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Abstract 3 

Abstract 

This thesis relates to the application of Artificial Intelligence to tool wear monitoring. The 

main objective is to develop an intelligent condition monitoring system able to detect when a 

cutting tool is worn out. To accomplish this objective it is proposed to use a combined Expert 

System and Neural Network able to process data coming from external sensors and combine 

this with information from the knowledge base and thereafter estimate the wear state of the 

tool. 

The novelty of this work is mainly associated with the configuration of the proposed system. With 

the combination of sensor-based information and inference rules, the result is an on-line system 

that can learn from experience and can update the knowledge base pertaining to information 

associated with different cutting conditions. Two neural networks resolve the problem of 
interpreting the complex sensor inputs while the Expert System, keeping track of previous 

success, estimates which of the two neural networks is more reliable. Also, mis-classifications are 
filtered out through the use of a rough but approximate estimator, the Taylor's tool life equation. 

In this study an on-line tool wear monitoring system for turning processes has been developed 

which can reliably estimate the tool wear under common workshop conditions. The system's 

modular structure makes it easy to update as required by different machines and/or processes. The 

use of Taylor's tool life equation, although weak as a tool life estimator, proved to be crucial in 

achieving higher performance levels. The application of the Self Organizing Map to tool wear 

monitoring is, in itself, new and proved to be slightly more reliable then the Adaptive Resonance 

Theory neural network. 
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Nomenclature 

b Slope of linear regression equation 

by Resulting pattern of activation, ART2 

C Constant in Taylor's tool life equation 

C. Constant for machining parameters 

d Depth of cut 

dyk Euclidean distance between input i and output node (j, k) 

e Natural logarithmic base 

E Modulus of elasticity 

f Feed rate 

f, Natural frequency of vibration 

FO Initial machining force 

F1, F2 Processing stages of the ART2 

F Cutting force 

Ff Force in the feed direction 

Fjk Winning frequency of SOM output neurone 
Fr Force in the radial direction 

Ft Force in the tangential direction 

h(t) Continuos time series 

hk Discrete time series 

H(t) Fast Fourier series 
H� Discrete Fast Fourier series 

KT Crater depth 

1 Length of overhang 

m Number of output nodes for the ART2 

ii Number of output nodes for the SOM 

n Exponent in Taylor's tool life equation 
N Number of input features 

N112 Initial value for ART2 weights 
Np Number of previous samples of historical data 
PART2 ART2 outlier counter 
PNN Number of miss-classifications to date (general) 

PSOM SOM outlier counter 

mm 

mm/rev 
Hz 

N 

N 

N 

N 

N 

m 
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r Linear regression coefficient 
R Radius of cut m 

rf Linear regression correlation coefficient of feed force 

rh Linear regression correlation coefficient of previous PNN samples 

rr Linear regression correlation coefficient of tangential force 

Si Sample reference number 

t Time s 

tl Undeformed chip thickness mm 

12 Chip thickness mm 

tj; Threshold of weights between F, and F2 stages, ART2 

T Tool life min 
Tk Input pattern to F2, from F1, ART2 

Ty Threshold value 
V Cutting speed m/min 
Vc Speed between chip and tool m/min 
VBB Average flank wear mm 
VB, VBB for sample Si mm 
VBN Length of wear notch mm 
VBREF Flank wear threshold value mm 
VOW Voltage output v 
X Input feature vector 
X, Input signal feature component 

Wyk SOM connection weight 
W Wear land size (general) 

w;, v;, u;, q;, p; Auxiliar variables within the ART2 algorithm 
Wyk SOM weight between input i and output neurone G, k) 

a Rake angle 

E(t) Learning rate for the SOM 

Pi 3.1415.... 

Shear angle 

(0 Angular speed radians/s 
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1. Introduction 

Conventional machining systems rely heavily on human operators for monitoring the process, 

taking the appropriate action in the event of a problem, inspecting the quality of the product, 

controlling the process and material handling. However, in recent years, the manufacturing 

industry has been directed towards automated, untended operation with the goal of achieving 

better product quality and greater overall productivity and reliability. Thus, the implementation 

of an intelligent machining system which can perform specified machining operations without 

detailed input from human operators under harsh and unpredictable shop environment becomes 

increasingly important. 

Manufacturing industries and their customers are now demanding substantial increases in 

flexibility, productivity, and reliability from process machines as well as increased quality and 

value of their products. One important strategy to support this goal is sensor-based, real-time 

control of key characteristics of both machines and products, throughout the manufacturing 

process. Also, according to the US 1993 National Critical Technologies Panel, intelligent 

processing equipment has an essential role in the achievement of world-class manufacturing 

capabilities. The fundamental concept is that the manufacturing process include the ability to 

sense the desired characteristics or properties of a product and has enough local intelligence to 

control those properties. 

The successful automation of machining operations relies, to a great extent, on the ability of 

artificial systems to recognise process abnormalities and initiate corrective action. In the 

absence of human operators, this function has to be performed with intelligent decision-making 

systems which are able to interpret incoming sensor information and decide on the appropriate 

control action. Intelligent decision-making systems are expected to replace the knowledge, 

experience, and the combined sensory and pattern recognition abilities of human operators. 
Successful implementation of these different tasks depends on two factors; first, the quality of 
information obtained from the monitoring sensor, and second, the techniques used to process 
this information in order to make decisions. Sensing strategies for unmanned machining should 

aim at integrating both these factors, thereby allowing for a system that can successfully 
replace the abilities of the human operator. Hence, the performance of the sensor system is a 
crucial factor in an intelligent machining system. Thus, the development of a sensor system 
which is sensitive enough to produce accurate information on the machining process and can 
operate under harsh and unpredictable shop environments is essential. 

R. G. Silva 1997 



Chapter 1- Introduction 17 

To implement intelligent tool wear sensing systems in an automated manufacturing environment, 

it is helpful to examine how such a function is performed by a human machinist. Human operators 

probably detect the occurrence of tool wear by observing the machining operation and evaluating 

the resulting sensory information (for example, visual; such as the colour of the machined chip, 

audio; such as the sound generated by the cutting action of the tool and olfactory; such as the 

smell of the hot workpiece and coolant). The sensory information is associated with experience- 

based memory triggers and also experience of tool life in similar situations. A decision is then 

made as to whether the tool wear level warrants interruption of the process, checking of the tool 

condition and then, if necessary, initiation of tool changing procedures. The process is one of 

pattern recognition in which disparate, noisy and incomplete sensory data patterns are used to 

make a decision as to the amount of tool wear. Human pattern recognition is a highly developed 

and a poorly understood characteristic, and the task of emulating it on a computer is a formidable 

one. 

The performance of the cutting process deteriorates seriously as the cutting tool wears out, 

requiring a tool change. However, tool life is very difficult to predict and has a very widely 

scattered distribution (Oxley, 1989), making it impossible to set-up generally acceptable tool 

change policies. Thus, an adaptable system that learns on-line upon experiments and which can 
identify the state of the tool during the machining operation should be incorporated into the 

machine tool to improve productivity. 

1.1 Motivations for the Development of a Monitoring System 

There is limited industrial use of monitoring systems as human skills are still necessary help to 

manage the complex machining process. Existing systems for monitoring and control are tailor- 

made and one possible reason for the failure of such systems is the application of unsophisticated 
models and in many cases the lack of correlation between the measured variable and the process 
variable of interest (Tonshoffet al., 1988). 

Since the advent of numerically controlled (NC) machine tools, which provided the physical 
means to control the cutting process, the goal of complete automation of machine tools has 

seemed much more promising. The development of computer numerically controlled (CNC) 

machine tools has made it feasible to apply additional levels of control to the cutting process by 

utilising readily available, inexpensive, and reliable computing power. However, control of any 
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process requires sensing capabilities to provide essential feedback data. One of the most 

significant pieces of feedback data in a cutting process is the state of tool wear (Danay and Ulsoy, 

1987). 

Tool wear data could be used for two major objectives: - 
1. Detection of tool failure due to excessive wear. 
2. Control of the rate of tool wear. First, tool failure detection can be achieved by the 

on-line monitoring of the tool, thereby, eliminating the function of the machine 

operator as the tool monitor. Second, the rate of tool wear can be controlled by the 

manipulation of the cutting conditions, thereby providing: 

i. Better co-ordination in the production line by planning the machine shut down for 

tool changes. 
ii. More efficient use of the tool. 

iii. Significant savings of time that is usually spent on the more frequent tool changes 

caused by unreliable estimates of tool life (Zhou and Wysk, 1992). 

A technique which is currently being investigated which may contribute to the improvement of 

tool wear monitoring is the hybrid system. Hybrid systems, comprising Neural Networks (NNs) 

and Expert Systems (ESs), are an active area of research in the field of Al (Laffey et al., 1988; 

Medsker, 1994). In these hybrid systems, a neural network is used either for knowledge 

expression or for knowledge acquisition, that is, to make conclusions from input data or to learn 

from experience and may be dynamically modified. The Expert System comprises a set of rules 
that allow it to infer results from acquired information, but cannot be dynamically modified. NNs 

are more complex and the information encoded by them is difficult to interpret and does not 

always provide results that are easy to understand. Results from NNs are not predictable to the 

same extent as those obtained with ESs and they are more likely to fail than ESs (Medsker, 1996). 

The combination of both methodologies may find uses in an enormous number of fields as an 

artificial intelligence tool. The primary difference between an automated machining system and 
intelligent one is that the intelligent system is capable of making decisions based on significant 
information about the state of the system 

The concept of using condition monitoring for automated small batch production equipment is 

now rapidly gaining ground in manufacturing industry (Davies, 1994), due to the wide 
availability of powerful and highly reliable electronic sensing systems, together with advances 
in computer technology and its associated software. 

R. G. Silva 1997 



Chapter 1- Introduction 19 

1.1.1 Economic Factors 

Since metal cutting operations constitute a large percentage of current manufacturing activity, it is 

important to consider economic factors. 

The costs associated with running a machining centre can be sub-divided into the following 

categories: - 
1. Unscheduled down-time 11% (Machinery[Editor], 1989) of which insert failure 

accounts for 7% (Dan and Mathew, 1990). 

2. Tooling costs 5-30% (Cser et al., 1993). 

To reduce the costs that are associated with cutting tool inserts it will be necessary to monitor the 

level of wear and then schedule insert changes that optimise the life of the tool. It has been 

estimated that by the use of monitoring systems it is possible to increase efficiency by 10-65% 

(Tonshoff et a!., 1988). 

As a result of these factors, there is a strong research effort directed at automating the machining 

process. Present efforts are aimed at developing reliable sensor technology for detecting factors 

such as chip form, tool condition, workpiece roughness, machine vibration and bearing failure. 

1.2 Existing Approaches 

The problem of on-line tool wear measurement has been investigated by numerous researchers 
(e. g. Taglia et al., 1976; Choi et al., 1990; Dan and Mathew, 1990; Wang and Dornfeld, 1992). 

The methods proposed can be categorised into two groups: direct and indirect. Direct methods, 

as the name implies, measure the tool wear by either evaluating the worn surface by visual 
inspection (Pedersen, 1990) or the material loss of the tool by radiometric techniques 
(Micheletti et al., 1976). The main difficulty with using optical methods is their limited 

application to cases where the surface of the tool is visually accessible during the operation 
(Pedersen, 1990). Radiometric techniques have been proposed and demonstrated in the 
laboratory, these techniques have not been implemented in production due to requirements for 

special preparation of the tool and potential hazards due to radioactivity (Dan and Mathew, 
1990). 
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Indirect methods, on the other hand, are based on utilising signals such as force or torque, 

temperature, tool vibration, acoustic emission, or noise emission (König et al., 1972; Dornfeld 

et al., 1993). These techniques determine the relationship between the measured parameters 

and tool wear, thus enabling prediction. Some approaches rely on a detailed mechanistic model 

of the cutting process (Kannatey-Asibu, 1985) while others use empirical relationships between 

the measured variable and tool wear (Danai et al., 1992). The mechanistic approach has 

contributed greatly to the basic understanding of the cutting process, while the empirical 

approach has been useful for specific tool-workpiece combinations and constant cutting 

conditions. However, both the mechanistic and empirical approach have certain limitations 

when applied to on-line tool wear estimation. 

The mechanistic approach, which relies on the mathematical description of the physics of 

cutting, assumes certain wear mechanisms such as diffusion, abrasion, and adhesion as being 

responsible for tool wear. Due to the inherent complexity of the cutting process, and our 

incomplete understanding of it, this approach is limited in applicability at the present time. 

Moreover, since the coefficients and exponents of these models change with tool-workpiece 

combinations and cutting conditions (Fenton and Oxley, 1976; Lin et al., 1982; Koren et al., 

1986; Danai et al., 1992), extensive off-line testing is required for each case. Another limitation 

in the utilisation of the mechanistic approach is the lack of appropriate sensors. For example, 

most models developed by this approach (mechanistic models) emphasise in the relationship 

between temperature and tool wear (Kannatey-Asibu, 1985). However, in the absence of a 

practical temperature sensor these models are limited in applicability. 

The empirical approach, on the other hand, relies on the observed relationship to estimate tool 

wear. Although new approaches based on a multi-sensor strategy have recently been proposed 
(e. g. Rangwala and Dornfeld, 1990), most practical methods based on the empirical approach 

rely on a single sensor to detect tool failure or estimate tool wear. The empirical methods for 

tool wear estimation usually consider the relationship between two variables such as flank wear 

and force (Danai et al., 1992), and therefore fail to separate the effect of other variables 
involved in the process, for example the effect of feed rate on force. This usually results in an 

erroneous estimation of tool wear as other process variables will affect the measured signal. 
The empirical approach, like the mechanistic approach, requires accurate information and 
therefore, extensive off-line testing is required for each tool-workpiece combination and each 

specific set of cutting conditions. 
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Artificial intelligence is a tool that can be used to aid the automatic interpretation of data 

obtained from a tool during the wear process. Neural networks and Expert Systems have been 

in use for the last two decades in the field of process monitoring (Rangwala and Dornfeld, 

1987; Burke, 1990; Ezugwu et al., 1995), and already proved successful in fields such as 

ultrasonic image interpretation (Hopgood et al., 1993) and in medicine (Anthony, 1993). The 

use of such techniques in the field of tool wear monitoring (Au et al., 1989; Jantunen et al., 

1995; Du et al., 1995) is being investigated but, in common with the mechanistic and empirical 

approaches, the methods used so far do not separate the effect of other variables such as cutting 

conditions. 

Finally, most of the monitoring systems proposed to date lack the "intelligence" to deal with 

sporadic outlying data that may arise from workshop conditions or sensor faults. 

1.3 Appropriateness of a Hybrid System for Tool Wear Monitoring 

In view of the foregoing discussion, it is felt appropriate to use a hybrid system for the 

following reasons: - 
1. Heuristic rules are conventionally used to monitor the cutting process, and these often 

change because of changes in tool or workpiece material. Therefore, a hybrid system 

that can easily be modified is appropriate. 
2. The monitoring task may not be difficult for a "trained expert", but the constant 

turnover of personnel makes it very difficult to maintain staff expertise. Also, because 

there are so many variables, and the "rules" are subject to interpretation by the 
individual monitoring the cutting process, results are not consistent. 

3. Because the problem might not be reduced to a small number of rules, it is 

appropriate for development and installation in a microcomputer through the use of a 
hybrid neural network - Expert System. 

1.4 Justification for the Development of a Hybrid System 
For the reasons given in the previous sections it is now possible to highlight some of the most 
important achievements through the use of a hybrid system: - 

1. Improved performance: Since the system will apply the rules in a more consistent 
manner than most of the machine operators, especially new ones, the results obtained 
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should be less likely to omit requirements and should provide for more consistent and 

efficient tool wear monitoring. 
2. Faster configurations: The system will produce a recommended configuration much 

faster than "field experts". Since the person in charge of configurations will have 

more confidence in the configuration recommendations, less time should be spend 

revising the system set-up before approval. 

3. Reduced requirements for training personnel: Since the system can be operated by 

non-experts, who can use the explanation capability to learn on the job, machine 

operators' training requirements are significantly reduced. 

4. Easy maintenance: It is easy to modify the rules and the goals in an Expert System 

based hybrid system. 

5. Increased productivity: Since less time is spent on setting the machine for a particular 

batch job, production becomes more efficient. Increasing the accuracy of tool wear 

monitoring enables tools to be used throughout their entire life. Also, significant 

savings will be made by reducing defects in the machined pieces. 

1.5 Scope of the Thesis 

In this study, an architecture for an on-line tool wear monitoring system based on two neural 

networks and an Expert System are developed and evaluated. The system is developed and 

tested using a particular set of sensors and machining conditions but the method is extensible to 

other sensors and/or operations. The classification ability of the neural networks is combined 

with knowledge embedded in an expert system in order to make reliable and accurate estimates 

of tool wear. The approach presented in this thesis is similar to that which might be used 

implicitly by a human operator as it combines empirical knowledge of tool wear with 

classification of sensor based information. 

ES+NN 
Data Data & Tool Wear 

Acquisition Analysis Decision Making 

(Estimation 

Figure 1: Decision making scheme 
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The signal processing, neural network interpretation and decision making scheme is shown in 

Figure 1. The system employs sensors that measure the sound emission, vibration, force and 

spindle current from the machining operation, with the signals being processed in the frequency 

and time domains. The resulting features are then presented to two previously trained neural 

networks, a Self Organising Map and a network based on Adaptive Resonance Theory, to 

estimate the wear state of the cutting tool in conjunction with the Expert System. At the 

decision-making stage, an Expert System encoded with empirical tool life data is combined 

with the networks outputs to reach an estimation which is consistent with the sensed outputs 

and machining experience. 

1.6 Thesis Structure 

This Thesis is organised into eight chapters and 4 appendices. Chapter 1 briefly reviews the 

context of the problem of tool wear monitoring and presents the motivations for the current 

work. 

Chapter 2 details the approach in the light of previous research in the field of tool wear 

monitoring and related subjects. The chapter starts with a mechanical description of the process 

of single point cutting and then reviews the most important processing and data interpretation 

techniques which will be used later. Throughout the chapter, the current approach is compared 

to other published work on tool wear monitoring. 

Chapter 3 gives details of the experimental design as well as experimental procedures. First, the 

turning centre and related equipment are described, then the positioning of the sensors is 

indicated and justified. Finally, the procedures adapted in the two main sets of experiments are 

given, these being the experiments pertaining to the behaviour of the machine/tool and the 

analysis of signal length effect on feature performance. 

Chapter 4 contains a description of the proposed method of tool wear monitoring. Topics such 

as signal processing techniques and neural network implementation are laid out. The last 

section describes the various components of the expert system, including knowledge bases, rule 
base and procedural functions. Finally, a description of the user interface is presented. 
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Chapter 5 presents all the results obtained through experimental work. In Chapter 6, as well as 
the results, performance measurements are given for each stage of the hybrid monitoring 

system. 

Chapter 7 presents the achievements of this work giving details on the success of the applied 
techniques towards tool wear monitoring. Also, the relationship between the different tool wear 

sensors is brought together to attempt an explanation of the behaviour of such sensors through 

the understanding of the underlying mechanisms of wear. 

Chapter 8 gives the conclusions on findings and contributions related to tool wear monitoring. 
Also, in this chapter, several recommendations are made which are thought would enhance the 

success of tool wear monitoring. 

Appendix A gives a description of Adaptive Resonance Theory which enabled the construction 

of this neural network. Appendix B gives the theory which was used for feature evaluation 
based on the SOM neural network. Appendix C presents the ̀ C' code used to built the Expert 

System modules. Appendix D presents the most important functions embedded in the Expert 

System. Finally, appended to the Thesis are the author's publications to date. 
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2. Background Knowledge 

This chapter aims to provide a review of the physical process and the current state of the art in 

tool wear monitoring, and defines the development of the tool wear monitoring system which is 

the subject of this work. 

2.1 Single Point Metal Cutting - Turning 

This basic operation is also the one most commonly employed in experimental work on metal 

cutting. The work material is held in the chuck of a lathe and rotated. The tool is rigidly held in 

a tool post and moved at a constant rate along the axis of the bar, cutting away a layer of metal 

to form a cylinder or a surface with a more complex profile. This is shown diagrammatically in 

Figure 2. 

[a] 

Work 
. 

Depth 1 00 of cut 

ýý'. Chip 

(b) (cJ 

Figure 2: Lathe turning 

The cutting speed, feed rate and depth of cut are three most important parameters which can be 

adjusted by the operator to achieve optimum cutting conditions with the depth of cut being 

occasionally fixed by the initial size of the bar and the product. The cutting speed is maintained 

constant by the CNC machine, hence changes in diameter will affect the rotational speed 
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(RPM) of the spindle. At the nose of the tool the speed is always lower than at the outer surface 

of the bar, but the difference is usually small and the cutting speed can be considered to be 

constant along the tool edge. 

Although in machining processes a large amount of energy is required to form the chip and to 

move it across the tool face, the theoretical minimum energy required to form the new surfaces 
is an insignificant proportion of that required to deform plastically the whole of the metal 

removed (Trent, 1991). Thus, metal cutting is a high energy density process where very local 

intense deformation forces are supported by a small area of the cutting tool causing it to wear. 

The aim of tool wear monitoring is to sense these various manifestations of these local forces 

(through a selected set of sensors) to infer the condition of the cutting edge. 

2.1.1 The Interface Between the Tool and Chip 

In most mechanical analyses of metal cutting the shearing action has been treated as a classical 
friction situation, in which "frictional forces" tend to restrain movement across the tool surface, 

and the forces have been considered in terms of a coefficient of friction between the tool and 

work material. However, detailed studies of the tool/work interface have shown (Trent, 1991) 

that this approach is inappropriate to most cutting conditions. The most important conclusion 
from the observations is that contact between tool and work surfaces is so nearly complete over 

a large part of the total area of the interface, that sliding at the interface is impossible under 

most cutting conditions. The condition where the two surfaces are interlocked or bonded is 

referred to as conditions of seizure as opposed to sliding at the interface (Trent, 1991). In 

monitoring terms, this means that the wear process is not necessarily detectable by the types of 

methods that are used to detect sliding wear. 

2.1.2 Tool Wear 

Excessive wear is the normal mode of failure of cutting tools so knowledge of the tool wear 
level and the rate at which it wears is necessary for determining the residual tool life. Several 

approaches, depending on the type of wear, can be used to quantify the wear on a cutting tool 

(Figure 3) but generally some dimension of the tool wear land is used. 
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VBN - Length of wear notch 
VBB - Average flank wear land 
KT - Crater depth 

Figure 3: Some types of wear (IS03685,1993) 

Wear results in a modification of the cutting tool geometry so that metal removal gradually 

becomes more inefficient and, eventually, the quality and accuracy of the cut surface are 

compromised. Before this happens, sufficient change in the mechanics of the tool/workpiece 

interaction should have occurred to allow the detection of impending tool failure due to 

excessive wear. The very high contact forces and metal deformation rates in cutting can give 

rise to a variety of distinct mechanisms by which material can be removed from the cutting 

tool, e. g. Shaw (1989): - 

" Adhesive wear - This occurs when two surfaces come close enough together to form 

strong bonds. If these are stronger than the local bonds of the material a particle may 

transfer from one material to another. 

" Abrasive wear - This involves the loss of material by the action of hard constituents 

as they are swept over the tool surface. 

" Diffusion wear - If the localised temperature of the contact surfaces is high enough, 
interstitial diffusion can occur across the tool-chip interface, softening the tool material 
(Solid State Diffusion is the mechanism by which atoms in a metallic crystal shift from 

one lattice point to another causing a transfer of the element in the direction of the 
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concentration gradient. Diffusion is a time and temperature dependent process and also 
depends on bonding affinity of the pair and the degree of atomic mobility). 

" Fatigue - Fatigue of the tool material can result from the fluctuation of cutting forces. 

Diffusive wear is known to occur as the cobalt binder on the rake face of the tool diffuses 

towards the workpiece at temperatures between 700 and 900°C, thus weakening the surface 

layer of the tool. Since diffusive wear is a function of temperature, it is commonly affected by 

cutting speed and feed rate. Micheletti et al. (1976) and Dan and Mathew (1990) report that 

significant changes in tool condition can occur with small changes in cutting temperature. In 

addition, Dan and Mathew (1990) also note that there is a sudden drop in cutting temperature 

which is coincident with a drop in force when cutting stops and that this increases both in 

magnitude and duration as wear progresses. In practice it is difficult to measure the temperature 

at the cutting edge with most reported work using a thermocouple located near to the tool- 

workpiece interface or infrared systems. 

Practical wear situations rarely involve only one of these mechanisms and this depends on the 

workpiece and tool materials, the cutting geometry and the cutting conditions (Shaw, 1989). In 

addition to the wear-related sources of tool failure, the following also may occur; 

microchipping, gross fracture and plastic deformation. These, however, are readily identified 

and the solution is apparent, for example when plastic flow occurs at the tool tip, tool clearance 
is lost, the temperature rises abruptly, and the total tool failure occurs rather rapidly. The 

obvious solution to the latter difficulty is to use a lower cutting speed or a tool material that is 

more refractory. 

The most important types of tool wear for a carbide insert are wear-land formation and crater 
formation. Crater formation tends to be more important than wear-land formation in situations 

where cutting temperatures are very high. As already discussed, there are several interacting 

mechanisms responsible for tool wear in cutting operations such as turning and the challenge is 

to increase the accuracy of the wear estimate and, at the same time, improve adaptability in the 
face of changes in parameters such as the machining conditions and workpiece material. 

2.1.2.1 The Mechanisms of Wear and Tool Degradation 

There is general agreement, e. g. Bhattacharya and Gosh (1964); Trent (1991), that an increase 

of cutting temperature due to increased cutting speed and increased wear causes diffusional 
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metal transfer to occur. It appears that diffusion induces two distinct wear processes: direct 

metal transfer through diffusion and macroscopic metal removal by the adhering chip through 

breaking away of the surface layers already weakened by the structural transformation 

undergone at the interface due to diffusion of various constituents of the tool material into the 

chip and reverse diffusion of iron into the carbide. Although weaker, the iron carbide 

contributes to the "re-strength" of the tool reducing somewhat the contribution of diffusion to 

tool wear, Trent (1991). Therefore diffusion wear is only a fraction of the total wear volume for 

a given time. The difference between the diffusion wear and the total wear is due to a 

considerable amount of abrasive wear taking place along with the diffuso-adhesive wear, a 

suggestion which is also supported by Chubb and Billingham (1980). 

According to Opitz and König (1967) the penetration of iron into cobalt at higher temperatures 

is much deeper than that of cobalt into steel. Also, carbides containing high contents of TiC 

(Titanium Carbide) reduce oxidation and diffusion tendencies. Therefore, the coating on the 

flank face wears mostly due to abrasion (Chubb and Billigham, 1980). Once the coating is 

removed from the flank, abrasion and diffusion take over as the major wear mechanisms. This 

explains the higher wear rate when the tertiary wear stage is reached; in the beginning the tool 

is protected by the coating reducing both abrasive wear (due to its hardness) and diffusion wear 
(lower temperatures due to TiC defence barrier). Once the coating has worn out, diffusion takes 

place much faster (also due to high temperatures associated with increased wear) and the iron 

diffusion into the tool weakens the tool's structure by the creation of iron carbides that are 

weaker than the tungsten carbides. 

Trent (1991) in his review suggests that temperature is the dominant factor in the machining of 

carbon and alloy steels and also suggests that the effect of friction (especially when cutting 

takes place under severe cutting conditions) is limited, with plastic flow of the chip over the 

rake face being the mechanism by which material is removed from the workpiece. According to 

Ya et al. (1991) tool wear is caused by extrusion and shearing of the cutter with respect to the 

material in the separating process of metallic materials as well as the rubbing of chips on the 

cutter surface. I 

Concluding the above discussion, and since abrasion might be expected to produce force 

fluctuations, it is possible to anticipate how the amplitude of vibration of the tool shank might 

change with tool wear. An initial increase in the vibration might be expected as abrasive wear 
increases for a while and then a drop should occur on reaching the tertiary wear stage. In the 
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final wear stage, temperature increases much more and adhesive wear ceases giving way to 

diffusion wear and a further increase in abrasive wear. Obviously, such an evolution is a 

complex one and will be sensitive to the tool material, tool cutting conditions and the 

workpiece material. 

2.1.3 Flank Wear 

The tool is in contact with the chip under conditions of very high stress and temperature (Trent, 

1967) and tool wear occurs on both the rake and flank faces. As the cutting tool wears the 

cutting edge gradually changes shape so that in time it becomes dull. Typical wear of a cutting 

tool is shown in Figure 3, where the flank face is usually worn to form an approximately flat 

surface extending from the cutting edge, the flank wear land. On the rake face, a crater may 
form a short distance away from the cutting edge and as tool wear progresses, these two wear 
lands eventually impinge upon each other causing a substantial change in local edge geometry. 

Measurement of flank wear is perhaps the most convenient means of quantifying the overall 

wear level of a cutting tool and so this measure is most commonly used. The width of the flank 

wear land, VBB, is a suitable dimension and the attainment of a predetermined value of VBB is 

generally regarded as an acceptable wear-out criterion, IS03685 (1993). According to this 

standard, when the average width of the flank wear land is 0.3 mm (i. e. VBB = 0.3 mm) the 

tool insert is worn out, provided that the tool is uniformly worn in Zone B, Figure 3. To provide 

a quantitative measure of tool wear and a comparison with Taylor's tool life equation, VBB was 

adopted as the measure of tool wear in this work. 

2.1.4 Empirical Tool Life Equation 

One of the most important considerations in machining process optimisation is tool life and its 

relationship with process parameters. The traditional approach to determining tool life is to 
determine experimentally a relationship between the cutting conditions affecting tool life for a 

given tool-workpiece combination. However, a number of other factors can affect tool life and 
these are not always evident due to the complexity associated with the cutting process. There 

are many empirical relationships for determining tool life (Colding and König, 1971). Some of 
these relationships are briefly reviewed here but they are not particularly accurate unless 
developed for a very specific set of conditions, whereas Shaw et al. (1961) use a variation of 
Taylor tool life equation, others adopt different empirical relationships. Nevertheless, the 
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limitations of these relationships are widely recognised, especially with regard to factors such 

as cutting fluid, temperature and tool geometry. 

Usui et al. (1984) developed a method of predicting the crater and flank wear of tungsten 

carbide tools cutting a 0.25% carbon steel for a wide variety of tool shapes and cutting 

conditions in practical operations based only on orthogonal cutting data from machining and 

two constants related to wear. It has been found that this approach is still limited and required 

refinement for general applicability. It should also be pointed out that these findings were 

obtained under controlled laboratory conditions. Hastings and Oxley (1976) have proposed a 

method of estimating tool life values for a wider range of cutting conditions using a XC45 steel 

(BS - 080M46, High carbon steel). This has proved encouraging but, as with the Taylor 

equation, enormous amounts of data have to be collected in order to determine the constants. 

Most of the research carried out in developing reliable tool life criteria have concentrated on 

establishing a relationship based on a specific set of parameters affecting the life of a cutting 

tool. The complexity of the cutting process associated with the wide variety of material makes 
it very difficult to establish a global criterion that is reliable. For example, while the presence 

of manganese sulphide in steels is generally found to extend tool life, certain combinations of 

speed and feed yield results that indicate the reverse effect (Shaw et al., 1961). Also, several 
factors such as clearance angle and thermal diffusivity changes might affect the tool life 

constants, in which case slight changes in predicted tool life may occur (Rubenstein, 1976). 

In summary, tool life may be affected by the cutting tool material, workpiece material and 

machining conditions (Trent, 1991). Today, HSS tools, carbide and coated carbide inserts are 

commonly used in the metal cutting industry. For these tool materials and under common 

cutting conditions, diffusion, deformation and abrasion are the main causes of wear. When tool 

wear is dominated by these mechanisms, Taylcr's tool life equation [1] offers a good estimate 
for expected tool life. In fact, the long term absolute machinability standard IS03685 (1993), is 

defined by Taylor's tool life equation; this relates tool life in minutes, T, to cutting speed, V, in 

m/min: 

º" Ln=1. [1] 

where n and C are constants. The value C in equation [1] is the speed corresponding to a1 min 
tool life, and the exponent n is a constant depending on the tool material. The tool life equation 
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can also be extended to include feed, depth of cut, or other factors such as tool geometry (Lau 

and Rubenstein, 1978). 

Taylor's relationship was first developed for HSS tools. Carbide and coated carbide inserts 

were later introduced (1960s) and are now the industry standard in the metal cutting industry. 

Although other carbides and nitrides have been used as coatings only three coating materials 

are presently in wide commercial use; TiC, TiN, and A1203 with TiN appearing to offer the 

lowest tool friction. 

Taylor's tool life equation only provides an expected tool life whereas, in reality, tools can 

break or can be worn out before or after the expected time (Rangwala and Dornfeld, 1987). 

This breakage or premature wear can be costly in modern facilities where capital cost is high 

and system attendance by operators is low. A conservative strategy can be developed to replace 

the tools more frequently, but, if tools are replaced too frequently, the costs associated with 

replacements can be unnecessarily high. This is often understressed due to the apparent low 

cost of inserts, but it should be noted that the use of insert cost as replacement cost is 

misleading because the cost of indexing and machine down-time can be significant. 

Taylor's tool life equation is useful to establish a preliminary tool life and thus establish 
intervals of confidence whereby it is possible to classify a tool as worn or not. The analysis of 

data given in the literature indicate that this equation can give estimates that are within a close 

range of the actual tool life (Colding and König, 1971; Shaw, 1989), however, it should be used 

with caution. This can help solve problems where illogical classification of wear due to 

sporadic signal distortion, to a prescribed level, results in misclassification. 

Taylor's tool life equation applies reasonably well over a restricted range of cutting speeds. The 

approximate variation of the tool life exponent n and constant C for different tool materials for 

the turning process is given in Table 1, according to different authors, regardless of workpiece 

material. 

Table 1: Ranges of values n for a variety of tool materials 
Tool Material n (Juneja, 1986) n (Pilafidis, 1971) 

HSS 0.08-0.20 0.09-0.55 
Carbide 0.20-0.49 0.10-0.80 

Ceramics 0.48-0.70 0.30-0.65 

RG. Silva 1997 



Chapter 2- Background Knowledge 33 

2.2 Tool Wear Sensing 

A sensor is a device which detects a physical process and converts energy associated with this 

process into an electrical signal which can be recorded and analysed. Due to the difficulties 

involved in direct measurement of tool wear, most of the proposed techniques use indirect 

methods in which a certain relationship is established between tool wear and some other, 

measurable, quantities such as vibration. According to Brunn (1981) tool wear sensors should, 

as far as possible, be simple to operate, robust and easily read and interpreted, since 

classification of tool condition is often undertaken in difficult environments. Tool wear sensing 

is important as a predictor of tool failure due to excessive wear and, in long production cycle 

manufacturing operations, tool wear detection may be important for surface roughness 

considerations. 

Wear monitoring has been performed using many different types of sensors. The most 

commonly used measurements are temperature, feed and spindle currents, Acoustic Emission 

(AE), audible emissions, workpiece and machine tool vibration and cutting force. Reviews of 

metal-cutting analysis techniques have been carried out by Finnie (1956) and Jetly (1984), who 

reported that all of the above approaches have been successfully demonstrated under laboratory 

conditions although there are few successful industrial applications. Other reviews, such as 

those of Micheletti et al. (1976) and Shiraishi (1988), made a comparative analysis of the 

applicability of sensors, that is, their suitability for monitoring tool wear in a variety of cutting 

processes. They have found that the most promising tool wear sensors are those which measure 
force and current. 

Commercially available systems for wear and breakage detection typically set limits for force 

or power based on empirical data (Novak and Ossabhr, 1986). When the measured force or 

spindle current falls outside these predetermined fixed limits the tool is assumed to have failed 

due to excessive wear or breakage. The disadvantage of the fixed force limit method is that all 
the machining conditions must remain nearly identical throughout the whole cutting operation, 
and therefore this is applicable only in very simple cases. 

Taking into account previous studies (e. g. Dan and Mathew, 1990; Guinea et al., 1990; 
Dornfeld et al., 1993; Ruiz et al., 1993; Nagy and Szalay, 1993) it would seem appropriate to 
integrate some of the above sensors in order to extract the largest amount of information from 

the cutting process. Using the criteria of reliability and ease of use, force, vibration and sound 
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emission transducers were selected as having industrial potential among the indirect methods 

and these were consequently used in this work. 

2.2.1 Audible Emissions 

It has long been claimed that an experienced operator with a keen ear can predict with reasonable 

accuracy the state of deterioration of a cutting tool (Lee, 1986). Audible emissions from the metal 

cutting operation can be divided in two main components; structural noise and cutting noise. The 

former arises from excitation of the machine tool by the cutting operation and the latter is caused 

by interactions between tool and workpiece during the cutting process, (Ya et al., 1991). Previous 

work has investigated the relationship between audible emissions and tool wear and some of the 

most significant results are described below. 

