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ABSTRACT 

 

Spatial datasets contain information relating to the locations of incidents of 

phenomena for example, crime and disease.  Areas that contain a higher than 

expected incidence of the phenomena, given background population and census 

datasets, are of particular interest.  By analysing the locations of potential 

influence, it may be possible to establish where a cause and effect relationship is 

present in the observed process. 

 

Cluster detection techniques can be applied to such datasets in order to reveal 

information relating to the spatial distribution of the cases.  Research in these areas 

has mainly concentrated on either computational or statistical aspects of cluster 

detection.  Each clustering algorithm has its own strengths and weakness.  Their main 

weaknesses causing their unreliability can be estimating the number of clusters, 

testing the number of components, selecting initial seeds (centroids), running time 

and memory requirements.  Consequently, a new cluster detection methodology has 

been developed in this thesis based on knowledge drawn from both statistical and 

computing domains.  This methodology is based on a hybrid of statistical methods 

using properties of probability rather than distance to associate data with clusters. 

No previous knowledge of the dataset is required and the number of clusters is not 

predetermined.   It performs efficiently in terms of memory requirements, running time 

and cluster quality.  The algorithm for determining both the centre of clusters and 

the existence of the clusters themselves was applied and tested on simulated and 

real datasets.  The results which were obtained from identification of hotspots were 

compared with results of other available algorithms such as CLAP (Cluster Location 

Analysis Procedure), Satscan and GAM (Geographical Analysis Machine).  The 

outputs are very similar.  
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GIS presented in this thesis encompasses the SCS algorithm, statistics and neural 

networks for developing a hybrid predictive crime model, mapping, visualizing 

crime data and the corresponding population in the study region, visualizing the 

location of obtained clusters and burglary incidence concentration ‘hotspots’ which 

was specified by clustering algorithm SCS.  Naturally the quality of results is subject 

to the accuracy of the used data.  GIS is used in this thesis for developing a   

methodology for modelling data containing multiple functions. The census data 

used throughout this construction provided a useful source of geo-demographic 

information.  The obtained datasets were used for predictive crime modelling.   

 

This thesis has benefited from several existing methodologies to develop a hybrid 

modelling approach.  The methodology was applied to real data on burglary 

incidence distribution in the study region.  Relevant principles of statistics, 

Geographical Information System, Neural Networks and SCS algorithm were utilized 

for the analysis of observed data.  Regression analysis was used for building a 

predictive crime model and combined with Neural Networks with the aim of 

developing a new hierarchical neural Network approaches to generate a more 

reliable prediction.  The promising results were compared with the non-hierarchical 

neural Network back-propagation network and multiple regression analysis.  The 

average percentage accuracy achieved by the new methodology at testing stage 

increase 13% compared with the non-hierarchical BP performance.  In general the 

analysis reveals a number of predictors that increase the risk of burglary in the 

study region.  Specifically living in a household in which there is ‘one person’, ‘lone 

parent’, household where occupations are in elementary or intermediate and 

unemployed.  For the influence of Household space, the results indicate that the 

risk of burglary rate increases within the household living in shared houses.   



 

 

1 1   Introduction 

1   Introduction  
 
 
This Chapter presents the thesis outline together with the objectives of the research.  
The content of subsequent chapters is described.  
 
 
 
 

 

 1.1   Background 

The following section provides the background for the diverse topics addressed in 

the objectives. 

 

1.1.1   Cluster detection 

Cluster detection is mainly an exploratory data analysis process which aims to sort 

different objects into groups or clusters; clusters are sets of observed data with a 

significant degree of ’similarity’ within each set and a significant degree of 

dissimilarity between unrelated sets. The popular measure to assess the similarity 

between pairs of observations or clusters is Euclidean distance.  Distance measures 

are problematic if the elements to be clustered have many categorical attributes.  

The thesis presents a new cluster detection methodology, called Salar’s Clustering 

with Significance (SCS) section 3.3.  A new methodology is based on a hybrid of 

statistical method using properties of probability rather than distance to associate 

data with clusters. Details on this can be found in section 3.3.2. Clusters in this thesis 

are regions of high density separated by regions of lower density. The algorithm was 

tested using both artificial and real (crime) spatial datasets 

 

The principal functions of clustering are to name, display, summarise, predict and 

explain.  Thus, all objects in the same cluster will be given the same name ‘looking 

for characteristic properties’.  Objects are displayed, in order that subtle differences 
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may become more apparent by physically adjoining all objects in the same cluster.  

Data are summarized by referring to properties of clusters rather than to properties 

of individual objects’.  Such a summary makes the data easier to understand and to 

manipulate (Hartigan, 1975:6). 

 

Hotspot 
Hotspots are specific locations or small areas that suffer a large number of incidents 

(Rachel, 2005: 273).  There are several ways to identify hotspots such as Graduated 

colour mapping, grid mapping and density mapping.  Hotspots generally fall into one 

of the following three categories:   

Dispersed hotspot:  The incident locations within the hotspot are spread throughout 

the hotspot area but are more concentrated than incidents in other areas.  

Clustered hotspot:  The incident locations within the hotspot group together in one 

or more smaller clusters.  

Hot point: The incidents occur at one particular place.  Unlike the incidents in a 

clustered hotspot, which form one or more clusters, the incidents in a hot point are 

centered at one address or place (Rachel, 2005:273).   

 

A new cluster detection methodology was utilized for performing the procedure of 

identification hotspots.  The clusters with high levels of crime (hotspots) are those 

with a crime rate greater than or equal to crime rate of the study region.  The details 

of this procedure can be found in section 4.6.1. The results which were obtained 

from identification of hotspots were compared with results of other available 

algorithms such as CLAP, Satscan and GAM.  The outputs are very similar (Section 

4.8).  

Possible Applications 

Clustering algorithms can be applied in many fields, for instance: 

 Marketing: finding groups of customers with similar behavior given a large 

database of customer data containing their properties and past buying 

records (Egeli, 2003);  
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 Biology: classification of plants and animals given their features (Yona, 1999); 

 Libraries: book ordering; 

 Healthcare: Health status related to areas of deprivation (Richards and 

Ameen,2005); 

 City-planning: identifying groups of houses according to their house type, 

value and geographical location (Jarvis and Wilson, 2005);  

 Earth quake studies: clustering observed earth quake epicenters to identify 

dangerous Zones (Teanby and Kendall, 2004);  

 Medicine:  clustering diseases, cures for diseases, or symptoms of diseases 

can lead to very useful taxonomies (Neill, 2006); 

 Social network analysis:  clustering may be used to recognize communities 

within large groups of people (Yu, 2007); 

 Crime zoning: determining area exhibiting elevated concentration of crime 

(Hartigan, 1975 and Corcoran, 2003). 

 

Over the recent past and with the increasing power of computers, research on 

cluster detection and analysis has grown quickly in many disciplines simultaneously 

and often independently of each other. Amongst these disciplines, a few stand out 

as being especially important for the development of cluster analysis.  

 

Limitations in the study of spatial systems 

The spatial analyst's tool box includes techniques for quantifying spatial patterns, 

modelling risk surfaces, and assessing relationships between the outcomes and 

potential exposures. These techniques allow researchers to determine whether 

observed spatial patterns are statistically significant, to identify the locations of 

clusters, hotspots and cool spots, to construct maps showing excesses and deficits 

relative to a risk model, and to quantify association between two spatial variables 

(such as cancer incidence and putative environmental exposures). Although these 

techniques can be quantitatively powerful, the inferences that can be drawn from 

them have attendant limitations. These can be faced through the analyses of spatial 



 

 

4 1   Introduction 

patterns, spatial associations and/or the use of randomization (Monte Carlo)-based 

techniques. 

 

All methods have attendant limitations while those related to spatial methods 

include the amount of knowledge required, the selection and specification of spatial 

weights and the subjectivity of the methods themselves. 

 

The spatial data used in many geographic studies have inherent limitations 

attributable to granularity, spatial and temporal mismatch, under-reporting, 

misdiagnosis, the use of location as an exposure surrogate, human mobility, location 

and attribute uncertainty, static representation, as well as topological errors that 

result in erroneous spatial weights (Geoffrey, 2004). 

 

1.1.2   Geographical Information Systems 

Geographical Information Systems (GIS) are computer assisted systems for the 

storage, integration, analysis and display of geographic data. GIS has become more 

evident to researchers in an expanding array of disciplines, such as the demand for 

spatial analysis, spatial modelling and spatial statistics (Stillwell, 2004).  GIS are used 

for handling maps of different kinds, represented as several different layers, where 

each layer represents a unique phenomenon.  The data share a common location 

which allows the integration of data from all sources and types under a single 

platform.  Researchers integrate data to reveal trends and relationships that bring 

new perspectives to previously held beliefs about places and events.  For example 

possible layers that are used to analysis and present the spatial distribution of 

disease are: parasite drug resistance, average age per census tract, hospital and 

health stations, patients’ home locations, census boundaries and zip code.  GIS can 

reveal and display spatial patterns hidden in tables and databases.  Display of 

geographic data can be adjusted by changing the symbols, colors and legend 

classifications and analysis information in historical records, images and maps. 
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GIS are used for a variety of purposes and functions.  GIS provides means for 

managing business information of many kinds a according to its location.  Bringing 

together data with a shared spatial component reveal trends and patterns that are 

not apparent with tabular databases.  Businesses have used GIS to: 

 Analyse markets; 

 Modelling spending patterns; 

 Analyse  parcels of land; 

 Optimizing media campaigns; 

 Creating sales territories; 

 Selecting future business sites. 

 

Marine Biology Research use GIS to: 

 Store, map and analyse data from seafloor mapping expeditions 

 Monitor species distribution, abundance and migration patterns; 

 Map sources and paths of pollutants in marine environments; 

 Manage Coastal zones. 

 

Humanities Research use GIS to: 

 Place historical analysis in geographic context; 

 Determine and illustrate changes through time; 

 Interpret texts in relation to historical maps; 

 Analyse and present the spatial distribution of literature, art or material 

culture; 

 Map linguistic, ethnic and cultural traits. 

   

GIS has become one of the most important developments in crime analysis.  By 

combining geographic principles and geo coded location data with crime data and 

criminological theories, GIS allows the analysis of crime incidents across time and 

space. 
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The new cluster detection technique (SCS) accommodates GIS in terms of a 

prediction crime model; by mapping and displaying distribution of crime in a study 

region, counting number of points within polygons and integration of different data 

layer.  These processes are illustrated in chapter five. 

 

1.1.3    Artificial Neural Networks 

Artificial Neural Networks (ANN) “are computational modelling tools that have 

recently re-emerged and found extensive acceptance in many disciplines for 

modelling complex real-world problems” (Basheer and Hajmeer 2000).  ANNs are 

typically organised in layers, with each layer conected to the next.  Layers are made 

up of a number of nodes which contain an activation function.   Patterns are 

presented to the network via the input layer, which communicates to one or more 

‘hidden’ layers where the actual processing is done via a system of weighted 

‘connections’.   The hidden layers then link to on output layer where the result is 

output.  

 

The attractiveness of ANNs comes from “their remarkable information processing 

characteristics pertinent mainly to non linearity, high parallelism, fault and noise 

tolerance, learning and generalization capabilities” (Basheer and Hajmeer 2000). 

 

 

 

 

 

            

 

                  Figure 1.1 Real neuron and artificial neuron model (Daniel, 2005) 
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Transfer function 

The transfer function of a unit sums the weighted input (net) from all connected 

units and squashes it into a finite range of values (Swingler, 1996: 62).  The purpose 

of this transformation is to modify the output levels to a reasonable value,  0 to 1 or 

-1 to 1.  The chosen function is typically differentiable, non-linear and monotonic to 

provide a smooth mapping between continuous variables.  Several most frequently 

used transfer functions are: step function, logistic sigmoid function, hyperbolic 

tangent function and linear function.  The logistic sigmoid function and hyperbolic 

tangent (tanh) function are most commonly used.  The logistic sigmoid (s- shaped) 

whose shape is shown in Figure 1.2 is a real function F: R → (0,1), defined by the 

expression 

                            f (neti) = 
)exp(1

1

i
net

         0< f < 1                                                   (1.1) 

 

 

 

 

 

 

                      

 

                     Figure 1.2 Graph of logistic sigmoid function(s- shaped) 

 

The hyperbolic tangent function is a sigmoid curve, like the logistic function except 

that output lies in the range (-1, 1 ).  An alternative to the sigmoid is the symmetrical 

sigmoid.  Whose shape is shown in Figure 1.3 and is defined by the expression  

 

      f  (neti)  = 
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                                                    -1 < f < 1                        (1.2)  
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                  Figure 1.3 Graph of hyperbolic tangent function (symmetrical sigmoid                         

                  curve). 

 

Selecting a transfer function is determined by the nature of the data and what the 

network is trying to learn.  The experiments which presented in this thesis the 

logistic sigmoid function suggested for back propagation network and tanh for 

hierarchical network.  The evidence is purely empirical (Section 6.9).    

 

Number of hidden layers and nodes   

The size of networks depends on the number of layers and the number of hidden- 

units per layer.  In a feed-forward multilayer neural net, there are one or more 

layers of hidden neuron units between the input and output neuron layers (Kung, 

1993:31).  The number of hidden layer and neuron are not predetermined, but are 

solved in practice by trial and error. Feng (2006) suggested that a network start with 

a one –hidden layer.  If the one hidden layer dose not train well, then the number of 

neurons or the training and testing tolerances or both can be changed.   The 

accuracy of the resulting model is affected by the number of hidden neurons.  Since 

the number of hidden neurons directly affects the number of parameters in the 

model, a neural net needs a sufficient number of hidden neurons to enable it to 

properly model the underlying behavior.   Neural learning is considered successful if 

the system can perform well on test data on which the system has not been trained 

(Mehrotra, 1997: 85).  Some researchers have proposed for choosing the number of 
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hidden node, for example, Lawrence (1998) suggested that a best estimation for the 

number of hidden neurons is half of the sum of inputs and outputs.  Related to 

training data size Lawrence’s proposed as follows:  

 

                                             oi
N

hoi
N


210

                                                    (1.3) 

 

Where N is the number of training data, i is the number of input neurons, o is the 

number of output neurons and h is the number of hidden neurons.  

 

Type of learning 

“Learning” is the process of calculating the weights of neurons in a network (Fausett, 

1994:15).  There are two main types of learning in a network: “supervised’’ and 

“unsupervised’’.  In supervised learning both the inputs and the outputs are 

provided.  The neural network system receives the output, computes the error, 

which are the difference between computed and actual output. The weights are 

adjusts according to the error.  Supervised learning includes: back-propagation (BP), 

radial basic function (RBF), probabilistic neural network (PNN), generalized 

regression neural network (GRNN).  On the other hand, the actual outputs are not 

known in unsupervised learning.  Inputs are available to the network, and the 

weights cannot be adjusted based on the actual output. This type of learning is 

commonly used for pattern recognition problems and clustering.  Kohonen’s self- 

organizing network is based on unsupervised learning.   

 

The first step in the development of a neural network model is to select an 

appropriate neural network paradigm by matching the application requirements 

with the paradigm capabilities.  The application in this thesis required a powerful 

feature of both supervised and unsupervised learning.  Supervised learning was used 

since the network would be trained that included the result.  For this application, a 

back-propagation neural network was used to predictive crime rate in the study 
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region (Section 6. 9).  Unsupervised SOM learning is used for developing hierarchal 

neural network for reducing the dimension of the input data set. 

 

Learning Rules 

Procedures for modifying the weights on the connection link in a neural net.  The 

learning rule is the mathematical equation that determines the increment or 

decrement by which weights of a processing element change during the learning 

phase.  There are four more commonly used: Delta rule, Delta- Bar- Delta, Extended 

Delta- Bar- Delta rules and Kohonen’s rule (Fausett, 1994: 429).   

 

Delta rule 

The error in the output layer is computed as the difference between the computed 

and the actual output of a neuron.  This error is transformed by the derivative of the 

transfer function, and is back- propagated to prior layers.  This process of back- 

propagating the error continues until the first layer is reached.  

 

Delta – Bar – Delta (DBD) 

This learning rule was developed in order to improve the convergence speed of 

Delta rule.  This is each connection in the network has its own learning rate and 

change those rates continuously as the learning progresses.  

 

Extended- Delta- Bar- Delta (EDBD) 

Extended Delta- Bar- Delta, developed by Minal and Williams, is an extension of DBD 

which introduces a momentum term for each connection.  This varies with time 

(Fausett, 1994: 427).  

 

Neural network experiments in this thesis used the learning rule extended- Delta- 

Bar.  Experimentally work best (Section 6.9). 
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Kohonen’s rule  

Since Kohonen’s network does not depend on known outputs, the weights are 

adjusted using the input into the neuron  i: 

 

                                                 ΔWji =  η (inputi – wji)                                                        (1.4) 

 

Where input i  is the input that neuron  i receives from the external environment.  η 

is learning coefficient and Δwji is the adjustment of the connection weight from 

neuron j to neuron i . 

 

Possible Applications 

Artificial Neural Networks (ANNs) “provide a range of powerful techniques for 

solving problems in pattern recognition, data analysis and control.  They have 

several notable features including high processing speeds and an ability to learn the 

solution to a problem from a set of examples”(Bishop, 1994:1803).  The following 

examples represent only a sampling of areas in which ANN have been successful.  

ANNs were found to be more efficient in solving complex and non linear 

optimization problems than statistical techniques (Hopgood, 1993), having been 

successfully applied in clustering and visualization of high dimensional data (Vesanto 

2000, Hollman 1999 and Zhang 1993).   

 

ANNs are being used by many technical analysts to make predictions about stock 

prices based upon a large number of factors such as past performance of other 

stocks and various economic indicators (Egli, 2003). An ANN has been shown to 

learn to predict future values of the time series from its past values, which is highly 

relevant in crime prediction (Corcoran & Wilson 2003, Olligschaleger, 1997).  ANN 

research in medicine includes modelling parts of the human body and recognising 

diseases from various scans (Thomas, 2002 and Joseph, 2001). 
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The utility of ANNs, such as Back-Propagation (BP) and Self-Organizing Map (SOM) 

are used in this thesis for developing hierarchical neural networks, with the aim of 

developing predictive crime models. 

 

1.1.4    Regression Analysis 

Regression analysis is “a statistical methodology used for explaining or modelling the 

relationship between a dependent variable and one or more predictors (explanatory 

variables)” (David, 1998).  It can be of different types, e.g. linear regression, non 

linear, multiple linear regression and multivariate multiple regression, when there is 

more than one dependent variable.  Regression analysis has several possible 

objectives including; prediction of future observations, assessment the relationship 

between dependent and explanatory variable and general description of the 

structure of data. 

 

A multiple linear regression model (MLR) implemented in the thesis to predict crime 

model in the study area.  A general mathematical form of MLR shown in the 

equation below; 

 

Y= 




n

i

ii
X

1

0
 +    ;                  ~  N [0,  2

 ]                                                     (1.5) 

The regression parameters 
i

 are estimated using the least squares method which 

uses the criterion that the solution must give the smallest possible sum of squared 

deviations of the observed 
i

Y from the estimates of their true means provided by 

the solution. The error term   is assumed to be normally distributed with a mean of 

zero and a variance of 2
 .  In particular, the estimated regression equation is  
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and the observed residual   is 
^

YY  . 
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This methodology is widely used in business, the social and behavioural sciences, the 

biological science and many other disciplines.  MLR is a common and useful tool for 

model building and has wide applicability in prediction within a variety of areas.  For 

example Bolzan et al. (2008) used MLR method to predict hatchability in an artificial 

incubation process.  The cost models developed by Margaret et al. (2002) used MLR 

in order to identify those variables that demonstrated a strong linear relationship 

with the cost.  It has also been used by Ameen et al.(2003) to quantify a claim for 

increased costs in construction engineering.  Most published medical research uses 

regression analysis in predicting the outcome of patients with a variety of diseases.  

This methodology developed rapidly with the increasing power of computers.  There 

are many computer software packages that can be used to perform regression 

analysis.  For instance SAS, SPSS, Answer Tree and Minitab. 

 

The statistical technique, multiple linear regression (MLR) analysis is used in this 

thesis first for building a predictive crime model, identify potentially significant 

predictive variables among characteristics of burgled households and the level of 

their contribution in the performance of the model and predicting of future crime 

rate in the study region. The burglary rates in this analysis are expressed as the 

burglary incidence per number of households in each polygon (census wards). The 

models are applied across a number of geographical high burglary incidence 

concentration ‘hotspots’, a number of geographical space (parcel) and across the 

clusters.  Which were identified by a new methodology and GIS was used to visualize 

their locations in the study region. Clustering leads to increase the predictive 

accuracy of a crime model by identify the problem associated to the characteristic of 

the people within their location (section 6.8.2). Secondly, MLR combined with 

Neural Networks with the aim of developing a new hierarchical neural Network 

approaches to generate a more reliable prediction.   
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1.1.5   Ecology of crime 

Crimes are a human phenomena and the assumption is that their occurrence in a 

spatial and spatio-temporal framework. Crime is not constant: it varies from person 

to person, and it varies for each individual person a cross time and space. It is varies 

as the awareness of opportunities to commit a crime vary. Targets are not constant.  

The distributions of targets vary in time and space (Ronald, 1993: 266).  The early 

ecology of crime studies started with Clifford Shaw’s seminal study of delinquency in 

Chicago (1929).  This dealt with concentrations of crime in central business districts.  

Concentration of delinquents’ residences varied inversely in proportion to distance 

from the city center.  Ecological theories attempt to explain individual actions in 

general features of the social structure in which an individual is embedded.  The 

social ecology is focused to “place- based theories” of crime and routine activities 

(Gorr and Anselin, 2000: 218).  Place-based theories where the objective is to derive 

an understanding of mechanisms upon individual actions.  Crime is a social 

construct, and therefore some understanding of criminological theory, for example, 

Routine activities, Pattern theory, rational choice perspective theory and Awareness 

theory is important in their interpretation and to understand patterns of crime. 

 

Routine activities theory 

Routine Activity Theory (RAT) is one of the main theories of "environmental 

criminology". It was developed by criminologists Cohen and Felson (1979).  The 

theory states that criminal events results from motivated offenders, suitable targets, 

an absence of guardian capable of preventing the criminal act.  A converging of 

offenders and victims occurs non-randomly in time and space.  The three elements 

must be present at the same time and in the same space when a crime occurs.  RAT 

introduces an important tool in crime analysis, the crime triangle. The crime triangle 

diagram is illustrated in Figure 1.4. Cohen and Olligschlaeger (1993) applied routine 

activity theory to illicit drug markets, recognizing the tacit coordination required of 

dealers and buyers for drug transactions (John, 1995: 6). 
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                   Figure 1.4 Diagrammatic representation of routine activity theory 
                  ( http://www.crimereduction.homeoffice.gov.uk/skills/skills08.htm)  
 
 

Pattern theory  

This theory integrates crime within a geographic context that demonstrates how the 

environments people live in and pass through influence criminality.  It describes the 

distribution of offenders, targets, handlers, guardians, and managers over time and 

place.  This theory has three main concepts: nodes, paths, and edges.  Nodes refer to 

where people travel to and from such as home, school and entertainment area and 

the paths among them.  Edges, refers to the boundaries of areas where people live, 

work or shop.  The theory specifically focuses on places and the lack of social control 

or other measures of guardianship that are informal needed to control crime 

(Ronald, 1993: 284).  

 

Rational choice theory  

Developed by Ronald (1979).  This theory focuses of primarily on properties of the 

offender, the rational choice perspective explains the conditions that are needed for 

specific crimes to occur, and thus emphasizes the role of crime opportunities in 

crime causation.  The theory helped criminologists to focus on the particulars of 

criminal acts (Alex, 2002: 87). 

http://www.crimereduction.homeoffice.gov.uk/skills/skills08.htm
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Awareness Theory 

Brantingham and Brantingham (1991) suggested that crime has four dimensions: 

victim, offender, geo- temporal and legal.  Concentrating on the spatial element of 

crime is significant to understand the behavior of offenders.  A crime’s space can be 

chosen either on purpose or accidentally by either the victim or the offender 

according to their life styles.  Several things have an effect on the crime rate of an 

area.  For example, what type of people live in particular space and what type of 

security is available (Ronald, 1993: 269). 

 

This thesis presents building of hybrid predictive models for crimes based on real 

data. The spatial distributions of residential burglaries are chosen as the foci of this 

analysis.  The model construct with 28 potential explanatory variables among 

characteristics of burgled households, for the purpose of estimating the relationship 

between burglary rate and characteristics of burgled households.   These include 

Resident Population, Occupation, Qualifications, Socio-Economic, Household 

composition and Household spaces. 

 

1.2   Research Objectives 

The aim of developing a hybrid modelling approach utilizing some relevant principles 

of Statistics, Geographical Information Systems (GIS), Neural Networks and in 

general, Information Technology  for the analysis of observed data. The 

methodology is applied to real data on crime. The objectives of this research were 

to: 

 Develop a new algorithm based on statistical theory for identifying clusters 

within spatial data; 

 Generate artificial datasets, based on established practice, for use as a proof 

of concept for a general purpose algorithm for detecting clusters within 

spatial datasets, which have been used to evaluate the effectiveness of the 

developed cluster determination algorithm; 
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 Acquire real world spatial datasets for: 

o  testing the developed algorithm and identification of ’’hotspots’’ in 

the study region; 

o  generating predictive models. 

 

 Utilize GIS to accommodate the new cluster detection technique (SCS) in 

terms of a predictive crime model for: 

o mapping;  

o display distribution of crime and the corresponding population in a 

study region; 

o visualize the location of obtained clusters which was specified by 

clustering algorithm SCS; 

o display distribution of burglary incidence concentration ’hotspot’ 

which was identified by clustering algorithm SCS;  

o identify the total number of cases within polygons (census wards); 

o integrating information from a variety of sources such as crime data, 

population data and census data associated with the observed data. 

 

 Building of hybrid predictive models for crimes based on real data (crime).  

o Develop a predictive crime model based on statistical methodology; 

o Develop a new a hierarchical neural network methodology based on 

statistical methodology and two proposed ANN learning algorithms, 

unsupervised Self-Organizing Map and supervised back-propagation. 

