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SOFTWARE COMPONENT TESTING - 

A STANDARD AND THE EFFECTIVENESS OF TECHNIQUES 

Stuart C. Reid 

ABSTRACT 

This portfolio comprises two projects linked by the theme of software component testing, which is also 

often referred to as module or unit testing. One project covers its standardisation, while the other 

considers the analysis and evaluation of the application of selected testing techniques to an existing 

avionics system. The evaluation is based on empirical data obtained from fault reports relating to the 

avionics system. 

The standardisation project is based on the development of the BC BSI Software Component Testing 

Standard and the BCS/BSI Glossary of terms used in software testing, which are both included in the 

portfolio. The papers included for this project consider both those issues concerned with the adopted 

development process and the resolution of technical matters concerning the definition of the testing 

techniques and their associated measures. 

The test effectiveness project documents a retrospective analysis of an operational avionics system to 

determine the relative effectiveness of several software component testing techniques. The methodology 

differs from that used in other test effectiveness experiments in that it considers every possible set of 

inputs that are required to satisfy a testing technique rather than arbitrarily chosen values from within 

this set. The three papers present the experimental methodology used, intermediate results from a failure 

analysis of the studied system, and the test effectiveness results for ten testing techniques, definitions for 

which were taken from the BCS�BSI Software Component Testing Standard. 

The creation of the two standards has filled a gap in both the national and international software testing 

standards arenas. Their production required an in-depth knowledge of software component testing 

techniques, the identification and use of a development process, and the negotiation of the 

standardisation process at a national level. The knowledge gained during this process has been 

disseminated by the author in the papers included as part of this portfolio. The investigation of test 

effectiveness has introduced a new methodology for determining the test effectiveness of software 

component testing techniques by means of a retrospective analysis and so provided a new set of data that 

can be added to the body of empirical data on software component testing effectiveness. 
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INTRODUCTION 
This is the overview document for a Portfolio PhD in `Software Component Testing'. The portfolio 

covers two projects: one on the standardisation of software component testing and the other on the 

effectiveness of the techniques used in software component testing. 

Within this document 'software component testing', or more simply, `component testing', is considered to 

be the dynamic testing of software components, where a component is defined as a minimal program for 

which a separate specification is available. Component testing is also known as unit or module testing, 

and although these terms are often used to refer to the testing of larger programs, made up of a number of 

components, this is not the case here, where component testing is solely considered to be that dynamic 

testing at the bottom of the 'V' life cycle model. The terms `component' and `module' are used 

interchangeably in this document. 

The first project considered is the standardisation of software component testing ('the Standard'). This 

project was based on the production of the BCS/BSI Software Component Testing Standard [4]. This was 

conceived in early 1989 with the aim of it being the first of a number of software testing standards 

developed by members of the BCS Specialist Interest Group in Software Testing (SIGIST). After over 

eight years of development, copyright for this document, and an associated Glossary of terms used in 

software testing [5], was assigned to the British Standards Institution (BSI) in April 1997, allowing them 

to edit and publish it, and hopefully subsequently present it to the International Organization for 

Standardization (ISO) for `fast-tracking' to international status. 

The second project documents what has been described as a ̀ retrospective analysis' [17] to determine the 

relative effectiveness of a number of testing techniques when applied to components from an operational 

avionics system ('the Investigation'). This study has generated a number of interesting results, which, 

although obviously specific to the analysed system, raise questions about the rationale on which test 

techniques (and their corresponding test completion criteria) are currently chosen. 

This overview document first presents a list of the documents that make up the portfolio, followed by a 

brief rationale for performing component testing, and then considers how the two projects are related. 

Next, the two projects are considered in more detail, by reference to the documents in the portfolio, 

commentary on the projects, recommendations for further work, and conclusions. In the case of the 

standardisation project a detailed description of the author's role in the project is provided. Finally, the 

contribution to knowledge of this portfolio is presented. 

1. ACRONYMS 

ANSI American National Standards Institute 
BCS British Computer Society 
BSI British Standards Institution 
DoD (US) Department of Defense 
DPC Draft for Public Comment 
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ESA European Space Agency 

ESSI European System and Software Initiative 
GQM Goal - Questions - Metrics 
GUI Graphical User Interface 

HTML Hypertext Mark-up Language 
IEEE Institute of Electrical and Electronic Engineers 

IPR Intellectual Property Rights 

ISO International Organization for Standardization 
LCSAJ Linear Code Sequence And Jump 

MOD Ministry of Defence 

MPSE Master Plan for Software Engineering 

MQG Metrics - Questions - Goal 

NWI New Work Item 

PET The Prevention of Errors through Experience-driven Test Efforts 

SEI Software Engineering Institute 

SIGIST Specialist Interest Group in Software Testing 

SMARTIE Standards and Methods Assessment using Rigorous Techniques in Industrial 
Environments 

URL Uniform Resource Locator 

WP Working Party 

2. COMPOSITION OF THE PORTFOLIO 

The portfolio comprises the following eight documents: 

" The BCS Software Component Testing proto-Standard [1] 

" The Software Testing Standard - how you can use it [2] 

" Popular Misconceptions in Module Testing [3] 

" BCSBSI Glossary of terms used in software testing [4] 

" BCSBSI Standard for Software Component Testing [5] 

" Test Effectiveness in Software Module Testing [6] 

" An Empirical Analysis of Equivalence Partitioning, Boundary Value Analysis and Random Testing [7] 

" Module Testing Techniques - which are the most effective? Results of a Retrospective Analysis [8] 

3. THE RATIONALE FOR COMPONENT TESTING 

It is recognised best practice in software development to detect and remove faults at the earliest 

opportunity. This is due to the increasing costs of correction later in the life cycle, and supports the 

widespread quality goal of minimising rework. Component testing is cost effective as long as the faults it 

PhD by portfolio - Software Component Testing 

4 



detects (and which are then removed) cannot be detected and corrected more cheaply at a later phase of 
development. 

It is often argued that the faults found by component testing could, just as easily, be found during 

integration testing. However, the combination of components into an integration `build' makes for a 

complex piece of software that is difficult to comprehend, and thus test; one of the reasons that designers 

partition software into components is to ease understanding - not just for the coder, but also for the tester. 

The complexity of builds also makes the achievement of test coverage criteria more difficult - it is often 

difficult enough achieving the required coverage levels when testing components in isolation. Myers [46] 

presents two more reasons for component testing. He argues that component testing eases the task of 

debugging since, when an error is found, it is known to exist in a particular component. He also considers 

the project management perspective, pointing out that component testing introduces parallelism into the 

testing process by presenting the opportunity to test multiple components simultaneously. 

Component testing has further potential benefits when maintenance and reuse are considered. 
Components are more likely to be reused if they have been tested in isolation, rather than as part of an 

overall system, as they are then much more likely to be correct in terms of meeting their individual 

specification (rather than performing as part of a larger system) and so reusable in a different context 

based on their individual specification. Maintenance is made easier when it is possible to retest modified 

components in isolation and this is obviously helped when the original test case suites are available. 

Apart from the aforementioned reasons there is also a growing body of empirical data supporting the 

inclusion of component testing in the software life cycle. For instance, the ESSI PET Project Report [59] 

concluded that the lack of component testing in the projects studied was the second largest cause of bugs 

and that a quantifiable improvement resulted from its introduction with suitable tool support. Similarly, 

figures from Jones [44], show that it cost nearly twice as much to detect and fix faults during integration 

testing than during component testing, and more still in later phases, for the systems he studied. 

Study in this area needs to continue, and the increasing popularity of metrics initiatives will hopefully 

provide the necessary data at little cost, but at present the arguments for component testing appear 

overwhelming. 

4. THE RELATIONSHIP BETWEEN THE TWO PROJECTS 

The projects are primarily connected by the examination in the second project (the Investigation) of the 

component testing techniques defined in the first project (the Standard). This has provided the following 

benefits: 

" The application of the test case design techniques (as defined in the Standard) to real components 
in the Investigation provided feedback on their accuracy and ease of use. This led to both the 

definitions in the normative part of the Standard and the guidelines on their use being improved. 
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" Results from the Investigation on the test effectiveness of different test case design techniques 

provided evidence for the retention of techniques in the Standard (none of the techniques fared 

badly enough to warrant removal). More significantly, in the case of random testing, the results 

from the Investigation were used to justify its inclusion in the Standard when otherwise it would 

have been left out. 

" The provision of definitions of component testing techniques by the Standard allows their 

consistent and repeatable use. Thus, by using these defined techniques in the Investigation, it was 

possible to be consistent in their application across components in the Investigation and, in the 

future, it will also allow the results to be safely compared with experiments using the same 

definitions. Similarly, practitioners basing their choice of component testing techniques on the 

results of the Investigation (or other experiments using the definitions in the Standard) can be sure 

of using the same techniques by using the definitions in the Standard. Until the Standard provided 

these definitions, the comparison of techniques and the ability to consistently repeat them were 

difficult as there was no guarantee that different testers meant the same thing by the same-, or 

similarly-named techniques. 

" The Standard currently provides guidelines on how to choose test case design techniques and test 

coverage measures as an Annex. But, due to the lack of consensus in this area (consensus is a pre- 

requisite for standardisation), it provides no more than the subsumes ordering for a subset of the 

white box techniques defined in the Standard. Hopefully, the Investigation will provide a small 

amount of the data required to make up a cohesive body of knowledge on the effectiveness of test 

techniques that will allow future versions of the Standard to provide more comprehensive 

guidelines in this area. 

5. THE STANDARDISATION OF SOFTWARE COMPONENT TESTING 

5.1 Introduction 

The documents related to the Standard are considered in chronological order. Document details and a 

synopsis are provided for each document and the original abstract and conclusions are included for the 

papers. Next, a commentary on the project is presented; this is not restricted to the documents alone, but 

also includes remarks on the overall progress with the Standard and Glossary. The Standard and Glossary 

were produced by a Working Party (WP) formed by volunteers from the BCS Specialist Interest Group in 

Software Testing (SIGIST), and a section detailing the input of the author is provided. Finally, 

recommendations for further work in this area and conclusions are presented. 

5.2 Aims and objectives 
The aim of this project was to produce a standard on software component testing to fill a perceived gap in 

both the national and international standards arenas. 
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The objective was a standard that enabled the measurement and comparison of testing performed on 

software components to enable users of the Standard to directly improve the quality of their software 
testing, and improve the quality of their software products. 