An early study (McNulty and Popplewell, 1977) which investigated changes in the sound 

spectra during the life of drills, hacksaw blades and single point turning tools revealed that 

there were significant frequency bands associated with tool wear in certain cutting processes 
(e. g. a lathe cutting tool exhibits a significant fall in sound pressure level (10dB) over its life). 

It was suggested that a knowledge of the evolution of both spectra and wear bands would 

provide a monitoring medium for tool life history. Lee (1986) found that the sound emitted 
from the turning process exhibited a change of Sound Pressure Level (SPL) that was related to 

tool wear in the 4 to 6 kHz frequency range and that this occurred for several 

material/workpiece combinations; HSS and Tungsten Carbide (P3) tools, AISI 1045 carbon 

steel and AISI 304 stainless steel. When turning with carbide tools the SPL changes were found 

to be more pronounced than those with HSS tools, this being manifested by a drop in the SPL 

before the tertiary zone (third and last stage of wear) was reached. Similar results were found 

by Sadat and Raman (1987) and Trabelsi and Kannatey-Asibu (1991), but these authors noted 

slightly different frequency bands, the latter authors reporting 100% successful classification of 
the tool when the spectral components in the 0 to 10 kHz range were used as features. 

Experiments carried out by Ya et al. (1991) using two different types of turning tool showed 
that neither the tool rake angle nor the cutting speed exerted any significant influence on the 

cutting sound. In most cases, the sound emitted whilst cutting was 2-3 dB higher than the idle 

running noise. 
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2.2.2 Vibration monitoring 

The early work of Weller et al. (1969) investigated the possibility of relating tool wear and 

vibration and found that the high-frequency energy, in the 4 to 8 kHz band, increased with tool 

wear. This discovery helped in the development of the first tool wear monitoring systems (e. g. 

Martin et al., 1974; Petrie et al., 1989a). Jiang et al. (1987) proposed that the variation of the 

cutting vibration signal with tool wear is not an accidental and isolated phenomenon but that it 

is closely related to the cutting process. The frequency composition of the energy of the signal 

varies regularly with the development of tool wear and at specific frequencies the signal 

follows a constant pattern with changes in tool wear, i. e. typically increases with wear. Similar 

results were obtained by Pandit and Kashou (1982) and Taglia et al. (1976), who have shown 

that all the vibration signal power is sustained in frequencies up to 10 kHz, and that a very 

small percentage of the total signal power varying with tool wear is contained in the 

frequencies up to 2.5 kHz. Pandit and Kashou suggested that the modes of vibration most 

sensitive to tool wear occur in the frequency band [4.2; 4.7] kHz. 

Martin et al. (1974) and Bonifacio and Diniz (1994) found that the vibration in the cutting 

plane was the only component that exhibited significant changes with tool wear. Martin et al. 
(1974) concluded upon experimental work that the vertical vibrations of a lathe tool in the 

course of stable machining are almost sinusoidal, with frequency perceptibly equal to the 

natural frequency of the tool, the power of the acceleration signal determined by spectral 

analysis is a linear function of the cutting speed and of the tool wear, the signal increasing in 

the ratio of 1: 10 between a new and a worn tool. 

Several methods for feature extraction from the vibration signal have been proposed in the 
literature (e. g. Colwell, 1971; Petrie et al., 1989b; Dan and Mathew, 1990). The Fast Fourier 

Transform (FFT) is common among techniques applied for the estimation of the power 

spectrum. The use of statistical measurements such as kurtosis can be applied to the original 
time series in an attempt to quantify the closeness of the series to a normal distribution (Petrie 

et al., 1989b; Wilcox et al., 1993) and may be used to describe impacts or transients. Other 

methods for tool wear sensing based on vibration monitoring have also been proposed, such as 
the one based on Data Dependent Systems (DDS) modelling of vibration (Pandit and Kashou, 

1982) and the Group Method of Data Handling (GMDH) (Ravindra et al., 1994). 
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2.2.3 Force monitoring 

The cutting forces experienced by the tool are an important aspect of machining, for those 

concerned with the manufacture of machine tools and also for tool wear monitoring purposes. 

The component of the force acting on the rake face of the tool, normal to the cutting edge, is 

called the tangential cutting force F, and this is usually the largest of the three components, 

acting in the direction of the cutting velocity. The component of the cutting force acting 

parallel to the direction of feed is referred to as the feed force Ff. The final component, which 

tends to push the tool away from the work in a radial direction F, is the smallest of the force 

components in semi-orthogonal cutting and, for purposes of analysis of cutting forces in simple 

turning, is usually ignored and not even measured (Trent, 1991). 
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Figure 4: Cutting force components in turning 

Among the measurements used for indirect flank wear estimation, the cutting force signal has 

been the most successful due to its sensitivity to tool wear and ease of measurement (Nair ei 

at., 1992; Danai et al., 1992; Lee et al., 1996). The cutting force generally increases with flank 

wear due to an increase in the contact area of the wear land with the workpiece (Trent, 1991), 

but it is also dependent on many other factors such as cutting conditions. Filippi and Ippolito 

(1969) were among the first to demonstrate the direct effect of flank wear on the cutting force. 

These methods provide relatively accurate estimates of flank wear as long as the cutting 

variables (feed rate, cutting speed, and depth of cut) remain unchanged. However, when the 

cutting variables change, due to factors such as geometric requirements or cutting conditions 
the results are more difficult to predict (Nair et al., 1992; Lee et a!., 1996). 
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Lately there have been many attempts to use force changes as an indication of tool wear for the 

turning process (e. g. Mackinnon et al., 1986; Lee et al., 1996; Das et al., 1996). Colwell (1971) 

and Shiraishi (1988) suggested that cutting forces and associated power spectra appear to be 

more generally applicable and closer to accomplishment than temperature and vibration. 

Analysis of the frequency spectrum has shown a distinct peak frequency which is consistent for 

a wide range of machining conditions and, for different lathes, a good correlation was found 

between the dynamic cutting force and flank wear (Lee et al., 1989). However, the mechanisms 

which bring about tool wear and failure have a relatively complex relationship on cutting 

forces. 

Dan and Mathew (1990) showed that the force components are influenced by tool wear in a 
linear manner in turning. Wolf and Magadomy (1981) and Ridley (1982) found the force 

components to be affected by tool wear but with different magnitudes. According to Ridley 

each 0.1 mm width of wear land produces a 10% increase in the tangential force, a 25% 

increase in the feed force and a 30% increase in the passive (thrust) force. However, Wolf and 
Magadomy found the difference in the tangential cutting' force between a sharp edge and worn 

ones to be less than 10% and the feed force to increase by approximately 150%. These 

contradictory results, as well as others e. g. Lee et al., 1989; Lin et al., 1982, prove that no 

consensus has yet been achieved regarding force measurements. According to Mackinon et al. 
(1986) this inconsistency is due to the existence of many factors influencing the cutting forces, 

e. g. tool geometry, depth of cut, feed, cutting speed, workpiece hardness. 

Some attempts have been made to relate tool forces with tool wear by a mathematical model, 

such as the one mentioned in Stern and Pellini (1993): 

F= Fo + dC. W (Koren et al., 1986) [2] 

Where F is the machining force, F0 the initial machining force, d the depth of cut, C,, a constant 
for the machining parameters, and Wa size of the wear land. However, the constant Cw cannot 
be obtained easily because it includes many other interactions with the cutting parameters that 

may not display linear behaviour (Stern and Pellini, 1993), and the process of obtaining it is 

essentially experimental and limited in use. Others, such as Lin et al. (1982) and Nair et al. 
(1992) have also attempted to model the effect of tool wear on cutting force, the latter 
demonstrating that, although fairly accurate, results could only be used in a limited 

environment, i. e. for a specific feed rate and cutting speed. One of the difficulties in trying to 
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correlate a component of the cutting force with tool wear is that the cutting forces also change 

with cutting conditions such as cutting speed, depth of cut and feed rate. Oraby and Hayhurst 

(1991), have also derived an equation to predict tool wear under different cutting conditions 

based essentially on experimental results. Again, such a method relies on extensive 

experimental work. 

2.2.4 Current Monitoring 

Several interesting techniques, most of them more sensitive to tool breakage than to the 

evolution of tool wear, have recently been developed by monitoring the motor load by 

measuring the current drawn by the motor, e. g. Shiraishi (1988). The motor current can be 

related to the torque exerted and hence is related to the cutting force, Agogino et al. (1988). 

Since force is a good measure of tool wear it would be logical to conclude that current is also 
likely to be an indicator of tool wear (Wilcox et al., 1993). Because of the sharp changes in the 

motor load during the tool entry and exit, the current sensor is an excellent detector of cutting 

and also an easy one to implement since a meter is normally provided on the machine tool. 

From the above literature there is sufficient evidence to suggest that further study of at least 

four sensors could prove to be useful in the construction of an intelligent tool wear monitoring 

system: - 
1. Cutting forces (feed and tangential) 

2. Spindle current 
3. Audible emissions 
4. Machine vibration 

Although this is not an exhaustive sensor set, it was chosen as being easy to implement and on 
the past empirical success of other researchers. 

2.3 Sensor Integration, Feature Processing and Reduction 
Many mechanical systems are sufficiently complex that it is impractical to describe their 
dynamics by exact mathematical models. In the absence of good or acceptably simple models 
to predict the processes over the great diversity of operating conditions, sensing devices will 
play a crucial role in truly automated factories. This section will focus primarily on the pre- 
processing of data and its importance, following an examination of the signal generating 
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processes as the cutting tool wears. The use of multiple sensors and their integration will 

conclude this section. 

The decision-making stage of a monitoring system involves making qualitative inferences from 

large amounts of numeric data obtained from different sensors each carrying a weighting 

according to its relative importance. There are several approaches to solve this problem but 

most are based on probability theory and statistics, which unfortunately makes them slow and 

possibly ineffective. Because of the inherent complexity and variability, underlying 

distributions are unknown, parameter estimations are unsuccessful and explicit rules, if any, are 

not well understood. Reddy (1992) presented a survey of a number of different approaches to 

the problem of multi-sensor integration that have emerged in recent years, these being the 

application of probability methods, fuzzy logic, Expert Systems, and neural networks. In cases 

where the sensor data is noisy and not very clustered, the classification performance benefits 

greatly through the use of multi-layered neural networks. After training these can be used to 

classify, and thus recognise, new instances of similar patterns (Venkatasubramanian and 
Vaidyanathan, 1991). 

Since neural networks can perform essentially arbitrary non-linear functional mappings 
between sets of variables (Chitra, 1993), a single neural network could, in principle, be used to 

map the raw input data directly onto the required final output. In practice, for all but simple 

problems, such an approach will generally give poor results due to the fact that real data often 

suffers from a number of deficiencies such as missing input values or incorrect target values. 
For most applications it is necessary first to transform the data into some new representation 
before training the neural network (Qin and Rajagopal, 1993). To some extent, the general 

purpose of a neural network mapping means that less emphasis has to be placed on careful 

optimisation of this pre-processing than would be the case with simple linear techniques. 
Nevertheless in many practical applications of ANNs the choice of pre-processing will be one 
of the most significant factors in determining the performance of the final system (Rahman et 
al., 1995). In the simplest case, pre-processing may take the form of a linear transformation of 
the input data, and possibly also of the output data. The fact that such dimensionality reduction 
can lead to improved performance (Wu and Du, 1996) may at first appear somewhat 
paradoxical, since it cannot increase the information content of the input data, and in most 
cases will reduce it. For monitoring of machining processes the sensor signals typically contain 
information and noise, therefore, it is desirable to extract the features that represent the 
characteristics of the process (information) and to separate the features from various noise 
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disturbances. Care has to be taken since some features in sensor signals are correlated with 

certain levels of tool wear but not with others (Leem et al., 1995). 

Numerous experiments (e. g. Rubenstein, 1976; Weller et al., 1969) have shown there are many 

parameters which influence the cutting process for any given cutting-tool workpiece 

combination; cutting speed, feed rate, tool overhang, cutting edge condition (sharp, dull, 

cratered, etc. ), tool material, workpiece material, and workpiece configuration. For our 

purpose, it is sufficient to assume (Lim, 1995) that the degree of wear on the tool's cutting edge 

is one of the major causes of system performance. 

The tool wear signal (without noise) consists of four main components (Arnold, 1946; Heck, 

1993): - 
1. A slowly varying response of the tool to quasi-periodic excitations - this arises from 

the high speed rotation of the workpiece. 
2. Randomly occurring transients - this includes chipping of the tool or workpiece. 
3. Transients due to the modes of vibration of the tbol holder. 

4. The complex interaction of the material with respect to the cutter. 

The noise results from three main sources; mechanical noise, electrical noise, and fluid noise 
(only applies in the case of coolant use). As the tool wears, cutting forces increase, particularly 
in the direction of feed, resulting in horizontal vibration and leading to variations in the vertical 
force experienced by the tool (Oraby and Hayhurst, 1991). This can be compared to the effect 

obtained by bearing down harder on the bow of a violin, the pitch of sound, or vibration, is the 

same but the volume of sound generated is greater. Changes in workpiece size or location of 
the cutting tool along the axis of the workpiece can also have an effect. 

Measurable tool wear related signals typically have a very low Signal to Noise Ratio (SNR) 
(Heck, 1993) because of the variety of noise sources on the machine tool. However, relatively 
little work has been done on the enhancement of the signal related to tool wear and noise 
reduction. For tool wear classification, most monitoring systems either use the noisy signals 
directly without pre-processing, or simply low-pass filter the signal to eliminate. the corrupting 
noise sources (Okafor et al., 1991). While relatively easy to implement, these techniques have 

proven to be generally ineffective at reducing the noise and tend to remove information 

necessary for proper tool wear classification (Heck, 1993). It would seem therefore that noise 
reduction is a particularly difficult task for this process, and it would be unwise to eliminate 
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components of the ' signal that could be useful and perhaps it would be more prudent to 

concentrate on signal processing and feature reduction, such as using basic statistical analysis, 

skew and kurtosis, as well as mean and standard deviation as additional ways of characterising 

the signals. 

One of the simplest techniques for dimensionality reduction is to select a subset of the inputs, 

and to discard the remainder. This approach can be useful if there are inputs which carry little 

useful information for the solution of the problem, or if there are very strong correlations 
between some of the inputs, i. e. the same information can be obtained from several signals. 
Any procedure for feature selection should be based on two components. First, a criterion must 
be defined by which it is possible to judge whether one subset of features is better than another 

and, secondly, a systematic procedure must be found for searching through candidate subsets of 
features (Flachs et al., 1990; Trabelsi and Kannatey-Asibu, 1991). Ideally the selection 

criterion should be the same as that to be used to assess the complete system. The search 

procedure could simply consist of an exhaustive search of all possible subsets of features since 

this is the only approach which is guaranteed to find the optimal subset. However, this could be 

time consuming and so a simplified selection criterion based around a non-exhaustive search 

procedure could be used to limit the computational complexity of the search process. 

A large number of monitoring methods have been developed to classify process condition. The 

simplest one is to identify two process conditions (normal and abnormal) using a sensor signal. 
It can be described by the condition statement, "if y<T,, Then normal Else abnormal", where y 
is the sensor signal and Ty is a threshold value. However, in most applications, this simple 
decision-making strategy will not perform satisfactorily as more graduations in the 

classification are often required. 

In general, monitoring methods are model-based or feature-based. Model-based methods have 

two significant limitations; the first is that many manufacturing processes are non-linear time- 

variant systems. A typical example is a machining process where the non linearity is caused by 

the regenerative interaction between the structural vibration and the cutting forces. Also, sensor 

signals are dependent on process working conditions. It is often difficult to identify whether a 

change in sensor signal is due to the change of process working condition or to deterioration of 
the process. 
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Feature-based monitoring methods use suitable features of an appropriate sensor signal to 
identify the process conditions. Given a sensor signal, (Y;, i=1,2,3,... ), the feature(s) of the 

sensor signal, called monitoring indices, can be represented by: 

X=P(Y, ) [3] 

where, P is an operator. These features could be time and/or frequency domain features of the 

sensor signal such as mean, variance, skewness, kurtosis, crest factor or power in a specific 
frequency band (Du et al., 1995). 

Feature-based methods consist of two phases; learning and classification. To monitor 

manufacturing processes, learning from samples is usually more effective than model-based 

methods since precise instructions are typically unavailable or rather limited. According to Du 

et al. (1995), a large number of methods have been developed for the monitoring of 

manufacturing processes, but, it is unclear which method performs best and, in fact, most of the 
literature only shows that a specific method works for a specific application. 

The basic pattern recognition classification scheme shown in Figure 5 has a structure general to 

most classifying schemes. Some of the requirements which are associated with this scheme can 
be listed a priori as follows. 

ý4 Sensor ý Signal Feature J 
Classifier System 

i Processing 
ý4 

Extraction 

Figure 5: Pattern Recognition Classifying Scheme 

1. Improved Signal to Noise Ratio (SNR) 

2. Maximum data reduction to enable on-line monitoring 
3. Minimisation of the effects of the specific machine structure on the classification 

performance 
4. The need for a reduced, minimal database for the "fine-tuning" of the monitoring 

scheme 
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There is obviously some interdependence between the choice of the signal processing, features 

and classifier and the resulting performance of the scheme. The most critical choice is that of 

the feature vector, which should respond to the effects being monitored but be minimally 

sensitive to any other disturbance. If possible, the choice of features should reflect some of the 

knowledge concerning the specific behaviour of the monitored system as such specifically 

chosen features will often perform better than those based on very general considerations 

(Braun et al., 1987). 

The use of multiple sensors has been shown to enhance the performance of tool wear 

monitoring systems (e. g. Chryssolouris and Domroese, 1989; Rangwala and Dornfeld, 1990), 

because different sensor types can provide independent information. related to the tool wear 
level. Such an approach also reduces the sensitivity of the system to any particular sensor's 
drawbacks, requiring less precision than with a single sensor potentially leading to less 

sophisticated signal processing (Agogino et al., 1988). Through appropriate analysis, the 

dependence of each feature on changes in process conditions can be analysed (Rangwala and 
Dornfeld, 1987; Ruiz et al., 1993). This provides improved reliability in making decisions as to 

the state of tool wear in the face of (perhaps minor) changes in machining conditions. 

Several approaches exist for integrating information from multiple sensors, e. g.: - 
1. Neural networks (Rangwala and Dornfeld, 1990). 

2. Multivariate autoregression (Yao and Fang, 1992). 

3. The Group Method of Data Handling (GMDH) (Ravindra et al., 1994). 

4. Entropy based procedures (Ruiz et al., 1993) 

Each of these approaches requires an initial training phase in which appropriate relationships 

are learned between the input and output signals. Generally, this training phase requires sets of 
data consisting of input signals for which the correct output signals are known. Among the 

classifiers studied, Ruiz et al. (1993) found that neural networks could achieve as high as 90% 

correct classification. The support for the use of neural networks for sensor integration is also 

acknowledged by Chryssolouris and Domroese (1989) through a comparative evaluation of 

several methods (neural networks, regression analysis, inverse least-square, and GMDH) for 

the integration of sensor information in machining. 
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2.3.1 Neural Networks 

Connectionist networks, neural networks, or parallel distributed processing models as they are 

variously called are relative newcomers to the computational modelling scene. Previous 

techniques were marked by the need to program explicitly all aspects of the model, and by the 

use of explicit symbols to represent concepts. Connectionist networks, on the other hand, can to 

some extent program themselves, in that they can "learn" to produce specific outputs when 

certain inputs are presented. 

Early theoretical proposals about the feasibility of learning in neural-like networks were made 

by McCullock and Pitts (1943) and Hebb (1949). However, the first neural network models, 

called perceptrons, were developed by authors such as Rosenblatt (1959) and Rumelhart et al. 

(1986). More recent neural networks such as the Hopfield (1982) network still rely on the basic 

concepts introduced by McCullock and Pitts. 

Artificial neural networks have received renewed interest over the last few years, with more 

than 16,000 neural network development tools sold to date and 20% annual sales growth 

projected (Bailey and Thompson, 1990). Scores of applications, primarily stand alone, have 

been developed in several major industries, including finance, manufacturing, defence, 

aerospace, and business with corresponding applications in a huge variety of engineering 

problems such as; machine vision, speech recognition and control. Success stories are 

becoming more common in private industry as well as in academia with neural networks being 

found to be effective in a wide variety of medical (Anthony, 1993), technical and even 

marketing problems (Martin-del-Brio and Serrano-Cinca, 1993). An article by Kohonen (1988) 

showed a brief survey of the motivations, fundamentals, and applications of artificial neural 

networks, as well as some detailed analytical expressions for their theory. Abstraction of hardly 

accessible knowledge and generalisation from distorted sensor signals are some of the most 

attractive features of neural networks when applied to sensor fusion and classification in tool 

wear monitoring (Rangwala and Dornfeld, 1990). 

Despite the current popularity of back-propagation as a supervised algorithm, its need for a 

correct estimate of tool condition in every training sample limits its successful application to 

on-line tool wear monitoring systems. The implication of requiring correct tool condition is that 

the machining operation must be interrupted so as to acquire information about tool condition 

and, as there are numerous combinations of tools, work materials, and cutting conditions (e. g. 

cutting speed and feed rate), which the eventual monitoring system should handle, a supervised 
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learning procedure like backpropagation is undesirable. For a practical and reliable on-line 

monitoring system, it is desirable to have a neural network utilise "unsupervised" training 

samples without tool wear information, thereby allowing the interpretation of the resulting self- 

organisation with the fewest number of "supervised" samples. 

Several classes of applications are amenable to a neural network approach, with most involving 

either pattern recognition or statistical mapping. Conversely, other applications do not lend 

themselves to a neural network approach, for example mathematically accurate and precise 

applications. From a survey (Bailey and Thompson, 1990) of successful neural-network 

applications developers, several preliminary criteria for selecting applications were cited: - 

" Conventional computer technology is inadequate. 

" Problem requires qualitative or complex quantitative reasoning. 

" Solution is derived from highly interdependent parameters that have no precise 

quantification. 

" Data is readily available but multivariate and intrinsically noisy or error-prone. 

Based on the research by Bailey and Thompson it can be seen that factors such as; type of 

memory, training method, type of output, training time, execution time, decision information, 

information content, and utilisation, some neural networks show higher suitability for the 

present application then others. These are the ART2 introduced by Carpenter and Grossberg 

(1987) and the Self Organising Map (SOM) introduced by Kohonen (1984). Kohonen's Feature 

Map requires many fewer samples with the correct levels of wear because the interpretation of 

an output node can give information useful to the interpretation of its neighbouring nodes. 

The next three sections will detail some of the applications as well as the basic theory of 
backpropagation, ART2 and SOM neural networks encountered in the literature. 

2.3.1.1 Backpropagation 

The back-propagation training algorithm is an iterative gradient algorithm designed to 

minimise the mean square error between the actual output of a multi-layer feed-forward 

perceptron and the desired output, Lippmann (1987). Its architecture generally resembles layers 

of successive elements with each processing element producing an output that represents the 

weighted sum of the previous layers' output. Most existing connectionist learning procedures 

are slow, particularly procedures that construct complicated internal representations. One way 
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to speed them up is to use optimisation methods such as recursive least squares that allow faster 

convergence. If the second derivative of the activation function can be computed or estimated it 

can be used to pick a direction for the weight change vector that yields faster convergence than 

the direction of steepest descent, Chitra (1993). 

The largest drawback of the backpropagation method is the long learning process, especially 

when using large training sets, or large networks (Denoeux and Lengelle, 1993). Another 

drawback of this method is that if data sets are not presented in a certain order it may "forget" 

previous learning. For example, if the network is learning to recognise the alphabet, there is 

little use in learning B if, in so doing, it forgets A. A process is needed for teaching the network 

to learn an entire training set without disrupting what it has already learned. Sima (1996) 

suggests that backpropagation is generally not an efficient algorithm; and also demonstrated 

that training the sigmoid feedforward network, with a single hidden layer and with zero 

threshold of output neurone, is not easily controlled. 

2.3.1.2 The Self-Organising Map 

The Self-Organising Map (SOM), also known as the Kohonen Map, is an unsupervised neural 

model of widespread use in areas such as pattern recognition and robotics (Kohonen et al., 

1996). The SOM is a neural network model that projects a high dimensional input space onto a 

usually one or two dimensional output space by using unsupervised training. This output space 
is represented by a discrete lattice of neurones, usually arranged in a rectangular manner. The 

idea of such a model is to generate topology mappings, where a low-dimensional image of the 

high dimensional input space is built into a rectangular array. Neighbourhood neurones on the 

map tune to similar features of the sensory or input space, following a self-organising 

competitive learning process. This simple neural model has a strong similarity with the maps 

existing in several parts of the brain, such as in the somatosensory cortex, where sensory 
information is represented in topological form (Kohonen, 1993). 

Kohonen's algorithm (Kohonen, 1984) creates a vector quantiser by adjusting weights from 

common input nodes (X") to output nodes arranged in a two dimensional grid as shown in Figure 

6, essentially seeking models which minimise the quantisation error (Sabourine and Mitiche, 

1993). The map is generated by establishing a correspondence between inputs and neurones such 
that the topological (neighbourhood) relationship among the inputs is reflected as faithfully as 

possible in the arrangement of the corresponding neurones in the lattice (Ritter and Schulten, 
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1988). This renders a "non-linearly flattened" two-dimensional version of the input space which 

for many tasks constitutes a very useful data structure. Models are adjusted incrementally as new 

data is presented and an interesting aspect of the SOM is that some ordering takes place as 

adjacent models in the pattern space are near each other model space, that is, similar input 

patterns will be allocated to nearby neurones. 

i ft I-. '- La - 

Input 
Vector 

Figure 6: SOM basic structure 

Processing 
Element 

The correspondence between input(s) and output(s) is obtained interactively by a sequence of 
training steps, which can be formulated in terms of synaptic modification laws (Kohonen, 

1990). Continuous-valued input vectors are presented sequentially in time without specifying 
the desired output. After enough input vectors have been presented, weights will specify 

clusters or vector centres that sample the input space such that the point density function of the 

vector centres tends to approximate the probability density function of the input vectors 
(Kohonen, 1988). In addition, the weights will be organised such that topologically close nodes 

are sensitive to inputs that are physically similar. However, results may depend on the 

presentation order of input data for small amounts of training data and therefore data sets 
should be specifically tested for this influence. Analysis of the synaptic weights can be used to 
investigate the effect of different input variables on the network operation and this enables 
delimitation of the different regions of the map. 

The temporal topographic map can lead to a classification of sequences by means of the winner 
at the last stage of the sequence. Tracking the winning nodes during the presentation of a 
sequence gives greater sensitivity (Chappel and Taylor, 1993), leading in particular to context 
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distinction. The self-organising solvency map has been useful in predicting the time evolution 

of the financial situation of a firm, by using a time sequence of data as input patterns, e. g. data 

for several consecutive years from a particular bank (Martin-del-Brio and Serrano-Sinca, 

1993). Other applications of the Kohonen's feature map include statistical pattern recognition 

(Kohonen, 1990), image processing (Sabourine and Mitiche, 1993), syntactical analysis 

(Chappell and Taylor, 1993) and economy issues (Martin-del-Brio and Serrano-Sinca, 1993). 

2.3.1.3 Adaptive Resonance Theory 

The adaptive resonance theory (ART) architecture, creates and organises categories for features 

and has the ability to respond immediately to experience. It was developed by Carpenter and 

Grossberg (1987) for its ability to continue to store information without loss. ART2 networks 

self-organise stable recognition categories in response to arbitrary sequences of analogue input 

patterns, as well as binary input patterns. Figure 7 oversimplifies the true ART2 structure given 

in Appendix A, it aids in understanding ART2 as a relative of competitive learning. The current 

purpose lies in summarising the operation of ART2 without becoming involved in biological or 

psychological details. 

Output Layer 

F2 O0c 
Bottom-up Top-. down j-. [ RJ 

weights weights ý -- 
Orienting Subsystem 

Q00 (Reset Mechanism) 
F, 

Processing 

Input Pattern 

Figure 7: Simplified Representation of the ART2 network 

The heart of an ART network consists of two interconnected layers of neurones, F1 and F2, 

which comprise the attentional system. The pre-processed input pattern is received at the stage 
Fl of an attentional subsystem. This input leads to activity in the feature detector neurones in 

Fl. This activity passes through connections (synapses) to the neurones in F2. Each F2 neurone 
adds together its input from all the F, neurones and responds (Figure 7). The resulting pattern 
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of activation across F2 is a new pattern. The contrast-enhanced pattern rather than the input 

pattern is stored in the Short Time Memory (STM) by F2. 

After learning and self stabilising, the search process is automatically disengaged after which 

input patterns directly access their recognition codes without any search. Thus recognition time 

for familiar inputs does not increase with the complexity of the learned codes and a novel input 

pattern can directly access a category. A parameter called the attentional vigilance determines 

how fine the categories will be, if vigilance increases (decreases) due to environmental 

feedback, then the system automatically searches for, and learns, finer (coarser) recognition 

categories. A gain control parameter enables the architecture to suppress noise up to a 

prescribed level, also its global design enables it to learn effectively despite the high degree of 

non linearity of such mechanisms (Carpenter and Grossberg, 1987). 

One of the key computational ideas rigorously demonstrated within adaptive resonance theory 

(Carpenter and Grossberg, 1987) is that features that have been learned are protected from 

being ̀ washed away' by new learning, which enables learning to be automatically incorporated 

into the total knowledge base of the system in a globally self-consistent way. In summary, it 

selects new nodes for initiating learning of novel recognition categories, or defends its fully 

committed memory capacity against being `washed away' by the incessant flux of new input 

patterns. 

In conclusion, backpropagation neural networks tend to be slow and not applicable to on-line 

monitoring. The amount of time spent on the training stage is long and therefore inefficient. The 

use of a SOM is suitable because less time is required for the learning procedure although the 
interpretation of results tends to be difficult due to the "topographic map" type output structure. 
The ART2 is a network that consolidates speed and easy interpretation. Unlike the Carpenter 

and Grossberg classifier, the SOM can perform better in the face of noise because the number 
of classes is fixed, weights adapt slowly, and adaptation stops after training (Lippman, 1987). 
The SOM is thus a viable sequential vector quantiser when the number of clusters desired can 
be specified before use and the amount of training data is large relative to the number of 

clusters desired. The SOM and ART2 have been implemented for further investigation in this 

work. 
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2.3.2 Clustering Methods 

Clustering of numerical data forms the basis of many classification and system modelling 

algorithms. The purpose of clustering is to distil natural groupings of data from large data sets, 

producing a concise representation of the system's behaviour. In order to interpret the SOM 

results we need such a method. In the next two sections two methods that generate 

computationally fast and robust algorithms for data classification are presented. 

2.3.2.1 Mapping and Fit Data 

As discussed previously, the SOM results in a form suitable for computer interpretation. The 

topological format of the map resembles a surface where two dimensions are given by the 

neurones arrangement and the third dimension by the activation of each neurone upon 

classification with the minimum value representing a data cluster associated to the classified 

data. In order to characterise the SOM results after training it is necessary to map the results 

into a grid where clusters are associated with similar test data patterns. 

Interpolation between sets can be achieved using several methods such as triangulation, 

trigonometric interpolation and the weighting method (Crain, 1970; McLain, 1976). For 

increased simplicity, accuracy and execution speed, it was decided to use the Kriging method 

(Davis, 1986). This method can be used to make contour maps but, unlike conventional 

contouring algorithms, it has certain statistically optimal properties (Davis, 1986). The Kriging 

method uses the information from the degree of spatial dependence between samples along a 

specific direction to find an optimal set of weights that are used in the estimation of the surface 

at unsampled locations (Davis, 1986). This method is particularly efficient at estimations along 

the "borders" of the topological map where data is scarce and sometimes absent. 

2.3.2.2 Fuzzy Logic 

Fuzzy logic starts with an uncertain idea and aims to transform it into something clear and 

useful. Fuzzy sets are a generalisation of conventional set theory and were introduced by Zadeh 

(1965) as a new way of representing vagueness in everyday life. Fuzzy interpretations of data 

structures are a natural and intuitively plausible way of formulating and solving various 

problems in pattern recognition (Bezdek, 1993). Fuzzy logic, simply put, transforms vague 

concepts such as "a little hot", "almost correct", and "very fast" into a mathematical form 

which can then be used by a system to perform problem solving actions (OMROM, 1992). 
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Figure 8: Example: "What is The Temperature? " 

Fuzzy logic starts with the concept of a fuzzy set which is a set without a crisp, clearly defined 

boundary and can contain elements with only a partial degree of membership. The membership 

function is the basic idea in fuzzy set theory and its value measures the degree to which objects 

satisfy imprecisely defined properties. Fuzzy logic theory has been applied to many different 

areas such as; cluster estimation of numerical data (Chiu, 1994), subway control, household 

appliances (Kosko and Isaka, 1993), and several others (Zimmermann, 1991). Combinations of 

NN and fuzzy logic have been proposed as a way of achieving better pattern recognition 

algorithms (Halgamuge et al., 1994). 

. 
2.3.3 Signal Processing 

The sensor outputs from this work are acquired as a discrete time series of measurements and 

some methods are required to generate a set of features characteristic of these time series. The 

time domain techniques are well enough known to require a special presentation here, but a 

brief description of frequency domain techniques is included below. 

Spectral analysis is the partitioning of the variation in a time series into components according 

to the duration or length of the intervals within which the variation occurs. This is achieved by 

considering the time series h(t) to be the sum of many simpler time series that have the form of 

regular sinusoids of differing amplitudes, wavelengths, and phases. 

H(t) = 
lh(t)e2dt 

[4] 

R. G. Silva 1997 



Chapter 2- Background Knowledge 52 

If t is measured in seconds, then f is in cycles per second or Hertz. In most common situations, 

the function h(t) is sampled at evenly spaced intervals. The estimate of the Fourier transform 

from a finite number of sampled points is called the Discrete Fourier Transform (DFT), 

n; knIN 2 H 
Yhke 

k=0 [5] 

The Discrete Fourier Transform maps N numbers (the hk) into N complex numbers (the H�), N 

being a power of two. A fuller documentation can be found in the established literature, as well 

as DFT algorithms that significantly reduce the computation needed to obtain the power 

spectrum (Press et al., 1992). These have been used widely to analyse such signals as vibration 
(Martin et al., 1974; Petrie et al., 1989b; Bonifacio and Diniz, 1994), force (Lee et al., 1989), 

and sound emission (Lee, 1986; Sadat and Raman, 1987). DFTs are normally referred to as 
FFTs, although the latter term strictly applies only to continuos signals. 

Like the Fast Fourier Transform (FFT), the discrete wavelet transform (DWT) is a fast, linear 

operation that operates on a data vector whose length is an integer power of two. Both FFT and 
DWT can be viewed as a rotation in function space, from the input space (time) domain, where 

the basis functions are the unit vector el to a different domain (Press et al., 1992). For the FFT, 

this new domain has basis functions that are familiar sines and cosines. In the wavelet domain, 

the basis functions are somewhat more complicated and have the name of wavelets. The 

wavelet transforms work as a data compressor with the wavelet coefficients representing the 

signal. 

The use of wavelet transforms was investigated (Lin and Ewins, 1993) by comparing their 

original thrust force data with recomposition of wavelet transformation where it was found that 

use of zeroth level wavelet transformation coefficients was enough to enable detection of 

severe tool problems before failure takes place. Chatter monitoring in turning has also been 

successfully demonstrated using wavelet transforms (Wu and Du, 1996). 

2.4 Expert Systems 

The principal difference between a knowledge-based system and a conventional program lies in 
its structure. In a conventional program knowledge is intimately intertwined with software for 

controlling the application of that knowledge. In a knowledge-based system the two roles are 
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explicitly separated, the knowledge module is called the knowledge base and the control 

module is called the inference engine. This explicit separation makes it easier to add new 

knowledge either during program development, or in the light of experience during the 

program's lifetime. A rule-based system is a knowledge-based system in which the knowledge 

is represented as a set of rules known as the rule base (Figure 9). 

Rule base -fir Inference engine 

Interface to the outside world 

People (Hardware) Data Software 

Figure 9: The components of a rule-based system 

In an introductory handbook on artificial intelligence, Harmon and King (1985) defined Expert 

Systems or knowledge-based systems as computer programs that contain both declarative 

knowledge (facts about objects, events, and situations) and procedural knowledge (information 

about courses of action) to emulate the reasoning processes of human experts in a particular 
domain area of expertise. Typically Expert Systems use integral domain knowledge and 

reasoning strategies to solve problems normally requiring expertise. They usually consist of: - 
1. The data base which contains data structures from which conclusions can be drawn. 

This can be static (unchanging) or dynamic (capable of being updated). 
2. Knowledge applied to the data. 