 

1.3   Thesis outline 

The remainder of the thesis is divided into five chapters.  Chapter two discusses the 

relevant issues to the topics under investigation.  Chapter three describes the 

development of a new cluster detection methodology.  Chapter four presents the 

new algorithm applied to real crime dataset and its rotation.  Chapter five introduces 
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construction and interpretation of maps using crime data in the area under study 

and data modelling. Chapter six describes the application of the two methodologies: 

regression analysis and artificial neural networks (ANNs) for the purpose of 

predictive crime modelling.  Chapter seven presents conclusions and some potential 

for future research. 

 

1.4   Software 

The Matlab language is utilized for implementing the clustering Algorithm with 

significance. Matlab is a high level programming language for technical computing. 

 

The utility of ArcGIS Desktop 9.3 software is employed to analysis and display of 

geographic data and integrate information from a variety of sources associated with 

the observed data.  

 

Finally, Neuralware, 2001 software and statistics package Minitab version 15 are 

utilized to develop a predictive crime model. 
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2   LITERATURE REVIEW 

 
 
This chapter discusses the relevant literature pertaining to the field of clustering, 
statistical theory in clustering and crime prediction. Blends science from three 
distinct research domains is provided. 
 

 

2.1   Introduction 

This section provides a review of literature relevant when producing a general 

purpose, hybrid modelling methodology. In addition, the reader is provided with an 

overview of literature relevant to the case study that will be used to test the 

proposed methodology. As such, the following discusses the relevant literature 

pertaining to the field of clustering, statistical theory in clustering and crime 

prediction. The significance of this and the following related wide-ranging study, 

which blends science from three distinct research domains, should not be lost on the 

reader.  

 

2.1.1   Cluster detection 

Over the recent past and with the increasing power of computers, research on 

cluster detection and analysis has grown quickly in many disciplines simultaneously 

and often independently of each other.  Amongst these disciplines, a few stand out 

as being especially important for the development of cluster analysis.  

 

Several studies utilize information from K-means to derive a new representation. K-

means is one of the simplest unsupervised learning algorithms that solve the well 

known clustering problem.  Other studies employ specific properties of statistical 

distribution. Determining clusters depend more on the researcher’s goals than on a 

theory. Selected studies are outlined below: 
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K-Means 

K-Means (Mac Queen, 1967) is one of the simplest unsupervised learning 

algorithms.  The procedure follows a simple and easy way to classify a given data set 

through a certain number of clusters.  The algorithm is based on specifying the 

desired number of clusters, k.  Randomly assign k points to be initial cluster centers.  

The clustering is done by minimizing the sum of squares of distances between data 

and the corresponding cluster centroids.  The center of each cluster is then re-

estimated. This process is repeated until convergence is achieved, such that the 

convergence criterion has been met.  Its disadvantages are that it works on the 

assumption that the initial centers are provided.  Thus the results depend on the 

suggested value k; applicable only when the mean is defined (numerical data); it 

does not do well with overlapping clusters (Daniel, 2005: 90). There are a lot of 

applications of the K-means clustering, such as in classification analysis, Artificial 

intelligent, image processing and unsupervised learning of neural network.  

Clustering algorithms have been applied in molecular biology for gene expression 

data analysis.  Lus et al.(2004) was used K-means to identify genes function, by 

partitioned genes into groups based on the similarity between their expression 

profiles. They found that the enrichment of genes of similar function increased 

within the cluster.  Clustering algorithm has been widely used in computer vision 

such as image segmentation and database organization.  The purpose of clustering is 

to group images whose feature vectors are similar by similarity judgment standard; 

meanwhile to separate the dissimilar images.  Liu and Yu (2009) used K-means 

clustering algorithm to image retrieval system.  Image retrieval algorithms, retrieval 

is according to feature similarities with respect to the query, ignoring the similarities 

among images in database.  They addressed this problem by introducing a graph-

theoretic approach for image retrieval post-processing step by finding image 

similarity clustering to reduce the images retrieving space.  The results of 

experiments on the testing images showed that the efficiency and effectiveness of K-

means algorithm in analysing image clustering. 
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GAM 

The Geographical Analysis Machine (GAM) is an early attempt to automate cluster 

detection. This was created and subsequently refined by Openshaw (1987, 1988 & 

1991).  GAM identifies clusters based on the spatial distribution of incidents 

combined with the background population.  A point on a map randomly defines and 

a circle with a random radius draw a round that point. The numbers of point are 

count with each random circle and compare the result with an expected value based 

on an assumption a random generating process. Then the circle draws on the map if 

it contains a significantly higher number of observations than expected. The 

procedure is repeated by select a new point on the map.  GAM addressed the 

problem of purely statistical analyses used previously which did not handle the 

special characteristics of spatial data.  One of the greatest assets of GAM is the 

exhaustive nature of its search, which required no previous knowledge of the data 

or the study region.  It returns information of significance for mapping.  The major 

disadvantage of GAM is that on any large dataset, the time required for the 

exhaustive search makes the use of GAM nearly impossible.  This is because the time 

complexity of GAM is:  O (l* r*n), where l is the number of locations to be tested, 

which is proportional to the real extent of the dataset and the distance between 

neighboring points on the grid, r is the number of radii to be tested at each location, 

and n is the number of points in the dataset.  GAM spends much of its time 

examining regions in which there may be no relevant cases or not even any 

background population at all.  As such, GAM was criticised for this incredibly 

computer intensive process, which was particularly significant if the study area was 

large (Fotheringham and Zhan, 1996). GAM is widely applicable to many different 

types of data; for example, disease data, crime data and traffic accidents. The GAM 

method was developed to analyse child leukaemia data for Northern England. 

 

Satscan 

Satscan (Kulldorff, 2005) used circle to scan whole area to find hotspot.  A moving 

circle is centered on each point and then the radius of the circle is expanded based 
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on a user assumption.  It only returns circles such that no circle’s centriod was 

contained in another circle, thus limiting the amount of overlap between adjacent 

circles.  The circle with the maximum likelihood is the most likely cluster. The 

process of moving circle in Satscan lets the running time grow quadratically because 

the time complexity of Satscan is: O (n*l*m), where m is the number of Monte carol 

tests and n=l, the default circle locations are the data points.  The choice of region 

size will impact upon the success of the technique.  If the regions chosen are large 

then the precision of case and population positioning becomes generalised and may 

lead to reduced accuracy of results.  In contrast to GAM, Satscan is less intensive, 

testing fewer points. Satscan has been applied in a very wide range of application 

areas, such as medical, criminology and demography.  Examine geographic variation 

in prostate cancer grade and stage was the subject of a study by Klasssen et al. 

(2005). The data (20928 Maryland men) was derived from cancer registry during 

1992- 1997.  Satscan was used to test for significant local clusters. Four statistically 

significant clusters identified of high and low rates of stage at diagnosis and higher 

histological grade of tumour.  Chiehwen et al. (2004) were employed Satscan to 

examine the geographic variations in breast cancer mortality in Texas females 

according to three predominant racial groups (non- Hispanic white, Black, and 

Hispanic females) over a twelve- year period.  Spatiotemporal variations in breast 

cancer mortality affected racial groups at varying levels.  There was neither evidence 

of hotspot clusters nor persistent spatiotemporal trends of excess mortality into the 

present decade.  Non- Hispanic whites in the Gulf Coast and Hispanics in West Texas 

carried the highest burden of mortality, as evidenced by spatial concentration and 

temporal persistence.     

 

CLAP 

The cluster Location Analysis Procedure (CLAP) (Jarvis, 2006) technique for cluster 

detection is capable of analysing a point dataset and determining the significance of 

the quantity of cases found, when compared with the quantity expected. CLAP 

analyses each case in turn by counting the number of other incidents within a 
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certain radius, which itself is progressively increased while a high ratio of incidence 

is returned. The algorithm gives a reliable output, but as length, running times most 

especially on large datasets and large memory is needed.  This is also the case for 

GAM and Satscan algorithm.   Jarvis (2006) was employed this technique to analyse 

Leukaemia dataset and identified clusters of high crime incidence in Cardiff by 

Corcon (2003). 

 

SOM 

Artificial Neural Networks (ANNs) are extensively used for both classification and 

clustering.  Jain and Mao (1996) stated that competitive neural networks are often 

used to cluster input data.  In competitive learning, similar patterns are grouped by 

the network and represented by a single unit (neuron).  This grouping is performed 

automatically based on data correlations.  Well-know examples of ANN used for 

clustering include learning vector quantization (LVQ) and Self-Organizing Map 

(SOM).  The goal of SOM is to convert a complex high-dimensional input signal into a 

simpler low–dimensional discrete map.  Thus, SOM are appropriate for cluster 

analysis where underlying hidden patterns among records and fields are sought 

(Vesanto & Alhoniemi, 2000).  SOMs structure the output nodes into clusters of 

nodes, where nodes in closer proximity are generally more similar to each other 

than to other nodes that are farther apart. SOM are based on competitive learning, 

where the output nodes compete among themselves to be the winning node, the 

only node to be activated by a particular input observation. However, the number of 

clusters that can be produced by this methodology is limited within a fixed number 

of output nodes. SOM for clustering has been established for a number of 

researchers such as Corcoran (2003) used SOM for clustering Temporal, spatial crime 

datasets.   Andrew (2004) used SOM for clustering components of the din cyst class. 
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2.1.2   Statistical theory in clustering 

Many methods have been proposed for estimating the number of clusters, testing 

the number of components and also alternative methods for selecting initial seeds 

(centroids).  Selected studies are outlined below: 

One of the most widely used clustering techniques is the K-means algorithm.  

Solutions obtained from this technique are dependent on the initialization of cluster 

centers, which in turn highly influence final results.  There are many algorithms 

which have been proposed to compute initial cluster centers for K-means clustering 

(Baradley, 1998; Likas, 2003; Deelers, 2007). These study the whole feature space to 

select k initial samples.  Deelers et al. (2007) proposed the algorithm based on the 

data partitioning along the data axis, either the x-axis or y-axis.  Centroid distance of 

cluster C computed by: 

      




n

i

i
dsum

n
stcentroidDi

1

1
                                                                          (2.1) 

Where 
i

dsum  is the summation of distances between the adjacent data.  The 

partition boundary is the plane perpendicular to the principal axis and passes 

through a point m whose dsumi approximately equals to centroidDist.  Cluster C 

divided into two clusters by this perpendicular plane.   Clusters are partitioned one 

at a time until the number of clusters equals the predefined number of clusters, K.  

The centers of the K clusters become the initial cluster centers for K-means.  

However, new algorithm, SCS has employed specific properties of statistical 

distributions to estimate the position of the centers.  This approach is much more 

logical and efficient.  The experimental results show that the new algorithm 

performs better than random initialization and can reduce running time of the 

algorithm.  

 

Available methods for estimation of the number of mixture components (k) include 

bootstrapping 1  the likelihood ratio test statistic and optimizing a variety of validity  

 

1
Bootstrapping is a statistical re-sampling method employed to estimate a population parameter. 
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function.  In the case of finite mixtures of normal distributions Miloslavsky and Mark 

(2003) estimate the number of components K, by minimizing the distance 

),ˆ( ffD
k

between true density f and its projection, with respect to this distance, on 

the space spanned by the mixture model with K components, 
k

f̂ over k=1, 2, …, K, 

),ˆ( ffD
k

 =0 for k k*, k* components of a true model. The distances considered are 

Kullback-Leibler and use cross validation to estimate these distances.  This can be 

cumbersome and complicated in applications, while the new approach SCS is much 

simpler and it is easier to predict the cluster sizes.  Cluster sizes are determined 

according to the requirements of confidence intervals. 

 

Tibshirani et al. (2001) proposed a method for estimating the number of clusters in a 

dataset called ‘gap statistic’.  The idea of this method  supposes that the data {xij} 

clustered into k clusters C1,C2,…,Ck  with i=1,2,…,n, j=1,2,…,p, consists of p features 

measured on n independent  observations, with Cr denoting the indices of 

observations in cluster r, and nr=|Cr|.  Let 
ii

d  denote the distance between 

observations i and i  , 




rcii

iir
dD

,

.  The estimated value k has been the optimal 

number of clusters for which log (wk) falls the farthest below the reference curve of  

the data distribution, where    

Wk=


k

r r
n1 2

1
Dr                                                                                                                                                          (2.2) 

 

Hence, Tibshirani et al. (2001) defined 

 

Gapn (k) =En
* {log (wk)}-log (wk)                                                                          (2.3)      

   

Where En
* denotes expectation under a sample of size n from the reference 

distribution, the estimate k^ will be the value maximizing Gapn (k) after taking the 

sampling distribution into account. This approach used K-means, as the first 

clustering algorithm.  Therefore, they increased the complexity of their algorithm.  In  
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the new algorithm (SCS) the multi-modality of the projected data is used as an 

indicator for the number of distributions in the mixture.  Thus, no cluster numbers 

are predetermined. 

 

Their main weaknesses (Deelers 2007; Miloslavsky and Mark 2003; Tibshirani 2001) 

causing their unreliability can be summarised in the following: 

 Estimating the number of clusters; 

 Testing the number of components; and 

 Selecting initial seeds (centroids). 

 

Consequently, a new cluster detection methodology has been developed taking 

advantage of new advances in Information Technology, Geographic Information 

Systems, computer technology and the principles of basic descriptive statistics.  The 

approach is a natural combination between advancements in data mining and 

classical statistics.  It is effective in terms of cluster detection, using a hybrid of 

statistical methods and properties of probability rather than distance to associate 

data with clusters. The approach relies on a mixture of a finite number of marginal 

probability distributions projected on principle axes from which bivariate 

(multivariate) probability distributions are reconstructed to best represent clustered 

data.  The multi-modality of the projected data is used as an indicator for the 

number of distributions in the mixture.  The parameters of the mixture model are 

estimated by the method of maximum likelihood.  Radii of clusters are computed 

according to the requirements of confidence intervals. 

 

2.1.3   Crime prediction 

The purpose of police crime prediction is to directly support crime prevention and 

law enforcement. It is an exciting new area, which brings together the disciplines of 

statistics, machine learning, artificial intelligence, criminology, and psychology and 

database technology. 
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The prediction of crime has seen an increase of research attention over the last 

decades and is more widely practiced by police.  This is due to fact that Geographical 

Information systems (GIS) had become an important tool for police agencies. The 

mapping of crimes and the identification of hot spots has become regular practice. 

The ‘criminality profile’ of places was established based on theories like routine 

activities, the ecology of crime and hot spots.  

 

There have been numerous studies using varity of related methodology such as 

statistic, neural networks for the spatial and temporal analysis of crime; the 

following outlines some of the recent ones.  Law enforcement agencies have a 

continuing need to predict time and locations of crimes. Liu and Brown (2003) 

showed that predicted crime locations for next week based on data from the 

previous week. They suggest that the likelihood of a criminal incident at a specified 

location is based on past incidents of the same type and independent spatial 

attributes or features.  They compare two prediction models for hot spots that 

relate the features in an area to the predicted occurrence of crime through the 

preference structure of criminals, and conclude that the model performs 

significantly better with the extra features. 

 

Gorr and Olligschlaeger (2003) study monthly crime data over the period 1991- 

1998.  Using holdout samples the subset of actual time and rolling horizon 

experimental design, to compare the forecasting accuracy of model fit to past data.  

They contrast the forecast accuracy of univariate time series models with naïve 

methods. This method used time series data points themselves as forecasts. They 

find the classical seasonal patterns of increased property crime levels late in the year 

and increased aggression crimes in summer due to increased social interactions, cold 

weather might increase burglary, and robbery crimes due to seasonal economic 

pressures or unemployment. Felson and Poulsen (2003) studies show that crime 

varies greatly by hour of day more than by any other variable and criminal activity 
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between 5: AM and 4:49 AM the next morning.  This suggests that a prediction for 

specific time periods might be valuable for police planning.  

 

Several studies show risk factors of crime. Roncek and Maier (1991) found 

relationship between levels of crime and the number of taverns and lounges 

located.  Drug hotspots tended to be in areas with poverty and low family cohesion 

Gorr and Olligschlaeger (1993). 

 

Bowers et al. (2004) investigated the relationship between area type, housing type, 

level of victimization and repeat victimization.  The results have demonstrated that 

the influences of area and housing type being burgled interact.  For instance a 

detached house located in deprived area is at over seven times the risk of a 

detached house in affluent areas.  Analysis of the relationships between the spatial 

patterns of residential burglaries and the socio economic characteristics of 

neighborhoods in London has been examined by Malczewski, et al. (2005) using 

geographically weighted regression.  The result shows that there were significant 

spatial variations in the relationships between the relative risks of residential 

burglaries and the average value of dwelling and the percentage of multifamily 

housing.  Edmark (2005) studied the effects of unemployment on property crime 

rates.  According to the theory of economics of crime, increased unemployment 

rates lead to higher property crime rates.  A high crime rate leads to unemployment 

because new firms do not want to settle in a criminal area and existing businesses 

leave.  It might also be the case that people who have once been in prison have 

difficulties finding a job and for this reason contribute to a high unemployment rate. 

 

ANN’s are presented as one technique that offers minimal user interaction in 

addition to dynamic adaptability, and thus a potential operational forecasting 

solution.  One of the earliest was that of Olligschlaeger (1997), who employed back-

propagation to predict areas where future drug markets will emerge.  In more recent 

work, Olligschlaege and Gorr (2001) found that ANNs outperform multiple 
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regression leading indicator models when the set of leading indicators is rich and 

numerous. 

 

Corcoran, et al. (2003) used hotspots (spatial clusters of crime) for forecasting.  The 

Gamma Test (GT) was applied to each cluster to assess suitability for predictive 

modelling.  ANN and comparative linear regression forecasting models were 

constructed using the GT, and compared to a “random walk” model.  For crime 

analysis software, Oatley and Ewart (2003) used a Kohonen neural network for 

matching crimes against the offender list and the Bayesian belief network for 

prediction of re-victimisation.  

 

Craglia, et al. (2001) reported the strengths of GIS based spatial analysis with census 

(socioeconomic) data for modelling high-intensity urban crime area.  Three police 

force areas in England and Wales were used to develop the model.  These areas that 

raise special policing problems, such as sometimes found violent forms of crime 

within them, resident population defect to co-operate with the police.  The model 

suggests that high-intensity crime areas are characterized by populations that are 

deprived and live at high density and have higher levels of population turnover.  This 

is done through a statistical analysis (regression) which uses data from the census.  

The spatial datasets within the GIS was used to integrate data on the boundaries of 

the high-intensity area with socio-economic data. Ratcliffe (2001) derived his study 

over 14,000 burglaries over two years for separately examining the spatial and 

temporal patterns of residential and non residential burglary.  The study showed 

that the highest probability for residential burglaries was between 8am and about 

6pm, the period that most people were at work. The residential burglary levels were 

lower over the weekend and overnight.  For the spatial analysis of residential 

burglary the researchers examined the Canberra region.  ‘Hotspots’ include the 

more established suburbs of the inner-north of the city and the inner south-east.  

The housing characteristics of the residential burglary hotspots vary considerably 

across the city. 
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This thesis presented the developing a hybrid predictive models for crime based on 

real data (burglary incidence).  Both regression methodology and neural networks 

have been used for predictive crime modelling. Historical data with background 

population and census datasets are used for predictive crime modelling.  The 

obtained models based on the observed data in the study region and which 

presented in chapter six are reasonable. 

 

2.2    Summary  

This chapter describes the relevant literature pertaining to the field of clustering, 

statistical theory in clustering and crime prediction.  Cluster detection has led to the 

development of several techniques; the results indicate that different techniques 

often have different aims. In view of many studies that are described, some 

researchers prefer the K-means idea and others employ specific properties of 

statistical distribution; determining clusters depend more on the researcher’s goals 

than on a theory. Their main weaknesses causing their unreliability can be 

estimating the number of clusters, testing the number of components, selecting 

initial seeds (centroids), running time and memory requirements.  Consequently, a 

new cluster detection methodology has been developed in this thesis based on 

knowledge drawn from both statistical and computing domains.  

  

Law enforcement agencies have a continuing need to predict time and locations of 

crimes. Predictive crime models in this thesis are created using several existing 

methodology, such as regression analysis, Geographical Information System, Neural 

Networks and a new clustering algorithm. Spatial distributions of residential 

burglaries are chosen as the foci of this analysis. 

  

The next chapter introduces a new cluster detection methodology by taking 

advantage of the new advances in Information Technology, Geographic Information 

Systems, computer technology and the principles of basic descriptive statistics.   
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3    Spatial Clustering with Significance 

 
This chapter describes the development of a new cluster detection methodology 
called Salar’s Clustering with Significance (SCS).  It relies on knowledge drawn from 
both a hybrid of statistical methods and computing domains. The algorithm for 
determining both cluster centers and the existence of the clusters themselves is 
given.  The methodology has been tested on simulated datasets with promising 
results.  In addition the chapter introduces some of popular distance measures to 
compute distances (similarities) between two clusters. 

 

3.1   Introduction 

Cluster detection is mainly an exploratory process which aims to sort different 

objects into groups or clusters. Clusters in this thesis are regions of high density 

separated by region of lower density.  

 

Over the recent past and with the increasing power of computers, research on 

cluster detection and analysis has grown quickly in many disciplines, simultaneously 

and often independently of each other. Amongst these disciplines, a few stand out 

as being especially important for the development of cluster analysis.  

 

Cluster detection techniques can be applied to datasets in order to reveal 

information relating to the spatial distribution of cases.  As was pointed out in 

Section 2.1, there are several studies for clustering that have concentrated on 

computational or statistical aspects of cluster detection.  Each clustering algorithm 

has its own strengths and weaknesses.  Their weaknesses related to the following 

cases: selecting initial seeds; estimating the number of clusters; testing the number 

of components; running time; and memory requirements.  For example, Deelers 

(2007), Miloslavsky and Mark (2003), and  Tibshirani (2001).  Consequently, during 

the research documented in this thesis, a new cluster detection methodology has 

been developed that uses a hybrid of statistical methods and properties of 

probability distributions rather than distance to associate data with clusters. 
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3.2   Background 

The following section provides some definitions and background relevant to 

development of a new cluster detection methodology SCS. For determining the 

center of clusters, the existence of the clusters themselves and computing the 

distance between clusters.   

3.2.1   Normal Distribution 

Normal distribution (Gaussian) is one of the most commonly used distributions in 

statistics. It can be used to model many real-world phenomenon.  The normal 

distribution is completely determined by its parameters, which are its expected 

value µ and its variance   2.  It has bell-shaped curve; symmetrical and unimodal; 

the mean, the median and mode all coincide and correspond to the highest point on 

the curve.  The tails of the curve extend to infinity into the right and left.  That it is 

possible theoretically to obtain values at any distance from the mean.  The standard 

deviation determines how flat and wide the curve is (see Figure 3.1).  In the normal 

distribution for instance, 95 percent of the data values will be within two standard 

deviation of the mean (see Figure 3.2).  

 

Figure 3.1: Illustrates the property of the normal distribution; the mean of the  

distribution determines the location of the center of the graph and the standard  

deviation determines the spread of the graph. 
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Figure 3.2: Areas under the curve for any Normal distribution 

 

3.2.2   Generating Random Variables 

Many of the methods in computational statistics require the ability to generate 

random variables from known probability distributions. The main MATLAB program 

has a function called randn that will generate numbers from the standard normal 

distribution, and can obtain a normal random variable X with mean   and variance 

2
  by means of a transformation.  Letting Z represent a standard normal random 

variable (possibly generated from randn), the desired X can be found from the 

relationship (3.1) (Martinez, 2002). 

  X= Z *  +                                                                                                                         (3.1) 

   

Table 3.1 A Sample of the artificial data                                                                     

         

    

 

 

 

N(0,1) N(2,1) N(2,4) N(0,5) N(5,7) 

0.69 2.69 3.38 
-2.1628 8.5744 

0.8156 2.8156 3.6312 
-8.3279 6.4734 

0.7119 2.7119 3.4238 
0.6267 -4.2007 

1.2902 3.2902 4.5805 
1.4384 5.4178 

0.6686 2.6686 3.3372 
5.9546 -1.745 

1.1908 3.1908 4.3817 
6.3489 -2.4829 
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3.2.3  Confidence interval 

A confidence interval is a range of values within which the true value of the 

parameter lies with some specified probability.  Confidence intervals are determined 

based on the stated hypotheses.  In the case of equality of the mean to a specific 

number, a two-sided confidence interval will be optimal.  For example, a 95% 

confidence interval containing the true mean when the variance of the random 

variable is assumed unknown would be: 

                    ).,.(
1,2/1,2/

n

s
tx

n

s
tx

nn 



                                                                 (3.2)          

 

Where   represents the stated level of significance, s is the sample standard 

deviation, n is the sample size, x  is the sample mean and t stands for a point on the 

t-distribution scale.  This is the same to say that wrong decisions would be accepted 

as far as their probability of occurrence does not exceed  (=0.05 or 5% level of 

significance).  

 

3.2.4    Histograms 

Histograms are plots of sampling frequency distributions attempting to graphically 

represent estimates of the frequency distributions of the populations that sampled 

datasets (sample) have been drawn from.  Histograms are used to: 

1. Summarize data to understand general characteristics of distributions such 

as shape, spread or location; 

2. Suggest possible probabilistic models; 

3. Determine unusual behavior. 

 

3.2.5   Maximum likelihood estimator 

Maximum likelihood is a popular statistical method for estimation of model 

parameters.  Let x1, . . .  xn  be a random sample from any probability density 

function f (xi, ) that depends on an unknown parameter .  The likelihood function  
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L ( ) = f(x1, . . .  xn, ) = TT f (xi, ) is the joint probability density function.  The 

function  = g (x1, . . . xn) that maximize L ( ) with respect to θ is the maximum 

likelihood estimator of  .  The maximum likelihood estimator (mle) can often be 

found by setting the first derivative equal to zero:  (Krzanowski, 1998).   

 

In the study presented in this thesis maximum likelihood was used to estimate the 

position of the center of the clusters. For this purpose the function mle, provide by 

MATLAB statistics toolbox was utilized. 

 

3.2.6   Similarity Measures 

Any clustering algorithm requires some type of measure to assess the similarity 

between pairs of observations or clusters.  Computing distances (similarities) 

between two clusters can be performed in different ways,  the popular methods are: 

Single Linkage (Nearest Neighbor) 

In single linkage, the distance between clusters is defined as the distance between 

the two closest objects in two clusters. The distance d(r,s) between cluster r and s is 

computed as d(r,s)=Min{ d(i,j):  Where object i is in cluster r and object j is in cluster 

s}.  Here the distance between every possible object pair (i,j) is computed.  The 

minimum value of these distances is said to be the distance between cluster r and s.  