5.3 Documents related to the Standard 

5.3.1 The BCS Software Component Testing proto-Standard [1] 

5.3.1.1 Document details 

This paper was presented at, the 2d International Conference on Software Quality Management, 

Edinburgh, in July 1994, and appears in the proceedings of the conference. 

5.3.1.2 Abstract of paper 
Software testing should provide both a means of assessing the quality, and a degree of confidence, in a 

software product. However, the actual quality of testing carried out by different organisations, or 

expected between customers and suppliers, varies alarmingly. Standards currently available fail to define 

any test design techniques and provide little, if any, means of measuring and comparing the quality of 

testing performed on software. Without these attributes the user cannot improve the quality of testing 

undertaken and, hence, the quality of the software product. This paper describes the Software 

Component Testing proto-Standara which has been developed to fill this gap by defining a generic test 

process, test case design techniques, and a set of objective measures for carrying out dynamic testing of 

software components, as well as providing guidelines on their use. 

5.3.1.3 Conclusions of parer 

The experiences involved with development of the software component testing proto-standard have been 

described and the similarities between the development methodologies for the proto-standard and for 

software have been discussed It is suggested that this analogy could be extended from project 

management to process improvement and a process maturity model. 

The difficulty of choosing which test case design techniques and measures to use from the proto-standard 

has been addressed and it has been concluded that given current technology it is not yet possible, except 

in the broadest terms, to define best practice in this area. Therefore it has been left to the user of the 

proto-standard to choose the techniques and measures most suitable for their situation. The level of 

confidence afforded to users of the proto-standard is thus determined not only by conformance to the 

proto-standard, but also by this choice. 

However, a number of other problems remain that also need to be investigated further. It can be argued 

that the test coverage measures are only objective for structural coverage and that functional coverage is 

subjective, making conformance checking difficult. The proto-standard also mandates that some 
independence is achieved in the testing, but the choice of level is left to the user. Finally, the quality of 
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specifications is outside the scope of the proto-standard, but its affect on the product of component testing 

needs to be quantified. 

5.3.1.4 Synopsis 

This paper defined the attributes of a 'good' software engineering standard and attempted to demonstrate 

that the Standard had these attributes. It related the history and development of the standard from its 

conception in 1989 up to early 1994, and optimistically predicted a delivery to BSI in mid-1994. This 

date was especially hopeful given the requirement, identified in the paper, to perform both informal and 
formal reviews prior to the delivery. 

Analogies between the software development process and the development of software standards were 
drawn. This was primarily to explain the move to a more disciplined development regime in early 1993, 

but also to support the proposition that ideas from software process improvement and the SEI process 

maturity model could be applied to the development of standards. 

The paper described how, at that time, it was believed the Standard could form part of the new framework 

of software testing standards instigated by the IEEE in their Master Plan for Software Engineering 

Standards (MPSE). This belief, it was explained, led to the creation of the Glossary of software testing 

terms as a separate document (by extracting and expanding the definitions section from the main body of 

the Standard), which would be able to support all the proposed testing standards. 

Technical issues were then addressed. Having considered the rationale for component testing, the scope 

of the Standard, as defined in the Standard itself, was considered item by item. The difficulty of choosing 

which of the test case design techniques and measures defined in the proto-standard was addressed and it 

was concluded that given the current state of the field it was not yet possible, except in the broadest terms, 

to define best practice in this area. The paper presented the subsumes hierarchies for both black and white 

box testing techniques, which were provided in the Standard at that time, as the best agreed basis for 

choosing techniques. The effect of the quality and form of component specifications on test quality was 

also considered and used to reinforce the point that the Standard would not be able to solve the problems 

of software test quality alone. Finally the appendix considered the poor coverage of component testing 

provided by a number of other standards. 

5.3.2 The Software Testing Standard - how you can use it [2] 

5.3.2.1 Document details 

This paper was presented at the P European International Conference on Software Testing, Analysis and 

Review, in London, November 1995, and appears in the proceedings of the conference. 

5.3.2.2 Abstract of parer 

The software testing community has, until now, lacked both standard definitions of test case design 

techniques and standard definitions of test coverage measures. This has led to the actual quality of 

PhD by portfolio - Software Component Testing 



testing carried out by different organisations, or expected between customers and developers, to vary 

alarmingly. Standards currently available fail to define any test design techniques and provide few, if 

any, means of measuring and comparing the quality of testing performed on software. Without these 

attributes the user cannot improve the quality of testing undertaken and, hence, the quality of the software 

product. The BCS Software Component Testing Standard was produced to satisfy these shortcomings; it 

defines a generic test process, test case design techniques, and test coverage measures for use in 

component testing (otherwise known as unit testing). 

This paper initially provides a brief introduction to this Standard, its history and current status, before 

concentrating on how the Standard is expected to be used. Two viewpoints are considered; that of the 

developer and that of the customer. Finally its relationship to other standards and the question of 

choosing test techniques and coverage measures are addressed. 

5.3.2.3 Conclusions of paper 
This paper initially described the development of the Software Component Testing Standard. It then went 

on to describe its structure and content, and suggested how it may be used, and considered it relationship 

with other standards. Finally the necessary, but sometimes difficult, choice of test case design techniques 

and measures was briefly covered 

The Standard is planned for release at Issue 3 at the EuroSTAR '95 conference and is freely available to 

potential reviewers from the author of this paper. The working party commend the Standard to your 

attention and look forward to receiving comments on its use. 

5.3.2.4 Synopsis 

This paper again initially provided the history and development of the Standard, but considered progress 

up to mid-1995, approximately 18 months further on from paper [1]. By this time the high overheads of 

reviewing each clause of the Standard had been discovered, with the paper citing four iterations of review 

and rework for a typical sub-clause. The paper also explained that the WP decided to use formal software 

inspection techniques on the Standard before Issue 2 was released at the EuroSTAR conference in 

November 1994. The consideration of comments from external reviewers and another formal inspection 

were described as final preparation for the planned delivery of the Standard to BSI in November 1995 at 

the EuroSTAR conference. Other planned work on the Standard was presented, such as the aim of 

increasing its audience and therefore its reviewers; this was to be achieved both by converting it to HTML 

for the Web and increasing publicity. The addition of further test case design techniques and measures 

was also described as planned. 

The paper then explained how standards can be considered as ̀ agents for change' to assist organisations in 

improving their development process and how the Standard would perform this role for component testing 

in particular. It then presented the structure of the Standard and explained how the different clauses 

defined conformance to the Standard from both the perspective of the software component tester and the 
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perspective of the buyer of software component testing. Finally it considered, as in paper [1], the problem 

of choosing techniques and measures, using the subsumes ordering. 

5.3.3 Popular Misconceptions in Module Testing [3] 

5.3.3.1 Document details 

This paper was presented at the 13th International Conference on Testing Computer Software, in 

Washington DC, June 1996, and appears in the proceedings of the conference. 

5.3.3.2 Abstract of paper 
Software module testing should provide a measure of confidence in the quality of the tested module. 

However, testing can only provide confidence if it is both well-defined and well-understood. In 1989 the 

definitions of test case design techniques and coverage measures were considered in need of 

standardisation, although the subject area was considered to be well-understood. It was thus believed to 

be eminently suitable for standardisation. This paper describes a number of the technical issues 

encountered during this process. 

The British Computer Society Software Component Testing Standard is an attempt to define both the 

software module testing process and the techniques used within it to provide a basis for the definition, 

measurement, and comparison of software module testing. This Standard was presented to the British 

Standards Institution in November 1995 (after nearly seven years work) with the expectation that it will 

subsequently be accepted as an international standard. 

One reason for the lengthy development period was due to the discovery that the standardisation of 

module testing raised a number of technical questions, the answers to which were not as 

"well-understood", as first thought. This paper describes a number of the technical problems 

investigated during the development by posing the following questions: 

Why can't we measure Syntax Testing coverage? 

Is there a simple State Transition Testing measure other than Chow's? 

Why do testing tools provide different measures for branch and decision coverage? 

Why doesn't Branch Condition Testing subsume Branch testing? 

Is Modified Condition Decision Testing useful if it only applies at 100%? 

Does someone know which is the 'best' set of test techniques and measures? 

What code features can render the Subsumes Hierarchy useless? 

Is Equivalence Partitioning subsumed by Boundary Value Analysis? 
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5.3.3.3 Conclusions of paper 

This paper has described a number of the technical (rather than managerial) issues that arose during the 

development of the BCS Software Component Testing Standard. These highlight how the supposedly 

well-understood area of module testing is still open to various different interpretations. 

The BCS Standard was intended to be the first of a framework of software testing standards, module 

testing being considered an ideal starting point due to its maturity. Efforts at standardisation, however, 

were constantly hampered by disagreements on what were considered to be the some of the most 

fundamental aspects. These disagreements highlight a problem with the standardisation of any mature, 

well-understood area - everyone has an opinion, and opinions held for long periods are dcult change. 

However, the disagreements also confirmed the working party's view that the area required 

standardisation. 

The filling of this gap, by providing a basis for the definition, measurement, and comparison of software 

module testing, should have several benefits. Standards have a technology transfer role and the BCS 

Standard can improve knowledge of 'good' module testing practice. The definitions of the tcdts and tcms 

can provide both a contractual basis between suppliers and procurers, and repeatability that will makes 

the comparison of testing easier. 

5.3.3.4 S nopsis 

This paper, after introducing the Standard, described a number of the technical discussions on component 

testing that took place during its development. It explained how discussion of these issues and similar 

questions caused unexpected delays in the production of the Standard. The paper emphasised the fact 

that many of these topics were initially considered to be mature and well-understood, but, under the close 

scrutiny required during standardisation, were found to require closer analysis. 

5.3.4 BCS/BSI Standard for Software Component Testing [4] and BCS/BSI Glossary of 
terms used in software testing [5] 

5.3.4.1 Document details 

The versions of these standards included in the portfolio are version 3.3 of the BCS Standard for Software 

Component Testing and version 6.2 of the BCS Glossary of terms used in software testing, both dated 

April 1997. These standards were produced by the BCS SIGIST Standards working party and are 

available from the author of this overview document. 

5.3.4.2 Synopsis 

These standards, which are 63 pages and 17 pages long respectively, were started in 1989 and finally 

delivered to BSI in April 1997. The Standard is intended for use by both those performing and those 

specifying software component testing. It covers the dynamic testing of software components, where a 

component is the smallest program for which a specification is available. The Glossary provides 
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definitions of software testing terms in general, although it is biased towards those terms used in software 

component testing, due to the feedback of definitions from the development of the Standard. 

