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SUMMARY

Solving the advection equation is an important part of numerically modelling the atmosphere. Both accuracy
and efficiency are desirable traits of an advection scheme. For multi-dimensional flow, forward-in-time
advection schemes must properly capture the cross-terms. Failure to capture the cross-terms can result
in reduced accuracy and even instabilities. We show how multi-dimensional forward-in-time schemes
successfully capture the cross-terms of two-dimensional flow. We then introduce a method to improve the
efficiency of the forward-in-time schemes for two-dimensional flow. This method stacks the duplicated
cross-terms from one flux into the other, creating asymmetrized fluxes. Numerical testing shows that these
asymmetrized flux calculation schemes perform to the same accuracy as the original forwards-in-time
schemes but with a significant improvement in computational time. Finally, we show extensions of the
method to three-dimensional flow. Copyright c© 2019 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Advection appears in all branches of computational fluid dynamics, and is especially prominent in

numerical models of the atmosphere and the oceans. Numerical advection schemes can be used for

advective transport, for solving conservation laws, and in the solution of the momentum equations.

The focus in this paper is primarily on advective transport. There are a number of different numerical

methods (for example, finite-difference [Crowley(1968)], finite-volume [Lin and Rood(1996)],

finite-element [Melvin et al.(2012)], semi-Lagrangian [Staniforth and Côté(1991)], and Lagrangian

[Bosler et al.(2017)], see [Rood(1987)], [Lauritzen et al.(2011)] and references within) that can be

used to solve the advection equation for transport problems.

The advection equation is given by

qt + u · ∇q = 0, (1)

where q is the advected quantity (called the tracer mixing ratio), t is time, u is the velocity vector,

and the subscript indicates a derivative. The transport of a density Φ is governed by the conservation
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law

Φt +∇ · (uΦ) = 0. (2)

For the mass continuity equation Φ = ρ, where ρ is the fluid density, and for the conservative

advection equation Φ = ρq (i.e. the tracer density). For non-divergent velocities, ∇ · u = 0, then

the advection equation can be written in flux form using Φ = q.

There are three important properties for any advection scheme used by a numerical model;

accuracy, efficiency and stability. The stability of a numerical scheme is vital, whereas accuracy

and efficiency are desirable traits that often impact each other. In general, high-order accurate

schemes are less efficient than low-order schemes. One method to decrease computational time,

while retaining accuracy, is through the use of parallel computing. In this paper we focus on

decreasing computational time through improving the efficiency of a numerical scheme. We do

not consider parallel performance.

For multi-dimensional flow it is important that an advection scheme captures the effects of

the flow in all coordinate directions as well as the cross flow. For forward-in-time advection

schemes, e.g. those similar to Lax-Wendroff [Lax and Wendroff(1960)] and ADER schemes

[Toro et al.(2001)], the terms depending on multiple directions are denoted the cross-terms. Failure

to include the cross-terms, such as using strictly one-dimensional methods to compute the fluxes, can

lead to a decrease in accuracy and even instabilities in the numerical scheme [Leonard et al.(1996)].

There have been a number of methods designed to try and capture the cross-terms at reduced

cost, such as time-splitting [Crowley(1968), Tremback et al.(1987)] and the Lin-Rood scheme

[Lin and Rood(1996)], as well as methods designed to capture the cross-terms on unstructured

grids [0, Lamine and Edwards(2013)]. Also, using other time stepping methods such as Runge-

Kutta can capture the cross-terms even if one-dimensional methods are used to compute the

fluxes [Katta et al.(2015)]. For forward-in-time schemes, the method of explicitly calculating each

term individually can be achieved by taking the one-dimensional Lax-Wendroff scheme and

extending into two-dimensions [Smolarkiewicz(1982)]. The drawback to this method is that for

higher-order versions of the Lax-Wendroff scheme, see [Tremback et al.(1987)], the extension into

two-dimensions can be prohibitively expensive (leading to the trade off between efficiency and

accuracy). Forward-in-time advection schemes can generally be written in conservative form (2),

and in this case the cross-terms must be captured in the numerical fluxes. In this paper we provide

a method for stacking the duplicated terms to create asymmetrized fluxes, and therefore improving

the efficiency of these schemes.

In this paper the methods are demonstrated for two-dimensional flow. In two-dimensions the

advection equation is given by

qt + uqx + vqy = 0, (3)

where u and v are the velocities in the x and y direction respectively. The flux form becomes

Φt + (uΦ)x + (vΦ)y = 0. (4)

For all cases within this paper we consider a doubly periodic domain of size 1.

Section 2 derives the forward-in-time schemes and shows how the multi-dimensional schemes

capture the cross-terms. Improving the efficiency of the forward-in-time schemes by using the

asymmetrized flux calculation is described in Section 3. Numerical testing of the asymmetrized

flux schemes, compared with the corresponding usual formulation, is in Section 4. Extending the

method to three-dimensional flow is in Section 5, and the summary and conclusions are given in

Section 6.

2. FORWARD-IN-TIME SCHEMES FOR TWO-DIMENSIONAL FLOW

In this section we derive the standard forward-in-time method. Forward-in-time methods make use

of the data at time level n to predict data at the new time level n+ 1 [Durran(2010)]. They are

designed such that the temporal order-of-accuracy is equal to the spatial order-of-accuracy (and

This article is protected by copyright. All rights reserved.
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arbitrarily-high order can be achieved). This is in contrast to other time stepping methods, such

as leapfrog or Runge-Kutta, where the temporal order-of-accuracy is fixed. There are a number

of different ways to derive the forward-in-time formulation, and here we focus on Taylor series

expansions with constant velocities.

Taylor expansions on qn+1

ij gives

qn+1

ij = qnij +∆tqt +
∆t2

2!
qtt +

∆t3

3!
qttt +

∆t4

4!
qtttt + ...+

∆tp

p!

∂pq

∂tp
+ ... (5)

where n is the temporal index, i and j are the spatial indices, p is an arbitrary order, and ∆t is the

temporal step size. The derivatives are evaluated at the grid point with indices i, j.