At each stage of hierarchical clustering, the clusters r and s, for which d(r, s) is 

minimum, are merged. This measure of inter-group distance is illustrated in Figure 

3.3.  

Complete linkage (Farthest Neighbor)  

Complete linkage is the opposite of single linkage.  The distance between clusters is 

defined as the maximum distance between pairs of objects in two clusters.  The 

distance d(r,s)between cluster r and s is computed as  d(r,s)=Max { d(i,j):  Where  
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object i is in cluster r and object j is in cluster s }.  Here the distance between every 

possible object pair (i, j) is computed.  The maximum value of these distances is said 

to be the distance between cluster r and s.  This measure is illustrated in Figure3.3.  

 

Average linkage  

In average linkage, the distance between two clusters is defined as the average of 

distances between all pairs of objects, where each pair is made up of one object 

from each cluster.  In the average linkage method, d(r, s) is computed as d(r,s)=
 

 
 sj risr

jid
nn

),(
.

1
 where nr and ns are the sizes of the clusters r and s respectively.  

This measure is illustrated in Figure 3.3.  

 

 

Figure 3.3: Examples of three inter-cluster distance measures: single, complete and 

average (Everitt, 2001). 

 

In the study presented in this thesis Kullback-Leibler divergence (KL) was used to 

compute distances between two clusters rather than Euclidean distance.   

 

The Kullback-Leibler Distance 

Kullback and Leibler(1951) studied a measure of information from the statistical 

viewpoint; this measure involved two probability distributions associated with the 
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same experiment.  The Kulback-Leibler divergence is a measure of the difference 

between two probability distributions (over the same event space).  The Kullback-

Leibler (KL) divergence between two probability distributions p and q on a finite set 

X is defined as 

KL (p|| q) =
Xx

 P(x).log
)(

)(

xq

xP
 ,      if X is discrete                                    (3.3) 

and as  

     KL (p|| q) = 




)(

)(
log).(

xq

xP
xP dx,         if X is continuous                          (3.4) 

Since the Kullback-Leibler divergence is not a distance metric, it is not symmetrical 

and does not satisfy the triangle inequality. Therefore, various measures have been 

introduced, such as DKLD1 (Bigi, 2003) and DKLD2 (Bennet, 1998).  The original 

asymmetrical definition of the KL distance is changed into a symmetrical version: 

 
DKLD1= KL (p||q) + KL (q||p)                                                                                           (3.5) 

 

DKLD2 =   [KL (p|| ) + KL (q|| ) ]                                                                           (3.6)  

 

 Myrvoll and Soong (2003) demonstrated that the divergence between two 

multivariate normal distributions as the following form:
  

If      X   N (µx ,∑x)  and   Y       N (µy , ∑y
 ) are independent random variables, then  

 
 

D(X, Y) = Trace [(  (µx - µy) (µx-µy)
 T + ]                  (3.7)  

 

Where µ and ∑ are the corresponding mean vectors and covariance matrices, 

respectively, the superscript T to a vector means ‘transposed’ and -1 to a matrix  

means  its inverse, ‘trace’ means the sum diag of a matrix (∑aii ).   
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In this thesis formula 3.7 was employed to compute the distances between the 

output clustering in Figure 4.4, Section 4.4.  MATLAB was used to implement the 

formula 3.7.  The program can be found in Appendix A and is included on the 

attached CD. 

3.2.7    Clustering by density Estimation 

Clusters are viewed as regions of the observation space in which the observations 

are with high density (mode), separated by regions of low observation density.    

Each mode is associated with a cluster center and each observation is assigned to 

the cluster with the closest center.  For an unknown density distribution, the 

probability P that an observation x falls in region R with radius rn and volume Vn.  

Suppose Kn of n observations falls in R, and then the density at x can be estimated by  

             )(ˆ xP
n

= Kn/ (n .Vn  )                                                                                                                                           (3.8) 

The performance of the estimation influence with the choices of the parameter Kn 

and Vn.  A small Kn or Vn leads to smaller bias while a greater bias with larger choice 

of Kn or Vn. Two approaches of Parzen window and k-nearest neighbour have been 

existed for choice of Vn. The volume Vn in the Parzen window approach is specified 

as a function of n, such as Vn =   but let Kn be a random variable.  In the nearest- 

neighbour approach, Kn is specified as a function of n, such as Kn=  , but let Vn be a 

random variable (study by Duda (1973) cited Cios  2007: 166).  

 

Wong and Lane (1983) estimated the underlying density of observations by the Kn-

nearest neighbour method.  Two observations 
i

x  and 
j

x  are said to be neighbours if 

i
x is one of the Kn nearest neighbours of 

j
x  and if

j
x   is among the Kn observations 

closest to
i

x .  The dissimilarity between neighboring patterns    and  is given by:  

      d ( , ) =
)(ˆ2

1

)(ˆ2

1

jnin
xPxP

                                             (3.9) 
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Pairs of observation that are not neighbours are assigned arbitrarily large 

dissimilarities.  Definition (3.9) in this study is redefined by taking the weighted 

average of the probability density functions as illustrated in Section 3.2.8.   

A histogram is the simplest way to represent the frequency distribution of a dataset 

graphically. Histograms are easy to create and are computationally feasible. 

Histograms can be used to identify modes in the datasets.  Regions with relatively 

high frequency counts are the potential modes or cluster center and the boundaries 

between clusters fall in the valleys of the histogram.  Thus, it is suited for 

summarizing the information about relative frequencies of observations in large 

datasets.  Therefore a histogram is used in this study for the identification of 

characteristics of distributions of datasets such as shape, spread.  That is to delimit 

the concentrated location. 

3.2.8    Weighting 

To weight a variable means to give it greater or lesser importance than another 

variable.  When the variable is continuous the most commonly employed weights for 

a variable are the reciprocal of its standard deviation or the reciprocal of its range 

(Everitt 2001). 

 

The dissimilarity definition (3.9) is redefined by taking the weighted average of the 

probability density functions; let   and  be variance of clusters r and s 

respectively, and then the weights could be defined as follows: 

    sr
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
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
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                                                                                                                                (3.10) 

and  
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r

s
W






        

This is the strength of each cluster to pull dissimilarity to its self. 
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3.2.9   Finite mixture distribution 

Finite mixtures of distributions have provided a mathematical based approach to the 

statistical modelling of a wide variety of random phenomena, such as modelling the 

distribution of diseases (crime) from mixed population.  Finite mixtures provide 

suitable models for cluster analysis ‘’if each group of observations in a data set 

suspected to contain clusters, comes from a population with a different probability 

distribution”(Everitt 2001: 118).  A mixture distribution is a compounding of 

statistical distributions.  That is, when sampling from mixed populations.  Each 

component is with a different probability density function.  For a random variable X, 

finite mixture models decompose a probability density function f(x) into sum of K 

weighted densities.  A model with K components is written in the form: 

   f(x; )=                                                                                                (3.11) 

 

When Pi denotes the proportion of the ith weight (mixing coefficient for the ith 

term) and    denotes a probability density with parameters 

represented by the vector .   There is variety of estimation methods that have 

applied to estimate the parameter of the vector , such as maximum likelihood, 

least squares and moments. Finite mixtures with multivariate normal components 

have been widely used to model multivariate data of a continuous nature, while, 

multivariate Bernoulli densities suitable for categorical data.  The t distribution 

provides a longer-tailed alternative to the normal distribution and thus provides a 

more robust approach to the fitting of mixture models (McLachlan  2000: 6 ).   

Figure 3.4: Density of a mixture of three Normal N (-3, 1); N (0, 1); N (2, 0.5) with 

weights 0.3, 0.3 and 0.4.  
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3.3   Clustering Algorithm with Significance  

This algorithm is based on a hybrid of statistical methods and employs specific 

properties of statistical distributions to determine centers with boundaries of each 

cluster drawn by suggesting a possible significance level.  This algorithm is 

significantly less time consuming, efficient and objective for finding clusters within 

the datasets. 

The algorithm is composed of the following steps: 

 

 

Step 1   Examine data outside their region: 
 

  draw lines parallel to x-axis and y-axis (use the notation  
        Lx  and Ly to denote it respectively). 
  Project each data point first on the Lx-axis and then on 
       the Ly-axis. 
 draw the histograms on the Lx-axis and Ly-axis. 
 specify the lower density in the histograms that are created  

in the Lx-axis and Ly-axis. 
 

Step 2  Employ specific properties of statistical distributions to  
             predict possible cluster centers.  
 

       Compute maximum likelihood for each distribution on the  
       Lx-axis and Ly-axis (µxi and µyi denoted coordinates of center                                          
       cluster i).  
 

Step 3  Find the optimal size of any clusters. 
 

   For each distribution as appropriate assume a confidence  
    interval to determine the radius of each (cluster) ellipse.  
 

The algorithm iterates step 2 and 3. 
 

MATLAB was used to implement the algorithm. The program can be found  

in Appendix A and is included on the attached CD. 

 
 



 
42 3    Spatial Clustering with Significance 

3.3.1    Data Representation 

In this chapter results derived from the application of artificial data to the developed 

algorithm are presented.   The advantage of using the artificial data is that it can be 

used as a validation tool.  More specifically, it relates to the possibility of knowing in 

advance what to look for, what is important in the data and what kind of 

classification can be obtained from a clustering method. The most direct 

visualisation is a two-dimensional plot showing the objects to be clustered as points. 

A random sample of size 100 and 6000 was generated from a normal distribution 

with mean  and standard deviation and this is illustrated in Table 3. 1.   

 

3.3.2   Experimental results on an artificial dataset 

By projecting the data into their marginal dimensions separately and formulating 

single histograms, acceptable forms of the marginal distributions with their general 

characteristics could be obtained (see Figure 3.7).  Following this, different 

approaches could be used in order to estimate the position of the center of the 

clusters.  For example, using the means of the produced marginal distributions or 

their modes, depending on the objective of the study, or using maximum likelihood 

as it has been followed here (Figure 3.8). 

 

 

Figure 3.5: Two dimensional plots of 6000 data points illustrated in Table 3.1, N (0, 5) 

and N (5, 7). 
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Figure 3.6: Simulated 6000 values from each of N (0, 5) and N (5, 7) and their 

histogram. 

 

 

 

Figure 3.7: Illustration of step 1 of the algorithm; plotting data points and drawing 

histogram on parallel axes Lx and  Ly. 
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Figure 3.8: Illustration of step 2 of the algorithm; predicted cluster center (Maximum 

likelihood for the distribution on the Lx and the Ly-axis). 

 
Cluster sizes are determined according to confidence interval requirements; 

confidence intervals are ranges of numbers that have a high probability of the 

inclusion of the unknown parameter as an interior point.  As illustrated in figure 3.9, 

the smallest ellipse contains 68% while the largest contains 95% of the observations. 

 

 

Figure 3.9: Some examples of confidence interval:  First cluster with 68%, second 

cluster with 80% and third with 95%. 
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Figure 3.10: Illustration step 3 of the algorithm existence of the cluster. 

 

The model used is that of a mixture of a finite number of probability distributions.  

The number1 of mode indicators as the number of distributions in the mixture is 

illustrated in Figure 3.11. 

   

Figure 3.11a: Example, of a number of clusters that indicator as the number of 

distributions in the mixture. Plotting of 100 values from each of N(0,1) and N(-3,1). 

 

 

---------------------------------------------------------------------------------------------------------------  

1
(Number of probability distribution projected on x-axis) X (Number of probability distribution 

projected on y-axis). 
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      Figure 3.11b: Example, of a number of clusters that indicator as the number of  

      distributions in the mixture. Plotting of 200 values from each of N(-3,1),N(0,0.2)                     

     and N(2,0.5). 

 

3.4   Summary and Conclusion 

This chapter introduces a new cluster detection methodology, called Salar’s 

Clustering with Significance (SCS).  This technique has been developed from 

knowledge drawn through a hybrid of both statistical and computing techniques.  

The algorithm for its implementation has employed specific properties of statistical 

distributions to estimate the position of the centers, and the boundaries of each 

cluster using subjectively set significance levels.   

 

The algorithm was tested using artificial datasets, with very promising results.  

Experimental results demonstrate that SCS is especially suitable for large dataset 

(see Figure 3.10) and even for small sample size (see Figure 3.11).  The attribution of 

the SCS algorithm are: easy to implement; no previous knowledge of the data set 

requirements; less number of performed steps leads to a reduction in clustering 

time; and the results provide with the detail information about the distribution of 

cases within the dataset.  It performs reasonably well in terms of: memory 
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requirements; running time; cluster quality.  The algorithm requires that the user 

first specify the valleys (lower density) in the histograms that are created in the 

marginal axes for data splitting.  This process was used to delimit the concentrated 

location. 

  

To test the validity of the clustering methodology, chapter 4 includes applying the 

algorithm to real (crime) datasets. 
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4   Application of SCS Algorithm on Real Data 
 
 
This chapter presents the application of SCS algorithm on real (crime) datasets.  The 
promising results obtained from identification of hotspots are compared with other 
available algorithms such as CLAP, Satscan and GAM.  The algorithm is also applied 
to the rotation of the same real dataset to illustrate its robustness. 
 
 
 
 
 ------------------------------------------------------------------------------------------------------- 
 

4.1   Introduction 

The previous chapter the strength of the new clustering algorithm on artificial data 

sets has been explored. For real data, residual burglary incidence and suggested 

rotation degrees (30 and 85) of the same real data have been used for testing the 

effectiveness of the new clustering methodology (see Sections 4.4 and 4.7).  One 

advantage of using rotation in this thesis is to allow the algorithm to be applied to 

more than one set of real data.  That is to demonstrate the robustness of the 

algorithm.  Burglary or ‘breaking and entering’ is one of the most common crimes 

worldwide.  Burglary is a high volume crime affecting around one in twenty five 

households annually in UK (Home office 2008). 

 

A new cluster detection methodology was utilized for performing the procedure of 

identification hotspots (see Section 4.6). For testing the effectiveness of the 

algorithm the obtained results are compared with results of other available 

algorithms that are applied to the same real datasets such as CLAP, Satscan and 

GAM.   
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4.2   Residential burglary  

The target research of choice is residential burglary which takes three points of 

rationale. First for testing the effectiveness of the new clustering methodology (see 

Section 4.4). This case is related to clustering and identifying high levels (hotspot) of 

burglary incidence. The obtained results were utilized in a development of a 

predictive crime model (see chapter 6). The second point of rationale is that burglary 

incidents are not randomly distributed; certain types of household characteristics 

and certain locations suffer from burglary more frequently than others.  It aims to 

assess the risk of households within parcels in study area being subjected to 

residential burglary. For this analysis a predictive crime model is built.  The model 

employed potential explanatory variables of characteristics of burgled households, 

such as household composition, socio-economic, and household spaces and 

accommodation type. Burglary rate constituted as the response variable (see Section 

6.4).  Burglary is a phenomenon with disparities within a geographical distribution.  

This case is related to the third point of rationale.  GIS was used to construct maps to 

depict spatial distribution of residential burglary rate in the study region, integration 

information of different data sources based on common geographic variable (see 

chapter 5).  The obtained results utilized in a predictive crime model are presented 

in Sections 6.8 and 6.9. 

 

4.3   Data Representation 

Cluster detection techniques can be applied to point datasets in order to reveal 

information relating to the spatial distribution of the cases (for example crime, 

disease). As was pointed out in section 4.1 the aim of this chapter is to test the 

validity of the clustering methodology (SCS); i.e.  identification of high level of crime 

(hotspot).  Thereby the data utilized in this experiment relies on two main sources of 

information.  These are spatial distribution of burglaries and population data over 

the same area.  These two types of data combine in this case for crime rate 

measurements within each cluster.  Crime rate is a measure of the rate of 
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occurrence of crimes committed in a given area and time.  It is the proportion of 

crimes committed among a given number of persons and is a useful statistic for 

many purposes, such as evaluating the effectiveness of crime prevention measures 

and for comparison purposes between the state of different areas and/or different 

times within the same area. 

 

Police record crime that has been reported. The Home office issues rules to police 

covering the recording of data, counting, and classification of crime.  The data are 

organized into a matrix, which is a table organized in rows and columns. Each row 

contains all the information for one particular record and each column contains 

information about one particular characteristic describing the data (for example, 

date, time, location) (Rachel, 2006). Crime data1 are sensitive in nature, and as such 

often require security clearances, special permissions in order to acquire the 

appropriate ethics approval.  

 

In 2003, 10905 cases representing spatial distribution of burglaries were reported to 

the police during the period of 6 February to 31 October in the study region. The 

input crime data file, that utilized by MATLAB include the location (x and y co-

ordinate) address to one residential burglary incidence.  294310 cases (population 

size) that cover the same area under study were downloaded from the CASWEB2 

website (CASWEB, 2009) and have been geo coded. The census is a key source for 

information about the instance, localities, key concepts of population, household 

and residence.  The contribution of population data in this analysis is for measuring 

crime rate when obtaining clusters. 

 

 --------------------------------------------------------------------------------------------------------------  
1
 Ethics: No personal data were held and all diagrams illustrating the distribution of crime are 

distorted to obfuscate the region covered. In addition, all regional labels associated with causal 

relationships have been removed to ensure anonymity. 

2  CASWEB:  Is a web interface to an aggregate statistics and related information from the UK census 

of population. The latest census was held in 2001 (CASWEB 2009). 
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4.4    Experimental results on real datasets (crime) 

This section presents the application of the SCS algorithm on the real datasets 

(crime) that was identified in Section 4.3. MATLAB is a software package that is 

highly effective for the production of graphical displays utilized to implement the 

SCS algorithm.  The following steps are applied to read the input data file from excel 

within  MATLAB:  save the input crime data file that identify above into Excel; open 

the file from the command window menus; then select the desired file let say 

Sheet1 from import wizand; finally use this command, x=Sheet1(:,:) in command 

window.  The file is now ready for use in MATLAB.   Figure 4.1 shows distribution of 

10905 data points of burglary incidence in the study area. Projecting the data as 

shown in Figure 4.2 into their marginal dimensions separately and formulating 

histograms. This obtains the following general characteristics of the data: Shape, 

spread or location of the distributions. This process is performed in step 1 of the 

algorithm.  A frequency distribution and property of Normal distribution are used to 

delimit the concentrated location.   It is requisite in this stage to delimit the interval 

of the produced marginal distributions with respect to marginal dimensions x and y.  

Maximum likelihood of the produced marginal distributions is used to estimate the 

position of the center of the clusters which were generated in step 2 (see Figure 

4.3).  Figure 4.3 illustrated that the mean of each distribution in marginal dimensions 

is the center of its graph (property of Normal distribution). For the optimal size of 

any clusters, 95% is suggested to be a confidence interval for each distribution in 

marginal dimensions. Figure 4.4 presents the existence of the clusters (step 3).  The 

formula 3.2 in Section 3.2.3 was employed to draw the boundary of each cluster.  
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Figure 4.1: Plots showing the distribution of 10905 data points of burglary incidence 

in the study area. 

 

 

 

 

Figure 4.2: Illustration of step 1 of the algorithm; plotting data points and drawing 

histogram on parallel axes Lx and Ly. 
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Figure 4.3: Illustration of step 2 of the algorithm determining the center of clusters. 

 

 

 

Figure 4.4: Illustration of step 3 of the algorithm existence of the clusters. 
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4.5   Summary of SCS results 

The following output results of clustering (Figure 4.4) were obtained utilizing the SCS 
algorithm on real (crime) datasets.   Determining of the position of the center of the 
clusters; the boundaries of each cluster (radius); the distances between the outputs 
clustering, and the number of cases (crime) within each cluster (size).  Kullback-
Leibler divergence (KL) formula 3.7 was employed to compute the distances 
between the outputs clustering in Figure 4.4. MATLAB was used to implement the 
formula 3.7 described in details in Section 3.2.6. 
 

Table 4.1 Summary of the output result of clustering that shown in figure 4.4 

  Cluster 
 

     A      B      C      D F 

Center   
(x,y) 
               

(3.135e+00, 
1.768e+005) 

(3.13e5+005, 
1.808e+005) 

(3.183e+005, 
1.808e+005) 

(3.2228e+005, 
1.808e+005) 

(3.183e+005,1.

768e+005) 

Radius  
with 
respect x 
& y 
meters 


r

x 1400


r

y 2100 


r

x 1400 


r

y 1900 

 


r

x 3100 


r

y 1900 

 
r

x 1700 


r

y 1900 


r

x 3100 


r

y 2100  

 
 
 
 
KL 

KL(A,B) 
24.0898 
 
KL(A,C) 
41.8950 
 
KL(A,D) 
159.4593 
 
KL(A,F) 
42.1217 
 
 

KL(B,C) 
23.7669 
 
KL(B,D) 
126.5060 
 
KL(B,F) 
29.7583 
 
 

KL(C,D) 
17.2823 
 
KL(C,F) 
14.1894 
 
 

KL(D,F) 
31.4622 
 
 

 

Number of 

crime  

 

 

1751 

 

290 

 

1646 

 

1246 

 

5336 
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4.6   Crime hotspots analysis 

Hot spots of crime are ‘’small areas that have statistically significant high levels of 

crime relative to surrounding areas’’ (Chetwin et al., 2005: 26). Crime “hot spot” 

analysis is one of the important topics in crime spatial pattern analysis.  In 

investigating the spatial autocorrelation of crime incidents, hot spot analysis has 

been an important approach for the explanation and prediction of crime spatial 

patterns. Hotspots allowed law enforcement to examine criminal phenomena within 

the area of concern.  This is for more policing concern in a certain location.  It allows 

crime analysts to identify concern in certain location that helps to identify the 

problem associated with the characteristic of the people within the location.  For 

analysis a crime analyst can use related methodologies, such as statistics or neural 

networks.  Hotspots can be analysed spatially as well as temporally.  This leads to 

significant contribution to crime preventions strategies.  The many studies 

researching “hotspot”, for example, Corcoran and Wilson (2003) used hotspots 

(spatial clusters of crime) for temporal analysis.  Spatial and temporal analysis of 

burglary incidence by Ratcliffe (2001) showed that the housing characteristics of the 

residential burglary hotspots vary considerably across the city. The highest 

probability for residential burglaries was the period that most people were at work.  

 

There are several techniques for the determination of hotspots.  Each has their 

advantages and disadvantages.  These mainly related to their case of use, visual 

results and interpretation.  For example, spatial and temporal analysis of crime 

(STAC), generate a set of ellipses that represent the highest concentrations of points.  

This technique has the advantage of showing conclusive hotspot regions but show a 

gradual change from a hotspot area to a less dense crime area with no indication of 

cut-off points. GIS is one of the simplistic methods, requiring minimal GIS skills to 

create graduated circles.  The disadvantage of this method is its draw backs in that 

these circles can often overlap.  This overlaps making it difficult to visually discern 

patterns of concentrations.  From this many research studies have gone into 

detection of spatial cluster of crime (Ratcliffe 2004).       
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Section 4.6.1 illustrates the process of identification of hotspots in the study area.  

The SCS algorithm is used to perform this identification.  The main purpose of this 

process is to identify those locations that suffer from crime more than others.  Then, 

the factors that associated to the characteristic of the people within these 

identification locations are examined. For this analysis, regression analysis and 

neural networks are utilized.  Building a predictive crime model is discussed in more 

detail in chapter 6.    

 

4.6.1   Identification of hotspots: SCS algorithm  

The SCS algorithm was utilized for performing the procedure of identification of high 

levels of crime (hotspots) in the area under study.  The procedure begins with 

detection of spatial cluster of distribution of the real (crime) data (Figure 4.5).  Then, 

the crime rates within the clusters that are obtained from the first step are 

measured.  Crime rate in this analysis is expressed as the number of crimes observed 

in that cluster per the combined population. This necessitates counting the number 

of crimes and population in a given cluster. The obtained results are illustrated in 

Table 4.2b.  Table 4.2a present the output results of counting number of crime and 

its combined population size. The results of crime rate are presented as a matrix, 

let’s say C with 10 rows and 18 columns.  Each element C (I, J) in the matrix C, act out 

the information about crime rate within the clusters that display in Figure 4.5.  For 

instance, C (1, 1) =0.011442 was obtaining as: 5 which is the number of crimes 

(numerator) observed per 437 the combined population (denominator).  It is 

observed from the results presented in Table 4.2b that some values of rates are an 

outlier.  That is, the lack of a residential population in the central business location 

leads to outlier rates in these locations.  For example, the number of crime and 

population for C8,10 are 250 and 10  respectively and then the value of crime rate is 

25. 128 clusters have been found among combined crime incident and with 

population data.  The output results are then examined to determine the hotspots.  

The clusters with high levels of crime (hotspot) are those with a crime rate greater 

than or equal to crime rate of the study region.  In order to clarify the results of the 



 
57                                                      4   Application of SCS Algorithm on Real Data 

 

specific locations of high-rate clusters these clusters were shaded in red (see Figure 

4.5). The details of the program can be found in Appendix B. 

 

The objective of figure 4.6 is to represent the location of the distribution of hotspots 

in the area under study.  MATLAB capability was used to colour the case of the high 

levels (hotspot) of occurrence which are within a red boundary of clusters, figure 

4.5, with red and light grey for low levels (cold spot).  Finally the boundary of the 

clusters is removed.  

 

Figure 4.5: Delimit the concentrated location; red shading shows the specific 

locations of high-rate clusters.  

 

Figure 4.6: Shows the distribution of burglary incidence concentration (hotspot).  

Hotspots red area showing and low levels show in light gray area.  
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 Table 4.2a: Details of the obtained results of number of crime and combined population for 10x18 clusters; (a)number of crime and (b) 
number of population within obtained clusters. 
 
