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Abstract

This thesis relates to the application of Artificial Intelligence to tool wear monitoring. The
main objective is to develop an intelligent condition monitoring system able to detect when a
cutting tool is worn out. To accomplish this objective it is proposed to use a combined Expert

System and Neural Network able to process data coming from external sensors and combine

this with information from the knowledge base and thereafter estimate the wear state of the

tool.

The novelty of this work is mainly associated with the configuration of the proposed system. With

the combination of sensor-based information and inference rules, the result i1s an on-line system
that can learn from experience and can update the knowledge base pertaining to information
associated with different cutting conditions. Two neural networks resolve the problem of
interpreting the complex sensor inputs while the Expert System, keeping track of previous
success, estimates which of the two neural networks is more reliable. Also, mis-classifications are

filtered out through the use of a rough but approximate estimator, the Taylor’s tool life equation.

In this study an on-line tool wear monitoring system for turning processes has been developed
which can reliably estimate the tool wear under common workshop conditions. The system’s
modular structure makes it easy to update as required by different machines and/or processes. The
use of Taylor’s tool life equation, although weak as a tool life estimator, proved to be crucial in
achieving higher performance levels. The application of the Self Organizing Map to tool wear

monitoring is, in itself, new and proved to be slightly more reliable then the Adaptive Resonance

Theory neural network.
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Nomenclature

b Slope of linear regression equation

b;; Resulting pattern of activation, ART2

C Constant in Taylor’s tool life equation

Cy Constant for machining parameters

d Depth of cut

djy Euclidean distance between input i and output node (j, k)
e Natural logarithmic base

E Modulus of elasticity
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F, Initial machining force

F, F, Processing stages of the ART2
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F; Force in the feed direction
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F, Force in the tangential direction

h(1) Continuos time series

hy Discrete time series

H() Fast Fourier series

H, Discrete Fast Fourier series

KT Crater depth

| Length of overhang

m Number of output nodes for the ART2

M Number of output nodes for the SOM

n Exponent in Taylor’s tool life equation

N Number of input features

N Initial value for ART2 weights

Np Number of previous samples of historical data
P 1 ART?2 outlier counter

Pun Number of miss-classifications to date (general)
Psopm SOM outlier counter
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r Linear regression coefficient

R Radius of cut

re Linear regression correlation coefficient of feed force
T, Linear regression correlation coefficient of previous Pyy samples
r, Linear regression correlation coefficient of tangential force
Si Sample reference number

{ Time

t Undeformed chip thickness

! Chip thickness

i Threshold of weights between F; and F, stages, ART2
T Tool life

Tiy Input pattern to F,, from F;, ART2

T, Threshold value

V Cutting speed

Ve Speed between chip and tool

VBp Average flank wear

VB; VB for sample S,

VBy Length of wear notch

VBprr Flank wear threshold value

Vout Voltage output

X Input feature vector

X Input signal feature component

Wiik SOM connection weight

W Wear land size (general)

Wi Vi 4, q; p; Auxiliar variables within the ART2 algorithm

Wiik SOM weight between input i and output neurone (j,k)
Q Rake angle
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© Angular speed
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Chapter 1 - Introduction - 16

1. Introduction

Conventional machining systems rely heavily on human operators for monitoring the process,
taking the appropriate action in the event of a problem, inspecting the quality of the product,
controlling the process and material handling. However, in recent years, the manufacturing

industry has been directed towards automated, untended operation with the goal of achieving
better product quality and greater overall productivity and reliability. Thus, the implementation
of an intelligent machining system which can perform specified machining operations without

detailed input from human operators under harsh and unpredictable shop environment becomes

increasingly important.

Manufacturing industries and their customers are now demanding substantial increases in
flexibility, productivity, and reliability from process machines as well as increased quality and
value of their products. One important strategy to support this goal is sensor-based, real-time
control of key characteristics of both machines and products, throughout the manufacturing
process. Also, according to the US 1993 National Critical Technologies Panel, intelligent
processing equipment has an essential role in the achievement of world-class manufacturing
capabilities. The fundamental concept is that the manufacturing process include the ability to

sense the desired characteristics or properties of a product and has enough local intelligence to

control those properties.

The successful automation of machining operations relies, to a great extent, on the ability of
artificial systems to recognise process abnormalities and initiate corrective action. In the
absence of human operators, this function has to be performed with intelligent decision-making
systems which are able to interpret incoming sensor information and decide on the appropriate
control action. Intelligent decision-making systems are expected to replace the knowledge,
experience, and the combined sensory and pattern recognition abilities of human operators.

Successful implementation of these different tasks depends on two factors; first, the quality of

information obtained from the monitoring sensor, and second, the techniques used to process
this information in order to make decisions. Sensing strategies for unmanned machining should
aim at integrating both these factors, thereby allowing for a system that can successfully
replace the abilities of the human operator. Hence, the performance of the sensor system is a
crucial factor in an intelligent machining system. Thus, the development of a sensor system

which is sensitive enough to produce accurate information on the machining process and can

operate under harsh and unpredictable shop environments is essential.
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To implement intelligent tool wear sensing systems in an automated manufacturing environment,
it 1s helpful to examine how such a function is performed by a human machinist. Human operators

probably detect the occurrence of tool wear by observing the machining operation and evaluating -

the resulting sensory information (for example, visual; such as the colour of the machined chip,
audio; such as the sound generated by the cutting action of the tool and olfactory; such as the

smell of the hot workpiece and coolant). The sensory information is associated with experience-
based memory triggers and also experience of tool life in similar situations. A decision is then
made as to whether the tool wear level warrants interruption of the process, checking of the tool
condition and then, if necessary, initiation of tool changing procedures. The process is one of
pattern recognition in which disparate, noisy and incomplete sensory data patterns are used to
make a decision as to the amount of tool wear. Human pattern recognition is a highly developed

and a poorly understood characteristic, and the task of emulating it on a computer is a formidable

one.

The performance of the cutting process deteriorates seriously as the cutting tool wears out,
requiring a tool change. However, tool life is very difficult to predict and has a very widely
scattered distribution (Oxley, 1989), making it impossible to set-up generally acceptable tool
change policies. Thus, an adaptable system that learns on-line upon experiments and which can

identify the state of the tool during the machining operation should be incorporated into the

machine tool to improve productivity.