We can now calculate the temporal derivatives in terms of the advection equation (3). For the case

of constant u and v
qt = −uqx − vqy, and qtt = −uqxt − vqyt. (6)

Substituting expressions for spatial derivatives gives

qtx = −uqxx − vqyx, qty = −uqxy − vqyy, qtt = u2qxx + 2uvqxy + v2qyy, (7)

which when substituted into (5) gives a second-order approximation of qn+1

ij as

qn+1

ij = qnij −∆t (uqx + vqy) +
∆t2

2!

(

u2qxx + 2uvqxy + v2qyy
)

(8)

The mixed derivative in the ∆t2 terms is classed as a cross-term because it is multi-dimensional and

requires both x and y derivatives. The approximation of qn+1

ij can be taken to higher order, resulting

in multiple cross-terms. The coefficients of temporal derivatives in terms of spatial derivatives can

be taken from Pascal’s triangle, and to fourth-order this becomes

qn+1

ij = qnij −∆t (uqx + vqy) +
∆t2

2!

(

u2qxx + 2uvqxy + v2qyy
)

(9)

−
∆t3

3!

(

u3qxxx + 3u2vqxxy + 3uv2qxyy + v3qyyy
)

+
∆t4

4!

(

u4qxxxx + 4u3vqxxxy + 6u2v2qxxyy + 4uv3qxyyy + v4qyyyy
)

A numerical advection scheme must capture each of these terms to be formally fourth-order

accurate for constant advection. For example, approximating each of these derivatives using fourth-

order finite-differences will result in an advection scheme which is fourth-order accurate in both

space and time. The above result can also be derived using the ADER method (see, for example,

[Toro et al.(2001)] and [Norman and Finkel(2012)]), and the ADER derivation shows that this holds

for non-constant velocities u and v.

A common approach to solving the advection equation (3) with forward-in-time schemes is to

calculate values of the advected quantities inbetween grid points at grid cell edges. Letting q̂ denote

the value of q at the flux points (half indices in their respective directions), with the superscript

indicating which direction, then the solution can be approximated using

qn+1

ij = qnij − uij
∆t

∆x

(

q̂xi+ 1

2
j − q̂xi− 1

2
j

)

− vij
∆t

∆y

(

q̂y
ij+1

2

− q̂y
ij−1

2

)

(10)

where ∆x and ∆y are the grid spacings in the x and y directions respectively, and q is stored at

integer grid indices. The discretization of the terms q̂x and q̂y determines the properties (such as

order-of-accuracy and monotonicity) of the forward-in-time scheme.

Similarly, the flux form equation (4) can be solved

Φn+1

ij = Φn
ij −

∆t

∆x

(

(uΦ̂x)i+ 1

2
j − (uΦ̂x)i− 1

2
j

)

−
∆t

∆y

(

(vΦ̂y)ij+ 1

2

− (vΦ̂y)ij−1

2

)

. (11)
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The fluxes here are F = uΦ̂x and G = vΦ̂y, and so Φ̂x and Φ̂y are the cell edge values of Φ. As

conservation is a desired property of an advection scheme, in practice the flux-form of the equations

is commonly used (with Φ = ρq being the tracer density). However, for clarity of the derivation we

will focus on the advective form here. It is clear that for a fourth-order scheme q̂x and q̂y must be

discretized such that their use in equation (10) contains approximations to the terms given in (9).

The question is how to discretize q̂x and q̂y to capture these terms? As
(

q̂x
i+ 1

2
j
− q̂x

i−1

2
j

)

/∆x and
(

q̂y
ij+ 1

2

− q̂y
ij−1

2

)

/∆y are discrete approximations to q̂xx and q̂yy around the point with index ij, one

option would be to choose q̂x and q̂y to have the property, up to fourth-order, that

∂q̂x

∂x
=qx − u

∆t

2!
qxx − v

∆t

2!
qxy + u2∆t2

3!
qxxx + uv

∆t2

4
qxxy + v2

∆t2

4
qxyy (12)

−u3∆t3

4!
qxxxx − u2v

2∆t3

4!
qxxxy − uv2

3∆t3

4!
qxxyy − v3

2∆t3

4!
qxyyy

and

∂q̂y

∂y
=qy − u

∆t

2!
qxy − v

∆t

2!
qyy + u2∆t2

4
qxxy + uv

∆t2

4
qxyy + v2

∆t2

3!
qyyy (13)

−u3 2∆t3

4!
qxxxy − u2v

3∆t3

4!
qxxyy − uv2

2∆t3

4!
qxyyy − v3

∆t3

4!
qyyyy

Therefore, to capture this property, q̂x and q̂y up to fourth-order could have the form

q̂xfull =q − u
∆t

2!
qx − v

∆t

2!
qy + u2∆t2

3!
qxx + uv

∆t2

4
qxy + v2

∆t2

4
qyy (14)

− u3∆t3

4!
qxxx − u2v

2∆t3

4!
qxxy − uv2

3∆t3

4!
qxyy − v3

2∆t3

4!
qyyy

and

q̂y
full

=q − u
∆t

2!
qx − v

∆t

2!
qy + u2∆t2

4
qxx + uv

∆t2

4
qxy + v2

∆t2

3!
qyy (15)

− u3 2∆t3

4!
qxxx − u2v

3∆t3

4!
qxxy − uv2

2∆t3

4!
qxyy − v3

∆t3

4!
qyyy

The forms of q̂x and q̂y derived here are the standard q̂x and q̂y for forward-in-time schemes, in this

paper we call them the full flux term formulation (hence the subscript ‘full’), and can be discretized

using standard finite-differences. This starting point allows us to create flux-form advection schemes

with high order spatial and temporal accuracy, as this form of q̂x and q̂y can also be used in the flux

form discretization (11). This can be extended to give arbitrary order (although we only show up to

fourth-order in equations (14)-(15)).

The multi-dimensional forward-in-time schemes calculate each term in the fluxes F = uq̂x

and G = vq̂y from (14) and (15) up to the desired order, and this method captures all of the

cross-terms. The second-order version is the well known Lax-Wendroff scheme. The third-order

version has been used by [LeVeque(1996)] and [Leonard et al.(1993)] (called the UTOPIA scheme).

