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ABSTRACT 
 

After establishing itself in the radio domain, Spread spectrum code-division 

multiplexing/multiple-access (CDMA) has seen a recent upsurge in optical 

domain as well.  Due to its fairness, flexibility, service differentiation and 

increased inherent security, CDMA is proved to be more suitable for the bursty 

nature of local area networks than synchronous multiplexing techniques like 

Frequency/Wavelength Division Multiplexing (F/WDM) and Time Division 

Multiplexing (TDM). In optical domain, CDMA techniques are commonly known 

as Optical-CDMA (O-CDMA). All optical CDMA systems are plagued with the 

problem of multiple-access interference (MAI). Spectral amplitude coding (SAC) 

is one of the techniques used in the literature to deal with the problem of MAI. 

The choice of spreading code in any CDMA system is another way to ensure the 

successful recovery of data at the receiving end by minimizing the effect of MAI 

and it also dictates the hardware design of the encoder and decoder.  

This thesis focuses on the efficient design of encoding and decoding hardware. 

Perfect difference codes (PDC) are chosen as spreading sequences due to their 

good correlation properties. In most of the literature, evaluation of error 

probability is based on the assumptions of ideal conditions. Such assumptions 

ignore major physical impairments such as power splitting losses at the 

multiplexers of transmitters and receivers, and gain losses at the receivers, which 

may in practice be an overestimate or underestimate of the actual probability of 

error.  

This thesis aims to investigate thoroughly with the consideration of practical 

impairments the applications of PDCs and other spreading sequences in optical 

communications systems based on spectral-amplitude coding and utilizing code-

division as multiplexing/multiple-access technique. This work begins with a 



 xix

general review of optical CDMA systems. An open-ended practical approach has 

been used to evaluate the actual error probabilities of OCDM/A systems under 

study. It has been concluded from results that mismatches in the gains of 

photodetectors, namely avalanche photodiode (APDs), used at the receiver side 

and uniformity loss in the optical splitters results in the inaccurate calculation of 

threshold level used to detect the data and can seriously degrade the system bit 

error rate (BER) performance. This variation in the threshold level can be 

compensated by employing techniques which maintain a constant interference 

level so that the decoding architecture does not have to estimate MAI every time 

to make a data bit decision or by the use of balanced sequences. 

In this thesis, as a solution to the above problem, a novel encoding and decoding 

architecture is presented for perfect difference codes based on common zero code 

technique which maintains a constant interference level at all instants in CDM 

system and thus relieves the need of estimating interference. The proposed 

architecture only uses single multiplexer at the transmitters for all users in the 

system and a simple correlation based receiver for each user. The proposed 

configuration not only preserves the ability of MAI in Spectral-Amplitude Coding 

SAC-OCDM system, but also results in a low cost system with reduced 

complexity. The results show that by using PDCs in such system, the influence of 

MAI caused by other users can be reduced, and the number of active users can be 

increased significantly.  

Also a family of novel spreading sequences are constructed called Manchester-

coded Modified Legendre codes (MCMLCs) suitable for SAC based OCDM 

systems. MCMLCs are designed to be used for both single-rate and Multirate 

systems. First the construction of MCMLCs is presented and then the bit error rate 

performance is analyzed. 

Finally the proposed encoding/decoding architecture utilizing perfect difference 

codes is applied in wireless infrared environment and the performance is found to 

be superior to other codes. 
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1. Introduction 

 

 

1.1 Overview 

Spread spectrum code-division multiple-access (CDMA) is used in both radio 

frequency (RF) and optical domain. It is proved to be more suitable for the bursty 

nature of local area networks than synchronous multiplexing techniques like 

FDM, TDM and WDM and is being considered as a natural solution to provide 

asynchronous, high-speed connectivity in the local area networks [1].  Optical 

code division multiple access (O-CDMA) techniques have been developed for 

almost two decades, first applied by Pruncal, Salehi and others [2, 3], and have 

emerged as attractive schemes for optical networks due to their fairness, 

flexibility, simplified network control and management, service differentiation 

and increased inherent security. The huge pool of bandwidth available in the 

optical medium is efficiently exploited by the CDMA, which results in better 

spectral efficiency, and higher throughput with no waiting.  

In optical CDMA systems, each user’s optical signal is encoded optically in an 

optical encoder that maps each bit into a very high rate optical sequence, 

substantially increasing the bandwidth occupied by the transmitted signal. 
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Figure 1.1 shows the encoding of the data bit sequence ‘101’ using on-off keying 

(OOK) scheme by unipolar CDMA sequence ‘10010’. The data bit ‘1’ is 

represented by the presence of optical pulses and ‘0’ by the absence of the pulses. 

The pulses are mapped according to the assigned optical sequence. The number of 

ones or pulses in a code is called the weight ( w ) of the code. In Figure 1.1, Tb 

indicates the bit duration and Tc the chip duration. Temporal length ( v ) is equal to 

the number of chips in a sequence and is given by cb TTv /= . The limited 

availability of suitable orthogonal codes restricts the total number of users in an 

optical CDMA system. 

 

 

Figure 1-1: Encoding in optical CDMA (a) data bits ‘101’ (b) transmitted sequence 10010 
for bit ‘1’ 

 

Therefore, to support many subscribers, a large set of code sequences is needed, 

which implies that very narrow pulses have to be used. The encoded optical 
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signals from all active users are broadcasted in the network by a star coupler. At 

the receiver, the optical decoder is matched to the transmitting node giving a high 

auto-correlation peak and low cross-correlation function, only if the appropriate 

code was used. Hence, the desired user’s transmitted signal is detected by the 

photodetector. All other received signals other than the desired users are termed 

as multiple access interference (MAI).  

The choice of spreading code is critical to any CDMA based system. Without 

appropriate spreading sequence the successful recovery of the data at the 

receiving end would be impossible. Furthermore, it also dictates the hardware 

design of the encoder and decoder. Therefore, the two requirements which must 

be satisfied by the optical codes for any CDMA based communication system are:  

1. The code must have high auto-correlation and low cross-correlation 

function.  

2. The design of encoders and decoders to implement these codes must not 

be complex.   

Recently, the use of perfect difference codes (PDC) has been reported for both 

synchronous [4] and asynchronous [5] optical CDMA based systems based on 

spectral amplitude coding. The detailed description of Perfect difference codes is 

discussed in the next chapter.  

In [5], it is reported that the use of PDC can result in high-capacity high-data rate 

asynchronous operation of FO-LAN with relatively easy implementation of 
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encoders and decoders using array-waveguide (AWG) multiplexers. Such 

attractive feature of PDC promotes the thorough investigation of applications of 

such codes in both fiber optics and wireless optical communication systems.  

1.2 Motivation 

While the performance of long-distance Dense-Wavelength Division 

Multiplexing (DWDM) systems is announced in terabits per second, most of us 

continue to use networks whose aggregate capacities are 10 or 100 Mb/s. Each 

user may well require individual data rates in gigabits per second, leading to 

aggregate data rates reaching hundreds of gigabits per second. Moreover, such 

network must also provide quality of service (QoS) guarantees for these 

applications, even as the number of users and aggregate throughput change with 

time. 

In this particular environment, Optical CDMA offers an interesting alternative for 

LANs as compared to traditional LAN multiple-accessing techniques, namely 

TDMA and WDMA, because neither time nor frequency management of all nodes 

is necessary [1]. Optical CDMA results in very low latencies because it liberates 

the network from synchronization, and as dedicated time or wavelength slots do 

not have to be allocated, the statistical multiplexing gains can be high. CDMA 

also allows flexible network design because the bit error rate (BER) depends on 

the number of active users. The new users can be accommodated in the system 

simply by utilizing spreading sequences with larger cardinality (i.e., soft-limited). 
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However, several challenging points of research are still missing for practical 

OCDMA realization and development. These include:  

 The high Multiple Access Interference (MAI) which is naturally present in 

almost all forms of OCDMA,  

 Increasing network capacity in terms of number of concurrent users, and 

 Codes that can support various traffic demands in terms of bandwidth and 

Bit Error Rate (BER) performance. Furthermore, it is logical to search for 

new OCDMA implementations that can meet the expected performance 

requirements in a simple and cost effective way.  

 

1.3 Scope of the Thesis 

 

The main aim of this work is to thoroughly investigate the applications of perfect 

difference codes (PDC) in fiber optics and wireless Optical Code-division 

multiplexing/multiple access systems and provide comprehensive theoretical 

analysis and simulations for spectral amplitude coding systems operating over 

realistic environments. The specific objectives of this study are:  

 Firstly, the analysis and investigation of PDC in fiber-optic CDMA 

systems.  



 6

 Investigations of new code designs that can support multiclass traffic 

demands such as the multi-length carrier-hopping prime codes.  

 The next objective is to adopt and apply such codes in wireless schemes 

such as WIR.  

 To propose new algorithms suitable for wireless optical domain in order to 

alleviate the performance floor set by the MAI.  

 

1.4 Major contribution of the thesis 

Keeping the aims and objectives in mind during the course of research, the major 

contributions presented in this thesis are:  

 Investigation and analysis of PDC based SAC with physical impairments.  

 Signal-to-noise ratio (SNR) criterion is used to propose the optimal value 

of photodetector gain. In addition, the system performance, with 

consideration of MAI, shot noise, thermal noise, bulk and surface leakage 

currents is also evaluated. 

 A novel encoding/decoding architecture based on PDC is presented.  

 Analytical expressions for BER and SNR derived for PDC with common 

zero code (CZC).  

 A new family of spreading sequences called MCMLCs to support single-

rate and multi-rate traffic demands is constructed.  
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 The proposed sequence is implemented on an efficient encoding and 

compact decoding devices.  

 The bit error rate performance of wireless systems such as WIR is 

analysed based on PDCs and proposed encoding and decoding structures.  

1.5 Thesis Structure 

Following this, chapter 2 begins with the quick discussion of the FO-CDMA and 

WIR systems presented in the literature. It also briefly outlines the working 

principles of spectral amplitude coding and discusses the properties of perfect 

difference codes. Chapter 3 presents the analysis of PDC based OCDMA system 

in terms of bit error rate and signal-to-noise ratio. The analysis takes into account 

the effects of MAI, shot noise, bulk leakage current, thermal noise, APD gain 

mismatch and uniformity loss. A major problem in OCDMA system is MAI, in 

chapter 4 a novel encoder/decoder design is proposed utilizing common zero code 

technique for optical code division multiplexing system using PDCs as spreading 

sequences to deal with this problem. The proposed design maintains a constant 

MAI floor and hence making it simple at the receiver to cancel it. In chapter 5 a 

family of spreading sequences is constructed based on Manchester-coding, 

Modified Legendre sequences to be used in OCDM/OCDMA systems suitable for 

multiclass traffic. In chapter 6, the perfect difference codes for the first time to the 

best of author’s knowledge are applied and their bit error rate performance is 

analyzed in wireless infrared system. Finally chapter 7 concludes the thesis by 

outlining the summary and future directions.  
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1.6 Summary 

 

This chapter provides the overview of optical communication systems. In the 

second section the author presents the arguments which motivated him to 

investigate and analyse the performance of optical communication systems based 

on code-division multiplexing/multiple-access techniques with special focus on 

perfect difference codes as spreading sequences. Next, the aims and objectives of 

the work carried under this thesis are listed which are followed by the major 

contributions of this thesis. Finally the structure of the thesis is laid down.  
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2. Background & Literature 
 Review 

 

This chapter begins with the background and literature review of optical 

communication systems focusing on those which are using CDMA as multiple-

access techniques. A brief overview of fiber-optic CDMA, wireless infrared 

systems, spectral-amplitude coding systems, and perfect difference code is given.  