1.1 Motivations for the Development of a Monitoring System

There 1s limited industrial use of monitoring systems as human skills are still necessary help to
manage the complex machining process. Existing systems for monitoring and control are tailor-

made and one possible reason for the failure of such systems is the application of unsophisticated

models and in many cases the lack of correlation between the measured variable and the process

variable of interest (Tonshoff et al., 1988).

Since the advent of numerically controlled (NC) machine tools, which provided the physical

means to control the cutting process, the goal of complete automation of machine tools has
seemed much more promising. The development of computer numerically controlled (CNC)
machine tools has made it feasible to apply additional levels of control to the cutting process by

utilising readily available, inexpensive, and reliable computing power. However, control of any
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process requires sensing capabilities to provide essential feedback data. One of the most

significant pieces of feedback data in a cutting process is the state of tool wear (Danay and Ulsoy,
1987).

Tool wear data could be used for two major objectives:-

1. Detection of tool failure due to excessive wear.
2. Control of the rate of tool wear. First, tool failure detection can be achieved by the
on-line monitoring of the tool, thereby, eliminating the function of the machine

operator as the tool monitor. Second, the rate of tool wear can be controlled by the

manipulation of the cutting conditions, thereby providing:

1. Better co-ordination in the production line by planning the machine shut down for

tool changes.

11. More efficient use of the tool.

111. Significant savings of time that is usually spent on the more frequent tool changes

caused by unreliable estimates of tool life (Zhou and Wysk, 1992).

A technique which is currently being investigated which may contribute to the improvement of
tool wear monitoring is the hybrid system. Hybrid systems, comprising Neural Networks (NNs)
and Expert Systems (ESs), are an active area of research in the field of Al (Laffey et al., 1988;
Medsker, 1994). In these hybrid systems, a neural network is used either for knowledge
expression or for knowledge acquisition, that is, to make conclusions from input data or to leam
from experience and may be dynamically modified. The Expert System comprises a set of rules
that allow it to infer results from acquired information, but cannot be dynamically modified. NNs
are more complex and the information encoded by them is difficult to interpret and does not
always provide results that are easy to understand. Results from NNs are not predictable to the
same extent as those obtained with ESs and they are more likely to fail than ESs (Medsker, 1996).
The combination of both methodologies may find uses in an enormous number of fields as an
artificial intelligence tool. The primary difference between an automated machining system and

intelligent one is that the intelligent system is capable of making decisions based on significant
information about the state of the system

The concept of using condition monitoring for automated small batch production equipment is
now rapidly gaining ground in manufacturing industry (Davies, 1994), due to the wide

availability of powerful and highly reliable electronic sensing systems, together with advances

in computer technology and its associated software.
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1.1.1 Economic Factors

Since metal cutting operations constitute a large percentage of current manufacturing activity, 1t 1s

- % [ ] L
important to consider economic factors.

The costs associated with running a machining centre can be sub-divided into the following

categories:-

1. Unscheduled down-time 11% (Machinery[Editor], 1989) of which insert failure
accounts for 7% (Dan and Mathew, 1990).

2. Tooling costs 5-30% (Cser et al., 1993).

To reduce the costs that are associated with cutting tool inserts it will be necessary to monitor the
level of wear and then schedule insert changes that optimise the life of the tool. It has been

estimated that by the use of monitoring systems it is possible to increase efficiency by 10-65%
(Tonshoff et al., 1988).

As a result of these factors, there is a strong research effort directed at automating the machining

process. Present efforts are aimed at developing reliable sensor technology for detecting factors

such as chip form, tool condition, workpiece roughness, machine vibration and bearing failure.

1.2 Existing Approaches

The problem of on-line tool wear measurement has been investigated by numerous researchers
(e.g. Taglia et al., 1976; Choi et al., 1990; Dan and Mathew, 1990; Wang and Dornfeld, 1992).
The methods proposed can be categorised into two groups: direct and indirect. Direct methods,

as the name implies, measure the tool wear by either evaluating the worn surface by visual
inspection (Pedersen, 1990) or the material loss of the tool by radiometric techniques
(Micheletti ef al., 1976). The main difficulty with using optical methods is their limited
application to cases where the surface of the tool is visually accessible during the operation
(Pedersen, 1990). Radiometric techniques have been proposed and demonstrated in the
laboratory, these techniques have not been implemented in production due to requirements for

special preparation of the tool and potential hazards due to radioactivity (Dan and Mathew,
1990).
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Indirect methods, on the other hand, are based on utilising signals such as force or torque,
temperature, tool vibration, acoustic emission, or noise emission (Konig et al., 1972; Dornfeld
et al., 1993). These techniques determine the relationship between the measured parameters
and tool wear, thus enabling prediction. Some approaches rely on a detailed mechanistic model
of the cutting process (Kannatey-Asibu, 1985) while others use empirical relationships between
the measured variable and tool wear (Danai et al, 1992). The mechanistic approach has
contributed greatly to the basic understanding of the cutting process, while the empirical
approach has been useful for specific tool-workpiece combinations and constant cutting

conditions. However, both the mechanistic and empirical approach have certain limitations

when applied to on-line tool wear estimation.

The mechanistic approach, which relies on the mathematical description of the physics of
cutting, assumes certain wear mechanisms such as diffusion, abrasion, and adhesion as being
responsible for tool wear. Due to the inherent complexity of the cutting process, and our
incomplete understanding of it, this approach is limited in applicability at the present time.

Moreover, since the coefficients and exponents of these models change with tool-workpiece

combinations and cutting conditions (Fenton and Oxley, 1976; Lin et al., 1982; Koren et al.,
1986; Danai et al., 1992), extensive off-line testing is required for each case. Another limitation
in the utilisation of the mechanistic approach is the lack of appropriate sensors. For example,
most models developed by this approach (mechanistic models) emphasise in the relationship
between temperature and tool wear (Kannatey-Asibu, 1985). However, in the absence of a

practical temperature sensor these models are limited in applicability.

