The motivation for the research was to see how DEC could be applied to 

Semantic Web technology and the original domain under consideration was turn-based 

multiplayer games. To that end a general domain for turn-based games was created 

together with a sub-domain that partially described the rules of a well-known 

boardgame (in Chapter 9) The resulting ontologies provided a basis for further 

consideration of Semantic Web-based implementations of game rules using DEC.

In line with the project motivation, the emphasis was placed on describing a 
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DEC resolver solution that can act as a starting point for further work. Performance 

optimisations for the DEC software did not therefore form part of the design; the 

emphasis was on creating a working prototype, which could show some of the potential 

strengths and limitations of current Semantic Web technology when used for defining a 

DEC ontology and axiomatization.

10.2.2 A DEC ontology defined in Semantic Web languages

In line with the initial goal presented in 1.3.1, this research has provided a DEC 

ontology defined using Semantic Web languages. All of the predicates and basic sorts of 

DEC are represented, as described in chapters 5 and 6. 

The ontology works on the basis that DEC events, fluents and predicates can be 

represented as instances of OWL classes and these can be bound together using OWL 

object properties. Predicate arguments are realised through OWL object properties, 

ece:hasEvent, ece:hasFluent, ece:hasStartFluent, ece:hasEndFluent for the fluent and 

event arguments, and ece:hasTime, ece:hasStartTime, ece:hasEndTime for the timepoint 

arguments as described in 6.2.2. Limiting the domains of these functions to the 

appropriate predicates as described in (6.2.2.2) helps to preserve the structure of the 

DEC formalism in OWL/SWRL.  

The idea for integrating this ontology into a DEC resolution mechanism is that 

the reasoner can create new instances of statements as the final part of the inference 

process. This idea is implemented in the DEC resolver using software that controls a 

general purpose Semantic Web reasoner (Pellet in this case) to create the new statements 

that apply to a given set of events and fluents in a given domain at a particular 

timepoint. 

The need for circumscription in the first order logic implementation of DEC is 

dealt with in OWL/SWRL by the fact that rules are limited only to known instances of 

events, fluents and predicates. Furthermore SQWRL was used to build queries that 

could identify all of the unique instances in the current frame OWL knowledge base. 

This point was covered in depth in Section 6.3.3 above.

Axioms of DEC cannot fully be expressed through OWL/SWRL using the 

approach to DEC resolution outlined here. The DEC axioms DEC 5 through to DEC  8 

all require non-monotonic queries to check for the existence of certain events in the 
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Current Frame knowledge base. This was explained above in 6.8. In order to get these 

axioms to work as intended, it was necessary to introduce some programmatic 

workarounds in the DEC resolver, which were detailed in the algorithm description in 

7.6.2.

A valid question at this point is whether a different approach to designing the 

OWL/SWRL ontologies and rules could make it possible to implement DEC 5 through 

to DEC 8 without the need for programmatic workarounds. However, it is difficult to 

see how an alternative approach could avoid having to model events in the DEC as 

classes. And given that events should be represented by classes it follows that individual 

event occurrences should be modeled as instances of those classes. From this it follows 

that the axioms DEC5 to DEC8 will inevitably require a way of looking in the current 

frame knowledge base for such instances.

For instance DEC5 requires the resolver to find all of the events occurring at 

timepoint t which terminate a fluent: ¬∃e (Happens(e, t) ∧ Terminates(e, f, t )). This is 

only possible if the resolver is able to query the collection of events occurring at t to 

determine whether or not there are any events that terminate  the fluent at this point. 

The DEC OWL/SWRL ontology presented here uses implication rules to isolate 

the instances of   events. This is done with the help of SQWRL queries, which was 

described in detail in Chapter 7.4.4. An alternative method of isolating such events 

would have been to use normal OWL/SWRL without the SQWRL built-in functions. In 

algorithm described in Chapter 7.5.1, the relevant query to find the Terminates  

statements listed above is 

Alternative approaches would have been possible using just OWL/SWRL without the 

SQWRL builtins. For instance, a class could have been defined to group together all of 

the instances of the terminates statements cited in the example axiom above, and a 

SWRL rule could have been used to capture the instances of the terminating events as 

required:
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ece:Fluent(?ece:f)  ∧ ece:Terminates(?ece:terminates)  ∧ ece:hasFluent(?

ece:terminates, ?ece:f)  ∧ ece:hasTime(?ece:terminates, ?ece:t) ∧ 

ece:hasFluentClass(?ece:terminates, ?ece:c) ∧ swrlb:equal(?ece:t," + timepoint + ")  

->  sqwrl:select(?ece:terminates, ?ece:f, ?ece:t, ?ece:c)



However, this is only useful when there are instances of events that meet the criteria, 

i.e.  ∃e (Happens(e, t) ∧ Terminates(e, f, t )). To determine when instances of these 

events do not exist requires non-monotonic inference, i.e. negation-as-failure, which is 

not possible just using OWL/SWRL.

10.2.3 A software framework that can use the ontology for practical 

applications

This programme of research looked at the limits of how far DEC functionality can be 

implemented with existing Semantic Web technology. In part, this involved creating a 

software framework, as mentioned in the initial goal in 1.3.2. The DEC resolver 

framework software that is described in this thesis has been developed to provide an 

interface between the DEC ontology and a general purpose Semantic Web programming 

API (in this case, Protege-OWL/Pellet). It was necessary to create this software to 

enable DEC resolution to work in general purpose programming contexts.

This software was shaped by the choice of programming language and API, but 

it should be stressed that alternative choices do exist. As chapter 3 pointed out, there is a 

choice of free and paid-for general Semantic Web reasoners, APIs and IDEs. Indeed, it 

is quite possible that the choices made here were not the best ones in terms of efficiency 

or stability – though the rationale focused on having well-documented and well-tested 

tools to provide a solution.

Chapter 5 showed how the DEC resolver framework combined the DEC 

ontology with a Semantic Web reasoner (Pellet in this case) to enable DEC resolution. 

Chapter 7 described in greater detail how the different parts of the software framework 

fitted together. In particular, chapter 7 looked at how the resolver software defined 

algorithms to ensure that DEC resolution was being carried out correctly.

The DEC resolver software was able to provide negation-as-failure to the DEC 
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ece:Event(?e)  ∧ ece:Terminates(?terminates) ∧ ece:hasTimepoint(?terminates, ?t) ∧ 

ece:hasEvent(?terminates, ?e) ∧ ece:hasEvent(?happens, ?e) ∧ ece:hasTimepoint(?

happens, ?t)∧ swrlx:makeOWLThing(?terminatesAt, ?terminates) ⇒ 

ece:TerminatesAt(?terminatesAt) ∧ ece:hasEvent(?terminatesAt,?e) ∧ 

ece:hasTimepoint(?terminatesAt, ?t) ∧ ece:hasFluent(?terminatesAt, ?f)



resolution as required by axioms DEC 5 to DEC8. This point was discussed in chapter 6 

and the relevant algorithms were explained in 7.6 and provided in Appendix A-1.

As discussed in 5.3, the DEC resolver breaks up the OWL knowledge base into 

three distinct parts   - narrative, observations and current frame. This mirrors the basic 

structure of domain descriptions as outlined in 2.6.2.5, which separates Happens 

statements (narrative) from the (¬)HoldsAt and (¬)ReleasedAt statements (observations) 

and separates both of these from the rules that define how the events and fluents interact 

in the domain. DEC resolution occurs at timepoint intervals and the current frame 

knowledge base deals with the set of statements that apply for the current timepoint. 

This makes it a “moving window” on the total set of events, fluents and statements that 

are created over a given time interval.

10.2.4 An accurate implementation of DEC

Another goal of this research as outlined in 1.3.3  was to develop a set of suitably 

rigorous tests that could establish that DEC reasoning procedures can be correctly 

maintained by a Semantic Web-based DEC resolver. These tests are described, together 

with their application to the DEC resolver framework, in chapter 8. The tests described 

in chapter 8 provide evidence that the DEC resolver presented here is capable of 

creating appropriate inferences from given DEC domain descriptions. The expected 

results of the tests were framed as propositions that were then formally proved.

A brief summary of the conclusions from these results is drawn below.

10.2.4.1 Effects axioms, Initiates and Terminates predicates

The Initiates and Terminates predicates and their associated rules feature in all the tests. 

It is clear from these tests that the predicates operate correctly, so that DEC9 and 

DEC10 are observed. The implementation of DEC5 and DEC6 was more complicated 

owing to the need for non-monotonic inference to check for the non-existence of events, 

as described in detail in 6.8.3 and 6.8.5. 

10.2.4.2 Release from the commonsense law of inertia

The test for the Russian Turkey scenario described in 8.4 shows that the Releases 

predicate and the associated ReleasedAt predicate operate according to the DEC axioms 

DEC 11 and 12. 
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10.2.4.3 Trajectory axioms

An analysis of the Hot Air Balloon scenario test described in 8.5 shows the trajectory 

axioms are working correctly, although the test itself has problems dealing with the 

representation of changing values. 

10.2.4.4 DEC Domain representation

The DEC resolver represents any DEC domain description in accordance with the 

definition set out in 5.3. The domain rules are loaded into the current frame ontology, 

which is where the DEC resolution occurs. Separately, the observations ontology 

records statements to do with fluents (i.e. when they hold true and when they are 

released from the commonsense law of inertia) while the narrative ontology records 

statements to do with events (i.e. when they happen).

Application domains making use of the DEC axioms can define domain rules in 

SWRL. Each of the benchmark scenario tests in Chapter 8 presents its own set of 

SWRL domain rules, some of which are listed in Appendix C.

10.2.4.5 Recording of event narrative and fluent observations 

The output of a DEC event sequence should be a descriptions of the event narrative and 

the set of observations that result from the sequence of events acting on the collection of 

fluents. When a DEC sequence is being resolved, the event narrative and observation 

statements are stored in separate knowledge bases. This procedure was described in 

7.6.3 and 7.6.4 and the observations output was demonstrated for the different tests 

outlined in Chapter 8.

10.2.4.6 Negation of predicates

The negation of predicates was achieved by defining disjoint complement classes of the 

OWL classes used for the predicates themselves, e.g. NotHoldsAt, was defined in the 

ECE ontology as described in 6.3.4. This method of defining negation for predicates 

was not intuitively correct however, because it does not correspond to the first order 

logic definition of negation as a logical connective that can be applied to a term. 

However, as described below in 10.5.2, the RIF standard offers the syntax to be able to 

define ¬HoldsAt in this sense. 
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10.2.4.7 Continuous change

Representation of continuous change requires non-monotonic adjustment to values and 

the problems this entails for the DEC resolution in OWL/SWRL are highlighted by the 

results of the scenario presented in 8.5. It should be noted however, that the DEC 

resolver already makes non-monotonic adjustment to current frame knowledge base, 

trimming out events and statements that do not apply at the current timepoint. This was 

described in 7.6.2 with reference to the current frame updating algorithm.

10.2.5 A reusable framework for DEC reasoning

Chapter 8 and 9 both described domains that are described in terms of the DEC 

resolver's rules and entities. The tests in Chapter 8 also show how the framework can be 

validated by showing the inferences that the resolver draws against benchmark 

scenarios. The interoperable nature of OWL/SWRL ontologies ensures that new 

ontologies can easily be built with the components of other ontologies.

10.2.6 An investigation into merging time ontology with DEC 

In line with the goal that was outlined in 1.3.5, chapter 9 proposed an extension of the 

DEC ontology to define timepoint type, with ece:hasTime and ece:hasTimepointValue as 

separate properties. This made it possible to keep a record of events as they fit into both 

the real-world time (dateTime xsd) and DEC time (timepoints). 

Maintaining these time measurements separately would make it possible to fit 

DEC reasoning into different types of real-world time reference. DEC resolution could 

be executed in the context of real-world time limits and inferences could be drawn from 

the patterns in event timestamps and fluent changes which helps to open up a broader 

set of inferences about events and their consequences. Furthermore, merging an 

established time ontology may make it easier to merge temporal application data using 

the DEC ontology with temporal data from other live, “real-world” data sources. 

10.3 Contribution to knowledge 

10.3.1 Novel method of time-based data in the Semantic Web

The research has produced the DEC resolver framework, which features a novel method 

of representing events and their consequences using Semantic Web languages. Other 
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research proposals have investigated combination of DEC with Semantic Web 

technology, but the research presented in this thesis is different in the way that it 

represents DEC domains by partitioning them into narrative, observation and current 

frame knowledge bases, as described in 5.3. In particular, the idea of using a current 

frame model as a “moving window” on the DEC domain with the progress of time has 

not been seen in other work. 

In addition, the notion of extending the DEC resolver framework to be able to 

represent “real-world” time and timepoints as independent but co-existent values 

(described in 9.2) is one that the author has not found elsewhere.

As far as the author is aware, no other approach to DEC using Semantic Web 

technologies follows the DEC axioms in this way. None of the other implementations 

use three knowledge bases to describe the narrative, observations and current frame in 

the DEC resolution process. 

10.3.2 Methodological contribution

This research has presented its own methodological approach to designing 

commonsense reasoning systems for the Semantic Web. The decision was made to use a 

methodology based on MDA principles (see 4.5) and loosely incorporating the OUP 

UML profile  (see 4.6). While the methodology presented here does not adhere to all of 

the formal requirements established by the OMG documentation it nevertheless 

provides a useful starting point for the design and development of alternative 

commonsense formalism ontologies and application domains.

The decision to represent elements of the framework's design using this UML 

profile has in the author's view benefited the overall thesis in terms of the clarity and 

completeness of the design and implementation chapters (5 and 7). In particular, it 

permitted clear descriptions of the structures of class hierarchies in the OWL models 

(5.4) and their counterparts in the DEC software framework (5.5) and made it easier to 

explain the interactions between the resolver and the ontology (5.6).

Future work would similarly benefit from the adoption of this approach, whether 

the aim was to propose an alternative Semantic Web-based commonsense reasoning 

framework or an application domain based on this framework or a similar future 

alternative.
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10.4 Future work

10.4.1 Potential Improvements

10.4.1.1 Tests for nondeterminism

The validation tests in Chapter 8 do not include nondeterministic events. The Russian 

Turkey Scenario that forms the basis of 8.4 could be updated with a determining fluent, 

as defined by Shanahan [65], using a random number generated by the random number 

function provided by the swrlm built-in library to determine whether or not the revolver 

barrel is loaded at the current timepoint.

10.4.1.2 Tests for concurrency

Concurrency is is not tested by the scenarios in Chapter 8. A fairly straightforward test 

of concurrency handling in the DEC resolver would be to implement an ontology and 

accompanying JUnit test to represent the Water Bowl scenario outlined in Miller and 

Shanahan [81] In this scenario, a bowl of water has to be lifted with two hands 

simultaneously so as not to spill; this involves separate events to represent lifting with 

the left hand and lifting with the right hand and both these events have to fire at the 

same timepoint for the desired result.

10.4.2 Improved treatment of changing fluent values

The Hot Air Balloon scenario in 8.5.4 showed how the current implementation of the 

DEC resolver had difficulty in representing changing values associated with fluents. 

The problem hinged on the fact that SWRL rules are nonmonotonic and therefore do not 

permit values to be adjusted. As illustrated by the example in 6.5, a rule that 

incorporates a SWRL extension that can modify a single value is likely to have 

unexpected consequences. 

The method used in the validation test in 8.5.4 was to try to use two separate 

values to record a trajectory, to represent the initial and end values separately. However, 

this brought problems in computational complexity, as described in 8.5.5, resulting from 

the fact that each newly created fluent had to be represented by a (¬)HoldsAt statement.

A different method, that will reduce the number of statements required, is briefly 

172



described below.