 

2.1 Background 

 

Spread-spectrum CDMA has been extensively studied in the areas of satellite and 

mobile radio communications. [6-9]. In recent years, the use of CDMA in local 

area networks has also attracted much interest of researchers [10]. CDMA offers 

several advantages over conventional multiple-access techniques, such as carrier-

sense multiple-access with collision detection (CSMA/CD) and ALOHA [11], in 

environments with the heavy-load bursty traffic and fast signaling rates. It also 

permits the users to asynchronously access the same transmission medium with 

no waiting time.  

In general, optical signal processing techniques in optical CDMA can be 

classified as incoherent and coherent. In incoherent systems the intensities of 
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optical pulses are processed, while in coherent systems the fields of optical pulses 

are processed. In coherent signal processing, the optical pulse in every code 

sequence generated at an optical encoder are phase coherent and the optical fields 

of all these coherent pulses are superimposed in an optical decoder. Because of 

using phase information, a coherent technique allows the use of bipolar (–1, +1) 

code sequences, and therefore offers a natural discrimination against interference 

from other codes. Research has shown that the optical encoders and decoders for 

coherent systems can be made of, for example, diffraction gratings and lenses 

with phase masks in between [12] or by fiber-optical ladder networks [02, 13-16]. 

In general, coherent detection gives better performance [17], but is much more 

difficult to implement, requiring tight control over the phase of the signal and 

increase the system complexity and sensitivity.  

Noncoherent optical CDMA techniques dominate their coherent counterparts due 

to their ease of practical implementation and include time spreading, frequency 

hopping, and spatial spreading [18]. In optical systems, which mainly use 

amplitude modulation, also known as or on-off keying (OOK), with direct 

detection, the traditional bipolar spreading sequences designed for CDMA won’t 

work because the laser amplitudes cannot be negative. This raises the need of 

investigating different techniques and codes for spread-spectrum CDMA specially 

tailored to be used in optical communication systems. Further, such codes must 

also ensure the less complicated implementation and improved system 

performance.  
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The OCDMA has been applied in both wired and wireless mediums. The 

following sections briefly discuss the applications of spread-spectrum CDMA and 

related issues in fiber-optics LANs, wireless LANs and Personal Area Networks 

(PAN). 

 

2.2 Fiber-Optic CDMA 

 

Next generation telecommunication networks are expected to provide a variety of 

integrated narrowband and broadband bandwidth-hungry services to the 

customers. Conventional networks using bandwidth-limited media, such as 

twisted pairs and coaxial cables, will not be able to integrate these broadband 

services sufficiently. Therefore, the problem of bandwidth limitation needs to be 

addressed.  
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Figure 2-1: Optical CDMA System 

 

The advanced developments in the fiber optics for the past two decades have 

made possible the use of optical fibers as transmission media in modern 

communication systems [13, 19] and are proved to be handy when it comes to 

addressing the issue of bandwidth. The use of optical fibers for such 

communication links offer several advantages over its counterparts, mainly, huge 

bandwidth, low signal attenuation, inherent security mechanism, smaller cross 

sectional area, and cheap cost. As a result, optical fibers have become an integral 

part of telecommunication systems and networks.  

Although most popular electrical local or metropolitan area networks have used a 

bus or ring topology, most work on optical fiber networks in the past has assumed 

the use of a passive star topology because of power budget considerations [20]. 

Figure 2-1 shows a typical FO-CDMA system based on star topology. More 
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recently, however, the commercial development of optical amplifiers (Erbium 

Doped Fiber Amplifiers (EDFAs), Semiconductor Optical Amplifiers (SOAs), 

and Raman amplifiers) has made the fiber bus a feasible proposition [21]. 

Traditionally, the fiber-optic LANs use either time-division or wavelength-

division multiplexing requiring, time or frequency management, respectively. 

Optical CDMA offers an interesting alternative for LAN because neither time 

management nor frequency management is required. As the dedicated time or 

wavelength slots do not have to be allocated so statistical multiplexing gains can 

be high. Unlike Optical TDMA and WDMA, the maximum transmission capacity 

is soft-limited, i.e., dependent on the number of active users.  

2.2.1 Transmitter and Receiver operation of FO-CDMA Systems 

 

In intensity, OOK system, each user’s data encoded optically in an optical 

encoder that maps each bit into a very high rate optical sequence as shown in 

Figure 2.2, substantially increasing the bandwidth occupied by the transmitted 

signal [15, 21- 24]. This, translates into the need of large set of code sequences in 

order to support many subscribers, which in turn mean that very narrow pulses are 

required making electronic processing difficult.  
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Figure 2-2: Transmitter and receiver model for FO-CDMA system. 

 

In Figure 2.2, a pulse laser source is intensity-modulated by electrical data bits. 

Next each slot is divided into chips by the sequence encoder where the number of 

chips in a slot equals to the length of the spreading code consisting of 1 and 0 

allocated for users. Then, this spreaded signal is transmitted to the fiber optic 

network where it is combined positively with the signals of other users generating 

a composite signal. The same composite signal is received by each user in star 

broadcast network shown in Figure 2.1. At the receiver, the composite signal is 

decoded by the copy of desired user’s signal spreading sequences which is then 

photodetected to generate electrical signals. All other received signals other than 

the desired users are MAI. Finally, a threshold makes the decision of data bit 1 or 

0 depending on the intensity of received signal.  
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2.2.2 LANs versus long-haul optical communication networks  

 

Local area networks (LANs) needs to support multiple users and preferably 

asynchronously, while wide area networks (WANs) are either point-to-point or 

multipoint. Therefore, to maintain synchronization in WANs is comparatively 

easier and most effective technique when compared to LANs. Consequently, 

dense-wavelength division multiplexing (DWDM) and coarse wavelength-

division multiplexing (CWDM) are the preferred methods of data transportation 

over single mode fibers. Currently, all modern transatlantic cable systems and 

other long-haul networks are based on DWDM circuits [79].   

On the other hand, optical CDMA can perform certain network applications 

through optical processing, like addressing and routing without resorting to 

complicated multiplexers or de-multiplexers. Furthermore, it also enables 

asynchronous mode of data transmission that can simplify network management 

and control. Therefore, OCDMA is an attractive candidate for LAN applications. 

Particularly, OCDMA can provide a secure network connection providing 

dynamic encoding. 

The main reasons of DWDM being extensively used in WANs are following [80]:  

 Bandwidth multiplication 

 Provides extra-resilience  

o Optical circuit protection around ring 
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 New services  

 Improves scalability  

 Permits multiple logical topologies over single physical MAN 

While the CDMA is well-suited for LANs because of their:  

 Asynchronous access 

 Selective addressing capability, and  

 Low MAI  

This thesis therefore focuses its attention on the fiber-optics CDMA based LANs.  

2.3 Wireless Infrared (WIR) Systems 

 

Constraints associated with radio wireless network such as, congested and 

regulated frequency spectrum, limited bandwidth, and interference with other 

products, etc. have provided the motivation to look at other means of achieving 

high-speed wireless connectivity for indoor LAN applications. Infrared (IR) is 

one such alternative, which was first proposed for indoor optical wireless 

communications in 1979 [25], and is now established as the basis of indoor high-

speed communication network. In recent years, the WLAN and Bluetooth 

technologies have become widespread in the home and office, confirming the 

demand for such indoor devices.  

The notable advantages of IR include:  
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 it offers potentially huge unregulated bandwidth worldwide and spans 

wavelengths of 700 – 1500 nm potentially supporting 200 THz of 

bandwidth [26],  

 inherent security as the signal is confined to the room,  

 it is capable of supporting high data rates demanded by the multimedia 

applications.   

 no interference with EM spectrum,  

 lightweight, low cost and readily available components. 

 

Unfortunately, WIR system has severe drawbacks.  

 Ambient light,  

 shot noise,  

 path loss  

 dispersion associated with diffuse infrared systems, and 

 multiple access interference (MAI)  

The shot noise, path loss and dispersion drives the requirement for high average 

optical transmit powers which is achieved through power efficient modulation 

schemes [27, 28]. A detailed survey of efficient modulation technique is given in 

[29]. 

There are a number of compensation techniques used to overcome the effect of 

noise and signal distortion in IR systems; most of these are inherited from the RF 
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domain, namely; filtering to reduce noise, equalization to overcome distortion and 

coding for both. Power and bandwidth efficient modulation schemes are also 

employed as a means of limiting these undesirable effects. However, there are 

other solutions that are unique to the IR environment, particularly in the form of 

diversity techniques. Such systems consist of multiple receivers, limited field of 

view (FOV) receivers, multiple element receivers and multi-beam transmitters to 

name a few [37]. A possible technique that can increase the received optical 

power, mitigate the shadowing effect, and reduce multipath dispersion is 

multibeam transmitter [30-32]. 

2.3.1 Infrared Link Designs 

 

In the literature [72-75] Infrared links are classified either on the basis of degree 

of directionality of the transmitter and receiver or whether the link relies upon the 

existence of an uninterrupted line-of-sight (LOS) path between the transmitter and 

receiver (see Figure 2.3). The first criterion is commonly known as non-line of 

sight and second is termed as line-of-sight.  



 19

 
Figure 2-3: Classification of simple Infrared links (Reproduced from [72]). 
 

 

LOS links rely upon a directed path, while non-LOS links generally rely upon 

reflection of the light from the ceiling or some other diffusely reflecting surface. 

LOS link design maximizes power efficiency and minimizes multipath distortion. 

Non-LOS link design increases link robustness and ease of use, allowing the link 

to operate even when barriers, such as people or cubicle partitions, stand between 

the transmitter and receiver.  

Both these criterion can be further subdivided into three categories as shown in 

Figure 2.3.  

 Directed links employ directional transmitters and receivers to establish a 

link. They improve power efficiency, since they minimize path loss and 

reception of ambient light noise. 
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 Non-directed links use wide-angle transmitters and receivers, alleviating 

the need for such pointing. They are particularly useful for mobile 

terminals. 

 Hybrid links, combine transmitters and receivers having different degrees 

of directionality. 

The non-directed-non-LOS link design, which is often referred to as a diffuse link, 

achieve greatest robustness and ease of implementation. The advantage of using 

diffuse channels is the robustness to shadowing or misalignment between the 

transmitter and the receiver. However, on diffuse channels, optical signals 

undergo temporal dispersion due to reflections. Therefore, diffuse channels are 

subject to the multipath distortion that causes ISI. 

2.3.2 Intensity modulation/Direct-Detection  

Due to the difficulty of making coherent IR receivers, intensity modulation/direct 

detection (IM/DD) is normally used. In this scheme the instantaneous power of 

the transmitter is modulated directly and the receiver correspondingly detects the 

instantaneous power.  

Infrared has a similar behavior to that of visible light. It is absorbed by dark 

objects, diffusely reflected by light-colored objects and directionally reflected 

from shiny surfaces. IR transmission can penetrate through glass, but is unable to 

penetrate opaque structures like walls and ceilings which mean that the same 

optical carrier can be reused in an adjacent room without interference. IR systems 

do not suffer from the effects of fade as in the RF systems, this being due to the 
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small wavelengths of IR when compared to the size of the detector. The lack of 

fade and the positional stability (slow moving or static objects) of the indoor 

environment mean that the IR channel characteristics remain stable for 

considerable periods of time. Although multipath fading is mitigated in infrared 

systems, multipath propagation does lead to dispersion, causing inter-symbol 

interference in high-speed systems.  

2.3.3 Multiple-Access schemes in WIR Systems 

As multiple access schemes in infrared wireless systems, TDMA, FDMA, and 

CDMA have been investigated [33]. CDMA has attracted much attention due to 

the following advantages. CDMA does not require a tunable laser with accurate 

control of wavelength and symbol synchronization that are necessary for TDMA 

and FDMA. Because of these features, spread spectrum CDMA is considered to 

be a potential candidate for future WIR networks, fulfilling the demands of 

mutirate multimedia services. Most infrared wireless CDMA systems use ON-

OFF keying (OOK) or pulse position modulation (PPM) as a modulation and m-

sequences or optical orthogonal codes (OOC) as a signature code sequence [34-

36].  