The discretization of q̂x and q̂y for the second and fourth-order schemes using finite-difference

approximations is given in A and B.

3. THE ASYMMETRIZED FLUX FORMULATION

To increase the efficiency of the advection schemes it is desirable to reduce the number of terms in

q̂x and q̂y. As we increase to higher-order, not only are there more terms in the fluxes, but each term

will generally require a larger stencil when discretized. For example, to fourth-order both (14) and

(15) contain 10 terms each. One method to reduce computational cost would be to replace the full

This article is protected by copyright. All rights reserved.
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flux terms with strictly one-dimensional flux terms, e.g.

q̂xone =q − u
∆t

2!
qx + u2∆t2

3!
qxx − u3∆t3

4!
qxxx + ... (16)

q̂yone =q − v
∆t

2!
qy + v2

∆t2

3!
qyy − v3

∆t3

4!
qyyy + ... (17)

However, this method then neglects the cross-terms in (9), which can lead to a reduction in accuracy

and to instabilities for two-dimensional flow [Leonard et al.(1996)].

Here we introduce a method that reduces the number of terms in one flux, for example in q̂y, and

replaces them in the other, q̂x. We first demonstrate how this is achieved for second-order, before

moving up to fourth-order. Consider the second-order expansion (8). Note the ∆t2uvqxy term. In

the formulation of q̂x and q̂y, up to second-order in (14) and (15), this term is calculated using the

qy term in q̂x, and the qx term in q̂y. Therefore this cross-term is produced by terms from both q̂x

and q̂y. To improve efficiency we can remove the qx term from q̂y, and add a corresponding qy term

to q̂x:

q̂xafc =q − u
∆t

2!
qx − v∆tqy, (18)

q̂y
afc

=q − v
∆t

2!
qy. (19)

Using q̂x and q̂y in (10) will produce approximations of all the terms in (8), but they contain one

fewer term in the calculation of q̂y. We call this form of q̂x and q̂y the asymmetrized flux calculation.

For the higher-order forward-in-time schemes we can remove more terms from one flux and stack

them on the other. Up to fourth-order we have

q̂xafc =q − u
∆t

2!
qx − v∆tqy + u2∆t2

3!
qxx + uv

∆t2

2
qxy + v2

∆t2

2
qyy (20)

− u3∆t3

4!
qxxx − u2v

4∆t3

4!
qxxy − uv2

6∆t3

4!
qxyy − v3

4∆t3

4!
qyyy

q̂y
afc

=q − v
∆t

2!
qy + v2

∆t2

3!
qyy − v3

∆t3

4!
qyyy (21)

For second-order only terms up to ∆t are required, and for third-order only terms up to ∆t2. The

terms in q̂x and q̂y given here can be discretized in a number of ways. The discretization of the

asymmetrized flux calculation using finite-difference approximations is given in A and B for the

second and fourth-order scheme respectively.

The benefit of the asymmetrized flux calculation is the reduction in the number of terms, and

hence the reduction in computational cost when compared with the full fluxes, whilst retaining the

formal order-of-accuracy. The second, third, and fourth-order asymmetrized flux calculations of q̂x

and q̂y contain 1, 3, and 6 fewer terms than the full formulation given in (14)-(15). The reduction in

cost is shown in A for the second-order discretization. It is shown that the total number of operations

for the full flux terms is 20, whereas the asymmetrized flux terms only require 15 operations. This

indicates that the second-order full q̂x and q̂y are approximately 33% more expensive than the

asymmetrized flux calculation. The total number of operations is computed for the fourth-order

discretization in B, and this shows that the fourth-order full q̂x and q̂y are approximately 59% more

expensive than the fourth-order asymmetrized flux calculation.

Stability analysis can be applied to the full and asymmetrized flux formulations using the

discretizations given in the appendix. We let cx = u∆t/∆x and cy = v∆t/∆y denoted the Courant

numbers in the x and y directions respectively. From [Turkel(1977)] it can be shown that the full

second-order method is stable provided c
2/3
x + c

2/3
y ≤ 1, and from [Thuburn(1996)] it is shown

that the full third-order method is stable for |cx|+ |cy| ≤ 1. The stability of the asymmetrized flux

formulations can be numerically calculated for varying Courant numbers. For each scheme, for each

Courant number, the amplitude factor is computed. If the magnitude of the amplitude factor exceeds

This article is protected by copyright. All rights reserved.
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Figure 1. The stability of the second, third, and fourth-order schemes for the full fluxes (top) and the
asymmetrized fluxes (bottom), for varying Courant numbers. White indicates the stable region, and grey

indicates the unstable region.

1 for any wave number, then the scheme is classed as unstable at those cx and cy values. The stability

regions of the second, third, and fourth-order schemes using the full fluxes and the asymmetrized

flux calculation are shown in Figure 1. This plot shows that the stability region of the asymmetrized

flux calculation schemes are very similar to the corresponding full schemes.

However, the stability criteria can be improved by using an upwind discretization on the cross

terms [Durran(2010)]. The upwinding of the cross terms relaxes the stability criteria to

0 ≤
u∆t

∆x
≤ 1, and 0 ≤

v∆t

∆y
≤ 1. (22)

To achieve the improved stability criteria for the asymmetrized flux formulation, the upwinding of

the cross terms only takes place in q̂x.

A final consideration for these advection schemes is the use of monotonic and positivity-

preserving limiters. For the forward-in-time schemes discretized in the appendix, in both full and

asymmetrized flux form, flux-limiters are easily applied. It is possible to just apply one-dimensional

limiters, for example the universal limiter [Leonard(1991)], in each coordinate direction. However,

for forward-in-time advection schemes a one-dimensional limiter does not properly limit the cross-

terms, and therefore even the use of a monotonic one-dimensional limiter will not guarantee

monotonicity for multidimensional flow. Applying a fully monotonic multidimensional limiter (e.g.

[Thuburn(1996)]) to q̂x and q̂y ensures monotonicity.