(a) 

 

 
 
 
 
 
 
 
 
 

 
(b) 

437 0 1923 0 729 707 2658 2403 2606 982 1304 386 0 278 78 0 567 238 

4176 0 4512 2394 4431 2366 1523 1350 3370 1126 674 2951 6218 2120 785 2674 6527 6466 

459 0 2521 4350 2493 2143 3144 1593 1278 688 1355 5021 4035 838 2043 2207 5822 2019 

0 0 2152 3724 2468 1681 2241 554 927 282 606 1527 3434 56 2037 1687 1060 0 

0 0 3976 1518 2130 598 1681 2272 1243 9 634 2727 1141 542 1218 587 12 0 

0 44 8333 2870 1515 301 346 379 3925 2370 4351 9635 2991 637 323 0 0 0 

0 0 2555 1217 2161 817 1134 1 59 175 877 3106 3168 1747 56 0 0 0 

1100 1073 20537 1042 4776 4124 5542 5240 2976 10 698 4499 6140 1082 0 0 0 0 

454 393 4110 0 0 0 342 1456 5733 887 1146 1421 0 0 0 0 0 0 

188 0 814 306 0 114 949 56 372 0 0 0 0 0 0 0 0 0 

 
 

5 4 25 3 2 18 25 26 10 14 7 11 4 11 26 7 5 2 

45 0 74 22 57 26 53 42 66 4 8 27 201 122 59 88 221 210 

8 3 49 113 120 29 53 14 27 23 17 100 130 5 69 66 204 134 

7 1 36 64 73 18 39 52 20 10 9 25 42 2 76 39 31 2 

1 0 52 51 79 32 63 64 42 33 22 47 18 12 49 21 29 0 

0 0 167 88 85 13 50 34 142 101 173 323 124 70 5 4 4 0 

0 1 103 50 41 47 54 8 33 85 119 279 81 86 36 0 0 0 

0 57 1226 58 174 160 286 280 219 250 179 438 228 79 9 0 0 0 

0 21 165 0 7 11 57 120 226 50 107 109 9 8 0 0 0 0 

0 0 0 0 0 0 21 12 48 0 4 13 5 0 0 0 0 0 
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 Table 4.2b Details of the obtained results of crime rate (expressed as the number of crime observed in that cluster per the 

combined population) for 10X18 clusters. 128 cases have been found among combined crime incident with population size.

0.0114 0 0.013 0 0.0027 0.0255 0.0094 0.0108 0.0038 0.0143 0.0054 0.0285 0 0.0396 0.3333 0 0.0088 0.0084 

0.0108 0 0.0164 0.0092 0.0129 0.011 0.0348 0.0311 0.0196 0.0036 0.0119 0.0092 0.0323 0.0576 0.0752 0.0329 0.0339 0.0325 

0.0174 0 0.0194 0.026 0.0481 0.0135 0.0169 0.0088 0.0211 0.0334 0.0126 0.0199 0.0322 0.006 0.0338 0.0299 0.035 0.0664 

0 0 0.0167 0.0172 0.0296 0.0107 0.0174 0.0939 0.0216 0.0355 0.0149 0.0164 0.0122 0.0357 0.0373 0.0231 0.0292 0 

0 0 0.0131 0.0336 0.0371 0.0535 0.0375 0.0282 0.0338 3.6667 0.0347 0.0172 0.0158 0.0221 0.0402 0.0358 2.4167 0 

0 0 0.02 0.0307 0.0561 0.0432 0.1445 0.0897 0.0362 0.0426 0.0398 0.0335 0.0415 0.1099 0.0155 0 0 0 

0 0 0.0403 0.0411 0.019 0.0575 0.0476 8 0.5593 0.4857 0.1357 0.0898 0.0256 0.0492 0.6429 0 0 0 

0 0.0531 0.0597 0.0557 0.0364 0.0388 0.0516 0.0534 0.0736 25 0.2565 0.0974 0.0371 0.073 0 0 0 0 

0 0.0534 0.0401 0 0 0 0.1667 0.0824 0.0394 0.0564 0.0934 0.0767 0 0 0 0 0 0 

0 0 0 0 0 0 0.022 0.214 0.129 0 0 0 0 0 0 0 0 0 
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4.7   Experimental results on rotation datasets 

This section introduces the concept of rotation of data. The results that were 

derived from the application of rotation datasets are used for testing the 

effectiveness of the SCS algorithm.  

4.7.1   Rotation 

The goal of rotation is to simplify and clarify the data structure and this process 

often allows the analyst to observe clusters more clearly especially when close 

correlations are present between neighbouring clusters. Criteria for determining 

better rotations are not always clear (Pedhazur & Schmelkin, 1991: 611).  Rotations 

can  improve the interpretability of the results. One advantage of using rotation in 

this thesis is to allow the algorithm to be applied to more than one set of real data.  

That is to demonstrate the robustness of the algorithm. 

 

There are two types of rotation that can be done; orthogonal when the new axes are 

also orthogonal to each other and oblique when the new axes are not required to be 

orthogonal. In this case study orthogonal rotation was used.  The values in the factor 

transformation matrix consist of sines and cosines of the angle of axis rotation .  

This matrix is multiplied by the matrix of a un-rotated factor, to obtain a matrix of a 

rotated factor.  For the case of two factors the factor transformation matrix would 

be:    

                                      cos         --sin     

                       A=     

                                       sin           cos  

 

  X (rotation) = *X  cos  - Y *sin                                                                                                                                                                                                                                                                                                                         

                                                                                                                                        (4.1) 

Y (rotation) =    X  * sin  + Y *cos  

Where X   and Y   are un- rotated datasets. 
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The angle of rotation is found in an iterative way (Field 2005: 635). 

 

In this study, MATLAB was used to implement formula 4.1.  The program can be 

found in Appendix B. 

 

4.7.2    Implemented SCS algorithm 

In this section results derived from the application of rotation the same real (crime) 

datasets are presented.  For instance, rotation of the data points with 30 and 85 

degrees are obtained by utilizing formula 4.1.  The clustering results (Figure 4.8) are 

obtained utilizing the SCS algorithm on rotation of real crime data with 85 degree.  

The results are promising and are compared with the un-rotated output.  The 

clusters named in Figure 4.8 indicate that these clusters are the same as in Figure 

4.4.  

  

 

Figure 4.7: Plots showing the distribution of crime datasets. Rotation data with 85 

degree utilized.  
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 Figure 4.8: Illustrated clustering of the rotation of data points of 85 degrees using 

the clustering algorithm SCS. 

 

The identification of hotspots results (Figures 4.11 and 4.12) are obtained utilizing 

the SCS algorithm on rotation of real crime data with 30 and 85 degrees.  The 

promising results obtained for identified hotspots are compared with the un-rotated 

output Figure 4.6. The outputs are superficially very similar.  The Arc view ESRI GIS 

package was used in chapter 5 for visualization of these results.  

 

 

Figure 4.9: Plots showing the distribution of crime datasets. Rotation data with 30 

degree utilized.  
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Figure 4.10: Delimit the concentrated location.  

 

 

 

 

Figure 4.11:  Hotspot identification: Rotation of data points of 30 degrees utilized.  

Hotspots red area showing and low levels show in light gray area. 
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Table 4.3: Details of the obtained results of crime rate (expressed as the number of 

crime observed in that cluster per the combined population).  Rotation data with 30 

degree utilized. 

 

(a) Number of crime 
 

 
 
(b) Number of population 

0 0 0 0 0 39 1202 1857 4432 

0 30 1154 0 667 983 3179 3090 2845 

0 3021 4992 1934 4957 3816 4506 5017 1597 

161 10209 6817 6500 6514 6778 2623 4069 12 

6039 15872 15514 7664 10339 19469 9893 8711 247 

33 4599 1752 2594 727 88 430 0 0 

127 12501 10105 11153 6478 10858 3935 700 0 

171 11185 5151 0 30 422 578 0 0 

287 5481 1428 0 23 925 144 0 0 

 
(C) Crime rate 

0 0 0 0 0 0.7949 0.0366 0.0242 0.0413 

0 0.2333 0.0139 0 0.0495 0.057 0.0308 0.0453 0.0548 

0 0.0166 0.0078 0.0155 0.0381 0.044 0.0195 0.0299 0.0401 

0.0124 0.0096 0.0261 0.014 0.0233 0.0192 0.0271 0.0327 3.6667 

0.0157 0.0244 0.0204 0.0465 0.0376 0.0493 0.0468 0.0375 0.3806 

0 0.0267 0.0605 0.0389 0.1183 4.8409 0.2698 0 0 

0 0.0234 0.0302 0.038 0.0556 0.0562 0.0551 0.14 0 

0 0.0725 0.054 0 0.9667 0.1398 0.0952 0 0 

0 0.0478 0.0042 0 0 0 0.0069 0 0 

 
 
  

 

0 0 0 1 3 31 44 45 183 

0 7 16 8 33 56 98 140 156 

0 50 39 30 189 168 88 150 64 

2 98 178 91 152 130 71 133 44 

95 387 317 356 389 959 463 327 94 

0 123 106 101 86 426 116 122 12 

0 292 305 424 360 610 217 98 18 

0 811 278 0 29 59 55 0 0 

0 262 6 0 0 0 1 0 0 
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Figure 4.12:  Hotspot identification: Rotation of data points of 85 degrees utilized. 

Hotspots red area showing and low levels show in light gray area. 

 

4.8 Validation of SCS algorithm 

Cluster validation refers to ‘‘procedures that evaluate the results of cluster analysis 

in a quantitative and objective fashion’’ (Jain, 1988: 143).  For testing the 

effectiveness of the algorithm, first the same algorithm uses several datasets.  This 

test demonstrates whether the algorithm can be expected to perform well for all 

types of data.  The second test includes performance comparison in relation to other 

validated algorithms.  If the results of clustering are similar, then this indicates that 

the algorithms perform well.   

 

To demonstrate that the algorithm performs well, other available algorithms such as 

CLAP Satscan and GAM were applied to the same real datasets (crime). The four 

techniques identify the distribution of burglary incidence concentration (hotspot).  

However each of these techniques follow different principles(outlined in Section 

2.1.1) but the final obtained results are very similar, specially SCS with Satscan 

result.  This indicated that the SCS algorithm performs well. This is the main purpose 

of this comparison. Figure 4.14 shows a representation of final results obtained, 

while Figure 4.13 shows the location of clusters.   
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For testing the effectiveness of the SCS algorithm, the methodology was applied to 

suggested rotation degrees (30 and 85 degrees) of the same real data (crime). The 

results obtained from identification of hotspots were presented in Figures 4.11 and 

4.12, emphasising validity of the algorithms introduced in addition to indications of 

generalisability to higher dimensions in clustering special data.  Experimental results 

demonstrate that the new methodology perform reasonably well for several real 

datasets. 

 

 
 
Figure 4.13  Shows the location of clusters. Using the clustering algorithms SCS, 
satscan, CLAP and GAM. 
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Figure 4.14: Shows the distribution of burglary incidence concentration (hotspot).  

Using the clustering algorithms SCS, Satscan, CLAP and GAM.  Hotspots red area 

showing.  
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4.9   Summary and Conclusion 

This chapter presents the application of clustering methodology (SCS) on a real 

(crime) dataset.  In addition, results are presented for rotated data (30 and 85 

degrees) which was used for testing the effectiveness of the SCS algorithm. The 

experimental results demonstrated that the SCS algorithm performs well. The 

promising results obtained for identified hotspots were compared with other 

available algorithms such as CLAP, Satscan and GAM. The outputs are very similar. 

The SCS algorithm performed reasonably well in terms of: memory requirements; 

running time; clustering quality. Therefore, this approach has an improved time 

complexity, performance and the best quality clustering with the available memory. 

 

Experimental results demonstrate the effect of the new algorithm for large datasets.  

The work to date has demonstrated a significant theoretical contribution to 

knowledge in the field of statistical analysis of spatial datasets.  It is necessary in 

several geographic applications to account for a spatially variable background 

population.  It is an efficient and objective algorithm, leading to improvements in 

statistical data analysis. 

 

The next chapter described the combines of SCS algorithm with Geographical 

Information Systems (GIS). 
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5   Utilization of GIS: Crime analysis  

 
This chapter identifies various methods in which GIS have been utilized to interpret 
burglary distribution within the study area.  The new cluster detection technique 
(SCS) accommodates Geographical Information Systems (GIS) in terms of generating  
predictive crime models,  mapping, displaying distribution of crime in the study 
region, identifying the total number of crimes within a polygon and integrating 
information from a variety of sources associated within the observed data. 
 
 
 
 

5.1   Introduction 

Since 1990, the extensive usage of GIS has enabled police forces to map and analyse 

crime data efficiently.  Crime mapping is well established in England and Wales in 

many police forces.  Hirschfield, 1999 reported that around two-thirds of police 

forces and one-third of local authorities in England and Wales had access to a GIS 

(Home office, 2007).  Currently GIS is a standard tool for crime analysis. Several 

police departments are in the process of implementing GIS. GIS is often credited for 

providing a valuable analytical tool for the identification and analysis of crime 

problems as well as the development and assessment of crime.  GIS functionality has 

become widely used in many areas within crime data analysis, such as crime hotspot 

mapping and cluster detection, repeat victimization and temporal pattern analysis of 

crime incidents (Wise 2007).  GIS has enabled integration of data (both crime and 

crime related) from a variety of sources, used in terms of crime prediction. Craglia et 

al. (2001) reported the strengths of GIS-based spatial analysis with census data for 

modelling high-intensity urban crime area.  Hirschfield and Bowers (2001) 

summarized extensive research contributions of GIS and their practical potential in 

crime data mapping and analysis.  GIS can be used to measure the extend and type 

of problem within a certain distance a round a particular location.  Community 

characteristics (for example, markets, colleges, parks, alcohol permit locations) can  
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be routinely displayed on maps while analysis crime patterns to interpret 

relationship between these characteristics and the crime.  For example, crime 

clusters round locations where alcohol is sold (Johnson, 2000). 

5.2   GIS and Crime mapping  

Crime mapping is the ‘’process of using a geographic information system, to conduct 

spatial analysis of crime problems and other police-related issues’’ (Rachel 2005: 

37). Crime analysts used maps to communicate analysis results; visualize; analyse 

the relationship between criminal activity and indicators of disorder; examine 

patterns of crime at and around specific locations, such as schools and bars. Crime 

mapping was established before computers were invented.  The availability of GIS 

enables numbers of police departments to experiment with crime mapping in their 

work.  It allows crime analysts to link various types of data source together based on 

common area, for example, linking census information and crime data for a common 

area. Presenting this information as layers, gives the analysts the ability to analyse 

multiple layers of information. Geographic data is available in electronic format such 

as street and census information; the links between GIS and databases have enabled 

analysts to create visual images of various types of data in map format. Presenting 

data in the form of a map is helps visualise the significance of the where, when, and 

by whom.  

Capabilities of GIS for, storage, management, integration, and manipulation of 

various layers of data helped to advance the field of crime mapping.  This has 

improved the efficiency of police activity. 

 

5.3   Data Characteristics 

The detailed information of the spatial dataset utilized by GIS in this chapter is 

presented in sections 4.3, 4.6.1 and 4.8.1.  This included the distribution of 10905 

residential burglary incidents reported to police; its rotation within 30 and 85 

degrees; 294310 population data was downloaded from CASWEB (CASWEB, 2009); 
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and 7377 cases out of 10905 incidents are related to hotspots obtained from SCS 

algorithm.  Nine hundred fifty four polygons (census wards) in the area under study 

are covered within population data, residential burglary and its rotation and 330 

polygon within 7377 cases of high level burglary rate(hotspot). The data are 

represented as points on a map that fall within the boundaries of the polygons.   

Since this study is based on crime, these data provide for building a predictive crime 

model, which are presented in chapter 6.  GIS has the ability to associate xy 

coordinates in the map with the address of an incident.  This concept is known as 

geo-coding. Table 5.1 presents typical input information relating to these geo-coded 

data, crime data and population size that has been used in this analysis. Geographic 

regions within the study region have different characteristics and therefore lead to 

different population densities and crime levels (see Figures 5.2 and 5.7).  The 

population size -based approach in this analysis, contributes to measuring crime rate 

for each polygon. The results were used throughout the process of building crime 

model (chapter 6).  The second use of population size in this analysis is to examine 

crime rates within variant population sizes.  It is essential to know what percentage 

of the population had suffered from crime in that location.  

 

Table 5.1:  A typical input file. Columns refer to: x co-ordinate; y co-ordinate; 

number of crime; population size. 

 

        Crime data                                                        Population data   

x Y Number of 
crime 

x y population 

322814 181972 1 320100 178100 76 

323090 180985 1 311700 177900 22 

315359 182932 1 311900 177900 105 

322676 178611 1 312100 177900 22 

317947 175632 1 312900 177900 61 

319981 177755 1 323300 181100 77 

319891 176965 1 323500 181100 63 

323938 180850 1 323700 181100 225 
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5.4   Utilization of GIS in this study 

GIS is a computer assisted system for the storage, integration, analysis and display of 

geographic data. GIS has several advantages in crime analysis. Law enforcement 

agencies used GIS technology to prevent crime and to co-ordinate policing activities.  

This includes facilitating plotting the details of an incident, the time, date of the 

crime and the statistic against the map.  Crime analysts use GIS for analysis of large 

quantities of data to interpret quickly, understand and easily share and visualize 

data in many ways that reveal relationships.  GIS technology has the ability to 

separate information in layers, and then combine it with other layers of information.   

 

GIS is used as a tool in this thesis to accommodate the new cluster detection 

technique (SCS) in terms of a predictive crime model.  Mapping, displaying 

distribution of crime in a study region, counting number of points within polygons 

and integrating information from a variety of sources associated with the observed 

data (crime data, population data, and census data) are specific applications of GIS 

described in detail in the following sections. 

 

5.4.1    Mapping  

GIS is most often associated with a map. Maps are visual, stimulate the imagination 

and present the world as simpler and more orderly.  Maps have played an essential 

role within the field of criminology, by spatial representations of crime data. This 

includes plotting the details of an incident, the time, date of the crime, statistical 

analyses of the spatial nature of crime and other crime reports. GIS is the best tool 

for understanding spatial patterns of criminal activity. 

 

Once 10905 cases (burglary incidents) in the area under study have been geo-coded 

with points, three types of maps were created.  A map which shows the distribution 

of 10905 residential burglary incidents as points on a map reveal the location of 

burglary incidence  that cover 29 parcels (954 polygons) of  the study area (see 
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Figure 5.1).  A map in Figure 5.2 shows the distribution of the corresponding 

population of the area under study.  The population of this analysis serves as a 

background of crime data in the same area that contributes to measuring crime rate 

per each polygon. Polygons are used since crime rate use an underlying population 

with which to calculate a rate and this necessitates the use of administrative 

boundary units, such as polygons.  The results were used throughout the building 

crime model process (chapter 6).   The map in Figure 5.3 was obtained by utilizing 

the SCS result as shown in Figure 4.6.  The map shows the distribution of burglary 

incidence concentration (hotspot).  Hotspots are areas of more likelihood of burglary 

than others. The hotspots in Figure 5.3 were shaded with different colours. 

Highlighted areas indicate that their crime rates are in high level. Displaying 

concentrations of criminal activity has allowed law enforcement to examine criminal 

phenomena within areas of concern and arrange for control and prevention 

accordingly. This is one of the most common applications of a GIS for crime analysis.  

Figures 5.4 and 5.5 are show the maps which are obtained by utilizing rotation of the 

data points.  As mentioned in section 4.8.2, the same spatial dataset (crime) has 

been rotated for instance, within 30 and 85 degree and SCS algorithm was utilized in 

order to determine the clusters. The results in Figures 5.4 and 5.5 show that the 

distribution of high crime rate using rotation data point with 30 and 85 degree 

respectively in the area under study. The results show that these areas of concern 

are the same as in Figure 5.3.  This indicates that the algorithm performs well. 
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Figure 5.1: Description of distribution of burglary: 10905 cases, over the period 6 

February to 31 October 2003 in the area under study, used to identify concentration 

of crime. 

 

Figure 5.2: shows the corresponding population of the area under study.  Its serves 

as a background of crime data for measuring crime rate within each polygon.  
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Figure 5.3: Description of distribution of high crime rate clusters in the area under 

study utilizing the SCS algorithm. The hotspot locations are shown coloured. 

 

 

 

Figure 5.4: Description of distribution of high crime rate (hotspot). The hotspots 

exhibited are coloured.  The map obtained by utilizing rotation data point with 30 

degree.  It is clear that these concern areas are the same as in figure 5.3. 
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Figure 5.5: Description of distribution of high- crime rate. The hotspots exhibited are 

coloured.  The map obtained by utilizing rotation data point with 85 degree.  It is 

clear that these concern areas are the same as in figure 5.3. 

 

5.4.2    Counting number of crimes within the polygons 

The burglary rates in this analysis are expressed as the burglary incidence per 

number of households in each polygon (census wards). Figure 5.6 shows the 

distribution of 10905 burglaries in 954 polygons in the study area represented as 

points on a map that fall within the boundaries of the polygons. Spatial analysis was 

then conducted using a GIS to identify the total number of crimes within each 

polygon.  The procedure used for conducting this analysis was found in the support 

section of the ESRI Website (ESRI, 2009).  When the total number of crimes within 

each polygon had been computed, the results were combined with data showing the 

total number of households in each polygon. The household data was downloaded 

from the CASWEB Website (CASWEB, 2009). The results of this analysis were then 

used to obtain the information about the distribution of residential burglary rate 

within each parcel in study region.  Numbers of crime that was obtained within each 
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polygon transformed into crime rate by division with the number of households 

within combined polygons.  From the census information (CASWEB, 2009) each 

parcel include numbers of well defined of polygons.  Consequently, crime rates 

within each parcel in the study region were determined. Histograms are used to 

display the distribution of burglary incidents cross 29 parcels in the study region (see 

figure 5.7). Figure 5.7 shows the variation in the distribution of actual burglary rate. 

Classifications of crime levels for middle and low levels are that suggested in this 

analysis which fall in the polygon are: middle level: [0.0174, 0.0374); low level: 

[0.0025, 0.0174) but for high level: [0.0374, 0.4] are obtained from identification of 

hotspot Section 4.6.1.  Figure 5.7c shows a typical classification against the polygons 

in the study region.  Classification level of all parcels in the study area can be found 

in Appendix C. The analysis of level of crime rate will be explained later in section 

6.8.3.  The results of this analysis were used throughout the model building process 

in order to predict the spatial distribution of residential burglary in study region (see 

section 6.8.3 ).   

 

Figure 5.6 shows the distribution of 10905 burglaries in 954 polygons in the study 

area represented as points on a map that fall within the boundaries of the polygons.  
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Figure 5.7a:  A summary of the number of actual burglary incidents distributed 

within 29 parcels in study region.  
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Figure 5.7b: A summary of the distribution of actual burglary rates within 29 parcels 

in study region. Burglar rates expressed as the burglary incidence per number of 

households in each parcel.  
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Figure 5.7C: Illustrate the levels of crime rate for some selected parcels in the study 

region. The levels are high(h), middle(m) and low(l).  
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5.4.3   Integration of different data layers 

One of the fundamental aspects of GIS is the integration of different data layers. The 

information about a given region can be arranged as a set of maps.  Each map 

displays the information of one characteristic of the region. Thematic map 

separation is referred to as layers. Each layer overlaps on the others, location 

matched to its corresponding locations on all the other layers.  In the case study 

presented in this thesis this utility was used to integrate information from a variety 

source of data.  For example, population data and census data that is associated 

with crime data.  The three separated layers shown in the Figures 5.1, 5.2 and 5.3 

displayed different information.  In the case of a predictive crime model, the analysis 

requires combination of these layers; layer (population data) with layer (crime data), 

so every location in layer 1 matched to its corresponding location in layer 2. These 

two types of data combine in this case for crime rate measurement within each 

polygon.  The location of the bottom layer in Figure 5.8 represented a hotspot.  The 

crime rate in this layer is greater than crime rate in the study region.  This layer will 

integrate with census data for building a predictive crime model. The census data 

provided a useful source of geo-demographic information.  The census is a key 

source for information about economic, social and demographic composition of 

small areas.  It provides the linkage between population, household, and dwellings 

at small areas.  Thus helping to understanding local economic factors and 

communities.  Linking the available data source was one of the important problems 

in the spatial analysis.  The increasing power of GIS a researcher can easily combine 

census attribute data with available information for analytical and model purpose 

for such geographic levels.  Awareness of using GIS in the production of census data 

is growing in all statistical agencies, and simplifies the process of combining census 

geographic data with attribute data. 
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Figure 5.8: The concept of adding layers of geographic information 
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Figure 5.9: Illustration of the utility of GIS to integrate information from a variety of sources such as population, crime data, and 

high-crime rate in the area under study.  ‘Integration of figures 5.1, 5.2 and 5.3 ‘. 
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5.5   Geographical location of clusters 

The predictive crime modelling across the clusters in this thesis is employed 28 

potential explanatory variables of characteristics of burgled households.  Cluster 

boundaries (ellipse) were identified using the SCS algorithm (section 4.4).  That 

followed the specification of x and y coordinates of each center location and the 

limiting points of the major and minor axes of the obtained ellipse from which the  

geographical location of the obtained clusters were  identified on the map of the 

study region (Figure 5.10).  

 

Polygon (ZIP code) is the smallest spatial unit for which the entire UK Census is 

publicly available. For example, the parcel (Census tract) NN included 48 polygons.  

Therefore polygons were selected for spatial aggregation of crime data with the 

potential characteristics of household data.  Thus each cluster includes a set of 

polygons to be examined.  The characteristics of households within each polygon 

were downloaded from the CASWED.  Residential burglary data were then used to 

calculate rate of burglaries per household within each polygon.  

 

Figure 5.10: Shows the Location of x and y coordinates of center location and the 

limiting points of the major and minor axes of the obtained ellipse of the cluster in 

the study region (red point showing). 
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5.6   Summary and Conclusion 

GIS has become one of the most important developments in crime analysis.  By 

combining geographic principles and geo coded location data with crime data and 

criminological theories, GIS allow the analysis of crime incidents across time and 

space. 

 

This chapter introduces construction and interpretation of maps using 10905 cases 

(burglary) that were collected by a police authority in the area under study. Maps 

are obtained by using the capability of GIS for mapping and organizing data into 

specific layers, integration of different data layers and determining how many 

crimes were reported within boundaries of the polygon (census tracts). The resulting 

rate is combined with multiple data sources which identify in chapter six in order to 

develop a predictive crime model.  
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6    PREDICTIVE MODELS 
 
This chapter presents the building of hybrid predictive models for crimes based on 
real data. The spatial distributions of residential burglaries are chosen as the foci of 
this analysis.  The model required aggregation of multiple data sources, specifically: 
crime; population; and census (multivariate) datasets that have been collected.  
Burglary rate data constituted the response variable in the model.  The SCS result 
algorithm was utilized to identify the spatial level of concentration of burglary 
incidents in the study region. Both the regression methodology and neural networks 
have been used for predictive crime modelling.  A new methodology, hierarchical 
neural network for building a predictive crime model is proposed. In this case, 
statistical methodology combined with ANN to generate a more accurate prediction.  
Analysis and the results are presented. 
 