The performance of an infrared wireless system using direct sequence spread 

spectrum techniques in multipath channels depends very much on the partial 

correlation properties of the spreading sequences used. Ideally, a spreading 

sequence should have zero sidelobes in its periodic and aperiodic auto-correlation 

functions in order to eliminate multipath dispersion. Unfortunately, no such ideal 
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sequence exists in the binary field. The penalties incurred in DSSS IR systems are 

a consequence of non-zero sidelobes of the aperiodic auto-correlation (ACF) and 

cross-correlation (CCF) functions of the spreading sequences.  

To remove these problems three major techniques have been developed. In [35], a 

sequence inverse keying (SIK) direct sequence spread spectrum modulation 

technique is proposed to combat the impact of multipath dispersion without the 

need of any extra circuitry such as equalizers. However, SIK is mainly limited by 

its spreading factor which reduces the system bandwidth efficiency and its 

performance in a multipath channel depends very much on the partial correlation 

properties of the spreading sequences used. To remove the correlation limitations, 

the complementary SIK (CSIK) is proposed [37]. By transmitting a binary 

complementary pair (BCP) of sequences and its mate simultaneously, the 

sidelobes of the aperiodic ACFs and CCFs of the transmitted sequences are 

summed to near zero at the correlator output, hence eliminating multipath 

interference almost completely. Though SIK and CSIK are tolerant of interference 

opening the way of high-data-rate transmission, a key reservation concerning the 

use of these systems is the spreading factor, which limits system bandwidth 

efficiency. A method for improving bandwidth and power efficiency is M-ary 

modulation. A DSSS system using MBOK [38] improves power and bandwidth 

efficiency while retaining the beneficial properties of DSSS. However, the 

performance of MBOK depends on the aperiodic correlation functions of the 

sequences in the set.  
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2.4 Frequency Domain Coding 

There are two types of frequency domain coding employed for CDMA systems: 

Spectral Amplitude Coding or encoding and the Spectral phase encoding. In a 

spectral-phase-encoding (SPE) system, different phase shifts at spatially resolved 

spectral components are obtained by applying a SPE grid [39, 40]. While in a 

spectral amplitude-encoding (SAE) system, certain frequency or spectral 

components are transmitted or blocked to transmit a signal [41-44]. The SAE has 

many advantages when compared to its counterpart SPE. A SAE system is less 

expensive because it does not require a coherent optical source and relies solely 

on the presence or absence of pulse power. For the access environment, where 

cost is one of the most decisive factors, the SAE/OCDM is therefore regarded to 

be a more promising candidate. The other factor that dominates the use of SAE in 

optical communication system is the fact that till today controlling the phase of 

light signals requires much sophisticated and expensive tools then to control the 

amplitude of light signals.  

In frequency-domain-encoding OCDM systems, optical beating interference 

(OBI) is a major problem. OBI occurs when a photodetector simultaneously 

receives two or more optical waves with nearly the same wavelength, occurs due 

to the use of a broadband optical source. It has been shown that the effect of OBI 

on system performance is critical [45, 46]. As a matter of fact, when the direct-

detection scheme is used with either a noncoherent or a coherent source [45-47], 

the number of users in the SAE/OCDM system is severely decreased by OBI; e.g., 
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fewer than 10×1 Gbits/s users can be supported even at a relatively high received 

optical power of −20 dBm [47]. This makes SAE/OCDM less competitive than 

WDM, especially in a passive optical network (PON) – based access network 

environment where link loss up to 30 dB is expected [48]. This problem can be 

overcome by using a heterodyne detection receiver for a SAE/OCDM system to 

combat OBI and to improve receiver sensitivity [50]. It is well known that the use 

of a locally generated optical signal (LO) in the heterodyne receiver could 

improve the receiver’s sensitivity up to 20 dB compared with direct-detection 

systems [51]. 
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2.4.1 Spectral Amplitude Coding  

 

 

Figure 2-4: Basic Principle diagram of SAE/OCDM system (Reproduced from [50]). 

 

The SAE/OCDM technique was first described by Zaccarin and Kavehrad [42]. 

Figure 2.4 shows the principle structure of a SAE/OCDM system. At the spectral 

amplitude encoder, frequency components from a broadband optical source are 

resolved and encoded by selectively blocking or transmitting certain frequency 

components in accordance with a signature code. The receiver filters the incoming 

signal with the same filter (direct decoder to extract information shown by 

information branch in Figure 2.4) used at the transmitter as well as its 

complementary filter (complementary decoder to extract interference shown by 
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interference branch in Figure 2.4). The outputs from these decoders are detected 

by two photodetectors connected in a balanced fashion. For an interfering signal, 

depending on the signature code used, a part of its spectral components will match 

the direct decoder, and the other part will match the complementary decoder. 

Since the output of the balanced receiver represents the difference between the 

two photodetector outputs, the interfering channels will be canceled, whereas the 

matched channel is demodulated; i.e., multiple-access interference (MAI) is 

canceled in the SAE/OCDM system.  

Several signature code sets have been proposed for a SAE/OCDM system, 

including m-sequence, Hadamard [42, 47], modified quadratic congruence (MQC) 

code sets [52], and perfect difference codes [4, 5]. Each of these signature code 

sets can be represented by its length, weight, and in-phase cross correlation ( v , 

w , γ ). In the m-sequence code set, w  = v +1/2 and γ  = v +1/4; the weight and 

in-phase cross correlation of the Hadamard code set are v /2 and v /4, 

respectively. In MQC code, γ  = 1, and for an odd prime p , we have code length 

v  = pp +2  and weight w  = p +1. Constructions of these codes can be found in 

[42, 47, 52]. For PDC, v  = 12 +− ww , weight w  = p +1, where p  is a prime 

number, and γ  = 1. 
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2.4.2 Mathematical Model of Spectral Amplitude Coding  

 

Let ( ) ( ) ( )[ ]1,...,1,0 −= ncccc dddd  and ( ) ( ) ( )[ ]1,...,1,0 −= ncccc kkkk  be two (0,1) 

signature codes, then the correlation properties are given by 
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In order to cancel the MAI completely, it is necessary to set a ratio between the 

optical powers that arrive at the two photodetectors  γγα −= w/  [42, 52]. The 

cancellation of the interfering signal (when dk ≠ ) by the balanced receiver thus 

can be seen as  

( ) ( ) ( ) 0,, =−
−

−=Φ−Φ γ
γ

γγα w
wkcdckcdc   (2.3) 

Results from previous research show that a low-weight code, e.g., MQC, is 

preferable to a high-weight code when OBI is considered, especially when the 

received optical power is high. In fact, a lower code weight results in a lower 

signal-to-noise ratio (SNR) if OBI is negligible. This happens in the MQC coded 

system when the received optical power is low because this optical power is 
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further reduced by a ratio of α  in one of the branches. However, when the 

received optical power is increased, OBI is increased and becomes ineligible. In 

this case, compared to an m-sequence or Hadamard coded system, a MQC coded 

system has a higher SNR (i.e., better performance) thanks to its low in-phase 

cross correlation, i.e., resulting in lower OBI [52]. 

Next section briefly discuss the one of the spreading sequences utilized in 

unipolar OCDMA system based on SAC, namely, perfect difference codes.  

 

2.5 Perfect Difference Codes 

 

Perfect difference codes are the special type of cyclic difference set with 

( v , w ,γ =1). The detailed information about the perfect difference codes can be 

found in [4], [81], and [82]. For the purpose of this thesis we are interested in the 

following two properties of PDCs:  

1. The cross correlation between the two PDCs is unity. This property is 

exploited to design the decoder to efficiently recover data by suppressing 

MAI effect.  

2. Perfect difference codes are cyclic shifted. The cyclic nature of PDCs is 

combined with the cyclic nature of Arrayed-waveguide multiplexers to 

construct compact efficient encoders.   
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From the property of cyclic difference sets, let ( )ick  denote the ith element of the 

kth PDC code. The code properties can be written as: 

( ) ( )
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≠
=

=∑
= lk

lkw
icic

v

i
lk              ,1

             ,

1

    (2.4) 

The example of Perfect difference Codes for w =3 and v =7 are shown in Table 

2.1.  

Table 2-1: Example of Perfect Difference Code. 

Perfect difference set for w =3 and v =7 
1 1 0 1 0 0 0 
0 1 1 0 1 0 0 
0 0 1 1 0 1 0 
0 1 0 1 1 0 1 
1 0 1 0 1 1 0 
0 1 0 1 0 1 1 
1 0 1 0 1 0 1 

 
 
 

 

2.6 Summary  

This chapter presents a brief introduction and discusses the related issues to fiber-

optic CDMA based local area networks, wireless infrared systems and spectral 

amplitude coding systems. From the literature review the author envisaged that 

the optical CDMA can play a key role in the development of high-capacity and 

high-data rate multimedia supportive communication networks for both wired and 

wireless mediums. Finally, the last section briefly outlines the properties of 
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Perfect difference codes particularly suitable for the efficient implementation of 

encoders and decoders in SAC based OCDMA systems.  

In the next chapter, the performance of spectral amplitude coding system based on 

perfect difference codes described in this chapter is analyzed considering the 

mismatch losses in the photodetectors of receiver and splitting losses of the 

multiplexers and de-multiplexers.  
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3. Performance Analysis of 
 Spectral Amplitude Coding 
 based OCDMA System 

 

 

In this chapter, the performance of spectral-amplitude coding based OCDMA 

system is analyzed using Gaussian approximations in terms of bit error rate taking 

into account, multiple access interference, thermal noise, bulk leakage current, 

surface leakage current and APD mismatch losses at the detector and splitting 

losses of the multiplexers/de-multiplexers.  

3.1   Introduction 

The ever hungry consumers of current and potential future access networks are 

making Optical Code-Division Multiple-Access (OCDMA) systems more and 

more attractive in the field of all optical communications as it promises to enable 

the end users to access the network asynchronously and simultaneously with high 

level of transmission security [1, 3-5, 53-55]. Designing an OCDMA system, 

however, imposes a challenge to minimize the influence of multiple-access 

interference (MAI). Spectral amplitude coding (SAC) techniques are widely been 

considered to address this issue as the MAI can be theoretically cancelled when 
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code sequences with fixed in-phase cross-correlation (such as perfect difference 

codes or Hadamard code) are used [5].  

In the most research on OCDMA systems based on PDCs [4, 5], the evaluation of 

error probability is based on the ideal assumptions such as the gains of APDs used 

in information extracting and MAI cancelling branches of optical code-division 

multiple-access (OCDMA) systems receiver are matched or the multiplexers used 

at transmitter and receiver uniformly splits the input and received power. Such 

approximations in practice may be an overestimate or underestimate of the actual 

probability of error. In this chapter, the impact of APD mismatch is analyzed [4, 

5] and splitter’s uniformity loss [5] in the OCDMA systems based on the perfect 

difference codes (PDC). The SNR criterion is also used to propose the optimal 

value of APD gain. In addition, the system performance, with consideration of 

shot noise, thermal noise, avalanche photodiode (APD), bulk and surface leakage 

currents, and APD gain mismatch is also evaluated.   

The remainder of this chapter is organized as follows. In section 3.2, the structure 

of the transmitter and receiver is described. Section 3.3 presents the analysis of 

impairments such as splitter loss and APD mismatch gain. Finally, section 3.4 

discusses the experiments and numerical results obtained for the BER and system 

capacity.  
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3.2   System Model 

In [5], an asynchronous OCDMA system is proposed based on PDCs as shown in 

Figure 3.1. The analysis is carried out in ideal conditions and is based on some 

serious assumptions such as the gain of APDs used in receiver of proposed 

systems are perfectly matched and that the power is splitted uniformly in the 

splitters used at transmitter and receiver side. In what follows the system 

proposed in [5] is analyzed considering practical environment and attempt to 

critically analyze the obtained results and also propose some ways to minimize or 

overcome the losses.  