4. TWO-DIMENSIONAL NUMERICAL TESTING

The aim of the numerical testing is to demonstrate that the asymmetrized flux calculation has

the same accuracy as the full formulation (for corresponding order-of-accuracy) but with reduced

computational cost. To show the accuracy and efficiency of the asymmetrized flux calculation

forward-in-time scheme we perform a variety of idealized tests. We calculate normalized error

This article is protected by copyright. All rights reserved.
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norms, convergence rates, and the run time taken to complete the simulation. The average time

taken from three runs is used. Note that the tests are performed on a desktop computer and therefore

the timings are used only for comparison within this paper. In each test we use the flux-form

of the discretizations, equation (11), with constant density, ρ = 1. The grid is doubly periodic

with 0 < x ≤ 1, 0 < y ≤ 1. For these tests no upwinding is used on the cross-terms in any of the

discretizations. Note that in practice the third-order schemes use upwinding to calculate several of

the terms to third-order accuracy, and the stencil depends on the sign of the velocity. For the testing

used here the velocities are always positive.

We test the forward-in-time schemes of order 2− 4 (with the discretizations given in the

appendix) with the full flux (denoted FULL), e.g. explicitly calculating each term in equations (14)

and (15), in asymmetrized flux calculation form (AFC), e.g. using the method described in Section

3, and finally the formulation with only the one-dimensional flux (ONE), e.g. (16) and (17).

4.1. Constant Velocities

The first test advects a smooth tracer using constant velocities. We use the initial conditions

u = 1, v = 1, q1 = exp

(

−50

[

1

2
− x

]2

− 50

[

1

2
− y

]2
)

(23)

The tracer is advected once around the domain and back to its starting point to allow the easy

calculation of error norms. Using a time step of ∆t = 1/1280 we calculate the normalized ℓ2 error

norms for each scheme on the grid with 128 grid points in both directions. Using a time step of

∆t = ∆x/5 we calculate the error convergence rate [Holdaway et al.(2008)] by calculating the

normalized ℓ2 error norms on grids with 64 and 128, 256 and 512 grid points in both directions.

The results for the constant advection case are given in the left hand section of Table I. A dash

is used to indicate that a scheme became unstable. The testing shows that the one-dimensional

fluxes are the least accurate, don’t converge at the formal rate, and can become unstable. This

demonstrates the need to capture the cross-terms. For each order-of-accuracy the ℓ2 error norms

are very similar for the full flux and the asymmetrized flux formulations, and both methods achieve

the same empirical convergence rate. The error convergence rates are close to the formal order-

of-accuracy for these schemes for constant velocities. This demonstrates that the accuracy of the

asymmetrized flux calculation is comparable to the full flux method. The wall clock timings show

that the asymmetrized fluxes are quicker than the full fluxes for each order (with the benefit

increasing as the order increases). The asymmetrized flux calculation produces a solution in 91%,

80%, and 67% of the time of the full flux formulation for second, third, and fourth order respectively.

This agrees with the cost analysis shown in A.

Table I. Normalized ℓ2 error norms for q1 for each of the schemes for u = v = 1. The grid is composed of
128 grid points in each direction. Also shown is the mean clock time of the simulation (for the 128 grid), and
the mean numerical convergence rate for q1 with u = v = 1 when using 64, 128, 256 and 512 grid points.
The right hand section shows the metrics for q2 for the deformational flow, and here the normalized ℓ2 error

norms are for the 128 grid point grid. A dash indicates that the scheme became unstable.

Order Scheme q1 ℓ2 time (s) Rate q2 ℓ2 Rate

2nd FULL 1.93× 10−2 0.61 1.99 4.79× 10−2 1.88

2nd ONE 4.38× 10−2 0.40 1.17 0.65 1.87

2nd AFC 1.93× 10−2 0.56 1.99 4.80× 10−2 1.88

3rd FULL 1.40× 10−3 1.53 2.98 4.69× 10−3 2.75

3rd ONE 3.91× 10−2 0.59 1.00 0.11 1.75

3rd AFC 1.40× 10−3 1.22 2.98 5.47× 10−3 2.75

4th FULL 9.96× 10−5 3.59 3.69 6.02× 10−4 3.81

4th ONE 3.92× 10−2 0.98 - - 1.09

4th AFC 1.01× 10−4 2.41 3.66 2.84× 10−3 3.66

This article is protected by copyright. All rights reserved.
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Figure 2. The evolution of tracer q2 for the deformation test using the fourth order asymmetrized flux
calculation on the 128× 128 grid, at time 0 (left), time T/2 (centre), and time T (right).

4.2. Deformational Flow

We now run the schemes using a deformational flow that has a time dependent term that returns the

tracers to their initial conditions. Added to the deformational velocities is a constant background

flow. The translated x and y coordinates are given as

x′ = x− v0
t

T
, y′ = y − v0

t

T
, (24)

and the deformational velocities are given as

u = u0 sin
2 πx′ sin 2πy′ cos

πt

T
+ v0, v = −u0 sin

2 πy′ sin 2πx′ cos
πt

T
+ v0. (25)

Here T is the total length of the simulation, in this case T = 1, the magnitude of the deformation

velocity is given by u0 = 2, and the background velocity is v0 = 2. Note that the flow is non-

divergent, ux + vy = 0, and so the advective and flux forms of the equations are equivalent. The

initial tracer is given as

q2 =
1

2
+

1

2
sin (2πx) sin (2πy) . (26)

As with the constant case, the initial tracer can be used as the true solution, and therefore error norms

can be calculated. We use a grid of 128 grid points in both directions, and a time step of 1/1280. The

empirical error convergence rates are computed using the normalized ℓ2 errors on the grids with 64
and 128 grid points. The time step used for these convergence simulations is ∆t = ∆x/100.

The results for the deformation test are given in the right hand section of Table I, and the tracer

evolution using the fourth order asymmetrized flux calculation is shown in Figure 2. For the second

and fourth-order schemes, the one-dimensional fluxes become unstable, showing their unsuitability

for capturing the cross terms. As with the constant velocity case, the normalized ℓ2 error norms are

similar for both the full fluxes and asymmetrized fluxes for both second- and third-order. However,

there is a difference in the error norm for the fourth-order schemes, with the full fluxes producing a

smaller error. This is due to the velocities for the cross-terms in the asymmetrized flux only being

stored at one flux point. The asymmetrized flux calculation has similar error convergence rates as the

corresponding full formulation. These results demonstrate that although there are more pronounced

differences for non-constant velocities, both the asymmetrized flux calculation and full formulation

perform to a similar level of accuracy.