5.4 Commentary 

One of the first decisions of the newly-formed WP in January 1993 was to follow a software-like 
development process for the Standard. Before any development work was begun, it was decided that the 

WP should determine whether there was still a requirement for the Standard. This involved an 
investigation into the currently-available software testing standards and the overall result was that there 

was still a requirement for a software component testing standard (some of the specific results were 

included in the appendix to paper [1]). No work in progress on such a standard was discovered either, 

although when the author attended the Software Engineering Standards Symposium in August/September 

1993 he was informed about a new framework of software testing standards instigated by the IEEE. The 

Standard was shown to representatives from the IEEE at the Symposium and they agreed that it should, 

when complete, form a part of this new framework. Although the IEEE have been kept appraised of 

progress on the Standard, their initiative appears to have disappeared. 

In following an engineering approach to the Standard's development, a requirements document [9] and 

PERT chart [10] were produced. The requirements were found to be very useful in deciding later 

arguments on the inclusion of new clauses, while the PERT chart was only really useful in determining 

dependencies between activities as the enforcement of deadlines was not possible. Overall the application 

of traditional management techniques to the voluntary group work involved in producing the Standard was 

found to be impractical, and the prime means of motivating members of the WP to meet deadlines was the 

(somewhat empty) threat of passing the work on to someone else. 

Prior to the formation of the WP, which introduced defined roles for its members and a constitution, the 
development of the previous versions of the Standard had been relatively uncontrolled. Small groups or 

individuals would work alone on areas they were interested in, and create sections (properly known as 

clauses in a Standard) that were neither independently checked, nor planned as part of an integrated 

document. The formation of the WP and the new development approach were mainly as a result of the 

recognition of these problems - that an integrated document was required and that this document must 

reflect the consensus of all those working on it. 

A problem arose in the use of the previously-produced definitions of techniques because they had not been 

widely reviewed among the WP and so no consensus had been reached. Papers [1] and [2] described the 

work pre-1993 as prototyping and, as is known in software development, the delivery of prototypes is 

fraught with difficulties. This was the case here, and the discussion of material from pre-1993 used up 

much time and resulted in many rewrites, much of the time necessitating starting again from scratch. In 

general, it was found that those techniques that were considered the most well-known and well-understood 

generated the most debate (and therefore took the longest to define), probably because in these cases all 
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the members of the WP had an opinion. In fact, a considerable proportion of this discussion was wasted 
due to a foreseeable problem that arose during the production of the guidelines clauses of the Standard. 

It had been decided that all the guidelines should include examples. For each test case design technique 

its application to an example component was documented, and for the test process it took the form of a set 

of example documentation describing the test process for an example project. Although the definitions 

had been reviewed and considered at length before the writing of the corresponding guidelines clauses 

began, in every case the definitions had to be changed due to feedback from this task, including the 

original definition of the component test process. In several cases discussion of the guidelines highlighted 

ambiguities in the corresponding definitions. Often, where a definition had eventually been agreed after 

much discussion, the example, demonstrating a particular interpretation of this definition, re-started debate 

over the original definition. In hindsight, the definitions and guidelines clauses should have been 

produced together as this would have avoided lengthy debates on the finer points of definitions that were 

later drastically changed due to the feedback from producing the corresponding guidelines clauses. 

Paper [1] reflected the over-confidence and over-ambition of the Working Party (WP) before the 

aforementioned problems had been recognised. Having moved from what was perceived to be a chaotic 
development process into a defined development process, and with a large number of the test techniques 

and test coverage measures already defined, the WP believed that delivery to BSI was imminent. In fact 

paper [1] had already identified the lack of suitability of material produced prior to 1993 and, secondly, 

the requirement to evaluate, or test, the Standard before its delivery - but it had not been realised how long 

this would take. Given that the WP was comprised mainly of testing specialists, and that the analogy with 

the software life cycle had already been accepted, this was a major oversight. By the time paper [2] was 

written the problems of performing reviews by a committee that met, at most, once a month had been 

recognised. Even though a core group within the WP attempted to speed up the process by reviewing, and 

rewriting drafts between meetings, their efforts were often in vain. This was because there were inevitably 

some members of the WP who insisted on being allowed to review all changes that had been made, but 

who would only review material at actual meetings (and often only attended every other meeting). 

Reviewing and re-drafting out of session were normally carried out via email (if participants had this 

facility) and orchestrated by the author. 

Prior to publication of a new version of the Standard it was formally inspected by the WP. The use of 

these formal inspections was a painful experience for those members of the WP who had not used them 

before. The number of issues arising and the subsequently calculated number of errors remaining in the 

Standard seemed high, but we were assured they were quite normal by Dorothy Graham, who led the 

inspections and is an author on the subject. The main problem that arose from these inspections was the 

short timescale available to address the issues before that version of the Standard was published. 

Paper [2] was written as a result of changes made to the Standard from comments received from external 

reviewers. It was pointed out that the current version of the Standard did not tell them how to determine 

whether they (or any other user) had conformed to the Standard. The WP had been so involved in 
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defining the test case design techniques and measures (and their corresponding guidelines) that no-one had 

considered this fundamental point, most assuming that conformance had already been built-in to the 

structure of the Standard. It was a fairly easy task to add the text to define conformance, but this did 

require the inclusion of clauses to allow users to define their own techniques, as long as they were defined 

in a similar manner to those already in the Standard. Paper [2] attempted to show how conformance to the 

Standard would encourage users to move to better component testing practices. 

Changes were also made to the Standard due to feedback from attempting to use the definitions for 

equivalence partitioning (EP) and boundary value analysis (BVA) in the Investigation. To allow the 

comparison of results of the application of these techniques to various components (and to be able to 

expect future use of them to be similar) required that the interpretation of the definitions be consistent. It 

was found during the Investigation that there were a number of possible interpretations of the definitions 

and that these different interpretations yielded values of test effectiveness that varied substantially (this 

area is considered in some detail in paper [7]). Feedback of these results by the author to the WP led to 

the guidelines clauses for EP being modified to explicitly describe the possible range of interpretations. 

For some unknown reason the corresponding guidelines clause for BVA was not similarly changed. 

To further widen the audience of external reviewers, the author began a project in the Summer of 1995 to 

put both the Standard and Glossary on the Web. This was accomplished in Spring 1996 with the 

assistance of the Computing Service at RMCS, who employed a student over the Summer of 1995 to help 

translate the Word document to HTML (the main difficulty was the representation of the many tables in 

the HTML document, which were included as images). The Web page also allowed visitors to download 

the latest versions of the documents in Word format. The author is still responsible for this Web page, 

although the Standard itself has had to be removed at the insistence of BSI, who felt they would not be 

able to sell a Standard that was also freely available on the internet. 

Changes continued to be made to the Standard until April 1997 when it was finally handed-over to BSI; 

these were mainly due to internal reviews and external comments. The one major exception to this was 

the inclusion of a new test case design technique in the Standard - random testing. Initially there had been 

a reluctance to include random testing in the Standard as no-one on the WP had much experience of using 

it and there was little published evidence of it being used successfully in a commercial environment. The 

author, however, presented results from the Investigation to the WP demonstrating its test effectiveness, 

and, based on this, random testing was included. 

The idea for paper [3] grew from a presentation made at the Software Engineering Standards Symposium 

in Brighton in 1993 [34]. This presentation pointed out that much of the underlying technical discussion 

by working parties developing standards was never properly documented, and so the results were prone to 

misunderstanding and the discussion prone to repetition by future working parties. The experience of the 

WP supported this argument as a number of the topics covered in this paper had to be addressed a number 
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of times due to members missing discussions the first time, new members joining the WP, and members 

forgetting the first discussion (due, perhaps, to the long intervals involved). 

Two of the problems described in paper [3], of the exclusion of syntax test coverage from the Standard 

and the use of Chow's switch coverage for state transition test measurement, highlight a problem the WP 

encountered throughout. This was due to a self-imposed rule that only techniques that had been published 

elsewhere could appear in the Standard. This rule was intended to stop the WP `inventing' techniques and 

thereby only include in the Standard publicly-available techniques, so enforcing a measure of consensus in 

the Standard. This was a difficult rule to apply, especially when members of the WP had experience of 

applying ̀ better' versions of the techniques than those that had been published. This was frustrating as the 

available published material was often quite old (for instance, Chow's switch coverage dates from a 1978 

paper [23]) and published material on several techniques appeared to have stagnated since Myers' 

definitive work [46] of 1979. The solution was to add notes to the relevant guidelines clauses, as was 

done for the negative testing of state transition diagrams. 

Probably the longest-running and unexpected discussion from the Standard's development is presented in 

paper [3] and arose from what was considered by the WP as the best-understood test coverage measure: 

branch coverage. The problem first came to light when the author noticed that example branch coverage 

values in the guidelines clause appeared to be wrong. The clause had been produced by the representative 

on the WP from IPL, a testing tools vendor, who had checked the figures using one of their tools. The 

discrepancy was due to one value being a measure of decision outcomes exercised (which is how most 

testing tools measures decision coverage), while the author's measure was based on the proportion of arcs 

on a directed graph of the component that were exercised. As described in the paper, these can differ at 

values of less than 100% coverage. Further investigation by the author uncovered more complications 

using the directed graph model, as different ways of drawing the directed graph resulted in different 

graphs that could lead, in turn, to different branch coverage values. It was eventually decided, due to the 

wide use of the different measures, to include both branch and decision coverage in the Standard. 

When papers [1] and [2] were written both functional and structural techniques were included in the 

subsumes hierarchies (both in the paper and in the Standard). It was subsequently discovered that that the 

definitions agreed for equivalence partitioning and boundary value analysis did not support the subsumes 

relationship; this is described in detail in paper [3]. In addition to the subsumes ordering, paper [3] also 

presents a number of other factors to consider when making the choice of techniques and measures. This 

topic is obviously an integral part of the Investigation and is covered in more depth in section 7 of this 

overview document. 

From its very inception, it was intended that the Standard should become an international standard. The 

WP understood that this must be achieved by the Standard first becoming a British Standard, via BSI. The 

first step to becoming a British Standard is to get the standard accepted by the relevant BSI working group 
(in this case IST/15) as a New Work Item (NWI). Each NWI needs a sponsor on the BSI working group, 
but for the Standard this presented no problem as Martyn Ould, who had first suggested the Standard in 
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1989, was a member of IST/15 and gladly took on this role. The Standard was accepted as a NWI in 

spring 1996, less than six months after it was presented to BSI, but it then took approximately a year 
before BSI were ready to take delivery of the WP's final version of the Standard in early 1997. This 

version was then edited to the format required by BSO [18], and will be distributed as a Draft for Public 

Comment (DPC), to elicit comments to be submitted by the end of December 1997. These comments will 
be considered by a technical panel, which, it was suggested by BSI, would be made up mainly of volunteer 

members from the WP, before any final revisions are made and the Standard published as a full British 

Standard. 