3. The inference engine in order to reach the desired conclusion. 

The Expert System approach to signal processing attempts to address the apparent limitation of 
statistical pattern recognition systems by utilising a higher level of information to classify the 

signal. The approach emulates a human expert's decision-making process by applying expert 
knowledge (knowledge base) in the form of queries and rules. Expert Systems (ES) can be 

constructed via `productions', where a production is an "IF... THEN... ELSE... " rule. These rules 
can take many forms, but an example we might want children to have is, "IF someone smiles at 
you, THEN smile back". In a typical production system model long-term memory is built up 
from a large set of these "IF... THEN ... ELSE... " rules. There is also a working memory, i. e. a 
system holding information that is currently being processed (Eysenck and Keane, 1995). 
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Expert diagnosticians and equipment operators, whose knowledge is not easily encoded using 

numerically based algorithms, are often more efficient than currently available automated 

systems, Agogino et al. (1988) and Milne (1988). Yet due to human limitations and to the 

technical complexities of modern tests it is no longer possible for a field expert to make the 

best judgement or take the appropriate action in the face of increasing amounts of information. 

The need for automated diagnostic tools is even more acute in manufacturing applications 

because of the requirement to process data and respond effectively within a short time 

(Betancourt et al., 1990). According to Dodhiawala et al. (1989), speed alone is insufficient for 

real-time performance. There are four aspects of real-time processing to be taken into account, 

these are; speed, or the rate of execution of tasks, responsiveness, or the ability of the system to 

stay alert to incoming events, timeliness, or the ability of the system to react to meet deadlines, 

and graceful adaptation, or the ability of the system to reset task priorities according to changes 

in work based on resource ability. 

Knowledge based systems have proved to be particularly effective for performing diagnostic 

tasks in a variety of domains (e. g. Fikes and Kehler, 1985; Au et al., 1989; Lieslehto et al., 
1993). Such tasks involve determining a description of a given process in terms of the 

parameters the system knows about. An integrated monitoring system, when linked to an expert 
diagnostic system, is usually required to perform an "overseeing" function and make qualitative 
judgements about the machining operation in the FMS system. Monitoring involves the 

evaluation and analysis of a large number of features. For this reason, Expert Systems have a 

growing importance, interface and operational potentials (Lieslehto and Koivo, 1991; Medsker, 

1996). 

2.4.1 Potential for the Use of Expert Systems 

As mentioned earlier an important advantage of Expert Systems is the ease with which 
knowledge bases can be modified. As a result, changing the knowledge base does not require 

programming but can be done via word processing or an editor. Another advantage of expert 

systems is the number and variety of commercial development systems that have become 

available over the last few years. These and other aspects of Expert Systems functionality have 
been previously addressed in the literature (Hayes-Roth et al., 1983; McGraw and Cliffs, 
1989). 
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Expert systems have been used for the monitoring and control of processes in real-time (Laffey 

et al., 1988; Agogino et al., 1988). The use of sensors gives rise to important differences from 

the pioneering applications of the expert systems. Here, when the system is running, data must 

be gathered directly from sensors, instead of being obtained from the operator. This numerical 

data must then be integrated into the symbolic processing module. Until recently the use of 

Expert Systems has presented some difficulties in this kind of application, because they were 

initially designed for domains where static data and non-time-critical responses were required 

(Barrios et al., 1994). However, recent applications have overcome this difficulty (Laffey et al., 

1988) by the application of new techniques, e. g. parallel processing, flexible architecture 

design, progressive deepening and reasoning. 

It is normal to build the knowledge base of an Expert System so that the experience of the 

specialist is encoded. In extremely complex applications neither do adequate mathematical 

models exist nor is it feasible to obtain all the knowledge of the experts. This happens, for 

example, in the real-time estimation of the tool condition in machining processes as the 

enormous number of variables in the process, some of them difficult to observe and control, 

makes the knowledge of the best machinists too vague. Therefore, other knowledge is required 
in order to achieve a diagnosis. 

Multi-sensor information is so rich, but at the same time so complex, that it is not easily 
interpreted. Synthesising inference rules directly from sensor information through the use of 

neural networks can avoid the above inconveniences. 

2.4.2 Knowledge Acquisition 

Knowledge acquisition is the most important aspect of Expert System development and also the 

most problematic. The idea of acquiring knowledge from an expert in a given field for the 

purpose of designing a specific representation of the acquired information is not new. 
Reporters, journalists, writers, and industrial designers have been practising "knowledge 

acquisition" for years. 

There are a number of approaches to knowledge acquisition for Expert Systems development, 

Medsker (1994). One requires the "knowledge engineer" to extract domain knowledge from a 
human expert and then program it into the knowledge base which at best is very tedious and 

requires that the knowledge engineer have a multitude of skills (e. g. communication and 
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conceptualisation) (Stacey, 1994). Nisbett and Wilson (1977) conducted a review of studies to 

compare retrospective verbalisation with behavioural reports and concluded that inconsistency 

was common. They found that when asked questions about their cognitive processes, subjects 

frequently did not base their answers on specific points, but theorised about their processes. 

When subjects are asked for information that may not be immediately accessible, they are 

inclined to guess and may offer responses that are inconsistent with previous answers. 

Another approach to knowledge acquisition involves analysing examples and previous cases, 

inductive learning. This mode depicts the source information residing in literature, which could 

include training manuals, well established knowledge, and other such material. This method 
has several advantages as the knowledge engineer does not have to be versed in communication 

skills, the knowledge is ready for implementation and has been proved to be correct for 

implementation. An example of this is the case of medical diagnoses (Anthony, 1993). 

2.4.3 Real-Time Issues 

Laffey et al. (1988) formulated a definition of real-time systems as: The system's ability to 

guarantee a response after a fixed time has elapsed. This definition refers to the interaction with 

an external environment in a timely fashion which is the fundamental feature that distinguishes 

real-time processing from non real-time processing. 

The symbolic processing, characteristic of Expert Systems, influences the design of the system 
because an effective mapping of the Expert System's operation in the computer system will 

reduce the semantic gap and improve system performance. In order to take some of the load 

from the Expert System's inference engine, tedious and time consuming tasks should be 

organised into separate processing units with autonomous execution; only rules should be 

allowed into the Expert System environment. 

2.5 On-Line Condition Monitoring With Expert Systems and Neural 
Networks 

Rule-based Expert Systems, perhaps the most successful application of Al, have some 
significant limitations, amongst which are those listed below: - 

- The method of acquiring knowledge and translating it into a knowledge base 

comprising a set of self-consistent If-Then-Else kind of rules is tedious (Milne, 1988). 
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- The solutions developed for a restricted domain do not easily scale up to handle more 

complex domains as the system becomes unable to solve interesting problems within 

acceptable time limits (Heck, 1993). 

Fortunately, the properties of neural networks listed below complement the above-cited 

"brittleness" of Expert Systems. 

- As neural networks are trained, not programmed, their behaviour can be dynamically 

modified (Burke and Rangwala, 1991). 

- Neural networks have an ability to generalise, thus permitting training by specific 

examples (Sorsa and Koivo, 1993). 

- As neural networks use distributed representation of the external world, they exhibit 

only gradual degradation in performance, both in the case of system failure and when 

the network encounters a problem outside the range of experience. 

On the debit side, neural networks cannot explain the reasoning behind their processing as 

knowledge acquired by the network is encoded in the synaptic weights and it is not easy to 

decipher the "meaning" of the weights. Also, ANNs are not designed for the exploitation of 

existing expertise. The development of neural network interfaces to Expert Systems is an active 

area of research (e. g. Opitz and Shavlik, 1993; Hopgood et al., 1993; Medsker, 1994). In these 

hybrid systems, a neural network can be used either for knowledge expression or for knowledge 

acquisition. In the former, the knowledge acquired by an ANN is incorporated into an ES 

whilst, in the latter, inference rules are derived from the ANN. 

Neural network process modelling involves several steps including data acquisition, data pre- 

processing, variable selection, network training and testing, and network validation. An Expert 

System can be effectively used to guide each step involved in building a network. The expert 
knowledge can also be used to improve the techniques such as in variable selection (Qin and 
Rajagopal, 1993). With the integration of Expert Systems with neural network training, it is 

possible to hide the detailed neural network technology with the interface. The user can deal 

with the network training without fully understanding the underlying techniques involved. In 

the case where the user would like to know more about the technology, the Expert System can 

provide advisory knowledge (Qin and Rajagopal, 1993). For the above reasons, hybrid systems, 

comprising neural networks and expert systems, appear to hold promise. 
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Therefore, neural networks relying on training data to "program" themselves can be useful for 

hybrid systems, when appropriately trained they enable the system to generalise for operation 

on future input data. Neural networks can be useful when rules are not known, either because 

the topic is too complex or no human expert is available, also it has the benefit of easy 

modification by retraining with an updated data set. Another advantage is speed of operation 

after the network has trained. Where knowledge is precise and well defined expert systems are 

most commonly used given their logical behaviour. Finally, since neural networks results are 

crude and non intelligible expert systems may provide the best interfacing capabilities. 

In summary, Expert Systems and artificial neural networks have unique and complementary 
features that can be successively brought together for use in the challenging problem of tool 

wear monitoring. 
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3. Experimental Apparatus and Procedure 

The development of the hybrid system was based on a series of machining experiments using 

the sensor set identified in Chapter 2. In order to perform the required experiments certain 

details such as sensor positioning and calibration, workpiece/tool material, data acquisition and 

experimental procedure have to be decided. These preliminary procedures provide a better 

understanding for the experiments and enable the evaluation of sources of possible 

inconsistency such as those related to the equipment or mounting. Therefore, it is intended in 

this Chapter to give detailed information on all the aspects of the experimental environment 

used to develop the tool wear monitoring system. 

3.1 Experimental Apparatus 

This section consists of two parts, the first concerning the machine tool and the second 

describing the sensors and their positioning. Some of the considerations regarding sensor 

selection and positioning were given in the literature review and therefore will be given less 

emphasis here. 

All the experimental work was carried on an MHP Model Moog-Turn 50 (MT50) Slant Bed 

Turning Centre (MHP Machines Ltd. ), with standard CNC control. The effective bed size is 

500 mm with a DC servo motor of 18 kW driving the spindle. This machine can provide a 

constant power of 34 kW between 1000 and 3000 RPM (Figure 11), and the range of 
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admissible cutting parameters is limited by the maximum 4000 RPM imposed by the chuck 

capacity. The turning centre has the following programme resolution: feed rate 0.001 mm/rev; 

cutting speed I m/min; and depth of cut resolution 0.00 1 mm. 

4000 

2000 

oao tooo0o 2000 OD =00 400000 50000 

RPM 

Figure 11: Moog Turn 50 - Power versus speed 

The experimental arrangement can be seen in Figure 12, which provides a general idea of 

equipment layout as well as the data handling approach. 

Establishing the optimum sensor position is not an easy task and a balance has to be drawn 

between proximity to the signal source and intrusion on the cutting process. One of the aims of 

the work was to utilise sensors in the least intrusive way, so as to facilitate the potential use of 

the monitoring system in practical situations. Four measurements were selected to monitor tool 

wear evolution; vibration, sound emission, cutting forces, and spindle current. 
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3.1.1 Technical Information on Sensors 

Table 2 gives the list of sensors used for the present study. This section provides a detailed 

description of each sensor's characteristics relevant to their purpose. Where possible static and 
dynamic calibration will be given. 

Table 2: Instrumentation 

Sensor Description 
Accelerometer Kistler 8752A50 & Piezotron Coupler - Kistler 5108 
Microphone ECM-1028, matching amplifier 
Strain gauges Two half Wheatstone bridge (amplification - RS 435-692) 
Current Meter CNC built in sensor 

3.1.1.1 Accelerometer Technical Data 

The accelerometer was calibrated at the origin by Kistler Instrument Corporation using a back- 

to-back comparison technique against a Kistler Working Standard. The calibration information 

for this accelerometer is; mounted resonant frequency 32.6 kHz, transverse sensitivity 1.6%, 

range ± 50 g, and sensitivity 100.2 mV/g. Figure 13 shows the frequency response of this 

accelerometer as calibrated at the origin. 

5.0 

ö 

0.0 

. 5.0 

Figure 13: Frequency response of accelerometer (data from manufacturer) 

3.1.1.2 Strain Gauge Calibration 

Static calibration of both sets of strain gauges was conducted by applying forces of between 
600 and 900 N to the feed and tangential directions respectively. The relationships derived 
from the calibration graphs are: 
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9 Feed direction, Ff (N) = 210.62 Va,,, + 632.85, rf = 0.99996 

" Tangential direction, F, (N) = 154.58 V0,,, + 463.68, r, = 0.999978 

where V0,, is the measured voltage in volts (v) and r is the linear correlation coefficient. 

400 

v 

0.00 

I 
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Figure 14: Calibration graph of force transducer 

Both the accelerometer and microphone output voltage were set to zero. Given their oscillatory 

character, amplification was set for an output voltage within [-3,3] v, according to previously 

acquired data under worn tool cutting conditions. Feed and tangential force output voltage were 

amplified to give values within [-3,3] v, the lower value (not cutting) was set to -3 v and the 

upper value (cutting with a worn tool) to be less then 3 v. 

3.1.1.3 Spindle Current Measurement 

The spindle current was measured directly from the CNC machine. The lathe is equipped with a 

current meter which is driven internally by the current from the spindle motor. A connection 

was made to this meter and fed trough an RC filter. At the source this signal is half-wave 

rectified and can simply be fully rectified to give a constant unidirectional voltage signal. 

Figure 15 gives a typical 512 sample acquisition of the voltage meter measuring spindle 

current, as provided by the machine interface. Spindle current was averaged digitally after 

acquisition and a sample size of 512 is adequate given the nature of the signal. Each rectified 
half wave has a frequency of 300 Hz, the original sine wave should have a frequency of 150 Hz 

due to the fact that the spindle is driven by a three-phase motor 
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20.00 -, 

a_ 

Moo 

000 

Time (s) 

Figure 15: Typical spindle current raw signal 

3.1.2 Sensor Mounting and Positioning 

63 

A brief description of the motivations for the proposed sensor mounting and positioning will 

now be given as well as relevant information regarding the latter. 

" Microphone - Sound may be defined as any pressure variation that the human ear can 

detect, in this case corresponding perhaps to the rubbing between the cutting tool and 

workpiece, and vibration of the tool shank. The microphone was mounted in rubber 

pads in one turret of the tool handling system so that the signal path remained at 20 cm. 

" Accelerometer - The accelerometer was mounted on the base of the CNC machine in a 

vertical orientation. A permanent magnet was used as the attachment method, which 

gave a resonant frequency of 7 kHz sufficient for vibration levels up to 2000 m/s2, 

which was felt to be adequate for the expected frequencies. 

" Force - Strain gauges were attached to the tool holder with epoxy resin and cured at a 

constant temperature of 120°C for 8 hours before being left to cool to room 

temperature. They were placed 5.5 cm away from the tool/workpiece interface and 

arranged to form two full Wheatstone bridges. 

3.1.3 Tool Shank and Workpiece Material Details 

The tool shank was of rectangular section 2x2.5 cm, having the 2 cm side facing the feed 

direction. The shank was fixed to the tool holder with two screws overhanging by 6.5 cm. One 

observation of significance in later discussion was that chatter occurred occasionally at the 

extreme end of a tool's life typically for VBB > 0.35 mm. 

The workpiece, a bar initially 75 mm in diameter and 173 mm long was held at one end by a 

special 250 mm diameter 3 jaw type 87 international power chuck and supported at the other 
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end by a motorised programmable tailstock unit. This arrangement provided a relatively stable 

and rigid workpiece arrangement. 

The material used was a cylindrical bar of EN1A' (BS 970: Part 1: 1983: 220M07/23OM07) 

machined to a final diameter of 30 mm with 135 mm cut lengths. An insert type HC-P25 grade 

(WALTER designation of grade WTN 43) coated carbide (CNMG 120408) was used 

throughout all the experiments. The tool coating is made in two layers by Chemical Vapour 

Deposition (CVD); an inside one of titanium carbonitride (Ti(C, N)) and an outside one of 

titanium nitride (TiN), to a total thickness of 12 µm. The angles of the insert seating relative to 

the tool holder were: cutting rake -6°, and back rake -6°. 

3.1.4 Equipment Set-Up 

Preparing the equipment for experiments involved calibration and signal level adjustment to 

ensure the maximum signal to noise ratio. 

0.00 . Pe 
0.00 

-20.00 

I 
-40.00 

Figure 16: Bode diagram for RC circuit 

-10.00 

-20.00 
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In order to prepare the experimental apparatus the following procedure was adopted. All 

amplifiers were arranged to provide an output voltage within the range [-5; 5] v, and were 
filtered by an analogue low pass (RC) filter with dynamic characteristics as in Figure 16. To 

reduce noise interference due to environmental constraints, shielded cables were employed. 

1 The EN1A specification gives: C 0.15% max., Mn 0.9/1.3%, P 0.07 max., S 0.25/0.35%. 
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Sound Emission -º ` Sound Amplifier +LPF Channel O 

Vibration -º 
I Piezotron coupler + LPF Channel 1 

lol. 

Feed Force 
-ºýRS 

435-692 + LPF 
I 

Channel 2 

Tangential Forc 
-º 

RS 435-692 + LPF Channel 3 

Spindle CurrentLow Pass Filter (LPF) Channel 4 

Data 
Acquisition 

Board 
PC30PGL 

Figure 17: Sensor coupling and channel connection 

The following list gives details concerning each sensor circuitry and signal amplification. 
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" The accelerometer was coupled with the charge amplifier in an arrangement shown in 

Figure 17. 

"A simple circuit gave an amplification ratio of 10/1 for the audible sound (Figure 18). 

+5V T-11 

15V 

10KQ >- 500KSn 

R 
7uF OUT 

N }ý IC1 C 

R- 8.2k n 
10KS2 47Kf C=680uF 

id TL071 
10uF 
15V 

ov 

-5V 

Figure 18: Sound amplification circuit diagram 

" The spindle current was rectified (for reasons given earlier) and used without 

amplification given its adequate voltage level. 

" The strain gauges were set-up in a full bridge arrangement (Figure 19) for temperature 

compensation and accuracy. A Wheatstone bridge integrated circuit (RS 435-692) was 

used for amplification of the strain signal. 
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Tangential Force 

RS 436-692 
To Data 

Feed Force Acquisition Board 
4RS 

436-692 

Figure 19: Schematic of strain gauge arrangement 

3.1.4.1 Data Acquisition System 

The computer used to handle all the data processing and event scheduling was a 486 DX2/66 

with 16 Mb of RAM. The computer was fitted with a data acquisition board (Amplicon PC30 

PGL) with a maximum sampling rate of 200 kHz, a typical conversion time of 10 microseconds 

and a 16 way multiplexed input for which Direct Memory Access (DMA) control was 

available. A sampling frequency of 20 kHz per channel in DMA mode was used and controlled 

by the on board clock provided by the data acquisition board, this being set via software. The 

first 5 A/D channels were connected in bipolar mode for noise reduction using a voltage range 

of ±5 v and a resolution of 12 bits or 0.0024 v. The gain on the board was set to unity. Data 

gathering while turning consisted of recording at the mid-point of the machined workpiece. 

After each recording, VBB was measured with an engineering microscope with a resolution of 

0.01 mm. Data was acquired every 2 minutes over the tool life of around 15 minutes 

(experimentally determined) along with the respective measurements of flank wear. 

Calibration of the data acquisition board was done using a three digit multimeter according to 

the manufacturer's recommendations which assured consistent readings throughout 

experimental tests. 

3.2 Experiments to Determine the Influence of Sample Size on Features 

Preliminary experiments were carried out to determine the influence of sample size on the 

different statistical parameters as well as the frequency spectrum. The effects of sampling 
frequency and sample length were investigated in order to establish a suitable set of parameters 

avoiding misinterpretation of data and also the acquisition of excessive amounts of duplicate 

information. The influence of sample size on data acquired with the microphone can be seen in 

Figure 21 to Figure 24 (obtained from a full record of sample data - 8192 data points), this 
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sample data was acquired during normal cutting for a flank wear value of 0.22 mm. It can be 

observed that a variation in the value of kurtosis and skewness (Figure 23 and Figure 24) 

occurs with increasing sample size whereas the mean and absolute deviation showed little 

variation with sample size. The vibration signals showed approximately the same 

characteristics. In the present study a 512 sample size was chosen to enable processing of the 

15 features in real-time even though this may not be the optimum in terms of feature stability. 

300 
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Figure 20: Histogram of occurrences on a 8192 samples of sound 

Figure 20 shows that this distribution is slightly left tailed, that is, it would be expected a 

negative skewness. However, this distribution is not far from a normal (Gaussian) distribution 

therefore a value slightly lower then zero would be expected. A value for the Kurtosis is more 
difficult to determine visually since the distribution does not appear to exhibit any tendencies 
for "flatness" or "peakedness" therefore a value around zero is expected. 
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Figure 21: Average of sound for different sample size, VBB = 0.22 mm 

Figure 21 to Figure 24 complement the discussion above. The horizontal axis represents the 
number of points taken into account for the evaluation of a determined parameter and the 
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vertical axis the value calculated for it. The upper and lower bands were established from the 

overall data as being respectively the obtained maximum and minimum. 
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Figure 22: Absolute deviation of sound for different sample size, VBB = 0.22 mm 
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Figure 23: Kurtosis of sound for different sample size, VBB = 0.22 mm 
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Figure 24: Skewness of sound for different sample size, VBB = 0.22 mm 

The power spectrum experienced little change with changes in sample length, and as processing 
of the spectrum was restricted to estimating the power in a certain band, it was felt that a 512 

sample size was acceptable. 
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3.3 Experimental Method 

All the tests were performed under CNC control to ensure repeatability between the 

experiments. The CNC was programmed to give the desired cutting conditions. As already 

mentioned, the criterion used to determine tool life was based on IS03685 (1993), whereby a 

tool is considered to be worn out if the flank wear, VBB exceeds 0.3 mm. All the tests were 

carried out in the absence of coolant. 

3.3.1 Feature Extraction 

Data was acquired with a sample length of 512 points for each signal over which data analysis 

was performed using different time and frequency analysis techniques, Table 3. The relevant 
formulae can be found in literature (e. g. Press et al, 1992). Statistical analysis was performed 
for the first four moments, frequency analysis used the commonly known Fast Fourier 

Transform (FFT) algorithm using a rectangular window. The power spectrum of each signal 

was scaled linearly and its resolution was of 39 Hz per division. 

Table 3: Data analysis applied to each sensor signal 
Signal Data Analysis 

Sound and vibration FFT, average, absolute deviation, kurtosis, skewness 
Cutting forces Average 
Spindle current Average 

Table 4: Feature description 

Feature Processing 
Average Mean value of 512 points 

Absolute deviation Absolute deviation of 512 points 
Skewness Skewness of 512 points 
Kurtosis Kurtosis of 512 points 

FFT 2 bands selected from a 512 points FFT 

For both sound and vibration signals, the width of the frequency band was chosen to be 200 Hz 

centred around 2.3 and 4.5 kHz. Signals from both time and frequency domains represent the 
feature space and are taken as the input to the neural networks. 

3.3.2 Experimental Procedure 

The experimental work was divided into two main parts, one with a fixed set of cutting 
conditions, and the second over a range of different cutting conditions. The CNC was stopped 
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immediately after sample data was acquired to enable the measurement of flank wear. The 

value of flank wear was then typed into the file containing the relevant sensor data and this was 

labelled for off-line tests. 

3.3.2.1 Experiments With Fixed Cutting Conditions 

The aim of this first set of experiments was to gather data to allow training and testing of the 

monitoring system. The cutting conditions investigated were selected so that the tool would 

experience realistic production conditions and so that the tool wore out in a reasonable time 

(cutting conditions: cutting speed 350 m/min; feed rate 0.25 rev/min; and depth of cut of I 

mm), SECO TOOLS AB (1993). These tests were carried out for 6 insert tips giving a total of 

52 different wear levels. The 6 inserts gave a standard deviation of 2.1 min (14% of average 

tool life) justifying once again the use of a monitoring system. 

3.3.2.2 Experiments With a Range of Different Cutting Conditions 

In order to assess the range of applicability of the tool wear monitoring system it was necessary 

to collect data from the complete range of cutting conditions applicable to this tool-workpiece 

combination (SECO TOOLS AB, 1993). The experiment systematically varied cutting speed, 
feed rate and depth of cut in a coarse manner and a fine manner around the cutting conditions 

of the experiment in section 3.2.2.1 as the time involved in completely wearing out tools at 

each point would have been prohibitive it was decided to collect data from three tool states, 

new; VBB; O, worn; VBBiO. 15 mm and worn; VBBý0.3 mm. 

According to the range of cutting conditions allowed by such a tool the following limits were 

established for the cutting conditions; feed rate 0.2 to 0.5 mm/rev, cutting speed 200 to 350 

m/min, and depth of cut up to 5 mm. To keep the number of experiments within reasonable 
limits, tests were conducted with the neural networks on-line to establish the range of 
adaptability of a network trained for a given set of cutting conditions. Following the 
determination of the range of depth of cut, feed rate, cutting speed under which the neural 
networks could still perform tool wear monitoring accurately, finer variations were introduced 

within the area of tolerance for each of the cutting conditions. 
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4. Hybrid System Approach to Tool Wear Monitoring 

In order to implement intelligent tool wear sensing systems in an automated manufacturing 

environment, it is helpful to examine how such a function is performed by a human machinist. 

Human operators detect the occurrence of tool wear by observing the machining operation and 

evaluating the resulting sensory information as described earlier. The sensory information is 

probably associated with experience-based memory triggers and a decision is then made as to 

whether the tool wear level warrants interruption of the process and investigation of a tool 

changing procedure. The process is one of pattern recognition in which disparate, noisy and 

incomplete sensory data patterns are used to make a decision as to the level of tool wear. 

This chapter discusses the design and implementation of a system for tool wear monitoring. It 

begins with a discussion of data normalisation, the linking of the neural networks and Expert 

System and finally the architecture and implementation issues of the unsupervised system. 

4.1 Formulation of the Problem 

The development of tool condition monitoring systems has attracted a large research effort in 

the past two decades. Machining conditions of interest include chatter, tool breakage and 
different states of tool wear. A number of studies have focused on the development of effective 

monitoring indices, which are sensitive to tool condition but insensitive to cutting conditions, 

Table 5 summarises some of the results when monitoring tool wear. 

Table 5: Application of condition monitoring using sensor fusion 

Monitoring Indices Reference 
Ratio of the force amplitude at first natural frequency of tool-holder and the 

vibration amplitude at the same frequency 
Rao, 1986 

Frequency analysis of dynamic forces Choi et al., 1990 
Frequency band energy of the tool holder vibration Sokolowski et al., 1992 

Spectral components of the sound radiated during cutting Lee, 1986 
Motor Current mean value Agogino et al. 1988 

Several approaches have been described for the development of monitoring systems by the use 

of multiple sensors. Table 6 summarises several examples from recent studies applied to the 

turning process. 
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Table 6: A list of monitoring indices for tool condition monitoring in turning 

Sensor Signal Monitoring Indices Classification Method Reference 
Force and AE Power Spectrum Neural networks Burke and Rangwala, 1991 
Sound Emission Power spectrum Least-squares minimum- 

distance 
Trabelsi and Kannatey-Asibu, 
1991 

Forces Force ratio Neural network Lee et al., 1996 
AE, forces and 
spindle current 

AR models and power 
spectrum 

Neural network Dornfeld, 1990 

Vibration Power spectrum Data Dependent 
System(DDS) modelling 

Pandit and Kashou, 1982 

Vibration and 
forces 

Ratio between force & 
vibration amplitude 

Wear index Rao, 1986 

According to published results, these monitoring methods may achieve a classification success 

of 90% or higher in controlled laboratory experiments using the same data for analysis and 

testing. This assumes that all samples carry the same information which may not be true. This 

means that the sensitivity and robustness of monitoring- systems has not been widely 
investigated. This section develops a design for a tool condition monitoring system for the 

turning process with an emphasis on the development of a robust system. 

In order to increase robustness two neural networks have been used to interpret the sensor 
information. An expert system acts as a mediator, synthesising information from different 

sources, namely; the neural networks, awareness of cutting conditions, workpiece material and 

cutting tool, cutting time, and empirical knowledge in the form of rules. By combining all this 

information intelligently it was expected that the system would be robust whilst retaining a 
high success rate on classifying tool wear. 

In summary, this work involves the development of a hybrid neural network/knowledge-based 

strategy for intelligent tool wear monitoring using multiple sensor information for cutting tool 

monitoring applications. The neural networks focus on determining tool wear state under 

normal and off-normal conditions, and this requires an investigation of the temporal signatures 

of the various sensor measurements. The hybrid strategy focuses on integrating the ANN 

results with expert assessment and prediction knowledge in order to provide the machine 

operator with intelligent and consistent recommendations. 

4.2 Identification of Neural Network Strategy 

This section proposes a system for tool wear classification which employs clustering type 

neural networks as an efficient alternative to modelling. The `pure' neural network perspective 
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might hold that the so called unsupervised networks operate without any labelled training data; 

further, that their assumed continuously plastic mode of operation requires proof of stability. 

The pure engineering perspective might mistrust a system for determining tool wear which has 

no basis in theory or empirical history of materials. The next sections address these 

reservations and proposes and justifies a practical design. 

The advantage of a system which requires no `teacher' and no labelled training data is obvious. 

At the very least, unlabelled data costs less (labelled data implies stopping the machine and 

making measurements of flank wear) and at best the system requires less time and human 

participation to train. The ideal unsupervised system runs in a continuously plastic mode; that 

is, weights continue to change as long as incoming patterns are fed to the network. However, 

plasticity may lead to instability, so the system must possess the ability to stabilise. 

A completely unsupervised system, when confronted with an input pattern, will yield one or 

more integers that indicate to which class it believes the input belongs. If data vectors were to 

be submitted to such a system, the results would have no meaning unless the correct 

classification were known a priori. For example, a system might assign a pattern to a particular 

class, but it does not understand what that class represents. In order to assess system 

performance it is necessary to know the number of classes required and be able to confirm the 

classification made by the neural network. Thus the so-called unsupervised system for this 

application at least requires labelled data, as does a supervised system. This unsupervised 

system still possesses the ability to `learn' without intervention; i. e. to cluster data. It can adapt 

and self-organise, without incorporating the external data of the correct classification. The 

unsupervised system seeks to minimise the error between the input and weight vector whereas 
the supervised system minimises error between the response of the network to a given input 

and the expected response to that input. 

Although an ideal system might not possess a training period (Burke, 1989) in practice this is 

not possible as some assessment of the network's performance has to be made. For the ART2, 

Carpenter and Grossberg (1987) provided in-built stability whilst learning. The SOM achieves 
the same results by the introduction of decreasing learning rates, which on their own prevent 
the neural network from becoming unstable. This results in a reduced learning capacity with 
time in contrast with the ART2's ability to overcome stability without losing plasticity. 
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Once the system has clustered the training set with sufficient accuracy as indicated by its 

stability, or some other external criterion, then it must respond to new inputs. If the system 

weights remain plastic, then the difficulty of interpreting clusters may reappear. The training 

set definition may lose integrity, since it remains in a learning mode and can gradually redefine 

previously well understood clusters. Practical considerations in this application necessitate the 

loss of plasticity, hence the use of a limited training period. In order to achieve the best 

performance it is necessary to make a compromise between stability and performance; an 

optimum training period has to be achieved for minimal weight change. 

4.3 Neural Network Implementation 

When using neural networks it is important to be aware of the effect of computational 
limitations. Relevant features have to be determined externally and the task of the neural 

network is to determine the relationship between the incoming data and the tool wear classes. 

In the application to tool wear monitoring it is necessary to know the tool wear rate in order to 

take corrective actions. The following two networks generate approximate values of wear for 

each set of input features. The objective is to be able to classify the present wear stage to take 

appropriate action in the future regarding tool change. The previous considerations are not 

addressed in other research (e. g. Dornfeld, 1990; Burke and Rangwala, 1991; Lee et al., 1996), 

where a limited number of classes exists for the evaluation of performance. 

4.3.1 Self-Organising Feature Map 

The SOM typically has two layers. The input layer is fully connected to a two-dimensional 
Kohonen layer, which is a different structure to multiple hidden layers. In the SOM layer, none 

of the neurones are connected to each other, regardless of relative position. 

The Kohonen layer neurones each measure the Euclidean distance of its weights to the 
incoming input vector. During recall, the Kohonen neurone with the minimum distance is 

called the winner. Thus the winning neurone is, in a measurable way, the closest to the input 

value and thus represents the input value. During training, the Kohonen neurone with the 

smallest distance adjusts its weights to be closer to the values of the input vector. The 

neighbours of the winning neurone also adjust their weights to be closer to the same input data 

vector. 

r 
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One problem that could arise is that, by chance, one neurone can end up representing too much 

of the input data. For example, this could appear due to the initial randomisation of the 

Kohonen neurone weights, where one neurone might end up representing all the data and little 

information about the clusters of the input data would be found in the Kohonen layer. To solve 

the problem of a neurone winning too frequently, the mechanism of "conscience" is introduced 

(DeSieno, 1988). The conscience mechanism depends on keeping a record of how often each 

Kohonen neurone wins and this information is then used during training to `bias' the distance 

measurement. If a neurone has won more than average, then its distance is adjusted upwards to 

decrease its chance of winning. The adjustment is proportional to how much more frequently 

than average the neurone has won. Also, if a neurone has won less than average, then its 

distance is decreased to make it more likely to win. The conscience mechanism helps the 

Kohonen layer achieve another benefit: The neurones naturally represent approximately equal 

information, that is, where the input space has high density the representative neurones spread 

out to allow finer discrimination. 

Taking into account what was previously discussed, and based on the above indications, the 

algorithm will be presented step by step as it was built for the SOM working module (Appendix 

B gives further details). 

Step I Initialise weights from the N inputs to the total output nodes M? to small random 

values. Set the initial neighbourhood radius. Initialise neurone winning frequency Fjk to 
1/11 for all output nodes. 

Step 2 Present an input randomly selected from the training set. 
Step 3 Compute each distance duk between the input X, and each output node (j, k) using, 

dj, k = 
2(x, 

(t) 
- wok (t)y 

, r. o 
where xi(t) is the input feature to node i at time t and w; ýk(t) is the weight from input 

node i to output node (1, k) at time t. 
Step 4 Adjust distance according to neurone winning frequency, 

d knew =d jk old 
+7 (M2 

. Fjk -1) 
where 0<y<I represents the weight of the conscience effect, A? the number of 
neurones in the output layer. 

Step 5 Select node (jo, k& as that output node with minimum distance duk. 
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Step 6 Update of neurone winning frequency, 

for the winning neurone, 

Fjk 
new 

= Fjkold +3 
(1.0- 

Fjkold) 

for all other neurones, 

Fjknew = FjkoId +p 
(0.0- 

Fjkod) 

where 0<ß<1 corresponds to the coefficient of distance adjustment, which should be 

picked so that Fjk1e%, does not reflect the random fluctuations in the data. 

Step 7 Weights are updated for node 60, k& and all nodes in the neighbourhood defined by 

R(t). The new weights are, 

w; k 
(t + 1) = wok (t) +c (t). h(t). [x, (t) -w;; k 

(t)], 

The term c(t) is the learning rate (0 < c(t) < 1) that decreases linearly in time, the 

function h(t) provides the lateral interaction between the neurones. 

Step 8 Repeat by going to Step 2 

The SOM implementation consists of three major components; input vector normalisation, 

training, and map interpretation. The SOM relies on the normalisation in order to avoid 

overloading of variables and is carried out by determining the maximum and minimum for each 

feature so that the relative magnitude and variation is preserved. The training period was set 

experimentally by inspecting the results from different number of epochs using the guidelines 

given by Kohonen (1990). Upon training, the weights start to stabilise until there is no 

significant change in their value, at this stage care has to be taken that the network does not 

become over-trained. If over-training occurs, generalisation upon new data is impossible and 

the network becomes inaccurate in its classification ability when presented with new data. 

In order to evaluate the performance of the proposed network it was necessary to interpret the 

SOM topological output. This was achieved by using the Kriging method for surface meshing 
(Davis, 1986). This meshed surface is stored in a file ready for classification of a test sample. 

4.3.2 Adaptive Resonance Theory Module 

ART networks are most easily understood as devices for classifying input patterns. The goal is 

to present a sequence of patterns to such a network and have each "appropriately" classified by 

this network. An ART algorithm can classify and recognise input patterns without ever having 

a teacher present. The heart of an ART network consists of two interconnected layers of 
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neurones, F, and F2, which comprise the attentional system. The input leads to activity in the 

feature detector neurones in Fl. This activity passes through connections (synapses) to the 

neurones in F2. Each F2 neurone adds together its input from all the F, neurones and responds. 

Furthermore, in one version of ART, presented here, the neurones in F2 compete with each 

other, so that at any instance, at most one neurone is active. This simple overview of the ART2 

algorithm is extended in Appendix A. 