 

Figure 3-1: SAC-OCDMA system based on perfect difference codes [5]. 
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Each subscriber is assigned a unique code. Each active user transmits a signature 

sequence of w  laser pulses (representing the destination address), over a time 

frame if mark “1” is transmitted. However, if the data bit is space “0,” no pulses 

are transmitted during the time frame. The system presented in [5] proposes the 

use of PDC to overcome the limitation of codeword synchronization and power 

loss incurred in the Spectral Amplitude Coding (SAC)-OCDMA Systems.  

3.2.1 Transmitter  

 

The arrayed waveguide grating v×v wavelength multiplexer (AWG MUX) 

proposed in [55] is used as encoder and decoder since both it and PDC have a 

cyclic-shifted property. It is assumed that a broadband optical pulse entering one 

of the input ports of the AWG MUX is split into a v number of spectral 

components. Each spectral component follows a unique route through the AWG 

MUX in accordance with its particular wavelength. 

The transmitter shown in Figure 3.1 comprises a switch, a v×v AWG MUX and a 

w ×1 coupler. In accordance with the employed PDC, w  output ports are selected 

in advance. When data bit ‘1’ is to be transmitted, a broadband optical pulse is 

sent to one of the v input ports of the multiplexer. The choice of input port is 

determined by the switch in accordance with the signature sequence of the 

destined user. The optical broadband pulse entering the multiplexer is split into v 

spectral components. These components exit the multiplexer through the w  
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predetermined output ports and are then combined into a single pulse by the w ×1 

coupler and transmitted to the destined user. To transmit bit ‘1’ to a different user, 

the transmitter uses the switch in front of the AWG MUX to change the input port 

of the broadband optical pulse in accordance with the codeword sequence of the 

new user. Consequently, a different group of spectral components exits from the 

w  predetermined output ports. When a ‘0’ data bit is to be transmitted, nothing is 

actually sent. In this study, it is assumed that l1, l2,…,lw are the spectral 

components which make up the signature sequence of the destined user. 

3.2.2 Receiver 

 

The front of the receiver is implemented by adding a (v – w) ×1 coupler to the 

transmitter structure. In accordance with the code of the destined user, the 

received optical pulse is directed to the corresponding input port by the switch in 

front of the AWG MUX. As described above, the optical pulse is then split into 

several spectral components and each component follows its own particular route 

through the AWG MUX. The spectral components, l1, l2,…,lw, exiting from the w  

predetermined output ports, are collected by the w ×1 coupler and combined into 

a single optical pulse. This pulse is transmitted to an APD, which responds by 

outputting the corresponding photoelectron count, Y1. Meanwhile, the (v – w )×1 

coupler collects the spectral components which exit through all of the output ports 

of the AWG MUX other than the w  predetermined ports. The output of the (v – 

w )×1 coupler, referred to as the filtered multiple-access interference (MAI), is 
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photodetected by a second APD, which outputs the photoelectron count, Y2. The 

filtered MAI signal is employed to remove the MAI from the spectral components 

coupled by the w ×1 coupler, i.e. the residual MAI. 

3.3   Performance Analysis 

The number of active users is assumed to be N and that there are I interfering 

users. Furthermore, without loss of generality, it is assumed that the first user is 

the desired user and that b0 is the desired bit. The average photon arrival rate λ per 

pulse at the input of the optical correlator in the first branch is given by. 

hfP /ηλ =     (3.1) 

where, P is the input power, h is the Planck’s constant, f  is the optical frequency 

and η is the APD quantum efficiency. The power of each spectral component is: 

vhfP /ηλ =     (3.2) 

Each user contributes one spectral component in the desired user’s signal; 

therefore, the total interference due to MAI is given by: 
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    (3.3) 

3.3.1 APD Mismatch Analysis 

Referring to the receiver shown in Figure 3.1, in the existing systems proposed in 

literature, the analysis is based on the assumptions that the two photodetectors at 



 37

information and interference branches are completely matched. This, however, 

may not be the case in practice. To investigate this, this section considers the 

effects of photodetector gain mismatches on the system’s bit error rate 

performance. This work is published in [83].  

Given IN =  and the desired bit 10 =b , the mean and variance of output 1Y  after 

the sampler in the first branch can be expressed as: 
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where, 1G  is the average APD gain of upper APD, the subscript 1 denotes the 

parameter for branch 1, cT  is the chip duration, bI is the bulk leakage current, 

sI is the surface leakage current, e is the electron charge, eF  is the excess noise 

factor given as:   

( )( )effeffe kGGkF −−+= 1/12    (3.6) 

here effk is the APD effective ionization ratio and, 2
thσ  is the variance of thermal 

noise given as:  
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where bK  is the Boltzman’s constant, nT is the receiver noise temperature, and 

LR is the receiver load resistance. 

Similarly, given I  and 00 =b , the mean and variance of 1Y  is given by (3.8) and 

(3.9), respectively.  
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Given I , the mean and variance of the output 2Y  can be expressed by (3.10) and 

(3.11), respectively. 
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where, 2G  is the average APD gain of lower APD and the other parameters are same as 

described above, the subscript 2 denotes the parameter for branch 2. After subtracting 

rY2  from 1Y , the mean of Y is obtained as given by (3.12) for 10 =b and 00 =b , 

respectively. 
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The mean for data bit 1 and 0 given in Equation (3.12) are used to calculate the 

probability of error using Gaussian approximations.  

 

 

 

3.3.2 Combined APD Mismatch and Splitter loss Analysis 

 

Referring to the transmitter and receiver shown in Figure 3.1, in the existing 

systems proposed in literature, the analysis is based on the assumptions that the 

power at the AWG multiplexers is splitted uniformly. This, however, may not be 

the case in practice. To investigate this, this section considers the effects of 

splitting mismatch losses combined with photodetector gain mismatches on the 

system’s bit error rate performance.  
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For K transmitter/receiver pairs, the optical signal of the k-th user can be written 

as: 

( ) ( )∑
−

=

−=
1

0
,,

v

l
cklklkk ltcPbtS τδα  { } { }1,0,1,0,0 , ∈∈≤≤ klk cbvt  (3.13)  

Where P is a user’s received power, kb  is the k-th user’s binary data bit (0, 1), 

klc ,  is the signature code waveform generated by the PDC sequence assigned to 

the kth user, ( )tδ  is the unit-rectangular pulse of duration cτ , v  is the sequence 

length, and l  is the output port of the splitter at transmitter. It can also be found 

that the kl ,α  is a random variable whose value varies from 
2
ls

v
P
−  to 

2
ls

v
P
+ . 

Where ls  is the uniformity loss of the splitter in dB. 

This is then inputted to the star coupler which accumulates the resultant powers of 

each user’s coupler. Hence, the signal at the star coupler will be: 
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It is assumed that, the received power rP  is equal to the input power P , which 

again will be splitted into v  components by second splitter at the receiver. The 

received signal for user 1 can be modeled as: 
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where m  denotes the output ports of the splitter at receiver, and km,β  is same as 

kw,α  but at the receiver side, 1,mc  is the copy of spreading code for user 1 at 

receiver side. This signal is inputted to the coupler at the receiver and it can be 

divided into the wanted component and unwanted component as: 
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The first term in above equation denotes the wanted signal. This will only be 

achieved when all the spectral components that exited from the AWG multiplexer 

at the transmitter side are the same as that which exit from the receiver. The 

second term in the above equation represents the unwanted component in the 

desired signal; this is achieved when the spectral components exited from the 

AWG multiplexer at the transmitter side do not match with those that exited at the 

receiver side. 

For K system users and given I interfering users and data bit bk = 1; the mean and 

variance of output Y1 can be expressed as: 
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where, G1 is the average APD gain of upper APD, e is the electron charge, Ib is 

the APD bulk leakage current, Is is the APD surface leakage current, and Tc is the 

chip duration, Fe is the excess noise factor, and σth is the variance of thermal noise 

(the subscript 1 represent the terms of upper branch).   

Similarly, given I and bk = 0 
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and Y2 can be expressed similarly as Y1. Given I: 
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where, G2 is the average APD gain of lower APD, (the subscript 2 represent the 

terms of lower branch).   

For the nominal case, that is G1 = G2 = G, the MAI is cancelled for the condition 

shown in (3.24).  

)1/(1 −= wr     (3.24)  

After subtracting the signal rY2 from Y1, the mean and variance of output Y can be 

expressed as: 
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Then variances of Y are given by equations (3.27).  
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The threshold detector uses the statistic Y to identify the received data bit in 

accordance with a decision threshold. If the received photoelectron count, Y, is 

greater than the threshold, bit ‘1’ is declared, alternatively, bit ‘0’. The threshold 

is specified according to three different decision rules presented in [5]:  

Rule 1:  
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and I  can be expressed as:  



 46

∑
−

=

−

⎟
⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
×=

1

1

1

2
11N

i

N

i
N

iI    (3.36) 

The bit error can be derived from (3.37) to (3.41): 
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and, ( )⋅erfc stands for the complementary error function, as defined in (3.30) 
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The signal-to-noise ration then can be calculated as:  
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3.4   Experiments & Results 

Figure 3.2 shows the bit error rate versus number of simultaneous users for three 

rules of selecting the threshold. For our experiments, the gain of the upper 

branch’s APD, which is used to extract the information of the desired user, is kept 

fixed and set to the typical value of 100 [4, 5]. The gain of the lower branch’s 

APD is incremented or decremented in steps of 5%. The power received per pulse 

for most plot is assumed to be fixed at WwPr µ10×= . The values of shot noise, 

thermal noise, and bulk and surface leakage currents, are taken separately for both 

the APDs. We use the value of r obtained from Equation (3.24) which assume that 

the gains of both APDs are perfectly matched. However, in practice this is not the 

case. As a result, the MAI is not completely cancelled, and consequently only a 

5% difference between the gains of the two APDs causes more than 50% 

reduction in the system capacity, as shown in Figure 3.2. This problem can be 

compensated, if the gains of the two APDs used are accurately measured under 



 48

the prevailing conditions. This condition for the complete cancellation of MAI is 

defined by r = G1/G2(w – 1).  
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Figure 3-2: BER probability for l = 14 and splitter loss of 0.5 dB. 

 

Fig. 3.3 plots the SNR versus the Average APD gain with variable Fe on a log-log 

scale for different power levels. The plot illustrates that in cases when received 

power is lower there is an optimal value of APD gain as can be seen in the case of 

– 58.5 dB of power. In this case the optimal value is around 10. For fixed value of 

Fe say 2 shown by dotted lines for respective power levels, we obtain a linear 

increase in the SNR up to some optimal value of gain and then it saturates 
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afterwards. A high value of APD gain beyond 100 degrades the SNR 

performance.   

100 101 102 103 104
10-3

10-2

10-1

100

101

102

Average APD Gain

S
N

R

 

Figure 3-3: SNR versus the average APD Gain. Dotted curves are for fixed value of  Fe  
= 2. 

   

Figure 3.4 plots the BER versus number of simultaneous users for optimal value 

of threshold but with different gains and confirms the results obtained in Fig. 3 

that as the value of APD is increased the BER performance is degraded. One can 

verify that the best bit error rate performance is achieved when the APD with gain 

around 10 is used.  

–38.5 dB 

–48.5 dB 

–58.5 dB 
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Figure 3-4: BER versus the number of simultaneous users for different values of APD 
Gain. 

 

 

The uniformity losses of 0.5 dB and 1.1 dB obtained from the data sheets of 

practical vendors [56] have been applied in the analysis presented in section 3.3. 

As can be seen from Figure 3.5 to 3.8, that uniformity loss is a serious problem of 

the system configured in [5]. Figure 3.5 and 3.6 shows the results for uniformity 

loss of 0.5 dB and 1.0 dB, for w  = 14, respectively with the condition of G1 = G2. 