Once BSI decided to publish the Standard themselves they approached the WP and requested that they 

remove it from the Web and assign them copyright of both documents. This would then allow BSI to 

publish and sell the finished Standard. The assignment of copyright caused some problems for the WP as 

several members used it in their work and wished to continue to be able to distribute copies of it both 

within their own organisations and to their clients. They felt that as they had produced it, they should 

continue to be allowed to copy and distribute it. There was also reluctance to remove the Standard from 

the Web as the WP felt that it should be as widely available as possible. BSI's position was that as they 

were now an agency, and had to make a profit, they must sell standards and they could only do this if they 

owned the copyright (this would also allow them to protect it from illegal copying, if necessary). The WP 

discussed this problem and eventually decided that the overriding goal should be to advance the Standard 

to the status of an international standard and therefore the demands of BSI should be accepted. At one 

point it was suggested that the Standard could still achieve this aim if it was taken up by ANSI, via the 

IEEE, but as contact with the IEEE had been one-way for the previous couple of years (the WP sent them 

new versions, but heard little in return), it was agreed to remain with the BSI route. BSI have stated that, 

after the Standard is an official British Standard, then they will propose it for fast-tracking by ISO to make 

it an international standard. 

Having decided what to do in principle, the actual assignment of the copyright to BSI proved somewhat 

complicated, as BSI gave the appearance of having never done this before. Assignment agreements drawn 

up by BSI lawyers contained so many errors and inconsistencies that the author finally rewrote them, had 

them checked by an IPR barrister, and these were eventually used. This has meant that although BSI now 

own copyright of the final version delivered to them on April 29th, 1997, the WP still retains the copyright 

for all previous versions (including a version produced on April 28th 1997, that differs from the final 

version only in that the copyright notices have been changed). Although the Standard was removed from 

the Web, the Web page directs enquiries to the author, who emails copies of the version dated April 28`s 

1997 to anyone who wants it. According to the agreement BSI must also publish the Standard within a 

year of the assignment, otherwise copyright reverts to the WP - this was to ensure that BSI did not `sit' on 

the Standard so that it was lost from public view for too long. 
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Added complications arose during this period of negotiation with BSI. Firstly the MOD approached the 

WP, asking if they could make the Standard a Defence Standard until it became a British Standard 

(apparently MOD can only specify standards in contracts that are either official national, international, or 
defence standards). The WP had no problem with this, and, having checked that BSI felt the same, passed 

the contractual negotiations over to BSI. Secondly, both the BCS and the BCS SIGIST, decided 

individually, at this time, that they had the right to publish and distribute the Standard. The WP felt that 

both these claims were spurious and invited both groups to a meeting to discuss copyright (along with the 

MOD and BSI), which they failed to attend. 

Paper [1] suggested that applying process improvement techniques from software development to the 

development of standards would require positive action by the standards bodies, such as BSI. Unhappily 

this has not been forthcoming, and the change of BSI from a public body to an agency required to support 
itself seems to make any initiatives in the near future unlikely. This makes it all the more important that 

the experience of the WP is widely disseminated. 

5.5 Relationship to other work 
A number of existing standards covered software component testing to different degrees when work on the 

Standard first began, but it was felt that there was no useful software component testing standard. As 

stated earlier, one of the first tasks of the WP was to research the coverage of component testing in other 

standards in order to determine that there was still an actual requirement for the Standard to ensure that it 

did not duplicate material already available. Among others, the following standards were considered: 

[13], [14], [15], [20], [24], [25], [37], [38], [39], [52] and [53]. The result of this research confirmed the 

original belief that there was still a requirement for the Standard. This position was supported by 

Wichmann, who stated that the use of ISO-9001 for software development would encourage a move 

towards software test measurement and its standardisation [66] and specifically suggested that the 

Standard [4] could fulfil the role identified [65]. 

Estimates of the number of software-related standards vary from "more than 300" [58] to "over 1100" 

[67], but there is no disagreement that within software standards there is duplication, inconsistencies, 

overlap and omissions. In 1987 IEC and ISO formed a joint technical committee to attempt to impose 

some structure in this area. The result is the proposed JTC1/SC7 Architecture [58]. One aim of this 

architecture is to position software engineering standards in relation to quality systems, concentrating on 

the ISO 9000 series [68]; the Standard [4] was produced with the expectation that it would be used to 

specify the software testing requirements of an ISO 9000 quality system. The JTC1/SC7 architecture is 

based on a process foundation of the software life cycle processes standard [40]. At the next level, users 

will require standards to support particular phases of the life cycle, such as testing. There are a number of 

standards that concentrate solely on testing including [13], [14], [15], [19], [36] and [42]. As stated 

earlier, however, none of these covers component testing satisfactorily, leading to the requirement for the 
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Standard [4]. It is too soon to know how successful this particular architecture will be, but it demonstrates 

where the Standard fits into such a framework of standards. 

An orthogonal set of software standards that include software testing requirements are the application- 

specific standards, such as [25], [26], [35], [37], [45], [49] and [55]. These standards define software 

requirements for particular areas, such as avionics or railway signalling systems, and specify component 

testing requirements, but without defining the specified techniques. Any updates to such standards or new 

application-specific standards should specify and component testing requirements by referencing the 

Standard [4]. 

As part of the four year SMARTIE project, Fenton [28] reported on a measurement-based approach to 

assessing software engineering standards. He stated that it was impossible to make, an objective 

assessment of conformance to the majority of existing standards and went on to make recommendations 

on the future writing of standards. When reporting on software testing standards [29] he stated that the 

Standard [4] was "as close to a true engineering standard as any seen by SMARTIE". 

The ISO/IEC Directives [51] state that "The same term shall be used throughout each standard or series 

of standards to designate a given concept. The use of an alternative term (synonym) for a concept 

already defined shall be avoided ". An IT terminology standard [41 ] is available, which is made up of 22 

parts, for a wide range of areas within the IT field. Unhappily it does not include software testing. No 

other standard has been found that supplied a suitable range of definitions (that were considered to be 

correct) and so the Glossary of terms used in software testing [5] was produced. 

5.6 The author's role in the development of the Standard and Glossary 
Papers [1], [2], and [3] were produced solely by the author, however the Standard [4] and Glossary [5] 

were produced by the WP as a whole. The activities of the author as part of the WP are listed below. The 

roles of Secretary and Chairman of the WP were only assigned from January 1993 onwards. 

" Member (1990 to present). 

" Secretary (7/1/93 to 16/2/95). 

" Chairman (16/2/95 to present). 

" Editor (Glossary 7/1/93 to 15/4/94 and 17/10/96 to present). 

" Editor (Standard, in part from 16/11/92, and completely from 17/3/95 to present). 

Since the WP started meeting regularly with a defined constitution and roles in January 1993, the author 
has attended all 35 meetings. For these, although he was Secretary for only about half this time, he 

produced and distributed the minutes for 31 meetings. Of the actions detailed in these minutes, the author 

was responsible for 32%. 

Since January 1993 the author has been a contact point for members of the public to request copies of the 

Standard. Cranfield University has funded the copying and distribution of individual requests in this 
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period, which the author handled, although bulk runs for conferences were funded by the BCS SIGIST. 

More recently the majority of copies have been sent using the internet (for instance, in the last year the 

author has handled over 500 email messages on the subject of the Standard). 

5.7 Recommendations for further work 
Although mention has been made of a new framework of software testing standards instigated by the IEEE 

as part of their Master Plan for Software Engineering Standards this initiative appears to have disappeared. 

When work on the Standard first started the intention was that it would be part of such a framework 

(although the time taken to produce a standard was then thought to be much shorter! ). If the IEEE 

initiative has failed then a new one needs to be set up. The WP, when it has finished the Standard, should 

not be dissolved, but move on to work on another testing standard within this framework (although the 

membership of the WP will, of course, continue to change). This will hopefully allow the expertise built 

up in the WP, most especially in the areas of procedure, to be maintained. The new framework would be 

expected to accommodate standards on integration, system and acceptance testing, as well as application- 

specific testing standards, such as GUI testing, client-server testing, internetlintranet testing, etc. 

Members of the WP have already suggested that once the British Standard is published there will be a 

requirement for a book providing extra guidance on the Standard including examples of its use for various 

application areas (and this would presumably be amenable to translation into a hypertext version). 

Similarly there should also be a requirement for guidelines on auditing against the standard. 

The WP wasted much time and effort in moving from what appeared to be a chaotic development process 

to a defined process. Time was also wasted by both BSI and the WP, in the hand-over of the Standard to 

BSI. In the author's experience, writers of standards appear to lack experience in each of these areas of 

the standardisation process and material on them is not readily-available. Even the structure and processes 

of BSI are poorly-understood by those outside the organisation. There is a requirement for information on 

writing standards, and specifically British standards, to be made widely-available for future standards 

work. This material should be provided by BSI. 

As soon as the Standard becomes available as an official British Standard, then it should start to be used as 

the definitive source of software component testing definitions. At present many application-specific 

standards mandate that component testing is performed but rarely define the requirement clearly. A study 

should be performed to identify where component testing is specified in other standards. Where this 

occurs, in both new and existing standards, the authors of these standards could then be made aware of the 

Standard so that their documents may refer to it, rather than attempt to define the required component 

testing themselves. 

5.8 Conclusions - Standard 
The Standard, once released by BSI, should fill a gap in the existing software engineering standards 

framework, and will hopefully go on to become an international standard. It has been reviewed and tested 
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both internally, by the WP, and by external reviewers. As with all standards it is not perfect - any product 

of the standardisation process, which is driven by the need for consensus, cannot be perfect - but in 

comparison to the majority of draft standards it is of particularly high quality. It is already being used 

commercially by several major organisations, including government agencies, the banking sector, software 
houses, etc. The MOD also wish to use it to specify their component testing requirements. 

Whether the objective of producing a standard that improves test quality by enabling the measurement and 

comparison of testing has been achieved remains to be seen. More feedback is required from users of the 
Standard to confirm this. Although the response of early users is wholly positive, it is also presumably 

subjective, as no empirical data on its use has been published. That the Standard has the potential to meet 

this objective seems to be confirmed by the results of the SMARTIE project [29]. 