The detailed equations of the ART2 dynamics are provided in Appendix A but a summary 

would be: 

Step 1 Initialise the following parameters: a, b, c, d, 0, p. 

tJ; (0) = 0, 

1 
bu (0) = JN- , 
0_<i<_N-1,0<_j<_n, 

where N is the dimension of the input vector and n is the number of F2 nodes, 

wi =x, =v, =ur=q, =Pr=O. 
Step 2 Apply a new input vector. 
Step 3 Calculate the F, activities using Equations [A. 1] - [A. 8]. 

Step 4 Compute the F2 matching scores according to Equation [A. 9]. 

Step 5 Choose the active F2 node using Equation [A. 10]. 

Step 6 Activate the Jth F2 node. 
Step 7 Perform the vigilance test according to Equations [A. 12] and [A. 13]. 

Step 8 If 

IIPII ` 1' 
then deactivate the selected F2 node and go to Step 4. 

Step 9 Adapt bottom-up and top-down weights according to Equations [A. 14] and [A. 15]. 
Step 10 Repeat by going to Step 2. 

For the ART2, the three major design issues are; normalisation of the input vector, training, and 
tuning the network. For tool wear identification, the magnitude of tool wear related features has 
been found to be an indicator of tool wear. However the ART2 algorithm relies on an explicitly 
normalised input vector and automatically normalises the vectors during processing. It was 
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therefore decided to use the normalised inputs taking into account their limit values, thus 

adopting a fixed scale for each feature . 

Training of the AR12 starts with uniform initial weight vectors, all equal to 1r'12 (N is the 

number of features). The duration of the training period is set according to the network's 

performance, during which weights adapt and after which weights are frozen, and this is based 

on tests of stability. This policy relies on the understanding that the coarse encoding produced 

by a limited training period will not significantly differ from that obtained after more cycles. 

Network tuning is probably one of the most important points in the implementation of the 

ART2 network. In order to achieve a good resolution, that is, a suitable number of 

representative wear clusters, the vigilance parameter has to be chosen appropriately. This 

means that the number of clusters has to be large enough to provide a suitable number of wear 

classifications without increasing mis-classifications and therefore has to be set experimentally. 

The first step in using unsupervised networks is to interpret clusters and use them for 

classification. It was felt that, in order to associate different wear levels to the clusters created, 
it would be necessary to use "supervised" samples. The approach here uses a classification 

concept similar to a hit ratio where the average of wear values associated with the "supervised" 

samples is calculated for all the samples falling into each of the clusters. An assessment of 

performance was made by plotting the classification against measured values, the linear 

correlation coefficient giving a measure of performance. 

4.3.3 Neural Network Policy Development 

From the design issues discussed above and the practical requirement of tool wear 

classification, the best policy will emerge after testing. However, based on the abilities and 
limitations of the unsupervised system and on preliminary observations the policy outline will 
be described here. 

In real-time, the only available information concerning a configuration's success will reside in 

its training performance. The ideal policy will recommend employing a neural network 

exhibiting "good" sample set classification. The testing to be performed will assess the validity 

of such a policy for competitive learning, i. e. it will observe its generalisation ability. In 

addition, testing will identify the configurations which typically yield good results, and mark 
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them as good candidates for the application. In other words, good choices for the training 

period and vigilance parameter are hoped to be found. Two policies exist for training pertaining 

to weight update. In this work the policy dictating that weights freeze after "sufficient" training 

is followed because this provides better control over test classification. 

The ART2 and SOM neural networks were implemented in the `C' language, based on the 

respective algorithms. Both modules have two modes of operation, one for training and another 

for classification which is controlled by the expert system. 

4.4 Expert System Development 

The ANN interpretation knowledge base maps the outputs of the ANN into specific detector 

states. This is done by determining their membership value which measures how worn the tools 

are in terms of a threshold value selected according to tool wear criteria or finish requirements. 

The final result is then selected based on a reliability measure for the neural networks which 

takes into account their performance. 

Knowledge is encoded in the form of rules which enable the expert system to perform any 

reasoning required for tool wear prediction. The priority of a rule allows the determination of 

the order of precedence in the reasoning path when more than one rule applies. 

4.4.1 Improving the Effectiveness of the Stand-Alone Neural Networks 

In order to reduce the effects of mis-classification by the two ANNs rules have been encoded 

which encapsulate Taylor's tool life equation. The prediction made by Taylor's tool life 

equation (V7"=C) is used to establish preliminary wear intervals with mis-classifications being 

removed if they fall outside these intervals. The set of rules devised to establish classification 

confidence limits are shown in Table 7 and exemplified in Figure 25. 

Table 7: Rules based on cutting time 

Rule No IF THEN Priority 
1 VBB (NN) > VBB (Taylor) + 0.15 Exclude 2 
2 VBB (NN) < VBB (Taylor) - 0.15 Exclude 2 
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Figure 25: Outlier detection example 

The parametric values of Taylor's tool life equation for the workpiece and tool material, that is 

n and C, have to be known in order to determine the above rules, and for a given set of working 

materials and cutting tools a data base could be constructed to cover a typical workshop. For 

the workpiece material and cutting tool used in this study, these values were set to C= 823, n= 

0.33 (Shaw, 1989). 

4.4.2 Interpreting Uncertainty Using Fuzzy Rules 

At this stage tool wear level is classified in order to establish the degree of wear, that is, the 

interpretation made by the ANNs combined with the outlier detector is mapped onto different 

levels using a characteristic function which returns a value in the interval [0; 1], thus allowing a 

continuous grading of set membership between 0 and 1. The membership function [6] 

determines how worn is the tool (Figure 26). 
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Figure 26: Worn out - Membership function 

µ (VBa) =1 1+ e70''"-' [6] 
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Membership of a class is defined by the sigmoid function which uses VBREF as an exponent 

constant. This value might be selected to account for surface finish, machine stability, or 

different wear criteria. It is also important to account for small deviations from the predicted 

results, this may be referred to as a safety margin. For this work a value of VBpF = 0.28 mm 

was found to be suitable, giving . i(0.3)=0.8. A fuzzy membership function avoids the hard 

barrier created by crisp sets (worn or not), thus for each classification a grade is given which 

specifies how worn is the tool. The corresponding rules implemented in the current system are 

shown in Table 8, these, effectively, account for outliers or calculate their membership value 

according to the previously achieved by rules I and 2. 

Table 8: List of rules to determine membership of non-outliers 

Rule No IF THEN ELSE Priority 
3 VBB (ART2) ; e: Unknown µ (VBB (ART2)) PART2 +1 1 
4 VBB (SOM) * Unknown µ (VBB (SOM)) PSOM +1 1 

Neural network performance is taken into account by keeping track of previous failures 

recorded by the outlier detector (PA, value). Membership values are only calculated for 

predictions that are found to pass the outlier detector, otherwise they are accounted for the 

reinforcement of a neural network's ineffectiveness towards tool wear classification (PNN 

value). 

4.4.3 The Use of Historical Data 

In order to increase the classification confidence, each prediction is compared with up to Np 

previous classifications which allows the expert system to establish the final decision of the 

neural networks (rules 5 and 6). The analysis consists in obtaining the linear correlation 

coefficient for the last Np samples. 

Np (VB,. SI). - VBr. 
tS, 

i 
[7] 

(VBN- Si 
2 
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Table 9: List of rules to account for historical weighting 
Rule No IF THEN Priority 

5 VBB (ART2) ý Unknown rh (ART2) 1 
6 VBB (SOM) ý Unknown rh (SOM) 1 

where Si are the previous Np samples from previous predictions. If the last Np predictions are 

well correlated a value near 1 is achieved for rh. Although the evolution of wear with time may 

not be linear it is possible to assume a linear relationship in small intervals of time, 

corresponding to the Np previous samples. Due to sparcity of data obtained during 

experimental work an Np value of 3 was used. 

4.4.4 Tool Wear Diagnosis 

Finally, to obtain the overall assessment of tool state it is necessary to examine the results of 

the combined rules 3 to 6. Since the aim is to determine whether the tool has failed due to 

excessive wear, a Goal has to be established within the expert system to ask, "In What State is 

the Tool? ", this goal triggers all the process of rule interpretation. If the ANNs agree on the 

state of the tool, or one reports an unknown state, a solution is possible, otherwise tool state will 

be resolved from a reliability perspective. Reliability is determined using the NN wear 

prediction correlation (determined from previous data) and the present prediction. Thus, a 

poorly correlated prediction history reflects the inability of the neural network to perform tool 

wear classification effectively. 

The diagnosis consists on the integration of both neural network predictions using the weights 

provided from the analysis of their performance, based on the evolution of historical data, rh, 

and successful classifications obtained, PNN. The prediction is assumed based on their 

reliability, therefore the most reliable neural network controls the final result. 

Table 10: Rule to resolve conflicts between predictions 
Rule No IF THEN Priority 

7 Pm(ART2)/ rh(ART2) < Pm(SOM)/rh (SOM) ART2 0 
8 PM,, (ART2)/ rh(ART2) >= P,,, r, (SOM)/rh (SOM) SOM 0 
9 Both Unknown Unknown 0 

Table 10 shows the rules which resolve the conflict between neural networks by comparing 
their reliability and historical success based on up to date information processed each time a 
verdict is triggered by a new data sample. 
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4.5 Hybrid System Development 

83 

The prototype tool wear monitoring system is a hybrid integration of the neural networks and 

the expert system knowledge base described in the previous sections. Within this hybrid 

architecture, the neural networks are employed to detect the state of the tool as it changes with 

time. The knowledge based expert system is used to determine confidence limits of tool wear 

stages via the Taylor's tool life equation, interpret the ANN results, and provide an overall 

monitoring assessment. 

A proprietary environment (KAPPA-PC) was used to combine the neural network and expert 

system technologies and to develop the tool wear monitoring system. Although all of the 

software framework and most of the knowledge base was embedded in KAPPA-PC some 

numerically intensive processing was performed by external ̀ C' programs (Appendix C), for 

example the neural networks. 
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Figure 27: Expert system structure 
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KAPPA-PC allows the rapid development of applications in a high-level graphical 

environment, generates standard ANSI C code and provides a wide range of tools for 

constructing and using applications. In the KAPPA-PC system, the components of our domain 

are represented by structures called objects. Objects can be either classes or instances within 

classes (e. g. Tool. -State where Tool is the class and State one of the instances). The 

relationships among the objects in a model can be represented by linking them together into a 

structure called a hierarchy, as illustrated in Figure 28. This figure gives a representation of the 

hierarchical structure used to build the present monitoring system. 
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Figure 28: Hybrid system frame-based representation 

Figure 28 shows how the knowledge is organised into classes and subclasses in the Expert 
System. The "Global", "Menu", "DDE", "Image" and "Kwindow" classes are standard in the 
KAPPA-PC shell Expert System. The classes "CutCond", FileSetup", "Monitors", "Inputs", 
"Wear" and "ProcessHistory" are used for the Expert System of interest here. 

The class "Inputs" has four subclasses corresponding to the four types of sensor used in the 

overall system. Each subclass contains information relative to feature extraction on each of the 
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sensors. The "Monitors" class has three subclasses that hold different tool life related 

information. Information related to the process history is held on the subclasses of 

"ProcessHistory", these contain the settings for the processing of historical data as well as lists 

of data built from previous predictions. The last two classes, "CutCond" and "Wear", are 

responsible, respectively, for holding the cutting conditions and the predicted wear value 

reported to the operator. 

Once the objects and methods for the knowledge base were constructed, the rules were 

implemented to specify how objects should behave and reason using the objects. Each rule 

specifies a set of conditions and a set of conclusions to be made if the conditions are true. The 

conclusions represent logical deductions about the knowledge base and neural network 

specifications with changes over time. Each rule is a relatively independent module, so the 

system could be built gradually, rule by rule. A Goal was used to halt backward chaining. 

4.5.1 Blackboard System 

Knowledge of the application domain is divided into modules referred to as "knowledge 

sources" (KSs), each of which contains code for performing a particular sub-task. KSs are 
independent and may communicate only by reading from or writing on the "blackboard", a 

globally accessible portion of working memory where evolving information about the problem 
in hand is stored (Figure 29). This framework allows small bodies of knowledge to be 

represented in the most suitable form and facilitate modification of the knowledge. 

Rule-based KS 

Blackboard Procedural KS 

- Neural networks 

Figure 29: Modular blackboard architecture 

Knowledge is made accessible to the expert system in two forms; static and dynamic. The static 
knowledge is related to the information provided via the user interface, such as -cutting 
conditions, the dynamic knowledge is provided by keeping track of past classifications in order 
to reason upon the robustness of sequential evaluations. 
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4.5.2 Rule-Based Reasoning 

There are two types of rule-based reasoning, forward and backward chaining, available in 

KAPPA-PC. Generally, forward reasoning is most appropriate when it makes sense to enter 

new facts and find their consequences. Given that the monitoring procedure always starts with 

a data acquisition stage it was decided to use forward reasoning. The selective evaluation 

strategy is the default for the KAPPA-PC forward chainer and this is the most efficient strategy 

as it follows only one successful path of reasoning, eliminating all other possible paths as it 

goes. 

Sub-tasks required for the interpretation of tool wear on related information are shown in 

Figure 30. The figure reflects the way in which a solution is gradually built up on the 

blackboard. First data is acquired (data acquisition module) and then processed to extract the 

relevant features. After feature extraction, the feature vector is presented to the neural networks 

which give their predictions based solely on sensory information. Tool life knowledge based on 
Taylor's equation predictions is then applied in order to eliminate most classifications that fall 

outside a confidence band around the empirical formulae prediction. Both neural networks are 

tested for tool wear evolution coherence and finally combined to give the final tool wear level 

prediction. The most relevant functions are presented in Appendix D. 
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Figure 30: Stages in tool wear estimation 
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4.5.3 User Interface 

The system's main interface is shown in Figure 31. Several system parameters can be set by the 

user namely; cutting conditions for weight reference (creates links to previously trained data), 

and sampling interval for real-time monitoring. Links to sub-interfaces are made via labelled 

buttons and these are; the monitoring interface, the neural network training interface, and data 

file selection. The tool state can be viewed on the monitoring interface. 

Tool and material selection is done via the user interface (Figure 31) and this sets the values of 

Taylor's tool life equation pre-defined in the tool/material database. The monitoring screen 

(Figure 32) is responsible for the display of the tool wear prediction. From the monitoring 

screen it is also possible to adjust the threshold values for tool wear criteria as well as setting 

the number of samples for historical reasoning. At the moment the system is triggered 

manually although it is possible to trigger it via spindle current threshold since this is a good 

indicator of when the machine is cutting. 
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Figure 3 1: Main Menu Screen 
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5. Experimental Results 

This chapter presents the results obtained from analysis of the sensor signals. It is divided into 

two describing, respectively, tool wear based on constant cutting conditions, and the effect of 

changing the cutting conditions. The purpose of this approach is to facilitate the assessment of 

the adaptability of the system based. 

5.1 Flank Wear Evolution With Cutting Time 

A typical graph of the evolution of flank wear with cutting time is shown in Figure 33 and 

consists of three stages. The first stage is a short period of rapid wear, the wear then progresses 

at a slower rate over a period, in which most of the useful tool life lies. The last stage is a rapid 

period of accelerated wear and it is usually recommended that the tool be replaced before this 

stage. The data presented in Figure 33 was obtained from a cutting speed of 350 m/min, a feed 

rate of 0.25 mm/rev, and a1 mm depth of cut. For these cutting conditions the first stage can be 

observed to end at approximately 3.5 min after the start of cutting, which corresponds to VBB 

0.09 mm, the second stage lies in the interval between 3.5 min and 14.7 min (0.09 < VBB < 0.3 

mm), and the third stage starts after 14.8 min of cutting time. The beginning of the third stage 

coincides with a value of flank wear of 0.3 mm which is the tool life criterion established in the 

IS03685 (1993) standard. 
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Figure 33: Flank wear evolution with time: 350 m/min, 0.25 mm/rev and 1 mm depth of cut 

5.2 Results Obtained From Machining With Constant Cutting Conditions 
The following results were obtained with fixed cutting conditions to investigate the influence of 
flank wear on the evolution of sensor outputs independently of the cutting conditions and 
therefore assess the suitability of each sensor for tool wear classification. The cutting 
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conditions were those shown in Table 11, chosen so as to lie in the upper range of severity 

recommended for the particular tool/workpiece combination. 

Table 11: Tests at fixed cutting conditions 

Depth of Cut (mm) 1.0 
Feed Rate (mm/rev) 0.25 
Cutting Speed (m/min) 350 

5.2.1 Sensor/Feature Analysis 

The following sections present the results obtained from each of the sensors used. The features 

for which it is easy to ascertain a correlation to the tool wear evolution are; the frequency 

spectrum of sound and vibration; and the feed and tangential forces. More detail is given in the 

following sections regarding the evolution of these features with tool wear. 

5.2.1.1 Sound Emission and Machine Vibration 

An examination of the power spectrum of both sound and vibration reveals some features 

centred around the frequencies of 2.3 and 4.5 kHz that vary with tool wear (Figure 34 and 
Figure 35) with the feature at 2.3 kHz being the most visible. These figures are typical over the 

different tools examined. 

m I 

m 

Figure 34: Sound spectrum versus flank wear 
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Figure 35: Vibration spectrum versus flank wear 

Typically, for flank wear levels up to 0.1 mm the frequency peak rises in amplitude, then up to 

0.25 mm the signal drops in amplitude before rising sharply for flank wear levels greater than 

0.25 mm. 
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Figure 36: Detail of Figure 34 

A statistical feature analysis for sound and vibration of the raw time series failed to exhibit any 

clear correlation with flank wear (Figure 37 to Figure 44). 
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Figure 37: Sound average versus flank wear 
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Figure 38: Vibration average versus flank wear 
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Figure 39: Sound absolute deviation versus flank wear 

0,60- 
AQ+ 

00° 

Zf o+ 
13 
o+ 

0.40 0 m° 
0 01a) o 

ö° 

ö Qo 0 
v° +v 

0.20 + w. n tv° 
p ß.. n2 vV 
Q I-' 30 
0 W, "4 
p wne 

0.00 

0.00 Q10 0.20 0.30 0.40 0.5 
FlankW ar (mm) 

Figure 40: Vibration absolute deviation 
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Figure 41: Sound kurtosis versus flank wear 
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Figure 42: Vibration kurtosis versus flank wear 
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Figure 43: Sound skewness versus flank wear 
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Figure 44: Vibration skewness versus flank wear 

5.2.1.2 Tangential and Feed Forces 

Under fixed cutting conditions the tangential and feed components of the cutting force showed 

a good linear correlation with increasing flank wear (Figure 45 and Figure 46) with the feed 

force increasing by 30% (Ff = 300. VBB + 300, rf = 0.604) compared to 21 % (F, = 300. VBB + 

500, r, = 0.673) for the tangential force. If individual evolutions are compared the tangential 

forces (r > 0.85) shows better correlation coefficients than the feed forces (r > 0.65). Each 

point on Figure 45 and Figure 46 is the average of 512 samples taken from the force signal 

along with the other sensor signals. 
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Figure 45: Feed force versus flank wear 
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Figure 46: Tangential force versus flank wear 

Frequency analysis of the force components reveals some important characteristics of the 

dynamic behaviour of the tool shank when cutting, these were not used as features and are only 

presented here due to their interesting behaviour. The feed component of the force shows 

(Figure 47) two frequencies that appear consistently, 3.4 and 6.6 kHz and these correspond to 

the modes of vibration of the tool shank in the feed direction under forced vibration. 

jl 

Figure 47: Feed force spectrum versus flank wear 

In Figure 48 a typical evolution of the frequency spectrum for the tangential force is shown for 

increasing tool wear. The two frequency components that stand out from the spectra and which 

seem to have a repeatable behaviour are those due to forced vibration of the system 
tool/workpiece, at 2.3 and 6.6 kHz. Pattern repeatability of the power spectrum in the feed 

direction is weaker than in the tangential direction, both Figure 47 and Figure 48 are 

representative of the behaviour for all 6 inserts, these are the results for Tool 1. 
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Figure 48: Tangential force spectrum versus flank wear 

Analysis carried with different data sets varying feed, depth of cut and cutting speed did not 

affect the position of previously identified frequencies. 

5.2.1.3 Spindle Current 

Figure 49 shows the variation in spindle current with tool wear. As can be seen there is little 

variation although there are some interesting points which will be raised in the discussion. 

What seems to happen is an increase in spindle current with reduced workpiece diameter, that 

corresponds to an increased RPM. 
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Figure 49: Spindle current versus flank wear 

5.3 Test Results With Variable Cutting Conditions 

In order to assess the adaptability of the monitoring system a systematic set of experiments 

were conducted where the cutting conditions were varied, both around a region close to the 
training set of conditions and widely across the range of applicable conditions for the 

tool/workpiece combination. 

rTlr-T-Z-, l 
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Results obtained from machining with variable cutting conditions provide the basis for future 

research regarding system adaptability. This is regarded as very important for industrial 

applications given the slight changes in cutting conditions required when cutting different 

workpiece profiles and with different surface finish. The changes in system performance have 

been analysed for these different cutting conditions. Since tool wear monitoring depends 

mainly on sensor information, despite the "last word" being given by the Expert System, an 

analysis of the influence of sensor features will be given in this chapter. The neural networks' 

generalisation capabilities will be dealt with in Chapter 6. 

The results presented next are based on samples taken at three different wear levels for each set 

of cutting conditions; new, VBB 0.15 mm, and VBB 0.3 mm. At each wear level two 

consecutive samples were acquired and saved for processing. The following graphs were built 

from the features extracted for consecutive samples, both values are presented as error bands. 

The frequencies examined here are the ones identified in section 5.2.1.1 to behave in a typical 

way with wear, 2.3±0.1 and 4.5±0.1 kHz. 

5.3.1 Variation in the Depth of Cut 

Changing the depth of cut has an obvious effect on the cutting forces (Figure 50 and Figure 51), 

which increase linearly with the depth of cut for the tested range. The maximum feed force, 

corresponding to a worn tool, increased by 12% for each 0.1 mm increase in depth of cut (Ff= 

400. d + 200) and the tangential force by 7% (Ft = 400. d). The difference between a new and a 
half-worn tool, for both force components, are small and vary slightly with depth of cut. 
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Figure 50: Tangential force versus depth of cut 
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Figure 51: Feed force versus depth of cut 

The tangential force maintained the same ratio of increase for a worn tool as well as new, for 

the feed force a slight increase occurred between a new and worn tool. 

An increase in depth of cut reduced the magnitude of the absolute deviation of both sound and 

vibration (Figure 52 and Figure 53). In addition, as the depth of cut increased so the order of 

new/half-worn/worn changed so that a new tool went from the smallest amplitude to the 

largest, for sound as an example. 
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Figure 52: Sound absolute deviation 
versus 

depth of cut 
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Figure 53: Vibration absolute deviation versus depth of cut 
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The frequency spectrum of both sound and vibration (Figure 54 to Figure 56) suffers a 

reduction in amplitude as a result of increased depth of cut. 

e ro 

Figure 54: Sound spectrum versus flank wear (depth of cut 1.25 mm) 
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Figure 55: Sound magnitude at frequency band 2.3±0.1 kHz versus depth of cut 
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Figure 56: Sound magnitude at frequency band 4.5±0.1 kHz versus depth of cut 

Frequency band 2.3±0.1 kHz on the sound spectrum (Figure 55) appears to be more sensitive 

and easily related to the dynamic behaviour of the machine/tool. The magnitude of this 
frequency band appears to reduce up to a depth of cut of 1.25 mm, thereafter increasing 

slightly. 
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Figure 57: Vibration magnitude at frequency band 2.3±0.1 kHz versus depth of cut 
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Figure 58: Vibration magnitude at frequency band 4.5±0.1 kHz versus depth of cut 

The changes in magnitude of frequency band 2.3±0.1 kHz of the vibration spectrum seem to be 

small, only one half-worn point seems to stand out from the rest, this being due to random 

impacts which caused the error to increase. The magnitude of frequency band 4.5±0.1 kHz 

shows a larger spread of data points. 

5.3.2 Variation in the Feed Rate 

As feed rate increases so does the metal removal rate, the contact area between the tool and 

workpiece increases and therefore the forces required to remove the workpiece material would 

also be expected to increase. Figure 59 and Figure 60 illustrate this trend with the increase in 

feed (Ff = 2000; ) and tangential (Ft = 2000; ) force following an almost linear pattern, 
increasing by 5% for each 0.01 mm/rev increase in the feed rate. The forces corresponding to 

new and half worn stages increase approximately with the same rate up to 0.25 mm/rev and 

then seem to decrease, giving an overall final percentile increase between new and worn tools 

of 64% and 23% respectively for the feed and tangential forces. The difference between a new 
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and half-worn tool remains constant for both feed and tangential forces. It appears that as feed 

rate increases so do the forces separation between new and worn tools. 
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Figure 59: Tangential force versus feed rate 
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Figure 60: Feed force versus feed rate 

For variations in the absolute deviation of both sound and vibration with feed rate there does 

not appear to be any consistent variation (Figure 61 and Figure 62). Both graphs show scattered 
data points which seem to be affected in different ways by the feed rate, these figures also show 

that there are larger variations with wear than feed rate for both sound and vibration. 
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Figure 61: Sound absolute deviation versus feed rate 
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Figure 62: Vibration absolute deviation versus feed rate 

The amplitude of the frequency spectrum for both sound and vibration over both frequency 

bands increased up to a value of 0.25 mm/rev feed rate, and from there on decreased (Figure 64 

and Figure 65). An inversion on the amplitude scale of the frequency for both sound and 

vibration can be observed at the initial tested feed rate (0.2 mm/rev) and at 0.28 mm/rev. In 

fact, the last point on these graphs seem different for all signal processing. 

I 
Figure 63: Sound spectrum versus flank wear (feed rate 0.2 mm/rev) 
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Figure 64: Sound amplitude at frequency band 2.3±0.1 kHz versus feed rate 
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Figure 65: Sound magnitude at frequency band 4.5±0.1 kHz versus feed rate 

The sound frequency band 2.3±0.1 kHz (Figure 64) shows a slightly more consistent evolution 

then band 4.5±0.1 kHz (Figure 65), a maximum on the frequency magnitude corresponds to a 

maximum value of wear. Similar trends are exhibited by both sound (Figure 64 and Figure 65) 

and vibration (Figure 66 and Figure 67) spectra. 
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Figure 66: Vibration magnitude at frequency band 2.3±0.1 kHz versus feed rate 
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Figure 67: Vibration magnitude at frequency band 4.5±0.1 versus feed rate 
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5.3.3 Variation in the Cutting Speed 

The cutting forces, feed and tangential, exhibit a very similar evolution with changes in cutting 

speed (Figure 68 and Figure 69). For worn tools, both forces seem to decrease up to a speed of 

344 m/min and increase thereafter. The tangential force has an initial step increase between 

new and worn tool, falling afterwards, and then increasing again - the feed force as an identical 

progression. The relative behaviour of both force components is not seen as substantial 

compared to the effect of feed rate and depth of cut. Also, it can be seen that the relative 

increase and decrease in both forces does not follow a smooth evolution as that found for feed 

rate and depth of cut. 
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Figure 68: Tangential force versus cutting speed 
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Figure 69: Feed force versus cutting speed 

Although no significant increase in either force could be observed with wear, an increase in the 

absolute deviation for both sound and vibration signals (Figure 70 and Figure 71) proved to be 

correlated with the cutting speed. An increase in cutting speed resulted in an increase of the 

absolute deviation which was substantial for the worn tools and followed an almost linear 

pattern. For a new tool the sound absolute deviation remained constant independent of changes 
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in cutting speed. Also, an increase in the cutting speed resulted, in an increased scatter for the 

absolute deviation of sound. 
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Figure 70: Sound absolute deviation versus cutting speed 
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Figure 71: Vibration absolute deviation versus cutting speed 

Figure 72 shows the spectrum evolution for a cutting speed of 344 m/min, the first frequency 

band 2.3±0.1 kHz increases in magnitude with tool wear. For the frequency bands of the sound 

and vibration (Figure 73 and Figure 74) a general increase with cutting speed occurred 

associated with an increase in the difference between a new and worn tools. Generally, worn 

tools report an increase in their power spectrum while new tools seem to remain constant with 

changes in cutting speed. 
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Figure 72: Sound spectrum versus flank wear (cutting speed 344 m/min) 
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Figure 73: Sound magnitude at frequency band 2.3±0.1 kHz versus cutting speed 
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Figure 74: Sound magnitude at frequency band 4.5±0.1 kHz versus cutting speed 

The vibration amplitude at frequency band 2.3±0.1 kHz (Figure 75) does not exhibit any 

substantial changes with cutting speed, with the values only changing a small amount with 

wear. On the other hand, frequency band 4.5±0.1 kHz (Figure 76) shows a substantial increase 

on its power spectrum with an increase in cutting speed. 
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Figure 75: Vibration magnitude of frequency band 2.3±0.1 kHz versus cutting speed 
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Figure 76: Vibration magnitude of frequency band 4.5±0.1 kHz versus cutting speed 

5.4 Summary of Results 

The results obtained from the analysis carried on the features extracted is rather complex and is 

now summarised recurring to a simple set of indicators. These indicators will show simply if a 

particular feature increases, decreases or behaves randomly with an increase in tool wear and 

due to changes in cutting conditions. 

Table 12 illustrates these variations in each feature recurring to symbols referring to changes 

with an increase in a determined parameter; "T" increase, ". " decrease, "W" constant, "C" 

complex", and "ft" random behaviour. 
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Table 12: Summary results on feature analysis 

108 

Feature Flank Wear Depth of Cut Feed Rate Cutting 5peea 

Sound Average R R R R 
Absolute deviation R R T 

Skewness R R R R 
Kurtosis R R R R 
Frequency band 2.3±0.1 kHz C C 
Frequency band 4.5±0.1 kHz C 1' C T 

Vibration Average R R R R 
Absolute deviation R I R T 

Skewness R R R R 
Kurtosis R R R R 
Frequency band 2.3±0.1 kHz C C 
Frequency band 4.5±0.1 kHz C C 

Forces Feed force 1' T T R 
Tangential force T T T R 

Current Spindle current C C C C 

Generally, it can be seen that only the forces and the frequency bands appear to be correlated to 

tool wear, the other features behaving apparently in a random fashion. However, as it will be 

discussed later on, these features are not absent of significance relative to the cutting process. 
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6. Neural Network and Expert System Results 

The results described in the previous chapter are used here to test the performance of the neural 

networks towards tool wear classification. Under fixed cutting conditions, sample data from 6 

cutting inserts was acquired producing 52 different feature vectors representative of 7 different 

wear levels. The first 4 cutting inserts (34 feature vectors, each composed of 15 features) were 

used to train the neural networks and the remaining 2 for testing (18 feature vectors). The tests 

carried out under different cutting conditions consisted of a different set of feature vectors and 

these are presented later in this chapter. 50 different cutting conditions were tested of which 25 

are presented to assist the discussion. 

6.1 Neural Network Results With Fixed Cutting Conditions 

The features described in Chapter 5 were used to train both the SOM and ART2 neural 

networks and results are presented here. Plotting classification results against measured values 

of wear generates a useful characteristic of the neural network performance, correct 

classification giving a straight line fit of unit gradient. Therefore, the criterion used in this work 
for performance evaluation of the neural networks is based on the correlation coefficient, a 

value near unity indicates good classification (correlation) and one near 0 means poor 

correlation. The linear regression(s) studied here are the best fits through the origin, 

comparisons of performance use the best fit through origin because it is coherent to use the 

origin as an anchor point, and therefore compare the results with the ideal fit. Additionally, to 
investigate the neural network capacity to perform classification with reduced input 

information, a comparative analyses was carried out using a reduced input feature vector where 
the forces and the spindle current were eliminated from the original set of features. 

6.1.1 Self Organising Map 

The self organising map was trained with data from 4 inserts obtained from fixed cutting 
conditions for 30,000 epochs and, after this period, organised areas, representative of different 

wear levels, were created on a6 by 6 neurone output layer. To determine the optimum number 
of epochs several tests were undertaken in order to achieve good classification results. An 

example of how these areas were organised for a new and worn tool is shown in Figure 77 and 
Figure 78. 
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In order to facilitate the interpretation of each neurone's wear representation a contour map was 

created where all the test conditions are mapped, this provides a means for the interpretation of 

the input vector weight results. The construction of this map is possible given that the 

representation of similar wear levels occupy adjacent locations on the output neurone grid, 

therefore allowing the use of the Kriging method for surface meshing. For example, a 

minimum value on the output map for a new tool feature vector (Figure 77) gives the neurone 

corresponding to a new tool classification, and similarly for a worn tool (Figure 78). Figure 79 

shows the resultant map built from the data obtained after the presentation of all the test inputs, 

the so called "supervised" sample. The "supervised" sample is a collection of feature vectors 

representative of the full wear range which are tested via the SOM with the wear level along 

with the respective neurone activation for subsequent gridding, the result is a "look up table" 

where each neurone corresponds to a determined value of wear. 

I 

Figure 77: Topological visualisation of neurone activation for a new tool 

e 

Figure 78: Topological visualisation of neurone activation for a worn tool 
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Figure 79: Map of wear states associated with each neurone, "look-up table" 
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Now that the methodology for obtaining a wear classification with the SOM has been presented 

the following figures show the success of the SOM at classifying tool wear. The measurement 

of performance for the self organising map consists simply of plotting the classification results 

against the measured ones, the straight line representing the ideal fit and the dashed the data fit 

through the origin. A value of performance is obtained by determining the correlation 

coefficient of the linear fit through origin, only accounting for the test data. Figure 80 shows 

the classification results of the SOM given the presentation of all the data using the full feature 

vector. 
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Figure 80: SOM classification using the full feature vector 

Figure 80 shows that classification is possible with great accuracy with a correlation coefficient 

of r=0.946, and linear gradient of b=0.871. Reducing the feature vector set by removing the 
forces and spindle current features gives decreased performance but nevertheless the SOM can 
classify the different wear levels with a reduced accuracy (r=0.782, Figure 81). 
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Figure 81: SOM classification with the reduced feature vector 

Although the reduced feature vector performance is not as good as the one including the forces 

and spindle current, the SOM shows some ability to resolve complex information based on 

poorly correlated features. 

The following table summarises the results obtained from analysing the classification results 

using the SOM. Both the Standard Deviation (SD) and the confidence limits are established 

from the test data set relative to the ideal fit. 

Table 13: Statistical analysis of SOM results 

NN / Feature Set SD (mm) 95% Confidence Limits 
Full feature set 0.0480 0.0058 -0.0209 

Reduced feature set 0.0880 0.0198 -0.0296 

6.1.2 Adaptive Resonance Theory 

The adaptive resonance theory neural network gave its best performance when trained for 1,000 

epochs with a vigilance parameter equal to 0.996, these were determined after successive tests 

from which the best configuration was chosen. The parameters were set to give a reliable 

training time as well as a minimum of 10 data clusters. The number of data presentations was 
determined by the magnitude with which the weights changed, as for small weight changes 

clusters cease to be created. 

The same criteria for performance evaluation, as the one used for the SOM, was applied to the 
ART2 network, consisting of the measurement of the correlation coefficient of linear 

regression. Figure 82 and Figure 83 show the graphical results respectively for the full and 

reduced feature vectors. 
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Figure 8 2: ART2 classification using the full feature vector 

A value of r=0.914 (gradient b=0.858) was obtained for the case where all the features were 

used and r=0.691 (gradient b=0.689) for the reduced feature test where a significant gradient 

change occurred. The ART2 showed a reduction in performance compared to the SOM. 
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Figure 83: ART2 classification using the reduced feature vector 

The degradation in performance for the reduced feature case is associated with the appearance 

of outliers. These data input vectors do not carry enough information to be classified, or may be 

contaminated by sporadic environmental noise. 

A statistical measure comparing tool wear classification using the ART2 algorithm to the ideal 
fit is given in Table 14. From this table, as it was seen on Figure 82 and Figure 83, it can be 

noted that the deviation from the ideal values results in a gradient less than unity. 

Table 14: ART2 statistical analysis of results 
NN / Feature set SD (mm) 95% Confidence Limits 
Full feature set 0.0549 0.0067 -0.0239 Reduced feature set 0.0958 0.0194 -0.0345 
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A summary of the results for both neural networks is given in Table 15. This table presents 
both correlation coefficient (r) and linear slope (b). Two results are presented for each neural 

network configuration, one for each test and training feature vectors (overall), and one for the 

test set alone (test set). 