4.3. Use with Limiters

We can use the one-dimensional universal limiter of [Leonard(1991)] and the two-dimensional

version of [Thuburn(1996)] to show the effect of limiters on these schemes. Using the constant

velocities on the 64× 64 grid, with a time step ∆t = 1/640, we repeat the test using a discontinuous

This article is protected by copyright. All rights reserved.
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Figure 3. Cross-section of q3 at the end of the simulation for the full fluxes (left) and the asymmetrized flux
calculation (right) using the fourth-order scheme at y = 1/2. Shown in each plot are the true solution, the

unlimited fourth-order scheme, and the fourth-order scheme with the 2D limiter of [Thuburn(1996)].

initial tracer given by q3 = 1 if |x− 0.5| < 0.25 and |y− 0.5| < 0.25, and q3 = 0 otherwise. For

each case we calculate the ℓ2 error norm and the minimum value of q at the end of the simulation.

The analytical minimum is zero. Error convergence rates are not computed for this test due to the

discontinuous initial data [Holdaway et al.(2008)].

The results, shown in Table II, generally agree with those given in Table I. As before, the

asymmetrized flux calculation and the full fluxes produce similar error norms, and this holds

when the flux limiters are applied. The one-dimensional flux-like terms, which can be unstable

for the unlimited case, perform better with the addition of the limiters, although the error norms

are still larger than the full and asymmetrized flux formulation. The results also show that

each of the unlimited schemes are not monotonic, with the third-order scheme producing the

smallest magnitude undershoots. Using the one-dimensional limiter reduces the magnitude of the

undershoots, but the cross-terms are unlimited and so each scheme is still not monotonic. Applying

the two-dimensional limiter improves the error norms for this test, and is the only method shown

that makes each of the schemes monotonic. A cross-section at the end of the simulation of q3 at

y = 1/2 is shown in Figure 3 for the full and asymmetrized flux formulations of the fourth-order

scheme with and without the limiter of [Thuburn(1996)]. This plot highlights that the asymmetrized

flux calculation produces very similar results to those of the full formulation even when monotonic

limiters are applied.

Table II. Normalized ℓ2 error norms for q3 on the 64× 64 grid for each of the schemes with and without the
limiters for u = v = 1. Also shown is the minimum value for each scheme (the true value is 0)

Unlimited 1D Limiter 2D Limiter

Order Scheme ℓ2 min ℓ2 min ℓ2 min

2nd FULL 0.37 -0.37 0.29 −2.68× 10−2 0.28 0

2nd ONE - - 0.29 −2.68× 10−2 0.30 0

2nd AFC 0.37 -0.37 0.29 −4.23× 10−2 0.28 0

3rd FULL 0.25 -0.12 0.26 −3.00× 10−3 0.25 0

3rd ONE 0.79 -1.84 0.27 −4.05× 10−1 0.27 0

3rd AFC 0.25 -0.13 0.27 −1.06× 10−2 0.25 0

4th FULL 0.30 -0.33 0.23 −5.67× 10−2 0.20 0

4th ONE - - 0.35 -1.13 0.32 0

4th AFC 0.30 -0.34 0.24 −8.47× 10−2 0.20 0

This article is protected by copyright. All rights reserved.
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5. EXTENSION TO THREE-DIMENSIONAL FLOW

The method described in this paper can easily be extended to three dimensions. The advection

equation in three-dimensions becomes

qt + uqx + vqy +wqz = 0, (27)

where w is the velocity in the z direction. The forward-in-time method can be derived once more

using Taylor series expansions. The Taylor expansion of the advection equation is given as

qn+1

ijk = qijk +∆tqt +
∆t2

2!
qtt +

∆t3

3!
qttt +

∆t4

4!
qtttt + ... (28)

where k is the spatial index in the z direction and the derivatives are evaluated at the point
i, j, k. Considering the case of constant velocities, we use the same method as before to substitute
expressions for spatial derivatives into higher order temporal derivatives. Substituting these higher
derivatives into the Taylor expansion (28) gives (to fourth-order)

qn+1

ij = qnij −∆t (uqx + vqy +wqz) +
∆t2

2!

(

u2qxx + v2qyy + w2qzz + 2uvqxy + 2uwqxz + 2vwqyz

)

−
∆t3

3!

(

u3qxxx+v3qyyy+w3qzzz+6uvwqxyz+3u2vqxxy+3u2wqxxz+3uv2qxyy+3uw2qxzz+3v2wqyyz+3vw2qyzz

)

+
∆t4

4!

(

u4qxxxx+v4qyyyy+w4qzzzz+4u3vqxxxy+6u2v2qxxyy+4uv3qxyyy+4u3wqxxxz+6u2w2qxxzz

+4uw3qxzzz+4v3wqyyyz+6v2w2qyyzz+4vw3qyzzz+12u2vwqxxyz+12uv2wqxyyz+12uvw2qxyzz

)

(29)

As with the two-dimensional case, the values of q at the grid cell edges (q̂x, q̂y and q̂z) can be

calculated such that

qn+1

ijk = qnijk − u
∆t

∆x

(

q̂xi+1

2
jk − q̂xi−1

2
jk

)

− v
∆t

∆y

(

q̂y
ij+1

2
k
− q̂y

ij−1

2
k

)

−w
∆t

∆z

(

q̂zijk+1

2

− q̂zijk−1

2

)

.