The empirical approach, on the other hand, relies on the observed relationship to estimate tool
wear. Although new approaches based on a multi-sensor strategy have recently been proposed
(e.g. Rangwala and Dornfeld, 1990), most practical methods based on the empirical approach
rely on a single sensor to detect tool failure or estimate tool wear. The empirical methods for
tool wear estimation usually consider the relationship between two variables such as flank wear
and force (Danai et al., 1992), and therefore fail to separate the effect of other variables
involved in the process, for example the effect of feed rate on force. This usually results in an
erroneous estimation of tool wear as other process variables will affect the measured signal.
The empirical approach, like the mechanistic approach, requires accurate information and

therefore, extensive off-line testing is required for each tool-workpiece combination and each

specific set of cutting conditions.
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Artificial intelligence is a tool that can be used to aid the automatic interpretation of data
obtained from a tool during the wear process. Neural networks and Expert Systems have been
in use for the last two decades in the field of process monitoring (Rangwala and Domnfeld,
1987; Burke, 1990; Ezugwu et al., 1995), and already proved successful in fields such as
ultrasonic image interpretation (Hopgood et al., 1993) and in medicine (Anthony, 1993). The

use of such techniques in the field of tool wear monitoring (Au et al., 1989; Jantunen et al.,
1995; Du et al., 1995) is being investigated but, in common with the mechanistic and empirical

approaches, the methods used so far do not separate the effect of other variables such as cutting

conditions.

Finally, most of the monitoring systems proposed to date lack the “intelligence” to deal with

sporadic outlying data that may arise from workshop conditions or sensor faults.

1.3 Appropriateness of a Hybrid System for Tool Wear Monitoring

In view of the foregoing discussion, it is felt appropriate to use a hybrid system for the

following reasons:-

1. Heuristic rules are conventionally used to monitor the cutting process, and these often

change because of changes in tool or workpiece material. Therefore, a hybrid system

that can easily be modified is appropriate.

2. The monitoring task may not be difficult for a “trained expert”, but the constant

turnover of personnel makes it very difficult to maintain staff expertise. Also, because
there are so many variables, and the “rules” are subject to interpretation by the

individual monitoring the cutting process, results are not consistent.
3. Because the problem might not be reduced to a small number of rules, it is

appropriate for development and installation in a microcomputer through the use of a

hybrid neural network - Expert System.

1.4 Justification for the Development of a Hybrid System

For the reasons given in the previous sections it is now possible to highlight some of the most

important achievements through the use of a hybrid system:-
I. Improved performance: Since the system will apply the rules in a more consistent

manner than most of the machine operators, especially new ones, the results obtained
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should be less likely to omit requirements and should provide for more consistent and

efficient tool wear monitoring.

2. Faster configurations: The system will produce a recommended configuration much
faster than “field experts”. Since the person in charge of configurations will have

more confidence in the configuration recommendations, less time should be spend

revising the system set-up before approval.
3. Reduced requirements for training personnel: Since the system can be operated by
non-experts, who can use the explanation capability to learn on the job, machine

operators’ training requirements are significantly reduced.

4. Easy maintenance: It is easy to modify the rules and the goals in an Expert System

based hybrid system.
5. Increased productivity: Since less time is spent on setting the machine for a particular
batch job, production becomes more efficient. Increasing the accuracy of tool wear

monitoring enables tools to be used throughout their entire life. Also, significant

savings will be made by reducing defects in the machined pieces.

1.5 Scope of the Thesis

In this study, an architecture for an on-line tool wear monitoring system based on two neural
networks and an Expert System are developed and evaluated. The system is developed and
tested using a particular set of sensors and machining conditions but the method is extensible to
other sensors and/or operations. The classification ability of the neural networks is combined

with knowledge embedded in an expert system in order to make reliable and accurate estimates

of tool wear. The approach presented in this thesis is similar to that which might be used

implicitly by a human operator as it combines empirical knowledge of tool wear with

classification of sensor based information.

ES+NN |
Data Data & Tool Wear
Acquisition Analysis Decision Making \ Estimation

Figure 1: Decision making scheme
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The signal processing, neural network interpretation and decision making scheme is shown 1n
Figure 1. The system employs sensors that measure the sound emission, vibration, force and
spindle current from the machining operation, with the signals being processed in the frequency
and time domains. The resulting features are then presented to two previously trained neural
networks, a Self Organising Map and a network based on Adaptive Resonance Theory, to
estimate the wear state of the cutting tool in conjunction with the Expert System. At the
decision-making stage, an Expert System encoded with empirical tool life data is combined

with the networks outputs to reach an estimation which is consistent with the sensed outputs

and machining experience.

1.6 Thesis Structure

This Thesis is organised into eight chapters and 4 appendices. Chapter 1 briefly reviews the

context of the problem of tool wear monitoring and presents the motivations for the current

work.

Chapter 2 details the approach in the light of previous research in the field of tool wear
monitoring and related subjects. The chapter starts with a mechanical description of the process
of single point cutting and then reviews the most important processing and data interpretation

techniques which will be used later. Throughout the chapter, the current approach is compared

to other published work on tool wear monitoring.

Chapter 3 gives details of the experimental design as well as experimental procedures. First, the
turning centre and related equipment are described, then the positioning of the sensors is
indicated and justified. Finally, the procedures adapted in the two main sets of experiments are

given, these being the experiments pertaining to the behaviour of the machine/tool and the

analysis of signal length effect on feature performance.

Chapter 4 contains a description of the proposed method of tool wear monitoring. Topics such
as signal processing techniques and neural network implementation are laid out. The last
section describes the various components of the expert system, including knowledge bases, rule

base and procedural functions. Finally, a description of the user interface is presented.
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Chapter 5 presents all the results obtained through experimental work. In Chapter 6, as well as

the results, performance measurements are given for each stage of the hybrid monitoring

system.

Chapter 7 presents the achievements of this work giving details on the success of the applied
techniques towards tool wear monitoring. Also, the relationship between the different tool wear

sensors is brought together to attempt an explanation of the behaviour of such sensors through

the understanding of the underlying mechanisms of wear.

Chapter 8 gives the conclusions on findings and contributions related to tool wear monitoring.

Also, in this chapter, several recommendations are made which are thought would enhance the

success of tool wear monitoring.

Appendix A gives a description of Adaptive Resonance Theory which enabled the construction
of this neural network. Appendix B gives the theory which was used for feature evaluation
based on the SOM neural network. Appendix C presents the ‘C’ code used to built the Expert
System modules. Appendix D presents the most important functions embedded in the Expert

System. Finally, appended to the Thesis are the author’s publications to date.
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2. Background Knowledge

This chapter aims to provide a review of the physical process and the current state of the art in

tool wear monitoring, and defines the development of the tool wear monitoring system which 1s

the subject of this work.