A fluent that holds a value is bound to that value with a hasDatatypeValue or 

hasObjectValue property statement. New values are assigned to hasNewDatatypeValue 

or hasNewObjectValue properties in the body of a rule. This new value replaces original 

hasDatatypeValue or hasObjectValue property during the  current frame knowledge base 

updating algorithm, which was described in detail in 7.6.1 (with the implementation in 

Appendix A-1.1) This is a non-monotonic adjustment which ensures that the previous 

value is deleted from the knowledge base and replaced with the new value.

Thus in the example scenario from 8.5, the Height fluent is created, the 

trajectory occurs and a new value is assigned to Height. The change is reflected in a rule 

using the hasDatatypeValue and hasNewDatatypeValue properties. An extract from the 

resulting rule is as follows:

10.4.3 Improvements to the DEC resolver framework

10.4.3.1 Ontology improvements

A potential improvement would be proper treatment of unique identifiers so that each 

event and fluent is uniquely identified separately. In the current implementation, it is 

assumed that URIs uniquely identify an instance of ece:Event or ece:Fluent; however, 

in practice OWL and SWRL make use of the non-unique naming assumption, which 

means that two or more different URIs can point to the same resource.

A further improvement in the ontology would involve the complete removal of 

swrl: built-in functions from the rules.  These are problematic because they invariably 

add redundant object instances to the current frame knowledge base. For instance, a 
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hab:Velocity(?v) ∧ hab:Height(?height) ∧

hab:hasDatatypeValue(?height, ?h) ∧ ece:hasTime(?holdsAt, ?t)   ∧

ece:hasFluent(?hab:holdsAt, ?height)   ∧ swrlb:multiply(?h2, ?t, ?v) ∧ swrlb:add(?

h3, ?h2, ?h)

…

  ⇒ hab:hasNewDatatypeValue(?height, ?h3)  

…



SWRL rule like the one defined for DEC 9 starts with the following clauses in the 

antecedent:

ece:Happens (?ece:happens) ∧ ece:Initiates(?ece:initiates) ∧ 
swrlx:makeOWLThing (?ece:holdsAt, ?ece:initiates)...
 

The final clause here guarantees that a new instance of owl:Thing is going to be created 

if an ece:Happens and an ece:Initiates instance are both found in the knowledge base. 

This is guaranteed regardless of whether the other conditions in the antecedent are 

fulfilled.

It may be the case that these rules could be better defined in general purpose 

programming terms than in SWRL, which would mean that the rules were no longer 

being defined in truly platform-neutral Semantic Web terms. However, it seems that the 

SWRL solution has efficiency drawbacks in addition to problems with its lack of 

support for negation-as-failure. As suggested in 10.5.2, the RIF standards might enable 

a more flexible approach to rules execution in OWL ontologies.

10.4.3.2 DEC resolver improvements

The DEC resolver software could be optimised in a number of ways. 

To begin with, it could introduce caching of statements that can be reused across 

timepoints. Currently, new HoldsAt or NotHoldsAt instances are created by various 

rules. For example, in DEC 9 a new HoldsAt instance is created when the rule is 

triggered. Thus separate instances of the ece:HoldsAt class are created to construct 

different statements about different fluents at the current timepoint. However, this is 

unnecessary as the same instance of ece:HoldsAt could be re-used to create all of these 

statements for the current timepoint. 

An additional future improvement would be to include a programmatic 

lookahead to create Fluent values in the system only where and when they were needed. 

The analysis of the benchmark listed in 8.3.5 shows a case where a fluent (in this case 

yaless:Dead) is created in advance for a SWRL rule to operate properly.

10.4.4 Support for different reasoning types

One of the strengths of Event Calculus is that it can be used for different types of 

reasoning, not just deduction, but also induction and abduction. In the research 
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presented here, the benchmarks were all based on deductive rules, i.e. rules which are 

based on prediction of an outcome according to a set of rules and a narrative. However, 

DEC and other Event Calculus variants are capable of dealing with abductive reasoning, 

where the rules and the outcome are given and the narrative has to be discovered. They 

are also capable of inductive reasoning, where the narrative and outcome are provided, 

leaving the rules themselves to be worked out. The development of abductive and 

inductive methods is an issue that has remained outside the scope of this project, in that 

it requires the support of a rules engine that permits these approaches to reasoning. 

Although Jess does include support for backward-chaining, the SWRL Jess Bridge in 

Protege does not really support it very well,  by the admission of the Protege developers 

[202]. Thus an open issue for future development would be to ascertain whether 

alternative rules engines might work better with SWRL for this purpose.

10.5 Impact of new and imminent Semantic Web standards

10.5.1 OWL 2

Over the course of this research, the OWL 2 standard has now been accepted as a W3C 

Recommendation and the use of OWL 2 will inevitably become more widespread. The 

new standard brings a wealth of new capabilities to OWL [39] a selection of these is 

described below.

10.5.1.1 Keys

The addition of a HasKey construct in OWL 2 allows unique identifiers to be defined in 

an OWL ontology. This is a significant feature with respect to DEC reasoning because 

DEC works on the unique name assumption and while it is possible to define 

uniqueness in OWL 1 by defining a functional property and treating it as the unique 

identifier for a class, this is an ad-hoc solution that would need to be enforced by careful 

ontology design, whereas the HasKey construct provides guaranteed unique identifier 

behaviour in an ontology.

10.5.1.2 OWL-RL

The OWL-RL profile of OWL 2 has been designed to support scalable reasoning whilst 

preserving expressive power. This characteristic makes OWL-RL potentially more 
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suitable for software like the DEC resolver, which works with a Semantic Web reasoner.

10.5.2 RIF

Proposal to add rules to OWL in a way that does not lead to undecidability and also 

provides a good chance of effective implementation. The chosen route appears to be DL 

safe rules to OWL with RIF ([203], [58]) 

The RIF-FLD (Framework for Logic Dialects) DEC5 provides the syntax to 

express the negated existential quantification here in a succinct and natural way; so for 

instance, the clause in DEC5,  ¬∃e (Happens(e, t) ∧ Terminates(e, f, t )) could be 

expressed in a RIF-FLD language as Neg Exists ?e (And(Happens(?e,?t))(Terminates(?

e,?f,?t)).This point is significant because it means that the RIF framework supports 

negation-as-failure, in contrast to SWRL.

At the time of writing (2010), the RIF Working Group is still reviewing all of its 

proposals, each of which is still a W3C Candidate Recommendation. So for the time 

being at least, it should come as no surprise that there is no readily available commercial 

or open-source implementation of RIF. Assuming that RIF standards do come into force 

sometime in the future, then it may well turn out that Semantic Web reasoners will one 

day be able to deal with negation-as-failure in decidable rules.

10.6 Final comments

Tim Berners-Lee's observation that “Unexpected reuse is the value of the Web” is an 

interesting one. Indeed, the Web has grown in an unpredictable fashion, from a 

convenient means of organising information across different computers in CERN into a 

truly world-scale medium that has fundamentally changed the way in which many 

people interact with each other and with the world.

Even without taking Semantic Web standards into consideration, the Web has 

still proved to be incredibly powerful and its presence is growing continually. It is worth 

mentioning a point made by Dave Winer in an article from 1997, that the Web is “the 

platform without the platform vendor.” [204] Winer's point was prescient: a major 

theme running through technology news in 2010  is the race by leading technology 

vendors (including Microsoft, Apple and Google) to offer the most complete 

implementations of HTML5 in a Web browser ([205], [206]).

It is impossible to say how the Web will develop in the future, but it is quite 
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likely that Semantic Web standards will play a part in turning the Web into a more 

complete platform for software development. In terms of software engineering, 

Semantic Web standards could offer the data storage and manipulation layer that 

perfectly complements the presentational layer embodied in the more familiar 

Web standards. 

It is quite possible that the Web, as it becomes more powerful as a software 

development platform, will increasingly be used as the basis for more capable software 

and it is quite possible that the Web will become the proving ground for new 

developments in AI. 

This thesis has offered a framework for commonsense reasoning by 

implementing Discrete Event Calculus resolution with Semantic Web technologies. The 

limitations and strengths of the approach have been discussed. The implementation of 

the resolver is far from perfect and it has not been comprehensively tested in all 

respects. Notably, it has not been tested with regards to concurrency and 

nondeterminism.

It is hoped, however, that the outcomes of this research provide  a useful 

contribution to further work into commonsense reasoning with Semantic Web 

technologies.
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Appendix A Source code listings

A-1 Resolver algorithms

A-1.1 The main run() method (main algorithm)

This is the implementation of the main algorithm mentioned in Section 7.6.1

 1 public void run(int t) throws SWRLParseException, BuiltInException, SWRLFactoryException{
 2 
 3 createdIndividuals = 

SWRLRuleBridgeFacade.getInstance().getBridge().getCreatedIndividuals();
 4 
 5 this.t = t;
 6 //run rules
 7 runRules();
 8 
 9  //create and run the SQWRL queries that are used to isolate the different statement types

 10 createHoldsAtQuery(t);
 11 createHappensQuery(t);
 12 createNotHoldsAtQuery(t);
 13 createReleasesQuery(t);
 14 createReleasedAtQuery(t);
 15 createTerminatesQuery(t);
 16 createInitiatesQuery(t);
 17 queryEngine.runSQWRLQueries();
 18 
 19 terminatesResult = queryEngine.getSQWRLResult("terminatesStatements" + t);
 20 initiatesResult = queryEngine.getSQWRLResult("initiatesStatements" + t);
 21  releasesResult = queryEngine.getSQWRLResult("releasesStatements"+t);
 22  releasedAtResult = queryEngine.getSQWRLResult("releasedAtStatements" + t);
 23 
 24 //add HoldsAt, ReleasedAt statements to observations, resolve which ones apply at t+1
 25 resolveHoldsAtStatements(t);
 26 resolveReleasedAtStatements(t);
 27 
 28 //add Happens and Releases statements to narrative, remove from current frame
 29 resolveHappensStatements(t);
 30 resolveReleasesStatements(t);
 31 
 32  //resolve Initiates and Terminates statements for timepoint t, remove from current  frame
 33 resolveInitiatesStatements(t);
 34 resolveTerminatesStatements(t);
 35 }
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A-1.2 The resolveHoldsAtStatements() method

 1 /**
 2  * Check for HoldsAt and ¬HoldsAt statements for use in current frame at
 3 * next timepoint
 4 * This method resolves the (¬)HoldsAt statements that apply at the current
 5 * timepoint t. It implements the DEC axioms DEC5 and DEC6 which rely on
 6 * negation-as-failure, which cannot be expressed in SWRL. 
 7 * The method does this by using the results of SQWRL queries to isolate 
 8 * Initiates, Terminates and Releases statements so that it can decide
 9 *  whether or not a (¬)HoldsAt statement that applies at timepoint t 

 10 *  will also apply at t+1.
 11 * 
 12 * @throws SQWRLException
 13 * @throws SWRLFactoryException
 14 */
 15 private void resolveHoldsAtStatements(int t) throws SQWRLException,
 16 SWRLFactoryException {
 17 
 18 // set the current timepoint
 19 OWLDatatypeProperty hasCurrentTimepoint = currentFrame

.getOWLDatatypeProperty("ece:hasCurrentTimepoint");
 20 currentTimepoint.setPropertyValue(hasCurrentTimepoint, t);
 21 holdsAtResult = queryEngine.getSQWRLResult("holdsAtStatements" + t);
 22 String h, f;
 23 OWLIndividual holdsAt = null;
 24 for (Object o : currentFrame.getOWLNamedClass("ece:HoldsAt").getInstances(true)) {
 25 holdsAt = (OWLIndividual) o;
 26 if (!holdsAtNextFrameMap.containsValue(holdsAt)) {
 27 holdsAt.delete();
 28 }
 29 }
 30 
 31 
 32 //iterate through all of the HoldsAt statements that apply for timepoint t
 33 while (holdsAtResult.hasNext()) {
 34 f = holdsAtResult.getValue("?ece:f").toString();
 35 OWLIndividual fluent = currentFrame.getOWLIndividual(f);
 36 if (!holdsAtNextFrameMap.containsKey(fluent)) {
 37 holdsAt = currentFrame.getOWLNamedClass("ece:HoldsAt")
 38 .createOWLIndividual(null);
 39 holdsAt.addPropertyValue(fluentProperty, fluent);
 40 holdsAt.addPropertyValue(timeProperty, t);
 41 holdsAtNextFrameMap.put(fluent, holdsAt);
 42 }
 43 Collection c = fluent.getRDFTypes();
 44 Collection p = fluent.getRDFProperties();
 45 boolean transfer = true;
 46 
 47 //check for ReleasedAt (t+1)
 48 if (releasedAtNextFrameMap.containsKey(fluent)
 49 && releasedAtNextFrameMap.get(fluent).hasPropertyValue
 50              (timeProperty, t + 1)) {
 51 transfer = false;
 52 break;
 53 }
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 54 
 55 // check for Terminates(e,f,t)
 56 if (transfer && !terminatesResult.isEmpty()) {
 57 terminatesResult.reset();
 58 while (terminatesResult.hasNext()) {
 59 // look for Terminates by class type
 60 String s = terminatesResult.getValue("?ece:c").toString();
 61 RDFSClass type = currentFrame.getOWLNamedClass(s);
 62  //if the Terminates statement acts on instances of the current
 63  //fluent then this HoldsAt statement will not apply at t+1.
 64 if (fluent.getRDFTypes().contains(type)) {
 65 transfer = false;
 66 break;
 67 }
 68 terminatesResult.next();
 69 }
 70 }
 71 
 72 //this statement will be added to the observations knowledge base
 73 addHoldsAtStatementToObservations(fluent, t);
 74 
 75 if (transfer) {
 76 // this statement will be picked up at t+1
 77 if (!holdsAtNextFrameMap.get(fluent).hasPropertyValue(
 78 timeProperty, t + 1)) {
 79 holdsAtNextFrameMap.get(fluent).addPropertyValue(
 80 timeProperty, t + 1);
 81 }
 82 }
 83 holdsAtResult.next();
 84 }
 85 
 86 SQWRLResult notHoldsAtResult = 
 87 queryEngine .getSQWRLResult("notHoldsAtStatements" + t);
 88 OWLIndividual notHoldsAt = null;
 89 for (Object o : currentFrame.getOWLNamedClass("ece:NotHoldsAt").getInstances(true)) {
 90 notHoldsAt = (OWLIndividual) o;
 91 if (!notHoldsAtNextFrameMap.containsValue(notHoldsAt)) {
 92 notHoldsAt.delete();
 93 }
 94 }
 95 
 96 //iterate through all of the ¬HoldsAt statements that apply for timepoint t
 97 while (notHoldsAtResult.hasNext()) {
 98 f = notHoldsAtResult.getValue("?ece:f").toString();
 99 OWLIndividual fluent = currentFrame.getOWLIndividual(f);