(30)
Therefore the full formulation of q̂x, q̂y and q̂z, to fourth-order, is

q̂xfull=q−u
∆t

2!
qx−v

∆t

2!
qy−w

∆t

2!
qz+

∆t2

6

(

u2qxx+
3

2
uvqxy+

3

2
v2qyy+

3

2
uwqxz+2vwqyz+

3

2
w2qzz

)

(31)

−
∆t3

24

(

u3qxxx+2u2vqxxy+3uv2qxyy+2v3qyyy+2u2wqxxz+3uw2qxzz+2w3qzzz+4v2wqyyz+4vw2qyzz+4uvwqxyz

)

,

q̂
y

full
=q−u

∆t

2!
qx−v

∆t

2!
qy−w

∆t

2!
qz+

∆t2

6

(

3

2
u2qxx+

3

2
uvqxy+v2qyy+2uwqxz+

3

2
vwqyz+

3

2
w2qzz

)

(32)

−
∆t3

24

(

v3qyyy+2u3qxxx+3u2vqxxy+2uv2qxyy+2v2wqyyz+3vw2qyzz+2w3qzzz+4u2wqxxz+4uw2qxzz+4uvwqxyz

)

,

and

q̂zfull=q−u
∆t

2!
qx−v

∆t

2!
qy−w

∆t

2!
qz+

∆t2

6

(

3

2
u2qxx+2uvqxy+

3

2
v2qyy+

3

2
uwqxz+

3

2
vwqyz+w2qzz

)

(33)

−
∆t3

24

(

w3qzzz+2u3qxxx+3u2wqxxz+2uw2qxzz+2v3qyyy+3v2wqyyz+2vw2qyzz+4u2vqxxy+4uv2qxyy+4uvwqxyz

)

.
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We can use the same method as before to write the flux terms using the asymmetrized flux
calculation. The fourth-order asymmetrized flux formula for three-dimensional flow becomes

q̂xafc =q − u
∆t

2!
qx − v∆tqy −w∆tqz +

∆t2

6

(

u2qxx + 3uvqxy + 3v2qyy + 3uwqxz + 6vwqyz + 3w2qzz

)

(34)

−
∆t3

24

(

u3qxxx+4u2vqxxy+6uv2qxyy+4v3qyyy+4u2wqxxz+6uw2qxzz+4w3qzzz+12v2wqyyz+12vw2qyzz+12uvwqxyz

)

q̂
y

afc
=q−v

∆t

2!
qy−w∆tqz+

∆t2

6

(

v2qyy+3vwqyz+3w2qzz

)

−
∆t3

24

(

v3qyyy+4v2wqyyz+6vw2qyzz+4w3qzzz

)

,

(35)

q̂zafc =q −w
∆t

2!
qz +

∆t2

6
w2qzz −

∆t3

24
w3qzzz. (36)

As an efficiency calculation, the fourth-order asymmetrized fluxes have a total of 34 terms

instead of the 60 terms for the full flux-like terms in equations (31)-(33). For second-order the

asymmetrized flux formulation has 9 terms compared to 12 in the full formulation, and the third-

order asymmetrized flux calculation has 19 terms compared to 30 in the full formulation. The

second-order discretization is shown in A, and here the number of operations is calculated to

compare computational efficiency. The full fluxes require a total of 42 operations compared to 27
for the asymmetrized flux calculation, indicating that for three-dimensional flow the second-order

full fluxes are approximately 56% more expensive than the asymmetrized fluxes. Note that in the

asymmetrized flux calculation, H is strictly one-dimensional, G is two-dimensional, and F is three-

dimensional.

5.1. 3D Testing

The constant velocities test is extended to three-dimensions. The grid is triply periodic with

0 < x ≤ 1, 0 < y ≤ 1, 0 < z ≤ 1, and the initial conditions are

u = 1, v = 1, w = 1, q4 = exp

(

−50

[

1

2
− x

]2

− 50

[

1

2
− y

]2

− 50

[

1

2
− z

]2
)

.

(37)

For the three-dimensional schemes we test the full flux (FULL), from equations (31)-(33), the

asymmetrized flux calculation (AFC), from equations (34)-(36), and the one-dimensional flux

(ONE) that capture no cross-terms (i.e. q̂x, q̂y and q̂z are strictly one-dimensional). For this test

no limiters are used. The grid is made up of 64 grid points in each direction, and the time step is

∆t = 1/640.

The results for the three-dimensional test are presented in Table III. The one-dimensional flux-like

terms have the lowest computational cost but the largest error norms (and for an increased time step

become unstable). The results are similar to the two-dimensional tests, as for each order-of-accuracy

the full formulation and the asymmetrized flux calculation produce similar sized error norms, yet the

run time for the asymmetrized flux calculation is less than that of the full scheme. This is especially

notable for higher than second-order, and agrees with the cost analysis performed in A.

6. CONCLUSIONS

Accurate and efficient advection schemes are required in all branches of computational fluid

dynamics. This is especially true for numerical models of the atmosphere, where advection schemes

are used for tracer transport. For multi-dimensional flow it is essential that forward-in-time schemes

adequately capture the cross-terms. We have provided a method to reduce the number of terms in

the fluxes of forward-in-time advection schemes. Duplicated terms are removed from one flux and

loaded onto the other, to create an asymmetrized flux. Although symmetry might be a desirable

property of an advection scheme, the testing in this paper shows that the asymmetrized flux

This article is protected by copyright. All rights reserved.
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Table III. Normalized ℓ2 error norms for q4 for each of the schemes for u = v = w = 1. The grid is composed
of 64 grid points in each direction. Also shown is the clock time of the simulation.

Order Scheme q4 ℓ2 time (s)

2nd FULL 7.65× 10−2 12.6

2nd ONE 1.12× 10−1 5.8

2nd AFC 7.65× 10−2 11.5

3rd FULL 1.08× 10−2 44.2

3rd ONE 7.76× 10−2 8.1

3rd AFC 1.08× 10−2 28.5

4th FULL 1.51× 10−3 119.8

4th ONE 7.94× 10−2 12.8

4th AFC 1.51× 10−3 77.0

calculation performs to the same degree of accuracy as the full, symmetric, flux formulation. For

the asymmetrized flux calculation for the two-dimensional case, the second-order version results in

a reduction from 6 terms to 5 terms, for third-order it is a reduction from 12 to 9 terms, and for

fourth-order it is a reduction from 20 to 14 terms. This reduction in the number of terms reduces

the computational cost of the asymmetrized flux calculation when compared to the full formulation.