While Figure 3.7 and Figure 3.8 shows the BER versus number of active users 

curve for uniformity loss of 0.5 and 1.0 dB, and k with the condition that G2 = 
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0.95G1 and 0.9G1, respectively. It can be observed from these curves that, the 

uniformity loss itself is not a serious threat to the PDC based system but when 

combined with gain mismatch in the information and MAI canceling branch it 

rapidly degrades the system performance. Considering the gain mismatch and 

uniformity of splitter loss, it can be seen that the SAC-PDC OCDMA system 

which applies 1θ  provides best performance because it is suitable for the cases 

where the statistics for bits ‘1’ and ‘0’ have the same variance.  
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Figure 3-5: BER probability for  w = 14 and splitter loss of 0.5 dB. 
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Figure 3-6: BER probability for w = 14 and splitter loss of 1.0.dB. 
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Figure 3-7: BER probability for w = 14 and splitter loss of 0.5 dB. 
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Figure 3-8: BER probability for w = 14 and splitter loss of 1.0.dB. 

 

3.5 Summary 

The results show that the system performance is severely affected for the worst 

when the mismatch losses in the APDs of receiver and splitting losses of the 

multiplexers are taken into account. On its own the splitter loss can be neglected 

but when combined with Gain mismatch it degrades the bit error rate 

performance. This generates the need to explore a better system configuration 

which can reduce the effect of APD mismatch and uniformity losses. One of the 

possible solutions for such requirement would be to use balanced sequences. 
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Alternatively, if the level of interference floor is made fixed, the decoding 

architecture can be relieved from estimating it over and over again for each data 

bit decision. This can be achieved using a technique called Common zero codes 

described in the next chapter. Moreover, it is concluded from experiments that, 

the effects of other factors such as bI  and sI , on the system performance are 

negligible. 
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4. Compact En/Decoder 
 design for Spectral 
 Amplitude Coding-OCDM 
 System based on Perfect 
 Difference Codes 

 

 

In this chapter, common zero code technique is introduced and novel 

encoder/decoder architecture is proposed for spectral amplitude coding, optical 

code division multiplexing systems. The analytical expressions for signal-to-noise 

ratio and bit error rate are derived for perfect difference codes structured on the 

proposed encoding/decoding devices considering, phase-intensity induced noise, 

thermal noise, and multiple-access interference.  

4.1 Introduction  

Optical code division multiple-access (OCDMA) technology entered the research 

field of optical fiber communication in the middle of 1980s and it has offered 

many advantages such as interfering resistance, asynchronous operation, 

increased inherent security, and many others. It is particularly found useful for the 

bursty nature of local area network’s environment. Since M. Kaevhrad [42] 

proposed non-coherent optical CDMA system in 1995, non-coherent spectral-
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amplitude coding optical CDMA technology has attracted great deal of attentions 

from the research point of view.  

Several code families can be used in SAC-OCDMA systems, e.g., maximal-length 

sequence (m-sequence) codes [42], Walsh–Hadamard codes [42], modified 

quadratic congruence codes [52], and perfect difference codes [4, 5], etc. Most of 

these systems except [4, 5] use Fiber Bragg Gratings (FBGs) as encoding-

decoding devices, but FBG array physical size becomes impractical when the 

number of total network users is large. Such systems change the signature 

sequence by tuning each FBG piezoelectrically or thermally. Therefore, the 

configurability of the system is limited by the tuning range of the FBGs [58]. 

Furthermore, the systems reported in [52, 57] require two sets of FBGs with 

opposite orders to compensate for the round trip delay of the corresponding 

spectral components to achieve chip synchronization. This requirement limits the 

attainable data transmission rate of the system. One way to solve this problem is 

to use the cyclic property of AWG routers [4, 55] encoder/decoder size reduction.  

Different users can use a common code to encode the zero bits [61]. This 

maintains a constant interference level whether the interfering users are 

transmitting 1 or 0. Therefore no additional circuitry is required to estimate 

interference at receiving end rendering the decoding process independent of active 

number of users and therefore also, simpler and faster. In order to maintain a 

constant MAI, two different codes are assigned for each channel to encode bit 1 

and 0 separately. Moreover, to reduce the number of codes needed, a simple OOK 
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decoding scheme is used in the receiver to decode the sequence of bit 1 only. 

Since the sequence of bit 0 is not decoded in the receiver, different channels can 

use a common code to encode the bit 0; therefore, only one or a few excess codes 

are needed to encode the bit 0s. 

In this chapter, a simple encoder and decoder design is proposed for SAC-optical 

code division multiplexing (OCDM) systems similar to [59] and [60] utilizing 

perfect difference codes structured on AWG routers. In [59] however, two AWG 

multiplexers are required to generate the sequence and its complement. While 

[60] structures its encoder and decoders on extended perfect difference codes and 

requires complex decoding structure comprising of three fiber-bragg gratins, three 

optical circulators, one attenuator, one balanced photodetector, and a delay line. 

In this proposal, only one encoder is required based on AWG using common zero 

code technique [61] which is shared by all the network users while at the decoder 

a simple correlator receiver typical of CDMA systems is proposed to be used. 

Thus reducing the system cost significantly. The information signal employs ON–

OFF keying with low cost incoherent sources, and the AWG router is used to 

control the amplitude spectra of incoherent optical sources. Because of the cyclic 

properties of both AWG routers and PDC-sequence codes, the proposed codec 

pair can encode–decode multiple code words of –sequence code while retaining 

the ability for MAI cancellation.  

Introduction in section 4.1 is followed by system description in section 4.2. It 

elaborates the encoder and decoder design for spectral amplitude OCDMA 
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systems based on PDCs only and PDCs with common zero code. In section 4.3, 

the system performance is analyzed taking into account of intensity noise, shot 

noise and thermal noise. Additionally, some numerical results are also presented. 

Finally, this chapter ends with conclusions in section 4.4.  

4.2 System Description  

4.2.1 PDC Based SAC 

Figure 4.1 shows the proposed encoder designed with PDCs for v = 7 and w = 3. 

It contains 1×7 splitter and one 7×7 AWG router which can generate seven 

codewords simultaneously. The AWG router demultiplexes the wavelength into 

all the output ports, and the same wavelength signals which are incident from 

different input ports will go to different output ports in cyclic manner [62]: 

(#Input port + #Output port – 1) mod v = #Wavelength (4.1) 

The spectrum of broadband light source is filtered within one free spectral range 

of the AWG router. After the light is incident on the splitter it is broadcast to 3 

specific AWG input ports according to the adopted PDC. By controlling the states 

of switches with the user’s information bits, dk the encoder can transmit suitable 

codewords to the end users.  
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Figure 4-1: Encoder for PDC based SAC-OCDM system (BS: Broadband Source). 

 

 

Figure 4-2: Decoder for PDC based SAC-OCDM system. 

 

A N × N star coupler is assumed to connect the local network users in the system. 

Each transmitter broadcasts its encoded signal to all the receivers in the network. 

Figure 4.2 shows the receiver structure similar to that proposed in [5] based on 

AWGs and PDC sequences. The receiver applies a CDMA correlator to the 
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incoming signal to extract the desired bit stream. The correlator output consists of 

the desired data and the unwanted MAI. In order to reduce the effect of MAI, 

orthogonal codes are required. 

A pulse with specified spectral distribution is sent when the data bit is ‘1’, and 

nothing is sent when the data bit is ‘0’. At the receiver side, a N × N  multiplexer 

is used which divides the received signal into two parts. Then they are inputted, 

respectively, into two decoders with complementary decoding functions. If (v, w, 

γ ) code is used, where v is the length of the code sequence, w is the weight of the 

code sequence and γ  is the correlation constraint, is the MAI coming from N – 1 

interfering users at the second photodetector (PD2) is equal to (N – 1)λ and that at 

PD1 is equal to r(w – 1)(K – 1). When r = λ / (w – 1), these two MAI components 

are equal and therefore cane be cancelled. 

An illustrative example is presented in Table 4,1 for v = 7 chips as follows: 

Assume that User # 2 and User # 6 are to transmit bit ‘0’ while all other users are 

transmitting data bit ‘1’. To implement this status of switches d2 and d6 in Figure 

4.1 will be in BAR state (OFF) while all remaining switches will be in CROSS 

state (ON). After the encoding, the coded spectral chips are combined in the star 

coupler and broadcast to each receiver. Each receiver will receive the 

accumulated signal Rx = (2, 3, 1, 2, 3, 2, 2) as shown in Table 4.1.  
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Table 4-1: Encoding Scheme for SAC-OCDM System with PDC. 

 

User Assigned code Cx 
Data 
bit Transmitted Signal 

#1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 
#2 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 
#3 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 
#4 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 
#5 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 
#6 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 
#7 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 

Received Signal, Rx = 2 3 1 2 3 2 2 

 

Table 4-2: Decoding Scheme for SAC-OCDM System with PDC. 

 
User # 1: 7 – 8/2 = 3 hence bit detected is ‘1’  

Rx 2 3 1 2 3 2 2  
C1 1 1 0 1 0 0 0  

Reflected 
chips 

A 2 3 0 2 0 0 0 7 
B 0 0 1 0 3 2 2 8 

User # 2: 5 – 10/2 = 0 hence bit detected is ‘0’ 
Rx 2 3 1 2 3 2 2  
C2 1 0 1 0 0 0 1  

Reflected 
chips 

A 2 0 1 0 0 0 2 5 
B 0 3 0 2 3 2 0 10 

 

In order to spectrally decode (see Table 4.2) the kth user’s information (we take 

user #1 and #2 as an example), the received signal vector Rx is directed to the 

AWG demultiplexer where it is splitted into N spectral components and 

multiplied by 1C  and 1Cr to achieve balanced photodetection. For receiver user # 

1, the received signal Rx = (2, 3, 1, 2, 3, 2, 2) when correlated with 1C  = (1, 1, 0, 
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1, 0, 0, 0) and 1C  = (0, 0, 1, 0, 1, 1, 1) results in the reflected chip vector at A 

branch with sum = 7 unit powers, and reflected chip vector at B branch with sum 

= 8 unit powers as shown in Table 4.2. Balanced photodetection will result 7 – 8/2 

= 3 units of photocurrent, equivalent to data bit ‘1’. For user # 2, when the same 

received signal Rx is correlated with 2C  and 2C , results in the reflected chip 

vector at A branch with sum = 5 unit powers, and at B branch with sum = 10 unit 

powers. Therefore, the balanced photodetection will result 5 – 10/2 = 0 unit 

powers, corresponding to a detected logical bit of ‘0’. The decoding process for 

other receivers can be similarly implemented. 

4.2.2 PDC Based SAC with Common Zero Codes 

 

Figure 4.3 shows the proposed encoder designed with PDCs for v = 7 and w = 3. 

It contains 1×7 splitter and one 7×7 AWG router which can generate seven 

codewords simultaneously. The spectrum of broadband light source is filtered 

within one free spectral range of the AWG router. After the light is incident on the 

splitter it is broadcast to 3 specific AWG input ports according to the adopted 

PDC. By controlling the states of switches with the user’s information bits, dk the 

encoder can transmit suitable codewords to the end users. A pulse with specified 

spectral distribution is sent when the data bit is ‘1’, and common code is sent for 

all the users when the data bit is ‘0’. 
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Figure 4-3: Encoder for SAC-OCDMA system based on PDC. (BS: Broadband Source) 

 

 

Figure 4-4: Decoder for SAC-OCDMA system with Common Zero Code. 

 

A N × N star coupler is assumed to connect the local network users in the system. 

Each transmitter broadcasts its encoded signal to all the receivers in the network. 

Figure 4.4 shows the receiver structure based on AWGs and PDC sequences. The 
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receiver applies a CDMA correlator for kC  (code for kth user) to the incoming 

signal to extract the desired bit stream. The correlator output simply consists of 

the desired data as opposed to conventional receiver structures used for SAC 

which require MAI cancellation branch as well along with information branch as 

explained in last section. After the correlation the signal is detected by 

photodetector. Since each other user in the system will contribute one spectral 

component in the desired user’s bit stream, their contribution is subtracted with a 

constant factor of (N – 2). The factor N – 2 arises because out of total N spreading 

codes only N – 1 can be assigned and one is reserved for common zero code. This 

arrangement does not need to estimate the interference in order to cancel it from 

the desired signal.  