 100 if (!notHoldsAtNextFrameMap.containsKey(fluent)) {
 101 notHoldsAt = currentFrame.getOWLNamedClass("ece:NotHoldsAt")
 102 .createOWLIndividual(null);
 103 notHoldsAt.addPropertyValue(fluentProperty, fluent);
 104 notHoldsAt.addPropertyValue(timeProperty, t);
 105 notHoldsAtNextFrameMap.put(fluent, notHoldsAt);
 106 }
 107 
 108 Collection c = fluent.getRDFTypes();
 109 
 110 boolean transfer = true;
 111 
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 112 //check for ReleasedAt (t+1)
 113 if (releasedAtNextFrameMap.containsKey(fluent)
 114 && releasedAtNextFrameMap.get(fluent).hasPropertyValue(
 115 timeProperty, t + 1)) {
 116 transfer = false;
 117 break;
 118 }
 119 
 120 // check for Initiates(e,f,t)
 121 if (transfer && !initiatesResult.isEmpty()) {
 122 initiatesResult.reset();
 123 while (initiatesResult.hasNext()) {
 124 //if the Initiates statement acts on instances of the current
 125  //fluent then this HoldsAt statement will not apply at t+1.
 126 String s = initiatesResult.getValue("?ece:c").toString();
 127 RDFSClass type = currentFrame.getOWLNamedClass(s);
 128 if (fluent.getRDFTypes().contains(type)) {
 129 transfer = false;
 130 break;
 131 }
 132 initiatesResult.next();
 133 }
 134 }
 135 
 136 //this statement will be added to the observations knowledge base
 137 addNotHoldsAtStatementToObservations(f, c, t);
 138 
 139 if (transfer) {
 140 if (!notHoldsAtNextFrameMap.get(fluent).hasPropertyValue(
 141 timeProperty, t + 1)) {
 142 // this statement will be picked up next timepoint
 143 notHoldsAtNextFrameMap.get(fluent).addPropertyValue(
 144 timeProperty, t + 1);
 145 }
 146 }
 147 
 148 if (notHoldsAtResult.hasNext()) {
 149 notHoldsAtResult.next();
 150 }
 151 }
 152 
 153 //clear the (¬)HoldsAt statements from the current frame
 154 factory.getImp("holdsAtStatements" + t).deleteImp();
 155 factory.getImp("notHoldsAtStatements" + t).deleteImp();
 156 }
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A-1.3 The resolveReleasedAtStatements() method

 1 /**
 2 * Check for ReleasedAt and ¬ReleasedAt statements for use in current frame at
 3 * next timepoint
 4 * This method resolves the (¬)ReleasedAt statements that apply at the current
 5 * timepoint t. It implements the DEC axioms DEC7 and DEC8 which rely on
 6 * negation-as-failure, which cannot be expressed in SWRL. ReleasedAt statements are
 7 * dealt with by checking for the existence of Terminates or Initiates statements 
 8 * as specified by DEC 7. NotReleasedAt statements are dealt with by checking for

* Releases statements at the current timepoint t, as speified by DEC 8.
* The method uses the results of SQWRL queries to isolate these Initiates, Terminates
* and Releases statements so that it can decide whether or not a (¬)ReleasedAt statement 
that 

 9 * applies at timepoint t will also apply at t+1. 
 10 *
 11 * @param t the current timepoint

* @throws SQWRLException
* @throws SWRLFactoryException

 12 */

 13 private void resolveReleasedAtStatements(int t) throws SQWRLException, SWRLFactoryException 
{

 14 
 15 while (releasedAtResult.hasNext()) {
 16 String f = releasedAtResult.getValue("?ece:releasedAt").toString();
 17 System.out.println("found releasedAt statement " + f);
 18 releasedAtResult.next();
 19 }
 20 
 21 releasedAtResult.reset();
 22 OWLIndividual releasedAt = null;
 23 String f;
 24 
 25 //look through all of the ReleasedAt statements for this timepoint t
 26 while (releasedAtResult.hasNext()) {
 27 f = releasedAtResult.getValue("?ece:f").toString();
 28 OWLIndividual fluent = currentFrame.getOWLIndividual(f);
 29 Collection c = fluent.getRDFTypes();
 30 boolean transfer = true;
 31 if (!releasedAtNextFrameMap.containsKey(fluent)) {
 32 releasedAt = currentFrame.getOWLNamedClass("ece:ReleasedAt")
 33 .createOWLIndividual(null);
 34 releasedAt.addPropertyValue(fluentProperty, fluent);
 35 releasedAt.addPropertyValue(timeProperty, t);
 36 releasedAtNextFrameMap.put(fluent, releasedAt);
 37 }
 38 
 39 // check for terminating events
 40 if (!terminatesResult.isEmpty()) {
 41 terminatesResult.reset();
 42 while (terminatesResult.hasNext()) {
 43 
 44 //if the Terminates statement acts on instances of the current
 45  //fluent then this ReleasedAt statement will not apply at t+1.
 46 String s = terminatesResult.getValue("?ece:c").toString();
 47 RDFSClass type = currentFrame.getOWLNamedClass(s);
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 48 if (fluent.getRDFTypes().contains(type)) {
 49 transfer = false;
 50 break;
 51 }
 52 terminatesResult.next();
 53 }
 54 }
 55 
 56 
 57 // check for initiating events
 58 if (!initiatesResult.isEmpty()) {
 59 initiatesResult.reset();
 60 while (initiatesResult.hasNext()) {
 61 
 62 //if the Initiates statement acts on instances of the current
 63  //fluent then this ReleasedAt statement will not apply at t+1.
 64 String s = initiatesResult.getValue("?ece:c").toString();
 65 RDFSClass type = currentFrame.getOWLNamedClass(s);
 66 if (fluent.getRDFTypes().contains(type)) {
 67 transfer = false;
 68 break;
 69 }
 70 initiatesResult.next();
 71 }
 72 }
 73 
 74 // add to next frame map if not initiated or terminated at t
 75 System.out.println("adding releasedAt statement: " + c
 76 + " timepoint: " + t);
 77 addReleasedAtStatementsToObservations(f, c, t);
 78 if (transfer) {
 79 // this fluent will be picked up at t+1
 80 if (!releasedAtNextFrameMap.get(fluent).hasPropertyValue(
 81 timeProperty, t + 1)) {
 82 System.out.println("adding releasedAt statement: " + c
 83 + " timepoint: " + (t + 1));
 84 releasedAtNextFrameMap.get(fluent).addPropertyValue(
 85 timeProperty, t + 1);
 86 }
 87 }
 88 releasedAtResult.next();
 89 }
 90 
 91 SQWRLResult notReleasedAtResult = queryEngine
 92 .getSQWRLResult("notReleasedAtStatements" + t);
 93 OWLIndividual notReleasedAt = null;
 94 
 95 for (Object o : currentFrame.getOWLNamedClass("ece:NotReleasedAt") .getInstances(true)) {
 96 notReleasedAt = (OWLIndividual) o;
 97 if (!notReleasedAtNextFrameMap.containsValue(notReleasedAt)) {
 98 notReleasedAt.delete();
 99 }

 100 }
 101 
 102 //look through all of the NotReleasedAt statements for this timepoint t
 103 while (notReleasedAtResult.hasNext()) {
 104 f = notReleasedAtResult.getValue("?ece:f").toString();
 105 OWLIndividual fluent = currentFrame.getOWLIndividual(f);
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 106 if (!notReleasedAtNextFrameMap.containsKey(fluent)) {
 107 notReleasedAt = currentFrame.getOWLNamedClass(
 108 "ece:NotReleasedAt").createOWLIndividual(null);
 109 notReleasedAt.addPropertyValue(fluentProperty, fluent);
 110 notReleasedAt.addPropertyValue(timeProperty, t);
 111 notReleasedAtNextFrameMap.put(fluent, notReleasedAt);
 112 }
 113 
 114 Collection c = fluent.getRDFTypes();
 115 boolean transfer = true;
 116 
 117 // check for Releases statements at t, using the SQWRL result set
 118 releasesResult.reset();
 119 if (!releasesResult.isEmpty()) {
 120 while (releasesResult.hasNext()) {
 121 // look for Releases by class type
 122 String s = releasesResult.getValue("?ece:c").toString();
 123 RDFSClass type = currentFrame.getOWLNamedClass(s);
 124 
 125 //if the current fluent is released then this NotReleasedAt
 126 //statement will not apply at t+1
 127 if (fluent.getRDFTypes().contains(type)) {
 128 transfer = false;
 129 break;
 130 }
 131 releasesResult.next();
 132 }
 133 }
 134 
 135 addNotReleasedAtStatementsToObservations(f, c, t);
 136 
 137 
 138 if (transfer) {
 139 if (!notReleasedAtNextFrameMap.get(fluent).hasPropertyValue(
 140 timeProperty, t + 1)) {
 141 // this fluent will be picked up at t+1 because the
 142 // individuals are only deleted at the start of this loop
 143 notReleasedAtNextFrameMap.get(fluent).
 144 addPropertyValue(timeProperty, t + 1);
 145 }
 146 }
 147 if (notReleasedAtResult.hasNext()) {
 148 notReleasedAtResult.next();
 149 }
 150 }
 151 factory.getImp("releasedAtStatements" + t).delete();
 152 factory.getImp("notReleasedAtStatements" + t).delete();
 153 }
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A-2 JUnit tests

A-2.1 Lightswitch Scenario test

 1 package test; 
 2 
 3 import org.junit.Before; 
 4 import org.junit.Test; 
 5 
 6 import event.model.builder.ModelBuilder; 
 7 import event.model.builder.Resolver; 
 8 import event.model.entities.LightswitchScenarioFactory; 
 9 import event.model.entities.On1; 

 10 import event.model.entities.On2; 
 11 import event.model.entities.TurnOn1; 
 12 import event.model.entities.TurnOn2; 
 13 import event.model.facade.OWLModelFacade; 
 14 
 15 public class LighswitchScenarioTest { 
 16 TurnOn1 turnOn1; 
 17 TurnOn2 turnOn2; 
 18 On1 on1; 
 19 On2 on2; 
 20  
 21 
 22 @Before 
 23 public void setUp(){ 
 24 //load the domain ontology 
 25 ModelBuilder.getInstance().build("ontology/rc/lightswitch.owl"); 
 26  
 27 //obtain factory reference 
 28 LightswitchScenarioFactory factory = LightswitchScenarioFactory.getInstance(); 
 29  
 30 //Use the factory to create instances of the events, 
 31 //fluents and predicates that form part of the narrative. 
 32 on1 = factory.createOn1(); 
 33 on2 = factory.createOn2(); 
 34 turnOn2 = factory.createTurnOn2(); 
 35  
 36 factory.createNotHoldsAt(on1, 0); 
 37 factory.createNotHoldsAt(on2, 0); 
 38 factory.createHappens(turnOn2, 0); 
 39 } 
 40  
 41  
 42 @Test 
 43 public void testLightswitchScenario() throws Exception { 
 44 Resolver resolver = Resolver.getInstance(); 
 45 resolver.run(0); 
 46 resolver.run(1); 
 47 OWLModelFacade.getInstance().printObservationsModel(); 
 48 } 
 49 }
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A-2.2 Yale Shooting Scenario test

 1 package test;
 2 
 3 import org.junit.Before;
 4 import org.junit.Test;
 5 
 6 import event.model.builder.ModelBuilder;
 7 import event.model.builder.Resolver;
 8 import event.model.builder.formula.EventOccurrenceBuilder;
 9 import event.model.builder.formula.HoldsAtBuilder;

 10 import event.model.builder.formula.InitiatesBuilder;
 11 import event.model.builder.formula.NotHoldsAtBuilder;
 12 import event.model.builder.formula.TerminatesBuilder;
 13 import event.model.entities.Alive;
 14 import event.model.entities.Dead;
 15 import event.model.entities.EntityFactory;
 16 import event.model.entities.Load;
 17 import event.model.entities.Loaded;
 18 import event.model.entities.Shoot;
 19 import event.model.entities.Wait;
 20 import event.model.facade.OWLModelFacade;
 21 
 22 /**
 23  * Yale Shooting Scenario test
 24  * @author will
 25  */
 26 public class YaleShootingScenarioTest {
 27 
 28 EntityFactory factory;
 29 InitiatesBuilder initiatesBuilder;
 30 TerminatesBuilder terminatesBuilder;
 31 EventOccurrenceBuilder eventOccurrenceBuilder;
 32 HoldsAtBuilder holdsAtBuilder;
 33 NotHoldsAtBuilder notHoldsAtBuilder;
 34 
 35 Load load;
 36 Shoot shoot;
 37 Wait wait;
 38 Alive alive;
 39 Loaded loaded;
 40 Dead dead;
 41 
 42 
 43 /**
 44  * @throws java.lang.Exception
 45  */
 46 @Before
 47 public void setUp() throws Exception {
 48 //load the domain ontology
 49 ModelBuilder.getInstance().build("ontology/rc/yalessnew_2.owl");
 50 
 51 //Use the factory to create instances of the events, 
 52 //fluents and predicates that form part of the narrative.
 53 factory = EntityFactory2.getInstance();
 54 load = factory.createLoad();
 55 shoot = factory.createShoot();
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 56 wait = factory.createWait();
 57 alive = factory.createAlive();
 58 loaded = factory.createLoaded();
 59 dead = factory.createDead();
 60 
 61 //Associate the fluents and events with the appropriate predicate instances
 62 factory.createHoldsAt(alive, 0);
 63 factory.createNotHoldsAt(loaded, 0);
 64 factory.createHappens(load, 0);
 65 factory.createHappens(wait,1);
 66 factory.createHappens(shoot,2);
 67 }
 68 
 69 @Test
 70 public void testYaleShootingScenario() throws Exception{
 71 //Call Resolver.run() for the desired number of timepoints
 72 Resolver resolver = Resolver.getInstance();
 73 resolver.run(0);
 74 resolver.run(1);
 75 resolver.run(2);
 76 resolver.run(3);
 77 OWLModelFacade.getInstance().printObservationsModel();
 78 }
 79 }

A-2.3 Russian Turkey Scenario test

 1 package test;
 2 
 3 import org.junit.Before;
 4 import org.junit.Test;
 5 
 6 import event.model.builder.ModelBuilder;
 7 import event.model.builder.Resolver;
 8 import event.model.entities.Alive;
 9 import event.model.entities.Dead;

 10 import event.model.entities.EntityFactory2;
 11 import event.model.entities.Load;
 12 import event.model.entities.Loaded;
 13 import event.model.entities.Shoot;
 14 import event.model.entities.Spin;
 15 import event.model.entities.Wait;
 16 import event.model.facade.OWLModelFacade;
 17 
 18 /**
 19  * Russian Turkey Scenario is as follows:
 20  * events: Shoot, Load, Spin
 21  * fluents: Alive, Loaded
 22  * initially: HoldsAt(loaded,t)-> Terminates(Shoot, Alive); 
 23  * HoldsAt(Loaded) -> Terminates(Shoot, Loaded); HoldsAt(Alive,0);
 24  * HoldsAt(Loaded, t) -> Releases (Spin, Loaded, t) 
 25  * NotHoldsAt(Loaded,0); HoldsAt(Alive, 0)
 26  * narrative: Happens(Load, 0); Happens(Spin,1); Happens(Shoot,2)
 27  * inference: NotHoldsAt(Alive,3)
 28  * @author will
 29  *
 30  */
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 31 public class RussianTurkeyTest {
 32 
 33 EntityFactory2 factory;
 34 
 35 Load load;
 36 Shoot shoot;
 37 Wait wait;
 38 Spin spin;
 39 Alive alive;
 40 Loaded loaded;
 41 Dead dead;
 42 
 43 
 44 /**
 45  * @throws java.lang.Exception
 46  */
 47 @Before
 48 public void setUp() throws Exception {
 49 //load the domain ontology
 50 ModelBuilder.getInstance().build("ontology/development/russian_turkey_new.owl");
 51 
 52 factory = EntityFactory2.getInstance();
 53 load = factory.createLoad();
 54 shoot = factory.createShoot();
 55 wait = factory.createWait();
 56 spin = factory.createSpin();
 57 alive = factory.createAlive();
 58 loaded = factory.createLoaded();
 59 factory.createReleasedAt();
 60 
 61 //Use the factory to create instances of the events, 
 62 //fluents and predicates that form part of the narrative.
 63 factory.createHoldsAt(alive, 0);
 64 factory.createNotHoldsAt(loaded, 0);
 65 factory.createHappens(load, 0);
 66 factory.createHappens(spin, 1);
 67 factory.createHappens(shoot,2);
 68 }
 69 
 70 @Test
 71 public void testYaleShootingScenario() throws Exception{
 72 Resolver director = Resolver.getInstance();
 73 director.run(0);
 74 director.run(1);
 75 director.run(2);
 76 director.run(3);
 77 OWLModelFacade.getInstance().printObservationsModel();
 78 }
 79 }
 80 
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A-2.4 Hot Air Balloon Scenario test

 1 package test;

 2 

 3 import org.junit.Before;

 4 import org.junit.Test;

 5 

 6 

 7 import edu.stanford.smi.protegex.owl.model.RDFProperty;

 8 import event.model.builder.ModelBuilder;

 9 import event.model.builder.Resolver;

 10 import event.model.entities.Initiates;

 11 import event.model.entities.Trajectory;

 12 import event.model.entities.hotairballoon.*;

 13 import event.model.facade.OWLModelFacade;

 14 

 15 

 16 /**

 17  * @author will

 18  *

 19  */

 20 public class HotAirBalloonScenarioTest {

 21 

 22 Trajectory trajectory;

 23 Initiates initiates;

 24 TurnOffHeater turnOffHeater;

 25 TurnOnHeater turnOnHeater;

 26 HeaterOn heaterOn;

 27 Height height;

 28 Height height2;

 29 Balloon balloon;

 30 Velocity velocity;

 31 

 32 RDFProperty hasHeight;

 33 

 34 RDFProperty hasVelocity;

 35 

 36 @Before

 37 public void setUp(){
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 38 //load the domain ontology

 39 ModelBuilder.getInstance().build("ontology/rc/hotairballoon.owl");

 40 

 41 //obtain factory reference

 42 HotAirBalloonScenarioFactory factory = HotAirBalloonScenarioFactory.getInstance();

 43 

 44 //Use the factory to create instances of the events, 

 45 //fluents and predicates that form part of the narrative.