2.1 Single Point Metal Cutting - Turning

This basic operation is also the one most commonly employed in experimental work on metal
cutting. The work material is held in the chuck of a lathe and rotated. The tool is rigidly held in
a tool post and moved at a constant rate along the axis of the bar, cutting away a layer of metal

to form a cylinder or a surface with a more complex profile. This is shown diagrammatically n

Figure 2.

Figure 2: Lathe turning

The cutting speed, feed rate and depth of cut are three most important parameters which can be
adjusted by the operator to achieve optimum cutting conditions with the depth of cut being
occasionally fixed by the initial size of the bar and the product. The cutting speed is maintained

constant by the CNC machine, hence changes in diameter will affect the rotational speed
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(RPM) of the spindle. At the nose of the tool the speed is always lower than at the outer surface

of the bar, but the difference is usually small and the cutting speed can be considered to be

constant along the tool edge.

Although in machining processes a large amount of energy is required to form the chip and to

move it across the tool face, the theoretical minimum energy required to form the new surfaces
is an insignificant proportion of that required to deform plastically the whole of the metal
removed (Trent, 1991). Thus, metal cutting is a high energy density process where very local

intense deformation forces are supported by a small area of the cutting tool causing it to wear.
The aim of tool wear monitoring is to sense these various manifestations of these local forces

(through a selected set of sensors) to infer the condition of the cutting edge.

2.1.1 The Interface Between the Tool and Chip

In most mechanical analyses of metal cutting the shearing action has been treated as a classical
friction situation, in which “frictional forces” tend to restrain movement across the tool surface,
and the forces have been considered in terms of a coefficient of friction between the tool and
work material. However, detailed studies of the tool/work interface have shown (Trent, 1991)
that this approach is inappropriate to most cutting conditions. The most important conclusion
from the observations is that contact between tool and work surfaces is so nearly complete over
a large part of the total area of the interface, that sliding at the interface is impossible under
most cutting conditions. The condition where the two surfaces are interlocked or bonded 1is
referred to as conditions of seizure as opposed to sliding at the interface (Trent, 1991). In

monitoring terms, this means that the wear process is not necessarily detectable by the types of

methods that are used to detect sliding wear.

2.1.2 Tool Wear

Excessive wear is the normal mode of failure of cutting tools so knowledge of the tool wear

level and the rate at which it wears is necessary for determining the residual tool life. Several

approaches, depending on the type of wear, can be used to quantify the wear on a cutting tool

(Figure 3) but generally some dimension of the tool wear land is used.
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VBy - Length of wear notch

VBg - Average flank wear land
KT - Crater depth

Figure 3: Some types of wear (ISO3685, 1993)

Wear results in a modification of the cutting tool geometry so that metal removal gradually
becomes more inefficient and, eventually, the quality and accuracy of the cut surface are
compromised. Before this happens, sufficient change in the mechanics of the tool/workpiece
interaction should have occurred to allow the detection of impending tool failure due to

excessive wear. The very high contact forces and metal deformation rates in cutting can give

rise to a variety of distinct mechanisms by which material can be removed from the cutting
tool, e.g. Shaw (1989):-
» Adhesive wear - This occurs when two surfaces come close enough together to form

strong bonds. If these are stronger than the local bonds of the material a particle may

transfer from one material to another.

 Abrasive wear - This involves the loss of material by the action of hard constituents

as they are swept over the tool surface.

* Diffusion wear - If the localised temperature of the contact surfaces is high enough,
interstitial diffusion can occur across the tool-chip interface, softening the tool material

(Solid State Diffusion is the mechanism by which atoms in a metallic crystal shift from

one lattice point to another causing a transfer of the element in the direction of the
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concentration gradient. Diffusion is a time and temperature dependent process and also
depends on bonding affinity of the pair and the degree of atomic mobility).

e Fatigue - Fatigue of the tool material can result from the fluctuation of cutting forces.

Diffusive wear is known to occur as the cobalt binder on the rake face of the tool diffuses
towards the workpiece at temperatures between 700 and 900°C, thus weakening the surface

layer of the tool. Since diffusive wear is a function of temperature, it is commonly affected by
cutting speed and feed rate. Micheletti et al. (1976) and Dan and Mathew (1990) report that
significant changes in tool condition can occur with small changes in cutting temperature. In
addition, Dan and Mathew (1990) also note that there is a sudden drop in cutting temperature

which is coincident with a drop in force when cutting stops and that this increases both in

magnitude and duration as wear progresses. In practice it is difficult to measure the temperature

at the cutting edge with most reported work using a thermocouple located near to the tool-

workpiece interface or infrared systems.

Practical wear situations rarely involve only one of these mechanisms and this depends on the

workpiece and tool materials, the cutting geometry and the cutting conditions (Shaw, 1989). In

addition to the wear-related sources of tool failure, the following also may occur;
microchipping, gross fracture and plastic deformation. These, however, are readily identified

and the solution is apparent, for example when plastic flow occurs at the tool tip, tool clearance
s lost, the temperature rises abruptly, and the total tool failure occurs rather rapidly. The

obvious solution to the latter difficulty is to use a lower cutting speed or a tool material that is

more refractory.

The most important types of tool wear for a carbide insert are wear-land formation and crater
formation. Crater formation tends to be more important than wear-land formation in situations

where cutting temperatures are very high. As already discussed, there are several interacting
mechanisms responsible for tool wear in cutting operations such as turning and the challenge is
to increase the accuracy of the wear estimate and, at the same time, improve adaptability in the

face of changes in parameters such as the machining conditions and workpiece material.

2.1.2.1 The Mechanisms of Wear and Tool Degradation

There is general agreement, e.g. Bhattacharya and Gosh (1964); Trent (1991), that an increase

of cutting temperature due to increased cutting speed and increased wear causes diffusional
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metal transfer to occur. It appears that diffusion induces two distinct wear processes: direct
metal transfer through diffusion and macroscopic metal removal by the adhering chip through

breaking away of the surface layers already weakened by the structural transformation

undergone at the interface due to diffusion of various constituents of the tool material into the
chip and reverse diffusion of iron into the carbide. Although weaker, the iron carbide

contributes to the “re-strength” of the tool reducing somewhat the contribution of diffusion to

tool wear, Trent (1991). Therefore diffusion wear is only a fraction of the total wear volume for

a given time. The difference between the diffusion wear and the total wear 1s due to a

considerable amount of abrasive wear taking place along with the diffuso-adhesive wear, a

suggestion which is also supported by Chubb and Billingham (1980).