The Standard has taken a long time to produce and during the first four years of development, before a 

systematic approach was taken, much effort was wasted. Only after the adoption of a structured 

development process, similar to that used in software development, was real progress made. The move 

from chaotic development to a more defined process was difficult, but hopefully the experience of the WP 

will not be lost and the lessons learnt applied to any future projects undertaken. It is assumed that those 

working under the auspices of BSI are given more guidance in this respect, but there certainly remains a 

requirement for more information in this area, and, as the national standards body, this should be BSI's 

responsibility. BSI would also help the developers of standards (who are not working as part of BSI) if 

they provided more information on the standardisation process itself - that is, the procedures by which a 

new standard eventually becomes a national and international standard. The WP were given the 

impression that they were the first group to propose a new standard from outside BSI, which was not the 

case. The difficulties that arose over the copyright of the Standard were typical of the relationship 

between the WP and BSI. 

The WP was made up of voluntary members, who received no recompense nor expenses for the time spent 

working on the Standard. Meetings were generally held monthly in London and for most of those 

attending a fair proportion of the time they gave up was spent travelling. The author believes that the 

increasing availability of communication across the Web opens up new opportunities in the development 

of standards. At present it is possible to communicate quickly and cheaply using email, allowing the easy 

dissemination of minutes and changes for review. Although actual meetings are currently still necessary, 

when videoconferencing becomes more widely available then virtual meetings may be held using this 

facility. This will allow the WP to include a wider range of members, as those who are unable to afford 

the time to travel to meetings will now be able to take part, and participants may be located anywhere in 

the World, not just within travelling distance of London. The Web will also allow Standards to be 

reviewed by a potentially vast audience, thereby making them true consensus standards. 

The Web can affect a more fundamental change to the standards arena. Standards should serve the 

common good, and so the more widely-available they are, the better. The Web provides an opportunity to 
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make standards much more widely accessible, but, presently, standards organisations have prevented its 

use for this means as they will thereby lose a source of income. Although these bodies have an argument 
for selling standards whose production they have funded, it seems unreasonable that, as a monopoly (the 

national body alone can put forward standards to ISO), they should be allowed to charge for standards 

produced by others at no cost to themselves. The author hopes that the Standard will some day return to 

being freely available on the Web, along with other standards. 

6. INVESTIGATION INTO THE EFFECTIVENESS OF SOFTWARE TESTING 
TECHNIQUES 

6.1 Introduction 
The documents related to the Investigation are considered in chronological order. Document details and a 

synopsis are provided for each document, as well as the original abstract and conclusions. Next, a 

commentary on the project is presented; this is not restricted to the documents alone, but also includes 

remarks on the overall progress of the Investigation. 

The basic aim of the Investigation was to investigate the effectiveness of different software component 

testing techniques and measures in order to be able to provide firmer guidelines on which techniques 

should be used. Many experiments and case studies have been performed with similar aims, but still there 

is no consensus on the result, perhaps due to the problems inherent in such activities. One of the main 

problems is basing such experiments on real data, which the author believed was imperative and so a 

company was approached to provide access to data from a commercial project. The author was given 

unlimited access to all the software and data related to the project and was also allowed to talk to the 

developers, while they were still working on the project. 

The first of the three papers presents a high-level view of the Investigation, which, at that point, aimed to 

not only identify the relative effectiveness of different testing techniques, but also to identify those 

attributes of a module that would allow the most appropriate set of techniques to be chosen for each 

individual module. This paper also presents the results of the failure analysis of the studied system. The 

other two papers present the experimental methodology in depth and present relative test effectiveness 

results for a wide range of testing techniques. By this time, it was recognised that the original aim of 

matching a module's attributes with a set of techniques was not achievable as too little data was available, 

but that the Investigation would `simply' provide relative test effectiveness values for the testing 

techniques studied. 

6.2 Aims and objectives 
The aim of this project was to identify those attributes of a module that would allow the most appropriate 

set of software module testing techniques to be chosen for each individual module. 
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The objective was first to perform a failure analysis of an operational system to identify those modules 

with faults that could have been exposed by module testing. The ability of selected testing techniques to 

expose these faults was then to be determined using a new methodology to determine the test effectiveness 

of the studied techniques. Finally, a correlation analysis was to be performed to identify those module 

attributes that could be used to determine the most effective testing technique for the module. 

6.3 Documents related to the Investigation 

6.3.1 Test Effectiveness in Software Module Testing [6] 

6.3.1.1 Document details 

This paper was presented at the 2°' European International Conference on Software Testing, Analysis and 
Review, in Brussels, October 1994, and appears in the proceedings of the conference. 

6.3.1.2 Abstract of paper 
Software developers would like to know which testing technique(s) to apply to a module, or unit, to 

provide the satisfactory level of 'testedness. There have been several studies carried out into the relative 

effectiveness of various software testing techniques, which have generated contradictory results. 
Different standards require different test techniques to be used and test coverage levels to be achieved 

with no apparent basis for agreement. 

There are several possible reasons for the conflicting results of such research. A number of experiments 
have used bug-seeding, where the criteria for error insertion will bias results and cannot produce a 

representative set of errors. The use of random test data to satisfy test coverage criteria or testers with 

varying levels of ability also present di culties in comparing results both within and between 

experiments and in transferring results to the real world. It is the author's belief that a major reason for 

the non-agreement is that test effectiveness results are not necessarily universally applicable and will 

vary dependent on factors such as application domain and language. Even within such subsets the 

possible range of module functions could mean that test effectiveness results are applicable only to 

'similar' modules. In fact, an aim of the research has been to identify a module's 'signature' (that could be 

based on design and/or code metrics) that can be used to identify the most effective test technique(s) for 

that module. 

This paper presents interim results of research which attempts to address some of the above problems. 

First the research approach is described, which comprises three stages: Initially an error analysis is 

carried out to identify the system faults, followed by the generation of test cases from a range of test 

techniques and an analysis of their effectiveness in detecting the previously identified faults. Finally 

those module attributes that can be. used to choose the 'best' testing technique are identified. The second 

part of the paper presents results derived from the first stage of this research, which is an error analysis 

of an avionics system implemented in Ada. 

PhD by portfolio - Software Component Testing 

22 



6.3.1.3 Conclusions of paper 
This paper has performed two roles: Firstly it has presented an approach to determining a means of 

selecting the most effective TCDTs for a given module. Secondly it has presented interim results from the 

study so far, an error analysis of the case study project, an avionics system implemented in Ada. 

The research approach can be considered as three stages. In the first an error analysis is carried out on 

an operational system to determine the faults in the system when module testing was first carried out. In 

the second TCDTs are applied to the original module specifications and code to generate test cases, 

which are then used, along with the fault data, to determine the relative effectiveness TCDTs for the 

system's modules. The final stage involves identifying attributes of modules that can be used to select the 

'best' TCDT for a given module. 

Error analysis is a proven, if time-consuming, means of identifying the faults in a system, and is 

preferable to seeding with artificial faults, which would lower the validity of the final results. Several 

papers have investigated the relative effectiveness of different TCDTs, but with little consensus. This 

paper has attempted to identify those factors that characterise software module testing and emphasises 

the d ficulty of comparing study results from different environments. The use of standard definitions for 

the TCDTs should provide repeatability that will make comparisons within the study more valid and their 

similar use in industry easier. The varying capabilities of different TCDTs to detect certain types of 

errors is well-recognised and the ability to predict errors from design and code attributes is also feasible, 

so achieving the overall goal should be possible given enough time and data. 

The error analysis of the case study project provided a number of interesting results, among which were: 

" The optimum size of modules varied depending on your viewpoint. Smaller modules exhibited 
higher error density, but when the number of modifications required to modules was considered 
(due to both errors and other changes), then small modules fared better than their larger 

counterparts. 

" It was not possible to predict errors in modules, except in large specifications and bodies (that 
did not include subprogram code). 

" The developers accounted for less than half the changes made to modules, the rest were due to 

requirements changes, standards changes, etc. 

0 15% of changes were explicitly made due to project standards changing in the course of 

development and being implemented retrospectively. 

The results of the case study are not representative of all software, and cannot be extrapolated to other 

environments, however the characteristics of this project are described in detail earlier. 

Error analysis is very time-intensive, it would be far better to collect the required metrics at source (and 

automatically), but the requirement for a system with known real faults in it (ie an operational system) 

was considered more important. The lack of cost data for the original development has restricted 
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possible analysis in this area, although this is not considered of primary importance to this research. The 

two main lessons learned from the error analysis were that the limited amount of validation carried out 

was insufficient and that increased statistical rigour must be employed in future. 

Finally it is hoped that despite the long-term process improvement role of this research the interim results 

can have a shorter term effect by exhibiting benefits of metrics collection and prompting development 

organisations to introduce metrics programs as soon as possible. 

6.3.1.4 Synopsis 

Paper [6] comprised two parts. In the first, the Investigation was introduced, while in the second the 

results of the first stage of the Investigation, a failure analysis, were presented. 

The paper initially presented a high-level view of the proposed research to be performed. It started with 

the hypothesis that it was possible to improve the quality of module testing by identifying a way of 

choosing the test case design techniques and test completion criteria for a given module by an analysis of 

that module's specification and/or source code. It then went on to explain how influence diagrams from 

System Dynamics and the GQM approach were used to identify those measures required for the research. 

The difficulties of determining the effectiveness of testing techniques were then considered, before the 

overall experimental approach, described as a hybrid of experiment and case study, was presented. This 

first part of the paper concluded by explaining how the research could support a process improvement 

strategy that used the research results to improve the quality of module testing. 

The second part of the paper reported the results of the failure analysis, and then considered what other 

conclusions could be drawn from the collected data. To do this the paper described a variation of GQM 

that starts with the metrics from which questions and then goals (in this case, representing any interesting 

results) are derived, referred to as MQG. The results from the failure analysis included values for the size 

and complexity distribution of modules, the fault distribution across module versions, the classification of 

faults and their distribution by type, and test coverage levels achieved. Analysis of the data provided a 

number of interesting insights that were included in the paper. 

The paper concluded by stating that, following the failure analysis, two more stages of the research were 

required. The first stage would be to determine the relative test effectiveness of different test case design 

techniques when applied to the studied system's faulty modules. The second would be to identify the 

attributes of these modules that could be used to determine which test techniques would be the most 

effective, and it also stated that this goal should be achievable given enough time and data. 
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6.3.2 An Empirical Analysis of Equivalence Partitioning, Boundary Value Analysis and 
Random Testing [71 

6.3.2.1 Document details 

This paper was presented at the 4t' International Software Metrics Symposium, in Albuquerque, 

November 1997, and appears in the proceedings of the conference. 