 46 turnOffHeater = factory.createTurnOffHeater();

 47 turnOnHeater = factory.createTurnOnHeater();

 48 heaterOn = factory.createHeaterOn();

 49 height = factory.createHeight();

 50 height2 = factory.createHeight();

 51 balloon = factory.createBalloon();

 52 velocity = factory.createVelocity();

 53 

 54 hasHeight = factory.getHasHeightProperty();

 55 height.addPropertyValue(hasHeight, 0);

 56 

 57 hasVelocity = factory.getHasVelocityProperty();

 58 velocity.addPropertyValue(hasVelocity, 1);

 59 

 60 

 61 trajectory = factory.createTrajectory(null);

 62 initiates = factory.createInitiates(null);

 63 

 64 factory.createHoldsAt(height, 0);

 65 factory.createHoldsAt(velocity, 1);

 66 height2.addHasHeight(2);

 67 factory.createHappens(turnOnHeater, 0);

 68 factory.createTerminates(turnOnHeater, height, 0);

 69 factory.createInitiates(turnOnHeater, heaterOn, 0);

 70 

 71 

 72 trajectory.setHasStartFluent(heaterOn);

 73 trajectory.setHasEndFluent(height2);

 74 trajectory.setHasStartTime(0);

 75 trajectory.setHasEndTime(3);

 76 
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 77 

 78 factory.createNotStoppedIn(0, heaterOn, 3);

 79 

 80 }

 81 

 82 @Test

 83 public void testHotAirBalloonScenario() throws Exception {

 84 Resolver resolver = Resolver.getInstance();

 85 resolver.runToTimepoint(2);

 86 OWLModelFacade.getInstance().printObservationsModel();

 87 

 88 }

 89 

 90 }
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Appendix B ECE and DECAX ontologies

B-1 ECE ontology

B-1.1 RDF/XML listing (extracts)

B-1.1.1 Namespace definitions and ece:Releases definition

 1 <?xml version="1.0"?> 
 2 <rdf:RDF 
 3     xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#" 
 4     xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#" 
 5     xmlns:owlx="http://owl.stanford.edu/ontologies/built-ins/3.3/owlx.owl#" 
 6     xmlns:abox="http://owl.stanford.edu/ontologies/built-ins/3.3/abox.owl#" 
 7     xmlns:owlb="http://www.w3.org/2003/11/owlb#" 
 8     xmlns:swrlb="http://www.w3.org/2003/11/swrlb#" 
 9     xmlns:temporal="http://owl.stanford.edu/ontologies/built-ins/3.3/temporal.owl#" 

 10     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
 11     xmlns:ece="http://www.event_calculus_experiments#" 
 12     xmlns:owl="http://www.w3.org/2002/07/owl#" 
 13     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
 14     xmlns:swrl="http://www.w3.org/2003/11/swrl#" 
 15     xmlns:owla="http://owl.stanford.edu/ontologies/3.3/owla.owl#" 
 16     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 
 17   xml:base="http://www.event_calculus_experiments"> 
 18   <owl:Ontology rdf:about=""/> 
 19   <owl:Class rdf:ID="Releases"> 
 20     <owl:disjointWith> 
 21       <owl:Class rdf:ID="NotReleasedAt"/> 
 22     </owl:disjointWith> 
 23     <owl:disjointWith> 
 24       <owl:Class rdf:ID="Trajectory"/> 
 25     </owl:disjointWith> 
 26     <owl:disjointWith> 
 27       <owl:Class rdf:ID="Initiates"/> 
 28     </owl:disjointWith> 
 29     <owl:disjointWith> 
 30       <owl:Class rdf:ID="Event"/> 
 31     </owl:disjointWith> 
 32     <owl:disjointWith> 
 33       <owl:Class rdf:ID="NotReleases"/> 
 34     </owl:disjointWith> 
 35     <owl:disjointWith> 
 36       <owl:Class rdf:ID="StoppedIn"/> 
 37     </owl:disjointWith> 
 38     <owl:disjointWith> 
 39       <owl:Class rdf:ID="HoldsAt"/> 
 40     </owl:disjointWith> 
 41     <owl:disjointWith> 
 42       <owl:Class rdf:ID="Terminates"/> 
 43     </owl:disjointWith> 
 44     <owl:disjointWith> 
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 45       <owl:Class rdf:ID="AntiTrajectory"/> 
 46     </owl:disjointWith> 
 47     <owl:disjointWith> 
 48       <owl:Class rdf:ID="NotStartedIn"/> 
 49     </owl:disjointWith> 
 50     <owl:disjointWith> 
 51       <owl:Class rdf:ID="Happens"/> 
 52     </owl:disjointWith> 
 53     <owl:disjointWith> 
 54       <owl:Class rdf:ID="NotHoldsAt"/> 
 55     </owl:disjointWith> 
 56     <owl:disjointWith> 
 57       <owl:Class rdf:ID="Fluent"/> 
 58     </owl:disjointWith> 
 59     <owl:disjointWith> 
 60       <owl:Class rdf:ID="ReleasedAt"/> 
 61     </owl:disjointWith> 
 62     <owl:disjointWith> 
 63       <owl:Class rdf:ID="NotStoppedIn"/> 
 64     </owl:disjointWith> 
 65     <owl:disjointWith> 
 66       <owl:Class rdf:ID="StartedIn"/> 
 67     </owl:disjointWith> 
 68   </owl:Class> 
 69   <owl:Class rdf:about="#NotStoppedIn"> 
 70     <owl:disjointWith> 
 71       <owl:Class rdf:about="#Happens"/> 
 72     </owl:disjointWith> 
 73     <rdfs:subClassOf> 
 74       <owl:Class> 
 75         <owl:complementOf> 
 76           <owl:Class rdf:about="#StoppedIn"/> 
 77         </owl:complementOf> 
 78       </owl:Class> 
 79     </rdfs:subClassOf> 
 80     <owl:disjointWith> 
 81       <owl:Class rdf:about="#NotReleasedAt"/> 
 82     </owl:disjointWith> 
 83     <owl:disjointWith> 
 84       <owl:Class rdf:about="#AntiTrajectory"/> 
 85     </owl:disjointWith> 
 86     <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 
 87     <owl:disjointWith> 
 88       <owl:Class rdf:about="#Event"/> 
 89     </owl:disjointWith> 
 90     <owl:disjointWith> 
 91       <owl:Class rdf:about="#Terminates"/> 
 92     </owl:disjointWith> 
 93     <owl:disjointWith> 
 94       <owl:Class rdf:about="#StoppedIn"/> 
 95     </owl:disjointWith> 
 96     <owl:disjointWith> 
 97       <owl:Class rdf:about="#HoldsAt"/> 
 98     </owl:disjointWith> 
 99     <owl:disjointWith> 

 100       <owl:Class rdf:about="#Initiates"/> 
 101     </owl:disjointWith> 
 102     <owl:disjointWith rdf:resource="#Releases"/> 
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 103     <owl:disjointWith> 
 104       <owl:Class rdf:about="#NotStartedIn"/> 
 105     </owl:disjointWith> 
 106     <owl:disjointWith> 
 107       <owl:Class rdf:about="#ReleasedAt"/> 
 108     </owl:disjointWith> 
 109     <owl:disjointWith> 
 110       <owl:Class rdf:about="#NotHoldsAt"/> 
 111     </owl:disjointWith> 
 112     <owl:disjointWith> 
 113       <owl:Class rdf:about="#NotReleases"/> 
 114     </owl:disjointWith> 
 115     <owl:disjointWith> 
 116       <owl:Class rdf:about="#Trajectory"/> 
 117     </owl:disjointWith> 
 118     <owl:disjointWith> 
 119       <owl:Class rdf:about="#StartedIn"/> 
 120     </owl:disjointWith> 
 121     <owl:disjointWith> 
 122       <owl:Class rdf:about="#Fluent"/> 
 123     </owl:disjointWith> 
 124   </owl:Class> 
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B-1.1.2 ece:HoldsAt definition

 1 <owl:Class rdf:about="#HoldsAt"> 
 2     <owl:disjointWith> 
 3       <owl:Class rdf:about="#NotStartedIn"/> 
 4     </owl:disjointWith> 
 5     <owl:disjointWith> 
 6       <owl:Class rdf:about="#StoppedIn"/> 
 7     </owl:disjointWith> 
 8     <owl:disjointWith rdf:resource="#Trajectory"/> 
 9     <owl:disjointWith> 

 10       <owl:Class rdf:about="#Event"/> 
 11     </owl:disjointWith> 
 12     <owl:disjointWith> 
 13       <owl:Class rdf:about="#AntiTrajectory"/> 
 14     </owl:disjointWith> 
 15     <rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/> 
 16     <owl:disjointWith> 
 17       <owl:Class rdf:about="#NotReleasedAt"/> 
 18     </owl:disjointWith> 
 19     <owl:disjointWith> 
 20       <owl:Class rdf:about="#NotReleases"/> 
 21     </owl:disjointWith> 
 22     <rdfs:subClassOf> 
 23       <owl:Class> 
 24         <owl:complementOf rdf:resource="#NotHoldsAt"/> 
 25       </owl:Class> 
 26     </rdfs:subClassOf> 
 27     <owl:disjointWith> 
 28       <owl:Class rdf:about="#Fluent"/> 
 29     </owl:disjointWith> 
 30     <owl:disjointWith rdf:resource="#Initiates"/> 
 31     <owl:disjointWith> 
 32       <owl:Class rdf:about="#CurrentTimepoint"/> 
 33     </owl:disjointWith> 
 34     <owl:disjointWith> 
 35       <owl:Class rdf:about="#StartedIn"/> 
 36     </owl:disjointWith> 
 37     <owl:disjointWith> 
 38       <owl:Class rdf:about="#Terminates"/> 
 39     </owl:disjointWith> 
 40     <owl:disjointWith rdf:resource="#NotStoppedIn"/> 
 41     <owl:disjointWith> 
 42       <owl:Class rdf:about="#Happens"/> 
 43     </owl:disjointWith> 
 44     <owl:disjointWith> 
 45       <owl:Class rdf:about="#ReleasedAt"/> 
 46     </owl:disjointWith> 
 47     <owl:disjointWith rdf:resource="#NotHoldsAt"/> 
 48     <owl:disjointWith rdf:resource="#Releases"/> 
 49   </owl:Class>
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B-1.2 Table summaries of classes and properties in ECE ontology

Table B-1.2.1  : Classes to represent predicates in ECE ontology

Predicate OWL/SWRL implementation in DEC ontology

HoldsAt(f, t) ece:Fluent(?f)  ∧ ece:HoldsAt (?holdsAt)∧ ece:hasFluent(?holdsAt, ?
f) ∧ ece:hasTime(?holdsAt, ?t)

¬HoldsAt(f,t) ece:Fluent(?f)  ∧ ece:NotHoldsAt (?notHoldsAt)∧ ece:hasFluent(?
notHoldsAt, ?f) ∧ ece:hasTime(?notHoldsAt, ?t)

Happens(e,t) ece:Event(?e)∧
ece:Happens (?e, ?t)

Initiates (e,f,t) ece:Event(?e) ∧ ece:Fluent(?f) ∧ ece:Initiates(?initiates) ∧ 
ece:hasEvent(?initiates, ?e) ∧ ece:hasFluent(?initiates, ?f) ∧ 
ece:hasTime(?initiates, ?t)  ∧ ece:hasFluentClass(?f,  ?c)

Terminates 
(e,f,t)

ece:Event(?e) ∧ ece:Fluent(?f) ∧ ece:Terminates(?terminates) ∧ 
hasEvent(?terminates, ?e) ∧hasFluent(?terminates, ?f)  ∧ hasTime(?
terminates, ?t)

Releases(e,f,t) ece:Event(?e) ∧ ece:Fluent(?f) ∧ ece:Releases (?releases) ∧ 
ece:hasEvent(?releases, ?e)  ∧ ece:hasFluent(?releases, ?f) ∧ 
ece:hasTime(?releases, ?t)

ReleasedAt  
(f,t)

Ece:Fluent(?f) ∧ ece:ReleasedAt(?releasedAt) ∧ ece:hasFluent(?
releasedAt, ?f) ∧ ece:hasTime(?releasedAt, ?t)

StartedIn(t1,f,t
2)

ece:Happens(?ece:happens)   ∧ ece:Event(?ece:e)   ∧ ece:Initiates(?
ece:initiates)    ∧ ece:StartedIn(?ece:started)   ∧ ece:hasTime(?
ece:happens, ?ece:t)  ∧
ece:hasStartTime(?ece:started, ?ece:t1)  ∧
ece:hasEndTime(?ece:started, ?ece:t2)  ∧
ece:hasTime(?ece:initiates, ?ece:t)   ∧ ece:hasEvent(?ece:initiates, ?
ece:e)  ∧
ece:hasFluent(?ece:initiates, ?ece:f)   ∧ swrlb:lessThan(?ece:t1, ?
ece:t)  ∧
swrlb:lessThan(?ece:t, ?ece:t2) 

StoppedIn(t1,f,
t2)

ece:Happens(?ece:happens)   ∧ ece:Event(?ece:e)  ∧
ece:Terminates(?ece:terminates)   ∧ ece:StoppedIn(?ece:stopped)  ∧
ece:hasTime(?ece:happens, ?ece:t)   ∧ ece:hasStartTime(?
ece:stopped, ?ece:t1)  ∧
ece:hasEndTime(?ece:stopped, ?ece:t2)   ∧ ece:hasTime(?
ece:terminates, ?ece:t)  ∧
ece:hasEvent(?ece:terminates, ?ece:e)   ∧ ece:hasFluent(?
ece:terminates, ?ece:f)  ∧
swrlb:lessThan(?ece:t1, ?ece:t)   ∧ swrlb:lessThan(?ece:t, ?ece:t2) 
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Table B-1.2.2: OWL properties used in ECE ontology