 

6.1   Introduction     

A predictive model is “a simplified representation of reality, comprising a set of 

relationships, historical information on these relationships, and procedures to 

project these relationships into the future” (Douglas, 2001: 21). 

 

The purpose of police crime prediction is to support crime prevention and law 

enforcement. It is an exciting new area, which brings together the disciplines of 

statistics, machine-learning, criminology and psychology, and database technology.  

Prediction of crime has recently seen an increase of research and is widely practiced 

by police.  This is due to the establishment of the ecology of crime and using the 

capabilities of GIS to produce maps depicting crime “hotspots”. It enables 

integration of information from a variety of sources associated with crime data.  

 

In this thesis, spatial distributions of residential burglaries are chosen as the foci of 

analysis.  Burglary, or ‘breaking and entering’, is one of the most common crimes 

worldwide.  Burglary is a high-volume crime affecting around one in twenty- five 

households annually in the UK (Home Office 2008). 
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Several studies have explored the relationship between burglary and possible 

contributing factors, for instance, poverty (Olligsclaeger 1993); unemployment 

(Edmark 2005) and house type (Bowers 2004).  The predictive crime modelling in 

this thesis employed 28 potential explanatory variables of characteristics of burgled 

households, burglary rate constituted the response (dependent) variable. 

 

6.2   Data Representation 

Crime is a complex phenomenon. Thus the predicted model required aggregation of 

multiple data sources, specifically:   crime, population, and census (multivariate) 

datasets that have been collected. The detailed information of these datasets is 

presented in sections 4.3 and 6.2.2.  Census data are a potentially valuable resource 

for crime analysis.  Crime is a social phenomenon and census is the principal national 

social data resource.  Census data describe the characteristics of the population of 

the UK, and is available via CASWEB (UK Census Website). The recorded burglary 

incident datasets are derived from a local police authority records. 

 

6.2.1   Data on Burglary 

10905 spatial data of actual burglary incidents (Section 4.3) within 7373 hotspot 

incidents identified by the new cluster detection technique (SCS) in the study region 

(Figure 4.6) were used in building a predictive crime model.  The total numbers of 

burglaries within each polygon had been computed previously (Section 5.4.2). The 

results combine the data on census and are then used in a predictive model.  

Histograms are used to display the distribution of burglary incidents across 29 

parcels in the study region (see Figure 5.7).   

 

6.2.2    Data on Census  

The National Statistics Office in England and Wales planned one day every ten years 

for the census, a count and information about all people and households.  The latest 

census was held in 2001.  The census outputs are available in a number of forms, 

especially those covering: Aggregate Statistics, National Statistics Postcode 
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Directory, Micro data, Interaction data and Digitised boundary datasets.  The census 

data used in this study are aggregate statistics which provide the most complete 

source of information that is available about the demographic and socio-economic 

characteristics of the UK population.  The aggregate statistical outputs from the 

2001 census are available in three main datasets: key statistics (used in this study), 

standard tables, and census area statistics (UK Census Website).   

 

The characteristics of household data within each polygon were downloaded from 

the CASWEB Website1 (CASWEB, 2009).  The detail information about these 

potential characteristics of burgled household can be found in Appendix D.  Table 

6.1 identifies the potential factors chosen to build a burglary predictive model. 

 

6.3   Neural Networks and statistics 

While there are many differences between Artificial Neural Networks (ANNs) and 

statistics, there are also many similarities.  Many ANN models are similar or identical 

to popular statistical techniques such as generalized linear models, polynomial 

regression, discriminate analysis2, and cluster analysis.  There are also a few ANN 

models, such as learning vector quantization, and self-organizing maps, that have no 

precise statistical equivalent. Neural networks and statistics are not competing 

methodologies for data analysis; although there is considerable overlap between the 

two fields. 

 

Statistical methodology is directly applicable to neural networks in a variety of ways, 

including estimation criteria, optimization algorithms, confidence intervals, 

diagnostics, and graphical methods. Better communication between the fields of 

statistical techniques depends on the problem to be solved (Basheer & Hajmeer 

2000).  

------------------ 
1
Select the ‘CAS ward’ from the selection ‘output geography’ then select ‘Ethnic Group’ from the list of tables that are 

contained within the key statistic. 
2
Discriminate analysis is a technique use to build a predictive model of group membership based on observed characteristics of  

each case. 
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6.4   Artificial Neural Network and Multiple Linear Regression Models 
for Prediction 

Building the predictive crime models which are presented in this thesis adopted 

both ANNs and statistical techniques.  Both of these techniques have advantages 

and disadvantages.  The objective of this study is to take advantage of both 

techniques for best performance of a predictive crime model.  Multiple linear 

regression (MLR) analysis is the statistical technique used in this study to identify 

potentially significant predictive variables and the level of their contribution in the 

performance of the model and predicting of future crime. Every statistics computer 

software package contains a regression component. However, Neural Network 

analysis generates weights, which are difficult to interpret as they are affected by 

the program used to generate them.  This drawback is one of the most criticized 

features in neural network models.  The main advantage that neural networks offer 

is they do not require many assumptions before the model can be constructed, for 

example, nonlinearity. When applying regression, the user must have detailed 

knowledge about the appropriate non-linear relationship between the input and 

output variables.  However, when applying neural networks, these relationships are 

determined implicitly by the model, since ANNs are non-linear systems.  This 

property includes robust performance in dealing with noisy data.  Another 

advantage of the ANN approach is that the model allows the inclusion of several 

input and output variables at the same time. This requires more care with a 

regression technique.  

 

In this study statistical techniques start their construction model with 28 potential 

explanatory variables identified as input chosen among characteristics of burgled 

households. These include Resident Population, Occupation, Qualifications, Socio 

Economic, Household composition and Household spaces. The identification was 

shown in Table 6.1.  The spatial distribution of actual residential burglary incident 

rate constituted the response (dependent) variable. The data standardized into rate 

per household within each polygon (census wards). A hierarchical neural network 

(HNN) starts their construction model with a number of explanatory variables with 
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statistical significance which were obtained and identified from regression model 

results.  

 

6.4.1    Multiple Linear Regression Model 

Statisticians and criminologists have been applying their skills and knowledge for a 

long time to predict when and where the next set of crimes will occur, with varying 

degrees of success.  Multiple linear regression (outlined in section 1.1.4) was chosen 

in this thesis for a predictive crime model.  The regression model is one of the 

popular methods of modelling and prediction.  Regression analysis has major 

purposes: description, estimation and prediction.  This methodology has wide 

applicability in prediction in a variety of areas (Bolzan 2008; Margaret 2002; 

carcoran 2003).  

 

6.4.1.1   Regression Modelling Steps 

This strategy involves: 

 Data collection and preparation; 

Any regression analysis to perform the analysis requires data.  The characteristics of 

the data vary with the nature of the study. In the procedures of data collection and 

preparation it is important that the user is conversant about the theory associated 

with the subject being analysed. Section 6.2 shows details of the data characteristics 

which are used in the regression model presented in this thesis.  

 Selection of Explanatory variables; 

Selection of explanatory variables is an important aspect of regression analysis.  The 

process of model building is to identify those variables which are significant partial 

contributors to the prediction of the response variable.  Backward elimination and 

forward selection are one of the popular techniques for variable selection.  

Backwards elimination procedure begins with a regression on all potential 

explanatory variables. After the regression is run the explanatory variables are 

examined to determine which variable is non-significant and to be deleted.  The 

statistical tests, t-test, and p-value are used for this purpose.  However, forward 
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selection procedure starts with no explanatory variables. The first variable included 

in the equation is the one which has the highest simple correlation with a response 

variable.  The significance of the regression coefficient of the first variable is then 

tested.  The equation includes variables which are statistically significant.  A search 

for a second variable is made in the same way.  Variables are considered one by one 

until there is no significant improvement in the model brought about by adding 

another variable (Kutner 2004).  

 

The regression analysis presented in this thesis used backward elimination. The 

procedure starts with 28 potential explanatory variables.  The p-value used to 

identify significance of explanatory variable at chosen significance level was 0.05.  

 Estimate Unknown Model Parameters and Interpretation; 

In multiple linear regression analysis the least-squares criterion is used to estimate 

the regression coefficients.  The regression coefficients Bi measure the partial 

contribution of each predictor variable to the prediction of the response.  If a 

predictor xi is changed by one unit, while all the other predictor variables are kept 

fixed. Then the response variable y will change by Bi.  Sings (plus or minus) of 

regression coefficients refer to the direction of the relationship between the 

predictor variable and the response.  If the coefficient Bi is positive, then the 

relationship of the predictor xi to the response is positive, and if the coefficient Bi is 

negative then the relationship is negative.  

 Test for Multicollinearity. 

In multiple linear regression analysis, estimation of regression parameters are 

unstable and have high standard errors, when a predictor variable is a linear 

combination of other predictors in the model (Feranadez 2003).  Variance inflation 

factors (VIF) “measure how highly correlated each independent variable is with the 

other predictors in the model” (Kutner 2004:408).  O’ Brein (2007) suggested that 

VIF ≥5 indicates a multicollinearity problem.  VIF can be obtained on MINITAB by 

selecting the options in the regression dialog box.  
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6.5   Inference about MINITAB Multiple Regression output  

Regression analysis developed rapidly with the increasing power computers. Every 

statistics computer software package contains a regression component. The 

quantities SSR, SSE and SST are found in the SS column of MINITAB multiple 

regression output defined as: 

SST (total sum of squares) = SSR (sum of squares due to regression) + SSE (sum of 

squares due to error),  

SSR = 2

1

)ˆ( yy
n

i

i          (6.1) 

represents the variation in y “explained” by the regression.  

SSE= 2
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i yy                                                                                                                 (6.2) 

represents the variation in y left “unexplained” by the regression.   The values of R-

sq and  R-sq(adj) are indictors of how well the regression model agreement.  They 

are mathematically defined as follows: 

Coefficient of multiple determinations(R-sq) is defined as:  
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Where iy is the   actual value, iŷ  the predictive value and iy  the mean value.  2R  

has a value bounded between 0 and 1.  It represents the percentage of variation in 

the dependent variable y explained by the regression model.  The value of R-sq 

increases as more relevant terms are added to the model even if the new term does 

not contribute significantly to the model. 

R-sq(adj) is defined as follows:   

)1(
)1(

1
1)( 2R

kn

n
adjsqR                                                                                 (6.4)  

Where n is sample size and k is the number of parameters estimated.                 

 The R-sq(adj) only increases when significant terms are added to the model. 
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6.6   Measures of Model Adequacy 

Any model designed to predict human behaviour, suffers from predicting error as it 

cannot include all the variables of influence in addition to the difficulty of measuring 

some phenomena accurately. Once a model is developed, then checking the model 

adequacy is an important step for identifying models that best fit the data followed 

by determining which models are the best for prediction purpose. A number of 

methods are available to estimate prediction errors. The following three traditional 

techniques are often used:  (1) mean absolute deviation (MAD), (2) mean absolute 

percent error (MAPE) and (3) mean root squared error (MRSE). They are 

mathematically defined as:  
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Where iy   actual value, iŷ  predictive value and n is sample size. 

 

Accuracy=100-MAPE                                                                                                           (6.8) 

 

That is how closely the estimates provided by the model conform to the actual 

events being predicted.  The model is highly accurate for predicting when its MAPE 

value is less than 10.  Good predicting occurs when MAPE value is between 10 and 

20.  Predicting is inaccurate when MAPE value greater than 50 and reasonable when 

the MAPE value is between 20 and 50 (Lewis 1982:40).  
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6.7    Validation of Regression Models 

The final step in the model-building process is the validation process.  Model validity 

refers to the stability and reasonableness of the regression coefficients, and usability 

of the regression function.  Validation of a model is done by testing the model on 

another independent data set.  There are a variety of methods to examine the 

validity of the regression model, for instance the collection of new data and data 

splitting.  The purpose of collecting new data is to be able to examine whether the 

regression model developed from the given data is applicable for the new data.  The 

new data are needed to have similar statistical properties as the model data.  The 

corresponding values of the predictor variables need to be similar to those on which 

the regression model was fitted.  One validation method is to re-estimate the 

regression coefficients using the new data.  Then the regression coefficient of the 

new data is compared to those of the regression model based on the given data. The 

chosen regression model is applicable if the results are consistent.  A second 

validation method is designed to examine the predictive ability of a model.  The 

predictive ability of a model measure by using the mean of the squared prediction 

error (MSPR), which defined as: 

 

                MSPR= 2                                                                                (6.9) 

 

Where: 

Yi is the value of the response variable in the i th validation case 

 is the predicted value for the i th validation case based on the model-building data 

set.  n* is the number of cases in the validation data set. 

The mean of the squared prediction error (MSPR) is needed to be closer to MSE.  

This implies that the error mean square MSE based on the training dataset is a 

reasonably valid indicator of the predictive ability of the fitted regression model. 

           

The data splitting method for validation of a model can be used when the dataset is 

large enough to split into two sets.   The first set of data with apportion of say, 80% 
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of the given data called the estimation (training) data is used to estimate the model 

coefficients.  The second dataset with apportion of say, 20% of the data called the 

validation or prediction set (test set), is used in the same way as the new data to 

evaluate the reasonableness and predictive ability of the selected model.  This 

validation procedure is called cross-validation (Kutner 2004: 370).  

 
The predictive burglary models in this study were tested with a new data set. The 

new data are derived from the parcel with a similar level of burglary rate. During the 

modelling test, the accuracy percentage was achieved for the model and for each 

polygon (ZIP code) within the parcels test.   

 

6.8    A predictive Crime Model 

 
Multiple linear regressions were chosen for a predictive crime model. A predictive 

model used data which were introduce in section 6.2 and the potential predictor 

which was identified in the Table 6.1.  Table 6.2 presents typical input information 

relating to these data that has been used in this analysis.  Backward elimination was 

used for selection of explanatory variables. The p-value is used to identify the 

significance of the explanatory variable at the chosen significance level 0.05.  The 

least-squares method was used to estimate the regression coefficients.  Minitab was 

used to implement the multiple linear regression analysis.  Statistical methods were 

carried out with this regression model to identify which of these explanatory 

variables are significantly correlated with the response variable. Analyse the 

relationships between all the explanatory variables, taking into account the various 

correlations that may exist between the explanatory variables.  The advantage of 

MLR for identification of significant predictors within the model, allows several 

social sciences such as sociology and criminology to address questions such as the 

contribution of the significance explanatory variables to perform the model; the 

relationship between the significance explanatory within the model and the 

response.  These results are useful for the development of crime prevention 

strategies. 
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The sections below illustrate examination of the statistical relationships between the 

potential of explanatory variables which was chosen among characteristics of 

burgled households and burglary rate.  The analysis focuses on examining the risk of 

burglary within the specific clusters, applying the model across a number of 

geographical space parcels in the study region and then selecting the models within 

three specific levels of the spatial distribution of burglary rate.   

 
Table 6.2:   A typical input file. Columns refer to potential predictor variables and 
rows represent polygon (ZIP code). 
 
Zone Code one 

person 
allpensioner cohabiting Loneparent Crime 

rate 

00PTNN0001 0.122 0.0152 0.0183 0.1159 0.061 
00PTNN0002 0.1318 0.0405 0.0135 0.1216 0.0405 
00PTNN0003 0.0627 0.0495 0.0297 0.0396 0.0363 
00PTNN0004 0.1046 0.0268 0.0295 0.0214 0.0241 
00PTNN0005 0.0494 0.0148 0.0296 0.0938 0.0543 
00PTNN0006 0.0807 0.0202 0.0202 0.1037 0.0403 

00PTNN0007 0.0929 0.0353 0.0417 0.0705 0.0417 

6.8.1   Example of Regression Modelling Steps 

This section outlines the procedures for building a predictive model of the 

geographical space, Parcel NN in the study region which was chosen as an example 

to illustrate the regression modelling steps. The procedure starts with 28 potential 

of characteristics of burgled households as explanatory variables with an actual 

burglary rate as the response variable. Table 6.3a shows the MINITAB backward 

elimination, the first stage of the fitting process.  The regression result in this stage 

includes all of the potential explanatory variables.  According to VIF, the explanatory 

variable, people aged less than 16 have the highest VIF =538.247>5, so it dropped 

from the model.  It was considered a problem to the model.  This procedure was 

repeated at each stage according to highest VIF ≥5.  Then complete performance the 

analysis of the model are with remaining explanatory variables with VIF values <5 

(see Table 6.3a). Table 6.3b shows the refitting of the model after excluding the 

explanatory variables from the model according to VIF>= 5.  Backward elimination 

proceeds by sequentially excluding the explanatory variables that adds the least to 

the model.  The variables were with the largest p-value according to decision rule for 
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p test.  The p-value of the explanatory variables:  No Qualifications (NQ); semi-

detached (h2) and one person are greater than the chosen significance level 0.05.  

Thus, according to the decision rule for p-test, these non-significant explanatory 

variables are excluded from the model which is presented in Table 6.3b.  The final 

results for the regression model of burglary rate on significant explanatory variables 

are shown in Table 6.4.  

Table 6.3a: NN model fit at initial stage of backward elimination for prediction 

burglary rate.  The explanatory variable with the highest VIF displayed using dark 

colour. 

Predictor Coef SE Coef        T       P VIF 

Constant -1.128 1.643 -0.69 0.501  

<16 1.299 1.682 0.77 0.45 538.247 

16-59 0.222 1.54 0.14 0.887 245.229 

>60 0.718 1.558 0.46 0.65 513.66 

ManagersOcc -0.968 1.012 -0.96 0.351 19.379 

professionalOcc -0.468 1.176 -0.4 0.695 25.933 

TechnicalOcc -1.254 1.068 -1.17 0.255 23.729 

AdministrativeOcc -1.0954 0.95 -1.15 0.263 18.498 

SkilledtradesOcc -0.0033 0.7567 0 0.997 4.305 

personalserviceOcc -0.2066 0.7537 -0.27 0.787 2.284 

sales&customerservice -1.0622 0.6757 -1.57 0.132 2.728 

machineoperatives 0.7538 0.9337 0.81 0.429 3.039 

ElementaryOcc 0.2496 0.5042 0.5 0.626 3.66 

NQ 0.7161 0.4226 1.69 0.106 27.943 

HQ 0.8111 0.4598 1.76 0.094 80.121 

Hocc 0.776 1.003 0.77 0.449 18.878 

Loocc 0.7744 0.948 0.82 0.424 77.267 

Meocc 1.1749 0.8601 1.37 0.188 13.116 

Unemploy -0.5949 0.6314 -0.94 0.358 9.414 

h1 0.0428 0.735 0.06 0.954 44.532 

h2 0.1229 0.7099 0.17 0.864 50.096 

h3 0.1919 0.6896 0.28 0.784 72.953 

f1 0.5107 0.8696 0.59 0.564 148.264 

f2 0.075 1.552 0.05 0.962 5.052 

one person -0.1806 0.7455 -0.24 0.811 92.848 

allpensioner -1.594 1.058 -1.51 0.148 6.876 

Married 0.6427 0.7414 0.87 0.397 31.313 

cohabiting 0.3771 0.8226 0.46 0.652 4.631 

Loneparent 0.5847 0.7352 0.8 0.436 29.232 
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S = 0.0368744     R-Sq = 65.0%        R-Sq(adj) = 13.5% 

Analysis of Variance 

Source                    DF        SS                    MS                    F                 P 
Regression             28       0.048046        0.001716        1.26           0.303 
Residual Error        19      0.025835         0.001360 
Total                        47      0.073881 
 

 

Table 6.3b: Shows the MINITAB printout of the NN model. 15 explanatory variables 

was excluded from the model according to VIF>=5.  The model includes significance 

and non-significance explanatory variables. The non-significance explanatory 

variables NQ; h2; one person displayed using dark colour. 

 

Predictor Coef SE Coef T P VIF 
Constant 0.060112 0.005172 11.62 0  
SkilledtradesOcc -0.25619 0.04383 -5.85 0 3.316 
personalserviceOcc 0.2393 0.04474 5.35 0 1.548 
sales&customerservice -1.00508 0.04033 -24.92 0 2.056 
machineoperatives 0.45451 0.05174 8.78 0 1.535 
ElementaryOcc 0.20353 0.03089 6.59 0 3.39 
NQ 0.00957 0.01021 0.94 0.367 3.932 
Meocc 0.34263 0.02762 12.41 0 3.496 
h2 -0.00809 0.01213 -0.67 0.517 2.387 
h3 0.03243 0.01024 3.17 0.008 2.495 
f2 0.98616 0.06989 14.11 0 2.195 
one person 0.010041 0.009024 1.11 0.288 2.965 
allpensioner -0.30304 0.04543 -6.67 0 2.331 
cohabiting -0.41315 0.03221 -12.83 0 1.601 
 

S = 0.00190156          R-Sq = 99.4%            R-Sq(adj) = 98.7% 

Analysis of Variance 

Source                       DF          SS                      MS                         F             P 
Regression                13          0.00671587     0.00051661     142.87       0.000 
Residual Error          12          0.00004339     0.00000362 
Total                          25          0.00675926 
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Table 6.4: Shows the finial MINITAB printouts for the NN model. The model 

presented the significance explanatory variables for the prediction burglary rates. 

Predictor Coef SE Coef             T              P           VIF 

Constant 0.061541 0.002652 23.2 0  

SkilledtradesOcc -0.29775 0.03809 -7.82 0 2.104 

personalserviceOcc 0.24753 0.04801 5.16 0 1.497 

sales&customerservice -1.00206 0.04199 -23.86 0 1.873 

machineoperatives 0.46134 0.05125 9 0 1.266 

ElementaryOcc 0.20331 0.02536 8.02 0 1.92 

Meocc 0.34052 0.0259 13.15 0 2.583 

h3 0.040786 0.009523 4.28 0.001 1.813 

f2 1.0738 0.06158 17.44 0 1.431 

allpensioner -0.25255 0.03899 -6.48 0 1.443 

cohabiting -0.4317 0.03315 -13.02 0 1.425 
 

 

S = 0.00207451   R-Sq = 99.0%   R-Sq(adj) = 98.4% 
 

Analysis of Variance 
 

Source                      DF                    SS                        MS                    F                    P 
Regression     10   0.00669471  0.00066947  155.56  0.000 

Residual Error   15   0.00006455  0.00000430 

Total          25   0.00675926 
 

The regression equation: Burglary rate = 0.0615 - 0.298 SkilledtradesOcc + 0.248 

personalserviceOcc - 1.00 sales&customerservice + 0.461 machineoperatives + 0.203 

ElementaryOcc + 0.341 Meocc + 0.0408 h3 + 1.07 f2 - 0.253 allpensioner - 0.432 

cohabiting, can be interpreted as providing an estimate of regression coefficients for 

a given characteristic of burgled households.  This equation, for instance, shows that 

the burglary rate tends to increase by 0.34 for each unit increase in the predictor 

intermediate occupation (Meocc) while all the other predictor variables are kept 

fixed.  On the other hand if the predictor all pensioners is increased by one unit 

while all the other predictor variables are kept fixed, then the burglary rate will 

decrease by 0.25.  The analysis reveals a number of predictors that increase the risk 

of burglary. Living in a terraced house (h3) and shared house (f2) increase risk. In 

households where the occupations are personal service or machine operative the 



 
100 6  PREDICTIVE MODELS 

risk is high.  In addition those in elementary or intermediate occupations are also at 

risk of burglary.  However these predictors decrease the risk of burglary: living in a 

household in which there are all pensioners; people cohabiting; people with skilled 

trades’ occupation; these with sales and customer service occupations.   

 

6.8.2    Model applied across the clusters  

This study shows the benefit of examining the risk of burglary within the cluster. 

Cluster analysis is an important approach for the explanation and prediction of crime 

spatial patterns. Within the cluster criminal phenomena are examined within the 

area of concern.  This is because concern in certain location helps to identify the 

problem associated to the characteristic of the people within their location, and this 

leads to increase the predictive accuracy of the model. Clustering was widely used in 

the field of criminology research for instance; Corcoran and Wilson (2003) used 

spatial clusters for forecasting crime. 

 

For building a predictive regression model for this analysis, modelling utilized data 

associated with the characteristics of burgled households and actual burglary rate 

(outline in Section 6.2) within the clusters. Clusters which were identified by SCS (see 

Section 4.3) and their geographical locations are shown in Figure 6.1(outline in 

Section 5.5).  The final MINITAB printout of regression models across the specified 

clusters are shown in Figure 6.2. The results presented the significant explanatory 

variables for prediction of the burglary rate. The predictive burglary models which 

were obtained from this analysis are tested with new data set (validation data) (see 

Figure 6.3). The new data are derived from a similar level of burglary rate, for 

instance, cluster A tested within data that was derived from cluster F. Clusters A and 

F were previously identified as ‘’hotspot’’ (section 4.6.1). For testing cluster B data 

was derived from parcel within cluster C which was identified as a ‘’cold spot’’ 

(section 5.4.2). The accuracy percentage is one of the most important components 

of the performance properties of a predictive model. During the modelling test an 

accuracy percentage was achieved for the model and the polygon (zone) of the 
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parcel’s test (see Figure 6.3). The accuracy percentage results which were identified 

as 68%,,71%,70%,80%,72% for the clusters A,B,C,D,F respectively indicated that the 

models were reasonable.  This is according to the criteria of accuracy test, formula 

6.8 (Section 6.6). The model is reasonable when its mean absolute percentage error 

value is between 20 and 50 (Lewis 1982: 40).  

 

 

 

 

Figure 6.1: Shows the Location of the clusters in the study region using crime dataset. 