6.3.2.2 Abstract of paper 
An experiment comparing the effectiveness of equivalence partitioning (EP), boundary value analysis 

(BVA), and random testing was performed, based on an operational avionics system of approximately 

20,000 lines of Ada code 

The paper introduces an experimental methodology that considers all possible input values that satisfy a 

test technique and all possible input values that would cause a module to fail, (rather than arbitrarily 

chosen values from these sets) to determine absolute values for the effectiveness for each test technique. 

As expected, an implementation of B VA was found to be most effective, with neither EP nor random 

testing half as effective. j`ective. The random testing results were surprising, requiring just 8 test cases per 

module to equal the effectiveness of EP, although somewhere in the region of 50,000 random test cases 

were required to equal the effectiveness of BVA. 

6.3.2.3 Conclusions of paper 
This paper has presented the results of a study into the test effectiveness of a number of black box testing 

techniques. The experimental methodology used here has differed from previous experiments as the 

derived test effectiveness is based on an analysis of all inputs that satisfy the test technique rather than 

arbitrarily chosen inputs from this set. 

The results, in summary, are: 

" BVA was the most effective technique studied, achieving a highest mean probability of detection 

of 0.79, compared with 0.33 for EP. However, to achieve this, nearly twice as many test cases 
were required (13.6 for BVA , 

7.6 for EP). 

" For lower levels of effectiveness, random testing appears to have the advantage over EP. Just 

eight random test cases per module were required to achieve the same level of effectiveness as 
EP, and random testing will also be less expensive to perform as no test case design is required. 

" Although random testing appears effective for achieving lower levels of test effectiveness, it 

requires a prohibitive number of test cases (50,000) to reach the levels achievable by B VA. 

0 Minimised BVA focuses testing more on the extremes of the input domain than one-to-one BVA; 

the study found little to choose between the two approaches. 

" Minimised EP was consistently slightly less effective than one-to-one EP, although it required 

marginally fewer test cases. Again, there was little to choose between the two approaches. 
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" Using complementary techniques (rather than a single technique) appears sensible, and, if 

choosing a black box technique to complement branch testing, then BVA appears to be more 

effective than either EP, or random testing. 

Obviously the results of this study have taken little account of cost, except in general terms; measures 

could not be taken as the techniques were not used to detect faults, but rather to create test case sets. 

More study of the costs of applying testing techniques needs to be performed, although the relatively 

large differences in test effectiveness results presented here may well overshadow relatively small 

differences in the cost of their application. 

A number of the faults were difficult to detect using any of the techniques studied (see Table I). A number 

of white box testing techniques, supposedly more effective than branch testing, warrant investigation and 

it is the intention to reuse the experimental methodology with these techniques to determine their relative 

effectiveness. The next step will then be to re-apply the methodology to other systems to determine if the 

results are system-specific. 

As with all such experiments the results are characterised by the conditions under which it took place 

(described in Appendix A) and their extrapolation to other environments is not implied. 

6.3.2.4 Synopsis 

This paper introduced an experimental methodology for determining the effectiveness of module testing 

techniques and presented the results of its application to a number of black box techniques on an 

operational avionics system. 

Initially the studied techniques were described, which included random testing and two variants of 

equivalence partitioning (EP) and boundary value analysis (BVA) - these were `minimised' and `one to 

one'. It explained that these variants were derived from the definitions in the BSI/BCS Software 

Component Testing Standard [4] and went on to provide an example to illustrate the differences between 

them. Next, the difficulties with experiments on test effectiveness and related work in the area were 

considered briefly before the experimental methodology was described. 

The four stages of the methodology were described in some detail, having first presented the hypotheses, 

which consisted of five comparisons between the studied techniques. The equations used to calculate the 

test effectiveness were given along with an example calculation. 

The probabilities of detection for each of the faults identified from the failure analysis were then presented 
for each of the studied techniques, along with `means' and ̀ sums' for the techniques across all faults. The 

results of the statistical analysis were presented that showed whether there had been significant differences 

in the test effectiveness of the compared techniques. Each of the comparisons was then discussed in turn, 

followed by branch testing, the technique originally used by the developers. 
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Finally, some limitations of the experiment were presented, followed by conclusions and some 

recommendations on further work. 

In summary, the paper comprised two major themes. The first was the presentation of the experimental 

methodology, which, it was explained, differed from other experiments in that all possible inputs that 

satisfied a testing technique were considered rather than arbitrarily chosen representative values from this 

set. The second was the presentation of the test effectiveness results. The most notable results were that 
BVA was by far the most effective technique studied and that the effectiveness of random testing was 

comparable to that of EP. 

6.3.3 Module Testing Techniques - which are the most effective? Results of a 
Retrospective Analysis [81 

6.3.3.1 Document details 

This paper was presented at 5th European International Conference on Software Testing, Analysis and 
Review, in Edinburgh, November 1997, and appears in the proceedings of the conference. 

6.3.3.2 Abstract of paper 
If you are module testing as part of software development then you face a predicament: Which 

techniques, do you use to design the test cases, and which measures of test coverage do you require to be 

achieved? Industry guidelines and standards often mandate the required testing and many developers 

believe they know the appropriate level of testing for their system. However, what is the basis of this 

knowledge? This paper argues that we are currently basing our testing decisions on unsafe foundations 

and presents results from an empirical study, which appear to refute common testing wisdom. 

A retrospective analysis of an operational system was performed to determine what would have been the 

effectiveness of the most commonly-used testing techniques if applied to an operational avionics system of 

approximately 20,000 lines ofAda code, produced to satisfy an 'essential' level of criticality. 

The test case design techniques covered were equivalence partitioning, boundary value analysis, branch, 

branch condition, branch condition combination, modified condition decision coverage and random 
testing; all the techniques were applied as defined in the BCS Software Component Testing Standard. 

The results of the analysis show, for this system, that several widely-held assumptions, some apparently 

supported by industry standards, do not hold For instance, testing to achieve 100% branch coverage 

would have detected fewer faults than using equivalence partitioning. Also, random testing would have 

been surprisingly effective. Random testing would have achieved similar levels of effectiveness for the 

same number of test cases as any of the other techniques studied except for boundary value analysis, and 

with only six random test cases per module would have outperformed branch, branch condition, branch 

condition combination or modified condition decision coverage (the level required for safety-critical 

avionics software). In contrast, boundary value analysis fared particularly well in this study, and over 

50,000 random test cases per module would have been required to equal its test effectiveness. 
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6.3.3.3 Conclusions of caper 
This paper has presented the results of a study into the test effectiveness of a number of testing 

techniques. The experimental methodology used here has differed from previous experiments as the 

derived test effectiveness is based on an analysis of all inputs that satisfy the test technique rather than 

arbitrarily chosen inputs fr' om this set. The results, in summary, are: 

" BVA was the most effective technique studied, achieving a highest mean probability of detection 

of 0.75, compared with 0.16 for EP and 0.17 for the most effective white box technique studied 

(BCC). However, to achieve this, nearly twice as many test cases were required (on average, 

13.7 for BVA, 5.1 for EP and 4.7 for BCC). 

" For lower levels of effectiveness, random testing appears to have the advantage over both EP 

and all the white box techniques considered Just six random test cases per module are required 

to achieve a better level of effectiveness than any of these techniques, and random testing will 

also be less expensive to perform as no test case design is required. 

" Where multiple conditions are present and condition testing is worthwhile, the use of MCDC 

rather than BCC appears pointless due to the extra effort required to define the test case sets, 

and the (albeit marginally) reduced levels of test effectiveness. 

" Although random testing appears efficient for achieving lower levels of test effectiveness, it 

requires a prohibitive number of test cases (over 50,000) to reach the levels achievable by BSA. 

" If choosing a black box technique to complement branch testing then B VA appears to be more 

effective than either EP, or random testing. 

It would appear that reliance on a single test technique is not the best approach as even BVA 

would always have missed faults, and so the identification of which techniques complement each 

other most effectively appears to warrant further study. 

Obviously the results of this study have taken little account of cost, except in general terms; measures 

could not be taken as the techniques were not used to detect faults, but rather to create test case sets. 

More study of the costs of applying testing techniques is required, although the relatively large 

differences in test effectiveness results presented here may well overshadow relatively small differences in 

the cost of their application. 

Using the same example avionics system, the methodology has still be applied to other testing techniques, 

such as those based on data f ow. The next step will then be to re-apply the methodology to other systems 

to determine if the results are system-specific. 

As with all such experiments the results are characterised by the conditions under which it took place 

(described in Appendix A) and their extrapolation to other environments is not implied. 
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6.3.3.4 Synopsis 

This paper followed the format of paper [7] very closely. It reported on the same experiment, but 

presented test effectiveness results for a different, and larger, set of techniques. EP, BVA and random 

testing were covered, as before, but five white box techniques, based on control flow and predicate 

conditions, were also included. A correspondingly larger number of hypotheses were also considered. All 

testing techniques in this paper were considered in their minimised form, where the smallest possible test 

case suite that satisfies the corresponding test coverage measure to 100% is used. 

The results presented in this paper also corresponded closely to those in the previous paper [7]. Despite 

the inclusion of white box techniques, BVA was still the most effective technique, by far. Random testing 

also fared well, again. It compared favourably against both EP and the white box techniques, whose 

probabilities of detection were surprisingly low, being similar to those for EP. 

6.4 Commentary 

When paper [6] was written, the aim of the research, as described by the hypothesis, was to identify the 

most effective techniques for a given module by analysis of the module's specification and/or source code. 

As stated in paper [6], this could only be achieved if test effectiveness data for enough modules and test 

techniques were collected. The scale of the problem was obviously not recognised and, to date, only the 

generation of test effectiveness values for the one system have been produced. This has not provided 

enough data to achieve the original aim. 

An unsuccessful attempt was, however, made to identify attributes that could be used to predict fault-prone 

modules. Paper [6] did note that it was possible to identify modules that would require revision by their 

size (using lines of code, although the close correlation between lines of code and complexity measures 

would also have allowed their use). This was not considered, however, to be particularly useful, as an 

analysis of the reasons for change found that over half of the revisions were not due to the modules 

themselves, but instigated by either requirements changes from the customer or changes to development 

standards. This highlights a potential problem when researchers use a simple measure of module revisions 

as a surrogate measure for module quality [56]. 

