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Abstract
In this paper, the robust optimal filtering problem is discussed for time-varying
networked systems with randomly occurring quantized measurements via the
variance-constrained method. The stochastic nonlinearity is considered by statistical
form. The randomly occurring quantized measurements are expressed by a set of
Bernoulli distributed random variables, where the quantized measurements are
described by the logarithmic quantizer. The objective of this paper is to design a
recursive optimal filter such that, for all randomly occurring uncertainties, randomly
occurring quantized measurements and stochastic nonlinearity, an optimized upper
bound of the estimation error covariance is given and the desired filter gain is
proposed. In addition, the boundedness analysis problem is studied, where a
sufficient condition is given to ensure the exponential boundedness of the filtering
error in the mean-square sense. Finally, simulations with comparisons are proposed to
demonstrate the validity of the presented robust variance-constrained filtering
strategy.

Keywords: Time-varying nonlinear systems; Variance-constrained filtering;
Randomly occurring quantized measurements; Boundedness analysis

1 Introduction
Over the past few years, the state estimation or filtering problems have been widely dis-
cussed owing to its practical applications in various fields, such as in navigation system,
dynamic positioning, tracking of objects in computer vision, and so on [1–7]. In partic-
ular, based on a series of observed measurements over time, the Kalman filtering known
as a linear optimal estimation algorithm can provide the globally optimal estimation for
linear stochastic systems [8]. Regarding the complex dynamics systems with higher per-
formance requirements, the traditional Kalman filtering method might not achieve sat-
isfactory accuracy especially when the systems are contaminated with the nonlinear dis-
turbances. Thus, a large number of filtering approaches under different performance con-
straints have been given, such as Kalman filtering [9], extended Kalman filtering [10–12],
variance-constrained filtering [13–15], unscented Kalman filtering [16], H∞ filtering [17,
18], and security-guaranteed filtering [4, 5]. More specifically, some security-guaranteed
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filtering methods have been presented in [4, 5] for complex systems under different perfor-
mance indices. In [17], a robust H∞ filtering algorithm has been designed to cope with the
effects of the randomly occurring nonlinearities, parameter uncertainties and signal quan-
tization. In [10, 11], the robust extended Kalman filtering methods have been proposed
for time-varying nonlinear systems, and the related performance analyses concerning the
boundedness of the filtering errors have been provided. In recent years, the variance-
constrained method has been presented in [13, 14] to handle the filtering problems for
time-varying nonlinear networked systems with missing measurements under determin-
istic/uncertain occurrence probabilities, where the authors have obtained the optimized
upper bounds of estimation error covariance and proposed the expression forms of the
time-varying filter gains via the stochastic analysis technique. Subsequently, the variance-
constrained state estimation problem has been discussed in [15] for time-varying complex
networks and a new time-varying estimation algorithm has been given based on the re-
sults in [13, 14].

As it is well known, the existence of the uncertainties would deteriorate the whole per-
formance of addressed systems [19–22]. Accordingly, it is necessary to propose appropri-
ate means to reduce the influence from uncertainties onto the filtering algorithm perfor-
mance [23, 24]. Up to now, a variety of results have been reported concerning the filtering
problems for uncertain time-varying systems [25–27]. To mention a few, a robust recur-
sive filter has been designed in [25] for uncertain systems with missing measurements,
where a sufficient criterion has been given such that the exponential mean-square stabil-
ity of filtering error has been ensured. In the networked environment, the uncertainties
might emerge in a random way with certain probability [28]. For example, the state esti-
mation scheme has been proposed in [28] for discrete time-invariant networked systems
subject to distributed sensor delays and randomly occurring uncertainties, under which
the sufficient criterion has been given such that the stability of the resulted estimation er-
ror dynamics has been guaranteed. It is worthwhile to point out that it is necessary to com-
pensate the negative effects caused by randomly occurring uncertainties for time-varying
systems and propose more efficient filtering scheme with improved algorithm accuracy.