The clustering algorithm SCS was implemented for the specified the clusters. 
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Cluster A 

Predictor Coef SE Coef T P VIF 
Constant 0.06886 0.01726 3.99 0  
professionalOcc -0.4281 0.1183 -3.62 0.001 3.806 
TechnicalOcc 0.2587 0.1016 2.55 0.013 3.872 
machineoperatives -0.4369 0.133 -3.28 0.002 1.408 
h3 0.07801 0.02448 -3.19 0.002 1.678 
f2 1.1416 0.2211 5.16 0 1.34 
allpensioner -0.3872 0.1034 -3.74 0 2.197 

 
S = 0.0133760   R-Sq = 66.0%   R-Sq(adj) = 59.1% 
 

Cluster B 

Predictor Coef SE Coef        T        P    VIF 
Constant 0.022098 0.008368 2.64 0.018  

professionalOcc -0.15524 0.03979 -3.9 0.001 2.014 
h3 0.05227 0.02284 2.29 0.036 1.694 

f2 0.5102 0.2075 2.46 0.026 2.558 
one person 0.07572 0.01637 4.63 0 2.1 

 

S = 0.00592016   R-Sq = 89.9%   R-Sq(adj) = 83.6% 
 
Cluster C 

Predictor Coef SE Coef        T       P    VIF 
Constant 0.024746 0.007092 3.49 0.001  

TechnicalOcc -0.10582 0.03126 -3.39 0.001 1.875 
sales&customerservice 0.11362 0.04922 2.31 0.022 1.801 

Unemploy 0.11583 0.05294 2.19 0.03 1.87 
f2 0.24798 0.09986 2.48 0.014 1.238 

allpensioner -0.08793 0.02711 -3.24 0.001 2.853 

 
S = 0.00698176   R-Sq = 44.9%   R-Sq(adj) = 38.3% 
 

 

Figure 6.2: Shows the final Minitab printouts of significance predictors for a 

prediction regression models across the specified clusters of geographical space in 

the study region. 
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Figure 6.2: Continuation. The final Minitab printouts of significance predictors for a 

prediction regression models across the specified clusters of geographical space in 

the study region. 

 

Cluster D 

Predictor Coef SE Coef        T         P     VIF 
Constant 0.008924 0.005441 1.64 0.106  

SkilledtradesOcc 0.2194 0.04867 4.51 0 2.026 
sales&customerservice 0.12697 0.04415 2.88 0.005 1.315 

Meocc -0.08266 0.033 -2.5 0.015 2.496 
f1 0.07403 0.01582 4.68 0 3.768 

Loneparent 0.14946 0.02696 5.54 0 3.63 

 

S = 0.00541410   R-Sq = 77.8%   R-Sq(adj) = 73.4% 
 
 
 
Cluster F 
 

Predictor Coef SE Coef T P VIF 
Constant 0.023433 0.005053 4.64 0  

personalserviceOcc -0.29753 0.06998 -4.25 0 1.281 
machineoperatives 0.12636 0.06104 2.07 0.04 1.65 

Unemploy 0.0814 0.03254 2.5 0.013 1.935 
h2 0.024118 0.009607 2.51 0.013 1.655 

f2 0.09261 0.01216 7.61 0 1.702 
one person 0.02668 0.01044 2.55 0.011 1.561 

allpensioner -0.18882 0.05103 -3.7 0 2.325 
Loneparent 0.19932 0.03477 5.73 0 1.816 

 

S = 0.0101973   R-Sq = 56.3%   R-Sq(adj) = 53.3% 
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Figure 6.3: Illustration of the validation of the regression models using a new data. 

The new data have similar statistical properties as the model data.  The accuracy 

percentage for the models and the polygon of the parcel’s test are specified.  The 

models  across the clusters A and B are resonable.  Their MAPE are 32 and 29 

respectively.  
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Figure 6.3: Continuation.  Validation of the regression models using a new data. 

The new data have similar statistical properties as the model data. The models 

across the clusters C and D are resonable.  Their MAPE are 30 and 20        

  respectively.  
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Figure 6.3: Continuation.  Validation of the regression models using a new data.  

The model across a cluster F and it is resonable.  Its MAPE is 28.  
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6.8.2.1   Results and Discussion 

Regression models have the ability to identify significant input parameters from a 

set of potentially relevant parameters.  The model results, which were obtained 

from this analysis and presented in Section 6.8.2, in general indicated that the 

potential predictors Qualification and Age structure are not significant within the 

observed datasets (residential burglary) which was recorded for the study region. 

However, the predictors Household Occupation, Socio-economic, Household space, 

Household composition are significantly correlated with burglary rate associated 

with the predictors property. For the influence of Household space, the results 

indicate that the risk of burglary rate increases within the household living in shared 

houses (f2). The result reported that the predictor housing types-lats were positively 

significantly correlated with burglary rate in the study region. In other words the 

household living in flats suffer from burglary more than in other housing types of 

living. The influence of household composition were significantly varies according to 

the composition of the household. For instance, the predictors’ ‘one person’ and 

‘lone parent’ were positively and significantly correlated with burglary rates. Those 

living in a household in which there was ‘one person’ and ‘lone parent’ increase the 

risk of the burglary rate.  On the other hand the predictor ‘all pensioners’ were 

negatively significantly correlated with burglary, which decreases the risk of burglary 

rate. The obtained results are expected since it is logical.  According to the theory of 

the economics of crime, increased unemployment rates lead to higher property 

crime rates, as is pointed out in Section 2.1.3 (Edmark 2005; Gorr &olligshlagers 

2003). This study found that within the ‘frame work’ of a clusters model, 

unemployment positively and significantly correlated with burglary rate. Occupancy 

level significantly correlated with burglary rate positively or negatively related to 

economic status.  Many researchers such as (Bowers 2004; Malczewski 2005; 

Edmark 2005; Gorr 2003) reported the relationship between economic status and 

crime.  In this analysis the influence of the predictor occupation yield mixed results.  

This is because the economic levels within the occupation are not specified within 

the observed data.  According to the information about the occupancy level for  
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some occupation are between high and medium or between medium and low level.  

This means that the economic levels within the observed data are not well defined. 

To clarify this point, the technical occupations were negatively significantly 

correlated with burglary rate within cluster C, while positively significantly within 

cluster A. But it is evident that the levels of professional occupations are in high 

occupancy level. The obtained results indicate that the predictor ‘professional 

occupation’ was negatively and significantly correlated with burglary rate and 

decreasing the risk of burglary. The influence of the household occupations related 

to blending of two factors: occupancy level of the occupation and the time that 

people are at work. The household occupation with a high level of occupancy 

decreases the risk of burglary. This is because the household in high level of 

occupancy can use security, which is effective in reducing the risk of burglary rate.   

On the other hand the low level of occupancy leads to lack of security.  This leads to 

increase the risk of burglary rate.  

 

  

 

Figure 6.4 Characteristics of burgled household areas.  The models of the clusters 

neighbourhod have approximately similar contributions to significant predictors. 



 
109 6  PREDICTIVE MODELS 

6.8.3   Selection of Multilevel models 

The model was first applied across a number of geographical space parcels in the 

study region. Each parcel’s data is modelled separately in order to identify significant 

predictors of burglaries, through the potential of the examination of different 

characteristic of burgled households.  The final MINITAB output for a number of 

prediction models of geographical space in the study region are presented in Figure 

6.5. The detail of the models can be found in Appendix E.  The predictive burglary 

models which were obtained from this analysis were tested with a new data set and 

the results are reasonable according to the formula 6.6.  Then the models within the 

specific three levels of the spatial distribution of burglary rate were selected.  In the 

cases of the identification of levels of burglary rate in the study region previously 

specified in Section 5.4.2. The levels are high, middle and low.  The models were 

selected according to the criteria (outline in Sections 6.6).  Ten parcels were selected 

from the high level region and selected four parcels from low region level and four 

parcels from the middle level region. Table 6.5 provides a summary of the process of 

model selection. The results indicate that model NN, NY and PF were producing the 

smallest prediction error according to the criteria MAD, MAPE and MRSE and it has 

highest value within R-sq and R-sq (adj).  Consequently, model NN was selected for 

predicting future crime in the region of high level of burglary rate. Models NY and PF 

were selected as representing the predicting of future crime in middle and low level 

of burglary rate regions respectively. The obtained models were tested with new 

data.  This was derived from a parcel with a similar level of burglary level (see Figure 

6.6).  The accuracy percentage was achieved for the models and the polygons of the 

parcel’s test.  

 

The models which were obtained from this analysis and which are presented in 

Figure 6.5 indicate that household occupations are strongly related to burglary rate. 

The households’ occupations with certain occupations are more at risk than others.  

For instance in the multilevel models the skilled trades occupation are negatively 

and significantly correlated with burglary rate.  That decreases the risk of burglary  
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rate.  Households who are working as Elementary and Personal service occupations 

are positively significantly correlated with burglary rate. In other words, those 

households whose work is Elementary and Personal service occupations are at 

increased risk of burglary rate. 

 

Parcel PF 

Predictor Coef SE Coef T P VIF 
Constant -0.00402 0.005731 -0.7 0.498  
TechnicalOcc 0.08231 0.03004 2.74 0.019 1.573 
SkilledtradesOcc -0.16384 0.05292 -3.1 0.01 2.87 
personalserviceOcc 0.22708 0.05618 4.04 0.002 1.864 
Machineoperatives -0.25408 0.08481 -3 0.012 1.792 
ElementaryOcc 0.32697 0.05887 5.55 0 1.654 
Cohabiting 0.18563 0.06888 2.7 0.021 3.862 

S = 0.00161830   R-Sq = 94.5%   R-Sq(adj) = 92.2% 
 

Parcel NY 

Predictor Coef SE Coef          T       P VIF 
Constant 0.14523 0.03309 4.39 0.001  
SkilledtradesOcc -0.499 0.1728 -2.89 0.012 1.554 
sales&customerservice -0.6365 0.245 -2.6 0.021 2.172 
ElementaryOcc -0.8677 0.1964 -4.42 0.001 2.566 

S = 0.0126028   R-Sq = 84.1%   R-Sq(adj) = 68.1% 
 

Parcel NJ 

Predictor Coef SE Coef T P VIF 
Constant -0.0454 0.01674 -2.71 0.017  
SkilledtradesOcc 0.585 0.1143 5.12 0 2.775 
personalserviceOcc -0.4492 0.1327 -3.38 0.004 2.806 
sales&customerservice 0.3012 0.115 2.62 0.02 2.894 
machineoperatives 0.7618 0.1844 4.13 0.001 2.767 
Unemploy 0.40883 0.08852 4.62 0 1.954 
flat1 0.19175 0.04591 4.18 0.001 2.383 
cohabiting 0.28177 0.09469 2.98 0.01 3.32 

 
S = 0.00492369   R-Sq = 91.6%   R-Sq(adj) = 82.5% 
 

Figure 6.5: Presents an example of Minitab printouts of regression models of 

geographical space in the study region. 
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Table 6.5: This summarises the process for the selection multilevel models.  

Selection models are shown dark colour. 

 

High 
level 

MAD MAPE% MRSE Average 

Accuracy% 

R-sq% R-

sq(adj)% 

NF 0.005158 17% 4.56E-05 83% 93.90% 82.70% 

NH 0.00471 14% 3.03E-05 86% 93.80% 85.10% 

NK 0.005707 27% 0.001231 73% 80.70% 61.30% 

NR 0.030865 18% 4.79E-05 82% 81.6% 67.3% 

PG 0.009769 20% 0.000134 80% 93.7% 87.8% 

NG 0.010392 23% 0.000167 77% 72.6% 58.9% 

NJ 0.002749 8% 1.13E-05 92% 91.60% 82.50% 

NN 0.001022 3% 1.67E-06 97% 99.0% 98.40% 

PC 0.001799 22% 0.002284 78% 98.20% 97.40% 

PJ 0.00846 39% 0.000111 61% 87.3% 68.8% 

Mid 
level  

MAD MAPE% MRSE Average 

Accuracy% 

R-sq% R-

sq(adj)% 

PK 0.011245 48% 0.013703 52% 80.7% 61.3% 

NZ 0.005851 18% 0.007397 82% 77.20% 61.60% 

NY 0.004838 17% 0.005768 83% 84.10% 68.10% 

PH 0.011445 50% 0.013733 50% 25.90% 0.00% 

Low 
level  

MAD MAPE% MRSE Average 

Accuracy% 

R-sq% R-

sq(adj)% 

NX 0.001865 24% 0.002215 76% 85.00% 68.80% 

PF 0.001046 11% 0.001237 89% 94.50% 92.20% 

NS 0.004927 22% 0.005906 78% 78.90% 52.90% 

NM 0.001421 15% 0.001778 85% 95.40% 89.6% 
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Testing Mid level Model
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  Figure 6.6: Illustration of the validation of the multilevel models using a new 

dataset.  The new data have similar statistical properties as the model data. The 

accuracy percentages for the models and for each polygon within the parcel are 

specified.  The models are reasonable. 
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Table 6.6 : Shows the number of significance explanatory variables of characteristics 

of household within the location of burglary rate levels. 

 

 

 

Figure 6.7: Shows how the significant explanatory variables, namely the 

characteristics of household affect the rate of burglary rate. D indicates that the 

variable decreases the risk of burglary whereas I indicates that the variable   

increases the risk of burglary. 

Significance explanatory variables  
Characteristics of household 

high middle low 

Professional Occupations 5195 6381 7549 

Skilledtrades Occupations 3413 3596 3642 

Technical  Occupations 6029 6504 7225 

Personal service Occupations 2634 2452 2456 

sales&customer service ocupations 3961 3707 3642 

Machine operatives 2681 2541 2114 

Intermediate occupations(Meoc) 5992 6608 7383 

Unemploy ment 4504 2911 1877 

Semidetached (h2) 11076 11796 15707 

Terraced (h3) 16210 15898 10746 

Tenement (f1) 7782 5249 3563 

Shared house (f2) 3844 1986 691 

one person 13966 11849 10286 

allpensioner 2260 3021 4067 

Loneparent 6002 4427 3760 
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Figure 6.8: Characteristics of burgled household areas. Significance explanatory 

variables of characteristics of household within parcels in the study region.  

 
 

 
 
 

A    Age structure 
O     Occupation 
S    Socio-economic 
T    Housing type 
C    Household composition 
 

 
 



 
115 6  PREDICTIVE MODELS 

6.9   Artificial Neural Models for Prediction  

 
This section outlines Artificial Neural Networks (ANNs) procedures for building a 

predictive crime model.  ANNs are computational modelling tools that attempt to 

establish a mathematical relationship between input and output (Basheer, 2000). 

ANNs are accepted in many disciplines for modelling complex- real world problems. 

ANNs are relevant in crime prediction and have been established in a number of 

research projects such as Olligschlaeger 1997; Olligschlaeger and Gorr 2001; 

corcoran and Wilson 2003; Oatley and Ewart 2003.  

 

A hierarchical neural network (HNN) is a neural network architecture in which the 

problem is divided and solved in more than one step (Mehratra, 1997: 21).  HNN has 

been introduced for improving the performance of the model in terms of time and 

accuracy.  HNNs have found their use in various applications such as medicine, 

ecology and sociology.  Mat (2002) used a hierarchical Radial Basis Function (HRBF) 

in diagnosing cervical cancer.  The hierarchical network was divided into two Radial 

Basis Functions.  The first network performs as a filtering process to the second 

network.  That the second network is fed with certain data. The study reveal that 

HRBF was increased the performance of single RBF.  Corcoran (2003) applied the 

KSOM network to crime data with clustering of topological ordering then the 

clusters data formed by KSOM used to train a separate MLP network.  Thus, the 

basics of hierarchical neural network are not new.  A HNN for building a predictive 

crime model which is presented in this thesis is somewhat different.  The new 

methodology is a hierarchical neural network (HNNs) approach with training data for 

the first network being prepared by a regression methodology.  In this case the 

statistical methodology is combine with a powerful feature of two proposition ANN 

learning algorithms; unsupervised (Self-Organizing Map SOM) and supervised (back- 

propagation BP) to generate a more a accurate prediction. The concept of a 

combination of several methodologies for problem solving has the advantage of 

improvement the performance of model prediction. Practical works which are 

described in section 6.9.2 illustrated this point.  
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An unsupervised SOM network consists of two-layers; input layer which accept 

multiple inputs, and output layer.  The data from the input layer is passed directly to 

the output layer with no hidden layer.  The output layer is formed as a regular grid of 

cells, which transforms n-dimensional input patterns into one or two dimensions.  It 

has been applied successfully in clustering and visualization of high dimensional data 

(Kohonan, 1989).  The task of a SOM in this study is hybrid networks for, reduces the 

dimensionality of the input data set into 2 D and is then used as front- end (training 

set) to BP network in the specified HNN.   

 

A supervised Back Propagation is a multi-layer, feed-forward neural network 

consisting of three layers: an input layer, a layer with nodes representing the 

potential influencing factors of a specific problem, a hidden layer and an output 

layer with nodes that represent the solution of the problem.  This supervised 

learning algorithm is designed to minimize the mean square error between 

computed output of the network and the desired output.  BP network can be used 

for classification and prediction. The task of BP network in this study is used for 

prediction burglary rates and to examine the statistical identification of burglary rate 

levels in the study region.   

 

6.9.1    Methodology 

The development of neural network models requires a consideration of a number of 

issues such as data representation and structuring. This is important in the 

assessment of a robust model. 

 

6.9.1.1   Data 

The dataset was normalized in a 0-1 range, which is needed to construct a neural 

network model. It is divided in to a training set which is used to train the model and 

a test set which is used to test the performance of the trained model.  The portion of 

training and test dataset is suggested to be 80% of the dataset for training and 20%  
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of the dataset for testing the model.  A regression methodology (outline in Section 

1.1.4) was used in this study for preparing a hierarchical neural network training 

data.  This methodology has the ability to identify explanatory significant variables 

out of a number of potential explanatory variables which was used to construct the 

regression model.  Training data of HNN in this study starts with a number of 

explanatory variables with statistical significance which were obtained and identified 

from regression models results (Section 6.8.2).  Non-significant explanatory variables 

were removed from the data set.  This helps to reduce time required to complete 

the task.  The value of an actual output values for prediction are represented by the 

burglary rate (Section 5.3.2) and for classification the components of each actual 

binary output vector is summed to 1 (one-of n code). 

 

6.9.1.2   A hierarchical neural network structure  

The structure of the HNN which is presented in this thesis consists of five layers: 

input layer, SOM input layer with k specified input neurons; Kohonen layer with 

neurons which arranged as n rows and m columns; Coordinate layer which become 

BP input layer in the HNN.  The BP network within the HNN consists of one hidden 

layer and one neuron output layer (see Figure 6.9).  There are several parameters 

which influence the performance of an ANN such as the number of hidden layer and 

its nodes; transfer function1; learning rule2; learning runs.  There is no formal theory 

for determining optimal of these parameters.  Therefore optimization are made 

during practical work based on the minimize network error value (form 6.5).  It was 

found from practical work that the choice of the above parameters is important to 

reduce model’s error. 

 

-------------------------------------------------------------------------------------------------------------- 

1Transfer function: is a function that maps a neuron’s net output to its actual output. 

2 The Learning rule is the mathematical equation that determines the increment or 

decrement by which weights of a processing element are changed during the learning 

phase. 
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Figure 6.9:  Hierarchical neural network architecture of the predictive crime model.  
Display neurons within the layers. (NeuralWorks Professional II/PLUS  software). 
 
 

6.9.2    Experimental work 

A comprehensive software package NeuralWorks Professional II/PLUS was used to 

develop neural network predictive models.  This software was selected because it 

allows the user to design, test and then implement many different neural networks 

and easily alter learning parameters during training. In the experiment below, the 

training and testing process of HNN and BP network are described. Furthermore, 

detailed comparisons of average percentage accuracy achieved at testing stage by 

the obtained models are discussed.  

 

Experimental work 1 

A supervised BP learning algorithm was selected in this study for classification and 

predication.  A three layered BP network was created first, to examine the levels of 

burglary rate in the study region.   An input layer with 15 neurons represents 
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explanatory variables with statistical significance (Section 6.8.2).  There is no rule for 

determining the number of hidden layers and neurons. The processes start with 

Lawreuce and Fredrickson’s (1998) suggestion (outlined in section 1.1.3). A best 

estimation for the number of neurons is a half of the sum of inputs and outputs.  

Thus the best obtained results for the current models are one hidden layer with 8 

neurons.  The output layer is with three neurons are represent binary actual output.  

For example, 1 0 0 represents a low burglary rate level.   The selected parameters 

out of a several options from the dialogue box for back- propagation are shown 

Figure 6.10.  This dialogue box contains a lot of information about the layer, 

including the learning rule used. In Practice it was found that the network had the 

smallest AME error with the following selected parameters: transfer function 

Logistic (sigmoid) and learning rule Extended Delta- Bar- Delta (Ext- DBD) and 

learning run between 50000 and 90000. A back Propagation neural network 

architecture associated with the selected parameters is shown in Figure 6.11. The 

obtained network results are summarized in Table 6.7. The percentage accuracy 

obtained for a high level of burglary rate is 85% which means that the model is a 

good prediction.  The percentage accuracy obtained for middle and low levels of 

burglary rate are 56% and 78% respectively.  This means that the models in this case 

are reasonable accurate predictors (Lewis, 1982:40). 

     Figure 6.10:  Back-propagation dialogue box. Selection parameters used for          

     building classification model,experimental work 1.(software package          

    NeuralWorks Professional II/PLUS). 
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Figure 6.11: Back-propagation network for classification, experimental 1. Display 

neurons within the layers. (Software package NeuralWorks Professional II/PLUS) 

 

Table 6.7: Results achieved by BP network for examine the levels of burglary rate. 

 

               Levels Average percentage accuracy 

                   Low                  78% 

                   Middle                  56% 

                  High                  85% 

 

 

 

Experimental work 2 

The non hierarchical neural network used BP for prediction burglary rate in the 

study region.  A BP network is created with three layers.  28 input vectors of 

potential explanatory variables which were used to construct the regression model 

are fed into the BP input layer. The model was applied across a number of selection 

parcels in the study region. In this case the best selected results from BP dialogue 
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box are  one hidden layer with 13 neuron and output layer within one output neuron 

which  represent burglary rate prediction (see Figure 6.12).  The obtained network is 

illustrated in Figure 6.13. Their obtained results for average percentage accuracy are 

illustrated in Figure 6.14 and summarized in Table 6.8. The results shown that the 

average percentage accuracy an achieved by BP models at testing stage are 44-69%. 

Then these obtained results can later be comparing with the results of a HNN new 

methodology (experimental 3).  This is to demonstrate the performance of the new 

methodology.  

 

 

 

 

Figure 6.12: Back-propagation dialogue box. Selection parameters used for building 

predictive model, experimental 2. (Software package NeuralWorks  Professional 

II/PLUS). 
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Figure 6.13: Back-propagation network, experimental 2. Display neurons within the 

layers. (Software package NeuralWorks Professional II/PLUS).  

 

Table 6.8: The average percentage accuracy and mean absolute deviation for 

selected models which were achieved by BP network. 

Models Average percentage 

Accuracy 

MAD 

Cluster A 65% 0.0172 

Cluster B 44% 0.01168 

Cluster  C 65% 0.0067 

Cluster  D 64% 0.0214 

Cluster  F 69% 0.0197 

Parcel NN 51% 0.02666 

Parcel PF 47% 0.0204 
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Figure 6.14:  Presents an example of BP model results.  The accuracy percentages for 

the models and for each polygon within the parcel are specified. 
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Figure 6.14: Continuation. BP model results.  The accuracy percentages for the 

models and for each polygon within the parcel are specified. 
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Figure 6.14: Continuation. BP model results.  The accuracy percentages for the 

models and for each polygon within the parcel are specified. 

 

 

Experimental work 3 

In order to illustrate the performance of a new methodology for building a 

predictive model, the models are applied on the same selection parcel as in 

experiment 2.  A hierarchical neural network (HNN) starts their construction model 

with a number of explanatory variables with statistical significance. These were 

obtained and identified from regression model results.  The HNN begins training in 

an unsupervised (SOM) with no specified actual output. This then requires 

supervised training for the predictive values.  The input vectors specified in Section 

6.9.1.1 feed into the SOM input layer.  The SOM network is trained with different 

map sizes.  During the practical work found that 4x3 is the optimum map size in 

Kohonen layer is identified. This was based on the minimum values of AME (formula 

6.5).  The Kohonen layer output feeds into a coordinate layer which gives an (x,y) 

representation of the winning neurons in the SOM network layer.  Figure 6.9 shows 

how a SOM network can be used to assist in the task of dimension reduction.  The 

dimension reduced in this case from 15 to 2 D.  BP network input layers’ make use of 

a coordinate layer with two neurons. Therefore a coordinate layer-become a BP 

input. Both systems, hierarchical and non-hierarchical, used the back- propagation 
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algorithm for the prediction of the burglary rate.  A back-propagation network in this 

case consists of one hidden layer and one output neuron. Experiments found that 

the combination of one hidden layer, a hyperbolic tangent (TanH) (transfer 

function); Extended Delta-Bar-Delta (Ext. DBD) for learning; and learning run 

between 3000 and 10000 had the smallest AME error.  The summary of the practical 

selection of these parameters from Self- Organizing Map dialogue box is shown in 

Figure 6.15. The obtained network results are summarized in Table 6.9.  

 

 

 

 

 

Figure 6.15 Self Organizing Map dialogue box. Selection parameters used for 

building predictive model, experimental work 3. (Software package NeuralWorks 

Professional II/PLUS). 
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Table 6.9: The average percentage accuracy and mean absolute deviation for 

selected models which were achieved by a new HNN network. 

 

Models Average percentage 

accuracy 

MAD 

Cluster A 75% 0.0150 

Cluster B 71% 0.0075 

Cluster  C 76% 0.00612 

Cluster  D 74% 0.01666 

Cluster  F 73% 0.0152 

Parcel NN 70% 0.019015 

Parcel PF 55% 0.013503 

 

 

 

 
 
Figure 6.16: Presents an example of a new HNN model results. The accuracy 

percentages for the models and for each polygon within the parcel are specified. 
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Figure 6.16: Continuation. HNN models results. The accuracy percentages for the 
models and for each polygon within the parcel are specified 
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Figure 6.16: Continuation. HNN models results. The accuracy percentages for the 
models and for each polygon within the parcel are specified. 
 
 

 
 

 

 
 
 
Table 6.10: Summarize the performance of each of the techniques investigated in 
this analysis: MLR, new HNN and BP. 
 