A problem can also arise if the information contained on problem reports is blindly accepted as being 

correct. Paper [6] presented a classification of faults based on the information provided on the problem 

reports. Only when this information was closely scrutinised at a later stage of the Investigation was it 

found to be flawed. For unknown reasons, the cause of faults was often found to have been attributed to 

coding/detailed design when this was incorrect. In the paper a value of 28% was attributed to problem 

reports with these faults, when the true figure should have been less than 10%. 

More than half of paper [6] is dedicated to what it describes as an error analysis, but more correctly would 
be known as a failure analysis. A number of interesting results were presented in this section. A 

contribution was made to the seemingly continuous debate on the optimum size of a module. Smaller 
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modules were found to have higher error densities, and, surprisingly, this could not be explained by the 

influence of interface errors. 

The structure of papers [7] and [8] were very similar - presenting the same experimental methodology, 

which was applied to the same system, but comparing different testing techniques. Three black box testing 

techniques (and five hypotheses) were considered in paper [7] while paper [8] considered a further five 

white box techniques (and thirteen hypotheses). 

Two alternative implementations of EP and BVA were studied in paper [7]. The guidelines clause in the 

Standard describes "two distinct approaches" for EP - these are the `minimised' and `one-to-one' as 

described in the paper. Both were included in the Standard as there was some disagreement over which 

was the optimum way to implement EP. One aim of investigating the two EP approaches was to gain 

some insight into which was the better implementation. An apparent oversight in paper [7] is that it 

explains the difference between partition and subdomain testing techniques, and then describes the 

`minimised' and `one-to-one' approaches, but then fails to explain that the minimised approach 

corresponds to true partition testing. 

The calculation of the probabilities of detection for branch coverage highlighted problems with three of 

the modules/faults studied. Values of one were achieved for the probability of detection for branch testing 

for each of these modules/faults, implying that any test cases that satisfied branch coverage would have 

detected the faults. As the modules in the study had already been tested to achieve 100% branch coverage, 

and these faults not been found, then something was obviously wrong. After investigation it was found 

that the reason the faults had not been found by the original branch testing was that they had been masked 

by the setting of incorrect variable values in the test harness. As these faults would have been detected by 

every technique (except random testing), and should have been found by the original branch testing, these 

modules/faults were discounted from the analysis of results in paper [8]. Unhappily, these results were not 

available when paper [7] was written and so the analysis of results in this paper should be viewed with this 

in mind. 

The generation of probabilities of detection for all subsequent techniques after the first one was relatively 

fast as the fault-finding sets for the modules had already been created to determine the results presented in 

paper [7]. Thus, just the production of test case sets and the calculation of probabilities of detection were 

necessary to produce the extra results. The automation of much of the calculation of the statistical 

measures also made the production of those results far easier. This calculation was performed within the 

Access database that was used to store all the experimental data. The author's inexperience in using 

databases led to some difficulties in checking the correctness of some of the necessarily complex queries. 

In hindsight, the use of a dummy database with the same structure, but populated with only a small amount 

of data to make the verification of queries relatively easy, would have increased confidence in its use and 

made the checking of results far easier. 

PhD by portfolio - Software Component Testing 

30 



When taking into consideration the number of test cases (and so indirectly, cost) along with the values for 

probabilities of detection, just two of the five hypotheses were considered to be proven in each of papers 

[7] and [8]. The statistical results presented in paper [8] confirmed the author's interpretation of the data 

and both statistical techniques also agreed throughout. For paper [7] there was just one disagreement 

between the statistical techniques, and this was probably due to the inclusion of the three modules/faults 

that were discounted in paper [8]. 

The small differences between the ̀ one-to-one' and ̀ minimised' approaches for EP and BVA in paper [7] 

were not surprising, although the inability to absolutely distinguish between the effectiveness of EP and 

random testing was certainly surprising, despite the seminal papers by Duran and Ntafos [27] and Hamlet 

and Taylor [32]. This counter-intuitive success of random testing caused the author to spend considerable 

time re-checking the calculations, and, from conversations with other researchers and practitioners, he was 

not alone in finding it difficult to believe the random testing results. 

The probabilities of detection for the white box testing techniques presented in paper [8] were lower than 

had been expected. These results were expected to be relatively low, as the modules had all been tested to 

100% branch coverage prior to the study, however, they appeared low to the author despite this. The lack 

of any faults that were directly related to multiple conditions in predicates also contributed to the apparent 
low level of effectiveness, and this made comparisons between these techniques difficult. Secondly, 

relative to the white box techniques, random testing continued to perform better than expected, and only 
BVA was statistically significantly more effective. 

The author started the study inexperienced in the application of statistical techniques. The techniques used 
in the study were chosen from text books and the choices validated by more expert colleagues. The 

usefulness of the statistical measures was initially unclear as the author felt that a straightforward 
interpretation of the experimental results was sufficient. The use of the statistical techniques did, however, 

highlight any unusual results requiring additional investigation, and eventually confirmed the author's 

initial conclusions. If anything, the statistical techniques identified significant differences between 

techniques that the author would not have considered significant. In these cases, such as the comparison 

between `one-to-one' EP and `minimised' EP, the author believed the differences to be so small, that, 

when other considerations, such as the cost of applying the techniques, were considered, no particular 

technique could be said to have an advantage over the other. 

For paper [7] the full text (rather than an abstract) was required for submission to the conference, and was 

one of 19 papers accepted out of more than 60 submissions. The original call for papers required a 

maximum of twelve pages, but, on acceptance, this was reduced to ten pages, with a penalty of $100/page 

for longer papers. As the originally submitted paper was exactly 12 pages this meant that two pages of 

material had to be removed for the final paper. The definition of random testing was completely removed, 

the sections on test effectiveness experimental difficulties and related work were both drastically cut, and 

other sections reduced, to comply with the ten page limit. 

PhD by portfolio - Software Component Testing 

31 



6.5 Relationship to other work 
At a high level the Investigation attempted to follow one of the proposed research directions from 

Osterweil and Clarke's paper [48], that suggests the identification of characteristics to allow the 

exploitation of particularly effective tools and techniques. There appears to be no published material, 
however, on such studies that consider the same characteristics and techniques used in the Investigation. 

The reason for this could be its over-ambitious nature, as explained in the commentary in section 7.4. The 

Investigation started out with the aim of performing a study of test effectiveness and then extending the 

study by using the generated test effectiveness results to match module characteristics with the most 

effective testing technique. As was found, insufficient test effectiveness results were generated to allow 

the correlation analysis with module characteristics and so the Investigation, as performed, is closely 

related to studies into test technique effectiveness. 

A number of papers have been published in the area of test technique effectiveness, covering both 

theoretical ([21], [63], [43], [32], [22], [33], [61], [62], [50]), and empirical studies ([27], [16], [47], [64], 

[57], [60], [31]). Perhaps one of the surprising features of these studies is that the empirical studies tend 

to pre-date the theoretical work. There is still not enough data available to validate much of the theoretical 

work and a software tester reading the empirical studies would find that there is little consensus on which 

testing techniques are the most effective. The reason for this can be explained, in part, from an 

examination of the factors influencing module testing quality. When carrying out experiments module 

testing quality cannot be measured directly so this is achieved using surrogate measures, known as 

response variables, such as the number of defects missed, or the probability of detecting a fault. The 

remaining factors that are not measured, but affect the results, are known as state variables, and are set to 

representative values. These state variables then characterise the experiment or case study - that is to say 

the results of the comparison should be applicable elsewhere given the state variables are similar. There 

are several state variables and the inability of researchers to agree on, or set, similar values could account, 

on its own, for the lack of consensus. 

It is difficult for researchers to find a representative set of software testers with the time, and motivation, 

to act as `guinea pigs' and frequently students are used. Basili and Selby [16] in comparing code reading, 

functional testing (using EP and BVA) and structural testing (using 100% statement coverage) attempted 

to overcome this problem by using groups of programmers with different levels of expertise ranging from 

students to professionals with over 20 years experience, although this is uncommon. Studying four 

modules they found that code reading was most effective, and among other results, that the test 

effectiveness was dependent on the type of software tested. Myers [47] performed an experiment on three 

testing techniques, including reviews, black box techniques and white box techniques, and found equal 

levels of test effectiveness. His experiment employed 59 subjects, who he described as, for the most part, 

"professional programmers" although he described them as above-average, so they were explicitly non- 

representative. He later states that his subjects were judged to be highly motivated during the experiment. ' 
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This highlights the danger of the Hawthorne Effect that can arise when the testers know their efforts are 

being assessed as part of an experiment. Frankl and Weiss [30] overcame the difficulties of using testers 

by generating test case sets randomly, determining their coverage of data flow and branch coverage 

criteria, and then measuring their effectiveness. They concluded that the test sets that satisfied the data 

flow criteria were significantly more effective in five of the nine subject programs and guaranteed to 

detect the error in four of them. In a similar manner, the Investigation requires no testers as no actual test 

cases are used. Instead test effectiveness is calculated analytically by considering all possible inputs that 

satisfy a test criterion. This use of test case sets, which were generated by the author using definitions 

from the Standard, ensures both no bias and the ability to re-apply the techniques by reference to the 

Standard. 

The problem of choosing representative test cases does not apply to random testing. Duran and Ntafos 

[27] compared random testing to partition testing using both simulations and experiments. They 

concluded that random testing can be cost effective for many programs, and their counter-intuitive results 

were subsequently validated by Hamlet and Taylor [32], who performed simulations using the failure-rate 

model used in the earlier paper as well as a number of other models. These results appear to directly 

refute the statement of Myers [46] that "Probably the poorest methodology of all is random-input 

testing.. ", an opinion that is still widely-held, despite the results from [27] and [32]. 

The obvious way to ensure that the faults used in research are truly representative is to use real code 

containing real faults. The difficulty then is to know what faults are contained in it. This is only 

practicable if the code has already been thoroughly tested, or better still, used operationally as well, so that 

most of the faults in it are known, which was the situation with the Investigation. The alternative is for the 

researchers to put the faults in themselves. This approach is easy to criticise and Abbott [12] states that 

"seeding suffers from too many problems to be considered a reliable technique for evaluating test 

thoroughness and completeness". In the study by Girgis and Woodward [31] in which mutation testing, 

data flow testing and control flow testing are compared, error seeding is used as the only source of errors. 

This study concluded that the control flow strategy (based on LCSAJ coverage) was the most effective, 

although it also argued for the use of complementary test techniques. 