Table 15: Performance results for NNs 

TESTS b r 
ART2 - Full feature set, overall 0.930 0.960 
--, test set 0.858 0.914 
ART2 - Reduced feature set, overall 0.902 0.896 
--, test set 0.689 0.691 
SOM - Full feature set, overall 0.946 0.964 
--, test set 0.871 0.946 
SOM - Reduced feature set, overall 0.868 0.894 
--, test set 0.836 0.782 

6.1.3 Expert System Results With Fixed Cutting Conditions 

In order to illustrate how the final results were obtained a stepped approach is presented in 

order to simulate the decisions taken by the Expert System to arrive at the final classification. 
The first step towards tool wear prediction consists of outlier elimination. This has been based 

on the tool life estimation given by the Taylor's tool life equation and is implemented in the 
form of rules (section 4.4.1). The following figures show the results achieved for both neural 

networks when combined with the Expert System and outlier removal for the reduced feature 

set, since the full feature set required minimal changes from the network classification. 
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Figure 84: SOM outlier detection 
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Figure 85: ART2 outlier detection 

For the parameters of the Taylor's tool life equation the values obtained were, as mentioned 
before, C= 823 and n=0.33 (Shaw, 1989), this giving a tool life of 13.34 min for a cutting 

speed of 350 m/min. The dashed lines on Figure 84 and Figure 85 represent the prediction 

given by the Taylor's equation estimates and the bottom scale corresponds to the actual tool 

life. 

The values obtained for the linear correlation coefficient of linear regression of the reduced 
feature tests combined with outlier detection were; SOM, r=0.955; ART2, r=0.872. These 

results show a marked improvement over those obtained from the neural networks straight after 
input vector presentation. Clearly, this method can only be successfully used as long as 

Taylor's tool life equation coefficients are available to the Expert System for the 

tool/workpiece in use. 

Table 16 shows a comparative analyses of the results obtained after the elimination of outliers 

through the use of Taylor's tool life equation. It is easily seen that not only was there a major 
improvement in the correlation coefficient but also the gradient, this means that the predictions 

after outlier detection become more accurate, as well as reliable from the point of consistency. 
It is opportune to mention that the use of Taylor tool life equation on its own would give 

overall conservative results. 

Table 16: Improvements in NN Performance using Taylor outlier detector 

TEST SET b r 
NNs NNs + Taylor NNs NNs + Taylor 

ART2 - Reduced feature set 0.689 0.935 0.691 0.872 
SOM - Reduced feature set 0.836 1.005 0.782 0.955 
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6.1.3.1 Expert System Output to the User Interface 

Although a value of tool flank wear is shown on the user interface for guidance, the Expert 

System's judgement has to be based on both neural network tool wear predictions and process 

history. The current configuration uses only a total of three samples for correlation purposes 

due to the scarcity of data but this could be improved by increasing the sampling resolution 

relative to rate of wear. 
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Figure 86: Monitoring screen for NNs: Training sample, tool 4 
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Figure 87: Monitoring screen for NNs: Test sample, tool 5 
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Figure 86 shows part of the screen on the demonstration system and illustrates the system 

monitoring wear for Tool 4 and reporting both neural network results. It can be seen that the 

system achieves a good accuracy at predicting tool wear. Worn tools were identified 

successfully for all the training sets by both neural networks, according to the wear criteria. For 

the test set, Figure 87, consisting of data on the two remaining tools, performance was 

substantially reduced. Nevertheless the worn tool state is recognised accurately. A greater 

scatter can be observed reflecting less accuracy from the neural networks. Figure 86 and Figure 

87 were generated using full feature vectors. 
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Figure 88: Monitoring screen for ES: Training sample, tool 4 
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The final result is obtained by combining both neural networks using historical data, these is 

shown in Figure 88 and Figure 89 for the full feature vector case. It can be seen that an 

improved classification has been obtained by the use of historical data. 

6.2 Neural Network Generalisation With Variable Cutting Conditions 

In order to test the system's ability to generalise under different cutting conditions tests were 

conducted as summarised in Table 17. The present cutting conditions were selected according 

to recommended values for this tool/workpiece configuration given by SECO TOOLS (1988) 

guide where values were chosen to account for small changes in tool life which are liable to 

affect neural network performance. Variations in cutting speed are expected to alter a tool's 

life, e. g. altering the cutting speed by a factor of 0.86 might double the life of the tool (SECO 

TOOLS, 1988). 

Table 17: List of cutting conditions tested 

Test No* Feed (mm/rev) Speed (m/min) Depth 
(mm) 

0 0.250 350 1.000 
1 0.275 350 1.000 
2 0.250 350 1.500 
3 0.200 350 1.000 
4 0.225 350 1.000 
5 0.250 350 1.250 
6 0.250 337 1.000 
7 0.250 350 1.125 
8 0.300 350 1.125 
9 0.200 350 1.125 
10 0.250 344 1.000 
11 0.300 344 1.000 
12 0.250 344 1.125 
13 0.300 344 1.125 
14 0.275 344 1.000 
15 0.225 344 1.000 
16 0.225 350 1.125 
17 0.275 350 1.125 
18 0.225 344 1.125 
19 0.275 344 1.125 
20 0.300 350 1.000 
21 0.250 325 1.000 
22 0.250 344 1.000 
23 0.200 344 1.125 
24 0.175 350 1.000 
25 0.325 350 1.000 

uscu to assist QLscussion 
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The depth of cut was always increased in these tests to safeguard the integrity of the equipment 

since at a lower depth of cut strings of metal chip would form damaging the instrumentation 

and jeopardising the experiments. The limit imposed on the cutting speed is justified by the fact 

that a 350 m/min cutting speed was already at the upper end of the recommended value (SECO 

TOOLS, 1988). 

Performance measurements were obtained by averaging two consecutive samples from each 
test condition (Table 17) with individual sample performance being calculated as the 

percentage error of the prediction compared to the actual wear value. The maximum percentage 

error at each wear level was chosen as the final performance measure. The results under these 

cutting conditions proved that the system is capable of generalising under a certain range of 

cutting conditions. This capacity differed slightly between the two neural networks as will be 

shown in the following sections. 

6.2.1 Self Organising Map Generalisation For Variable Cutting Conditions 

Figure 90 shows the results of the ability of the SOM to generalise when tested at different 

cutting conditions than those for which it had been trained. 
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Figure 90: Map of capacity of SOM to generalise for varied cutting conditions 

As can be seen, classification was successful (>70%) for variations in feed between 0.2 and 
0.275 mm/rev with the other cutting conditions kept constant. As soon as the depth of cut was 
increased the performance deteriorated and for values after 1.175 mm classification decreased 
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sharply. Cutting speed changes also resulted in reduced performance of the SOM, only one set 

of cutting conditions have been shown to achieve 60% classification with speeds of 344 m/min 
(Test 14). 

Generally the further away from the reference cutting condition the worse the classification 

result becomes, these are summarised in Figure 91 where the cutting speed, feed rate and depth 

of cut demonstrate this effect. The deterioration rates for individual cutting conditions are; 

cutting speed 7%/(m/min), feed rate 10%/(0.01 mm/rev), and depth of cut 20%/(0.1 mm). 
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Figure 91: SOM capacity to generalise by cutting condition 

6.2.2 Adaptive Resonance Theory Generalisation for Variable Cutting Conditions 

The results for the ART2 after testing under different cutting conditions than the ones under 

which it was trained are shown in Figure 92. 
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Figure 92: Map of capacity of ART2 to generalise for varied cutting conditions 
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Variations in feed rate between 0.225 and 0.275 mm/rev result in a classification success grater 

than 70%. The ART2 performance was successful in classifying patterns with depths of cut up 

to 1.225 mm, but a further increase in the depth of cut did not produce further successful 

results. Cutting speed add a significant influence on the ART2 performance. This neural 

network was generally unable to generalise when presented with data acquired at cutting speeds 

lower than 344 m/min. At some isolated cutting conditions (e. g. Test 5) the ART2 succeeded in 

classifying the test samples, but its successful performance was constrained to a limited zone of 

influence. 

1OD 

OD 

b OD 

40 
a 

20 

0 
M6 00 340.00 514.00 W OD 35200 0.16 

Oiling Speed (n rin) 
020 0.24 026 032 Q60 1.00 120 140 1.6 
Feed Rate (rrrNrev) Depth c QR (rmo 

Figure 93: ART2 capacity to generalise by cutting condition 

Figure 93 illustrates the description above. The deterioration rates for the ART2 consulting 

each of the cutting conditions are approximately; cutting speed 100% after 344 m/min, feed 

rate asymmetrical for feed > 0.275 100% and for feed < 0.25 10%/(0.01 mm/rev), depth of cut 
20%/(0.1 mm) average. 

In summary, both algorithms achieved similar generalisation capabilities which resulted in 

successful classification within a common zone of influence. 

6.3 Feature Evaluation Based on SOM Weight Interpretation 
As mentioned before, the SOM output map is generated by establishing a correspondence 
between inputs and neurones such that the topological (neighbourhood) relationship among the 
inputs is reflected as faithfully as possible in the arrangement of the corresponding neurones in the 
lattice. Therefore, it is possible to establish how different features are contributing towards the 
f inal arrangement of the map by analysing the weight distribution associated with each feature. 
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6.3.1 Criterion for Feature Evaluation 

In order to apply the above concept towards the understanding of feature significance the network 

output is displayed as a two-dimensional distance image, in which a grey scale gives the 

interpretation of the distances with darker shades corresponding to higher weights associated 

with a particular zone on the map. Also, higher weights have a higher influence on the final 

activation of a particular neurone. Therefore, in order to attempt an interpretation of such maps, 

it is necessary to take into account both shade variation and shade ̀ darkness'. The distance map 

is presented individually for each of the features X; and then its contours computed for visual 

interpretation. 

There are a few key points worth remembering which are essential for the understanding of the 

following progression. From the algorithm presented earlier (Chapter 4) it can be seen that for a 

neurone to be selected as representative of a determined input feature vector, its distance to the 

neurone's weight vector as to be a minimum among all neurones. Therefore, the contour map 

presented will resemble the evolution of the feature vector, in this case for individual features. 

It is important to note that the weights were adjusted upon training bearing in mind all the 

features and not only one at a time, therefore the interaction of two poorly correlated features 

may resolve into very significant help towards pattern identification. Considering now one 
feature at a time will not demonstrate which feature combination is the best but will surely 

show which ones are playing an important role in the organisation of the output map of 

weights. It is also important to note that the distance calculated is a sum of all the weighted 
features. Finally, it is also important to note that since the SOM is an unsupervised network it 

will train based on the data provided prior to knowing the intended purpose of the mapping, 

that is, the output should reflect the evolution of wear since this is presumably the only variable 

affecting the sensing devices. This last point will be taken further in the discussion. 

Supposing that a particular feature was very weak towards pattern recognition of a determined 

function, the distance map built with the distance to each of the output neurones would result in 

a similar activation of all the output neurones. Similar activations are mapped with similar 

shades on the 2D visualisation map, with strong features creating several well defined shaded 

areas. The higher the difference between darker and lighter areas the stronger the effect this 

particular feature has towards feature vector identification. 
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6.3.2 Feature Visualisation and Interpretation 

,, 

Figure 94 shows two of the features visualised in this way. The different shaded areas represent 

the distribution of the weights associated with each feature, the stronger the feature towards 

tool wear identification the higher the difference between the lighter and darker shades on the 

map. Therefore, the absolute deviation of sound (a) is of greater use for tool wear monitoring 

than the average sound (b), Figure 94. 
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Figure 94: Feature visualisation: (a) Absolute deviation of sound (b) Average of sound 

Figure 95 to Figure 101 show the remaining features and the contribution each has towards tool 

wear prediction. It can be seen that most of the features contribute, in different degrees, 

towards the classification of the input feature vector. For those features where there is a linear 

relationship with wear it is possible to distinguish among the different shades which ones 

correspond to a worn tool and which to a new tool, because they are directly related to the way 

in which each neurone weight is tuned (e. g. Figure 100 (a)). 
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Figure 95: Feature visualisation: (a) Skewness of sound (b) Kurtosis of sound 
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Figure 96: Feature visualisation: (a) Sound frequency b. I (b) Sound frequency b. 2 
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Figure 97: Feature visualisation: (a) Absolute deviation of vibration (b) Average of vibration 
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Figure 98: Feature visualisation: (a) Skewness of vibration (b) Kurtosis of vibration 
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Figure 99: Feature visualisation: (a) Vibration frequency b. I (b) Vibration frequency b. 2 
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Figure 101: Feature visualisation: Spindle current 
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The feed and tangential forces show a linear increase with tool wear, and their feature- 

associated weights arrange themselves so as to increase with increased force and therefore their 
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Figure 100: Feature visualisation: (a) Feed force (b) Tangential force 
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activation is always directly linked to the evolution of wear. This behaviour is replicated in the 

way the map of weights is organised (Figure 100). 

The absolute deviation, average, skewness and kurtosis of both sound and vibration did not 

reveal any obvious relationship with wear, as seen in Chapter S. Therefore it is expected that it 

will be difficult to associate different wear levels to the different shades. Nevertheless, the 

different shades seen on their maps suggest that these contribute strongly towards feature 

vector identification, otherwise a single shade would cover the entire map. 

According to the criterion described in section 6.3.1 it is possible to rate the features according 

to their contribution towards feature vector identification. Table 18 ranks the features in the 

order of their strength. 

Table 18: Ranked features by strength 

Rank Feature 
I Feed force 
2 Tangential force 
3 Absolute deviation of sound 

Skewness of sound 
Kurtosis of sound 
Sound frequency band 1 
Sound frequency band 2 

4 Spindle current 
Skewness vibration 
Vibration frequency band 1 
Vibration frequency band 2 
Absolute deviation vibration 

5 Average sound 
Average vibration 
Kurtosis vibration 

6.4 Summary of Neural Network results 
From the results obtained with the neural networks and Expert System it can be seen that tool 

wear classification is possible with apparently weak features, these resolve the complex 
interrelation between features to produce a robust wear classification. It has been shown that 
improved performance can be obtained by the use of the Taylor tool life equation as an outlier 
detector, which when conjugated with process history converges to good classification results. 
Also, a zone of influence has been defined around which the system can perform tool wear 
monitoring successfully. 
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7. Discussion of Results 

In this chapter the results obtained from processing the sensory data, neural network and Expert 

System, will be discussed. The discussion is tied up in with the objective of this Thesis which is 

to devise a system of tool wear monitoring which is sensor-based but which includes an 

empirical ground to minimise mis-classification and human intervention in its set-up and 

running. The devised system proved to be very efficient for tool wear classification under a 

fixed set of cutting conditions, moving away from the reference cutting conditions showed a 

gradual deterioration in the success of classification. This limitation could be overcome by 

retraining the neural networks at different cutting conditions, which would aid in the 

construction of a reference database of neural network weights for different cutting conditions. 

It is also advisable in future developments to increase the training sample as this should 

increase accuracy, that is, reduce neural network sensitivity to learn from erroneous data. 

To aid the discussion, the chapter is divided into four main sections; the first consists of a study 

of the feature/sensor relationship with tool wear evolution, the second analyses the effect of 

cutting condition changes, the third section deals essentially with the study of the neural 

networks' ability to perform tool wear pattern recognition upon sensor inputs, and the final 

section presents an overview of the expert system's role in this tool wear monitoring system. 

7.1 Tool Wear Versus Sensor Signal Analysis 

The different mechanisms of tool wear and, in particular, the way in which it is manifested in 

cutting mechanics is fundamental to an understanding of sensor signal behaviour and 
interpretation. The tool behaviour has to be analysed in order to understand the importance of 

the proposed features for tool wear prediction. One recurring theme that will be highlighted in 

the following sub-sections, is the relationship of a large number of features to the dynamic 

behaviour of the tool. 

7.1.1 Tool Wear Evolution 

The three phases shown in Figure 102 correspond to the three wear stages present. In the first 

stage the wear rate decreases which is perhaps due to the abrasion of the uneven tool tip, the 
tool tip then becomes more "smooth" and abrasion reduces slightly. During the second stage of 

wear the coating is progressively worn away allowing direct contact between the workpiece and 
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the tool tip substrate (tungsten carbide), which is less resistant to wear; this corresponds to a 

slowing of the wear rate followed by an increase in the third stage, as denoted from the average 

wear rate calculated from the data points. The first stage is less critical towards tool wear 

monitoring, it is during the second stage, and mainly in the transition from the second to the 

third stage, that the tool has to be monitored more carefully. 

0.60- 
Pdnwy Ywsta9e Tertiary 

vvear stage VAW stage 

0.40 

=Iv 

V 

Cu 
0.20 + 

Taylors 
0.00 pe on I 

1 -7 
0.00 4.00 8.00 1200 16.00 

Time (min) 

0.08 

c 

+ Tad1 

Tod 2 
0.04 V Tod 3 

® Tod4 

* 
{r 

Tod S 
Tod 6 

0.00 
20.00 

Figure 102: Typical flank wear and wear rate (reference conditions) 

Based on the criteria of a tool life limit for VBB=0.3 mm, the average tool life was calculated to 

be 14.7 min with a standard deviation of 2.1 min (14% of total tool life). The behaviour of a 

tool under a specific set of cutting conditions seems reproducible to a certain extent, however 

the identifications of a limit value for the tool life is always dependent on many factors that 

may lead the tool to fail prematurely or be underestimated. For example, Tool 5 fails 

prematurely and Tool 6 is underestimated according to Taylor's tool life equation, in this 

particular case one of the tools (17%) would fail prematurely and two (33%) would retain 14% 

of its useful life. In particular, towards the end of a tool's life the wear rate increases so fast 

that on-line identification is necessary to adequately monitor its state instantaneously. 

7.1.2 Changes in Average Cutting Forces Due to Tool Wear 

As the tool wears it can be seen that the average feed and tangential forces increase 

proportionally (Figure 103), accompanied by an increase in tool/workpiece contact area. The 

tangential force is generally higher than the feed force throughout tool life. This is 

understandable since higher loads are imposed on the rake face as a consequence of most of the 

shear strain taking place on this plane. Crater wear did not develop under this set of cutting 
conditions, the fact that there is no crater wear and the slopes of both forces are similar might 
lead to the suggestion that the changes are due to friction on both rake and flank faces. 
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The feed and tangential forces have been shown to be affected in a. similar manner with 

increasing wear. Figure 103 shows that although the feed force suffers a greater percentage 

increase, higher than the tangential force, both show approximately the same gradient. This 

leads to the conclusion that both force components are suitable for tool wear monitoring, the 

feed component being more suitable given its greater percentual increase (more sensitive). The 

static components of the forces do not seem to be affected by the dynamic characteristics of the 

machine tool and this enables the use of average forces in the absence of detailed knowledge of 

the dynamic aspects of machine tool behaviour. 
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Figure 103: Static and dynamic forces 

Whereas the static components of the forces can be isolated from the dynamic behaviour of the 

cutting tool while cutting, this does not apply to the sound and vibration. Sound and vibration 

show similar variations in power spectrum to the ones observed in the dynamic behaviour of 

the cutting forces and vary with dynamic behaviour of the tool. 

7.1.3 The Influence of Tool Vibration on the Sensor Space 

The vibration of the tool in the feed direction occurs at two distinct frequencies; 3.4 and 6.6 

kHz. None of these is equal to the calculated first unconstrained mode of vibration of the tool 
in the feed direction (9.8 kHz) as the tool is constrained by its interaction with the workpiece. 
Although significant changes can be identified in the power spectrum at 3.4 kHz this does not 

seem to have a simple relationship with tool wear. 

The power spectrum of the tangential force revealed two distinct peaks, the first occurring at 
2.4 kHz and the second at 6.6 kHz. These are not directly related to the calculated natural 
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frequency of the tool in the tangential direction which was determined to be 7.8 kHz. Tool 

vibration in the direction of the cutting velocity has a typical evolution with wear which is 

reproducible throughout inserts, these were obtained from an analysis of the two main 

characteristic frequencies, 2.3 and 4.5 kHz. The second frequency component on both force 

spectra, 6.6 kHz, is thought to be associated with torsional vibration of the tool given the 

torsion effect caused by both forces. Figure 104 shows the variation in magnitude of frequency 

6.6 kHz for both force components, these show similar patterns of evolution, the feed 

component being smaller possibly due to the higher stiffness associated with the tool in this 

direction. These frequencies did not show repeatability throughout inserts as obtained from the 

forces spectra, furthermore, they do not appear in the sound and vibration spectra. Because this 

frequency is not air-born or manifested in the vertical direction may explain this. 
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Figure 104: Variation of frequency 6.6 kHz for Tool I 

Given the rectangular section of the tool shank the difference in both force frequencies is 

understandable, these possibly being related to the natural frequencies of each cutting direction. 

There is obviously a complex relationship associated with the behaviour of the tool when under 
load condition which will not be dealt with as it is outside the scope of this work. Nevertheless, 

end conditions, not taken into account in the theoretical calculations, reduce significantly the 

value for the natural frequencies of vibration in both directions (Tobias, 1965), also, the tool 
fixation to the tool holder affects differently the feed and tangential direction. Once again, the 
latter suggest that frequencies 2.4 and 3.4 kHz are associated with the natural frequencies on 
the tool. Both factors are due to affect the behaviour of the tool in a complex way, therefore a 
theoretical model based on cutting process dynamics would prove to be impracticable. 

Such self-excited vibrations marked by changes in the power spectra at certain frequencies are 
normally classified into two types; one due to the flexibility of the cutting tool and the other to 
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deflection of the main spindle of the lathe or the workpiece. Further, these self-excited 

vibrations are divided into two groups depending on the circumstances in which they occur, 

namely primary and regenerative chatter (Marui et al., 1988). Primary chatter takes place 

during the primary and secondary stages of wear, whereas the regenerative type appears when 

the tool becomes seriously worn resulting in "chatter" marks. With primary chatter the tool 

does not loose contact with the workpiece whereas during regenerative chatter the tool 

frequently looses contact with the workpiece generating undulations on the surface of the work. 

Primary chatter and regenerative chatter can be observed in Figure 105. The following results 

prove that this behaviour is not a sporadic one, but a characteristic of the turning processes. 

y 
L 

Figure 105: Evidence of two types of chatter, from tangential force spectra 

The regenerative chatter frequency is nearly equal to the natural frequency of the system in the 

tangential direction (Figure 105), and is a little lower (40 Hz) than the frequency of the primary 

chatter vibration (2.3 kHz). This occurs possibly because a higher load is imposed on the 

cutting tool as it becomes dull, also, the regenerative effect becomes evident by the "chatter 

marks" left on the workpiece. The drop in frequency is possibly due to the increased load 

which causes the tool to become more stiff, moreover, the fact that the tool looses contact with 
the workpiece makes the problem non-linear and therefore more difficult to interpret using 
conventional formulae. 

The following two figures (Figure 106 and Figure 107) show the comparative evaluation of 
sound, vibration and dynamic force spectra behaviour. These show that the tangential force 
dynamic behaviour is closely related to that of the sound and vibration sensors as the tool wears 
for the frequency band 2.3±0.1 kHz. 
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Figure 107: Magnitude variation of frequency 4.5±0.1 kHz (relative scales) 
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The sensed signals show a characteristic behaviour around 2.3 kHz (frequency band 1), except 

for the feed force component. The latter tends to increase during the first stage of wear 

becoming smaller during the second stage of wear, and finally increasing sharply as the tool 

reaches the end of its life. It is notable that both the feed force and its superimposed dynamic 

components are significantly smaller than both the magnitude and dynamic components of the 

tangential force, this is partially due to increased stiffness in the feed direction (higher second 

moment of area), nevertheless it does not justify it being much smaller than the torsional 

vibration experienced by similar strain gauges. The reduced magnitude associated with higher 

stiffness may contribute to the apparent inconsistency of the dynamic behaviour of the feed 

force frequency band 1. 

Examining the vertical vibration of the machine tool, as sensed by the accelerometer positioned 

on the base of the machine, it can be seen that vibration evolution of the tool in band I is 

related to the tangential force dynamic behaviour. As might be expected, the vibration of the 

tool originate from small changes in depth of cut which resulted in a variation of the thrust 
force, these variations are transmitted to the machine in the vertical direction due to the 
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orientation of the cutting tool. Also, according to Arnold (1946), the magnitude of this 

influence is dependent on the extent of wear on the flank face. A similar behaviour would be 

expected in the feed direction since, as shown by the feed force, there are vibrations occurring 

in the feed direction. 

Magnitude of frequency band 2 (4.5±0.1 kHz) is significantly smaller then band 1 (2.3±0.1 

kHz), in the order of 4 times smaller, also it does not appear to be associated directly with the 

cutting forces (Figure 107). Since the force spectrum is expected to reflect the dynamic 

characteristics of the cutting process whereas the vibrations, and eventually the sound, are a 

response to the forcing function, this possibly means, that frequency band 2 has more to do with 

machine flexibility than the dynamics of the cutting process. 

The dynamic cutting force induces vibration on the relevant parts of the machine tool therefore 

the cutting force should be closely related to the cutting noise. Figure 106 shows the evolution 

of the cutting force frequency band 1 of vibration and the evolution of the power spectrum of 

sound at the same frequency. If only the shapes are considered, the two lines are extremely 

alike. Thus, for the cutting force, cutting noise and vibration, not only are their spectral shapes 

alike, but the spectral level evolution with wear corresponds to each other. Again, as for the 

vibration, frequency band 2 is indistinguishable from the force spectrum possible because this 

arises indirectly due to machine flexibility and not directly from the cutting process. 

As the tool gradually wears, the flank surface becomes larger, causing the contact surface 
between tool and workpiece to increase, and resulting in higher frictional forces. This causes 

vibration of the tool which, in turn, produces sonic vibrational waves that are transmitted 

through the air. The sound picked up by the microphone arises not only from the tool vibration, 
but also from the vibration of the lathe, although the latter is substantially weakened because of 
the orientation of the microphone. Because of the higher magnitude of vibration in the 

tangential direction and lower tool stiffness, it would be expected that the greater part of the 

sound picked up by the microphone would be associated with this component of vibration. 

In summary, it has been shown that the dynamic behaviour of the tangential force is closely 
related to the behaviour of the sound and vibration as the tool wears and, this is probably due to 
the fact that the main source of sound is the vibration of the cutting tool under dynamic cutting 
forces. 
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7.1.4 Limitations of Spindle Current as a Condition Monitoring Sensor 

Motor torque is intrinsically correlated with the cutting process. The spindle current is in turn 

related to the drive RPM, but this is complicated slightly for the turning process since, as the 

diameter reduces the RPM of the workpiece has to be increased to keep the cutting speed 

constant and this causes quite dramatic changes in spindle current. In order to maintain the 

cutting speed and feed rate constant the rotational speed has to be changed so that the rate of 

metal removal remains constant, the spindle speed will vary according to the equation, 

v=27tRw, [6] 

where v is the tangential speed of a point at a radius r with an angular speed w. So, as the radius 

reduces the angular velocity (or RPM) will have to increase to keep the cutting speed constant. 

The above is confirmed by the experimental results obtained. The points labelled "New bar" in 

Figure represent readings taken at the beginning of a new bar (maximum radius), the straight 

line shows the increase in spindle current with a decrease in workpiece diameter for a single 

bar. As can be seen, the spindle current is more influenced by the motor speed (RPM) than by 

the level of wear on the tool. For insert 2, the spindle current increases 4% due to an increase of 

tool wear of 0.19 mm, while it increases 30% due mainly to the difference in workpiece 

diameter for an increase of tool wear of 0.14 mm. 
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Figure 108: Spindle current versus flank wear 

On its own the spindle current adds little towards the task of monitoring tool wear of the 

turning tool. Nevertheless, since the power provided by the machine is constant (Chapter 3) the 

angular velocity may help to unravel the previous limitations, P= TO). If the angular speed 
increases as the workpiece diameter decreases the torque has to increase, therefore the torque 

will rise and consequently the current to drive it. Having this influence in mind and making use 
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of the workpiece diameter it would be possible to use the spindle current as a condition 

monitoring sensor. 

7.1.5 The Effect of Workpiece Diameter on Sensor Features 

Given that the spindle current has the behaviour described previously, and that the torque 

changes with workpiece diameter, raises the question of whether any of the other features are 

influenced by bar diameter. Since the torque increases it would be expected for some changes 

in other features reflecting the machine behaviour along with changes due to tool wear to occur. 

To answer this question a comparative analysis will be given between spindle current, given its 

direct relationship with bar size, and the other features. Figure 109 to Figure 116 show a 

comparative analysis of this effect. 
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Figure 109: Bar size versus sound average 
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Figure 112: Bar size versus vibration skewness 

Despite the wide scatter shown in Chapter 5 for the average and skewness of sound and 

vibration relative to flank wear evolution, Figure 109 to Figure 112 show an obvious 

relationship to the spindle current, and indirectly to the size of the workpiece, which is 

consistent throughout inserts. The average reveals a strong correlation with bar size, this is 

possibly associated with an increase of RPM which in turn causes the machine related sound 

pitch to rise, as observed. The skewness is also affected by the bar size giving rise to an 

increase with reduced workpiece diameter, this is better illustrated for the skewness of sound 

(Figure 111). An increase in the skewness value means that the distribution becomes more 

asymmetric leading to a positive tailed distribution, this is possibly due to an increase in RPM 

which leads to an increased number of random impacts per sample. The absolute deviation and 

kurtosis did not reveal any obvious relationship with spindle current although some complex 
interaction may exist between these and other variables inherent to the cutting process. 
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Figure 114: Bar size versus tangential force 
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Although a general increase could be observed in the cutting forces with flank wear (Chapter 

5), some relation with spindle current can be observed (Figure 114 and Figure 115). This would 

possibly account for some part of the scatter observed in the evolution of the forces with flank 

wear. Again, these figures are representative of the entire set of cutting tools. 

Figure 115 and Figure 116 plot the evolution of both frequency bands used as features. 

Apparently no straightforward relationship exists between the dynamics of the process and the 
bar size. Eventually, the dynamic behaviour would be affected by changes in workpiece size 
due to changes in mass which can not be confirmed with the present data. It is also of note that 

the weight of the workpiece (%tý 6 kg) only accounted for a small part of the total weight of the 

combined workpiece/tailstock/spindle system. Thus, it seems that the vibrations are more likely 

to come from the cutting tool/machine dynamic characteristics than from the workpiece. Also, 

even under conditions of relatively stable machining, the presence of vibration is manifested by 

saw-tooth marks on the workpiece and serrations on the metal chip (Lee et al., 1989). 
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Figure 116: Bar size versus sound frequency 4.5±0.1 kHz 

7.1.6 Overall Sensor Analysis 

138 

It can be concluded from the previous discussion that wear monitoring using indirect sensing 

methods such as vibration, sound emission and cutting force components is dependent on the 

vibrational behaviour of the machine tool. Also, workpiece dimension constitutes another 

variable subject to machine constraints which may be overcome since the working diameter is 

known at all times. This results in a monitoring system that is highly tuned to a particular 

machine and even perhaps to a particular range of cutting conditions, tool and workpiece 

material. A methodology for coping with some of these limitations will be discussed later in 

this chapter, whereas the following section will quantify the effect of cutting conditions. 
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7.2 The Influence Of Cutting Conditions on Sensor Features 

This section discusses the effect of changing the cutting conditions on the sensors and derived 

features used here. The effect of changing the cutting parameters (depth of cut, feed rate and 

cutting speed) will be analysed taking each of the cutting parameters separately. It is important 

to note that the results in this section are based on two samples taken at the same workpiece 

diameter, therefore and according to what was discussed in section 7.1.5, the effect of depth of 

cut is eliminated which leads to more representative values for comparison. 

7.2.1 The Effect of Depth of Cut on Sensor/Feature 

If the depth of cut is increased, the area of the chip-tool contact will increase approximately in 

proportion to the change in depth of cut, and this causes the components of cutting force to 

increase. It might be possible to remove the effect of depth of cut by use of a model, but most 

models are very specific and usually only estimate cutting force for a new tool and neglect the 

rate at which it increases with wear. It would be simpler to normalise the forces dividing it by 

the depth of cut. 
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Figure 117: Effect of depth of cut on force magnitude and absolute deviation of sound and 

vibration, worn tool (relative scales) 

For machine vibration, sound and dynamic components of force it appears that the vibrational 
modes of the machine tool dominate so that different forcing functions (from different depths 

of cut) result in different evolutions. However, as the depth of cut increases the vibration 
appears to reduce, as shown by the evolution of both the absolute deviation and frequency 

spectra of sound and vibration (Figure 117). This effect is possibly due to an increase of the 

cutting forces leading to increased stability of the cutting process. 
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7.2.2 The Effect of Feed Rate on Sensor/Feature 

A feed rate increase results in higher metal removal rate, higher forces at the tool rake as well 

as an increase in compressive stress thus giving rise to an increase in the cutting forces. The 

force gradient changes slightly at a feed rate of around 0.275 mm/rev for both tangential and 

feed forces. At this feed rate the tool appears to gain stability (Figure 118) which considerably 

contributes to a reduction of the wear rate and which reflects the slight reduction of both feed 

and tangential forces. This linear increase possibly reflects the increase in metal removal rate. 
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Figure 118: Force magnitude and frequency 2.3±0.1 kHz, worn tool 

All sensors seem to be affected in different ways with changes in the feed rate. The spectra of 
both sound and vibration have shown non-monotonic relationships with tool wear as well as the 

other statistical features in general. 

The change in behaviour of the force as well as the other features at a feed rate of 0.275 

mm/rev may be due to a change in metal removal rate (Figure 119). An increase in the feed rate 

eventually leads to what is seen in Figure 119, part of the material supposed to be removed is 

left on the workpiece. With a further increase of the feed rate it would be expected for the 
forces to remain constant, with a gradual reduction in the gradient of the force increase with 
feed rate. This effect happens around this particular point because for a feed value higher then 
0.3 mm per revolution, the same as the flank wear for a worn tool, VBB = 0.3 mm, the tool is 

not able to cover the area intended by increasing the feed per revolution. This also explains 
why new tools are affected, by this effect, prior to the worn tools. 
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Figure 119: Material removal rate changes with increased feed rate (not to scale) 

The above effect is responsible for most of the behaviour associated to a reduction in the 

expected force values. Possible it has an effect on other features, however these are not 

perceptible to such an extent. 

7.2.3 The Effect of Cutting Speed on Sensor/Feature 

Changes in the average cutting forces due to cutting speed seem to be affected differently with 
different cutting speeds, showing no obvious evolution with cutting speed. However, the 

dynamic changes with cutting speed show a clearer evolution. The absolute deviation of sound 

and vibration signals as well as changes in their first frequency band have good correlation with 

cutting speeds and seem to increase. It is of note that for frequency band 2 only the vibrational 

signal was affected significantly, increasing with the cutting speed. Again, frequency band 2 is 

possibly reflecting the changes in flexibility, more with the machine than with the cutting 

process directly. 

7.2.4 Overall Assessment of the Effect of Varying Cutting Conditions 

It has been demonstrated that the vibrational characteristics of the machine/tool affect the 

performance of features, as their vibrational characteristics are influenced by the cutting 
conditions and tool shank properties (e. g. dimension, tool post stiffness). In many cases the 

changes in features resulting from changing cutting conditions were much larger then those 

occurring with wear making it difficult to define a set of signal processing routines that would 
isolate the tool wear changes independently. This has significant implications for a tool wear 
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monitoring system probably resulting in a monitoring system that is specific to a small working 

set of conditions. However, this might not be as limiting as one might expect since many 

flexible cells use only a small set of conditions. 

To overcome some of the limitations necessary to extend the adaptability of the system to 

cutting condition variation it would be worth implementing the following suggestions: - 

- Normalise the cutting forces, e. g. feed force normalised for depth of cut. 

- Account for workpiece diameter, which is readily available from the CNC machine. 

- Care in the use of feed rate values as for large feed rates the behaviour of the forces is 

due to change (as it would be recommended, depending on the insert radius a limit 

value for the feed rate is recommended). 

The Expert System can be adapted to cope with the above suggestions by making it aware of 

cutting conditions and workpiece size. Otherwise adaptability could be built into the system to 

the extent of detecting this changes by itself. 

7.3 Generalisation Capabilities of the Neural Networks 

In this section the capabilities of both neural networks to perform tool wear classification are 
discussed. Several aspects will be raised, which address the unsupervised character of the 

neural networks along with training issues. 
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Figure 120: Neural networks performance for training data 
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Figure 121: Neural network performance for test data 

Figure 120 and Figure 121 demonstrates that both the self organising map and ART2, each 

acting alone, have a large capacity to categorise the different wear stages. The training period 
had a large effect on the performance of the SOM and more training time was required for the 

SOM than the ART2, although at the interpretation stage both have the same speed since the 

basic calculations are relatively simple. 

Of the two networks the SOM, comparatively to the ART2, was better able to extract the 

complex relationship between tool wear and the selected features, it was less prone to the 

influence of noise and was able to generalise more completely. This is due to the fact that with 

the SOM more graduations on the wear scale are possible (6x6) given that each neurone can 

tune to a different wear level, whereas the ART2 is subject to the number of classes created 
during training. To increase the accuracy of the ART2 it is necessary to reduce the vigilance 

parameter which controls how finer the classes are. 