 

 

Table 4-3: Encoding Scheme for SAC-OCDM system with PDC-CZC. 

 

User Assigned code Cx 
Data 
bit Transmitted Signal 

#1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 
#2 1 0 1 0 0 0 1 0 0 1 1 0 1 0 0 
#3 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 
#4 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 
#5 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 
#6 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 
#7 CZC 0 1 1 0 1 0 0 1 - - - - - - - 

Received Signal, Rx = 2 4 2 2 4 2 2 
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Table 4-4: Decoding Scheme for SAC-OCDM system with PDC-CZC. 

 
User # 1: 8 – 5 = 3 hence bit detected is ‘1’ 

Rx 2 4 2 2 4 2 2  
C1 1 1 0 1 0 0 0  

Reflected chips 2 4 0 2 0 0 0 8 
User # 2: 6 – 5 = 1 hence bit detected is ‘0’ 

Rx 2 4 2 2 4 2 2  
C2 1 0 1 0 0 0 1  

Reflected chips 2 0 2 0 0 0 2 6 

 

An illustrative example is presented in Table 4.3 and 4.4 for N = 7 chips as 

follows: Assume that User # 2 and User # 6 are to transmit data bit ‘0’ while all 

other users are transmitting data bit ‘1’. Since user #2 and user # 6 are 

transmitting zero they will be assigned the Code # 7 as common code instead of 

code # 2 and #6 as shown in Table 4.3. To implement this status of switches d2 

and d6 in Figure 4.3 will be BAR and directed to Code #7, while all remaining 

switches will be CROSS and will be transmitting their respective codes. After the 

encoding, the coded spectral chips are combined in the star coupler and broadcast 

to each receiver. Each receiver will receive the accumulated signal Rx = (2, 4, 2, 

2, 4, 2, 2) as shown in Table 4.3. Please note that here penalty of one user is paid 

due to the common zero code.  

In order to spectrally decode (see Table 4.4) the kth user’s information (assuming 

user #1 as desired user), the received signal vector Rx is splitted into N spectral 

components and multiplied by 1C  only to achieve photodetection. For receiver 

user # 1 the reflected chip vector has sum = 8 unit powers. Since the total number 

of interfering chips for each user is fixed that is N – 2 = 5, where N is the number 
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of active users, the photodetection will result 8 – 5 = 3 units of photocurrent, 

equivalent to data bit ‘1’. For user # 2, the reflected chip vector sum = 6 unit 

powers, therefore, photodetection will result 6 – 5 = 1 unit powers, corresponding 

to a detected logical bit of ‘0’. The decoding process for other receivers can be 

similarly implemented. 

4.3 Performance Analysis 

In the analysis of proposed system, noises that exist in this system contain shot 

noise, incoherent phase-induced intensity noise (PIIN) and thermal noise. The 

effect of the receiver’s dark current is assumed to be neglected. Gaussian 

approximation is used for the calculation of bit error rate. 

The light source spectra are assumed to be ideally unpolarized and ideally flat 

over a ∆v bandwidth, with magnitude P/∆v, where P = Psr is the effective source 

power. Therefore, the variance of photocurrent due to the detection of an 

unpolarized thermal light, which is generated by spontaneous emission, can be 

denoted as [45]: 

Lnbcp RBTKBIBeIi /42 22 ++=〉〈 τ     (4.2) 

where e is the electron charge, Ip is the photocurrent, B is the electrical bandwidth 

of the receiver, Kb is the Boltzmans constant, Tn is the receiver noise temperature, 

RL is the load resistance, andτ  is the source coherence time expressed in [63]: 
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where the G(v) is assumed to be single sideband power spectral density (PSD) of 

the source. The first term of Equation 4.2 denotes the shot noise, while the second 

and the third term represent the effect of PIIN and thermal noise respectively. 

Let ( )ick  denote the ith element of the kth PDC code. The code properties can be 

written as: 
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Thus, the power spectral density (PSD) of the received optical signal can be 

written as: 
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4.3.1 Performance Analysis of PDC Based SAC 

Assuming the bit synchronization between transmitter and receiver, the PSD at 

PD1 and PD2 (see Figure 4.1 and 4.2) of the lth user receiver during one bit 

period can be written as.  
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and 
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Using formulae (4.3), (4.6) and (4.7), the total power incident on PD1 and PD2 is 

given by, 
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Therefore, using formulae (4.6) and (4.7), we can obtain 
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The photocurrent Ip can be expressed as:  

kp wb
v
PIII ℜ=−= 21    (4.13) 

where ( ) ( )hfe /η=ℜ  is the responsivity of the photodetector. Here, η  is the 

quantum efficiency, e is the electron’s charge, h  is the plank’s constant, and f  is 

the central frequency of the original broad-band optical pulse. Due to the noise at 

PD1 and PD2 which are independent, the power of noise sources in the 

photocurrent can be written as 
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When all users are transmitting data bit ‘1’, on average we can approximate 
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1
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k . Using the correlation properties, the noise power can be 

written as 
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Note that the probability of sending ‘1’ at any time for each user is 1/2, the above 

equation becomes 
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From (4.11) and (4.16), the expression for SNR can be derived as in (4.17).  
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4.3.2 Performance Analysis of PDC Based SAC with Common Zero 
Codes 

Assuming bit synchronization, the PSD at PD (see Figure 4.3 and 4.4) of the lth 

user receiver during one bit period can be written as 
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Using formula (4.4), the total power incident on PD is given by 
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Therefore, using formulae (4.18), we can obtain 
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The photocurrent I can be expressed as 
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Due to the noise at PD which are independent, the power of noise sources in the 

photocurrent can be written as 
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Note that the probability of sending ‘1’ at any time for each user is 1/2, the above 

equation becomes 
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From (4.21) and (4.23), we can get the expression for SNR which is shown in 

(4.24).  
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Using Gaussian approximation, the BER can be expressed as:  
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On employing this expression (4.25), the relations between the bit error rate and 

the number of active users for m-sequences, Hadamard codes, complementary 

Walsh-Hadamard codes [62] of length 128, modified quadratic congruence codes 

[52] of length 132 and p = 11, Perfect Difference Codes of length 133 and weight 

w = 12 with and without application of common zero code are plotted in Figure 

4.5. The parameters used in our analysis are listed in Table 4.5. It is worth noting 

that when properly synchronized the Perfect difference codes and MQC codes due 

to their unity cross-correlation only contribute the one overlap per interfering user 

while m-sequences and Hadamard codes causes (N + 1)/4 and N/4, respectively. 
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Figure 4-5: BER versus number of active users for different codes. 

 

Table 4-5: Parameters used.  

 
PD quantum efficiency 6.0=η  
Line-width of the thermal 
source 

THzv 25.6=∆  

Operating wavelength mµλ 55.10 =  
Electrical bandwidth B = 80MHz 
Receiver noise temperature KTr 300=  
Receiver load resistor Ω=1030LR  

 

Thus, the influence of other users in the network on the desired signal is greatly 

reduced, eventually resulting in improved bit-error rate performance which is 
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more pronounced and obvious to note in Figure 4.5 under heavy loads. The 

performance of MQC and PDC codes is almost equivalent because both have 

unity cross correlation, but the later has the advantage of being cyclic and has no 

constraint of length being a prime number. This renders the implementation of 

PDCs with common zero codes simpler and efficient. The use of CZC only 

expense one penalty of code as it is dedicated for the data bit ‘0’ for each user in 

the system. It is evident from Figure 4.5 that the performance of PDCs can further 

be improved with the application of CZC because the level of interference 

contributed by undesired users is constant and therefore eliminating them is 

relatively easy.  

Figure 4.6 shows the relation between the number of simultaneous users and the 

SNR for different spreading codes with similar lengths as given in Figure 4.5. It 

has been shown that PDC code gives a much higher SNR than m-sequence or 

Walsh-Hadamrd codes and have equivalent performance with MQC. While the 

SNR is further improved if PDC is combined with CZC. Therefore, PDC codes 

can effectively suppress the effect of intensity noise, resulting in a much better 

performance.  
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Figure 4-6: SNRs versus number of active users when P = – 10 dBm. 

 

Figure 4.7 shows the variations of BER versus the number of active users when P 

= – 10 dBm for PDCs with and without application of CZC with weights 7, 13, 

and 20. It is evident from this plot that CZC improve the performance of the 

system. 
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Figure 4-7: BER versus number of active users when P = – 10 dBm. 

 

Figure 4.8 shows the BER variations with the effective power when and the 

number of simultaneous users is 43. The solid lines represent the BERs, taking 

into account effects of intensity, shot, and thermal noises. The dashed lines 

indicate the BER performances when effects of only intensity and thermal noises 

are considered. The dotted lines indicate the system BERs when only intensity 

and shot noise sources are considered. It is shown that, when P is large, both the 

shot and thermal noises are negligibly small compared with the intensity noise, 

which becomes the main limitation factor of the system performance. However, 

when P is low, the effect of intensity noise becomes minimal, and, hence, the 

thermal noise source becomes the main factor that limits the system performance. 



 78

It is also shown that thermal noise is much more influential than shot noise on 

system performance. 
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Figure 4-8: BER versus effective power P when number of active users is 43. 

 

Figure 4.9 shows the BER variations with when the number of simultaneous users 

is 43 and w = 7, w = 13, and w = 20. Figure 4.10 shows variations of the BER 

versus number of simultaneous users for different values of P. In these two 

figures, we have considered effects of the intensity, shot, and thermal noise 

sources. It is shown that when Psr is less than – 25 dBm the performance of the 
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proposed system is poor. This is because the larger value of weight causes a large 

power loss at the transmitter. 
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Figure 4-9: BER versus effective power P when number of active users is 43, taking into 
account the intensity noise, shot noise, and thermal noise. 
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Figure 4-10: BER versus number of active users when effective power P is different. 

 

4.4 Summary  

A simple and robust encoder and decoder based on AWG router and simple 

correlator receiver has been proposed that for the spectral-amplitude OCDMA 

receiver. Because of the cyclic properties of AWG routers and perfect difference 

codes, all users can share the same encoder. The bit error rate performance of the 

SAC-OCDMA system with different codes has been analyzed by taking into 

account the effects of the shot noise, PIIN and thermal noise. It has been shown 

that performance levels can be achieved that are greater than the performance 
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limit of the system employing m-sequences, Walsh-Hadamard, and 

complementary-WH codes and even with MQC codes when employed PDCs with 

common zero code technique. Low-cost light sources can be used for actual 

implementation, rendering the network cheap and compact. When flattened 

sources are used, transmitted data bit can be recovered without the influence of 

MAI. 

The proposed encoding/decoding architecture presents the following advantages:  

1. A single AWG multiplexer encoder can be shared by all the users in the 

network.  

2. The introduction of common zero code maintains a constant interference 

level at all instants in a OCDM network, therefore, at the decoder of each 

user, the circuitry to estimate the interference is not required. Hence, the 

speed of data processing and complexity of decoding architecture is 

significantly improved.  

3. Because the CZC enables simple correlation receiver, the typical problem 

of mismatches in the two branches of typical spectral amplitude system as 

described in chapter 2 and 3 are non-existent. And the effects of gain 

mismatch can be ignored.  
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5. Manchester-Coded 
 Modified-Legendre 
 Sequences 

 

In this chapter, a new family of spreading sequences called Manchester-coded 

Modified-Legendre sequences is presented.   

5.1 Introduction 

Yang in [59] proposes modified Legendre sequences for spectral-amplitude 

coding OCDMA system. Taking the lead from [64], in this chapter Manchester 

coding is applied to the already modified Legendre sequences and present a new 

family of sequences called Manchester-coded Modified Legendre Codes 

(MCMLCs). MCMLCs with complementary coding ability are proposed for SAC 

OCDM systems. The Manchester coding of MLCs make them suitable for both 

single rate and Multirate systems ensuring higher quality of service as explained 

later in this chapter.  