Property Property 
type

Domain Range Notes

ece:hasEvent Object ece:Initiates
ece:Terminates
ece:Happens
ece:Releases

ece:Event Also applies to 
negations of these 
predicates (e.g. 
¬Happens, defined 
in DEC ontology as 
ece:NotHappens); 
these classes are 
also included in the 
domain

ece:hasFluent Object ece:HoldsAt
ece:NotHoldsAt
ece:Releases
ece:ReleasedAt
ece:Initiates
ece:Terminates
ece:Happens

ece:Fluent

ece:hasTime Datatype Ece:HoldsAt
ece:NotHoldsAt
ece:Releases
ece:ReleasedAt
ece:Initiates
ece:Terminates
ece:Happens

xsd:nonNegati
veinteger 

Could be object 
property type if 
timepoint is defined 
as an object (as in 
OWL-Time)

ece:hasStartTime Datatype ece:StoppedIn
ece:StartedIn

xsd:nonNegati
veinteger 

ece:hasEndTime Datatype ece:StoppedIn
ece:StartedIn

xsd:nonNegati
veinteger 

ece:hasFluentClass Datatype ece:Initiates
ece:Terminates

xsd:string

Ece:hasStartFluent Object ece:Trajectory
ece:AntiTraject
ory

ece:Fluent

Ece:hasEndFluent Object ece:Trajectory
ece:AntiTraject
ory

ece:Fluent
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B-2 DECAX ontology including SWRL rules (decax.owl)

This is a very short extract from the DECAX ontology that describes the XML 

serialization of the SWRL for DEC-05 (see 6.7.1 and 6.7.2)

  <swrl:Imp rdf:ID="DEC-05">
    <swrl:body>
      <swrl:AtomList>
        <rdf:rest>
          <swrl:AtomList>
            <rdf:first>
              <swrl:ClassAtom>
                <swrl:argument1>
                  <swrl:Variable rdf:ID="notHoldsAt"/>
                </swrl:argument1>
                <swrl:classPredicate rdf:resource="http://www.event_calculus_experiments#NotHoldsAt"/>
              </swrl:ClassAtom>
            </rdf:first>
            <rdf:rest>
              <swrl:AtomList>
                <rdf:rest>
                  <swrl:AtomList>
                    <rdf:first>
                      <swrl:ClassAtom>
                        <swrl:classPredicate rdf:resource="http://www.event_calculus_experiments#Happens"/>
                        <swrl:argument1>
                          <swrl:Variable rdf:ID="happens"/>
                        </swrl:argument1>
                      </swrl:ClassAtom>
                    </rdf:first>
                    <rdf:rest>
                      <swrl:AtomList>
                        <rdf:first>
                          <swrl:ClassAtom>
                            <swrl:argument1>
                              <swrl:Variable rdf:ID="terminates"/>
                            </swrl:argument1>
                            <swrl:classPredicate rdf:resource="http://www.event_calculus_experiments#Terminates"/>
                          </swrl:ClassAtom>
                        </rdf:first>
                        <rdf:rest>
                          <swrl:AtomList>
                            <rdf:first>
                              <swrl:ClassAtom>
                                <swrl:classPredicate rdf:resource="http://www.event_calculus_experiments#Fluent"/>
                                <swrl:argument1>
                                  <swrl:Variable rdf:ID="f"/>
                                </swrl:argument1>
                              </swrl:ClassAtom>
                            </rdf:first>
                            <rdf:rest>
                              <swrl:AtomList>
                                <rdf:first>
                                  <swrl:ClassAtom>
                                    <swrl:argument1>
                                      <swrl:Variable rdf:ID="e"/>
                                    </swrl:argument1>
                                    <swrl:classPredicate rdf:resource="http://www.event_calculus_experiments#Event"/>
                                  </swrl:ClassAtom>
                                </rdf:first>
                                <rdf:rest>
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                                  <swrl:AtomList>
                                    <rdf:first>
                                      <swrl:IndividualPropertyAtom>
                                        <swrl:argument1 rdf:resource="#happens"/>
                                        <swrl:argument2 rdf:resource="#e"/>
                                       <swrl:propertyPredicate rdf:resource="http://www.event_calculus_experiments#hasEvent"/>
                                      </swrl:IndividualPropertyAtom>
                                    </rdf:first>
                                    <rdf:rest>
                                      <swrl:AtomList>
                                        <rdf:rest>
                                          <swrl:AtomList>
                                            <rdf:first>
                                              <swrl:IndividualPropertyAtom>
                                                <swrl:argument1 rdf:resource="#terminates"/>
                                                <swrl:argument2 rdf:resource="#e"/>
                                      <swrl:propertyPredicater rdf:resource="http://www.event_calculus_experiments#hasEvent"/>
                                              </swrl:IndividualPropertyAtom>
                                            </rdf:first>
                                            <rdf:rest>
                                              <swrl:AtomList>
                                                <rdf:first>
                                                  <swrl:IndividualPropertyAtom>
                                                    <swrl:propertyPredicate 

rdf:resource="http://www.event_calculus_experiments#hasFluent"/>
                                                    <swrl:argument2 rdf:resource="#f"/>
                                                    <swrl:argument1 rdf:resource="#terminates"/>
                                                  </swrl:IndividualPropertyAtom>
                                                </rdf:first>
                                                <rdf:rest>
                                                  <swrl:AtomList>
                                                    <rdf:rest>
                                                      <swrl:AtomList>
                                                        <rdf:first>
                                                          <swrl:BuiltinAtom>
                                                            <swrl:builtin rdf:resource="http://www.w3.org/2003/11/swrlb#add"/>
                                                            <swrl:arguments>
                                                              <rdf:List>
                                                                <rdf:rest>
                                                                  <rdf:List>
                                                                    <rdf:rest>
                                                                      <rdf:List>
                                                                   <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
                                                                        <rdf:first rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
                                                                        >1</rdf:first>
                                                                      </rdf:List>
                                                                    </rdf:rest>
                                                                    <rdf:first>
                                                                      <swrl:Variable rdf:ID="t"/>
                                                                    </rdf:first>
                                                                  </rdf:List>
                                                                </rdf:rest>
                                                                <rdf:first>
                                                                  <swrl:Variable rdf:ID="t2"/>
                                                                </rdf:first>                                              

</rdf:List>
                                                            </swrl:arguments>
                                                          </swrl:BuiltinAtom>
                                                        </rdf:first>
                                                        <rdf:rest>
                                                          <swrl:AtomList>
                                                            <rdf:first>
                                                              <swrl:IndividualPropertyAtom>
    <swrl:propertyPredicate rdf:resource 

199



="http://www.event_calculus_experiments#hasFluent"/>
    <swrl:argument2 rdf:resource="#f"/>
    <swrl:argument1>
      <swrl:Variable rdf:ID="notReleasedAt"/>
    </swrl:argument1>                                         

              </swrl:IndividualPropertyAtom>
                                                            </rdf:first>
                                                            <rdf:rest>
                                                              <swrl:AtomList>
                                                              <rdf:first>
                                                                <swrl:DatavaluedPropertyAtom>
                                                                  <swrl:propertyPredicate 

      rdf:resource="http://www.event_calculus_experiments#hasTime"/>
                                                                  <swrl:argument2 rdf:resource="#t2"/>
                                                                  <swrl:argument1 rdf:resource="#notReleasedAt"/>
                                                                </swrl:DatavaluedPropertyAtom>
                                                              </rdf:first>
                                                              <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
                                                              </swrl:AtomList>
                                                            </rdf:rest>
                                                          </swrl:AtomList>
                                                        </rdf:rest>
                                                      </swrl:AtomList>
                                                    </rdf:rest>
                                                    <rdf:first>
                                                      <swrl:DatavaluedPropertyAtom>
                                                        <swrl:argument2 rdf:resource="#t"/>
                                                        <swrl:argument1 rdf:resource="#terminates"/>
                                                        <swrl:propertyPredicate 

                                         rdf:resource="http://www.event_calculus_experiments#hasTime"/>
                                                      </swrl:DatavaluedPropertyAtom>
                                                    </rdf:first>
                                                  </swrl:AtomList>
                                                </rdf:rest>
                                              </swrl:AtomList>
                                            </rdf:rest>
                                          </swrl:AtomList>
                                        </rdf:rest>
                                        <rdf:first>
                                          <swrl:DatavaluedPropertyAtom>
                                            <swrl:argument2 rdf:resource="#t"/>
                                            <swrl:argument1 rdf:resource="#happens"/>
                                       <swrl:propertyPredicater rdf:resource="http://www.event_calculus_experiments#hasTime"/> 

          </swrl:DatavaluedPropertyAtom>
                                        </rdf:first>
                                      </swrl:AtomList>
                                    </rdf:rest>
                                  </swrl:AtomList>
                                </rdf:rest>
                              </swrl:AtomList>
                            </rdf:rest>
                          </swrl:AtomList>
                        </rdf:rest>
                      </swrl:AtomList>
                    </rdf:rest>
                  </swrl:AtomList>
                </rdf:rest>
                <rdf:first>
                  <swrl:ClassAtom>
                    <swrl:argument1 rdf:resource="#notReleasedAt"/>
                    <swrl:classPredicate rdf:resource="http://www.event_calculus_experiments#NotReleasedAt"/>
                  </swrl:ClassAtom>
                </rdf:first>
              </swrl:AtomList>
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            </rdf:rest>
          </swrl:AtomList>
        </rdf:rest>
        <rdf:first>
          <swrl:ClassAtom>
            <swrl:argument1>
              <swrl:Variable rdf:ID="holdsAt"/>
            </swrl:argument1>
            <swrl:classPredicate rdf:resource="http://www.event_calculus_experiments#HoldsAt"/>
          </swrl:ClassAtom>
        </rdf:first>
      </swrl:AtomList>
    </swrl:body>
    <swrl:head>
      <swrl:AtomList>
        <rdf:rest>
          <swrl:AtomList>
            <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
            <rdf:first>
              <swrl:DatavaluedPropertyAtom>
                <swrl:propertyPredicate rdf:resource="http://www.event_calculus_experiments#hasTime"/>
                <swrl:argument1 rdf:resource="#notHoldsAt"/>
                <swrl:argument2 rdf:resource="#t2"/>
              </swrl:DatavaluedPropertyAtom>
            </rdf:first>
          </swrl:AtomList>
        </rdf:rest>
        <rdf:first>
          <swrl:IndividualPropertyAtom>
            <swrl:argument2 rdf:resource="#f"/>
            <swrl:argument1 rdf:resource="#notHoldsAt"/>
            <swrl:propertyPredicate rdf:resource="http://www.event_calculus_experiments#hasFluent"/>
          </swrl:IndividualPropertyAtom>
        </rdf:first>
      </swrl:AtomList>
    </swrl:head>
  </swrl:Imp>
  <swrl:Variable rdf:ID="Variable_257"/>
  <swrl:Variable rdf:ID="Variable_245"/>
  <swrl:IndividualPropertyAtom>
    <swrl:propertyPredicate rdf:resource="http://www.event_calculus_experiments#hasFluent"/>
    <swrl:argument2>
      <swrl:Variable rdf:about="http://www.event_calculus_experiments/f"/>
    </swrl:argument2>
    <swrl:argument1>
      <swrl:Variable rdf:about="http://www.event_calculus_experiments/releasedAt"/>
    </swrl:argument1>
  </swrl:IndividualPropertyAtom>
  <swrl:Variable rdf:ID="Variable_35"/>
  <swrl:Variable rdf:ID="Variable_115"/>
  <swrl:Variable rdf:ID="Variable_105"/>
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Appendix C Test domain ontologies

C-1 Lightswitch Scenario test ontology

C-1.1 Events and fluents

 1   <owl:Class rdf:ID="TurnOn1"> 

 2     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Event"/> 

 3   </owl:Class> 

 4   <owl:Class rdf:ID="On2"> 

 5     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Fluent"/> 

 6   </owl:Class> 

 7   <owl:Class rdf:ID="TurnOn2"> 

 8     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Event"/> 

 9   </owl:Class> 

 10   <owl:Class rdf:ID="On1"> 

 11     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Fluent"/> 

 12   </owl:Class>

C-1.2 Rules

C-1.2.1 LSS-01

 1 ece:Happens(?happens)  ∧

 2 TurnOn1(?turnOn1)  ∧

 3 On1(?on1)  ∧

 4 ece:hasEvent(?initiates, ?turnOn1)  ∧

 5 ece:hasTime(?initiates, ?t)  ∧

 6 swrlx:makeOWLThing(?initiates, ?turnOn) 

 7   ⇒ ece:Initiates(?initiates)  ∧

 8 ece:hasEvent(?initiates, ?turnOn)  ∧

 9 ece:hasFluent(?initiates, ?on1)  ∧

 10 ece:hasTime(?initiates, ?t)

C-1.2.2 LSS-02

 1 ece:Happens(?happens)  ∧

 2 TurnOn2(?turnOn)  ∧

 3 On2(?on)  ∧

 4 ece:hasEvent(?happens, ?turnOn)  ∧
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 5 ece:hasTime(?happens, ?t)  ∧

 6 swrlx:makeOWLThing(?initiates, ?turnOn) 

 7   ⇒ ece:Initiates(?initiates)  ∧

 8 ece:hasEvent(?initiates, ?turnOn)  ∧

 9 ece:hasFluent(?initiates, ?on)  ∧

 10 ece:hasTime(?initiates, ?t)  ∧

 11 ece:hasFluentClass(?initiates, ?on)

C-2 Yale Shooting Scenario test ontology

C-2.1 Events and fluents

 1   <owl:Class rdf:ID="Loaded"> 

 2     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Fluent"/> 

 3     <owl:disjointWith> 

 4       <owl:Class rdf:ID="Alive"/> 

 5     </owl:disjointWith> 

 6     <owl:disjointWith> 

 7       <owl:Class rdf:ID="Dead"/> 

 8     </owl:disjointWith> 

 9   </owl:Class> 

 10   <owl:Class rdf:ID="Load"> 

 11     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Event"/> 

 12     <owl:disjointWith> 

 13       <owl:Class rdf:ID="Wait"/> 

 14     </owl:disjointWith> 

 15     <owl:disjointWith> 

 16       <owl:Class rdf:ID="Shoot"/> 

 17     </owl:disjointWith> 

 18   </owl:Class> 

 19   <owl:Class rdf:about="#Shoot"> 

 20     <owl:disjointWith> 

 21       <owl:Class rdf:about="#Wait"/> 

 22     </owl:disjointWith> 

 23     <owl:disjointWith rdf:resource="#Load"/> 

 24     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Event"/> 

 25   </owl:Class> 

 26   <owl:Class rdf:about="#Dead"> 

 27     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Fluent"/> 
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 28     <owl:disjointWith> 

 29       <owl:Class rdf:about="#Alive"/> 

 30     </owl:disjointWith> 

 31     <owl:disjointWith rdf:resource="#Loaded"/> 

 32   </owl:Class> 

 33   <owl:Class rdf:about="#Wait"> 

 34     <owl:disjointWith rdf:resource="#Shoot"/> 

 35     <owl:disjointWith rdf:resource="#Load"/> 

 36     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Event"/> 

 37   </owl:Class> 

 38   <owl:Class rdf:about="#Alive"> 

 39     <owl:disjointWith rdf:resource="#Dead"/> 

 40     <owl:disjointWith rdf:resource="#Loaded"/> 

 41     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Fluent"/> 

 42   </owl:Class>

C-2.2 Rules

C-2.2.1 YSS-01

 1 yaless:Load(?yaless:load)  ∧

 2 yaless:Loaded(?yaless:loaded)  ∧

 3 ece:Happens(?yaless:happens)  ∧

 4 ece:NotHoldsAt(?yaless:notHoldsAt)  ∧

 5 ece:hasTime(?yaless:notHoldsAt, ?yaless:t)  ∧

 6 ece:hasTime(?yaless:happens, ?yaless:t)  ∧

 7 ece:hasEvent(?yaless:happens, ?yaless:load)  ∧

 8 swrlx:makeOWLThing(?yaless:initiates, ?yaless:load)  ∧

 9 ece:hasFluent(?yaless:notHoldsAt, ?yaless:loaded) 