   Models MLR 
 

New HNN BP 

Cluster A 68% 75% 65% 

Cluster B 71% 71% 44% 

Cluster C 70% 76% 65% 

Cluster D 80% 74% 64% 

Cluster F 72% 73% 69% 

Parcel  NN 79% 70% 51% 

Parcel PF 76% 55% 47% 
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Experimental work 4 
 
Hotspots analysis has been an important approach for the explanation and 

prediction of crime spatial patterns.  The purpose of this experiment is the 

prediction of burglary rate and to identify the characteristics of burgled households 

of the high level ‘hotspots’ in the study region.  In other words, that leads the 

households within a certain characteristics that have a higher than average risk of 

victimization.  Previously the ‘hotspots’ within the historical dataset in the study 

region were identified by the SCS algorithm (discussed in Section 4.6.1). In order to 

identify and contribution the variables among the characteristics of burgled 

household, multiple linear regression analysis proposed for this purpose (mentioned 

in Section 6.8).  The obtained results which are shown in table 6.11 indicate that 

those living in a housed in which there was ‘one person’ and ‘Lone parent’ increase 

the risk of the burglary rate.  The risk of burglary rate increases within the household 

when dealing with detached houses.  According to economic levels, personal service 

occupations positively and significantly affected burglary rate.  However, 

occupations Sales and Customer service negatively and significantly affected burglar 

rate.  The MLR results are used as sufficient data for training a new HNN that is 

clarified in the experimental work 3. The average percentage accuracy achieved by 

the new methodology at testing stage is 72% (Figure 6.17). This means that its MAPE 

is 28%, so the model is reasonable according to Lewis criteria (Section 6.6).   

 

Table 6.11: The final Minitab printouts of significance predictors for a prediction 

regression models across the ‘hotspots’ in the study region. 

Predictor Coef SE Coef        T         P     VIF 

Constant 0.03046 0.01183 2.57 0.019   

personalserviceOcc 0.5616 0.1464 3.84 0.001 1.446 

sales&customerservice -0.8512 0.1149 -7.41 0 1.248 

h1 0.5278 0.1016 5.2 0 1.292 

one person 0.05892 0.02066 2.85 0.011 1.471 

Loneparent 0.21508 0.0618 3.48 0.003 1.922 

 
S = 0.00645414   R-Sq = 81.9%   R-Sq(adj) = 74.8% 
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Figure 6.17: Illustration of the high level ‘hotspots’ model using a new HNN.  The 

accuracy percentages for the model and for each polygon within the parcel are 

specified. 
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6.9.3   Results and discussion  

 
The average prediction performance of a new methodology HNN was compared 

with non-HNN BP and MLR analysis. The obtained results which are identified in 

Table 6.10 reveal that there is significant difference in the prediction accuracy 

between HNN and non-HNN but approximately close to MLR analysis. The average 

percentage accuracy achieved by the new methodology at testing stage increase 

13% compared with the non-hierarchical BP performance. This lead to the 

acceptance of the hypothesis, that a new methodology has the advantage of 

improving the performance of a model prediction. The performance is compared in 

terms of model accuracy and the time which is needed to train the network.  

 

6.10    Summary and Conclusion 

This chapter has presented methodologies, used to assist in building predictive 

crime models, i.e regression methodology, neural network, SCS algorithm and GIS. 

The methodology was applied to real data on burglary incidence distribution in the 

study region.  Creating these models allows for developing links between social 

factors and criminals, and the utilization of police resources for crime prevention. 

 

GIS is used in this analysis to integration relevant datasets within census wards. 

Census datasets that provided a useful source of geo-demographic information were 

combined in this analysis of population and burglary incidence. Then the obtained 

results were used in the construction of a predictive model.  

 

The statistical regression model was applied across number of geographical space 

(parcels) and clusters which were specified by SCS algorithm in the study region 

(section 4.4). The regression methodology was also used for developing multilevel 

models of burglary rate.  The obtained results from this analysis are based on 

observed data in the study region. In general the results indicated that the following 

statistically significance predictors increase the risk of burglary rate: living in the 
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shared house (f2), living in a household in which there is one person and lone 

parent, low level of occupancy and unemployed.  However these significance 

predictors decrease the risk of burglary: high level occupancy for instance, the 

households whose work is professional occupation and living in a household in 

which all were pensioner. These results are identified and analysed in Section 6.8. 

Figure 6.7 summarized these significant predictors that decreasing or increasing the 

risk of burglary. There are correlation between the influence of the number of the 

above significance predictors and the level of burglary rate.  For instance as shown in 

Figure 6.7, the number of households whose work is professional occupation and 

living in a household in which all were pensioner were more in low level region of 

burglary rate than other levels. However the number of households in which were 

one person and lone parent were more in high level region of burglary rate than 

other levels. Numbers of shared houses (f2) are more in high-level than other levels. 

On the other hand as shown in Figure 6.7 the number of a households whose work 

were skilled trades occupations are approximately the same with respect to the 

region of burglary  levels, which was negatively and significantly correlated within 

the identified levels (low, middle and high) (Table 6.4 and Figure 6.5).   

 

The statistical methodology in this thesis was combined with an ANN with the aim of 

developing a new hierarchical neural network (HNNs) approach for generating a 

more reliable prediction. The training data for the new methodology are prepared 

by regression methodology.  For the demonstration of the performance of the new 

methodology, both hierarchical and non-hierarchical neural networks were applied 

on the same selection parcels with MLR.  The results reveal that there is significant 

difference in the prediction accuracy between the new methodology and non-HNN 

BP-network but it is approximately close to MLR analysis.  The results which were 

achieved by a new HNN methodology achieved without assuming any functional 

relationship between expletory variables before construct the models. The quality of 

its result is subjected to the accuracy of the input data which was prepared by 

regression methodology.  However, when applying regression detailed knowledge of 
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statistical criteria was required before construct the model, for example, linearity 

and selecting a best subset of predictors.   The average percentage accuracy 

achieved by the new methodology at testing stage increased 13% in average when 

compared with non hierarchical BP performance. This lead to the acceptance of the 

hypothesis, that a new methodology has the advantage of improving the 

performance of a model prediction. 

 

 Ameen stated that (cited Frank, 2001: 6) a good model is ‘satisfactory in 

performance relative to the stated objective; logically sound; representative; able to 

convey information’. Lewis (1982) stated the criteria for judging accuracy (Section 

6.6). Thus, the specified obtained models based on the observed data in the study 

region are reasonable with respect to these criteria. 
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7    Conclusions and Future Work 

 

This Chapter presents a summary of the research work.  The key contributions to 

knowledge are identified.  Suggestions for future research are provided. 

 

 

 

 

7.1   Introduction 

 

At the start of the thesis, the objectives of the research were detailed, with the aim 

of developing a hybrid modelling approach utilizing relevant principles of Statistics, 

Geographical Information Systems (GIS), Neural Networks and in general 

Information Technology for the analysis of observed data. The methodology is 

applied to real data on crime. The objectives of this research were to: 

 Develop a new algorithm based on statistical theory for identifying clusters 

within spatial data; 

 Generate artificial datasets, based on established practice, for use as a proof 

of concept for a general purpose algorithm for detecting clusters within 

spatial datasets, which have been used to evaluate the effectiveness of the 

developed cluster determination algorithm; 

 Acquire real world spatial datasets for: 

o  testing the developed algorithm and identification of hotspots in the 

study region; 

o  generating predictive models. 

 

 Utilize GIS to accommodate the new cluster detection technique (SCS) in 

terms of a predictive crime model for: 
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o mapping;  

o display distribution of crime and the corresponding population in a 

study region; 

o visualize the location of obtained clusters which was specified by 

clustering algorithm SCS; 

o display distribution of burglary incidence concentration ’hotspot’ 

which was identified by clustering algorithm SCS;  

o identify the total number of cases within  polygons(census wards); 

o integrating information from a variety of sources such as crime data, 

population data and census data associated with the observed data. 

 

 Building hybrid predictive models for crimes based on real data (crime).  

o Develop a predictive crime model based on statistical methodology; 

o Develop a new a hierarchical neural network methodology based on 

statistical methodology and two proposed ANN learning algorithms, 

unsupervised Self-Organizing Map and supervised back-propagation. 

 

7.1.1   Objective 1 

Develop a new algorithm based on statistical theory for identifying clusters within 

spatial data. 

 

A new cluster detection methodology, called Salar’s clustering with significance (SCS) 

has been developed.  This methodology has been developed from knowledge drawn 

through a hybrid of both statistical and computing techniques.  The algorithm for its 

implementation has employed specific properties of statistical distributions to 

estimate the position of the centers, and the boundaries of each cluster using 

subjectively set significance levels. Kullback-Leibler divergence (KL) was employed to 

compute the distances between the clusters, rather than Euclidean distance. The 

attribution of the SCS algorithm are: it is easy to implement; no previous knowledge 

of the data set is required; fewer performed steps lead to a reduction in clustering 
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time; and the results provide the detail information about the distribution of cases 

within the dataset.  It performs resonably well in terms of memory requirements, 

running time and cluster quality.  It is efficient and objective, leading to 

improvements in statistical data analysis.  In other words, the work to date has 

demonstrated a significant theoretical contribution to knowledge in the field of 

statistical analysis of spatial datasets.  The algorithm requires that the user first 

specify the valleys (lower density) in the histograms that are created in the marginal 

axes for data splitting.  This process was used to delimit the concentrated location.  

The development of the new algorithm is described in Section 3.3. 

 

7.1.2   Objective 2 

Generating artificial datasets 

 

This was based on established practice, for use as a proof of concept for a general 

purpose algorithm for detecting clusters within spatial datasets, which have been 

used to evaluate the effectiveness of the developed cluster determination 

algorithm. 

 

The algorithm was tested using artificial datasets, with very promising results.  

Experimental results demonstrate that SCS is especially suitable for large dataset 

and even for small sample size. Validation of SCS algorithm is described in Section 

3.3.2. 

 

7.1.3   Objective 3 

Testing the developed algorithm SCS and identification of hotspots by real world 

spatial datasets (burglary incidence). 

 

The utility of the clustering methodology (SCS) is demonstrated in experiments 

applied to several well-known datasets, namely real (crime) datasets; rotation of the 
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same datasets for instance 30 and 85 degree. The experimental results of validation 

of the algorithm are described in Section 4.4. The results obtained for identified 

‘hotspot’ were compared with other available algorithms such as CLAP, Satscan and 

GAM. The outputs are superficially very similar.  

 

7.1.4   Objective 4  

Utilization of GIS technology for developing a predictive crime model. 

 

GIS presented in this thesis encompasses the SCS algorithm, statistics and neural 

networks for developing a hybrid predictive crime model, mapping, visualizing crime 

data and the corresponding population in the study region, visualizing also the 

location of obtained clusters and burglary incidence concentration ‘hotspots’ which 

was specified by clustering algorithm SCS (object 3). The total number of cases 

within a census wards are identified and integrated with relevant datasets for this 

analysis. The census data used throughout this construction provided a useful source 

of geo-demographic information.  The census data in this study were combined 

crime data and population within census wards.  This process is described in Section 

5.4. 

 

7.1.5   Objective 5   

Building hybrid predictive models for crimes based on real data (crime). 

 

This thesis has presented more than one methodology with the aim of developing a 

hybrid modelling approach. The methodologies are applied to real data on burglary 

incidence distribution in the study region.  Relevant principles of statistics, GIS, SCS 

algorithm and ANN are utilized for the analysis of observed data. 

 

The statistical technique, multiple linear regression (MLR) analysis described in this 

thesis was used to identify potentially significant predictive variables among 
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characteristics of burgled households and the level of their contribution in the 

performance of the model and predicting of future crime in the study region. The 

MLR model involves historical data (crime), population and census data such as 

Resident Population, Occupation, Qualifications, Socio-economic status, Household 

composition and Household spaces.  The datasets were prepared using statistical 

and GIS technologies (see objective 4). Regression models were applied across a 

number of geographical space parcels in the study region and across the identified 

obtained clusters (object 3). This development of the MLR models is described in 

Section 6.8. 

 

The statistical methodology in this thesis combined a powerful feature of two 

proposed ANN learning algorithms. These are the unsupervised Self-Organizing Map 

and supervised Back-Propagation with the aim of developing a new hierarchical 

neural network methodology.  The methodology involves a training set that was 

prepared and identified by MLR analysis. So each vector in the network training set 

represent significant predictive variables of characteristics of burgled households 

that identified by MLR.  The reduction in input vector length produced by the SOM 

network facilitated the production of a training set for Back-Propagation network.  

The prediction performance of a new methodology HNN was compared with non-

HNN BP and MLR analysis. The obtained results reveal that there is significant 

difference in the prediction accuracy between HNN and non-HNN, but this is 

approximately close to MLR analysis. No detailed knowledge of statistical criteria 

was required before construct a HNN model.  The average percentage accuracy 

achieved by the new methodology at testing stage increase 13% in average when 

compared with the non hierarchical BP performance. This has lead to the acceptance 

of the hypothesis that a new methodology has the advantage of improving the 

performance of a model prediction. The performance is in term of model accuracy 

and the time which is needed to train the network. This development of the new 

HNN models is described in Section 6.9. 
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7.2   Contribution to knowledge 

The research presented in this thesis encompasses the disciplines of Cluster 

detection, Geographical Information System, Crime prediction and Neural Networks.  

The following contribution to knowledge has made to each of these fields: 

 

7.2.1   Cluster detection  

The attribution of a new cluster detection methodology, SCS algorithm are:  it is easy 

to implement; no previous knowledge of the data set is required; the number of 

clusters is not predetermined; fewer performed steps lead to a reduction in 

clustering time; and the results provide the detail information, about the 

distribution of cases within the dataset.  It performs resonably well in terms of 

memory requirements, running time and cluster quality.  It is efficient and objective, 

leading to improvements in statistical data analysis.  In other words, the work to 

date has demonstrated a significant theoretical contribution to knowledge in the 

field of statistical analysis of spatial datasets.  

 

7.2.2   Geographical Information System 

Within the field of GIS, the research has led to development of methodology for 

modelling data containing multiple functions. The total number of cases within a 

census wards are identified and integrated with relevant datasets. The obtained 

datasets were used for predictive crime modelling.  SCS also contributes to GIS, 

visualizing the location of obtained clusters and burglary incidence concentration 

‘hotspots’ which was specified by this clustering algorithm.   

 

7.2.3   Crime prediction 

The methodologies, regression analysis, GIS, neural networks and SCS algorithm are 

combined in this thesis to assist in building predictive crime models.  The SCS 

algorithm was utilized for detecting clusters and to identify the spatial level of 

concentration of burglary incidence in the study region.  GIS was utilized to integrate 
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relevant information from a variety of sources such as crime data, population data 

and census data associated with the observed data.  Then the obtained results were 

used in the construction of a predictive model.  Multiple linear regression analysis 

was used to identify potentially significant predictive variables, level of their 

contribution in the performance of the model and predicting of future crime.  The 

statistical regression model was applied across a number of geographical space 

(parcels) and clusters which were specified by SCS algorithm in the study region 

(section 4.4).  The regression methodology was also used for developing multilevel 

models of burglary rate.  The obtained results from this analysis are based on 

observed data in the study region.  In general the analysis reveals a number of 

predictors that increase the risk of burglary.  Specifically, living in a household in 

which there is ‘one person’ and ‘lone parent’.  The study aims to provide suggestions 

in this case, to reduce susceptibility to victimization and guide policy.  Their safety 

may be improved if they are renting or sharing with another instate to living a lone.  

Secure the home with sturdy windows and doors.  A security guard is effective in 

reducing the risk of burglary rate.  Whereas which living in households in which all 

were pensioner the risk is low.  This is because a household more time stay at home 

therefore decreasing criminal opportunity.  Ratcliffe (2001) showed that the highest 

probability for residential burglaries was the period that most people were at work.    

In addition the analysis reveals the correlation between the influences of these 

predictors (one person, lone parent and all pensioners) and the risk of burglary (see 

Figure 6.7).  The number of households in which were one person and lone parent 

were more in high level region of burglary rate than other levels.  The number of 

households where all were pensioner were more in low level region of burglary rate 

than other levels.  The influence of the household occupations in this study is related 

to blending of two factors: Occupancy level of the occupation and the time that 

people are at work. For household where occupations are with a high level of 

occupancy, such as professional occupation, the risk of burglary is low.  Whereas 

those in elementary or intermediate occupations are at risk of burglary.  This may be 

because the household in high level of occupancy can use security, which is effective 
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in reducing the risk of burglary rate. However those in low level of occupancy have 

lack of using security. In the case of unemployed, this study found that within the 

frame-work of clusters model, unemployment increases risk.  Figure 6.7 shows that 

the numbers of households whose unemployment are more in high level region of 

burglary rate than other levels.  Increased unemployment rates lead to higher 

property crime rates (Edmark 2005; Gorr &olligshlagers 2003). In addition the 

analysis reveals the models of the clusters neighborhood have approximately similar 

contributions to significant predictors.   

 

7.2.4   Neural Network 

Within the field of neural network, this research has led to development of a new 

hierarchical neural networks methodology to improve the performance of the 

prediction models.  The average percentage accuracy achieved by the new 

methodology at testing stage increase 13% compared with the non hierarchical BP 

performance. 

 

7.3   Limitation 

Naturally the quality of results is subject to the accuracy of the used data.  The 

potential variables that are missing in developing a predictive model thought to be 

useful and they would have to be collected or measured are:  

 

 Car ownership, migration of people for 1 year before the census, number of 

students, information on demographic movements, repeat crimes and 

whether the resident owns their property; 

 Unemployment could be measured against the total number of people of 

employment age within polygon rather than the total number of people 

within the polygon;   
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 In the case of policing data.   Not all incidents that occur are either reported 

by the public or recorded by the police;  

 

 One limitation of the process to associate polygon with clusters.  That is in 

some cases overlaying complete polygon in the boundary of the clusters 

become somewhat problematic. 

 

7.4   Suggestions for Future Work 

This section describes potential further areas research that have arisen during this 

work: 

 Clustering 

Chapter three presented a new methodology for cluster detection (SCS).  Three 

suggestions for future research are to replicate the procedures of the SCS 

algorithm within each of the obtained clusters, and to apply rotation to the main 

diagonal of the ellipse of the obtained clusters. This would simplify and clarify 

the data structure.  This process helps the analyst to observe clusters more 

clearly.  Re-suggest width of confidence intervals according to the clustring 

result. Applying the algorithm on data which include elements related to 

temporal elements. 

 Data collection and measuring 

The development of any model requires consideration of a number of issues 

such as data representation and structuring.  This is important in the assessment 

of a robust model. It could be important if the collected data include information 

on demographic movements (for how long the resident has been in that place), 

Care ownership, migration of people for 1 year before the census, number of 

students, repeat crimes and whether the resident owns their property. Crime 

rate could be measured against the house type rather than the number of   

households.  Unemployment could be measured against the total number of 

people of employment age within polygon. Examining the relationship between 

crime rate and the level of neighborhoods’ economic status may also help 
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improve models. As a future extension of prediction crime model, create a 

model using Geographically Weighted Regression (GWR) is a method of 

analysing spatially varying relationships. 

 Neural Networks 

Chapter six presented the utility of ANN for building a predictive model. 

Suggestions for future research in this case are to utilize General Regression 

Neural Network (GRNN) and Radial basic function (RBF) for building predictive 

models.  Then compare the results obtained using these techniques to assess the 

best approach. 

 

7.5   Conclusions 

This research has developed a hybrid modelling approach. A new cluster detection 

methodology called Salar’s Clustering with Significance (SCS) has been developed, 

based on knowledge drawn from both statistical and computing techniques.  It is 

easy to implement; no previous knowledge of the data set is required; the number 

of clusters is not predetermined; fewer performed steps lead to a reduction in 

clustering time; and the results provide the detail information, about the 

distribution of cases within the dataset.  It performs reasonably well in terms of 

memory requirements, running time and cluster quality.  It is an efficient and 

objective, leading to improvements in statistical data analysis. Empirically has 

demonstrated the suitability of the algorithm for large dataset and even for small 

sample size.  Furthermore, the algorithm has the benefit to identify ‘hotspots’.  The 

obtained results were compared with the results of other available algorithm such as 

CLAP, Satscan and GAM.  The outputs are very similar.  This indicated that the SCS 

algorithm performs well.  

 

The methodology was applied to real data on burglary incidence distribution in the 

study region given background population and census datasets to reveal information 

relating to spatial distribution of the burglary incidence.  
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GIS was used to develop a methodology for modelling data containing multiple 

functions. The methodology was used for measuring crime rate and identified the 

levels of crime within the census ward polygon ( the smallest spatial unit for which 

the entire UK Census is publicly a vailable) in the study region. The methodology can 

be used to measure crime rate for future work.  

 

Predictive crime models were created using several existing methodologies, such as 

regression analysis, Geographical Information System, Neural Networks and SCS 

algorithm. Creating these models allows for developing links between social factors 

and criminals, and the utilization of police resources for crime prevention.  The 

models were applied across a number of geographical high burglary incidence 

concentration ‘hotspots’, a number of geographical space (parcel) and across the 

clusters.  Which were identified by a new methodology (SCS) and GIS was used to 

visualize their locations in the study region.  Hotspots analysis has been an 

important approach for the explanation and prediction of crime spatial patterns.  

The households within a certain characteristics that have a higher than average risk 

of victimization were identified.  The accuracy percentage results of the high level 

’hotspots’ model was 72%, so the model is reasonable according to Lewis criteria.  

The model was applied across 19 parcels in the study region. Each parcel’s data were 

modelled separately in order to identify significant predictors of burglaries, through 

the potential of the examination of different characteristic of burgled households.  

The detail of the models can be found in Appendix E.  The predictive burglary models 

which were obtained from this analysis were tested with a new data set and the 

results are reasonable according to Lewis criteria.  Cluster analysis is an important 

approach for the explanation and prediction of crime spatial patterns. Within the 

cluster criminal phenomena are examined within the area of concern.  This is 

because concern in certain location helps to identify the problem associated to the 

characteristic of the people within their location, and this leads to increase the 

predictive accuracy of the model. The accuracy percentage results which were 

identified as 68%,,71%,70%,80%,72% for the clusters A,B,C,D,F respectively 
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indicated that the models were reasonable according to Lewis criteria.  The obtained 

results from this analysis are based on observed data in the study region.  In general 

the analysis revealed a number of predictors that increases the risk of burglary.  

Specifically, living in a household in which there is ‘one person’, ‘lone parent’ and 

household in elementary or intermediate occupations. This study found that within 

the framework of clusters model, unemployment increases risk.  For the influence of 

Household space, the results indicated that the risk of burglary rate increases within 

the household living in shared houses (f2).   

 

Ameen stated that (cited Frank, 2001: 6) a good model is ‘satisfactory in 

performance relative to the stated objective; logically sound; representative; able to 

convey information’. Lewis (1982) stated the criteria for judging accuracy (Section 

6.6). Thus, the specified obtained models based on the observed data in the study 

region are reasonable with respect to these criteria. 

 

Some of the limitations of the predictive model include missing or measureing some 

variables (outline in Section 7.3) may influence the model accuracy.  Addressing these 

issues, each according to the nature of the problem, can helpful developing models 

as future research. 

 

Within the field of neural networks, a new hierarchical neural networks 

methodology was developed to generate a more reliable prediction model. The 

average percentage accuracy achieved by the new methodology at testing stage 

increase 13% in average compared with the non hierarchical BP performance.  
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1 Appendix  A 

Appendix A 
 
This Appendix gives MATLAB program on which 

 Implement formula 3.7 (KL distance) to measure the distance between two clusters. 

 Implement SCS algorithm on an artificial data set. 
 

 
 
Program 1:’Kullback-Leibler distance 
 
 
function [p,q,k,d]=KL(x1,y1,x2,y2,meanp,meanq) 
p=cov(x1,y1); 
q=cov(x2,y2); 
a=inv(p)+inv(q); 
b=meanp-meanq; 
c=b'; 
k=a*b*c+p*inv(q)+q*inv(p)-2*eye(2,2); 
d1=trace(k); 
d=d1/2 
 

Program 2: Implement SCS algorithm on artificial data set 
 
>> %Generating Random variables, using formula 3.1 

>> r1=randn(1,6000)*5; 

>> r2=randn(1,6000)*7+5; 

>> %maximum likelihood for each distribution on the line parallel to x-axis and y-axis 

>> [cr1,cm1]=mle(r1); 

>> [cr2,cm2]=mle(r2); 

>> %standard deviation 

>> sx=std(r1); 

>> sy=std(r2); 

>> figure; 

>> %values to create the ellipse 

>> t=linspace(0,2*pi); 

>> axes('position',[0.2 0.2 0.9 0.9]); 

>> %plot the data points into their marginal dimensions 

>> plot(r1,r2,'.') 

>> hold on; 

>> %plot the centers of the clusters 

>> plot(cr1,cr2,'*') 

>> hold on; 

>> %perform step 3 

>> plot(cr1(1)+1.96*sx*cos(t),cr2(1)+1.96*sy*sin(t),'color','y'); 

>> hold on; 

>> axes('position',[0 0.2 0.2 0.9]); 

>> %draw histogram on ly-axis 
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>> histfit(r2,100); 

>> hold on; 

>> set(gca,'view',[90 270]); 

>> axes('position',[0.2 0 0.9 0.2]); 

>> %draw histogram on lx-axis 

>> histfit(r1,100) 
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Appendix B 
 
This Appendix gives the MATLAB program to: 

 Implement SCS algorithm on real datasets for identification of ‘hotspots’. 

 Creating the rotation of the data points. 
 