In a networked setting, the signals before transmission might be quantized due to the
limited data-processing capacity of the transmission channels [29], hence the quantiza-
tion errors should be properly addressed in order to reduce the resulted effects on the fil-
tering algorithm performance [13]. Generally, the logarithmic quantization and uniform
quantization are commonly discussed [29, 30]. So far, a large amount of efforts have been
made to discuss the filtering/control problems subject to signal quantization; see e.g. [13,
17, 29, 31, 32]. Accordingly, a great deal of attention has been given with respect to the
quantization errors. For instance, the sector-bound approach has been employed in [33]
to convert the quantization errors into the sector-bound uncertainties, and such a method
has been widely utilized when handling the control and filtering problems for networked
systems with quantization effects. For example, a robust H∞ filtering algorithm under
variance constraint has been proposed in [31] for nonlinear time-varying systems with
randomly varying gain perturbations as well as quantized measurements, where the pre-
defined estimation error variance constraint and H∞ performance have been discussed by
proposing the sufficient condition. In [34], an H∞ filtering problem has been addressed
for time-varying systems and a new algorithm has been given to handle the effects of sig-
nal measurements and non-Gaussian noises, moreover, the applicability of the proposed
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filtering scheme has been illustrated by means of a mobile robot localization scenario. So
far, most of available filtering methods can be applied to tackle the deterministic quanti-
zation effects only. However, there is a need to take the randomly occurring quantization
effects into account in order to further reflect the unreliable networked environments with
communication constraints. Hence, new filtering approach is desirable for addressing the
filtering problem of time-varying systems in the simultaneous presence of randomly oc-
curring uncertainties and quantized measurements under variance constraint. Accord-
ingly, it is very necessary to provide efficient analysis criterion to evaluate the proposed
filtering algorithm. As such, the objective of this paper is to shorten the gap by proposing
a robust variance-constrained filtering method under certain optimization criterion and
conducting the desired algorithm performance analysis issue.

In this paper, we aim to design the robust variance-constrained optimal filtering algo-
rithm for time-varying networked systems with randomly occurring uncertainties and
quantized measurements. Both the randomly occurring uncertainties and the quantized
measurements are modeled by Bernoulli distributed random variables. Owing to the exis-
tence of the randomly occurring uncertainties, signal quantization and stochastic nonlin-
earity, it is difficult to obtain the accurate value of the estimation error covariance. There-
fore, we aim to propose a new robust variance-constrained filtering method under cer-
tain optimization criterion. In particular, we need to find a locally optimal upper bound
of estimation error covariance and design proper filter gain at each sampling step. The
main contributions of this paper lie in: (1) a new variance-constrained filtering algorithm
is given for addressed networked systems with stochastic nonlinearity, randomly occur-
ring uncertainties and signal quantization; (2) the obtained upper bound of resulting fil-
tering error covariance can be minimized by properly designing the filtering gain, under
which the stochastic analysis techniques are used; and (3) the detailed boundedness anal-
ysis of filtering error is discussed and a sufficient condition is given. Finally, we utilize the
simulations to illustrate the validity of main results.

Notations The notations in this paper are standard. R
n and R

n×m, denote the n-
dimensional Euclidean space and the set of n × m matrices, respectively. E{x} represents
the expectation of the random variable x. PT and P–1 stand for the transpose and inverse
of matrix P. We use P ≥ 0 (P > 0) to depict that P is symmetric positive semi-definite (sym-
metric positive definite). The diag{Y1, Y2, . . . , Ym} represents a block-diagonal matrix with
Y1, Y2, . . . , Ym in the diagonal. I represents an identity matrix with appropriate dimension.
◦ is the Hadamard product.

2 Problem formulation and preliminaries
In this paper, we consider the following class of discrete time-varying systems with ran-
domly occurring uncertainties and stochastic nonlinearity:

xk+1 = (Ak + αk�Ak)xk + f (xk , ξk) + Bkωk , (1)

yk = Ckxk + νk , (2)

where xk ∈ R
n is the system state vector to be estimated and its initial value x0 has mean

x̄0 and covariance P0|0 > 0, yk ∈ R
m denotes the measurement output, ξk ∈ R is a zero-

mean Gaussian white noise, ωk ∈R
l and νk ∈R

m are the zero-mean noises with covariance
Qk > 0 and Rk > 0, respectively. Ak , Bk and Ck are known and bounded matrices.
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The uncertain matrix �Ak has the following form:

�Ak = HkFkMk , (3)

where Hk and Mk are known matrices, and uncertain matrix Fk satisfies FT
k Fk ≤ I .