Both neural networks have demonstrated an ability to classify tool wear under a fixed set of 

cutting conditions. When asked to classify tool wear under different cutting conditions their 

performance was radically reduced, although there was a zone that surrounded the training 

conditions where the neural networks worked effectively. As might be expected the strongest 
features (feed and tangential force) were the factors that influenced network performance the 

most. Adding to the suggestions made previously, it would possibly increase adaptability if a 
selection of points at various cutting conditions were added to the training set, allowing the 

neural network to learn the combined effect of tool wear and cutting conditions. The latter 

might become too extensive because a useful training set would have to be large enough to 

reflect reliably a range of cutting conditions, it would imply a large number of experiments. 
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7.4 Feature Evaluation and the SOM 

1.11 

In order to evaluate the individual contributions made by each feature obtained from the 

different sensors the SOM neural network was used as described in Chapter 6. The results have 

shown that certain features seem stronger than others towards tool wear monitoring. The 

process of analysing the weights associated with each feature, although difficult due to the 

complexity associated with the training process, has revealed that the forces are very efficient 

towards tool wear monitoring, as it would be expected. Also the absolute deviation of both 

sound and vibration has been shown to contribute greatly for tool wear diagnosis, the least 

efficient features appear to be the average of sound and vibration. 
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Figure 122: Contour map of wear states associated with each neurone 

Figure 122 shows the wear states associated with each neurone upon training. The way in 

which the map was built reflects the association of input feature vectors representative of 

different wear levels. Given the unsupervised character of the Self Organising Map the 

associated neurone weights are expected to differentiate all variables to which the map has 

tuned to, that is, if for example surface roughness was monitored a map of surface roughness 

could be built in the same way as the map of wear states. In fact, monitoring two conditions 

using the same training feature set is very appealing. 

As shown before the bar diameter has a strong effect on some of the features, namely the 

averages of sound and vibration. Since the higher contribution towards spindle speed is made 
by changes in workpiece diameter it should be possible to identify some areas on the individual 

feature weight maps revealing this kind of behaviour (Figure 123 (a)). An increase in the 

spindle current represents a reduction in the bar size, and possibly an added contribution from 

an increase in tool wear. 
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Figure 123: The effect of features on weights: (a) Spindle current (b) Feed force 
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The fact that some of the features seem to exhibit similar behaviour raises the question whether 

there is redundancy of features or sensors. 

7.5 Feature/Sensor Redundancy 

As mentioned earlier, the strong correlation of some of the features to the dynamic behaviour 

of the cutting tool/lathe, and the generating mechanisms, may indicate that a smaller number of 

sensors/features would still be able to perform tool wear classification. Surely there is some 

interrelation between the information obtained from different sensors, however further tests are 

required to reach such a compromise. Nevertheless, the results obtained so far suggest that the 

removal of the microphone and accelerometer may be compensated by the extraction of similar 
features from the force spectra. Also, the average of sound and vibration appear redundant 

since they imitate the spindle current evolution. 

The monitoring architecture built in the Expert System would still be of use since its 

functionality is not affected by the choice of sensors, or even features. It would be necessary to 

reconfigure the inputs, nevertheless the monitoring strategy would prevail. 

7.6 Hybrid System Assessment 

As was presented in Chapter 6 the linking of an Expert System with the neural networks 

allowed for the removal of obvious mis-classifications, thereby increasing overall system 

performance. 
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Generally, the overall system modularity contributed largely to the success of this application, 

mainly due to the flexibility that it provides when implementing or modifying the embedded 

knowledge. Modularity becomes essential in a system like this because adaptability is not 

always possible with a fixed architecture, that is, accuracy may be built into the system with 

little change to the system according to requirements. Further, knowledge in the form of rules 

can be updated or added as required with little effort which would not alter the overall structure 

of the system. 

7.6.1 Knowledge-Based Criteria and Performance 

The present system was custom built for a specific tool/workpiece combination. However the 

modular approach to that development has resulted in a system that enables new materials and 

tool configurations to be incorporated by updating the knowledge base with new parameters for 

Taylor's tool life equation and/or by training the neural networks under new cutting conditions. 
The database is easily updated through a user friendly interface that allows the neural networks 

to be trained with test data acquired in a few tests which can then be stored for future use. 

7.6.2 The Importance of Historical Data 

In order to improve the performance of the system past experience was taken in to account for 

each tool life. This consisted of keeping track of classifications and then using a number of 

classifications to assess the consistency of classification. Through the use of historical data the 

system becomes aware of previous performance and can judge its reliability, therefore system 
`awareness' provides a certain degree of "intelligence" which enables the system to know, 

according to the "past", what the "present" may or may not be. This methodology resembles, to 

a certain extent, the cognitive process of the operator when confronted with doubtful 
information and enables the "machine" to make more reliable decisions. 

0 

7.6.3 Efficiency of the Proposed System 

Until now only a qualitative judgement has been made regarding system performance and 
design. This subsection analyses the quantitative aspects and complements the above 
discussion on system effectiveness and performance. 

R. G. Silva 1997 



Chapter 7- Discussion of Results 147 

As the Taylor equation makes a conservative estimate of tool wear, its use allows the 

elimination of some outliers generated from poor neural network classification or sporadic 

noisy signals picked up by the sensors. In order to allow the neural networks and Expert 

System to interact, a ±0.15 mm margin was applied around the optimum prediction so as to 

prevent the Expert System from removing good classifications which resulted in an improved 

performance especially for the reduced feature sets where the correlation coefficients increased 

from 0.691 0.872 for the ART2, and 0.782 0.955 for the SOM. Overall system results 

resulted in 100% successful classification of all worn states. Thus, the linking of an Expert 

System based on empirical data and two neural networks enables the monitoring system to 

achieve consistently better results than either classification technique alone. 

It is important to point out that the selected features although sensitive to the tool's behaviour, 

and indirectly to the state of the tool, should be the subject of more experimental work. 
Although under the cutting conditions studied, and for the reasons given in other sections, it is 

possible to classify wear, it is possible that this behaviour will not be reproduced for other 

cutting conditions. Therefore, it may be necessary to find a feature or features that are 
insensitive to the cutting conditions, or otherwise estimate the dynamic instability limits. 

7.7 Summary of Discussion 

It has been demonstrated that, given the correct degree of empiricism, that the neural networks 
in combination with a supervisory Expert System, can monitor wear under a limited set of 

cutting conditions. Adding to the previous, some of the changes which would make the 

proposed system more universal, and based on the suggestions from the previous discussion, 

would be: - 
- Neural network training under the required set of cutting conditions taking into account 

its zone of influence. 

- Enhance the present set of sensor/features, possibly eliminating some of the sensors 
which show redundancy. 
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B. Conclusions 

It has been demonstrated that the combination of an Expert System and neural networks is an 

appropriate way to monitor tool wear. Although, it has only been possible to classify tool wear 

successfully over a limited range of cutting conditions without retraining, the methodology 

adopted during this work would allow re-training of the monitoring system in a short period of 

time. 

The use of multiple sensors has proved to be of great value towards tool wear evaluation since 

the noisy character of each sensor alone would lead to certain failure of the monitoring system. 
The tangential and feed forces proved to be the strongest features of all. The other sensors; 

spindle current, vibration and sound, have shown to be related to the evolution of wear, 

although more weakly. 

Feature extraction proved to be adequate for the present monitoring system, generating an 

enormous amount of information which, although very Complex, was successfully interpreted 

by the neural networks. 

In this hybrid approach, neural networks classify the off-normal and normal operating states, 

while the knowledge base interprets the ANN results and classifies the state of the tool with the 

expert knowledge encoded in it. In particular, this investigation has shown that: - 
1. The Self Organizing Map (SOM) and Adaptive Resonance Theory (ART2) neural 

networks can classify different tool wear levels based on sensory information even in 

the presence of large amounts of noise. 
2. That the Expert System complements the neural networks by removing neural 

network mis-classifications and increases the overall prediction capacity by the use of 

process history. 

3. The use of multiple neural networks enhances classification by monitoring their 

reliability and thereafter selecting the one performing better 

A lot of routine testing is required to provide a complete evaluation of the ability of the system 
to determine whether any occasional deviations from the expected conditions can be identified. 
Currently, the only flaws identified on-line have been improper clamping and local variations 
in material quality, no major breakage having occurred. The importance of detecting specific 
flaws and associated accuracy of such evaluations will be dependent upon the final added value 
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of the components, and acceptable tolerances on quality. It would be expected, however, that 

using the framework outlined, the required accuracy could be built into the software for each 

particular process. 

The magnitude of the cutting forces are the single most effective features for monitoring tool 

wear. Nevertheless these features cannot distinguish between wear and certain changes in 

cutting conditions. Also heuristic models are very inaccurate and rely extensively on the 

experimental determination of parameters pertaining to these models. According to the spindle 

current results the effect of the cutting speed is not obvious, but previous studies suggest that it 

is possible to exclude cutting speed from affecting the force-dependent features used. 

During this study it was found that the dynamic behaviour of the tool reveals an enormous amount 

of information related to the tool wear state. Nevertheless, this information can only be used 

reliably if a better understanding of the dynamics under different cutting conditions is achieved. It 

is therefore suggested that further work should be carried out on the understanding of tool 

behaviour with changes in cutting conditions. 

8.1 Further Work and Recommendations 

A number of other possible pieces of work might be undertaken to improve the range of 

applicability and adaptability of the system. 

- Investigate features which are independent of cutting conditions, such as material 

and/or machine tool. More research is required to find features from the sensor data 

which are less sensitive to changes in cutting conditions. Such features will have to 

accommodate stability effects caused by changes in cutting conditions as well as tool 

degradation, as such, monitoring indices have to date relied on constant cutting 

conditions, which makes them very limited. 

- Extending the knowledge base to allow application in a production environment. 
Further work is needed to extend the knowledge base to cope with aspects such as 
optimisation of the cutting conditions, surface finish requirements, and tool change 
strategies. This could be achieved by testing the monitoring system in a real production 
environment. Then, with the help of technical specialists, additional rules could be 
incorporated into the Expert System to take into account specific product requirements. 

R. G. Silva 1997 



Chapter 8- Conclusions 150 

- Increasing the adaptability of the neural networks. By increasing the training data set 

evenly over the entire range of cutting conditions for all tool wear states it might be 

possible to remove the effect of cutting conditions in the neural network classification 

or even allow the networks to identify a change in cutting conditions. 

- Optimise the software for real-time processing. The software developed so far is in an 

experimental state and could be better achieved through the use of dedicated object 

oriented structures. On-line implementation will dictate its own necessities regarding 

speed of execution as well as flexibility, characteristics that were not studied to a 

significant depth given the broader scope of the project and fields studied. 

- Investigate other sensors. Other sensors, such as Acoustic Emission (AE), might prove 

to be of value in the tool wear monitoring system and should be investigated. 

- Investigate the minimum number of sensors so as to reduce the monitoring system cost, 

as was suggested in the discussion. 
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Appendix A- ART2 System Dynamics According to Carpenter 

and Grossberg (1987) 

A more detailed description of the ART2 algorithm as used in the monitoring system is 

presented here, after Carpenter and Grossberg (1987), where all terminology originates. These 

equations were used in order to build the ART2 module described in Chapter 4. 

Orienting Attentional 
Subsystem Subsystem 

Reset Jth node 
C 

Bil Choice 

ri CPI 
Tji 

4i 
Pi 

Ii ui bf(gil 

Match 
ul VI 

ý fýXlj au l 

wi 
_ 

XI 

X1 

Input Vector 

F2 

F1 

Figure 124: A representation of the ART network of Grossberg (1987). 

Figure 124 reproduces the ART2 architecture given by Carpenter and Grossberg. In order to 

cope with an arbitrary sequence of analogue input patterns, ART2 architectures embody 

solutions to a number of design principles, such as the stability-plasticity trade-off, the search- 

direct access, and the match-reset trade-off. A parallel search scheme updates itself adaptively 

as the learning process unfolds, and realises a form of real-time hypothesis discovery, testing, 

learning, and recognition. 
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A. 1 The Input Representation Field F, 

An incoming pattern first undergoes extensive processing in ART2. Several parameters and 

constraints play important role in this processing as well as in operation of ART2. They are as 

follows: - 
1. The bottom-up weight vector for all nodes j, j=1,..., n, denoted as bÜ, must initially 

obey b; ý S 1/Im (where m is the dimension of the input pattern). The top-down weight 

vectors, denoted zj, equal 0 at initialisation. 

2. t=1/ßm 

3. a=b=10 

4. (cd)/(1-d) <_ 1 

5. w, =x, =v, =u, =q, =P; =O 

The lower (FI) layer of ART normalises the pattern, then suppresses noise, then re-normalises. 

A squashing function accomplishes the noise suppression. Carpenter and Grossberg suggest 

the following: - 

0 if 0: 5 x_ 0 
.f 

(x) = Lx if xz0, 
(A. 1) 

0<0 <t (A. 2) 

In order to be able to process analogue input patterns, the ART2 network needs to include three 

processing layers in the F, STM field, as shown in Figure 124. The combination of these three 

processing layers enables the network to separate signal from noise, to enhance the contrast of 

activation signal and, in addition, to perform the matching function between the F, STM and 

the F2 STM. The equations below, given originally in Carpenter and Grossberg (1987), shows 

the values for the labelled nodes of the system pictured in Figure 124. 

w, =1, +au, (A. 3) 

_ 
w, 

xr if 1I (A. 4) 

yr = f(xi)+bf(9i), (A. 5) 

u' Ilvll (A. 6) 
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-AP; qj I (A. 7) 
PIl 

where b is a constant and f is the non-linear signal function in equation (A. 1). At the top of F, 

layer, vector p sums both the internal F, signal vector u and all the F2-), Fl filtered signals: - 

P. = Ui + zg(J)t,;; 

i 
(A. 8) 

In this equation, g(j) is the output of thejth F2 node and ty is the top-down weight (LTM trace) 

between thejth F2 node and the ith F, node. 

A. 2 Choose in F2 field and Reset in the Orienting Sub-System 

The normalised input pattern next enters the competitive stage of the system. As in competitive 
learning, a node at the second (F2) layer receives as input the inner product of its weight vector 

with the processed input vector. The node having the greatest input `wins' the competition. 

Next the network checks that the winning node sufficiently matches the pattern. If the match 

should prove insufficient, according to the vigilance parameter discussed below, then the 

winning node is `reset' by the orienting subsystem, or reset mechanism, of the network. The 

reset cannot participate in the coding (classifying) of the present pattern. The F2 node having 

the next greatest input becomes the winner, its match is checked, and so on. 

Match in the F, field, choose in the F2 field and reset in the orienting subsystem are very 

closely related functions in the ART2 dynamics. The F2-Fl input is a sum of weighted path 

signals, as in equation (A. 8). The FI-*F2 input is also a sum of weighted path signals which 

represents the matching score between the current STM vector p and the jth LTM trace in the 

F2: - 

sj _ 
EPibij, 

i 
(A. 9) 

where sj is the matching score and by are the bottom-up weights (LTM trace). After all 

matching scores are obtained, the one with maximum matching value is chosen as an activated 
node in the F2: - 
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sj =maxfj: j=M+1,..., N (A. 10) 

Then, thejth F2 node is activated. The activation of the F2 is given as follows: - 

d if j=J 
g(j) = fo Li #J 

(A. 11) 

To this end, the F2 activation is propagated back to vector p; in F, field according to equations 

(A. 8) and (A. 11), then a vigilance test is carried out to determine whether the top-down signal 

is matched with the input pattern. The vigilance test is given as follow: - 

Ui + cp, 
Ilull + 11cpll 

IIII>1? (A. 13) 

where c is a constant and 0<r<1. If the match fails to pass the vigilance test, a reset is sent to 

the F2 and forces the F2 to deactivate the selected F2 node and search for the next best match. 
Otherwise, the bottom-up and top-down weights are adapted from the following equations: - 

bu (t+1) = dt[p, - by (t)] 

ty (t + 1) = dt [p, 
- tu (t + 1)] 

(A. 14) 

(A. 15) 

where di is the weight adjusting parameter. The initial values for top-down and bottom-up 

weights must satisfy the following constraints: - 

1 
t' (0) < 

1- dm' 
(A. 16) 

b (0) <1 (A. 17) 

cd 

1- d< 
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Where c is the constant used in equation (A. 12), d is a constant, and m is the dimension of the 

input vector. The initial bottom-up weights, b; ß(0), should be set as large as possible because 

this helps stabilise the ART2 network by ensuring that the system will form a new category, 

rather that re-code an established but badly mismatched one. 

A. 3 The Reset Mechanism 

The reset function in ART2 essentially checks that the `winning' node at the output layer 

actually matches the input pattern as closely as desired. Reset occurs if the reset function falls 

below p, Carpenter and Grossberg built it in such a way to ensure the following: - 
1. When learning has just begun, ART2 will not reset a new uncommitted node; i. e. 

learning can commence. 
2. As learning progresses and nodes become committed, mismatches will trigger resets; 

i. e. learning increases mismatch sensitivity 

A. 4 Parameters, Constraints and Initialisation 

Several parameters affect ART2 operation, Carpenter and Grossberg suggests values for some 

of these and provide ranges for others. The parameters c and d are the least mysterious, they 

play an important role in the reset equation, suggested values are 0.1 and 0.9, respectively. 
Parameters and b are, perhaps, most mysterious, in that Carpenter and Grossberg suggest they 

simply equal `10'. They provide a rough sort of scaling in weight update, the vigilance 

parameter has a well defined meaning but is difficult to specify a priori, as it defines the level 

of closeness of patterns within classes. 
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Appendix B- The Self Organizing Map 

Feature extraction can improve the generalisation ability of classifiers and reduce the 

computational requirements of pattern classification. Kohonen's Self-Organising Map has a 

very desirable property of topology preserving, which captures an important aspect of feature 

maps that occur in the human brain. The network architecture is shown in Figure 125 and 

consists of a two dimensional array of nodes, each of which is connected to all the input nodes. 

Output 
node 

XO X1 XN-1 

Figure 125: SOM 2D projection Map 

Because of the topology-preserving property of the SOM, some insights into the data can be 

gained by examining the activation pattern of the 2D array of units when each of the features is 

presented at one time to the network after the training is complete. 

B. 1 The Self Organising Algorithm 

The SOM consists of two layers of neurones, the first is the sensory or input layer, consisting of 

n neurones, one for every input feature, that receives the information of the sensory space. 
These neurones work as buffers that distribute the input data to the neurones on the second 
layer, without performing any computation. The computation is carried out on the second layer, 

called the map, that also acts as the output layer. The map consists of a rectangular grid of A? 

neurones or processing elements that work in parallel. The N input neurones are labelled by the 
i index, with 1: 5 i: 5 N, and the A12 neurones on the map by j and k, with 1: 5j:: 5. M, and 1: 5 k: 5 
Mthat indicate the location of the processing elements. Every i neurone in the sensory layer is 

connected to every G, k) neurone on the map through a synaptic weight. In summary, the map 
can be seen as a two-dimensional array of identical elements, with each one storing a vector wok 
of synaptic weights. 
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There are two operating modes; learning and recall. The map is developed during learning, in 

this phase, sample vectors x; are draw from its training data set. For every iteration, one vector 

is presented to the network, the similarity between the weight vector of every processing 

element and the input feature vector is computed by means of a similarity measure, and 

competition among the nodes start. This is won by the most similar node, which is called the 

`winner'. It was defined a symmetric neighbourhood of neurones surrounding the winning 

neurone, this neurone, and those belonging to its neighbourhood, are updated in such away that 

their weight vectors approach to the present input vector slightly. The process starts with a 

wide neighbourhood that allows a global ordering of the synaptic weights, this shrinks with 

time, until only the winning neurone and its nearest neighbours are updated. The same happens 

with the learning rate c(t), that starts at a value less than 1.0 and decreases until a small value is 

reached. 

The most appealing characteristic of competitive learning algorithms is that they perform 

vector quantization, dividing the input vector space into discrete, equi-probable regions. Each 

processing element represents one of these regions in the vector space. If it is possible to have 

the probability that an input vector falls into a region being the same for each region, then the 

processing element would generate an optimal I out of ii code for the input vector space. It 

has been noted that Kohonen learning does not achieve this result, but is biased in favour of the 

regions of lower density of input vectors (DeSieno, 1988). Therefore, the goal is to introduce a 

conscience mechanism, as described in (DeSieno), to bring all the processing elements 

available into the solution quickly, and to bias the competition process so that each processing 

element can win the competition with close to the 1/21 probability desired for an optimal 
vector quatization. 

B. 1.1 SOM Implementation Algorithm 

There is no standard training algorithm, being the final results quite independent of its actual 
realisation (starting parameters, learning rate, time dependence of the parameters,... ). An 

explanation of the algorithm used in this work will now be presented. Every iteration t is a 
discrete step in time. 

First synaptic weights, w; ýk, have to be initialised to small random weights, initialise neurone 
winning frequency Fjk to JIM2 for all output nodes. Presented a new input vector, every (/, k) 

neurone on the map computes in parallel the similarity between the input vector wirk, Euclidean 
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distance is used as a similarity measure (Equation B. 1). The present neighbourhood of the 

winning neurone consists of the winner and the neurones surrounding it. 

N-1 
dfk 1(x, 

`t)- wJk`t)Y (B. 1) 

At this point a bias is introduced to modify the competition, so that the winning node reduces 

its probability of winning again if selected. 

d knew = d; k , Id +y (Mz. Fjk -1 (B. 2) 

The constant y represents the bias factor, it determines the distance a losing processing element 

can reach in order to enter the solution (used as 0.01). Search then starts for the winning 

neurone (jgko), this is the neurone whose distance is minimum according to the Euclidean 

distance, i. e. that whose weight is most similar to the input vector. A bias is developed for each 

processing element based on the number of times it has won the above competition (ß used as 

0.01). 

For the winning neurone, 

Fjknew 
- 

Fjkold + ß(. 0-Fjkod) (B. 3) 

For all other neurones, 
Fjknew = Fjkold +ß 

(0.0 
- 

Fjkold) (B. 4) 

where ß corresponds to the coefficient of distance adjustment 

The process starts with a fairly wide neighbourhood that allows for a global ordering of the 

map, with a starting radius Ro (2 times Al). Thereafter, the radius size slowly decreases with 

time, shrinking until only the 60, k& neurone and its six nearest neighbours (final radius Rf= 1) 

are involved in the updating process. For this purpose it was used a linear decreasing for 

updating R(t): - 

R(t)=Ro+(Rf-R0)tt 
rf 

(B. 5) 
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where t is the present iteration and tf is the maximum number of iterations until reaching the 

final radius Rf. An accurate rule is not important, and other functions for updating R(t) can be 

used. To modify the weights wjjk of the winning neurone (jako) and those of its neighbours to 

make their weight vectors more similar to the inputs is described next: - 

Wyk (t + 1) = wok (t) +c (t). h(t). [x, (t) -wok (t)] (B. 6) 

where c(t) is the learning rate and h(t) the lateral interaction function (decreasing with the 

distance to the winning neurone), that defines the present neighbourhood. The learning rate 
decreases with time, as is the case with R(t): - 

rf-r 

EýIý=Eoe (B. 7) 

where co is the starting learning rate (< 1.0), t is the present iteration and 1, f the maximum 

number of iterations. Again, an accurate rule is not important and other functions can be used. 

The function h(t) provides the lateral interaction between the neurones. It depends on the 

present neighbourhood radius, is symmetric and is centred on the winning neurone: - 

h(t) 
k 

R(t) 
(B. 8) 

where ho is a chosen value (ho < 1), in this case a value of 0.75 proved to be efficient. This 

enables the central neurone (the winning neurone) to become closer to the input pattern 

compared with the surrounding neurones that will change according to their distance to the 

winning neurone. After a sufficient number of iterations the training is stopped, and the 

network operates in recall mode. In this mode the map responds to an input vector without 

modifying its weights. Again, every processing element computes the distance between its 

weight vector and the input vector, and a competition starts that is won by the neurone whose 
weights are more similar to the input vector. 
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Appendix C- Neural Networks Software Code 

160 

The following programs were built in the `C' language as external Dynamic Link Librarie 

(DLL) modules, these allow fast execution of time consuming numerical calculation 

procedures. They are automatically called upon request, KAPPA-PC handles their execution 

and scheduling as required by the monitoring strategy.. 

Acquisition SOM & Interpolate Analysis 

Figure 126: Modules in `C' 

C. 1 Data Acquisition and Analysis Module 

This module is responsible for the acquisition and analysis of data, the expert system provides 

the required inputs and scheduling. 

Sampling frequency is passed on to the Data AQuisition (DAQ) module as well as frequency 

bands to be averaged. The data provided by the sensors is acquired for a short period and stored 

in memory for further processing. Processing for feature extraction is then carried out by the in 

built functions (moments analysis and FFT) and then transferred to KAPPA-PC. The reason for 

integrating both data acquisition and signal processing into the same module is to avoid 
KAPPA from handling enormous amounts of data. Figure 127 shows a simplified step by step 
flow diagram of the procedures in this module. 
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Sensors // Input from 
KAPPA 

Data Acquisition 

Data Analysis 

Sensor 
Features 

Figure 127: Flow diagram of Data Acquisition Module (DAQ) 

More detail of the procedures can be encountered in the following program list, this was built 

with ANSI C. 

12 

#include "kappadll. h" 

#include <stdio. h> 

#include <stdlib. h> 

#include <conio. h> 

#include <math. h> 

#include "edr. h" 

#define samples 512 

#define sensors 5 

#define features 15 

double data_matrix[sensors][samples]; // acquired data matrix 
double help matrix[2*samples+l]; 
int num, ref=1; 
int file save; 
double Band_IL, Band IF Band 2L, Band 2R; 
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double Sampjr; 

LISTID lista; 

***************************** DataAcquisition ****************************ý 

void data_acquisition(void) 

{ 

int baseaddr = 0x700; 

int bh; 

int ij; 

unsigned bin[sensors*samples*2]; 

long uvolts[sensors*samples]; 

bh = EDR AllocBoardHandleO; 

EDR_InitBoard(bh, baseaddr); 

EDR SetADTransferMode(bh, EDR SINGLEDMA); 

EDR SetADClockmilliHz(bh, Samp Fr* 1000* sensors); 

EDR_SetADChanListLen(bh, O); 

for (i=O; i<sensors; i++) { 

EDR_AddToADChanList(bh, i); 

EDR SetADInGain(bh, i, 1); 

} 
EDR ADInBinBackground(bh, sensors*samples, bin); 

while ((num=EDR BackgroundADlnStatus(bh)) < samples*sensors); 
EDR StopBackgroundADIn(bh); 

EDR ADInBinToVoltageBlock(bh, uvolts, bin, num, 0); 

for (i=O; i<samples; i++) // tranfer data to matrix 
for O=0; j<sensors; j++) 

data_matrix[j][i] = uvolts[i*sensors+j]/pow 10(6); 

EDR_FreeBoardHandle(bh); 

/****************** Statistical Analysis *********************/ 
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void mean_value(int column) // Calculate mean value 

int l; 

double s=O. O, ave; 

for (i=0; i<samples; i++) 

s+=data matrix[column][i]; 

ave=s/samples; 
KppInsertNthElem(lista, ref++, _f2a(ave)); 
if (file_save) KpcWriteLineF(_f2a(ave)); 

} 

void moments(int column) // Calculate ave, adev, skew, kurt 

int i; 

double s=0.0, p, ep=0.0; 

double ave, adev, skew, curt, var, sdev; 

for (i=0; i<samples; i++) s+=data matrix[column][i]; 

ave=s/samples; 

adev=var=skew=curt=0.0; 
for (i=0; i<samples; i++) { 

adev += fabs(s=data_matrix[column][i]-ave); 

var += (p = s* s); 

skew += (p *= s); 

curt += (p *= s); 

} 
adev /= samples; 

var = (var-ep* ep/samples)/(samples- 1); 

sdev = sqrt(var); 
if (var) { 

skew /= (samples* var* sdev); 

curt = curt/(samples*var*var) - 3.0; 

} // Write parameters: 

KppInsertNthElem(lista, ref++, _f2a(adev)); 
Absolute deviation 

KpplnsertNthElem(lista, ref++, _f2a(ave)); 
I/ Average 

KppInsertNthElem(lista, ref++, _f2a(curt)); 
// Kurtosis 
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KppInsertNthElem(lista, ref++, 
_f2a(skew)); 

// Skewness 

if (file_save) { 

KpcWriteLineF( f2a(adev)); 

KpcWriteLineF(_f2a(ave)); 

KpcWriteLineF(_t2a(curt)); 

KpcWriteLineF(_f2a(skew)); 

} 

#define SWAP(a, b) tempr=(a); (a)=(b); (b)=tempr 

void FFT(int column) 

{ 

unsigned long n, mmax, mj, istep, i; 

double wtemp, wr, wpr, wpi, wi, theta; 

double tempr, tempi; 

for (i=O; i<samples; i++) { 

help matrix[2*i+1] = data_matrix[column][i]; 

help matrix[2*i+2] = 0.0; 

} 

n=2*samples; FFT algorithm 
j=1; 

for (i=1; i<n; i+=2) { 

if(j>i) { 

SWAP(help matrix[j], help matrix[i]); 

SWAP(help matrix(j+l], help matrix[i+l]); 

} 

m=n» 1; 

while (m >= 2 && j> m) { 

j -=m; 

m »= 1; 

} 
+= M; 

} 

mmax=2; 

while (n > mmax) { 

H Calculate FFT 
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istep=mmax « 1; 

theta=2*M PI/mmax; 

wtemp=sin(O. 5 *theta); 

wpr = -2.0*wtemp*wtemp; 

wpi=sin(theta); 

wr=1.0; 

wi=0.0; 

for (m=1; m<mmax; m+=2) { 

for (i=m; i<=n; i+=istep) { 

j=i+mmax; 

tempr=wr*help_matrixU]-wi*help matrix(j+l]; 

tempi=wr*help matrix[j+l]+wi*help matrix[j]; 

help matrix[j]=help matrix[i]-tempr; 

help matrix[j+1]=help matrix[i+1]-tempi; 

help matrix[i] += tempr; 

help matrix[i+1] += tempi; 

} 

wr=(wtemp=wr)*wpr-wi*wpi+wr; 

w i=w i* wpr+wtem p* wp i+w i; 

} 

mmax=istep; 
) 

End FFT algorithm 

} 

#undef SWAP 

void PSD(void) 

{ 

int i; 

double tempor; 

// Calculate PSD of Band 1 

tempor=0.0; 

for (i=Band_1L; i<Band_1R; i++) 

tempor+= sgrt(help matrix[2*i+l]*help matrix[2*i+l] + 

help matrix[2*i+2]*help matrix[2*i+2]); 
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tempor /_ (double) (Band 
_1 

R-Band_I L); 

KppInsertNthElem(lista, ref++, 
_fla(tempor)); 

if (file_save) KpcWriteLineF(_f2a(tempor)); 

H Calculate PSD of Band 2 

tempor-0.0; 

for (i=Band 2L; i<Band 2R; i++) 

tempor += sgrt(help_matrix[2*i+1]*help matrix[2*i+1] + 

help matrix[2*i+2]*help matrix[2*i+2]); 

tempor /= (double) (Band 2R-Band 2L); 

KppInsertNthElem(lista, ref++, _f2a(tempor)); 
if (file save) KpcWriteLineF( f2a(tempor)); 

short PEXPORT DataHandler (ARGLIST 1pArgList) 

{" 

/************************* Read KappaInputs ********************************ý 

int ij; 

char file_source[12], file_source2[12]; 

KpaGetArgDouble(IpArgList, 1, Samp Fr); 

KpaGetArgDouble(IpArgList, 2, Band_IL); 

KpaGetArgDouble(IpArgList, 3, Band_IR); 

KpaGetArgDouble(lpArgList, 4, Band 2L); 

KpaGetArgDouble(IpArgList, 5, Band 2R); 

KpaGetArgString(IpArgList, 6, file_source, 12); 

KpaGetArgString(lpArgList, 7, file_source2,12); 

KpaGetArgInt(lpArgList, 8, file_save); 

Band_IL = (int) samples* Band_1L/Same Fr; 

Band_1R = (int) samples*Band_1R/Same Fr; 
Band 2L = (int) samples* Band 2L/Samp Fr; 
Band 2R = (int) samples* Band 2R/Samp Fr; 

lista = KppMakeList(0); 

166 
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if (file save) KpcOpenWriteFile(file_source, 
_s2a("APPEND")); 

*********************** End Kappa Read inputs ****************************ý 

/*********************** Start -Sensor Scanning ***************************ý 

data_acquisitionO; 

/************************ End-Sensor Scanning ***************************/ 

/*********** Start - Vector Analysis & Output to Kappa-PC ******************/ 

moments(O); // sound statistics 
FFT(O); // FFT of sound 
PSDQ; // PSD of sound 

moments(1); // vibration statistics 
FFT(1); // FFT of vibration 
PSDO; // PSD of vibration 

mean_value(2); feed force 

mean_value(3); tang. force 

mean_value(4); spindle current 

if (file_save) KpcCloseWriteFileO; 

if (file save) { 

KpcOpenWriteFile(file source2 _s2a("APPEND")); 
for (i=0; i<samples; i++) // tranfer data file 

for (j=O j<sensorsj++) 

KpcWriteLineFLf2a(data matrixo][i])); 
KpcCloseWriteFileO; 

KpaReturnList(lista); 

KppDeleteList(lista); 

/************** End - Vector Analysis & Output to Kappa-PC *****************/ 
} 

0 
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C. 2 Neural Network Code 

168 

The following diagram shows the common steps undertaken by the self organising map and 

adaptive resonance theory network modules. As can be seen both modules can work in two 

modes, training or recall mode. When training sample data is used to compute the weights for 

each network, this same data is used to map the classification versus measured flank wear. If 

the neural network is working on the recall mode it will simply work out the classification of an 

input feature vector. 

Input from 
KAPPA 

Yes No 
Train ? 

-Ljý Compute Weights 
--_____ 

Weights Recall 
y Database 

Map Trained Data --------- 

Output to 
KAPPA 

Figure 128: Neural networks flow diagram 

The following code was used to built the neural network modules, as presented in Chapter 4. 