 10   ⇒ ece:Initiates(?yaless:initiates)  ∧

 11 ece:hasEvent(?yaless:initiates, ?yaless:load)  ∧

 12 ece:hasFluent(?yaless:initiates, ?yaless:loaded)  ∧

 13 ece:hasTime(?yaless:initiates, ?yaless:t)  ∧

 14 ece:hasFluentClass(?yaless:initiates, "yaless:Loaded")

C-2.2.2 YSS-02

 1 yaless:Shoot(?yaless:shoot)  ∧

 2 yaless:Alive(?yaless:alive)  ∧

 3 ece:HoldsAt(?yaless:holdsAt)  ∧
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 4 ece:Happens(?yaless:happens)  ∧

 5 swrlx:makeOWLThing(?yaless:terminates, ?yaless:shoot)  ∧

 6 ece:hasFluent(?yaless:holdsAt, ?yaless:alive)  ∧

 7 ece:hasTime(?yaless:holdsAt, ?yaless:t)  ∧

 8 ece:hasEvent(?yaless:happens, ?yaless:shoot)  ∧

 9 ece:hasTime(?yaless:happens, ?yaless:t) 

 10   ⇒ ece:Terminates(?yaless:terminates)  ∧

 11 ece:hasEvent(?yaless:terminates, ?yaless:shoot)  ∧

 12 ece:hasFluent(?yaless:terminates, ?yaless:alive)  ∧

 13 ece:hasTime(?yaless:terminates, ?yaless:t)  ∧

 14 ece:hasFluentClass(?yaless:terminates, "yaless:Alive")

C-2.2.3 YSS-03

 1 ece:HoldsAt(?yaless:holdsAt)  ∧

 2 ece:Happens(?yaless:happens)  ∧

 3 yaless:Shoot(?yaless:shoot)  ∧

 4 yaless:Loaded(?yaless:loaded)  ∧

 5 ece:hasFluent(?yaless:holdsAt, ?yaless:loaded)  ∧

 6 ece:hasTime(?yaless:holdsAt, ?yaless:t)  ∧

 7 ece:hasEvent(?yaless:happens, ?yaless:shoot)  ∧

 8 ece:hasTime(?yaless:happens, ?yaless:t)  ∧

 9 swrlx:makeOWLThing(?yaless:terminates, ?yaless:loaded) 

 10   ⇒ ece:Termin

 11 ates(?yaless:terminates)  ∧

 12 ece:hasEvent(?yaless:terminates, ?yaless:shoot)  ∧

 13 ece:hasFluent(?yaless:terminates, ?yaless:loaded)  ∧

 14 ece:hasTime(?yaless:terminates, ?yaless:t)  ∧

 15 ece:hasFluentClass(?yaless:terminates, "yaless:Loaded"
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C-3 Russian Turkey Scenario test ontology

C-3.1 Events and fluents

 1   <owl:Class rdf:about="http://www.event_calculus_experiments/russianturkey#Loaded"> 

 2     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Fluent"/> 

 3     <owl:disjointWith> 

 4       <owl:Class rdf:about="http://www.event_calculus_experiments/russianturkey#Alive"/> 

 5     </owl:disjointWith> 

 6     <owl:disjointWith> 

 7       <owl:Class rdf:about="http://www.event_calculus_experiments/russianturkey#Dead"/> 

 8     </owl:disjointWith> 

 9   </owl:Class> 

 10   <owl:Class rdf:about="http://www.event_calculus_experiments/russianturkey#Load"> 

 11     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Event"/> 

 12     <owl:disjointWith> 

 13       <owl:Class rdf:about="http://www.event_calculus_experiments/russianturkey#Wait"/> 

 14     </owl:disjointWith> 

 15     <owl:disjointWith> 

 16       <owl:Class rdf:about="http://www.event_calculus_experiments/russianturkey#Shoot"/> 

 17     </owl:disjointWith> 

 18     <owl:disjointWith> 

 19       <owl:Class rdf:ID="Spin"/> 

 20     </owl:disjointWith> 

 21   </owl:Class> 

 22   <owl:Class rdf:about="http://www.event_calculus_experiments/russianturkey#Shoot"> 

 23     <owl:disjointWith> 

 24       <owl:Class rdf:about="http://www.event_calculus_experiments/russianturkey#Wait"/> 

 25     </owl:disjointWith> 

 26     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments/russianturkey#Load"/> 

 27     <owl:disjointWith> 

 28       <owl:Class rdf:about="#Spin"/> 

 29     </owl:disjointWith> 

 30     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Event"/> 

 31   </owl:Class> 

 32   <owl:Class rdf:about="http://www.event_calculus_experiments/russianturkey#Dead"> 

 33     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Fluent"/> 

 34     <owl:disjointWith> 
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 35       <owl:Class rdf:about="http://www.event_calculus_experiments/russianturkey#Alive"/> 

 36     </owl:disjointWith> 

 37     <owl:disjointWith 

rdf:resource="http://www.event_calculus_experiments/russianturkey#Loaded"/> 

 38   </owl:Class> 

 39   <owl:Class rdf:about="#Spin"> 

 40     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments/russianturkey#Load"/> 

 41     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments/russianturkey#Shoot"/> 

 42     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Event"/> 

 43   </owl:Class> 

C-3.2 Rules

Since RS-01 – RS-03 are identical to YSS-01 – YSS-03 these rules are not cited here. 

Instead RS-04 is presented, which defines how the Spin fluent releases the Loaded 

fluent from the commonsense law of inertia. 

C-3.2.1 RS-04

 1 ece:HoldsAt(?russianturkey:holdsAt)  ∧

 2 ece:Happens(?russianturkey:happens)  ∧

 3 russianturkey:Loaded(?russianturkey:loaded)  ∧

 4 russianturkey:Spin(?russianturkey:spin)  ∧

 5 ece:hasFluent(?russianturkey:holdsAt, ?russianturkey:loaded)  ∧

 6 ece:hasTime(?russianturkey:holdsAt, ?russianturkey:t)  ∧

 7 ece:hasTime(?russianturkey:happens, ?russianturkey:t)  ∧

 8 ece:hasEvent(?russianturkey:happens, ?russianturkey:spin)  ∧

 9 swrlx:makeOWLThing(?russianturkey:releases, ?russianturkey:spin) 

 10   ⇒ ece:Releases(?russianturkey:releases)  ∧

 11 ece:hasEvent(?russianturkey:releases, ?russianturkey:spin)  ∧

 12 ece:hasTime(?russianturkey:releases, ?russianturkey:t)  ∧

 13 ece:hasFluent(?russianturkey:releases, ?russianturkey:loaded)
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C-4 Hot Air Balloon Scenario test ontology

C-4.1 Events, fluents and property (extract)

 1 <owl:Class rdf:ID="TurnOffHeater"> 

 2     <owl:disjointWith> 

 3       <owl:Class rdf:ID="TurnOnHeater"/> 

 4     </owl:disjointWith>

 5 </owl:Class>

 6   <owl:Class rdf:about="#Balloon"> 

 7     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#StoppedIn"/> 

 8     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#ReleasedAt"/> 

 9     <owl:disjointWith rdf:resource="http://swrl.stanford.edu/ontologies/3.3/swrla.owl#Entity"/> 

 10     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#Terminates"/> 

 11     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#NotReleasedAt"/> 

 12   <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#NegativeEffectAxiom"/> 

 13     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#NotStoppedIn"/> 

 14     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#Agent"/> 

 15     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#HoldsAt"/> 

 16     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#StartedIn"/> 

 17     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#NotHoldsAt"/> 

 18     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#Happens"/> 

 19     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#Releases"/> 

 20     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#Initiates"/> 

 21     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#Trajectory"/> 

 22     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#Fluent"/> 

 23     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#AntiTrajectory"/> 

 24     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#Event"/> 

 25     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#NotReleases"/> 

 26     <owl:disjointWith rdf:resource="http://www.event_calculus_experiments#NotStartedIn"/> 

 27   </owl:Class> 

 28   <owl:Class rdf:about="#TurnOnHeater"> 

 29     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Event"/> 

 30     <owl:disjointWith rdf:resource="#TurnOffHeater"/> 

 31   </owl:Class> 

 32   <owl:Class rdf:ID="Height"> 

 33     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Fluent"/> 

 34     <owl:disjointWith> 
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 35       <owl:Class rdf:ID="HeaterOn"/> 

 36     </owl:disjointWith> 

 37     <owl:disjointWith> 

 38       <owl:Class rdf:ID="Velocity"/> 

 39     </owl:disjointWith> 

 40   </owl:Class> 

 41   <owl:Class rdf:about="#HeaterOn"> 

 42     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Fluent"/> 

 43     <owl:disjointWith rdf:resource="#Height"/> 

 44     <owl:disjointWith> 

 45       <owl:Class rdf:about="#Velocity"/> 

 46     </owl:disjointWith> 

 47   </owl:Class> 

 48   <owl:Class rdf:about="#Velocity"> 

 49     <owl:disjointWith rdf:resource="#Height"/> 

 50     <owl:disjointWith rdf:resource="#HeaterOn"/> 

 51     <rdfs:subClassOf rdf:resource="http://www.event_calculus_experiments#Fluent"/> 

 52   </owl:Class> 

 53   <owl:DatatypeProperty rdf:ID="hasVelocity"> 

 54     <rdfs:domain rdf:resource="#Velocity"/> 

 55     <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/> 

 56   </owl:DatatypeProperty> 

 57   <owl:DatatypeProperty rdf:ID="hasHeight"> 

 58     <rdfs:domain rdf:resource="#Height"/> 

 59     <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/> 

 60   </owl:DatatypeProperty>

C-4.2 Rules

C-4.2.1 HAB-01

 1 hab:TurnOnHeater(?hab:turnOnHeater)  ∧

 2 hab:Balloon(?hab:b)  ∧

 3 hab:HeaterOn(?hab:heaterOn)  ∧

 4 hab:Height(?hab:height)  ∧

 5 hab:Height(?hab:height2)  ∧

 6 ece:Happens(?hab:happens)  ∧

 7 ece:hasTime(?hab:happens, ?hab:t)  ∧
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 8 ece:hasEvent(?hab:happens, ?hab:turnOnHeater)  ∧

 9 swrlx:makeOWLThing(?hab:initiates, ?hab:turnOnHeater)  ∧

 10 ece:HoldsAt(?hab:holdsAt)  ∧

 11 ece:HoldsAt(?hab:holdsAt2)  ∧

 12 ece:CurrentTimepoint(?hab:currentTimepoint)  ∧

 13 ece:hasCurrentTimepoint(?hab:currentTimepoint, ?hab:c)  ∧

 14 hab:hasHeight(?hab:height, ?hab:h)  ∧

 15 ece:hasTime(?hab:holdsAt, ?hab:t)  ∧

 16 ece:hasFluent(?hab:holdsAt, ?hab:height)  ∧

 17 ece:hasTime(?hab:holdsAt2, ?hab:t)  ∧

 18 ece:hasFluent(?hab:holdsAt2, ?hab:heaterOn)  ∧

 19 swrlb:equal(?hab:c, ?hab:t)  ∧

 20 swrlb:add(?hab:h2, ?hab:h, 1)  ∧

 21 swrlb:add(?hab:t2, ?hab:t, 1)  ∧

 22 swrlx:makeOWLThing(?hab:trajectory, ?hab:b) 

 23   ⇒ ece:Initiates(?hab:initiates)  ∧

 24 ece:hasTime(?hab:initiates, ?hab:t)  ∧

 25 ece:hasEvent(?hab:initiates, ?hab:turnOnHeater)  ∧

 26 ece:hasFluent(?hab:initiates, ?hab:heaterOn)  ∧

 27 ece:hasFluentClass(?hab:initiates, "hab:HeaterOn")  ∧

 28 ece:Trajectory(?hab:trajectory)  ∧

 29 hab:hasHeight(?hab:height2, ?hab:h2)  ∧

 30 ece:hasStartFluent(?hab:trajectory, ?hab:heaterOn)  ∧

 31 ece:hasEndFluent(?hab:trajectory, ?hab:height2)  ∧

 32 ece:hasStartTime(?hab:trajectory, ?hab:t)  ∧

 33 ece:hasEndTime(?hab:trajectory, ?hab:t2)

210



Appendix D Observation and narrative extracts from 

tests

The following extracts show the contents of the different observation and narrative 

knowledge bases after tests from chapter 8 above have been run. The extracts are 

serialized in rdf/xml format and are included here for completeness.

D-1 Lightswitch Scenario test extracts

D-1.1 Observations

 1 <rdf:RDF

 2     xmlns="http://www.event_calculus_experiments/lightswitch#"

 3     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 4     xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

 5     xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"

 6     xmlns:owl="http://www.w3.org/2002/07/owl#"

 7     xmlns:ece="http://www.event_calculus_experiments#"

 8     xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 9     xmlns:swrl="http://www.w3.org/2003/11/swrl#"

 10     xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"

 11     xmlns:j.0="http://www.event_calculus_experiments/lightswitch#"

 12     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" > 

 13   <rdf:Description rdf:about="http://www.event_calculus_experiments/lightswitch#HoldsAt_3">

 14     <rdf:type rdf:resource="http://www.event_calculus_experiments#HoldsAt"/>

 15     <ece:hasFluent rdf:nodeID="A0"/>

 16     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime>

 17   </rdf:Description>

 18   <rdf:Description rdf:about="http://www.event_calculus_experiments/lightswitch">

 19     <owl:imports rdf:resource="http://www.event_calculus_experiments"/>

 20     <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Ontology"/>

 21   </rdf:Description>

 22   <rdf:Description rdf:about="http://www.event_calculus_experiments/lightswitch#NotHoldsAt_1">

 23     <ece:hasFluent rdf:nodeID="A1"/>

 24     <rdf:type rdf:resource="http://www.event_calculus_experiments#NotHoldsAt"/>

 25     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime>

 26     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</ece:hasTime>

 27   </rdf:Description>
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 28   <rdf:Description rdf:about="http://www.event_calculus_experiments/lightswitch#NotHoldsAt_2">

 29     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</ece:hasTime>

 30     <rdf:type rdf:resource="http://www.event_calculus_experiments#NotHoldsAt"/>

 31     <ece:hasFluent rdf:nodeID="A0"/>

 32   </rdf:Description>

 33   <rdf:Description rdf:nodeID="A0">

 34     <rdf:type rdf:resource="http://www.event_calculus_experiments/lightswitch#On2"/>

 35   </rdf:Description>

 36   <rdf:Description rdf:nodeID="A1">

 37     <rdf:type rdf:resource="http://www.event_calculus_experiments/lightswitch#On1"/>

 38   </rdf:Description>

 39 </rdf:RDF>

D-1.2 Narrative

 1 <rdf:RDF

 2     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 3     xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

 4     xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"

 5     xmlns="http://www.owl-ontologies.com/Ontology1262903299.owl#"

 6     xmlns:owl="http://www.w3.org/2002/07/owl#"

 7     xmlns:ece="http://www.event_calculus_experiments#"

 8     xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 9     xmlns:swrl="http://www.w3.org/2003/11/swrl#"

 10     xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"

 11     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" > 

 12   <rdf:Description rdf:nodeID="A0">

 13     <rdf:type rdf:resource="http://www.event_calculus_experiments#Event"/>

 14   </rdf:Description>

 15   <rdf:Description rdf:nodeID="A1">

 16     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</ece:hasTime>

 17     <ece:hasEvent rdf:nodeID="A0"/>

 18     <rdf:type rdf:resource="http://www.event_calculus_experiments#Happens"/>

 19   </rdf:Description>

 20   <rdf:Description rdf:about="http://www.owl-ontologies.com/Ontology1262903299.owl">

 21     <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Ontology"/>

 22     <owl:imports rdf:resource="http://www.event_calculus_experiments"/>

 23   </rdf:Description>

 24 </rdf:RDF>
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D-2 Observations knowledge base for Yale Shooting Scenario 

test

This is the full observations knowledge base resulting from the test conducted in 

Section 8.3 above.