The performance of the proposed system is evaluated with respect to multiple-

access interference, surface leakage current, background noise and thermal noise 

to demonstrate that the proposed system can operate efficiently in case of low 

signal power. 
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5.2 Modified Legendre Sequences 

The modified Legendre (ML) sequences are generated from the well-known 

binary Legendre or quadratic residue sequences [4]. Let vC  with lengths v  be the 

ML sequences (v is a prime such that v ≡ 3(mod 4)), the corresponding elements 

are obtained as [59]: 

Table 5-1: Modified-Legendre Sequences. 

 
 

 

    
⎩
⎨
⎧

=
−≤≤

=
        if      ,1

10 if      ,,
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vic
C iv

iv    (5.1) 

The elements of complementary codewords are obtained as iviv CC ,, 1−= Thus,  

⎪
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≠
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bav

ccCC
i
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   if        ,
4

   if        ,
2

,,   (5.2)  

Table 5.1 shows the Modified Legendre sequences and their complement for 

length 8. The original length of Legendre sequences is 7 and the bit 1 and 0 is 

stuffed into original sequence vC  and its complement to create Modified 

 vC  vC  
k = 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 
k = 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 0 0 
k = 2 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 
k = 3 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 
k = 4 1 0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 
k = 5 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 
k = 6 0 0 1 0 1 1 0 1 1 1 0 1 0 0 1 0 
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Legendre sequences [59]. The stuffed bits are highlighted by the gray shaded area 

in Table 5.1.  

5.2.1 Elementary MCMLCs 

The Manchester code is used to represent the each chip. Applying Manchester 

coding we use ‘01’ and ‘10’ to represent the chip ‘0’ and chip ‘1’, respectively. 

For simplicity, each ‘sub-chips’ is regarded as ‘chips’ and denote the MCMLCs 

as:  

( )j
v

jjj
v cccC 221 ,, K=     (5.3) 

where { }vj ,,2,1 K∈  and { }1,0∈j
ic  for all { }vi ,,2,1 K∈ . Hence the length of 

MCMLCs is vL 2=  while the weight is equal to vw = . Table 5.2 shows the 

Manchester-coded Modified Legendre sequences for length 8=v  and vC . In 

similar fashion the complement of vC  can be encoded.  

Table 5-2: Manchester coded Modified Legendre Sequences. 

 
vC  

k = 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 
k = 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 
k = 2 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 
k = 3 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 
k = 4 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 
k = 5 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 
k = 6 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 
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Complementary coding us used to transmit data bit 1 and data bit 0. To transmit 

data bit ‘1’, we use the MCMLCs j
LC  and to transmit data bit ‘0’ we use j

LC . For 

such systems these are the properties of the MCMLCs.  

1. Correlation between two MCML sequences  

⎪
⎩

⎪
⎨

⎧

≠

=
==⋅ ∑

baL

baL

ccCC
i

ibiaba

   if        ,
4

   if        ,
2

,,   (5.4) 

2. Correlation between sequences and its complement.  

⎪⎩

⎪
⎨
⎧

≠

=
==⋅ ∑ baL

ba
ccCC

i
ibiaba    if        ,

4

   if        ,0
,,   (5.5) 

3. Each transmitted bit, whether it is transmitting 1 or 0, always contributes 

2/L  marked chips during one bit interval.  

5.2.2 Extended MCMLCs  

In this subsection, the elementary MCMLC j
LC  is extended by copying every chip 

to E2  chips and denote the extended MCMLC as j
LE C . For example, some codes 

of the families for modified-Legendre sequence (001|1, 4=v ) are listed in Table 

5.3.  
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It is important to note that the code length and weight of the extended MCML 

code j
LE C  are now vE 12 +  and vE2 , respectively. However, it retains all the 

properties of MCMLCs.  

Table 5-3: Extended MCMLCs with (001|1). 

 
  E = 0 E = 1 E = 2 

4=v  i=1 
i=2 
i=3 

01011010 
10010110 
01100110 

0011001111001100
1100001100111100
0011110000111100

00001111000011111111000011110000
11110000000011110000111111110000
00001111111100000000111111110000

By the properties of MCMLCs, the self inner product in the j
LE C  user is equal to 

vE2  and the interference contributed by every other user is equal to vE 12 − . The 

extended MCMLCs can be used for single rate or multi-rate systems. To support 

demanding users, the sequences with lower values of (e.g., E = 0) can be 

assigned, while the other users with nominal data rate, the sequences with higher 

E can be assigned.  

5.3 System Description  

Figure 5.1 shows the structure of encoder based on MCMLC. It consists of two 

optical encoders j
LC and j

LC  to encode bit 1 and bit 0, respectively.  In the 

proposed OCDMA system, the transmitted data is optically encoded according to 

an MCMLC or its complement in the transmitter, and the received signal is 

decoded according to the same MCMLC. Without loss of generality, we restrict 

our discussion to the user that uses j
LC0   (we denote it as j

LC  for simplicity) as the 

spreading code. 
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Figure 5-1: Structure of the MCMLC encoder. 

 

Figure 5.2 shows the structure of decoders based on MCMLCs. The received 

signal is divided into 2/2 1vE+  branches and then delayed to accumulate the 

marked chips  of j
LC  in the optical correlator. Let rP  be the received optical 

power per chip at the input of correlator, then power at the output of optical 

correlator can be written as:  

 

Figure 5-2: MCMLC decoder of the OCDM system. 
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here I  is the number of interfering users in the system. Hard limiters have widely 

been used in optical CDMA systems to reduce the effect of MAI [65-67]. It is an 

important nonlinear device in all-optical logic processing [68–70]. The bistability 

of the optical hard limiter can be defined as Equation 5.7: 

( )
⎩
⎨
⎧

<≤
≥

=
th

thth

Px
PxP

xu
0         ,0

            ,
   (5.7) 

where x  is the input optical power and ( )xu  is the output optical power. 

The threshold thP  of the hard limiter in Figure 5.2, is set to ( ) 2/1 ILPr + ; 

therefore, the power when data bit 1 is transmitted i.e., ( )( )4/2/ LILPr +  in 

Equation (5.6) is clipped to ( ) 2/1 ILPr +  while the power when data bit 0 is 

transmitted i.e., ( )4/ILPr   is clipped to zero. In the next stage, the output of the 

hard limiter is photodetected. Finally, the integrate-and-dump circuit and the 

threshold circuit decide whether the received bit is 0 or 1. The optimal threshold 

θ  that minimizes the BER will be further discussed in the next Section. 

5.4 Performance Analysis 

In this section, the performance of the OCDM system presented above is 

analysed. The photodetector is assumed to be APD, and the Gaussian model 
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including APD noise and thermal noise is employed. It is worth mentioning here 

that though in chapter 3 we have argued that the use of APD does not always 

results in the optimal performance but still the use of APD in the analysis here is 

adopted because it makes the analysis more general.  

Since the threshold of the hard limiter is set to ( ) 2/1 LI+ ; the output power of the 

hard limiter, denoted HLP ; can be expressed as:  

( )

⎪⎩

⎪
⎨
⎧

=

=
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=
0bfor                           ,0

1bfor         ,
2
1 ILP

P
r

HL    (5.8) 

It is assumed that the number of active users is N  and that there are I  interfering 

users. Furthermore, without loss of generality, it is assumed that the first user is 

the desired user and that 0b  is the desired bit. The average photon arrival rate λ  

per pulse at the input of the optical correlator is given by hfP /ηλ = .  

According to correlation property of PDC each user contributes one spectral 

component in the desired user’s signal and is given is: 

∑
=

=
K

k
kiI

1
    (5.9) 

Given IN =  and the desired bit 10 =b , using Gaussian expression: 
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The mean and variance of output Z  after the sampler given I and 10 =b can be 

expressed as: 

( )
e
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e
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ILGT scb
c +⎥⎦

⎤
⎢⎣
⎡ ++= λµ 1

21    (5.11) 
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where, G  is the average APD gain.   

Similarly, given I  and 00 =b ,  
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where:  
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Assuming that the probability of 1=b  is equal to that of 0=b ; the BER of the 

proposed OCDM system can be derived as: 

{ } { } { } { }1|Pr1Pr0|Pr0Pr =<⋅=+=≥⋅== bYbbYbPe θθ  (5.16) 
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and, ( )⋅erfc stands for the complementary error function is defined as: 
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π
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To minimize the BER, the optimal threshold θ  can be derived as:  
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5.5 Numerical Results 

In this Section, the numerical results are calculated according to the system model 

presented in Section 5.4 and the parameters listed in Table 4.5. The MCMLC-

OCDM system considered in this Section is assumed to be the single rate system. 
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Figure 5.3 plots the BER of the MCMLC systems against the number of users N . 

It is interesting to note in the figure that the bit error rate performance is improved 

as the number of users N  in the systems increase. This can be explained by 

careful look of Equation (5.6), which shows that the difference in HLP  between 

bits 1 and 0 increases as N  increases. However, it should be noted that in the 

analysis presented for MCMLCs in section 5.4 Gaussian model is used and 

ignores the effect of phase-induced intensity noise, which is the major factor of 

noise contribution in any optical communication system. Therefore, this behavior 

depicted in Figure 4.3 can be changed when PIIN is incorporated in the system as 

PIIN is directly propotional to the number of users in the system.  

In most of the spectral amplitude coding systems in the literature using OOK as 

modulation technique and Modified Prime codes or PDCs as signature sequences, 

even though the total number of users N that can be accommodated is kept fixed 

it provides only a little information about the MAI power at any instant since the 

number of users who are sending bit 1s varies randomly. Consequently, the 

performances of the MPC without hard limiters and PDC systems without 

interference estimators are much poorer than the performance of the MCWC 

system. As in the case of MCWC no matter users in the system transmit data bit 1 

or 0, a code is always transmitted which contributes a fixed level of interference 

in the desired user’s signal. Hence, eliminating the interference from information 

signal is easier. By inspecting the curves in Figure 4.3, it is obvious that the BER 

of the proposed MCMLC systems with lower received power ( 70−=rP  dBW, –

75 dBW, –80 dBW) is much smaller as long as N  is large enough.  
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Figure 5-3: BER versus number of users for MCMLCs and w = 4. 

 

Confirming the response of the system illustrated in Figure 5.3, Figure 5.4 shows 

the relation between the number of simultaneous users and the SNR for both 

MCMLCS and MCMWs with similar length 16 and weight of 4 and received 

power of – 70 dBW. It has been shown that MCML code gives a much higher 

SNR than MCWC.  
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Figure 5-4: SNR versus number of users for MCMLCs for P = – 70 dBW and w = 4. 
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Figure 5-5: BER versus received power per pulse under full load for MCMLC and 
MCWC. 

 

Figure 5.5 shows the fully loaded BER curve against the received power per chip 

rP  of the MCMLC systems together with the same for the MCWC systems. The 

superiority of the MCWC system is again apparent in Figure 5.5. For example, to 

achieve BER of ≤ 10–09; MCWC system needs a receive power rP  of – 73 dBW 

while the MCMLC needs only only – 80 dBW. 
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5.6 Summary  

 

The new family of spreading sequences namely Manchester-coded Modified 

Legendre sequences are presented in this chapter. The bit error rate performance 

of the OCDM system utilizing MCMLCs is also analyzed. The proposed 

sequences are suitable to be used with both single rate and multirate systems.  
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6. Application of Perfect 
 Difference Codes in 
 Wireless Infrared Systems 

 
 
 

In this chapter, the perfect difference codes are applied in wireless infrared 

systems and analyze the bit error rate performance of the system using Gaussian 

approximations.  