According to Opitz and K&nig (1967) the penetration of iron into cobalt at higher temperatures
is much deeper than that of cobalt into steel. Also, carbides containing high contents of TiC
(Titanium Carbide) reduce oxidation and diffusion tendencies. Therefore, the coating on the
flank face wears mostly due to abrasion (Chubb and Billigham, 1980). Once the coating is
removed from the flank, abrasion and diffusion take over as the major wear mechanisms. This
explains the higher wear rate when the tertiary wear stage is reached; in the beginning the tool
is protected by the coating reducing both abrasive wear (due to its hardness) and diffusion wear
(lower temperatures due to TiC defence barrier). Once the coating has worn out, diffusion takes
place much faster (also due to high temperatures associated with increased wear) and the iron

diffusion into the tool weakens the tool’s structure by the creation of iron carbides that are

weaker than the tungsten carbides.

Trent (1991) in his review suggests that temperature is the dominant factor in the machining of
carbon and alloy steels and also suggests that the effect of friction (especially when cutting
takes place under severe cutting conditions) is limited, with plastic flow of the chip over the
rake face being the mechanism by which material is removed from the workpiece. According to

Ya et al. (1991) tool wear is caused by extrusion and shearing of the cutter with respect to the

material in the separating process of metallic materials as well as the rubbing of chips on the
cutter surface.

Concluding the above discussion, and since abrasion might be expected to produce force
fluctuations, it is possible to anticipate how the amplitude of vibration of the tool shank might

change with tool wear. An initial increase in the vibration might be expected as abrasive wear

increases for a while and then a drop should occur on reaching the tertiary wear stage. In the
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final wear stage, temperature increases much more and adhesive wear ceases giving way to
diffusion wear and a further increase in abrasive wear. Obviously, such an evolution is a

complex one and will be sensitive to the tool material, tool cutting conditions and the

workpiece material.

2.1.3 Flank Wear

The tool 1s in contact with the chip under conditions of very high stress and temperature (Trent,

1967) and tool wear occurs on both the rake and flank faces. As the cutting tool wears the

cutting edge gradually changes shape so that in time it becomes dull. Typical wear of a cutting

tool is shown in Figure 3, where the flank face is usually worn to form an approximately flat
surface extending from the cutting edge, the flank wear land. On the rake face, a crater may
form a short distance away from the cutting edge and as tool wear progresses, these two wear

lands eventually impinge upon each other causing a substantial change in local edge geometry.

Measurement of flank wear is perhaps the most convenient means of quantifying the overall
wear level of a cutting tool and so this measure is most commonly used. The width of the flank
wear land, VB, is a suitable dimension and the attainment of a predetermined value of VBg is
generally regarded as an acceptable wear-out criterion, 1SO3685 (1993). According to this
standard, when the average width of the flank wear land is 0.3 mm (i.e. VBg = 0.3 mm) the
tool insert 1s worn out, provided that the tool is uniformly worn in Zone B, Figure 3. To provide

a quantitative measure of tool wear and a comparison with Taylor’s tool life equation, VBg was

adopted as the measure of tool wear in this work.

2.1.4 Empirical Tool Life Equation

One of the most important considerations in machining process optimisation is tool life and its
relationship with process parameters. The traditional approach to determining tool life is to
determine experimentally a relationship between the cutting conditions affecting tool life for a
given tool-workpiece combination. However, a number of other factors can affect tool life and

these are not always evident due to the complexity associated with the cutting process. There

are many empirical relationships for determining tool life (Colding and Kénig, 1971). Some of

these relationships are briefly reviewed here but they are not particularly accurate unless

developed for a very specific set of conditions, whereas Shaw et al. (1961) use a variation of

Taylor tool life equation, others adopt different empirical relationships. Nevertheless, the
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limitations of these relationships are widely recognised, especially with regard to factors such

as cutting fluid, temperature and tool geometry.

Usui et al. (1984) developed a method of predicting the crater and flank wear of tungsten
carbide tools cutting a 0.25% carbon steel for a wide variety of tool shapes and cutting

conditions in practical operations based only on orthogonal cutting data from machining and

two constants related to wear. It has been found that this approach is still limited and required
refinement for general applicability. It should also be pointed out that these findings were
obtained under controlled laboratory conditions. Hastings and Oxley (1976) have proposed a
method of estimating tool life values for a wider range of cutting conditions using a XC45 steel
(BS - 080M46, High carbon steel). This has proved encouraging but, as with the Taylor

equation, enormous amounts of data have to be collected in order to determine the constants.

Most of the research carried out in developing reliable tool life criteria have concentrated on
establishing a relationship based on a specific set of parameters affecting the life of a cutting
tool. The complexity of the cutting process associated with the wide variety of material makes
it very difficult to establish a global criterion that is reliable. For example, while the presence
of manganese sulphide in steels is generally found to extend tool life, certain combinations of
speed and feed yield results that indicate the reverse effect (Shaw et al., 1961). Also, several
factors such as clearance angle and thermal diffusivity changes might affect the tool life

constants, in which case slight changes in predicted tool life may occur (Rubenstein, 1976).

In summary, tool life may be affected by the cutting tool material, workpiece material and

machining conditions (Trent, 1991). Today, HSS tools, carbide and coated carbide inserts are
commonly used in the metal cutting industry. For these tool materials and under common
cutting conditions, diffusion, deformation and abrasion are the main causes of wear. When tool

wear is dominated by these mechanisms, Tayler’s tool life equation [1] offers a good estimate
for expected tool life. In fact, the long term absolute machinability standard 1SO3685 (1993), is

defined by Taylor’s tool life equation; this relates tool life in minutes, T, to cutting speed, V, in
m/min:

VT" =C [1]

where n and C are constants. The value C in equation [1] is the speed corresponding to a 1 min

tool life, and the exponent n is a constant depending on the tool material. The too! life equation
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can also be extended to include feed, depth of cut, or other factors such as tool geometry (Lau

and Rubenstein, 1978).