C. 2.1 Self Organising Map 

The present self organising map code is used in order to train the network and for the prediction 

of wear by returning a two dimensional co-ordinate which corresponds to the position of the 

cluster in the map of wear conditions associated with a certain wear level. 
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#include "kappadll. h" 

#include <stdlib. h> 

#include <math. h> 

#include <stdio. h> 

#include <time. h> 

#defme outputs 10 

#define inputs 18 

#define n lines 70 

int tempo; 

double InputVector[inputs]; 

double weight[inputs] [outputs] [outputs]; 

char Weights_Source[12], Data_Source[ 12]; 

int train-limit; 

int auxb, auxc; 
double DataVector[n_lines*(inputs+2)]; 

double d[outputs] [outputs], f[outputs][outputs]; 

float norm[]=(0.0,1.2, -0.07,0.4, -1.1,0.4, -1.5,1.0,1.0,5.0,0.0,4.4,0.0,0.06,0.0,0.02, -0.9,0.44, 

-1.5,1.0,0.1,0.45,0.0,0.3, -2.7,1.3,0.8,6.8,0.8,3.0,330.0,360.0,0.1,0.4,0.9,1.3 , 0.0,1.0); 

int Lines; 

void generate weights(void) { 

int k, ij; 

randomizeO; 

for (k=0; k<inputs; k++) 

for (i=0; i<outputs; i++) 

for (j=0; j<outputs; j++) 

weight[k] [i] [j]=random(30000)/30000.0; 

void ReadWeights(void) { 

int i, kj; 

double num; 

char convers[30]; 
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KpcOpenReadFile(Weights_Source); 

for (k=0; k<inputs; k++) 

for (i=O; i<outputs; i++) 

for (j=0sj<outputs; j++) { 

KpcReadLine(convers, O); 

weight[k] [i] [j] =_s2f(convers); 

} 

KpcCloseReadFileo; 

} 

void ReadData(void) { 

int ij; 

double num; 

char convers[30]; 

KpcOpenReadFile(Data_Source); 

i=0; 

while (! (KpcEndOIFile QSMQ)) { 

KpcReadLine(convers, O); 

DataVector[i] = _s2f(convers); 
i++; 

} 

KpcCloseReadFileo; 

Lines=i-1; 

for (i=0; i<(Lines/(inputs+2)); i++) { 

for O=0; j<inputs; j++) 

DataVector[i* (inputs+2)+j]=(DataVector[i* (inputs+2)+j]- 

norm[j*2])/(norm(j*2+1 ]-norm[*2]); 

} 

void compute_distance(void) { 

int k, i, j; 

double auxa; 

for (k=0; k<outputs; k++) 

for (i=O; i<outputs; i++) { 
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d [k] [i]=pow(InputV ector[O]-we ight[0] [k] [ i], 2.0); 

for 0=1; j<inputs j++) 

d[k] [i]+=pow(InputVector[j]-weight(j] [k] [i], 2.0); 

d[k] [i]=sgrt(d[k] [7); 

} 

H Calculate bias and update distances 

for (k=0; k<outputs; k++) 

for (i=O; i<outputs; i++) 

d[k][i]+=0.1 *(outputs* 

H calculate the minimum distance 

auxa=d[O][0]; 

auxb=auxc=0; 
for (k=O; k<outputs; k++) 

for (i=O; i<outputs; i++) 

if (auxa>d[k][i]) { 

auxa=d[k][i]; 

auxb=k; 

auxc=i; 

update frequencies of winning nodes 

for (k=O; k<outputs; k++) 

for (i=O; i<outputs; i++) 

f[k][i]*=1.0-0.1; 

f[auxb] [auxc]=f[auxb] [auxc]+0.1 *(I . 0-f[auxb] [auxc]); 

} 

void update_weights(void) { 

// update the weights according to neighberhood 
int k, ij; 

int nb; 
double alf; 

nb=20*pow(l. 0/20.0, (float) tempo/train_limit); // reducing exponentially with time 
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alf=0.9*pow(0.01/0.9, (float) tempo/train_limit); // decrease with training time, 

exponentially 

for (k=max(auxb-nb, 0); k<min(auxb+nb, outputs); k++) 

{ for (i=max(auxc-nb, O); i<min(auxc+nb, outputs); i++) 

for (j=0; j<inputs; j++) 

weight[j][k] [i]+=alf*exp(-pow(d[k][i]/nb, 2.0)) 

*(InputVector[j]-weight(j] [k][i]); 

} 

void WriteWeights(void) 

int i, kj; 

KpcOpenWriteFile(Weights Source, NULL); 

for (k=O; k<inputs; k++) 

for (i=O; i<outputs; i++) 

for (j=0 j<outputs; j++) 

KpcWriteLineFLf2a(weight[k] [i] U])); 

KpcCloseWriteFileo; 

/************************************************************ 

SOM Handler 

short PEXPORT SOMHandler(ARGLIST IpArgList) 

{ 

/* Inport information, from Kappa-PC 

int i, j, g; 
int line; 

LISTID lista; 

char Train_Source[12]; 

ATOMID convers; 

for (i=0; i<outputs; i++) 

for O=0; j<outputs; j++) 
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fli] 0]= 1.0/(outputs* outputs); 

KpaGetArgString(IpArgList, 1, Weights_Source, 12); 

KpaGetArgString(IpArgList, 2, Data_Source, 12); 

KpaGetArgString(lpArgList, 3, Train_Source, 12); 

KpaGetArgInt(lpArgList, 4, train-limit); 

for (i=O; i<inputs; i++) 

KpaGetArgDouble(IpArgList, 5+i, InputVector[i]); 

for (i=O; i<inputs; i++) 

InputVector[i]=(InputVector[i]-norm[i*2])/(norm[i*2+1 ]-norm[i*2]); 

H Program Body 

if (train_limit>O) { 

generate weightso; 
ReadDataO; 

randomized; 
for (tempo=0; tempo<train limit; tempo++) for (g=0; g<2; g++) { 

line=random(Lines/(inputs+2)); 

for (j=0; j<inputs; j++) 

InputVector[j]=DataVector[line* (inputs+2)+j]; 

compute distanced; 

update weightso; 

} 

WriteWeightso ; 
KpcOpenWriteFile(Train_Source, NULL); 

for (i=0; i<(Lines/(inputs+2)); i++) { 

for (j=0; j<inputs; j++) 

InputVector(j]=DataVector[i* (inputs+2)+j ]; 

compute distanced; 

convers = i2a(auxb); 

KpcWriteLineF(convers); 

convers = i2a(auxc); 

KpcWriteLineF(convers); 

convers = f2a(DataVector[i*(inputs+2)+inputs]); 

KpcWriteLineF(convers); 
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KpcCloseWriteFileO; 

KpaReturnInt(Lines); 

} 

else { 
ReadWeightsO; 

compute_distance(); 

lista = KppMakeList(O); 

KppInsertNthElem(lista, 1, 
_f2a(auxb)); 

KppInsertNthElem(lista, 2, 
_f2a(auxc)); 

KpaReturnList(lista); 

KppDeleteList(lista); 

} 

C. 2.2 Adaptive Resonance Theory 

The algorithm presented in Chapter 4 and complemented by Appendix A was the base for the 

production of the following program. This module provided the external capacity of training 

the ART2 and was also used to recall the cluster association to a particular vector input. 

#include "kappadll. h" 

#include <stdlib. h> 

#include <math. h> 

#include <stdio. h> 

#include <time. h> 

#define inputs 15 

#define outputs 15 

#define n lines 70 

#define t 0.25 // t=1.0/sqrt(inputs); 

#define tt 0.01 

int Commitment[outputs]; 

double LTM [inputs] [outputs]; 
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double InputVector[inputs]; 

double P[inputs], b; 

double DataVector[n_lines*(inputs+2)], Wear[outputs][2]; 

double Vigilance, Reference; 

char Data_Source[12], Weights_Source[12]; 

int Train_Limit, Lines; 

float norm[]={0.25,1.15, -0.07,0.4, -1.1,0.14, -0.5,0.18,2.2,4.8,1.8,4.4,0.02,0.06, 
0.0,0.02, -0.9,0.44, -0.6,0.4,0.15,0.37,0.14,0.26, -2.3, -1.19,2.6,4.2,1.5,2.5,0.0,1.0}; 

void Initialize(void) 

{ 

int i; 

for(i=O; i<outputs; i++) 

Commitment[i]=O; 

void ReadWeights(void) 

{ 
int i, k; 

double num; 

char convers[30]; 

KpcOpenReadFile(WeightsSource); 

for(i=0; i<inputs; i++) 

{ for(k=O; k<outputs; k++) 

KpcReadLine(convers, O); 

LTM[i][k] = a2f( s2a(convers)); 

} 

for(i=O; i<outputs; i++) { 

KpcReadLine(convers, O); 

Commitment[i] = a2j(_s2a(convers)); 

} 
KpcCloseReadFileO; 

void ReadData(void) 
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int isj; 

double num; 

char convers[30]; 

KpcOpenReadFile(Data_Source); 

i=0; 

while (! (KpcEndOfFile_QSMQ)) { 

KpcReadLine(convers, O); 

DataVector[i] = _a2f(_s2a(convers)); 
i++; 

} 

KpcCloseReadFileO; 

Lines=i-1; 

{ for (i=O; i<(Lines/(inputs+2)); i++) 

for (j=0; j<inputs; j++) 

DataVector[i* (inputs+2)+j]=(DataVector[i* (inputs+2)+j]. 

norm[j *2])/(norm[j*2+1 ]-norm[j *2]); 

} 

void LowerLevelProcessing(void) 

{ 

double wm=0.0, vm=0.0; 
double W[inputs], V[inputs], X[inputs]; 

int i; 

for(i=O; i<inputs; i++) { 

W[i]=InputVector[i]; 

wm+=pow(W[i], 2.0); 

} 

wm=sqrt(wm); 
for(i=O; i<inputs; i++) { 

X[i]=W[i]/wm; 

if (X[i]>=tt) V[i]=X[i]; 
else V[i]=0.0; 
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vm+=pow(V [i], 2.0); 

} 

vm=sqrt(vm); 
for(i=O; i<inputs; i++) 

P[i]=V[i]/vm; 

void Competition(void) 

{ 

int ij, k, Ref; 

double T[outputs], swapl, norm[inputs], n, N; 

for(i=0; i<outputs; i++) 

T[i]=0.0; 

for (i=O; i<outputs; i++) 

if (Commitment[i]) 

for(k=O; k<inputs; k++) 

T[i]+=P[k] * LTM [k] [i]; 

else { 

for (k=O; k<inputs; k++) 

T[i]+=P[k]; 

Re 0; 

swapl=T[0]; 
for (i=1; i<outputs; i++) 

if (T[i]>swapl) { 

swapl=T[i]; 

Ref=i; 

} 

H Resonance or reset & Learning 

if (! Commitment[Ref] 11 (Commitment[RefJ && T[Ref >=Vigilance)) 

Commitment[RefJ=1; 

n=0.0; 

for (i=O; i<inputs; i++) { 
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if (InputVector[i]>tt) norm [i]=InputVector[ 

else norm[i]=0.0; 

n+=pow(norm [ i], 2.0); 

} 

N=0.0; 
for (i=O; i<inputs; i++) 

norm[i]/=n; 

LTM[i][Ref]=b*norm[i]+(1-b)*LTM[i][Ref]; 

N+=LTM[i][Ref]; 

} 

for (i=O; i<inputs; i++) 

LTM[i][Ref]/=N; 

if (Commitment[RefJ && T[RefJ<Vigilance) { 

Commitment[RefJ=O; 

for (i=O; i<inputs; i++) 

LTM[i][Reff =lnputVector[i]; 
} 

void DetermineResult(void) 

{ 

int i, k; 

float T[outputs], swapI; 

for(i=0; i<outputs; i++) 

T[i]=0.0; 

for (i=O; i<outputs; i++) 

if (Commitment[i]) 

for(k=O; k<inputs; k++) 

T[i]+=P [k] * LTM [k] [i]; 

swap 1=-I. O; 

for (i=0; i<outputs; i++) 

if ((T[i]>swapl 11 swapl==-1.0) && Commitment[i]) { 

swapl=T[i]; 

Reference=i; 
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void WriteWeights(void) 

{ 

int i, k; 

KpcOpenWriteFile(Weights_Source, NULL); 

for(i=O; i<inputs; i++) 

fork=0; k<outputs; k++) 

KpcWriteLineFLf2a(LTM [i] [k])); 

for(i=O; i<outputs; i++) 

KpcWriteLineFLj2a(Commitment[i])); 

KpcCloseWriteFileO; 

/************************************************************ 

ART2 Handler 

*******«s«***««s***«******************************«*s*******/ 

short PEXPORT ART2Handler(ARGLIST 1pArgList) 

{ 

/* Inport information, from Kappa-PC */ 

int i, j; 

int line; 

LISTID lista; 

KpaGetArgString(IpArgList, 1, Weights Source, 12); 

KpaGetArgString(lpArgList, 2, Data_Source, 12); 

KpaGetArgDouble(IpArgList, 3, Vigilance); 

KpaGetArglnt(lpArgList, 4, Train_Limit); 
KpaGetArgDouble(lpArgList, 5, b); 

for(i=O; i<inputs; i++) 

KpaGetArgDouble(IpArgList, 6+i, InputVector[i]); 
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for (i=O; i<inputs; i++) 

InputVector[i]=(InputVector[i]-norm[i*2])/(norm[i*2+1 ]-norm[i*2]); 

/* Program Body */ 

if (Train_Limit>O) { 

InitializeO; 

ReadDataO; 

randomizeO; 

{ for (i=O; i<Train_Limit; i++) 

line=random(Lines/(inputs+2)); 

for (j=0; j<inputs; j++) 

InputVector[j]=DataVector[line* (inputs+2)+j]; 

LowerLevelProcess ingO; 

CompetitionO; 

} 

WriteWeightsO; 

for (i=0; i<outputs; i++) { 

Wear[i][0]=0.0; 

Wear[i][1]=0.0; 

for (i=0; i<(Lines/(inputs+2)); i++) { 

for O=0; j<inputs; j++) 

InputVector[j]=DataVector[i* (inputs+2)+j]; 

LowerLevelProcessingO; 

DetermineResultO; 

Wear[Reference] [0]+=DataVector[i* (inputs+2)+inputs]; 

Wear[Reference] [1 ]+=1.0; 

} 

lista = KppMakeList(0); 

for (i=0; i<outputs; i++) 
if (Wear[i][1]! =0) 
KpplnsertNthElem(lista, 2 * i+l, 

_j2a(i)); 
KpplnsertNthElem(lista, 2* i+2, 

_f2a(Wear[i] 
[0]/Wear[i] [1 ])); 

} 

KpaReturnList(lista); 

KppDeleteList(lista); 
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} 
else { 

ReadWeightso; 

LowerLevelProcessingO; 

DetermineResultO; 

KpaReturnlnt(Reference); 

} 

} 

C. 3 Krigging Method of Interpolation 

As described in Chapter 2, this interpolation method yields a good approximation of the SOM 

map topology and enabled generalisation of nearby unlabeled clusters. It was used after SOM 

training upon known cluster associations with wear and resulted in a sort of look up table for 

input vector interpretation. 

tu ULJ 

short PEXPORT InterpolateHandler(ARGLIST IpArgList) 

{ 

#define points 45 

#define outputs 7 

#define inputs 15 

int i, j; 

double data in[points][3], data[points][3], matrixa[points][points], matrixb[points]; 
double semivariances[points][points]; 

char file_in[12], file out[12], convers[30]; 
double averagez, variancez, maxx, maxy, minx, miny, semivariance, radius; 
int Lines, l, m, n; 
double auxl; 
int imax, k, ii, ip, indx[points]; 

double big, dum, sum, temp, w[points], d; 

KpaGetArgString(IpArgList, 1, file 
- 

in, 12); 
KpaGetArgString(lpArgList, 2, file_out, 12); 

RG. Silva 1997 



Appendix C- Neural Networks Software Code 182 

/* Read data to fit into surface from file */ 

KpcOpenReadFile(file_in); 

i=0; 

while (! (KpcEndOfFile_QSMO)) { 

KpcReadLine(convers, 0); 

data in[i][0] = a2f(_s2a(convers)); 

KpcReadLine(convers, 0); 

data_in[i][1] = a2f(_s2a(convers)); 

KpcReadLine(convers, 0); 

data_in[i][2] = a2f(_s2a(convers)); 

i++; 

} 

KpcCloseReadFileo; 

Lines=i-1; 

n=Lines; 

// Check for points overlaping positions 

m=0; 
for (i=0; i<n; i++) 

if (data in[i][2]! =-1.0) { 

data[m] [0]=data_in[i] [0]; 

data[m] [1 ]=data_in[i][ 1 ]; 

data[m] [2]=0.0; 

sum=0.0; 
for O=i; j<n; j++) 

if (data in[i][0]=data_in[j][0] && 

data in[i][1]=data_in[j][1] && data in[i][2]! =-1.0) { 

data[m][2]+=data in[j][2]; 

data in(j][2]=-1.0; 

sum+=1.0; 

} 

data[m][2]/=sum; 

m++; 

n=m; 
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H Do calculations for all the grid 

averagez=0.0; 

maxx=minx=data[O] [0]; 

maxy=miny=data[0] [1]; 

for (i=O; i<n; i++) { 

averagez+=data[i] [2]; 
if (maxx<data[i][0]) maxx=data[i][0]; 

if (minx>data[i][0]) minx=data[i][0]; 

if (maxy<data[i][ 1 ]) maxy=data[i][ 1 ]; 

if (miny>data[i][1]) miry=data[i][1]; 

} 
averagez/=n; 

variancez=0.0; 
for (i=O; i<n; i++) 

variancez+=pow(data[i] [2]-averagez, 2.0); 

variancezl=n; 

radius=sgrt(pow(maxx-minx, 2.0)+pow(maxy-miny, 2.0))/2.0; 

semivariance=variancezhadius; 

H Calculate distances and Semivariances between known points and location 

for (i=0; i<n; i++) 

for O=i; j<n; j++) 

semivariances[i] [j]=semivariance* sqrt(pow(data[i] [O]- 

data[j] [0], 2.0)+pow(data[i] [1 ]-datao] [1], 2.0)); 

H fill in matrix a with known values of semivariances 

for (i=0; i<n; i++) 

for O=ij<n; j++) 

matrixa[i][j]=matrixa[j][i]=semivariances[i][j]; 
for (i=0; i<n; i++) 

matrixa[n] [i]=matrixa[i] [n]=1.0; 

matrixa[n] [n]=0.0; 
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H Using LUDCMP. C from NRC, calculate LU decomposition of a 

a=1. o; 

{ for (i=O; i<=n; i++) 

big=0.0; 

for (j=0; j<=n; j++) 

if ((temp=fabs(matrixa[i][j]))>big) big=temp; 

vv[i]=1.0/big; 
} 

for (j=0; j<=n; j++) { 

for (i=0; i<j; i++) { 

sum=matrixa[7G]; 
for (k=O; k<i; k++) sum-=matrixa[i][k]*matrixa[k]o]; 

matrixa[i] (j]=sum; 

} 

big=0.0; 

for (i=j; i<=n; i++) { 

sum=matrixa[i][j]; 

for (k=0; k<j; k++) 

sum-=matrixa[i][k]*matrixa[k][j]; 

matrixa[i](j]=sum; 
if ((dum=vv[i]*fabs(sum))>=big) { 

big=dum; 

imax=i; 

} 
} 
if (j! =imax) { 

{ for (k=O; k<=n; k++) 

dum=matrixa[imax][k]; 

matrixa[imax] [k]=matrixa(j] [k]; 

matrixa[j][k]=dum; 
} 

d=-d; 

vv[imax]=vv[j]; 

} 
indx[j]=imax; 
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if (matrixa[j](j]==0.0) matrixa[j](j]=pow10(-20); 

if (j! =n) { 

dum=1.0/matrixa[]Ü]; 

for (i j+1; i<=n; i++) matrixa[i][j]*=dum; 
} 

H choosing a point p where to interpolate, starts the interpolation 

KpcOpenWriteFile(file_out, 0); 

for (1=0; 1<outputs; l++) 

{ for (m=O; m<outputs; m++) 

H distances and semivariances of location p 

for (i=0; i<n; i++) 

semivariances[i] [n]=semivariance*sgrt(pow(data[i] [0]- 

1,2.0)+pow(data[i][ 1 ]-m, 2.0)); 

H matrix b formation with remaining parameters 

for (i=0; i<n; i++) 

matrixb [i]=semivariances [i] [n]; 

matrixb[n]=1.0; 

H Find the weights Wi by solving the equation A. X=B, using 
// the results from LUDCMP. C in LUBKSB. C (next) 

ii=-1; 

for (i=0; i<=n; i++) { 

ip=indx[i]; 

sum=matrixb[ip]; 

matrixb[ip]=matrixb[i]; 
if (ii>-1) 

for (j=ii; j<=i-1; j++) sum-=matrixa[i][j]*matrixb[j]; 

else if (sum) ii=i; 

matrixb[i]=sum; 

R. G. Silva 1997 



Appendix C- Neural Networks Software Code 186 

} 
{ for (i=n; i>=O; i--) 

sum=matrixb[i]; 

for (j=i+1; j<=n; j++) sum-=matrixa[i][j]*matrixb(j]; 

matrixb[i]=sum/matrixa[i] [i]; 

} 

H Write value into output matrix of surface 

aux 1=0.0; 

for (i=O; i<n; i++) 

aux 1+=matrixb[i] * data[i] [2]; 

KpcWriteLineF(_f2a(aux 1)); 

H Write map into data file 

KpcCloseWriteFileO; 

KpaReturnDouble(semivariance); 

} 

C3.1 SOM Map Interpretation Algorithm 

This module, also implemented as an external DLL, provided the means to recall the SOM 

wear association with different clusters. 

12 

short PEXPORT WearInterpolateHandler(ARGLIST IpArgList) 

{ 

char file_in[12]; 

int i, j, out=7; 
double x, y; 
double data[7][7]; 

char convers[30]; 

KpaGetArgString(IpArgList, 1, file in, 12); 

KpaGetArgDouble(IpArgList, 2, x); 
KpaGetArgDouble(1pArgList, 3, y); 
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KpcOpenReadFile(file_in); 

for (i=0; i<out; i++) 

for O=0; j<out; j++) { 

KpcReadLine(convers, O); 

data[i][j] = _a2f(_s2a(convers)); 

KpcCloseReadFileo; 

KpaReturnDouble(data[x] [y] ); 
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Appendix D- Functions Defined Within Kappa 

188 

Functions are the most flexible tool in KAL, the language within KAPPA. All the actions 

necessary in the various windows in KAPPA-PC, from adding an object to activating a method, 

can be done easier, faster and more efficiently on a larger scale using the KAL functions. The 

following functions were used to enable the monitoring system to exchange information from 

and to files as well as performing several actions in the coarse of evaluating tool wear. 

/************************************* 

**** FUNCTION: DBopenTool 

MakeFunction( DBopenTool, [], 

Let [file SelectFile( "Database Name", "*. wks" )] { 

Tool: File = file; 

Resetlmage( Editl ); 

} ); 

/************************************* 

**** FUNCTION: DBopenMaterial 

MakeFunction(DBopenMaterial, [], 

Let [file SelectFile( "Material Database Name", "*. wks" )] ( 

Material: File = file; 

Resetlmage( Edit2 ); 

} ); 

/************************************* 

**** FUNCTION: GotoDBSetUp 

MakeFunction( GotoDBSetUp, [], 

ShowWindow(Sessionl ); 

} ); 

I************************************* 

""FUNCTION: ReturnDBsetup 
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********.. ***. *s*sýst. ««***ý***.. **«*/ 

MakeFunction( ReturnDBsetup, [], 

{ 

HideWindow( Session I 

ShowWindow( SESSION ); 

} ); 

/************************************* 

**** FUNCTION: SelectTool 

MakeFunction( SelectTool, [J, 

{ 

DBOpenFile( Tool: File ); 

ClearList( Tool: AvailSelection ); 

Let [n DBGetNumberOfRows( )] 

{ 

For PosRow From 1 To n 
Do { 

AppendToList(Tool: AvailSelection, 

DBReadCell(PosRow, 1) ); 

Tool: Name = PostMenu( "Tool Selection", Tool: AvailSelection ); 

DBSetRowPosition( GetElemPos( Tool: AvailSelection, Tool: Name) ); 

SetValue( Tool: CTaylor, DBReadField( 2) ); 

Tool: NTaylor = DBReadField( 3 ); 

DBCloseFile( Tool: File ); 

} ); 

************************************* 

**** FUNCTION: SelectMaterial 

MakeFunction( SelectMaterial, [], 

{ 

DBOpenFile( Material: File ); 

ClearList( Material: AvailSelection ); 

Let [n DBGetNumberOfRows( )] 

{ 
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For PosRow From I To n 

Do { 

AppendToList( Material: AvailSelection, 

DBReadCell( PosRow,. 1) ); 

Material: Name = PostMenu( "Material Selection", Material: AvailSelection ); 

DBSetRowPosition( GetElemPos( Material: AvailSelection, Material: Name) ); 

DBCloseFile( Material: File ); 

} ); 

/************************************* 

**** FUNCTION: GotoMonitoring 

MakeFunction( GotoMonitoring, [], 

{ 

ShowWindow( Session2 ); 

} ); 

ý**s******s**ý********«*******s*ýº*ýs* 

**** FUNCTION: RetumMonitoring 

MakeFunction(RetumMonitoring, [], 

{ 

If ( TimeReference: Clock Status #= On ) 

Then PostMessage( "Monitoring is Running" ) 

Else { 

HideWindow( Session2 ); 

ShowWindow( SESSION); 

} ); 

/************************************* 

**** FUNCTION: MonitorOn 

MakeFunction( MonitorOn, [], 

{ 
If (TimeReference: Clock_Status #= Off) 
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Then { 

Taylor Equation 0; 

ClearList(H ART2: Wear_Class History); 

ClearList(H_SOM: Wear Class History); 

ClearList(H_SOM: Time_History); 

ClearList(H_ART2: Time_History) ; 

TimeReference: Time_On = 0; 

TimeReference: Time_Off=O; 

TimeReference: Clock_Running = Off; 

TimeReference: Clock_Status = On; 

Perf ART2: Pnn=0.0; 

Perf ART2: Rh=1; 

Perf SOM: Pnn=0.0; 

Perf SOM: Rh=1; 

Resetlmage(LinePlotl) ; 

ResetClock( ); 

SetTimer(1,0,5 ); 

} 
Else PostMessage("Monitoring is Already Being Performed"); 

) ); 

/************************************* 

**** FUNCTION: MonitorOff 

MakeFunction(MonitorOff, [], { 

KillTimer( I ); 

TimeReference: Clock_Status = Off; 

} ); 

ý***«**. *********ýý*****«**********a** 

**** FUNCTION: DBopenSOM 

MakeFunction(DBopenSOM, [], 

Let [file SelectFile( "SOM Database Name", "*. dat" )] { 

SOM: Weights_FileSource = file; 

Resetlmage( Edit 16 
} ); 
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ý*s********ýs*ý**s*týý******s**ýs***** 

**** FUNCTION: DBopenART2 

***s*s*****s*«***«*«ýý****«**ss***ý*«ý 

MakeFunction( DBopenART2, [], 

Let [file SelectFile( "ART2 Database Name", "*. dat" )] { 

ART2: Weights_File_S = file; 

Resetlmage( Edit 17 

} ); 

/************************************* 

**** FUNCTION: Help_DepthCut 

MakeFunction( Help_DepthCut, [], 

PostMessage("Defmes the value for depth of cut in mm") ); 

/************************************* 

**** FUNCTION: GotoModuleTest 

MakeFunction( GotoModuleTest, [], { 

ShowWindow( Session3 ); 

} ); 

/************************************* 

**** FUNCTION: ReturnModuleTest 

*************************************ý 

MakeFunction( ReturModuleTest, [], { 

HideWindow( Session3 ); 

ShowWindow( SESSION); 

} ); 

/************************************* 

**** FUNCTION: Acquire Data 

MakeFunction( Acquire_Data, [], SetValue (Inputs: lista, DAQPROC 

(Inputs: Sampling Frq, Inputs: Band_1_L, outputs: Band_I_R, Inputs: Band 2 L, In 

puts: Band_2 R, Inputs: data2file, Inputs: da ta2backupfile, Inputs: file on)) ); 

/************************************* 
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**** FUNCTION: Run SOM 

***s***. ««****ý**ý****ý**ý**s*s******ý 

MakeFunction( Run_SOM, [], 

SetValue(SOM: Class_Pos, SOM(SOM: Weights_File_Source, Inputs: data2file, 

SOM: aux_file, O, Sound: Abs Deviation, Sound: Mean Value, Sound: Kurtosis, Sou 

nd: Skewness, Sound: Frq Band_1, Sound: Frq Band 2, Vibration: Abs_Deviation, 

Vibration: Mean Value, Vibration: Kurtosis, Vibration: Skewness, Vibration: Frq Ba 

nd_1, Vibration: Frq_Band 2, Forces: MeanFeed_Force, Forces: Mean Tang_For 

ce, Current: Mean_Current)); 

} ); 

/************************************* 

**** FUNCTION: Run ART2 

MakeFunction( Run ART2, [], ART2: Class_Alloc = FormatValue ("%d", ART2 

(ART2: Weights_File S, Inputs: data2file, ART2: Vigilance, O, Sound: Abs Deviation 

, Sound: Mean Value, Sound: Kurtosis, Sound: Skewness, Sound: Frq_Band_1, Sou 

nd: Frq Band 2, Vibration: Abs_Deviation, Vibration: Mean Value, Vibration: Kurto 

sis, Vibration: Skewness, Vibration: Frq Band_1, Vibration: Frq Band 2, Forces: Me 

an_Feed_Force, Forces: MeanTang_Force, Current: MeanCurrent)) ); 

/************************************* 

**** FUNCTION: Taylor Equation 

MakeFunction( Taylor Equation, [], 

TaylorsEquation: Taylor Tool_Life=TAYLOR(Tool: NTaylor, CutCond: CutSpeed, 

Tool: CTaylor); 

} ); 

/************************************* 

**** FUNCTION: Help_Simulate 

MakeFunction(Help_Simulate, [], 
PostMessage("Simulates the monitoring process fully integrated") ); 

/************************************* 
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**** FUNCTION: Veredict 

***«******«*s**s*ts. rs. «ý*ss******ý*sý 

MakeFunction( Veredict, [], 

{ 

Run ART2 Q; 
ART2: Prediction=GetNthElem(ART2: Wear C1ass, GetElemPos(ART2: n_Class, 
ART2: Class_Alloc)); 

Run_SOM 0; 

SOM: Prediction=WEAR Predictor(SOM: aux_file2, FormatValue(%d", GetNthEle 

m(SOM: Class_Pos, 1)), FormatValue ("%d", GetNthElem(SOM: Class_Pos, 2))); 

Taylor Predictiono ; 
ToolState: Wear Level = NULL; 

ForwardChain ([NOASSERT], State_of Tool); 

ResetImage(LinePlot l ); 

} ); 

**** FUNCTION: GotoTrain 

MakeFunction( GotoTrain, [J, 

ShowWindow(Session5) ); 

/************************************* 

**** FUNCTION: ReturnTrain 

MakeFunction(ReturnTrain, [], 

HideWindow(Session5) ); 

************************************* 

**** FUNCTION: TrainART2 

MakeFunction(TrainART2, [], 
{ 

C1earList(ART2: n Class) ; 
ClearList(ART2: Wear Class) ; 
SetValue(Global: aux3, ART2(ART2: Weights File_Source, Inputs: data2file, ART2 

: Vigilance, ART2: Training Limit, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)); 

For n From 1 To LengthList(Global: aux3) By 2 Do { 

194 

R. G. Silva 1997 



Appendix D- Functions Within KAPPA 

AppendToList(ART2: n_Class, FormatValue("%d", GetNthElem(Global: aux3, n))); 

AppendToList(ART2: Wear Class, GetNthElem(Global: aux3, n+l)); 

ART2: n Clusters=FormatValue ("%d", LengthList(ART2: n Class)); 

PostMessage("Training DONE"); 

} ); 

/************************************* 

**** FUNCTION: TrainSOM 

MakeFunction(TrainSOM, (], 

{ 

SOM(SOM: Weights_File, Inputs: data2file, SOM: aux_f11e, SOM: Training_Limit, 0,0 

, o, o, o, o, o, o, o, o, o, o, o, o, o); 
MAP WEAR (SOM: aux file, SOM: aux file2); 

PostMessage("Training DONE"); 

} ); 

**** FUNCTION: daq 

MakeFunction( daq, (], 

{ 

Inputs: file_on=1; 

Acquire Datao; 

PostInputForm("Flank Wear Reading", WearState, Wear Measure, Reading) ; 

OpenWriteFile(Inputs: data2file, APPEND); 

WriteLine(WearState: Wear Measure); 

WriteLine(TimeReference: TimerCounter); 

CloseWriteFileO ; 
Inputs: file on=0; 

} ); 

/************************************* 

**** FUNCTION: TimerFunc 

**** Evaluation of Spindle Current 

MakeFunction(TimerFunc, [], 
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If (Inputs: file_on=1) Then { 

PostlnputForm("Flank Wear Reading", WearState, Wear_Measure, Reading) ; 

OpenWriteFile(Inputs: data2file, APPEND); 

WriteLine(WearState: Wear Measure); 

WriteLine(TimeReference: Time_On); 

CloseWriteFileO ; 

If ( Current: Mean_Current > Current: CurrentTrigger) Then { 

If (TimeReference: ClockRunning #= Off) Then { 

TimeReference: Time_Off=GetClock() - TimeReference: Time_On; 

TimeReference: Clock_Running = On; 

TimeReference: Time On = GetClock( - TimeReference: Time_Off; 

If(TimeReference: Time On/TimeReference: SamplingFloor(TimeReference: Tim 

e On/TimeReference: Sampling) < 0.5) Then { 

VeredictO; 

} 

Else { 

TimeReference: ClockRunning = Off; 

} ); 

SetFunctionComment( TimerFunc, "Evaluation of Spindle Current" ); 

************************************* 

**** FUNCTION: Taylor 
- 
Prediction 

*************************************/ 

MakeFunction( Taylor Prediction, [], 

{ 

TaylorsEquation: Taylor Predict = 
TimeReference: Time On*0.3/(TaylorsEquation: TaylorTool Life*60); 

} ); 

***********$*******s**************«** 

**** FUNCTION: Correlation 
*************************************/ 
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MakeFunction( Correlation, [H PerfJ, 

If (LengthList(H: Wear_Class_History)>2) Then { 

Global: a=O; 

Global: b=O; 

Global: c=O; 
Global: d=O; 

Global: e=O; 
{ Let [n Min(LengthList(H: Wear_Class_History), Settings: Np)] 

For i From 1 To n Do { 

Global: a=Global: a+GetNthElem(H: WearClass History, LengthList(H: Wear Cla 

ss_History)-i+l)*GetNthElem(H: Wear Class History, LengthList(H: Wear Class 

_History)-i+1) ; 
Global: b=Global: b+GetNthElem(H: WearClass History, LengthList(H: Wear Cia 
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ss History)-i+l); 

Global: c=Global: c+GetNthElem(H: Time History, LengthList(H: Wear Class_History)- 

i+l)*GetNthElem(H: Time History, LengthList(H: Wear_ClassHistory)-i+l) ; 

Global: d=Global: d+GetNthElem(H: Time History, LengthList(H: Wear Class History)- M); 

Global: e=Global: e+GetNthElem(H: Wear_Class History, LengthList(H: Wear Cla 

ss History)-i+l)*GetNthElem(H: Time History, LengthList(H: Wear 

Class_History)-i+1) ; 

If (Abs(Min(LengthList(H: WearClass History), Settings: Np)*Global: e-Global: b* 

Global: d) < 0.00000001) Then Perf: Rh =1 
Else Perf: Rh=(Min(LengthList(H: Wear Class History), Settings: Np)*Global: e- 
Global: b*Global: d)/Sgrt((Min(LengthList(H: WearClass History), Settings: Np)*G 

lobal: a-Global: b*Global: b)*(Min(LengthList(H: Wear Class History), Settings: Np)*Global: c- 

Global: d* Global: d)); 

}; 
} ); 
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Abstract 

A method is presented for monitoring the progressive 
increase of tool wear during a turning operation by 
means of two Neural Network algorithms, the Self 
Organising Map (SOM) and Adaptive Resonance 
Theory (ART2). Audible sound emission, machine 
vibration, cutting forces and spindle current have 
been measured as a function of tool wear. Features 
obtained from these sensors which are suitable for 
real time application were used as inputs to the Neu- 
ral Networks. Features selected were the average, 
absolute deviation, skewness, kurtosis and some 
bands of the frequency spectrum. Some of these pa- 
rameters are shown to be more sensitive to the seri- 
ously worn stage. The cutting force is shown to be 
more sensitive than the feed force, although both 
show a progressive increase with tool wear. The 
spindle current is shown to vary with flank wear. 
Because of the sharp changes in the motor load dur- 
ing the tool entry and exit, the current sensor is an 
excellent detector of cut state. The two Neural Net- 
work structures are shown to be able to distinguish 
different wear levels. 

1. Background 

Successful automation of machining operations re- 
lies, to a great extent, on the ability of artificial sys- 
tems to recognise process abnormalities and initiate 
corrective action. In the absence of human operators, 
this function has to be performed with sensors and 
associated decision-making systems which are able to 
interpret incoming sensor information and decide on 
the appropriate control action. For full automation, 
intelligent systems are expected to replace the knowl- 
edge, experience, and the combined sensory and pat- 
tern recognition abilities of human operators. Suc- 
cessful implementation of these different tasks de- 
pends on two factors: first, the quality of information 

received by the monitoring sensor, and second, the 
technique used to process this information in order to 
make decisions. 

Wear monitoring has been performed using many 
different sensing techniques. These techniques in- 
clude; temperature, motor current, acoustic emission 
(AE), audible emissions, vibration and force. Some 
of these have been successfully applied under labora- 
tory conditions although industrial applications have 
been rather unsuccessful. Clearly, the quality of the 
sensor information is adequate to make judgements 
of the state of wear in idealised conditions but much 
work has to be performed in information processing 
and decision making in order to correctly classify the 
tool wear state from the available sensors. It is there- 
fore the aim of this work to integrate some of the 
above mentioned sensors to extract the largest pos- 
sible amount of information from the cutting process 
and provide an indication of the wear level. 

Previous work on the relationship between audible 
emissions and tool wear has established that audible 
emissions are capable of indicating the extent of the 
cutting edge wear, Weller et al. [1]. McNulty et al. [2] 
have also highlighted the use of noise spectra for tool 
life evaluation applied to several cutting processes 
and have found significant changes in certain fre- 
quency bands that appear to be characteristic of wear 
in certain cutting processes. Lee [3] found that, dur- 
ing turning the machine noise exhibited a wear re- 
lated change of sound pressure level (SPL) at certain 
frequencies (4 -6 kHz) for several materials. A drop 
in the SPL before the tertiary zone (third and last 
stage of wear) was suggested as an end of tool-life 
predictor. Experiments carried out by Wu Ya et al. 
[4] using two different types of turning tool showed 
that both the tool angle and the cutting speed exerted 
no great influence on the average cutting noise. 

Vibration has also been used to recognise the wear 
state of a tool whilst turning [5,6] and the main ad- 
vantage of this method is its ease of application. 