Further cost analysis shows that for second-order, the number of operations required for the full

fluxes is 20, whereas it is only 15 for the asymmetrized flux. This means that the full fluxes are

≈ 33% more expensive than the asymmetrized flux calculation. Increasing the order-of-accuracy to

fourth order we find that the full fluxes are ≈ 59% more expensive than the asymmetrized flux

calculation. As the order-of-accuracy increases further, the full flux formulation becomes even

more expensive than the asymmetrized flux calculation. The asymmetrized flux calculation is easily

extendible to three-dimensional flow, and in this case the reduction in computational time is more

pronounced.

Numerical testing highlights the importance of capturing the cross terms, with the strictly one-

dimensional schemes producing the largest errors, and in some cases instabilities. The results from

the numerical testing show that for constant velocity transport problems the error norms and error

convergence rates are almost identical between same order schemes with the full formulation and

asymmetrized flux calculation. This demonstrates that using the asymmetrized flux calculation

results in no loss of accuracy when compared to the full formulation. However, the asymmetrized

flux calculation offers a noticeable reduction in computational time, completing the constant

velocity simulation in 67% of the time of the full formulation for the fourth-order method. For the

non-constant velocity deformational tests, the error norms are slightly larger for the asymmetrized

flux calculation, and this is due to the location of the velocities used to calculate the cross-terms in

the fluxes.

The discretizations of the schemes in this paper make use of finite-difference approximations

which are not monotonic. Limiters, such as that of [Thuburn(1996)], can be easily applied to the

methods shown here. One-dimensional flux limiters fail to make the schemes completely monotonic

because the cross-terms are not limited, whereas fully multidimensional limiters properly limit the

cross-terms and produce a monotonic solution.

The aim of this article is to introduce the asymmetrized flux calculation concept, and as such

the analysis and testing has been performed on a Cartesian domain using a structured grid for

advection problems. Future studies will show the application of the asymmetrized flux calculation

on unstructured and distorted grids, and for other equation sets.
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A. SECOND-ORDER DISCRETIZATIONS

A.1. Two-Dimensional Flow

The discretizations in this appendix assume that q is stored at integer grid points (i, j), F = uq̂x

is stored at half x points (i ± 1/2, j) and G = vq̂y is stored at half y points (i, j ± 1/2). For

demonstrative purposes we will consider the case of constant u and v, letting Cx = u∆t/∆x and

Cy = v∆t/∆y.

The full fluxes for the second-order scheme can be discretized using

q̂xi+1

2
j =

1

2
(qi+1j + qij)−

Cx

2
(qi+1j − qij)−

Cy

2

(

qi+1/2j+1/2 − qi+1/2j−1/2

)

(38)

q̂y
ij+1

2

=
1

2
(qij+1 + qij)−

Cx

2

(

qi+1/2j+1/2 − qi−1/2j+1/2

)

−
Cy

2
(qij+1 − qij) (39)

where

qi+1/2j+1/2 =
1

4
(qij + qi+1j + qij+1 + qi+1j+1) (40)

The asymmetrized flux calculation discretizes q̂x and q̂y as

q̂x
i+1

2
j
=

1

2
(qi+1j + qij)−

Cx

2
(qi+1j − qij)− Cy

(

qi+1/2j+1/2 − qi+1/2j−1/2

)

(41)

q̂y
ij+1

2

=
1

2
(qij+1 + qij)−

Cy

2
(qij+1 − qij) (42)

We follow the computational efficiency comparison of [Zerroukat et al.(2006)] to calculate the

number of operations required to calculate the fluxes of both methods, e.g. equations (38)-(39)

compared with (41)-(42). The full fluxes require 10 additions and 10 multiplications, giving a

total Number of Operations (NO) as NOfull = 20. The asymmetrized flux calculation requires

8 additions and 7 multiplications, and so NOafc = 15. The ratio of number of operations for the

second-order fluxes is NOfull/NOafc ≈ 1.33, i.e. the full fluxes are ≈ 33% more expensive than

the asymmetrized flux.

Standard truncation error analysis applied to these schemes show that both the full formulation

and the asymmetrized flux calculation are formally second-order in space and time.
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A.2. Three-Dimensional Flow

We can repeat the number of operations calculation for the second-order schemes for the three-

dimensional advection equation (27). For this case q̂x is stored at half x points (i ± 1/2, j, k), q̂y

is stored at half y points (i, j ± 1/2, k), and q̂z is stored at half z points (i, j, k± 1/2). We also

introduce the Courant number in the z direction, Cz = w∆t/∆z. The tracer is also required at the

following points:

qi+1/2j+1/2k =
1

4
(qijk + qi+1jk + qij+1k + qi+1j+1k) (43)

qi+1/2jk+1/2 =
1

4
(qijk + qi+1jk + qijk+1 + qi+1jk+1) (44)

qij+1/2k+1/2 =
1

4
(qijk + qij+1k + qijk+1 + qij+1k+1) (45)

The full flux terms for the second-order scheme can be discretized using

q̂xi+ 1

2
jk=

1

2

(

qi+1jk + qijk
)

−
Cx

2

(

qi+1jk − qijk
)

−
Cy

2

(

qi+1/2j+1/2k−qi+1/2j−1/2k

)

−
Cz

2

(

qi+1/2jk+1/2−qi+1/2jk−1/2

)

,

(46)

q̂
y
ij+ 1

2
k
=
1

2

(

qij+1k + qijk
)

−
Cx

2

(

qi+1/2j+1/2k− qi−1/2j+1/2k

)

−
Cy

2

(

qij+1k − qijk
)

−
Cz

2

(

qij+1/2k+1/2−qij+1/2k−1/2

)

,

(47)

q̂zijk+1

2

=
1

2

(

qijk+1 + qijk
)

−
Cx

2

(

qi+1/2jk+1/2−qi−1/2jk+1/2

)

−
Cy

2

(

qij+1/2j+1/2− qij−1/2k+1/2

)

−
Cz

2

(

qijk+1−qijk
)