 

6.1 Introduction  

 

The past few decades have seen the increased interest of the researchers in the 

utilization of infrared (IR) frequencies for short range wireless communications 

[71-75]. Wireless radio technologies have been designed and implemented 

comparatively over a much longer time than wireless infrared systems, however, 

the low complexity and low cost of infrared systems make relatively new IR 

systems very attractive and cost effective solution at a bit rates up to several tens 

of Mbps. Many potential applications for this technology, such as Wireless LANs, 

have already been suggested.  

As briefly discussed in chapter 2, the diffuse indoor optical wireless configuration 

(i.e. non-directed, non-line of sight) is one of the most convenient and robust one 
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for local area networks (LAN). In the diffuse configuration, the transmitters and 

the receivers of infrared systems do not require to be carefully aligned, nor do 

they need to be in a line-of-sight (LOS) path so that communication can be 

maintained. The other major advantages of diffuse systems are their flexibility 

and the roaming they allow in a room. This flexibility makes them the ideal 

choice for ad hoc networks and gives the end users freedom to roam freely insider 

the office or room. In this chapter, therefore, a diffuse configuration is considered. 

However, this freedom of roaming results in the problems associated with high 

path loss and inter-symbol interference (ISI) due to multipath dispersion. In a 

code-division based WIR systems, the effects of ISI can be compensated by using 

efficient spreading sequences.  

In this chapter, the perfect difference codes are applied for the first time in indoor 

optical wireless channel. A wireless infrared system is proposed which uses the 

encoders/decoders as explained in chapter 5. The performance analysis of such 

system is analyzed in terms of bit error rate versus path loss and bit error rate 

versus number of users.  

6.2 System model  

The number of active users is 1+I  and maxN  is maximum allowed number of 

users which can be associated to each station. We use PDC based OCDMA as 

uplink multiple access technique.  The average received power using PDC is 

expressed by [76] 
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drr AI
v

wP
2

=     (6.1) 

where  rI  = is the received light intensity 

  dA = is the area of photodetector.  

6.2.1 Channel Model 

One of the most important parameters that affect the performance of infrared 

system is the channel path loss which is the DC-gain ( )0H  of the channel transfer 

function. It can be expressed as:  

tr PHP 0=     (6.2) 

relating the transmitted ( tP ) and received ( rP ) average powers.  

Figure 6.1 illustrates the non-directed non-line of sight configuration selected for 

the system under study in which the transmitter and receiver are pointed straight 

upward and transmitter emits a Lambertian pattern. The h1 and h2 represents the 

distance of transmitter and receiver from the ceiling, with diffuse reflectivity ρ , 

respectively. We assume that the diffuse reflectivity of ceiling is 80%. The path 

loss for diffuse link is plotted in Figure 6.2 which is measured in any typical 

office [74].  
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Figure 6-1: Non-directed non-line of sight LOS (Diffuse) configuration. 

 

 

Figure 6-2: Optical path loss of a diffuse infrared links employing a Lambertian 
transmitter and a detector of area Ad = 1 cm2 and reflectivity of 80% measured in a typical 
room. 
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6.2.2 Transmitter & Receiver  

 

At the transmitter on-off keying intensity modulation scheme is adopted and 

direct detection at the receiver. Duration of each chip is vTT bc /=   where v  is 

the code length and bT  is the bit duration. At the receiver, a composite signal 

containing the desired signal along with the noise and interference from all other 

I  active users passed through the channel is detected. The receiver’s structure is 

assumed to be similar to one as illustrated in Figure 5.2 that is based on 

correlation detection. At the receiver all the weighted chips of the desired 

sequence are summed to form a decision variable. This decision variable is 

compared to a threshold to detect data bit 1 or 0 [77]. 

 

6.3 Performance Analysis 

 

In this analysis, it is assumed that different nodes transmit asynchronously and 

independently. Further to make things simpler, different signals are assumed to be 

chip synchronous, which is a pessimistic case and gives an upper bound to the 

BER of the real asynchronous system [77].  

The number of interfering pulses received in jth pulse position of the desired 

codeword is denoted by Kj ,,2,1 K=φ . The vector of received interference is 
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denoted by ( )Kφφφφ ,,, 21 K= . In light of the cross-correlation property of PDC, 

two code-words cannot overlap at more than one pulse position. Therefore, the 

probability that two codewords overlap at one pulse position is vwq 2/2=  where 

factor 1/2 accounts for the probability that interfering user sent “one” only half 

time.  

Given I  interfering users, the BER of the desired user’s signal can be expressed 

as [78]:  

( ) ( )∑
=

=
I

i
ire FPiPP

0

    (6.3) 

where ( )iPr   is the probability that there are l interfering pulses, which is given 

by: 
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iF  is the set of all possible φ  vectors. Since the l interfering users are not 

distinguishable in correlation receiver, ( ) ( )φPFP i = .  

Using Gaussian approximation for photon detection, ( )φP  can be written as [78]:  
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where 
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Let rP  be the received optical power per chip at the input of correlator, then 

power at the output of optical correlator can be written as 
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here w  is the weight of the PDC, I  is the number of interfering users in the 

system. 

 

The threshold thP  of the hard limiter is set to ( ) 2/2IwPr + ; therefore, the power 

( )IwPr +  in Equation (6.7) is clipped to ( ) 2/2IwPr +  while the power ( )IPr   is 

clipped to zero. After that, the output of the hard limiter is transformed to an 

electronic signal by the photodetector. Finally, the integrate-and-dump circuit and 

the threshold circuit decide whether the received bit is 0 or 1.  

The average photon arrival rate λ  per pulse at the input of the optical correlator is 

given by hfPr /ηλ = . According to correlation property of PDC each user 

contributes one spectral component in the desired user’s signal and the mean 

photon count produced by the ith  interferer, which is a function of iρ  (path loss) 

and transmission power, is given is: 
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Given IN =  and the desired bit 10 =b , using Gaussian expression: 
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The mean and variance can be expressed as: 
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where dA  is the photodetector’s area, bm  is the mean photon count of the ambient 

light noise, and dI  is the dark current.  

Given IN =  and the desired bit 00 =b , using Gaussian expression, the mean and 

variance can be expressed as: 
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To minimize the BER, the optimal threshold θ  can be derived as:  
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6.4 Numerical Results 

In this part some numerical results are presented for the wireless infrared system 

discussed above. The infrared CDMA system is assumed with data rate of bR  = 2 

Mbps per user and PDC codewords with length v  = 183 and weight w  = 14. The 

system is operating at the wavelength of λ=850 nm, the ambient light noise 

intensity is 2W/cm 490 µ=bm the quantum efficiency of the photodetector is 

6.0=η , photodetector’s area is 2cm 1=dA and dark current is assumed to be 

160=dI  nA.  
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Figure 6-3: BER versus user’s difference from base station ( )ρ  for various transmission 
powers. Number of interferes is 5. 

 

Figure 6.3 illustrates the bit error rate performance of the indoor optical distance 

versus the user’s distance ( )ρ  from the base station for transmission powers of 5 

mW, 20 mW, 15 mW and 30 mW. The number of interfering users is kept fixed. 

One can see the near-far problem in a basic PDC wireless infrared network 

without power control. As the distance from the base station is increased the 

system performance degrades rapidly. This shows that the users which are near 

the base station obtain much more BER than needed but the data from far users 

can not be detected with desired BER. This generates the requirement of a power 

control algorithm in indoor wireless system to make sure that all users regardless 
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of their distance from the base station can access the base station with equal 

power.  

 

 

Figure 6-4: BER versus user’s distance from base station ( )ρ  for various bit rates. 
Number of interferes is 5 and Pt = 20 mW. 

 

Figure 6.4 plots the error probability versus user’s distance from the base station 

for different bit rates (2, 4 and 10 Mbps). The transmitted power and the number 

of interferes is kept fixed at tP  = 20 mW and 5, respectively.  It can be seen that 

the path loss as the user’s move away from the base station puts severe 

restrictions on the data rate. In Figure 6.5, the bit error rate versus number of users 



 108

is plotted. Similar to the curves obtained in chapter 5 it can be seen here that as 

the number of users increase the bit error rate performance is improved. The 

reason for this again can be found in Equation (6.7) which shows the increase in 

the number of users is directly proportional to the difference between data bit 1 

and 0.  

 

 

 

Figure 6-5: Error probability versus number of users for data rate of 2 Mbps. 
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6.5 Summary 

In this chapter, perfect difference codes are applied in wireless domain. The 

uplink performance in presence of various noise sources such as path loss, 

ambient noise, multiple access interference and thermal noise is analyzed. The bit 

error rate performance was analyzed over different transmission powers and 

different data rates. It is revealed from the results that an effective power control 

algorithm is required to mitigate path loss effects.  
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7. Conclusions and Future 
 work  

 
 
 
 
 

7.1 Conclusions  

In this chapter conclusions will be made and also some recommendations for 

future work will be given.   

The thesis addressed the challenges of mitigating MAI effect, designing efficient 

encoders/decoders, and the design of codes that can support Multirate services 

posed by optical communication networks.  

The thesis begins by presenting the motivation and objectives of the work in the 

first chapter. Perfect difference codes are focused in this work due to their 

interesting properties and applied in both wired and wireless optical 

communication systems.  

A novel and simple encoding and decoding architecture is proposed utilizing 

common zero code technique for optical code division multiplexing systems with 

the capabilities of effectively reducing MAI without complex decoding circuitry 

and detecting algorithms. The performance of PDCs structured on the proposed 

encoder/decoders is analyzed using Gaussian model ignoring PIIN and also 

analytical expression of SNR is derived considering PIIN in terms of bit error 
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rate, signal-to-noise ratio, and power constraints. The analytical results show that 

the proposed architecture is able to provide MAI free operation for CDMA 

systems.  

A new family of spreading sequences called Manchester coded modified-

Legendre sequences is designed. The proposed spreading sequences are suitable 

to meet the multi-traffic demands of future networks. The performance of 

MCMLCs is analyzed using Gaussian model in terms of bit error rate and signal 

to noise ration. The analytical results show the superior performance to other 

conventionally used spreading sequences.  

Perfect difference codes for the first time were applied in indoor optical wireless 

communication system. The uplink performance in terms of bit error rate, path 

loss and number of users was analyzed. The results revealed that an effective 

power control algorithm is required to mitigate path loss effects.  

7.2 Future Directions 

Finally, some directions for future work are presented below:  

 The performance analysis of the spectral amplitude coding systems based 

OCDMA system presented in this thesis focuses its attention on the 

physical layer effects such as, multiple access interference, phase-induced 

intensity noise, ambient noise, thermal noise, surface leakage current, dark 

current, APD gain mismatch and other photo detector impairments.  In 

particular it is imperative that further study should be given to the effects 
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of interfacing physical layer with higher network layers; and on the 

development of photonic devices which will facilitate cost-effective 

OCDMA deployment. There is also a compelling need in applying error 

correction codes in order to increase effective throughput. It remains to be 

explored in which network layer error correcting codes should be 

deployed, and in particular whether multiple access coding and error 

correction coding may fruitfully be integrated. 

 In chapter 6, the results show that in indoor optical wireless system the 

user’s that are located far from the base station cannot maintain the same 

bit error rate as compared to those which are nearer the bases station. This 

problem can be solved by employing Power control algorithms in infrared 

systems. To investigate the impact of using power control techniques in 

wireless infrared system is the interesting topic awaiting further research.  

 Since UWB is an emerging technology with many unique properties, it is 

offering considerable research potential. Owing to the ultra narrow pulse 

of UWB, synchronization is the most challenging task in the UWB 

receiver. The channel matched filter would operate at extremely high 

sampling rates and a coherent RAKE would consist of a large number of 

correlator arms making the decoding complicated and unaffordable. 

Therefore, the non-coherent receivers become attractive candidates for 

low complexity and low-power IR-UWB systems. The spreading 

sequences tailor-made for incoherent communication system such as 
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perfect difference codes can be interesting topic to explore in radio 

domain.  
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