 1   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1262893108.owl#HoldsAt_1">

 2     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</ece:hasTime>

 3     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime>

 4     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</ece:hasTime>

 5     <rdf:type rdf:resource="http://www.event_calculus_experiments#HoldsAt"/>

 6     <ece:hasFluent rdf:nodeID="A0"/>

 7   </rdf:Description>

 8   <rdf:Description rdf:about="http://www.owl-ontologies.com/Ontology1262893108.owl">

 9     <owl:imports rdf:resource="http://www.event_calculus_experiments"/>

 10     <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Ontology"/>

 11   </rdf:Description>

 12   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1262893108.owl#NotHoldsAt_2">

 13     <ece:hasFluent rdf:nodeID="A1"/>

 14     <rdf:type rdf:resource="http://www.event_calculus_experiments#NotHoldsAt"/>

 15     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</ece:hasTime>

 16     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</ece:hasTime>

 17   </rdf:Description>

 18   <rdf:Description rdf:nodeID="A0">

 19     <rdf:type rdf:resource="http://www.event_calculus_experiments/yaless#Alive"/>

 20   </rdf:Description>

 21   <rdf:Description rdf:nodeID="A2">

 22     <rdf:type rdf:resource="http://www.event_calculus_experiments/yaless#Dead"/>

 23   </rdf:Description>

 24   <rdf:Description rdf:nodeID="A1">

 25     <rdf:type rdf:resource="http://www.event_calculus_experiments/yaless#Loaded"/>

 26   </rdf:Description>

 27   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1262893108.owl#HoldsAt_3">

 28     <ece:hasFluent rdf:nodeID="A1"/>
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 29     <rdf:type rdf:resource="http://www.event_calculus_experiments#HoldsAt"/>

 30     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</ece:hasTime>

 31     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime>

 32   </rdf:Description>

 33   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1262893108.owl#HoldsAt_4">

 34     <rdf:type rdf:resource="http://www.event_calculus_experiments#HoldsAt"/>

 35     <ece:hasFluent rdf:nodeID="A2"/>

 36     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</ece:hasTime>

 37   </rdf:Description>

 38   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1262893108.owl#NotHoldsAt_5">

 39     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</ece:hasTime>

 40     <ece:hasFluent rdf:nodeID="A0"/>

 41     <rdf:type rdf:resource="http://www.event_calculus_experiments#NotHoldsAt"/>

 42   </rdf:Description>

 43 </rdf:RDF>
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D-3 Observations knowledge for Russian Turkey Scenario  

test

 1   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1263511165.owl#HoldsAt_1">

 2     <ece:hasFluent rdf:resource="http://www.event_calculus_experiments#currentTimepoint"/>

 3     <rdf:type rdf:resource="http://www.event_calculus_experiments#HoldsAt"/>

 4     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</ece:hasTime>

 5     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</ece:hasTime>

 6     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime>

 7     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</ece:hasTime>

 8   </rdf:Description>

 9   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1263511165.owl#NotHoldsAt_8">

 10     <ece:hasFluent rdf:nodeID="A0"/>

 11     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</ece:hasTime>

 12     <rdf:type rdf:resource="http://www.event_calculus_experiments#NotHoldsAt"/>

 13   </rdf:Description>

 14   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1263511165.owl#NotReleasedAt_4">

 15     <rdf:type rdf:resource="http://www.event_calculus_experiments#NotReleasedAt"/>

 16     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</ece:hasTime>

 17     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</ece:hasTime>

 18     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime>

 19     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</ece:hasTime>

 20     <ece:hasFluent rdf:nodeID="A0"/>

 21   </rdf:Description>

 22   <rdf:Description rdf:nodeID="A0">

 23     <rdf:type rdf:resource="http://www.event_calculus_experiments/russianturkey#Alive"/>

 24   </rdf:Description>

 25   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1263511165.owl#HoldsAt_2">

 26     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</ece:hasTime>

 27     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime>

 28     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</ece:hasTime>

 29     <ece:hasFluent rdf:nodeID="A0"/>

 30     <rdf:type rdf:resource="http://www.event_calculus_experiments#HoldsAt"/>

 31   </rdf:Description>
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 32   <rdf:Description rdf:about="http://www.owl-ontologies.com/Ontology1263511165.owl">

 33     <owl:imports rdf:resource="http://www.event_calculus_experiments"/>

 34     <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Ontology"/>

 35   </rdf:Description>

 36   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1263511165.owl#NotHoldsAt_3">

 37     <rdf:type rdf:resource="http://www.event_calculus_experiments#NotHoldsAt"/>

 38     <ece:hasFluent rdf:nodeID="A1"/>

 39     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</ece:hasTime>

 40     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</ece:hasTime>

 41   </rdf:Description>

 42   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1263511165.owl#NotReleasedAt_6">

 43     <ece:hasFluent rdf:nodeID="A1"/>

 44     <rdf:type rdf:resource="http://www.event_calculus_experiments#NotReleasedAt"/>

 45     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</ece:hasTime>

 46     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime>

 47   </rdf:Description>

 48   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1263511165.owl#ReleasedAt_7">

 49     <ece:hasFluent rdf:nodeID="A1"/>

 50     <rdf:type rdf:resource="http://www.event_calculus_experiments#ReleasedAt"/>

 51     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</ece:hasTime>

 52   </rdf:Description>

 53   <rdf:Description rdf:about="http://www.event_calculus_experiments#currentTimepoint">

 54     <ece:hasCurrentTimepoint 

rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</ece:hasCurrentTimepoint>

 55     <rdf:type rdf:resource="http://www.event_calculus_experiments#CurrentTimepoint"/>

 56   </rdf:Description>

 57   <rdf:Description rdf:nodeID="A1">

 58     <rdf:type rdf:resource="http://www.event_calculus_experiments/russianturkey#Loaded"/>

 59   </rdf:Description>

 60   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1263511165.owl#HoldsAt_5">

 61     <ece:hasFluent rdf:nodeID="A1"/>

 62     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</ece:hasTime>

 63     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime>

 64     <rdf:type rdf:resource="http://www.event_calculus_experiments#HoldsAt"/>

 65   </rdf:Description>
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D-4 Observations for Hot Air Balloon Scenario test

 1 <rdf:Description rdf:nodeID="A0"> 

 2     <rdf:type rdf:resource="http://www.event_calculus_experiments/hotairballoon#HeaterOn"/> 

 3   </rdf:Description> 

 4   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1263780494.owl#ReleasedAt_3"> 

 5     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</ece:hasTime> 

 6     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</ece:hasTime> 

 7     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime> 

 8     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</ece:hasTime> 

 9     <rdf:type rdf:resource="http://www.event_calculus_experiments#ReleasedAt"/> 

 10     <ece:hasFluent rdf:nodeID="A1"/> 

 11   </rdf:Description> 

 12   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1263780494.owl#HoldsAt_2"> 

 13     <ece:hasFluent rdf:nodeID="A1"/> 

 14     <rdf:type rdf:resource="http://www.event_calculus_experiments#HoldsAt"/> 

 15     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</ece:hasTime> 

 16   </rdf:Description> 

 17   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1263780494.owl#NotReleasedAt_7"> 

 18     <rdf:type rdf:resource="http://www.event_calculus_experiments#NotReleasedAt"/> 

 19     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</ece:hasTime> 

 20     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</ece:hasTime> 

 21     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime> 

 22     <ece:hasFluent rdf:nodeID="A0"/> 

 23   </rdf:Description> 

 24   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1263780494.owl#ReleasedAt_4"> 

 25     <ece:hasFluent rdf:nodeID="A2"/> 

 26     <rdf:type rdf:resource="http://www.event_calculus_experiments#ReleasedAt"/> 

 27     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</ece:hasTime> 

 28   </rdf:Description> 

 29   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1263780494.owl#NotReleasedAt_8"> 

 30     <ece:hasFluent rdf:nodeID="A1"/> 

 31     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</ece:hasTime> 

 32     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</ece:hasTime> 
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 33     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime> 

 34     <rdf:type rdf:resource="http://www.event_calculus_experiments#NotReleasedAt"/> 

 35   </rdf:Description> 

 36   <rdf:Description rdf:nodeID="A1"> 

 37     <j.0:hasHeight rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</j.0:hasHeight> 

 38     <rdf:type rdf:resource="http://www.event_calculus_experiments/hotairballoon#Height"/> 

 39   </rdf:Description> 

 40   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1263780494.owl#NotHoldsAt_6"> 

 41     <rdf:type rdf:resource="http://www.event_calculus_experiments#NotHoldsAt"/> 

 42     <ece:hasFluent rdf:nodeID="A1"/> 

 43     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</ece:hasTime> 

 44     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</ece:hasTime> 

 45     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime> 

 46   </rdf:Description> 

 47   <rdf:Description rdf:nodeID="A2"> 

 48     <rdf:type rdf:resource="http://www.event_calculus_experiments/hotairballoon#Height"/> 

 49     <j.0:hasHeight rdf:datatype="http://www.w3.org/2001/XMLSchema#float">2.0</j.0:hasHeight> 

 50   </rdf:Description> 

 51   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1263780494.owl#HoldsAt_5"> 

 52     <rdf:type rdf:resource="http://www.event_calculus_experiments#HoldsAt"/> 

 53     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</ece:hasTime> 

 54     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</ece:hasTime> 

 55     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime> 

 56     <ece:hasFluent rdf:nodeID="A0"/> 

 57   </rdf:Description> 

 58   <rdf:Description rdf:about="http://www.owl-ontologies.com/Ontology1263780494.owl"> 

 59     <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Ontology"/> 

 60     <owl:imports rdf:resource="http://www.event_calculus_experiments"/> 

 61   </rdf:Description> 

 62   <rdf:Description rdf:about="http://www.owl-

ontologies.com/Ontology1263780494.owl#HoldsAt_9"> 

 63     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</ece:hasTime> 

 64     <ece:hasFluent rdf:nodeID="A2"/> 

 65     <rdf:type rdf:resource="http://www.event_calculus_experiments#HoldsAt"/> 

 66   </rdf:Description> 

 67 </rdf:RDF>
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D-5 Observations for extended Lightswitch Scenario 

(see Chapter 9)

 1 <ece:HoldsAt rdf:ID="HoldsAt_16"> 

 2     <ece:hasFluent> 

 3       <ece:On2 rdf:ID="On2_8"/> 

 4     </ece:hasFluent> 

 5     <ece:hasTimepoint> 

 6       <ece:Timepoint rdf:ID="Timepoint_2"> 

 7         <ece:hasTimepointValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int" > 

1</ece:hasTimepointValue> 

 8         <temporal:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime" > 

 9 2010-04-02T00:00:01

        </temporal:hasTime> 

 10       </ece:Timepoint> 

 11     </ece:hasTimepoint> 

 12   </ece:HoldsAt> 

 13   <ece:NotHoldsAt rdf:ID="NotHoldsAt_18"> 

 14     <ece:hasTimepoint> 

 15       <ece:Timepoint rdf:ID="Timepoint_1"> 

 16         <ece:hasTimepointValue 

rdf:datatype="http://www.w3.org/2001/XMLSchema#int">0</ece:hasTimepointValue> 

 17         <temporal:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime" > 

 18 2010-04-02T00:00:00</temporal:hasTime> 

 19       </ece:Timepoint> 

 20     </ece:hasTimepoint> 

 21     <ece:hasFluent> 

 22       <ece:On1 rdf:ID="On1_7"/> 

 23     </ece:hasFluent> 

 24   </ece:NotHoldsAt> 

 25   <ece:CurrentTimepoint rdf:ID="currentTimepoint"/> 

 26   <ece:NotHoldsAt rdf:ID="NotHoldsAt_20"> 

 27     <ece:hasTimepoint rdf:resource="#Timepoint_1"/> 

 28     <ece:hasFluent rdf:resource="#On2_8"/> 

 29   </ece:NotHoldsAt>
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D-6 Observations for Scrabble game at timepoint 0 (See 9.4.12)

 1 http://www.scrabbleontology.com#HoldsAt

 2   <ece:NotHoldsAt rdf:ID="NotHoldsAt_19"> 

 3     <ece:hasFluent rdf:resource="#On1_7"/> 

 4     <ece:hasTimepoint rdf:resource="#Timepoint_2"/> 

 5   </ece:NotHoldsAt> 

 6   <rdf:Description rdf:ID="ValidInstant_13"> 

 7     <ece:hasTimepointValue rdf:datatype="http://www.w3.org/2001/XMLSchema#int" 

 8     >0</ece:hasTimepointValue> 

 9   </rdf:Description><rdf:Description rdf:about="http://www.scrabbleontology.com#HoldsAt_3">

 10     <rdf:type rdf:resource="http://www.event_calculus_experiments#HoldsAt"/>

 11     <ece:hasFluent rdf:resource="http://www.scrabbleontology.com#Started_14"/>

 12     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime>

 13   </rdf:Description>

 14   <rdf:Description rdf:about="http://www.scrabbleontology.com#HoldsAt_2">

 15     <ece:hasFluent rdf:resource="http://www.scrabbleontology.com#cp"/>

 16     <rdf:type rdf:resource="http://www.event_calculus_experiments#HoldsAt"/>

 17     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime>

 18   </rdf:Description>

 19   <rdf:Description rdf:about="http://www.scrabbleontology.com#HoldsAt_4">

 20     <ece:hasFluent rdf:resource="http://www.scrabbleontology.com#Accepted_1"/>

 21     <rdf:type rdf:resource="http://www.event_calculus_experiments#HoldsAt"/>

 22     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime>

 23   </rdf:Description>

 24   <rdf:Description rdf:about="http://www.scrabbleontology.com#HoldsAt_6">

 25     <ece:hasFluent rdf:resource="http://www.scrabbleontology.com#HasScore_9"/>

 26     <rdf:type rdf:resource="http://www.event_calculus_experiments#HoldsAt"/>

 27     <ece:hasTime rdf:datatype="http://www.w3.org/2001/XMLSchema#int">1</ece:hasTime>

 28   </rdf:Description>

 29     <rdf:Description rdf:about="http://www.scrabbleontology.com#Game_5">

 30     <rdf:type rdf:resource="http://www.scrabbleontology.com#Game"/>

 31   </rdf:Description>

 32     <rdf:Description rdf:about="http://www.scrabbleontology.com#Turn_11">

 33     <rdf:type rdf:resource="http://www.scrabbleontology.com#Turn"/>

 34   </rdf:Description>

 35   <rdf:Description rdf:about="http://www.scrabbleontology.com#cp">

 36     <rdf:type rdf:resource="http://www.scrabbleontology.com#currentPlayer"/>
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 37   </rdf:Description>

 38   <rdf:Description rdf:about="http://www.scrabbleontology.com#TilePlacement_12">