,

(48)

whereas the asymmetrized flux calculation discretizes these as

q̂xi+ 1

2
jk=

1

2

(

qi+1jk + qijk
)

−
Cx

2

(

qi+1jk−qijk
)

−Cy
(

qi+1/2j+1/2k−qi+1/2j−1/2k

)

−Cz
(

qi+1/2jk+1/2−qi+1/2jk−1/2

)

,

(49)

q̂yij +
1

2
k =

1

2

(

qij+1k + qijk
)

−
Cy

2

(

qij+1k − qijk
)

− Cz
(

qij+1/2k+1/2 − qij+1/2k−1/2

)

, (50)

q̂zijk+1

2

=
1

2

(

qijk+1 + qijk
)

−
Cz

2

(

qijk+1 − qijk
)

, (51)

The computational efficiency comparison shows that the full fluxes, (46)-(48), have a total Number

of Operations of NOfull = 42 (21 additions and 21 multiplications). The asymmetrized flux

calculation, (49)-(51), requires 15 additions and 12 multiplications, and so NOafc = 27. The ratio

of number of operations for the second-order fluxes for three-dimensional flow is NOfull/NOafc ≈
1.56, i.e. the full fluxes are ≈ 56% more expensive than the asymmetrized flux.

B. FOURTH-ORDER DISCRETIZATION

As in A, for demonstrative purposes we will consider the two-dimensional case with constant u and

v, letting Cx = u∆t/∆x and Cy = v∆t/∆y.

We use fourth-order interpolations to calculate q at half indices in x,

qi−1/2j =
1

12
(−qi+1j + 7qij + 7qi−1j − qi−2j) , (52)

and then repeat this to get q at cell corner points

qi−1/2j−1/2 =
1

12

(

−qi−1/2j+1 + 7qi−1/2j + 7qi−1/2j−1− qi−1/2j−2

)

. (53)
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Derivatives of q are calculated at cell centres and at corner points using fourth-order approximations

∂qij
∂x

=
1

12
(−qi+2j + 8qi+1j − 8qi−1j + qi−2j) , (54)

∂qi−1/2j−1/2

∂x
=

1

12

(

−qi+2j−1/2 + 8qi+1j−1/2 − 8qi−1j−1/2 + qi−2j−1/2

)

, (55)

which can be rotated for y derivates. These can then be applied multiple times to calculate the higher

derivatives at these points. Derivatives are also calculated at F flux points

∂qi−1/2j

∂x
=

1

12
(−qi+1j + 15qij − 15qi−1j + qi−2j) , (56)

∂qi−1/2j

∂y
=

1

12

(

−qi−1/2j+3/2 + 15qi−1/2j+1/2 − 15qi−1/2j−1/2+ qi−1/2j−3/2

)

, (57)

along with the second and third derivatives

∂2qi−1/2j

∂x2
=

1

2
(qi+1j − qij − qi−1j + qi−2j) , (58)

∂3qi−1/2j

∂x3
=

1

24
(qi+1j − 3qij + 3qi−1j − qi−2j) . (59)

Again, these can be rotated to give the derivatives at G flux points for y derivatves.
The full flux terms for the fourth-order scheme can be discretized using

q̂xi+ 1

2
j=qi+1/2j−

Cx

2

∂qi+1/2j

∂x
−
Cy

2

∂qi+1/2j

∂y
+
C2
x

6

∂2qi+1/2j

∂x2
+
CxCy

4

∂

∂x

(

∂qij
∂y

)

+
C2
y

4

∂

∂y

(

∂qi+1/2j+1/2

∂y

)

−
C3
x

24

∂3qi+1/2j

∂x3
−

C2
xCy

12

∂2

∂x2

(

∂qij
∂y

)

−
CxC

2
y

8

∂

∂x

(

∂2qij
∂y2

)

−
C3
y

12

∂3qi+1/2j

∂y3
(60)

and

q̂y
ij+ 1

2
j
=qij+1/2−

Cx

2

∂qij+1/2

∂x
−
Cy

2

∂qij+1/2

∂y
+
C2
x

6

∂

∂x

(

∂qi+1/2j+1/2

∂x

)

+
CxCy

4

∂

∂y

(

∂qij
∂x

)

+
C2
y

4

∂2qij+1/2

∂y2

−
C3
x

8

∂3qij+1/2

∂x3
−

C2
xCy

8

∂

∂y

(

∂2qij
∂x2

)

−
CxC

2
y

12

∂2

∂y2

(

∂qij
∂x

)

−
C3
y

24

∂3qij+1/2

∂y3
(61)

The asymmetrized flux calculation discretizes q̂x and q̂y as

q̂xi+ 1

2
j=qi+1/2j−

Cx

2

∂qi+1/2j

∂x
−Cy

∂qi+1/2j

∂y
+
C2
x

6

∂2qi+1/2j

∂x2
+
CxCy

2

∂

∂x

(

∂qij
∂y

)

+
C2
y

2

∂

∂y

(

∂qi+1/2j+1/2

∂y

)

−
C3
x

24

∂3qi+1/2j

∂x3
−

C2
xCy

6

∂2

∂x2

(

∂qij

∂y

)

−
CxC

2
y

4

∂

∂x

(

∂2qij

∂y2

)

−
C3
y

6

∂3qi+1/2j

∂y3
(62)

q̂
y

ij+ 1

2
j
= qij+1/2−

Cy

2

∂qij+1/2

∂y
+

C2
y

4

∂2qij+1/2

∂y2
−

C3
y

24

∂3qij+1/2

∂y3
(63)

Again, following the computational efficiency comparison of [Zerroukat et al.(2006)] we

calculate the number of operations required to calculate the fluxes of both methods. The full fluxes

require a total of NOfull = 230. The asymmetrized flux calculation requires NOafc = 145. The

ratio of number of operations for the second-order fluxes is NOfull/NOafc ≈ 1.59, i.e. the full

fluxes are ≈ 59% more expensive than the asymmetrized flux. Note that this does not include

the operations required for the interpolations. Standard truncation error analysis applied to these

schemes show that both the full formulation and the asymmetrized flux calculation are formally

fourth-order in space and time.
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