Taylor’s relationship was first developed for HSS tools. Carbide and coated carbide inserts
were later introduced (1960s) and are now the industry standard in the metal cutting industry.

Although other carbides and nitrides have been used as coatings only three coating materials

are presently in wide commercial use; TiC, TiN, and Al,0; with TiN appearing to offer the

lowest tool friction.

Taylor’s tool life equation only provides an expected tool life whereas, in reality, tools can
break or can be worn out before or after the expected time (Rangwala and Dornfeld, 1987).
This breakage or premature wear can be costly in modern facilities where capital cost is high
and system attendance by operators is low. A conservative strategy can be developed to replace
the tools more frequently, but, if tools are replaced too frequently, the costs associated with
replacements can be unnecessarily high. This is often understressed due to the apparent low
cost of inserts, but it should be noted that the use of insert cost as replacement cost is

misleading because the cost of indexing and machine down-time can be significant.

Taylor’s tool life equation is useful to establish a preliminary tool life and thus establish
intervals of confidence whereby it is possible to classify a tool as worn or not. The analysis of
data given in the literature indicate that this equation can give estimates that are within a close
range of the actual tool life (Colding and Kénig, 1971; Shaw, 1989), however, it should be used

with caution. This can help solve problems where illogical classification of wear due to

sporadic signal distortion, to a prescribed level, results in misclassification.

Taylor’s tool life equation applies reasonably well over a restricted range of cutting speeds. The
approximate variation of the tool life exponent n and constant C for different tool materials for

the turning process is given in Table 1, according to different authors, regardless of workpiece

material.

Table 1: Ranges of values n for a variety of tool materials
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2.2 Tool Wear Sensing

A sensor is a device which detects a physical process and converts energy associated with this
process into an electrical signal which can be recorded and analysed. Due to the difficulties
involved in direct measurement of tool wear, most of the proposed techniques use indirect
methods in which a certain relationship is established between tool wear and some other,

measurable, quantities such as vibration. According to Brunn (1981) tool wear sensors should,

as far as possible, be simple to operate, robust and easily read and interpreted, since

classification of tool condition is often undertaken in difficult environments. Tool wear sensing
is important as a predictor of tool failure due to excessive wear and, in long production cycle

manufacturing operations, tool wear detection may be important for surface roughness

considerations.

Wear monitoring has been performed using many different types of sensors. The most
commonly used measurements are temperature, feed and spindle currents, Acoustic Emission
(AE), audible emissions, workpiece and machine tool vibration and cutting force. Reviews of
metal-cutting analysis techniques have been carried out by Finnie (1956) and Jetly (1984), who
reported that all of the above approaches have been successfully demonstrated under laboratory
conditions although there are few successful industrial applications. Other reviews, such as
those of Micheletti et al. (1976) and Shiraishi (1988), made a comparative analysis of the
applicability of sensors, that is, their suitability for monitoring tool wear in a variety of cutting

processes. They have found that the most promising tool wear sensors are those which measure

force and current.

Commercially available systems for wear and breakage detection typically set limits for force
or power based on empirical data (Novak and Ossabhr, 1986). When the measured force or
spindle current falls outside these predetermined fixed limits the tool is assumed to have failed

due to excessive wear or breakage. The disadvantage of the fixed force limit method is that all

the machining conditions must remain nearly identical throughout the whole cutting operation,

and therefore this is applicable only in very simple cases.

Taking into account previous studies (e.g. Dan and Mathew, 1990; Guinea et al., 1990;
Dornfeld er al., 1993; Ruiz et al., 1993; Nagy and Szalay, 1993) it would seem appropriate to

Integrate some of the above sensors in order to extract the largest amount of information from

the cutting process. Using the criteria of reliability and ease of use, force, vibration and sound
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emission transducers were selected as having industrial potential among the indirect methods

and these were consequently used in this work.

2.2.1 Audible Emissions

It has long been claimed that an experienced operator with a keen ear can predict with reasonable

accuracy the state of deterioration of a cutting tool (Lee, 1986). Audible emissions from the metal
cutting operation can be divided in two main components; structural noise and cutting noise. The
former arises from excitation of the machine tool by the cutting operation and the latter is caused

by interactions between tool and workpiece during the cutting process (Ya et al., 1991). Previous

work has investigated the relationship between audible emissions and tool wear and some of the

most significant results are described below.

An early study (McNulty and Popplewell, 1977) which investigated changes in the sound
spectra during the life of drills, hacksaw blades and single point turning tools revealed that
there were significant frequency bands associated with tool wear in certain cutting processes
(e.g. a lathe cutting tool exhibits a significant fall in sound pressure level (10dB) over its life).
It was suggested that.a knowledge of the evolution of both spectra and wear bands would
provide a monitoring medium for tool life history. Lee (1986) found that the sound emitted
from the turning process exhibited a change of Sound Pressure Level (SPL) that was related to
tool wear in the 4 to 6 kHz frequency range and that this occurred for several
material/workpiece combinations; HSS and Tungsten Carbide (P3) tools, AISI 1045 carbon
steel and AISI 304 stainless steel. When turning with carbide tools the SPL changes were found
to be more pronounced than those with HSS tools, this being manifested by a drop in the SPL
before the tertiary zone (third and last stage of wear) was reached. Similar results were found
by Sadat and Raman (1987) and Trabelsi and Kannatey-Asibu (1991), but these authors noted

slightly different frequency bands, the latter authors reporting 100% successful classification of

the tool when the spectral components in the 0 to 10 kHz range were used as features.

Experiments carried out by Ya ef al. (1991) using two different types of turning tool showed
that neither the tool rake angle nor the cutting speed exerted any significant influence on the

cutting sound. In most cases, the sound emitted whilst cutting was 2-3 dB higher than the idle
running noise,
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2.2.2 Vibration monitoring

The early work of Weller ef al. (1969) investigated the possibility of relating tool wear and
vibration and found that the high-frequency energy, in the 4 to 8 kHz band, increased with tool
wear. This discovery helped in the development of the first tool wear monitoring systems (e.g.
Martin et al., 1974; Petrie et al., 1989a). Jiang et al. (1987) proposed that the variation of the
cutting vibration signal with tool wear is not an accidental and isolated phenomenon but that it
is closely related to the cutting process. The frequency composition of the energy of the signal
varies regularly with the development of tool wear and at specific frequencies the signal
follows a constant pattern with changes in tool wear, i.e. typically increases with wear. Similar
results were obtained by Pandit and Kashou (1982) and Taglia et al. (1976), who have shown
that all the vibration signal power is sustained in frequencies up to 10 kHz, and that a very
small percentage of the total signal power varying with tool wear is contained in the

frequencies up to 2.5 kHz. Pandit and Kashou suggested that the modes of vibration most

sensitive to tool wear occur in the frequency band [4.2;4.7] kHz.