 39     <rdf:type rdf:resource="http://www.scrabbleontology.com#TilePlacement"/>

 40   </rdf:Description>

 41   <rdf:Description rdf:about="http://www.scrabbleontology.com#Move_10">

 42     <rdf:type rdf:resource="http://www.scrabbleontology.com#Move"/>

 43   </rdf:Description>

 44   <rdf:Description rdf:about="http://www.scrabbleontology.com#HasScore_9">

 45     <rdf:type rdf:resource="http://www.scrabbleontology.com#HasScore"/>

 46     <ece:hasDatatypeValue 

rdf:datatype="http://www.w3.org/2001/XMLSchema#int">20</ece:hasDatatypeValue>

 47     <ece:hasParameter rdf:resource="http://www.scrabbleontology.com#Word_7"/>

 48      <ece:hasParameter rdf:resource="http://www.scrabbleontology.com#Move_10"/>

 49   </rdf:Description>

 50   <rdf:Description rdf:about="http://www.scrabbleontology.com#Accepted_1">

 51     <rdf:type rdf:resource="http://www.scrabbleontology.com#HasScore"/>

 52     <ece:hasDatatypeValue 

rdf:datatype="http://www.w3.org/2001/XMLSchema#int">20</ece:hasDatatypeValue>

 53     <ece:hasParameter rdf:resource="http://www.scrabbleontology.com#Word_7"/>

 54     <ece:hasParameter rdf:resource="http://www.scrabbleontology.com#TilePlacement_12"/>

 55      <ece:hasParameter rdf:resource="http://www.scrabbleontology.com#Move_10"/>

 56   </rdf:Description>

 57   <rdf:Description rdf:about="http://www.scrabbleontology.com#Started_14">

 58     <rdf:type rdf:resource="http://www.scrabbleontology.com#Started"/>

 59     <ece:hasParameter rdf:resource="http://www.scrabbleontology.com#Game_5"/>

 60     <ece:hasParameter rdf:resource="http://www.scrabbleontology.com#Turn_11"/>

 61   </rdf:Description>

 62 </rdf:RDF>
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Appendix E Additional UML diagrams for DEC 

framework

E-1 Class diagrams illustrating properties and their domains  

and ranges

These diagrams use the OUP model as covered in section 4

Figure E-1.1: ece:hasTime property class diagram
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<<XSDsimpleType>>
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Figure E-1.2: ece:hasFluent property class diagram
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Figure E-1.3: ece:hasEvent property class diagram
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E-2 Sequence diagrams illustrating long methods

E-2.1 SWRLJessBridge run() method

The function of the Mapper interface here is uncertain as the interface and its single 

known implementing class RelationalMapper are not thoroughly documented in the 

Protégé 3.4.1 javadoc or elsewhere. No comments are provided in the source code.
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Figure E-2.1: SWRLJessBridge run() method

bridge : SWRLJessBridge mapper : Mapper

3: [tmpboolean]

<<if>>

runRuleEngine()5: 

tmpboolean1 = hasMapper()6: 

7: [tmpboolean1]

<<if>>

tmpboolean = hasMapper()2: 

run()1: 

mapper.close()8: 

mapper.open()4: 



E-2.2 SWRLJessBridge runRuleEngine() method

Note here that the method behaves differently if the rules use SQWRL clauses, i.e. the 

rules are processed to accommodate the SQWRL query and the RETE algorithm is then 

executed a second time.

226Figure E-2.2: SWRLJessBridge runRuleEngine() method

bridge : SWRLJessBridge e : JessException

<<try>>

2: 

runRuleEngine()1: 

rete.run()3: 

4: [ruleConvertor.usesSQWRLCollections()]

<<if>>

7: [JessException e]

<<catch>>

tmpString = e.toString()8: 

throw new SWRLJessBridgeException("error running
 Jess rule engine: "+tmpString)

9: 

addSQWRLPhase2Rules()5: 

rete.run()6: 



E-2.3 Creating the SWRLJessBridge
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Figure E-2.3: createBridge(...) method

f : SWRLRuleBridgeFacade this : BridgeFactory

Exception lifelines not 
shown to conserve 
diagram space

createBridge(bridgeName=, owlModel=)1: 

bridge = null2: 

3: [registeredBridges.containsKey(bridgeName)]

<<if>>

8: [NOT(registeredBridges.containsKey(bridgeName))]

<<else>>

bridge10: 

<<try>>

4: 

bridge = 
registeredBridges.get(bridgeName).crea
te(owlModel)

5: 

6: [Throwable e]

<<catch>>

throw tmpSWRLRuleEngineBridgeException7: 

throw tmpInvalidBridgeNameException9: 



Appendix F Proofs for benchmark scenario tests

F-1 Theorems 

The proofs presented in this Appendix all rely on  two theorems about circumscription, 

the proofs of which can be found in Lifschitz [207]. The theorems are presented in the 

form that they are given by Mueller [6]

Theorem F-1.1

Theorem F-1.2
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Let ρ  be an n-ary predicate symbol and Δ(x1,... xn) be a formula whose free variables 
are x1,...xn. If  Δ(x1,...xn) does not contain  ρ, then the basic circumscription 
CIRC[∀x1,... xn(Δ(x1,...xn)   ⇒  ρ(x1,... xn)); ρ] is equivalent to 
∀x1,... xn(Δ(x1,...xn)   ρ⇔ (x1,... xn)).

Let  ρ1,...,ρn be predicate symbols and Δ be a formula. If  Δ is positive relative to every 
ρi then the parallel circumscription CIRC[Δ;  ρ1,...,ρn] is equivalent to the conjunction 
of the basic circumscriptions∧i=1

n CIRC [ Δ;  ρi].



F-2 Lightswitch Scenario proof

Proposition

CIRC[Σ; Initiates, Terminates, Releases] ∧ CIRC [Δ; Happens] ∧ Ω ∧ DEC ∧ Γ 
  ¬⊨ HoldsAt(On1, 1) ∧ HoldsAt (On2, 1)

Proof

From CIRC [Sig; Initiates]  and Theorem F-1.1 we have

Initiates(e,f,t)  ((e=TurnOn2 ⇔ ∧f=On2)  (e=TurnOn1 ∨  ∧ f = On1)) (LS6)

From CIRC [DELTA; Happens] and Theorem F-1.1 we have

Happens (e,t) ⇔ (e = TurnOn2 ∧ t = 0) (LS7)

From LS6 and LS7 we have

Initiates (e=TurnOn2 ∧ f=On2 ∧ t=0) (LS8)

From LS8, DEC 5 and DEC 9 we have

HoldsAt (On2, 1) (LS9)

From LS6 and LS7

¬ e (Happens(e) ∃ ∧ Initiates(e, On1,0))  ∧ 
¬ e (Happens(e)∃  ∧ Initiates(e, On1,1))

(LS10)

From LS4, LS10 and DEC6 we have

¬HoldsAt(On1, 1) (LS11)

LS9 and LS11 together form the desired result ¬HoldsAt(On1, 1)  ∧ HoldsAt  
(On2, 1)

∎
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F-3 Yale Shooting Scenario Proof

From CIRC [Sig; Initiates, Terminates, Releases]  and Theorem F-1.1 and Theorem F-
1.2 we have

Initiates (e,f,t) ⇔ ( e=Load∧ f= Loaded)  (YS11)

Terminates (e,f,t) ⇔ (( e= Shoot ∧ f =Alive ) v (e=Shoot ∧ 

f=Loaded))

(YS12)

¬Releases (e,f,t) (YS13)

From CIRC [Sig; Happens] and Theorem F-1.1 we have

Happens (e,f,t)  ⇔ (e=Load ∧ t=0) v (e=Wait ∧ t=1) v (e=Shoot ∧ 
t=2)

(YS14)

From YS12 and YS14 we have

¬ e (Happens(e) ∃ ∧ Happens(e,0) ∧ Terminates(e, Loaded,0))  ∧
¬ e (Happens(e) ∃ ∧ Happens(e,0) ∧ Terminates(e, Loaded,1)) 

(YS15)

From YS14, YS15 and DEC9 we have

HoldsAt(Loaded, 1) (YS16)

From YS15, YS16 and DEC5

HoldsAt(Loaded, 2) (YS17)

From YS2, YS10 and YS17 we have 

HoldsAt (Loaded, 2) ⇒Terminates(Shoot, Alive, 2) (YS18)

And combining YS18 with DEC10 and DEC6 we have

Terminates(Shoot, Alive, 2) ∧ ¬ e (Happens(e) ∃ ∧ Happens(e,0) ∧ Initiates(e,  
Alive ,2))
  ¬⇒ HoldsAt(Alive, 3)

∎

Proposition

CIRC[Σ; Initiates, Terminates, Releases] ∧ CIRC [Δ; Happens] ∧ Ω ∧ DEC ∧ Γ ⊨ 

HoldsAt(Dead, 3)

Proof
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Starting with the final formula of the previous proof, we have

Terminates(Shoot, Alive, 2) ∧ ¬ e (Happens(e) ∃ ∧ Happens(e,0) ∧ Initiates(e,  
Alive ,2))
  ¬⇒ HoldsAt(Alive, 3)

(YS1
9)

From this and YS4 we now have

¬HoldsAt (Alive, 3 )  ⇒ HoldsAt (Dead , 3)  as required 
∎

Proposition

CIRC[Σ; Initiates, Terminates, Releases] ∧ CIRC [Δ; Happens] ∧ Ω ∧ DEC ∧ Γ ⊨ 
HoldsAt(Alive, 0) ∧ HoldsAt(Alive, 1) ∧ HoldsAt(Alive, 2)

Proof

From YS12 and YS14 we have

¬ e (Happens(e) ∃ ∧ Happens(e,0) ∧ Terminates(e, Alive,0))  ∧
¬ e (Happens(e) ∃ ∧ Happens(e,0) ∧ Terminates(e, Alive,1)) 

(YS20)

From YS6 and YS20 it follows that
HoldsAt (Alive, 0) ∧ HoldsAt (Alive, 1) ∧ HoldsAt(Alive, 2) ∎

Proposition

CIRC[Σ; Initiates, Terminates, Releases] ∧ CIRC [Δ; Happens] ∧ Ω ∧ DEC ∧ Γ  ⊨
¬HoldsAt(Loaded, 0) ∧ HoldsAt(Loaded,1) ∧ HoldsAt(Loaded,2)  
∧¬HoldsAt(Loaded,3)

From YS7, YS16 and YS17

¬HoldsAt(Loaded, 0) ∧ HoldsAt(Loaded, 1) ∧ HoldsAt(Loaded, 2) (YS21)

From YS3, YS10 and YS17 we have 

HoldsAt (Loaded, 2) ⇒Terminates(Shoot, Loaded, 2) (YS22)

And combining YS18 with DEC10 and DEC6 we have

Terminates(Shoot, Alive, 2) ∧ ¬ e (Happens(e) ∃ ∧ Happens(e,0) ∧ Initiates(e,  (YS23)
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Alive ,2))
  ¬⇒ HoldsAt(Alive, 3)

The result of combining YS21 and YS23 is

¬HoldsAt(Loaded, 0) ∧ HoldsAt(Loaded,1) ∧ HoldsAt(Loaded,2) 
∧¬HoldsAt(Loaded,3)

∎
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F-4 Russian Turkey Scenario proof

Note that some of the resulting observations will be identical to those in the Yale 

Shooting Scenario above. These will not be proved here as they have been dealt with in 

Appendix F-3. The propositions and proofs here are to do with ReleasedAt statements, 

which are not dealt with in the Yale Shooting Scenario.

From CIRC[Σ; Initiates, Terminates, Releases], together with Theorem F-1.1 and 

Theorem F-1.2 we have

Initiates (e,f,t)  ⇔ ( e=Load∧ f=Loaded)  (RT12)

Terminates (e,f,t) ⇔ (( e= Shoot ∧ f =Alive ) v (e=Shoot ∧ 

f=Loaded))

(RT13)

Releases (e,f,t)  ((e=Spin ⇔  ∧ f=Loaded) (RT14)

Proposition

CIRC[Σ; Initiates, Terminates, Releases]  ∧ CIRC [Δ; Happens]  Ω  DEC  Γ∧ ∧ ∧  ⊨ 

¬ReleasedAt(Alive,0)  ∧ ¬ReleasedAt(Alive,1) ∧¬ReleasedAt(Alive,2)  

∧¬ReleasedAt(Alive,3)

Proof

DEC8, RT7 and RT14 result in 
¬ReleasedAt (Alive, 0) ∧ ¬∃e (Happens (e, 0) ∧ Releases (e, Alive, 0)) ⇒ 
¬ReleasedAt(Alive, 1)

(RT15)

DEC8 and RT15 result in
¬ReleasedAt (Alive, 1) ∧ ¬∃e (Happens (e, 1) ∧ Releases (e, Alive, 1)) ⇒ 
¬ReleasedAt(Alive, 2) 

(RT16)

Similarly, DEC8 and RT16 result in
¬ReleasedAt (Alive, 2) ∧ ¬∃e (Happens (e, 2) ∧ Releases (e, Alive, 2)) ⇒ 
¬ReleasedAt(Alive, 3) (RT18)

(RT17)

Taking RT8, RT15, RT16 and RT17 together leads to 
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¬ReleasedAt(Alive,0)  ∧ ¬ReleasedAt(Alive,1) ∧¬ReleasedAt(Alive,2)  
∧¬ReleasedAt(Alive,3)

∎

Proposition

CIRC[Σ; Initiates, Terminates, Releases]  ∧ CIRC [Δ; Happens]  Ω  DEC  Γ∧ ∧ ∧  ⊨ 
¬ReleasedAt(Loaded,0)  ∧ ¬ReleasedAt(Loaded,1) ∧ReleasedAt(Loaded,2)  
¬ReleasedAt(Loaded,3) 

Proof

DEC8, RT8 and RT14 result in 

¬ReleasedAt (Loaded, 0) ∧ ¬∃e (Happens (e, 0) ∧ Releases (e, Loaded, 0))  
⇒ ¬ReleasedAt(Loaded, 1) 

(RT18)

From RT4, RT10 and DEC7 we have

Happens(Spin, 1)  ∧ Releases (Spin, Loaded, 1) DEC7 ⇒ 
ReleasedAt(Loaded, 2) 

(RT19)

RT19, RT3 and DEC12 lead to

Terminates (Shoot, Loaded, 2) ∧ ReleasedAt(Loaded, 2) ∧¬∃e (Happens (e,  
0) ∧ Releases (e, Loaded, 0)) ⇒ ¬ReleasedAt(Loaded, 3)

(RT20)

 
Taking RT8, RT18, RT19 and RT20 leads to

¬ReleasedAt(Loaded,0)  ∧ ¬ReleasedAt(Loaded,1) ∧ReleasedAt(Loaded,2)  
¬ReleasedAt(Loaded,3) 

∎
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F-5 Hot Air Balloon Scenario Proof

Proposition

CIRC[Σ; Initiates, Terminates, Releases]  ∧ CIRC [Δ; Happens]  Ω  DEC  Γ∧ ∧ ∧  ⊨ 
HoldsAt(Height(2V), 2)

Proof

CIRC [ Σ; Initiates, Terminates, Releases] together with Theorems F-1.1 and F-1.2 
provides:

Initiates(e,f,t) ⇔ (e =TurnOnHeater  ∧ f = HeaterOn) 

Terminates(e,f,t) ⇔ (e = TurnOffHeater  ∧ f = HeaterOn)

¬Releases(e,f,t)  (HAB10)

CIRC [Δ; Happens] provides

Happens(e,t)  (e=TurnOnHeater ⇔ ∧ t=0) ∨ (e=TurnOffHeater  ∧ t=2) )  (HAB11)

Combining HAB11 with DEC2 results in

¬ e (Happens(e,t) ∃ ∧ t < 2 ∧  Terminates (e, HeaterOn ,t)) ⇒  
¬StoppedIn(0, HeaterOn, 2) 

(HAB12)

Combining HAB4, HAB6 and HAB12 with DEC3 we have
HoldsAt(Height(2V), 2)  ∎
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