As can be seen, there is no consensus on an experimental methodology nor on the results of these 

empirical investigations. The wide variation in the state variables, not least the difficulty in knowing if the 

same (named) techniques are being consistently applied, makes sensible comparison and practical use of 

the results impossible. Future empirical studies must provide sufficient details to enable their results to be 

compared and used to build up a cohesive body of knowledge in the area. A parametric framework has 

been suggested [54], which would allow experiments to be classified and so both compared and repeated. 

The papers describing the Investigation ([6], [7] and [8]) have all attempted to provide as complete a 

description of the state variables as possible. 

The theoretical work performed on test effectiveness appears to be more cohesive than the experimental 

work. A number of researchers have performed theoretical comparisons of techniques, such as Weyuker 
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and Frankl [61], although many of these studies have compared generic partition testing techniques with 

random testing, rather than considering actual systematic techniques such as EP, BVA and branch testing. 

Where actual techniques have been studied there has been a tendency to consider `new' techniques (e. g. 

[60] and [64]), rather than compare those already in use commercially. Most papers have agreed on using 

the same underlying model as described in [63], previously referred to as the failure rate model, although 

the earlier papers assumed true partitioning (i. e. no overlapping), whereas the practical application of most 

techniques tends to generate overlapping subdomains -a fact allowed for in later papers (e. g. [22] and 

[62]). The model used to calculate the probabilities of detection in the Investigation is based on the same 

underlying model as these papers and allows for overlapping subdomains. Several of the theoretical 

papers (e. g. [32], [61] and [62]) suggest that further empirical work should be carried out by comparing 

specific partition testing techniques, as was performed in the Investigation. 

6.6 Recommendations for further work 
These recommendations are aimed at both expanding the scope of the Investigation and mitigating its 

limitations. 

As the fault finding sets have been created already, then application of the experimental methodology to 

other techniques is relatively easy as only the creation of test case sets and the calculation of probabilities 
is necessary. The most obvious techniques to consider next are the data flow testing techniques, as 

proposed and investigated by Elaine Weyuker and others [64]. Similarly, the experimental methodology 

could be applied to more than one technique at a time, to try to determine which is the most effective mix 

of techniques to use. Another relatively low cost re-application of the experimental methodology would 
be to determine empirically probabilities of detection for the test techniques already considered but with 

several test cases per subdomain. Weyuker and Jeng [63] have considered this area theoretically, as have 

Chan et al [21 ]. 

A limitation of the Investigation so far is that it has only been applied to one system. It is not known how 

typical the studied system is of other systems and so how applicable the results are to other system 

developers. The obvious answer is to repeat the Investigation on other systems. Two main difficulties 

arise from this. The first is that it is difficult to gain access to the amount of data necessary to perform the 

analysis, which must come from an operational system. The second is the amount of time required to 

perform the analysis. The process is very time-consuming, and there is little opportunity for automation. 

If more systems are studied and enough data becomes available, then the original aim of the Investigation - 

to determine rules for identifying the most effective test techniques for a given module - could be 

achieved. This would require relationships to be determined between the attributes of a faulty module, 

such as code, structure and specification-based metrics, and the test effectiveness for the test techniques 

applied to the module. 
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A modification to the experimental methodology could remove the necessity for analytically calculating 

the probability of detection from the overlap of the fault-finding and test case sets, and for even creating 

the fault-finding sets. This would involve using a tool to randomly generate test cases based on the test 

case sets. In order that these test cases are representative of the complete test case set then a very large 

number of test cases would have to be generated. This number of tests would necessitate the automation 

of the process of determining if a fault would have been detected. This could be achieved by running each 

test case through both the original, faulty module and the corrected module and then comparing the two 

outputs. If the outputs differ then the test case would, presumably, have detected the fault. The proportion 

of test cases that detect the fault would then give the probability of detection for the test technique. This 

modification would not be too difficult to implement as the author already has access to a syntax testing 

tool that generates random inputs based on a defined syntax and the test case sets could easily be defined 

using this syntax. The use of commercially-available Ada testing tools would make the execution and 

comparison of results for the subsequent calculation of probability of detection relatively simple. A first 

use of this system would presumably be to apply it to the system already studied in the Investigation. This 

could then validate the results already calculated, in order to determine the accuracy of the manually- 

performed analysis and also to determine the effectiveness of the new approach. It would, for instance, be 

useful to know how many test cases per test case set were required to achieve similar results to those 

absolute values already calculated analytically. 

Ideally the experimental methodology should be re-applied to a system where the state of the modules 

prior to module testing was available. This would allow probabilities of detection to be calculated for 

each technique alone. The modules studied in the Investigation had already been branch tested to achieve 
100% coverage and so all results had to be considered in this light. If the modules had not been module 

tested at all then the test effectiveness of techniques in isolation, and in conjunction with other techniques 

apart from branch testing, could be calculated. Unless an organisation could be found that stored modules 

prior to module testing, then it would be necessary to deliberately store modules at this point in their 

development purely for the purposes of the experiment. It would then be necessary to wait until the 

completed system had been operational for some time so that nearly all of the faults that could have been 

determined by module testing had manifested themselves as failures. The obvious problem with this 

approach is its long-term nature. 

Two aspects that affect test effectiveness were not considered in the Investigation. Firstly, no account of 

the criticality or scope of the faults was considered. This information could be extracted from the problem 

reports for the faults and weightings applied to determine weighted values of test effectiveness. Secondly, 

the cost of applying the testing techniques was not considered except in the broadest terms. If available, 

the cost of applying each technique could be included in the calculation of test effectiveness, however, this 

would first require such cost data to be available, and no source of such data is known to the author. 

PhD by portfolio - Software Component Testing 

35 



6.7 Conclusions - Investigation 

The Investigation did not satisfy its initial aim of identifying those attributes of a module that would allow 

the most appropriate set of software module testing techniques to be chosen for each individual module. 
To identify the correlation between the most appropriate testing technique and module characteristics 

would have required a much larger number of modules to have been analysed in the Investigation. There 

was not time to do this. The Investigation was terminated after the test effectiveness results for the 

complete avionics system had been compiled for ten testing techniques. More systems need to be analysed 

to provide sufficient data to satisfy the initial aim. 

Despite this, the author considers the Investigation to be a success in two major areas - it validated a new 

methodology for determining test effectiveness empirically and also generated test effectiveness results for 

a number of techniques. Due to the methodology used the results suffer from fewer limitations than those 

from many other experiments in this area. Probably the main limitation of most other test effectiveness 

experiments has been their difficulty in determining absolute values of probability of detection based on 

all the input values that satisfy a test technique - most experiments are based on arbitrarily chosen input 

values from this set. Conversely, the Investigation considered all values in this set, which is particularly 

important when considering hard-to-find faults. The time-consuming nature of the Investigation has 

meant that it has only been applied to a single system and the results are therefore characterised by this 

system, although a wide range of techniques has been considered. Many other experiments, however, 

have been based on much smaller, less realistic data sets, and only considered two or three techniques. 

The author has found no reference to any other use of the experimental methodology used in the 

Investigation, which, in hindsight, is closely related to the theoretical work on partition testing. Although 

the methodology is limited to the analysis of code with linear predicates in a similar manner to symbolic 

execution, this was not a problem as none of the studied modules failed to satisfy this criterion. 

As branch testing had already been used on all of the studied modules, the results indicate which is the 
best complementary technique to 100% branch coverage. This is BVA. The results also show that a 

complementary technique to branch testing is necessary - as there were several faults left after 100% 

branch coverage had been achieved that were relatively easy to detect using many of the studied 

techniques. The relatively high test effectiveness results achieved for random testing were surprising 

despite the knowledge that others had already published similar results, albeit mostly theoretical. There is 

a lack of empirical data in the area of test effectiveness (as there is for most areas of software engineering) 

and, when possible, it should be made available to the community of researchers and practitioners. The 

author intends to publish the results of the Investigation in a journal in the near future. 

The results of the Investigation have caused changes to be made in several areas. The organisation which 

provided the studied system has now introduced a metrics program and collects and analyses fault data 

automatically, using the fault classification scheme produced by the author for the Investigation. They 

have only recently been presented with the test effectiveness results, and their reaction is awaited. The 
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author has presented feedback both on the application of the testing techniques and the test effectiveness 

results to the Working Party producing the Standard, and this has resulted both in improvements to several 

parts of the Standard and the inclusion of random testing, which otherwise would have been left out. 

7. CONTRIBUTION TO KNOWLEDGE 

Of the two projects the development of the Standard has necessarily broken less new ground than the 

Investigation. Standards are not intended as a forum for new ideas, but as a medium defining best 

practice, which must be agreed by consensus. The creation of the BCSBSI Software Component Testing 

Standard and the BCS/BSI Glossary of terms used in software testing has filled a gap in both the national 

and international software testing standards arenas. Their production has required its authors to gain an 

in-depth knowledge of software component testing techniques, identify and use a development process, 

and learn how to negotiate the standardisation process at a national level. The technical insights into 

component testing will prove invaluable in any future standardisation projects in this area, as well as to 

researchers and practitioners in component testing, such as those implementing test coverage tools. The 

experience of the standardisation process will be of use to anyone producing a standard, but especially to 

those who intend taking a standard to national status through BSI. 

The knowledge gained during this process has been disseminated by the author in a number of ways. The 

papers, [1], [2] and [3], included as part of this portfolio, and this overview itself, provide a means of 

promulgating this knowledge. The author has presented papers at conferences, BCS SIGIST meetings and 

seminars, and talking to delegates at such events also disseminates this knowledge. The imminent 

publication of the Standard by BSI will provide the author with a further opportunity to talk about the 

experiences of the WP and especially the relationship with BSI. The presence of a well-publicised Web 

page for the Standard, the URL of which is listed on several search engines, has meant that the author is 

regularly contacted by those interested in the Standard. 

The Investigation has introduced a new methodology for determining the test effectiveness of software 

component testing techniques by means of a retrospective analysis. This methodology has differed from 

previous experiments as the derived test effectiveness is based on an analysis of all inputs that satisfy the 

testing technique rather than arbitrarily chosen inputs from this set. The methodology has been validated 

by its successful application to a complete operational avionics system and has thereby provided a new set 

of test effectiveness data that can be added to the body of empirical data on software module testing 

effectiveness. This data is a valuable first step in the building of a cohesive body of research where the 

experimental variables have been both controlled and documented. It is only with the results of such 

research that the "holy grail" [54] of placing software testing techniques on an ordinal scale can eventually 

be achieved. The author intends to make this data available to a wider audience by presenting the results 

in a journal publication. An example of how the results of the investigation can contribute to the 

community was demonstrated when the favourable test effectiveness results for random testing were used 

to convince the WP to include it as a technique in the Standard. 
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