The Bernoulli distributed random variable αk ∈ R, which is used to model the phe-
nomenon of the randomly occurring uncertainties, takes the values of 0 or 1 with

Prob{αk = 1} = E{αk} = ᾱk , Prob{αk = 0} = 1 – ᾱk , (4)

where ᾱk ∈ [0, 1] is a known scalar. The function f (x, ξk) represents the stochastic nonlin-
earity with f (0, ξk) = 0 and has the following statistical properties for all xk :

E
{

f (xk , ξk)|xk
}

= 0, (5)

E
{

f (xk , ξk)f T (xj, ξj)|xk
}

= 0, k �= j, (6)

E
{

f (xk , ξk)f T (xk , ξk)|xk
}

=
s∑

i=1

ΠixT
k Γixk , (7)

where s > 0 is a known integer, Πi and Γi (i = 1, 2, . . . , s) are known matrices with suitable
dimensions.

Remark 1 In fact, it is not always possible to obtain the accurate system model during
the system modeling, hence there is a need to address the modeling errors and discuss
their effects on the desired performance. On the other hand, it could be the case that the
modeling errors undergo the random changes, thus the randomly occurring uncertainties
are characterized by introducing the random variable αk with known occurrence prob-
ability as in (4), which is used to cater the practical feature especially in the networked
environment.

Remark 2 The stochastic nonlinearity f (·) satisfying the statistical features (5)–(7) could
cover many known nonlinearities addressed in the literature. For example, it could de-
scribe the functions in some linear systems with the state-multiplicative noises xkξk , where
ξk is a zero-mean noise with bounded second moment; and the nonlinearities in some
nonlinear systems with random disturbances (e.g. sgn(ψ(xk))xkξk with sgn representing
the signum function). In this paper, the effects induced by the stochastic nonlinearity will
be examined later and the available information (e.g. Πi and Γi) will be reflected in the
main results.

Owing to the limited bandwidth and the unreliable link of the network communication,
the signal quantizations maybe occur in a random way. Firstly, the map of the quantization
process is expressed by

q(yk) =
[

q1(y1
k) q2(y2

k) · · · qm(ym
k )

]T
.
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For each qj(·) (j = 1, 2, . . . , m), the following set of quantization levels are considered:

Uj =
{±u(j)

i , u(j)
i =

(
χ (j))iu(j)

0 , i = 0,±1,±2, . . .
}

∪ {0}, 0 < χ (j) < 1, u(j)
0 > 0,

where χ (j) (j = 1, 2, . . . , m) characterizes the quantization density. According to [33, 35], we
use the following logarithmic quantizer:

qj
(
yj

k
)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(j)
i , 1

1+δj
u(j)

i < yj
k ≤ 1

1–δj
u(j)

i ,

0, yj
k = 0,

–qj(–yj
k), yj

k < 0,

where δj = 1–χ (j)

1+χ (j) . It is not difficult to verify that qj(y
j
k) = (1 + �

(j)
k )yj

k with |�(j)
k | ≤ δj. Letting

Fk = �kΥ
–1, Υ = diag{δ1, δ2, . . . , δm} and �k = diag{�(1)

k ,�(2)
k , . . . ,�(m)

k }, we can know that
Fk is an unknown real-valued matrix satisfying FkFT

k = FT
k Fk ≤ I .

The following model is introduced to describe the real measurement signals received
by the remoter filter side:

ỹk = Λkyk + (I – Λk)q(yk), (8)

where Λk := diag{λk,1,λk,2, . . . ,λk,m}, and λk,i (i = 1, 2, . . . , m) are random variables satisfy-
ing

Prob{λk,i = 1} = E{λk,i} = λ̄k,i, Prob{λk,i = 0} = 1 – λ̄k,i, (9)

with λ̄k,i being known scalars. Meanwhile, suppose that ξk , αk , ωk , λk,i, νk as well as x0 are
all mutually independent.

In this paper, the following time-varying filter is designed:

x̂k+1|k = Akx̂k|k , (10)

x̂k+1|k+1 = x̂k+1|k + Kk+1(ỹk+1 – Λ̄k+1Ck+1x̂k+1|k), (11)

where x̂k|k is the state estimate of xk at time k, x̂k+1|k is the one-step prediction at time k,
Λ̄k+1 = E{Λk+1}, and Kk+1 is the filter gain to be determined.