Martin et al. (1974) and Bonifacio and Diniz (1994) found that the vibration in the cutting
plane was the only component that exhibited significant changes with tool wear. Martin et al.
(1974) concluded upon experimental work that the vertical vibrations of a lathe tool in the
course of stable machining are almost sinusoidal, with frequency perceptibly equal to the
natural frequency of the tool, the power of the acceleration signal determined by spectral

analysis is a linear function of the cutting speed and of the tool wear, the signal increasing in

the ratio of 1:10 between a new and a worn tool.

Several methods for feature extraction from the vibration signal have been proposed in the
literature (e.g. Colwell, 1971; Petrie et al., 1989b; Dan and Mathew, 1990). The Fast Fourier
Transform (FFT) is common among techniques applied for the estimation of the power
spectrum. The use of statistical measurements such as kurtosis can be applied to the original

time series in an attempt to quantify the closeness of the series to a normal distribution (Petrie
et al., 1989b; Wilcox et al., 1993) and may be used to describe impacts or transients. Other
methods for tool wear sensing based on vibration monitoring have also been proposed, such as

the one based on Data Dependent Systems (DDS) modelling of vibration (Pandit and Kashou,
1982) and the Group Method of Data Handling (GMDH) (Ravindra et al., 1994).
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2.2.3 Force monitoring

The cutting forces experienced by the tool are an important aspect of machining for those
concerned with the manufacture of machine tools and also for tool wear monitoring purposes.
The component of the force acting on the rake face of the tool, normal to the cutting edge, 1s
called the tangential cutting force F, and this is usually the largest of the three components,

acting in the direction of the cutting velocity. The component of the cutting force acting

parallel to the direction of feed is referred to as the feed force F. The final component, which
tends to push the tool away from the work in a radial direction F,, is the smallest of the force

components in semi-orthogonal cutting and, for purposes of analysis of cutting forces in simple

turning, 1s usually ignored and not even measured (Trent, 1991).
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Figure 4: Cutting force components in turning

Among the measurements used for indirect flank wear estimation, the cutting force signal has
been the most successful due to its sensitivity to tool wear and ease of measurement (Nair ef
al., 1992; Danai et al., 1992; Lee et al., 1996). The cutting force generally increases with flank
wear due to an increase in the contact area of the wear land with the workpiece (Trent, 1991),

but it 1s also dependent on many other factors such as cutting conditions. Filippi and Ippolito

(1969) were among the first to demonstrate the direct effect of flank wear on the cutting force.
These methods provide relatively accurate estimates of flank wear as long as the cutting
variables (feed rate, cutting speed, and depth of cut) remain unchanged. However, when the

cutting variables change, due to factors such as geometric requirements or cutting conditions

the results are more difficult to predict (Nair et al., 1992; Lee et al., 1996).
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Lately there have been many attempts to use force changes as an indication of tool wear for the

turning process (e.g. Mackinnon et al., 1986; Lee et al., 1996; Das et al., 1996). Colwell (1971)
and Shiraishi (1988) suggested that cutting forces and associated power spectra appear to be
more generally applicable and closer to accomplishment than temperature and vibration.
Analysis of the frequency spectrum has shown a distinct peak frequency which is consistent for
a wide range of machining conditions and, for different lathes, a good correlation was found
between the dynamic cutting force and flank wear (Lee et al., 1989). However, the mechanisms

which bring about tool wear and failure have a relatively complex relationship on cutting

forces.

Dan and Mathew (1990) showed that the force components are influenced by tool wear in a
linear manner in turning. Wolf and Magadomy (1981) and Ridley (1982) found the force
components to be affected by tool wear but with different magnitudes. According to Ridley
each 0.1 mm width of wear land produces a 10% increase in the tangential force, a 25%
increase in the feed force and a 30% increase in the passive (thrust) force. However, Wolf and

Magadomy found the difference in the tangential cutting’ force between a sharp edge and worn

ones to be less than 10% and the feed force to increase by approximately 150%. These
contradictory results, as well as others e.g. Lee et al., 1989; Lin et al., 1982, prove that no
consensus has yet been achieved regarding force measurements. According to Mackinon et al.
(1986) this inconsistency is due to the existence of many factors influencing the cutting forces,

e.g. tool geometry, depth of cut, feed, cutting speed, workpiece hardness.

Some attempts have been made to relate tool forces with tool wear by a mathematical model,

such as the one mentioned in Stern and Pellini (1993):
F=F+dCW (Koren et al., 1986) [2]

Where F i1s the machining force, F, the initial machining force, d the depth of cut, C,, a constant
for the machining parameters, and W a size of the wear land. However, the constant C,, cannot
be obtained easily because it includes many other interactions with the cutting parameters that
may not display linear behaviour (Stern and Pellini, 1993), and the process of obtaining it 1s
essentially experimental and limited in use. Others, such as Lin et al. (1982) and Nair et al.
(1992) have also attempted to model the effect of tool wear on cutting force, the latter

demonstrating that, although fairly accurate, results could only be used in a limited

environment, i.e. for a specific feed rate and cutting speed. One of the difficulties in trying to
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correlate a component of the cutting force with tool wear is that the cutting forces also change

with cutting conditions such as cutting speed, depth of cut and feed rate. Oraby and Hayhurst
(1991), have also derived an equation to predict tool wear under different cutting conditions

based essentially on experimental results. Again, such a method relies on extensive

experimental work.

2.2.4 Current Monitoring

Several Interesting techniques, most of them more sensitive to tool breakage than to the
evolution of tool wear, have recently been developed by monitoring the motor load by

measuring the current drawn by the motor, e.g. Shiraishi (1988). The motor current can be

related to the torque exerted and hence is related to the cutting force, Agogino et al. (1988).
Since force is a good measure of tool wear it would be logical to conclude that current is also
likely to be an indicator of tool wear (Wilcox et al., 1993). Because of the sharp changes in the
motor load during the tool entry and exit, the current sensor is an excellent detector of cutting

and also an easy one to implement since a meter is normally provided on the machine tool.