Taking into consideration previous research (e. g. Ji- 

ang et al. [6]) vibration has been chosen in this work 
as a secondary source of information because of the 

correlation between machine tool vibration and tool 

wear that have been demonstrated successfully in the 
laboratory. The vibrations arising from the shearing 
action of the tool is transmitted to the base of the ma- 
chine where they are transduced by the accelerome- 
ter. 

Another sensor is the motor current. This can be di- 

rectly related to the power required by the turning 
machine and is in turn related to the total torque on 
the motor shaft for a given set of cutting conditions. 
Aside from the specific cutting forces the loads that 
influence the current include those associated with 
Worn tools, misaligned components, and faulty lubri- 

cation systems '[7]. Measurement of motor current 
has the advantage that the sensors are non intrusive, 
inexpensive and easy to incorporate and maintain. 

A parameter that can be relatively easily measured is 

cutting force. Cutting forces change as the tool wears 
and have often been used to detect tool wear in the 
laboratory [8]. Some results have shown regimes 
where a linear relationship between these forces and 
tool wear exists [9]. A method of wear estimation for 

carbide tools, using a function of the cutting forces, 
has been presented in [10]. 

'j'he use of more than one sensor can enhance perform- 
ance of a monitoring system, because each should pro- 
, Vide independent information on the level of tool wear, 
and this is particularly useful in cases where the sensor 
jnformation is of limited applicability. Through appro- 
priate analysis, the dependence of the features on 
changes in process conditions can be analysed [11,121. 
1 -his allows for improved reliability in making decisions 

on the state of tool wear under a range of machining 
conditions. There are several approaches to this prob- 
lem, but most are statistical which unfortunately makes 
tl=n slow and tedious. Another approach is the use of 
neural networks. These are capable of learning input 

patterns and the corresponding outputs according to a 
given learning rule. After training they can be used to 
classify, and thus recognise, new instances of similar 
patterns. One way in which such a decision-making 
stage could be utilised is by a combined system. These 
would consist of a neural network and a simple statisti- 
cal analysis of the acquired data, the latter as a feature 
extractor for the Neural Network. This approach is used 

in this work, with the overall scheduling being under- 
taken by a Neural Network. 

2. Experimental Apparatus and Procedure 

Experimental work aimed at evaluating the proposed 
system was carried out on a turning centre although 
the method should be applicable to other machines 
and processes. 

The turning operation was carried out on an MT 50 
CNC Slant Bed Turning Centre, with a cutting speed 
of 350 m/min. and a feed rate of 0.25 mm/rev. The 
depth of cut was 1.0 mm. The insert was a TP25C 

grade coated cemented carbide (CNMG 120408) and 
the workpiece a free cutting mild steel (ENA), 135 

mm in length. 

The vibration instrumentation system consisted of an 
accelerometer type DJB AO 1/ T, having a mounted 
axial resonant frequency of 15 kHz, magnetically 
fixed to the base of the Turning Centre in the direc- 

tion of maximum vibration (assumed to be perpen- 
dicular to the feed). A matching charge amplifier 
type B&K 2626 was used to provide the required 
interfacing ranges for the data acquisition inputs. 

Audible emissions were picked up via a microphone 
type ECM-1028. This was mounted on the tool post 
to minimise changes in signal amplitude due to cut- 
ting path changes. An amplifier was used to provide 
the required interface voltage level for the data ac- 
quisition board. 

Two half Wheatstone bridge strain gauges were 
mounted on the tool in order to measure 2 compo- 
nents of the cutting force. Matching amplification 
circuits were used to achieve the required voltage 
levels. The current was taken directly from the CNC 
machine using the built in sensor. 

A data acquisition board type PC-30PGL handled the 
acquisition of all the signals, saving the acquired data 
to permanent storage. Sampling was carried at 33.3 
kHz with tool wear and sensor data being acquired at 
intervals of 2.5 min., taking into account an expected 
life, for each insert, of about 15 minutes. 
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Figure 1 Experimental apparatus 

3. Signal Processing and Neural Nets Used 

In the present study 15 inputs (spindle current; aver- 
age, absolute deviation, skewness and kurtosis for 

sound and vibration; tangential and feed force; 2 
spectrum bands from both the sound and vibration) 
have been used although speed would not be com- 
promised by a higher number of inputs. The inputs 

comprised data from all the sensors using statistical 
parameters such as average, absolute deviation, 
skewness and kurtosis. The number of frequency 
bands was selected in order not to compromise data 
reliability due to misuse of certain frequencies sub- 
ject to changes which are not due to tool wear (e. g. 
machine environment). Therefore, two bands were 
selected from the power spectrum for the audible 
emissions (Section 4) and two for the machine vibra- 
tion (Section 4). 

Kohonen's algorithm [ 13] (Self Organising Map - 
SOM) creates a vector quantiser by adjusting weights 
from common input nodes (X; ) to output nodes arranged 
in a two dimensional grid as shown in Figure 2. 

Arl 
Output 

nodes 

X0 X1 XN-1 

Figure 2 SOM basic structure 

The aim of Kohonen's algorithm is to generate a map- 
ping of a higher dimensional space of input signals onto 
a, usually two-dimensional, discrete lattice of formal 

neurones. The map is generated by establishing a corre- 
spondence between inputs and neurones such that the 
topological (neighbourhood) relationship among the in- 

puts is reflected as faithfully as possible in the arrange- 
ment of the corresponding neurones in the lattice (Ritter 

et al. [14]). 

Another type of neural network, called Adaptive 
Resonance Theory (ART), creates and organises 
categories for features and has the ability to respond 
immediately to experiences. The basic principles of 
adaptive resonance theory were first introduced by 
Grossberg 1151, Figure 3. 

000 
Bottom-up 

weights Top-down 

Orienting Subsystem Qj 
(Reset Mechanism) 

Input Pattern 

Figure 3A representation of the ART 

network, Grossberg 1151 

Each set of 15 inputs was used for training the neural 
networks. Both NNs (SOM and ART2) were pro- 
vided with a module for reading and writing data 
from/into a file. 

The above configuration was chosen for the low cost 
and simplicity required for a viable on-line tool wear 
monitoring system. 

4. Analysis of Parameters Related to Flank Wear 

Normally, building a neural network model involves 
data collection, data pre-processing, variable selec- 
tion, network training, and network validation. The 
former is necessary because real process data often 
contain missing values, outliers, and noise. These 
data have to be conditioned or pre-processed before 
they can be used for network training. Feature selec- 
tion is a procedure to identify important features 



from all available process variables which have a 
significant effect on the condition to be predicted. 
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Figure 4 Flank wear versus time 

Figure 4 shows the evolution of flank wear with time. 
This was measured using an engineering microscope 
and it can be seen that there is an approximately lin- 

ear relationship between flank wear and time. 

Analysis of the mean, standard deviation, skewness 
and kurtosis of the sound and vibration data did not 
yield a correlation with tool wear. Despite this it was 
decided to use them is training the NN's as there may 
have been features corresponding to tool wear that a 
simple regression analysis would not show. 

From Figure 5 to Figure 10 it can be seen that the 
power spectrum of data obtained from the micro- 
phone and accelerometer data varied consistently 
with the wear level. The intervals which show this 
relation for the microphone, are: [3.5; 5.5] kHz, 
[6.2; 7.5] kHz and for the accelerometer, are: 
[3.6; 5.2] kHz, [6.2; 7.2] kHz. 
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Figure 6 Vibration: Frequency power spectrum 
of a new tool 
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Figure 7 Sound: Frequency spectrum 
of a worn tool 
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Figure 5 Sound: Frequency spectrum 
of a new tool 
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Figure 9 Frequency magnitude variation with 
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Figure 10 Frequency magnitude variation with 
flank wear, vibration [3.5; 5.5] kHz 

Feed force (Figure 11) appears to exhibit a small but 
consistent changes with flank wear. 
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Figure 11 Feed force versus wear 

The cutting force also shows a relation to wear much 
more clearly. As the wear increases the cutting force 
also increases, and as can be seen this increase is 

repeatable and consistent between different tool in- 
serts. 
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Figure 12 Cutting force versus wear 

From these results the following parameters were 
chosen as features for Neural Network training and 
evaluation: spectrum bands from sound and vibra- 
tion; statistical features from sound and vibration; 
feed and cutting force; spindle current. 

5. Test with the SOM 

The success of applying neural networks to a prob- 
lem depends upon the type of problem domain and 
the representativeness of the data sets that are used to 
train the neural network. 

The SOM was coded based on the theory developed 
by Kohonen [13]. The present network consists of 
two layers of neurones. The first is the sensory or 
input layer, consisting in this case of 15 neurones, 
one for each feature obtained from the sensors. The 
computation is carried out in the second layer, called 
the map, that also acts as the output layer and this 
was 10 x 10 neurones. 

The learning procedure consists of two stages. In the 
first, the map unfolds until a global ordering of the 
neurones is reached. Every neurone tunes to a pattern 
or class of patterns, and neighbour neurones tune to 
similar inputs. In the second stage, the statistical dis- 
tribution of the synaptic weights approaches that of 
the input variables. 

A set of experiments was carried out using the SOM. 
The results achieved demonstrate the ability of this 
Neural Network to classify sets of data into consis- 
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tent classes. Figure 13 to Figure 18 show some of the 
results. 

Figure 13 Contour plot for a tool with 
VBB=0.05 mm 

Figure 16 Contour plot of a tool with 
VBi, =0.21 mm 

Figure 17 Contour plot for a tool 
with VBB=0.26 

Figure 18 Contour plot for a tool with 
VBB=0.31 mm 

Figure 14 Contour plot for a tool with 
'BO. 11 nun 

Figure 15 Contour plot for a tool with VBB=0.17 mm 



From the contour maps it can be seen that several 
distinct areas were created, the shaded areas corre- 
spond to the area allocated for the stage of tool wear. 
This network shows good performance although the 
interpretation of results is rather difficult, that is it 
does not provide a direct measure of wear. 

6. Test with the ART2 

The ART2 network was coded using theory pre- 
sented by Carpenter & Grossberg [16]. In a similar 
way to the SOM, data was presented as an input 
vector which was composed of 15 inputs (described 
above). The output is presented in the form of classi- 
fication, that is, for each data set it is allocated a 
class number. 

tion accomplishes the noise suppression, Carpenter & 
Grossberg [16]. 

7. Discussion of Results 

The results obtained from the statistical and fre- 

quency parameters, as well as forces and spindle cur- 
rent, are somewhat difficult to interpret considering 
them one at a time as some appear to correlate, 
whilst others appear to hold no correlation with tool 

wear. This can be overcome by taking into account 
the neural networks' ability to extract information 
from apparently scattered information. 

The use of a Self Organising Map (SOM) structure 
has shown that classification was performed quite 
efficiently (Figure 13 to Figure 18), although the in- 
terpretation of results was not that easy, due to the 
complexity of the output structure. Distinct areas 
were observed for each different tool wear stage, this 
being consistent for all sets of experiments. The in- 
terpretation would be possible with the use of some 
sort of "interpreter", e. g. possibly another neural 
network. The ART2 would possibly be the best fea- 
ture extractor for such an ordinated output pattern. 

One such simulation result is summarised in Figure 
19, which shows how the ART2 architecture has 
quickly learned to group 34 sets of inputs into six 
recognition categories after a single presentation of 
each input. 
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Figure 19 ART2 class attribution 

The reset function in ART2 essentially checks if the 
"winning" node at the output layer actually matches 
the input pattern as closely as desired. The user in- 
puts the vigilance to quantify "closely enough". In 
our case the value was set to p=0.996, if set higher 
it will create finer classes and eventually many more 
than previously. If set lower it will be more perdular 
and classify previously "different" patterns into the 
same class. The vigilance parameter varies from 
application to application and depends also on the 
definition required by the application. 

The lower layer of ART normalises the pattern, then 
suppresses noise, then normalises. A squashing func- 

The ART2 appears promising although the results 
are greatly dependent on the vigilance parameter. It is 

not yet known if this will be affected by a change in 
data source (different machine). As speed is one of 
the critical points on the implementation of an on-line 
tool wear monitoring system it is advisable to use this 
neural network since, it responds quickly. However, 
more work is required to evaluate the influence of 
each data set on the networks classification perform- 
ance. 

Successful automation of machining operations re- 
lies, to a great extent, on the ability of artificial sys- 
tems to recognise process abnormalities and initiate 
corrective action. The combination of sensorial in- 
formation and inference rules provide a structure to 
cope with the poorly understood cutting process. The 
sensory information is associated with experience- 
based memory triggers and a decision is then made as 
to whether the tool wear level warrants interruption 
of the process, checking of the tool condition and 
then, if necessary, initiation of tool changing proce- 
dures. 

The Expert System approach to signal understanding 
attempts to address the apparent limitation of statistical 



pattern recognition systems described above by utilising 
a higher level of knowledge to classify the signal. The 

approach emulates a human expert's decision-making 

process by applying expert knowledge in the form of 
queries and rules (Knowledge Base). The aim of this 
work is to use both a neural network and Expert 
System in an integrated fashion to provide maximum 
cover for the machining operation. Their integration 
by the use of If-Then-Else rules and goals, through 
the Expert System, is regarded as innovative. 

This work has illustrated the potential of Neural 
Networks when applied to tool wear monitoring. 
Further work will be needed to develop an integrated 
condition monitoring. This hybrid system, comprising 
a Neural Network(s) and an Expert System, will be 
able to infer results gained from sensors, based on 
built-in knowledge and also from past experience. 

S. Conclusion 

The results presented in this paper show that pattern 
classification using different sources of information 
is possible. The present experiments show the results 
applied to tool wear monitoring. Both networks 
(SOM and ART2) show an ability to generalise and 
efficiently store and retrieve information. The inher- 

ent parallelism of such networks make them attrac- 
tive for real time tool wear monitoring. 

Future work is aimed at developing a hybrid system 
comprising a neural network(s) and Expert System 
(ES). 
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Abstract 

Feature extraction and decision-making is a matter of considerable interest for condition 

monitoring of complex phenomena with multiple sensors. In tool wear monitoring the 

extraction of subtle aspects from signals in the face of a range of transient and static events 

not related to tool wear offers a special challenge for diagnostic and control systems because 

of the broad range of information in the signal. Features based on frequency spectra and 

statistical transformations of a number of sensor signals have been studied in an attempt to 

obtain a reliable indication of the evolution of tool wear. Two neural networks, plus expert 

system utilising Taylor's tool life equation, were compared for the task of the tool wear state 

classification. Despite the complexity of the data and subsequent testing by the removal of 

two of the most clearly systematic features, a reproducible diagnosis of tool wear was 

obtained. 
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Introduction 

In order to justify the capital investment associated with the installation of flexible 

manufacturing equipment it is necessary to achieve the maximum possible utilisation. One of 

the challenges this poses lies in devising methods for the classification of cutting tool wear. 

This seemingly simple task has posed considerable difficulty, probably due to the fact that 

tool wear introduces small changes in a process with very wide dynamic range. The task can 

be subdivided into a number of stages; sensor selection and deployment, generation of a 

feature or set of features indicative of tool condition and finally classification of the collected 

and processed information so as to determine the level of wear on the tool. 

The process by which a metal cutting tool wears are well documented and a number of 

different mechanisms and types of wear geometry have been identified, depending on cutting 

tool material, workpiece material, tool geometry and cutting conditions. Several approaches 

can be used to measure tool wear; e. g. flank wear, length of wear notch and crater wear. 

Since flank wear is the simplest to measure, it is usually chosen as the basis for the tool 

failure criterion [1]. 

Analytical models have been used to study the effects of tool geometry on, for example, 

cutting forces [2]. Such models are of value in suggesting which sensors to use and their 

likely sensitivity to wear, although this analytical models may be too complex or difficult to 

implement in a real-time tool wear monitoring system. Empirically derived relationships are 

only weakly reliable for a limited set of conditions and can normally only be used for 

approximate calculations [3]. On the other hand, a rule based empirical inference method 

requires an expert familiar with relational mechanisms and an ability to translate those into 
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simple inference rules. As such "experts" do not exist (except in a narrow sense), another 

empirical, non-expert-based method is needed. 

The overall objective of this work is to develop a tool wear monitoring system, in which, 

signal processing, neural networks and decision-making techniques are used. This paper 

deals with the developing plus testing of this system for one set of cutting conditions where 

tool sensor/feature approach is developed based on a set of cutting experiments using five 

sensors. The features extracted from the sensor signals have been assessed in terms of their 

ability to diagnose tool wear when presented to two different types of neural networks and 

the ability of an Expert System based on Taylor model, of tool life to remove 

misclassification is demonstrated. 

Methodology 

In general, monitoring methods can be divided into two classes: model-based methods and 

feature-based methods. Model-based methods have two significant limitations; firstly, many 

machining processes are non-linear time-variant systems, which makes them difficult to 

model and, secondly, the signals obtained from sensors are dependent on a number of other 

factors, such as, machining conditions which, in the context of tool wear monitoring, 

constitute noise. Thus, it is often difficult to identify whether a change in the signal obtained 

from a sensor is due to a change, for example, in the cutting conditions or to wear of the 

cutting tool. Feature-based monitoring methods use suitable features of the sensor signal to 

identify the process conditions. These features could be derived from the time and/or 

frequency domain, for example mean, variance, skewness, kurtosis, crest factor, or power in 

a specific frequency band. According to Du et al. [4], a large number of such methods have 

been developed for the monitoring of manufacturing processes. It is unclear, however, which 
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feature recognition method performs best and, in fact, most of the literature only shows that a 

specific method works for a specific application [5]. 

In this work, pattern recognition is used to identify the effects on a number of features 

brought about by tool wear in the face of the "noise" caused by non-steady events and 

variations in the process conditions. A basic pattern recognition classifying scheme is shown 

in Fig. 1. General requirements can be listed a priori; some of these are general to most 

classifying schemes, and others are specific to this application [6]. 

There is obviously some interdependence between the choice of the signal processing 

schemes and the features on one hand, and the performance of the classifier on the other. 

Therefore the most critical choice is that of the feature vector, which should respond to the 

effects being monitored but show minimal sensitivity to any other disturbance. If possible, 

the choice of features should reflect some of the "expert" knowledge concerning the specific 

behaviour of the monitored system. Such specifically chosen features will often perform 

better than those based on very general considerations [7]. 

The sensors used to monitor the process form the final link in the chain and should, as far as 

possible, be simple to operate, robust and easily read and interpreted, since condition 

measurements are often made in rather awkward environments. Tool wear monitoring has 

been performed using many different types of sensor and the most common measures are 

temperature, feed and spindle motor currents, acoustic emission (AE), audible emissions, 

vibration and components of the cutting force. Based on a review by Michelettti et al [8] 

there is sufficient evidence to justify further study of at least four easily measured quantities. 

These are: 

1. Cutting forces (feed and tangential) 
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2. Spindle current 

3. Audible emissions 

4. Machine vibration 

Pre-Processing Methods 

The condition or operational monitoring of machinery requires the detection of a signal 

related to the event or condition of interest and the identification of features that reveal 

information about it. For tool wear classification, most monitoring systems either use the raw 

signals directly without pre-processing, or simply low pass filter them with the aim of 

reducing the contribution from corrupting sources. While relatively easy to implement, these 

techniques have not proven to be particularly effective at reducing the variations and tend to 

remove vital information. To achieve this end it is necessary to examine the tool wear signal 

and noise generating processes [10]. 

The use of multiple sensors has been shown to enhance the performance of tool wear 

monitoring systems, because each sensor type provides notionally independent information that 

is related to the level of tool wear. It also reduces the sensitivity of the system to any particular 

sensor's drawbacks, requiring less precision from a single sensor and thus potentially requires 

less sophisticated signal processing [11]. Through appropriate analysis, the dependence of each 

feature to changes in process conditions can be analysed [12]. This provides improved 

reliability in making decisions on the state of tool wear in the face of (perhaps minor) changes 

in machining conditions. 
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Reddy [13] has reviewed the use of all the sensors of interest here for the application of tool 

wear monitoring. Table I summarises the most promising features identified from Reddy's 

review. 

Experimental Apparatus and Procedure 

A set of tool wear cutting data was acquired by machining a block of mild steel under a given 

set of cutting conditions, with a coated cemented carbide tip (Table 2). The set of sensors 

used were (Table 3); an accelerometer for measuring vertical vibration, a microphone for 

recording the sound emission, a strain gauged tool holder for force measurement and a meter 

for the spindle current of the CNC machine. The turning operation was carried out on an MT 

50 CNC Slant Bed Turning Centre. The experimental set-up and instrumentation can be seen 

in Fig. 2. A data acquisition board type PC-30PGL(Amplicon) handled the acquisition of all 

the signals, saving the data to permanent storage. The analogue signals were sampled at 20 

kHz with tool wear and sensor data being acquired at intervals of 2 min, taking into account 

an expected life of about 15 minutes for each insert. Sample data were recorded, at a 

position that was approximately in the middle of the bar, for 6 inserts each with a data record 

length of 512 points. 

Results of Feature Extraction 

Each 512 point record was processed to generate the features used in the classification stage. 

Some of these features are presented here in graphical form simply to give an idea of the 

complexity of the problem of recognising a given tool wear state from the features. The 

following 12 features were extracted from the sound and vibration data: the absolute 

deviation, average, kurtosis, skewness and two bands of the frequency spectra. Three 
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additional features were presented from the means of the spindle current and feed and 

tangential forces. 

As can be seen Fig. 3 and Fig. 4. both feed and tangential forces show an increase with tool 

wear which is consistent between tools. 

The analysis of the data in the frequency domain is often useful in providing additional 

features, so Fast Fourier Analysis (FFT) was performed using a Bartlett window and 

subtracting the mean before performing the FFT. 

The waterfall plot in Fig. 5 shows the evolution of the frequency spectrum of sound emission 

against tool wear. Both the sound and vibration spectra exhibited changes with wear at a 

frequency of 2.5 kHz, although this was not consistent in absolute terms for all inserts. 

Because of this variation, such features cannot be used alone for tool wear monitoring. 

Further analysis was performed using Daubechies wavelet filter analysis but this did not 

produce any stronger correlation. 

The remaining features (absolute deviation, mean, kurtosis and skewness of both sound and 

vibration) exhibited little correlation with flank wear, e. g. Fig. 6, data points appearing to be 

randomly distributed through the entire space. 

The influence of sample size on the statistical parameters can be seen for the example of 

kurtosis in Fig. 7 (obtained from processing a data set of 8192 points). This shows that the 

kurtosis is rather sensitive to sample size and may provide some explanation for the poor 

correlations observed with the statistical parameters. However it is difficult to establish a 

"correct" sample size and 512 points was chosen here in the interest of enabling real time 

processing of the 15 features. 
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Although the statistical parameters did not present any obvious relation to the evolution of 

tool wear, it was felt that it was not possible at this stage to judge their importance for tool 

wear monitoring due to the complexity of the process. The second part of this paper, 

however, shows that such data can still be used to monitor the cutting process. 

Neural Network Classification 

Bailey and Thompson [14] have surveyed the application of neural networks and have 

developed several criteria for selecting neural network algorithms. Based on these criteria, 

the ART2 and SOM approaches were chosen principally for their ability to extract patterns 

from noisy data and their unsupervised learning capability 

Abstraction of hardly accessible knowledge and generalisation for distorted sensor signals 

are two of the most attractive features of neural networks when applied to sensor fusion in 

tool wear monitoring. Despite the current popularity of backpropagation, as a supervised 

learning algorithm, its need for a correct tool classification in every training sample limits its 

successful application to on-line tool wear monitoring. This is because the machining 

operation must be interrupted in order to acquire correct information about tool condition, 

and because the system must handle numerous combinations of tool type, material, and 

cutting conditions, a supervised learning procedure like backpropagation is undesirable. 

Thus, it would be helpful to have a neural network utilise "unsupervised" training samples 

without the need for correct tool wear information. This would allow the system to be based 

on an interpretation of the resulting self-organisation with the fewest number of "supervised" 

samples. The two algorithms selected for this application are described briefly below. 
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ART2 Algorithm 

The adaptive resonance theory (ART) architecture, creates and organises categories for 

objects and has the ability to respond immediately to its experiences. The ART architecture 

first created by Carpenter and Grossberg [15] are designed to teach themselves new 

categories and continue storing information without disregarding any kind of information. 

The ART network, Fig. 8, is most easily understood as a device for classifying input patterns. 

The goal is to present a sequence of patterns to such a network and have each "appropriately" 

classified by this network. An ART algorithm can classify and recognise input patterns 

without ever have an omniscient teacher present. The heart of an ART network consists of 

two interconnected layers of neurones, F, and F2, which comprise the attentional system. The 

input leads to activity in the feature detector neurones in F1. This activity passes through 

connections (synapses) to the neurones in F2. Each F2 neurone adds together its input from all 

the F1 neurones and responds. A parameter called the attentional vigilance parameter (R) 

determines how fine the categories will be, if vigilance increases (decreases) due to 

environmental feedback, then the system automatically searches for and learns finer (coarser) 

recognition categories. Gain control parameter enable the architecture to suppress noise up to 

a prescribed level. The architectures global design enables it to learn effectively despite the 

high degree of non linearity of such mechanisms [31]. 

SOM Algorithm 

The Self-Organising Map (SOM) [16], is an unsupervised neural model that projects a high 

dimensional input space onto a (usually) one or two dimensional output space by using 

unsupervised training (Fig. 9). This output space is represented by a discrete lattice of 

neurones, usually arranged in a rectangular manner. The idea of such a model is to generate 
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topology mappings, where a low-dimensional image of the high dimensional input space is 

built into the rectangular array. Neighbourhood neurones on the map tune to similar features 

of the sensory or input space, in a self-organising competitive learning manner. 

Thus, the SOM associates to each input pattern a representative output pattern. This method 

of model building can be seen as performing vector quantisation in that it seeks models 

which minimise the quantisation error [17]. Models are adjusted incrementally as new data 

are presented. An interesting aspect of the SOM is that some ordering takes place resulting in 

adjacent models in pattern space being near each other model space. The main disadvantage 

of the SOM for this application is that output has to be interpreted. 

In tool wear monitoring, thanks to topological ordering, Kohonen's Feature Map requires 

fewer samples with the correct level of wear because the interpretation of an output node can 

give information useful to the interpretation of its neighbouring nodes. Similarly, the ART2 

requires less sample data with the correct classification since similar patterns are self- 

organised into similar categories. 

Classification of Experimental Results 

Tests were carried out on all the acquired experimental data in order to determine the ability 

of the neural networks to classify tool wear. These tests were carried out off-line but with a 

view to on-line implementation of a tool wear classification system. The first test, carried out 

with both NNs, was aimed at assessing their ability to classify when trained with all features. 

The NNs were trained with 36 data sets (four tools) and tested with 18 sets (two tools) with 

each data set being constructed from the 15 features identified earlier. The training data was 

presented randomly to the NNs with the SOM being trained for 30,000 epochs (one epoch 
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represents one presentation of the training data to the NN), which had been found to give the 

best performance. The ART2 only required 4,000 presentations, although good results could 

be achieved with only one epoch. The results obtained from the presentation of the selected 

features show that both NNs are capable of recognising, and classifying the data into their 

associated wear levels, (Fig. 10 and 11). 

Fig. 12 and 13 show the result of using the procedure described above but this time 

eliminating both forces and the spindle current. It can be seen that, although not very 

accurate, the NNs still classify the unseen samples with the SOM performing better than the 

ART2. However, there is a significant number of miss-classifications and a means to 

eliminate these will be discussed shortly. 

Table 4 shows a statistical analysis of the results shown in Fig. 10 and 13. The standard 

deviation gives an illustration of the certainty of the flank wear prediction a given value of 

VBB and the 95% confidence limits on this are also shown. 

One way in which the miss-classifications could be eliminated would be by the introduction 

of an external "supervisor", that uses appropriate knowledge about the cutting process to 

remove illogical classifications by the neural networks. An appropriate knowledge in the case 

of tool wear could be generated by Taylor's tool life equation (V7'=C, which provides a 

relationship between cutting speed, V, tool life, T, and two parameters, n and C, dependent on 

tool and workpiece materials). This model is a useful way of establishing a tentative value for 

the expected tool life and, from this, in defining intervals at which it is useful to classify a 

tool as worn or not. From experience gained in the experiences described here and from the 

analysis of other wear curves [18] Taylor's tool life equation can give estimates within ±35% 
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of the actual tool life. Based on this estimates a set of rules can be written to establish 

classification confidence limits. 

) IF (VBNN > VBTaylo, + 0.15) THEN exclude 
2) IF (VBNN < VBTayior - 0.15) THEN exclude 

(2) 

In order for such rules to be used Taylor parameters, n and C, for the workpiece and tool 

material have to be known. The material used here was a free-machining steel with specified 

sulphur content of between 0.25 and 0.35% for which Taylor parameters n, and C can be 

taken as 0.33 and 823 respectively [18]. 

The proposed method eliminates most of the outliers and enhances classification. Fig. 14 and 

15 show the previous method applied to the case where three of the strongest features were 

excluded. Both methods were combined in order to complement each other, the neural 

networks estimate the tool wear values and the Taylor's tool life equation establish the 

confidence limits based on empirical knowledge. 

Discussion 

In the experiments carried out here, the features most highly correlated with tool wear were 

the forces (both feed and tangential), the spindle current and the frequency bands associated 

with sound and vibration. The remaining features exhibited no apparent correlation with tool 

wear. The NNs achieved a high classification accuracy when using all the features, as can be 

observed from Fig. 10 and 11. The removal of the three strongest features (forces and spindle 

current) lead to a substantial number of miss-classifications (Fig. 12 and 13), which can be 

alleviated by using empirical knowledge to eliminate outliers. An increased accuracy would 

probably be achieved with more training samples, as this should enable the NNs to generalise 
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more and also help them reduce the number of misplaced data points. A larger sample size 

for the statistical parameters may also be useful, but this has implications for the processing 

time. 

In order to discuss the results more fully a measure of the performance of the monitoring 

system is needed. Clearly, the better the results in Figs. 16 to 18 the closer they will be to a 

straight line with a 45° slope (optimum classification), and hence a simple linear regression 

analysis should give a quantitative measure of the accuracy of classification. Table 5 shows 

the value b, the linear regression coefficient in y=b. x, and also the correlation coefficient r 

with the values obtained being compared to ideal values of unity for b and r. As an example, 

the value of b for the Taylor tool life equation is 1.1 where r is, of course, unity (if the 

evolution of wear with time is linear). 

It has been demonstrated that some outliers can be successfully eliminated by the application 

of rules based on Taylor's model equation, resulting in an improved monitoring system 

performance. Table 6 shows the improvement in the correlation coefficients achieved after 

the application of Taylor's prediction on the test set. As can be seen, the NNs predictions 

tend to slightly underestimate the wear, whereas Taylor equation used here is slightly 

conservative. The use of the Taylor equation to eliminate outliers improves the NNs 

predictions in that the correlation of coefficients increase towards the ideal value unity as 

does the slope. From a study of alternative Taylor equations it appears that the slope of the 

Taylor line will always exceed unity. Overall, this means that the combined approach 

succeeds in its aim of giving an on-line estimate of tool condition without the conservatism 

associated with the use of empirical rules. 
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Conclusions 

A neural network based approach has been presented for the classification of tool wear in 

terms of 15 features calculated from the outputs of 5 sensors. Two types of neural network 

were used, the Self Organising Map and Adaptive Resonance Theory, in order to classify the 

statistical and frequency domain features of the sensor signals. 

Sample classification is achieved with high accuracy using the full set of features by both 

NNs (SOM r=0.946; ART2 r=0.914). Eliminating three of the strongest features, 

classification is still achieved but with reduced accuracy (SOM r=0.782; ART2 r=0.691), 

although this represents an extreme case of sensor failure. Applying a Taylor model to 

identify and eliminate outlier data improves the network predictions in all cases and it 

appears that repeated application of this approach might lead to a close prediction of tool 

wear that would be available for the Taylor model or neural network alone. 
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Fig. 1: Pattern recognition classifying scheme 

Fig. 2: Schematic diagram of lathe with sensor set 

Fig. 3: Feed force evolution with flank wear (512 point average) 

Fig. 4: Tangential force evolution with flank wear (512 point average) 
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Fig. 6: Sound kurtosis evolution with flank wear (512 point average) 

Fig. 7: Effect of sample size on the calculated kurtosis of sound (VBB = 0.22 mm) 
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Fig. 9: SOM 2D projection map 

Fig. 10: SOM classification with full feature set 

Fig. 11: ART2 classification with full feature set 

Fig. 12: SOM classification with reduced feature set 

Fig. 13: ART2 classification with reduced feature set 

Fig. 14: Supervised classification of data from Fig. 12 

Fig. 15: Supervised classification of data from Fig. 13 
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Computer 

DAQ Board 

19 



600 -, 

ö 
Lýr 
b 

Lý 

Lý 
cä 

cad H 

i 

Q+ Q 

400 
+V 1: 1 °Q + Insert I 

+ +QQ o ý7 
oVpO Insert 2 O 

mQ® `ý Insert 3 

oo oV0 Inca 
0p Insert s 

0 Insect 6 

200 

0.00 0.20 0.40 
Flank Wear (mm) 

Fig. 3: Feed force evolution with flank wear (512 point average) 

0.6 

p 

v° 
0 OA öOo 

13 6O0v+ 
Insert I 

aa 
v0+v of+ O++ 

0 Insert2 

O E] Insert 3 DODÖ 

00 
Insert 4 

0 Insert5 

400 
Insert 6 

0.00 0.20 0.40 
Flank Wear (mm) 

Fig. 4: Tangential force evolution with flank wear (512 point average) 

0.6 

20 



1 Ii 

0 

'd 
9 0 

0.00 0.20 0.40 
Flank Wear (mm) 

r-I 

Fig. 6: Sound Kurtosis evolution with flank wear (512 point series) 

6 SIP 

Fig. 5: Waterfall plot of frequency spectrum of sound emissions (Insert 1) 

2.00 

0.00 
V 

17 

+ Insert I 

Insert2 

Insert 3 

Insert 4 

0 Insert5 

Insert 6 

ý° 
to u 

+oA0 v Q++QvQ+oa Qo 'L° ®vv+00 °+ 

10 

-2.00 

0.6 

21 



0.00 

-0.50 

-1.00 

Fig. 7: Effect of sample size on the claculated Kurtosis of sound (VBB = 0.22 mm) 

Output Layer 

ooo 
Bottom-Upl Top-Down 

Weights Weights 

10 0 01 

R 
Orienting Subsystem 
(Reset Mechanism) 

Processing 

Input Pattern 

Fig. 8: ART2 processing levels 

22 

0 4000 8000 
Sample Size (points) 



Output 
Node 

XO X1 XN-1 

Fig. 9: SOM 2D projection map 
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Table 1 Data analysis methods 

VARIABLE STATISTICAL ANALYSIS TIME ANALYSIS 

Sound Mean, Absolute Deviation, Kurtosis, Skewness FFT, Wavelet Transf. 

Vibration Mean, Absolute Deviation, Kurtosis, Skewness FFT, Wavelet Transf. 

Feed Force Mean 

Tangential 

Force 

Mean 

Spindle Current Mean 
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Table 2 Experimental Conditions 

Cutting Speed 350 m/min. 

Depth of cut 1.0 mm 

Feed rate 0.25 mm/rev 

Insert type TP25C grade coated cemented carbide (CNMG 120408) 

Workpiece Free cutting mild steel (EN1A), 135 mm in length, 0 75 mm 

Table 3 Instrumentation 

SENSOR DESCRIPTION MOUNTING 

Accelerometer Kistler 8752A50 & Piezotron Coupler - 

Kistler 5108 

Base of the turning centre 

Microphone ECM-1028, matching amplifier Tool Post 

Strain gauges Two half Wheatstone bridge Feed and tangential direction 

Current Meter CNC built in sensor I 

-J 
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Table 4 Statistical analysis of graphical results 

NN / Feature Set SD (mm) 95% Confidence Limits 

SOM - Full feature set 0.0480 0.0058 -0.0209 

SOM - Reduced feature set 0.0880 0.0198 -0.0296 

ART2 - Full feature set 0.0549 0.0067 -0.0239 

ART2 - Reduced feature 

set 

0.0958 0.0194 -0.0345 

Table 5 Linear regression parameters for Fig. 10 to Fig. 13 

TESTS b r 

ART2 - Full feature set 0.930 0.960 

Test set 0.858 0.924 

ART2 - Reduced feature set 0.902 0.896 

Test set 0.689 0.691 

SOM - Full feature set 0.946 0.964 

Test set 0.871 0.946 

SOM - Reduced feature set 0.868 0.894 

Test set 0.836 0.782 
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Table 6 Performance evaluation of improved classification 

TEST SET b r 

NNs NNs + Taylor NNs NNs + Taylor 

ART2 - Reduced feature set 0.689 0.935 0.691 0.872 

SOM - Reduced feature set 0.836 1.005 0.782 0.955 
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