 

1   Implement SCS algorithm on real data sets 
 
% crx &cry co-ordinate of crime data. 
%  n number of crime datasets. 
% px&py co-ordinate of population data. 
% pz number of population with respect to co-ordinate px&py. 
% np number of population. 
% cx 1Xmx vector of maximum likelihood for distributions on the line %parallel to x-axis. 
%cy cx 1Xmy vector of maximum likelihood for distributions on the line %parallel to y-
axis. 
%Sx vector of standard deviation for distributions on x-axis. 
% Sy vector of standard deviation for distributions on y-axis. 
% inx 1Xmx vector of delimitation of distributions on x-axis. 
% iny 1Xmy vector of delimitation of distributions on y-axis. 
% ll crime rate within study region. 
%c1 number of crime in each cluster. 
% p1 number of population in each cluster. 
%active matrix of crime rate. 
% indc index of crime rate. 
 
 
function [c1,p1,active]=plotdata1(crx,cry,n,px,py,pz,np,cx,cy,sx,sy,mx,my,inx,iny,ll) 
figure; 
t=linspace(0,2*pi); 
axes('position',[0.2 0.2 0.9 0.9]); 
plot(crx,cry,'.y') 
hold on; 
plot(px,py,'.b') 
hold on; 
[c1,p1,active,indc]=crimerate(crx,cry,n,px,py,pz,np,inx,mx,iny,my); 
for i=1:mx 
        for j=1:my 
        if active(i,j)>0 
            plot(cx(i),cy(j),'k*') 
        hold on; 
        else 
        end 
    end 
    hold on; 
end 
hold on; 
for i=1:mx 
    for j=1:my 
        if active(i,j)>= ll 
        plot(cx(i)+1.96*sx(i)*cos(t),cy(j)+1.96*sy(j)*sin(t),'color','r'); 
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hold on; 
        elseif active(i,j)< ll &active(i,j)>0  
     plot(cx(i)+1.96*sx(i)*cos(t),cy(j)+1.96*sy(j)*sin(t),'color','g');  
hold on; 
     end 
    hold on; 
end 
hold on; 
end 
hold on; 
axes('position',[0 0.2 0.2 0.9]); 
hist(cry,100); 
hold on; 
set(gca,'view',[90 270]); 
axes('position',[0.2 0 0.9 0.2]); 
hist(crx,100); 
hold on; 
m1=mean(crx) 
 
function[c,p,rate,indc]=crimerate(a,b,n,ap,bp,r,np,inx,n1,iny,n2) 
for j=1:n2 
    for i=1:n1 
        mc=0; 
        for k=1:n 
            if a(k)>=inx(i) & a(k)<inx(i+1) & b(k)>=iny(j) &b(k)< iny(j+1) 
               mc=mc+1; 
            else 
            end 
        end 
        c(i,j)=mc; 
    end 
end 
for j=1:n2 
    for i=1:n1 
        mp=0; 
                for k=1:np 
            if ap(k)>=inx(i) & ap(k)<inx(i+1) & bp(k)>=iny(j) &bp(k)< iny(j+1) 
               mp=mp+r(k); 
                           else 
            end 
        end 
        p(i,j)=mp; 
         
    end 
end 
q=0; 
for j=1:n2 
    for i=1:n1 
    if p(i,j)==0 | c(i,j)==0 
        rate(i,j)=0; 
    else 
        rate(i,j)=c(i,j)/p(i,j); 
        q=q+1; 
        indc(q,1)=i; 
        indc(q,2)=j; 
    end 
    end      
    end 
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function[qq,jj]=group(x,y,n,indc,n1,n2,indx,indy) 
m=0; 
for i=1:n1 
    for j=1:n2 
        if i=indc(:,1) &j=indc(:,2) 
            [a,t]=groupsub(x,y,n,indx,indy,i,j); 
            kk=1; 
            for i1=m+1:m+t 
                qq(i1,1)=a(kk,1); 
                qq(i1,2)=a(kk,2); 
                kk=kk+1; 
            end 
            m=i1; 
            jj(:,1)=m; 
        else 
        end 
    end 
end 
  
function[a,t]=groupsub(x.y,n,indx,indy,i,j) 
t=0; 
for k=1:n 
    if indx(i)<= x(k) & indx(i+1)>=x(k)& indy(j)<=y(k)& y(k)<=indy(j+1) 
        t=t+1; 
        a(t,1)=x(k); 
        a(t,2)=y(k); 
    else 
    end 
end 
  
function [c1,c2,c3,c4,c5,c6,c7,c8,c9,c10]=datasub(data,n,t,g) 
l=0; 
for j=2:g+1 
    k=0; 
    for i=1:n 
        if t(j-1)<=data(i) &data(i)<t(j) 
            k=k+1; 
            d(k)=data(i); 
        else 
        end 
    end 
    for m=k+1:n 
        d(m)=NaN; 
    end 
    l=l+1; 
    a(:,l)=d; 
    d=[]; 
end 
c1=a(:,1); 
c2=a(:,2); 
c3=a(:,3); 
c4=a(:,4); 
c5=a(:,5); 
c6=a(:,6); 
c7=a(:,7); 
c8=a(:,8); 
c9=a(:,9); 
c10=a(:,10); 
c1(isnan(c1))=[]; 
c2(isnan(c2))=[]; 
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c3(isnan(c3))=[]; 
c4(isnan(c4))=[]; 
c5(isnan(c5))=[]; 
c6(isnan(c6))=[]; 
c7(isnan(c7))=[]; 
c8(isnan(c8))=[]; 
c9(isnan(c9))=[]; 
c10(isnan(c10))=[]; 
 

 

 

 

2-  Function for creating rotation datasets 
 
% Given an angle b, creates the corresponding.  Implement formula 4.1 
function[r]=rotation2(x,y,b) 
t=b*pi/180; 
xt=cos(t)*x-sin(t)*y; 
yt=sin(t)*x+cos(t)*y; 
r(:,1)=xt; 
r(:,2)=yt; 
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C1:  Details of the obtained results of crime rate (expressed as the number of crime 

observed in that cluster per the combined population).  The rotation of data points of 85 

degree utilized and using the clustering algorithm SCS. 

 
 

Number of crime 
14 412 218 77 20 0 0 0 0 

17 177 113 128 146 23 0 0 0 

58 260 71 46 115 313 44 5 5 

4 49 94 31 329 600 111 2 20 

43 66 33 42 542 946 163 119 133 

40 93 68 118 269 690 204 220 149 

26 48 138 75 174 297 11 6 1 

3 87 26 74 120 66 0 0 0 

25 50 29 43 282 1259 128 2 0 

0 4 1 0 3 103 19 0 0 

 

Population 
702 10032 5666 1141 0 0 0 0 0 

33 5457 2965 5476 4422 56 0 0 0 

1641 6478 3406 2591 1746 8531 0 0 0 

1061 2895 3427 1944 10238 12003 11 0 0 

1773 4510 2379 2044 14366 4773 1089 1903 2100 

2273 4506 4699 3778 6174 12210 4775 3026 3598 

1387 4550 1849 3705 4243 10027 78 0 773 

1089 1997 1928 2226 3761 1505 0 0 46 

935 3850 850 2489 13431 20223 3375 255 260 

0 0 0 0 254 2213 852 408 814 

 

Crime rate 
0.0199 0.0411 0.0385 0.0675 0 0 0 0 0 

0.5152 0.0324 0.0381 0.0234 0.033 0.4107 0 0 0 

0.0353 0.0401 0.0208 0.0178 0.0659 0.0367 0 0 0 

0.0038 0.0169 0.0274 0.0159 0.0321 0.05 10.0909 0 0 

0.0243 0.0146 0.0139 0.0205 0.0377 0.1982 0.1497 0.0625 0.0633 

0.0176 0.0206 0.0145 0.0312 0.0436 0.0565 0.0427 0.0727 0.0414 

0.0187 0.0105 0.0746 0.0202 0.041 0.0296 0.141 0 0.0013 

0.0028 0.0436 0.0135 0.0332 0.0319 0.0439 0 0 0 

0.0267 0.013 0.0341 0.0173 0.021 0.0623 0.0379 0.0078 0 

0 0 0 0 0.0118 0.0465 0.0223 0 0 
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C2: Plots showing the distribution of crime datasets.  Rotation data with(45, 90,180 and 

270) degree utilized. 
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4 Appendix C  

C3: Illustrate the levels of crime rate for selected parcels in the study region. The levels 

are high(h),middle(m) and low(l)  
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Level of crime rate(Parcel NJ)
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Levels of crime rate (Parcel NM)
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Levels of crime rate (Parcel NQ)
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Levels of crime rate (Parcel NT)
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Levels of crime rate (Parcel NX)

0

0.02

0.04

0.06

0.08

0.1

h l l m m l m l l h h m l l h l m l l l l l l l l l l l m l l l m l l l h l l l l m m

Levels

C
ri

m
e

 r
a

te
 

crime rate
 

 

Levels of crime rate (Parcel NY)

0

0.02

0.04

0.06

0.08

0.1

0.12

m l m m m h h l h h h h l m m m m m l l h h m h h h m m h m h l h m l l

Levels

C
ri

m
e

 r
a

te
 

crime rate
 

 

levels of crime rate (Parcel NZ)

0

0.02

0.04

0.06

0.08

0.1

0.12

h m m m m h l h m h h h h h h m m l m h m l m m h l m l h h m m m l l l l l m h m m h h

Levels 

C
ri

m
e

 r
a

te
 

crime rate
 

 

 



 

 

 

 

10 Appendix C  

Levels of crime rate (Parcel PA) 
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Levels of crime rate (Parcel PD) 
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Levels of crime rate (Parcel PG) 

0

0.05

0.1

0.15

0.2

0.25

m h h h h h h h h h h h h h l h h m h h m h m h m h m m m m h h m l m h h h h h h l h

Levels

C
ri

m
e
 r

a
te

 

crime rate
 

 

Levels of crime rate (Parcel PH)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

m m h m l m l h m h m l m h m h m l m l m m m m l h m l

Levels 

C
ri

m
e

 r
a

te
 

crime rate
 

 

 

Levels of crime rate (Parcel PJ)

0

0.1

0.2

0.3

0.4

0.5

m l h m l h l l h m h m m h l l h h m h h h m h h h h h h m m h m m m m m h m l

Levels

C
ri

m
e

 r
a

te
 

crime rate
 

 



 

 

 

 

13 Appendix C  

Levels of crime rate (Parcel PK)
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C4:  HowTo Count the number of Point features within a 
Polygon 

Article ID: 30779 

Software:  ArcGIS - ArcEditor 8.3, 9.0, 9.1, 9.2, 9.3, 9.3.1 ArcGIS - ArcInfo 8.3, 9.0, 9.1, 

9.2, 9.3, 9.3.1 ArcGIS - ArcView 8.3, 9.0, 9.1, 9.2, 9.3, 9.3.1 

Platforms:  Windows 2000, XP, 2003Server 

Summary 

Instructions provided describe how to count how many point features fall within each 
polygon feature. 
 

Procedure 

Create a count field and a spatial join between the point shapefile and the polygon 
shapefile. 

1. Create a field called 'Count' in the attribute table of the point shapefile of type 

'Short Integer'.  

2. Calculate the Count field equal to 1 by right-clicking on the field name > calculate 

values. Enter a 1 in the white dialog area and then click OK.  

3. Right-click on the polygon shapefile > Joins and Relates > Joins. Click the 

dropdown list and select 'Join data from another layer based on spatial location'.  

4. Specify the point shapefile for Step 1.  

5. Select the first bullet, each polygon is given a summary of the numeric attributes, 

for Step 2, and check the 'Sum' box.  

6. At Step 3, specify an output location and then click OK.  

7. A polygon shapefile with the 'Count' field indicating how many point features lie 

within each polygon feature is now present.  

 

Created: 5/8/2006 

Last Modified: 12/15/2009 

 

http://support.esri.com/index.cfm?fa=knowledgebase.techarticles.articleShow&d=30779 
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Appendix D 
 
The detail information about the potential characteristic of burglary household was 
downloaded from the CASWEB Website. 
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Usual resident population:   All people 

NB: This table contains counts of Persons 

Users are recommended to review table footnotes and comments for supplementary 
information relating to individual tables. 

 

Add variables to data selection
 
 Clear all

 
  

  

  
2001 Population  People 

living in 
households  

People living in 
communal 

establishments  

Students 
away 
from 
home  

All 
people  

Males  Females  

 Select all 
 

 

1  2  3  4  5  
6  
 

Footnotes and Comments for Table KS001 

 

Age structure:   All people 

NB: This table contains counts of Persons 

Users are recommended to review table footnotes and comments for 
supplementary information relating to individual tables. 

 

Add variables to data selection
 
 Clear all

 
  

  

  
All 
peo
ple  

People aged  

0-4  5-7  8-9  
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45-
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60-
64  

65-
74  
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t all  
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Footnotes and Comments for Table KS002 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

1 'Age' is age last birthday. 

http://casweb.mimas.ac.uk/2001/select_data.cfm#Footnotes#Footnotes
http://casweb.mimas.ac.uk/2001/select_data.cfm#Footnotes#Footnotes
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Occupation groups - all persons:   All people aged 16-74 in employment 

NB: This table contains counts of Persons 
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K12 

 

 

National Statistics - Socio Economic Classification - all persons:  

All people aged 16-74 
NB: This table contains counts of Persons 

Users are recommended to review table footnotes and comments for supplementary 
information relating to individual tables. 

 

Add variables to data selection
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Footnotes and Comments for Table KS014a 

 

http://casweb.mimas.ac.uk/2001/select_data.cfm#Footnotes#Footnotes
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Household spaces and accommodation type:   All household spaces 

NB: This table contains counts of Household spaces 

Users are recommended to review table footnotes and comments for supplementary 
information relating to individual tables. 
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Footnotes and Comments for Table KS016 

 

 

http://casweb.mimas.ac.uk/2001/select_data.cfm#Footnotes#Footnotes
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Household composition:   All households 

NB: This table contains counts of Households 

Users are recommended to review table footnotes and comments for supplementary 
information relating to individual tables. 

 

Add variables to data selection
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Footnotes and Comments for Table KS020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 A dependent child is a person in a household aged 0 to 15 (whether or not in a family) or a person aged 

16 to 18 who is a full-time student in a family with parent(s).  

http://casweb.mimas.ac.uk/2001/select_data.cfm#Footnotes#Footnotes
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Qualifications and students:   All people aged 16-74 

NB: This table contains counts of Persons 

Users are recommended to review table footnotes and comments for supplementary 
information relating to individual tables. 
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1 1+ 'O' level passes, 1+ CSE/GCSE any grades, NVQ level 1, Foundation GNVQ. 

2 5+ 'O' level passes, 5+ CSEs (grade 1), 5+ GCSEs (grades A-C), School Certificate, 1+ 'A' levels/'AS' 

levels, NVQ level 2, Intermediate GNVQ. 

3 2+ 'A' levels, 4+ 'AS' levels, Higher School Certificate, NVQ level 3, Advanced GNVQ. 

4 First degree, Higher degree, NVQ levels 4 and 5, HNC, HND, Qualified Teacher Status, Qualified 

Medical Doctor, Qualified Dentist, Qualified Nurse, Midwife, Heath Visitor. 

http://casweb.mimas.ac.uk/2001/select_data.cfm#Footnotes#Footnotes
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Appendix E 
 

E1: This appendix presented the obtained results from MLR models for selected parcels 

in the study region. 

 

NF 
 

 

Predictor                  Coef  SE Coef      T      P    VIF 

Constant               -0.06019  0.02705  -2.23  0.068 

ManagersOcc              1.3586   0.2402   5.66  0.001  1.662 

Hocc                     0.6802   0.2097   3.24  0.018  3.473 

allpensioner            -3.4721   0.6867  -5.06  0.002  3.647 

Loneparent               0.4567   0.1667   2.74  0.034  2.108 

 

 

S = 0.0130456   R-Sq = 93.9%   R-Sq(adj) = 82.7% 

 

NH 
 

 

Predictor                  Coef  SE Coef      T      P    VIF 

Constant               -0.05231  0.02124  -2.46  0.034 

professionalOcc          2.0868   0.2938   7.10  0.000  3.398 

AdministrativeOcc       -0.9057   0.1869  -4.85  0.001  4.146 

sales&customerservice    0.4508   0.1964   2.30  0.045  2.043 

machineoperatives        0.9385   0.2005   4.68  0.001  3.093 

ElementaryOcc           -0.4210   0.1425  -2.95  0.014  1.762 

h3                      0.14670  0.05839   2.51  0.031  2.312 

flat2                   -1.3962   0.3539  -3.94  0.003  2.205 

one person              0.21606  0.05237   4.13  0.002  2.705 

 

 

S = 0.00870974   R-Sq = 93.8%   R-Sq(adj) = 85.1% 

 

 
NJ 
 
 

Predictor                  Coef  SE Coef      T      P    VIF 

Constant               -0.04545  0.01674  -2.71  0.017 

SkilledtradesOcc         0.5850   0.1143   5.12  0.000  2.775 

personalserviceOcc      -0.4492   0.1327  -3.38  0.004  2.806 

sales&customerservice    0.3012   0.1150   2.62  0.020  2.894 

machineoperatives        0.7618   0.1844   4.13  0.001  2.767 

Unemploy                0.40883  0.08852   4.62  0.000  1.954 

flat1                   0.19175  0.04591   4.18  0.001  2.383 

cohabiting              0.28177  0.09469   2.98  0.010  3.320 

 

S = 0.00492369   R-Sq = 91.6%   R-Sq(adj) = 82.5% 
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NK 
 

 

Predictor                  Coef  SE Coef      T      P    VIF 

Constant               -0.03137  0.02055  -1.53  0.146 

<16                     -0.3090   0.1004  -3.08  0.007  3.583 

sales&customerservice    0.4638   0.1703   2.72  0.015  2.537 

h2                       0.5641   0.2618   2.15  0.047  2.339 

one person              0.23781  0.09132   2.60  0.019  3.928 

 

 

S = 0.0104467   R-Sq = 80.7%   R-Sq(adj) = 61.3% 

 
 

NR 
 

 

Predictor                  Coef  SE Coef      T      P    VIF 

Constant                0.06354  0.02043   3.11  0.006 

ManagersOcc             0.24898  0.08991   2.77  0.013  1.892 

SkilledtradesOcc        -0.3929   0.1023  -3.84  0.001  1.763 

personalserviceOcc       0.4382   0.1993   2.20  0.041  1.943 

machineoperatives       -0.4287   0.1469  -2.92  0.009  1.684 

cohabiting              -0.6538   0.1152  -5.68  0.000  3.139 

 

 

S = 0.00781864   R-Sq = 81.6%   R-Sq(adj) = 67.3% 

 

 

PC 
 
Predictor                  Coef  SE Coef      T      P    VIF 

Constant                0.08408  0.01948   4.32  0.005 

ManagersOcc            -0.59581  0.08478  -7.03  0.000  3.102 

personalserviceOcc       1.6611   0.1891   8.78  0.000  3.403 

sales&customerservice   -0.5108   0.1015  -5.03  0.002  3.818 

machineoperatives       -0.4944   0.1236  -4.00  0.007  2.727 

Unemploy                -0.7168   0.1008  -7.11  0.000  4.100 

h1                       0.5869   0.2311   2.54  0.044  1.995 

h2                      0.95748  0.07929  12.08  0.000  4.454 

allpensioner            -0.5697   0.1150  -4.95  0.003  2.230 

 

 

S = 0.00438474   R-Sq = 98.2%   R-Sq(adj) = 97.4% 
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PG 

 
 

Predictor                  Coef  SE Coef      T      P    VIF 

Constant               -0.02287  0.02351  -0.97  0.344 

>60                    -0.17973  0.04674  -3.85  0.001  2.577 

AdministrativeOcc       -0.3560   0.1395  -2.55  0.021  1.717 

SkilledtradesOcc         0.4669   0.2165   2.16  0.046  2.421 

personalserviceOcc       0.9107   0.1930   4.72  0.000  1.595 

Meocc                    0.3930   0.1401   2.80  0.012  1.994 

h1                       1.2774   0.3701   3.45  0.003  1.896 

one person              0.24932  0.02565   9.72  0.000  2.164 

 

 

S = 0.0115639   R-Sq = 93.7%   R-Sq(adj) = 87.8% 

 

 

PJ 
 

Predictor                 Coef  SE Coef      T      P    VIF 

Constant               0.01797  0.01644   1.09  0.298 

TechnicalOcc           -0.3665   0.1068  -3.43  0.006  2.446 

h1                      0.7381   0.1924   3.84  0.003  3.326 

flat2                   0.3549   0.1509   2.35  0.038  1.968 

cohabiting             -0.8383   0.2084  -4.02  0.002  2.525 

 

 

S = 0.00997802   R-Sq = 87.3%   R-Sq(adj) = 68.8% 

 

 

 

 

NG 

 
Predictor             Coef  SE Coef      T      P    VIF 

Constant           0.00848  0.03292   0.26  0.803 

SkilledtradesOcc   -2.9169   0.7903  -3.69  0.006  1.956 

machineoperatives  -2.3470   0.9702  -2.42  0.042  1.197 

ElementaryOcc       2.2141   0.5281   4.19  0.003  1.813 

meocc               1.2804   0.3711   3.45  0.009  1.562 

 

 

S = 0.0283116   R-Sq = 72.6%   R-Sq(adj) = 58.9% 

 
 

PK 
 
 

Predictor                  Coef  SE Coef      T      P    VIF 

Constant               -0.03137  0.02055  -1.53  0.146 

<16                     -0.3090   0.1004  -3.08  0.007  3.583 

sales&customerservice    0.4638   0.1703   2.72  0.015  2.537 

h2                       0.5641   0.2618   2.15  0.047  2.339 

one person              0.23781  0.09132   2.60  0.019  3.928 

 

 

S = 0.0104467   R-Sq = 80.7%   R-Sq(adj) = 61.3% 
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NZ 

 
 

Predictor                  Coef  SE Coef      T      P    VIF 

Constant               -0.02641  0.04108  -0.64  0.527 

16-59                   0.22154  0.07842   2.83  0.010  3.218 

personalserviceOcc       0.5284   0.1664   3.18  0.004  1.984 

h2                      0.07825  0.03548   2.21  0.038  2.354 

allpensioner            -0.4182   0.1989  -2.10  0.047  1.855 

Married                 -0.3005   0.1010  -2.98  0.007  4.080 

cohabiting              -0.7717   0.1609  -4.80  0.000  1.520 

 

 

S = 0.00972125   R-Sq = 77.2%   R-Sq(adj) = 61.6% 

 
 

 

NY 
 

Predictor                  Coef  SE Coef      T      P    VIF 

Constant                0.14523  0.03309   4.39  0.001 

SkilledtradesOcc        -0.4990   0.1728  -2.89  0.012  1.554 

sales&customerservice   -0.6365   0.2450  -2.60  0.021  2.172 

ElementaryOcc           -0.8677   0.1964  -4.42  0.001  2.566 

 

 

S = 0.0126028   R-Sq = 84.1%   R-Sq(adj) = 68.1% 

 

 

 

NX 

 
Predictor                  Coef  SE Coef      T      P    VIF 

Constant                0.00600  0.01159   0.52  0.613 

personalserviceOcc     -0.35403  0.08068  -4.39  0.001  1.333 

machineoperatives      -0.23434  0.08778  -2.67  0.019  3.016 

Unemploy                 0.3047   0.1100   2.77  0.016  2.276 

h2                      0.04011  0.01035   3.87  0.002  2.708 

 

S = 0.00325083   R-Sq = 85.0%   R-Sq(adj) = 68.8% 

 
 

 

 

 

NS 

 
Predictor                  Coef  SE Coef      T      P    VIF 

Constant                0.06178  0.02609   2.37  0.034 

TechnicalOcc             0.3902   0.1245   3.14  0.008  2.833 

machineoperatives        0.4683   0.1905   2.46  0.029  1.685 

h2                     -0.07598  0.02862  -2.65  0.020  2.720 

Loneparent               0.5577   0.2053   2.72  0.018  2.730 

 

 

S = 0.00897228   R-Sq = 78.9%   R-Sq(adj) = 52.9% 
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NM 
 

Predictor                   Coef   SE Coef       T      P    VIF 

Constant                 0.13746   0.01233   11.15  0.000 

ManagersOcc             -0.11674   0.04460   -2.62  0.022  1.773 

professionalOcc         -0.19364   0.04131   -4.69  0.001  3.514 

TechnicalOcc            -0.74099   0.06941  -10.68  0.000  3.097 

personalserviceOcc        0.3113    0.1228    2.54  0.026  3.707 

ElementaryOcc           -0.38153   0.08750   -4.36  0.001  3.101 

Loocc                    0.10973   0.04299    2.55  0.025  3.104 

Meocc                   -0.18735   0.04494   -4.17  0.001  2.173 

h2                     -0.029005  0.008864   -3.27  0.007  2.249 

allpensioner            -0.43796   0.05796   -7.56  0.000  2.447 

 

S = 0.00359163   R-Sq = 95.4%   R-Sq(adj) = 89.6% 

 

 

 

 

 

E2:  Validation of the regression models within a historical data.    
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Parcel NJ

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

8
4
%

9
8
%

8
9
%

9
9
%

9
6
%

8
8
%

9
6
%

9
7
%

9
4
%

9
3
%

9
4
%

9
9
%

9
7
%

8
5
%

9
3
%

9
0
%

9
4
%

9
4
%

7
8
%

9
8
%

7
9
%

9
5
%

8
8
%

9
8
%

8
9
%

Zones

Average Accuracy=92%

B
u

rg
la

ry
 r

a
te

Actual

Predict

 
 

 

 

 

 

Parcl NM

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

9
9
%

9
2
%

8
7
%

6
5
%

9
4
%

9
3
%

9
0
%

9
2
%

7
5
%

9
8
%

9
1
%

7
8
%

8
0
%

9
5
%

9
6
%

9
3
%

6
8
%

9
7
%

7
2
%

8
7
%

1
0
0
%

5
4
%

4
9
%

7
6
%

9
0
%

9
0
%

Zones

Averaga Accuracy=85%

B
u
rg

la
ry

 r
a
te

Actual

Predict

 
 



 
7 Appendix E 

Parcel NN

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

99
%

94
%

99
%

94
%

98
%

98
%

99
%

98
%

97
%

98
%

98
%

93
%

97
%

Zones

Average Accuracy=97%

B
u

rg
la

ry
 r

a
te

Actual

Predict

 
 

 

 

 

Parcel NR

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

96
%

84
%

71
%

81
%

63
%

92
%

97
%

85
%

93
%

47
%

89
%

82
%

51
%

81
%

Zones

Average Accuracy=82%

B
u

rg
la

ry
 r

a
te

Actual

Predict

 
 

 

 

 



 
8 Appendix E 

Parcel NS

0

0.005

0.01

0.015

0.02

0.025

9
5
%

8
3
%

8
3
%

8
8
%

8
4
%

9
7
%

5
4
%

7
9
%

9
9
%

8
9
%

8
9
%

7
1
%

8
6
%

6
5
%

2
9
%

7
5
%

9
8
%

8
7
%

5
8
%

5
2
%

7
7
%

8
0
%

Zones

Average Accuracy=78%

B
u

rg
la

ry
 r

a
te

Actual

Predict

 
 

 

 

 

 

Parcel NY

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

8
9
%

9
4
%

6
9
%

7
0
%

9
3
%

9
1
%

7
3
%

9
6
%

5
8
%

6
2
%

8
9
%

8
9
%

5
1
%

9
3
%

9
5
%

8
6
%

7
4
%

8
9
%

9
2
%

8
2
%

7
3
%

8
5
%

8
1
%

9
2
%

1
0
0
%

Zones

Average Accuracy=83%

B
u

rg
la

ry
 r

a
te

Actual

Predict

 
 

 

 



 
9 Appendix E 

Parcel NZ
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Parcel PC
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Parcel PG
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E3: Validation of the regression models within a new data.  
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Testing low level Model
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Testing Mid level Model
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Testing High level Model
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