From the above literature there is sufficient evidence to suggest that further study of at least

four sensors could prove to be useful in the construction of an intelligent tool wear monitoring
system:-

1. Cutting forces (feed and tangential)
2. Spindle current

3. Audible emissions

4. Machine vibration

Although this is not an exhaustive sensor set, it was chosen as being easy to implement and on

the past empirical success of other researchers.

2.3 Sensor Integration, Feature Processing and Reduction

Many mechanical systems are sufficiently complex that it is impractical to describe their
dynamics by exact mathematical models. In the absence of good or acceptably simple models
to predict the processes over the great diversity of operating conditions, sensing devices will
play a crucial role in truly automated factories. This section will focus primarily on the pre-

processing of data and its importance, following an examination of the signal generating
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processes as the cutting tool wears. The use of multiple sensors and their integration will

conclude this section.

The decision-making stage of a monitoring system involves making qualitative inferences from

large amounts of numeric data obtained from different sensors each carrying a weighting
according to its relative importance. There are several approaches to solve this problem but
most are based on probability theory and statistics, which unfortunately makes them slow and
possibly ineffective. Because of the inherent complexity and variability, underlying
distributions are unknown, parameter estimations are unsuccessful and explicit rules, if any, are
not well understood. Reddy (1992) presented a survey of a number of different approaches to
the problem of multi-sensor integration that have emerged in recent years, these being the
application of probability methods, fuzzy logic, Expert Systems, and neural networks. In cases
where the sensor data is noisy and not very clustered, the classification performance benefits
greatly through the use of multi-layered neural networks. After training these can be used to

classify, and thus recognise, new instances of similar patterns (Venkatasubramanian and
Vaidyanathan, 1991).

Since neural networks can perform essentially arbitrary non-linear functional mappings
between sets of variables (Chitra, 1993), a single neural network could, in principle, be used to
map the raw input data directly onto the required final output. In practice, for all but simple
problems, such an approach will generally give poor results due to the fact that real data often
suffers from a number of deficiencies such as missing input values or incorrect target values.
For most applications it is necessary first to transform the data into some new representation
before training the neural network (Qin and Rajagopal, 1993). To some extent, the general
purpose of a neural network mapping means that less emphasis has to be placed on careful
optimisation of this pre-processing than would be the case with simple linear techniques.
Nevertheless in many practical applications of ANNs the choice of pre-processing will be one
of the most significant factors in determining the performance of the final system (Rahman ef
al., 1995). In the simplest case, pre-processing may take the form of a linear transformation of
the input data, and possibly also of the output data. The fact that such dimensionality reduction
can lead to improved performance (Wu and Du, 1996) may at first appear somewhat
paradoxical, since it cannot increase the information content of the input data, and in most
cases will reduce it. For monitoring of machining processes the sensor signals typically contain
Information and noise, therefore, it is desirable to extract the features that represent the

characteristics of the process (information) and to separate the features from various noise
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disturbances. Care has to be taken since some features in sensor signals are correlated with

certain levels of tool wear but not with others (Leem et al., 1995).

Numerous experiments (e.g. Rubenstein, 1976; Weller et al., 1969) have shown there are many
parameters which influence the cutting process for any given cutting-tool workpiece
combination; cutting speed, feed rate, tool overhang, cutting edge condition (sharp, dull,

cratered, etc.), tool material, workpiece material, and workpiece configuration. For our

purpose, 1t is sufficient to assume (Lim, 1995) that the degree of wear on the tool’s cutting edge

1s one of the major causes of system performance.

The tool wear signal (without noise) consists of four main components (Arnold, 1946; Heck,
1993):-

1. A slowly varying response of the tool to quasi-periodic excitations - this arises from

the high speed rotation of the workpiece.

2. Randomly occurring transients - this includes chipping of the tool or workpiece.

3. Transients due to the modes of vibration of the tbol holder.

4. The complex interaction of the material with respect to the cutter.

The noise results from three main sources; mechanical noise, electrical noise, and fluid noise
(only applies in the case of coolant use). As the tool wears, cutting forces increase, particularly

in the direction of feed, resulting in horizontal vibration and leading to variations in the vertical

force experienced by the tool (Oraby and Hayhurst, 1991). This can be compared to the effect
obtained by bearing down harder on the bow of a violin, the pitch of sound, or vibration, is the

same but the volume of sound generated is greater. Changes in workpiece size or location of

the cutting tool along the axis of the workpiece can also have an effect.

Measurable tool wear related signals typically have a very low Signal to Noise Ratio (SNR)
(Heck, 1993) because of the variety of noise sources on the machine tool. However, relatively
little work has been done on the enhancement of the signal related to tool wear and noise
reduction. For tool wear classification, most monitoring systems either use the noisy signals
directly without pre-processing, or simply low-pass filter the signal to eliminate the corrupting
noise sources (Okafor et al., 1991). While relatively easy to implement, these techniques have
proven to be generally ineffective at reducing the noise and tend to remove information
necessary for proper tool wear classification (Heck, 1993). It would seem therefore that noise

reduction is a particularly difficult task for this process, and it would be unwise to eliminate
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components of the signal that could be useful and perhaps it would be more prudent to

concentrate on signal processing and feature reduction, such as using basic statistical analysis,

skew and kurtosis, as well as mean and standard deviation as additional ways of characterising

the signals.

One of the simplest techniques for dimensionality reduction is to select a subset of the inputs,

and to discard the remainder. This approach can be useful if there are inputs which carry little

useful information for the solution of the problem, or if there are very strong correlations
between some of the inputs, i.e. the same information can be obtained from several signals.
Any procedure for feature selection should be based on two components. First, a criterion must
be defined by which it is possible to judge whether one subset of features is better than another
and, secondly, a systematic procedure must be found for searching through candidate subsets of
features (Flachs et al.,, 1990; Trabelsi and Kannatey-Asibu, 1991). Ideally the selection
criterion should be the same as that to be used to assess the complete system. The search
procedure could simply consist of an exhaustive search of all possible subsets of features since
this 1s the only approach which is guaranteed to find the optimal subset. However, this could <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>