The purpose of this paper mainly has three aspects. Firstly, we seek the upper bound of
the filtering error covariance by using inequality technique. Secondly, we design the filter
gain Kk+1 so as to minimize the upper bound. In addition, we will propose a sufficient
condition to guarantee the exponential boundedness of the filtering error in the mean-
square sense.

For later derivations, the following lemmas are introduced.

Lemma 1 For p, q ∈R
n and scalar ε > 0, the inequality

pqT + qpT ≤ εppT + ε–1qqT (12)

holds.
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Lemma 2 ([36]) For matrices A, B, C, D (CCT ≤ I), if the matrix X > 0 and scalar μ > 0
satisfy

μ–1I – DXDT > 0,

one has

(A + BCD)X(A + BCD)T ≤ A
(
X–1 – μDT D

)–1AT + μ–1BBT . (13)

Lemma 3 ([37]) For a real-valued matrix A = [aij]n×n and a stochastic matrix B =
diag{b1, b2, . . . , bn}, we have

E
{

BABT}
=

⎡

⎢⎢⎢⎢
⎣

E{b2
1} E{b1b2} · · · E{b1bn}

E{b2b1} E{b2
2} · · · E{b2bn}

...
...

. . .
...

E{bnb1} E{bnb2} · · · E{b2
n}

⎤

⎥⎥⎥⎥
⎦

◦ A,

with ◦ being the Hadamard product.

3 Design of optimal filtering algorithm
In this section, an optimized upper bound of the filtering error covariance is obtained
based on the matrix theory and stochastic analysis technique. Moreover, we derive the
desired filter gain based on the solutions to recursive matrix equations.

Firstly, let us calculate the one-step prediction error and filtering error. Define x̃k+1|k =
xk+1 – x̂k+1|k and x̃k+1|k+1 = xk+1 – x̂k+1|k+1, respectively. Subtracting (10) from (1) yields

x̃k+1|k = Akx̃k|k + ᾱk�Akxk + α̃k�Akxk + f (xk , ξk) + Bkωk , (14)

where α̃k = αk – ᾱk . Similarly, we have

x̃k+1|k+1 = (I – Kk+1Λ̄k+1Ck+1)x̃k+1|k – Kk+1Λ̃k+1Ck+1xk+1 – Kk+1Λk+1

× (I + �k+1)Ck+1xk+1 + Kk+1Λ̃k+1(I + �k+1)Ck+1xk+1

– Kk+1Λk+1�k+1νk+1 + Kk+1Λ̃k+1�k+1νk+1 – Kk+1νk+1, (15)

where Λ̃k+1 = Λk+1 – Λ̄k+1 and Λk+1 = I – Λ̄k+1.
Now, the following theorems provide the desired recursions of the one-step prediction

error covariance and filtering error covariance via the above definitions.

Theorem 1 The covariance Pk+1|k of the one-step prediction error satisfies

Pk+1|k = AkPk|kAT
k + ᾱk�AkE

{
xkxT

k
}
�AT

k + BkQkBT
k + ᾱkAkE

{
x̃k|kxT

k
}

× �AT
k + ᾱk�AkE

{
xkx̃T

x|k
}

AT
k +

s∑

i=1

Πi tr
(
E

{
xkxT

k
}
Γi

)
. (16)

Proof According to (14) and the independent properties of random variables, we can get
(16) easily. �
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Theorem 2 The recursion of the filtering error covariance Pk+1|k+1 can be given by

Pk+1|k+1 = (I – Kk+1Λ̄k+1Ck+1)Pk+1|k(I – Kk+1Λ̄k+1Ck+1)T + Kk+1Rk+1

× KT
k+1 + M1 + MT

1 + Kk+1Λk+1(I + �k+1)Ck+1E
{

xk+1xT
k+1

}

× CT
k+1(I + �k+1)TΛk+1KT

k+1 + M2 + MT
2 + Kk+1Λk+1�k+1

× Rk+1�
T
k+1Λk+1KT

k+1 + Kk+1
{
Ξ̌k+1 ◦ [

Ck+1E
{

xk+1xT
k+1

}
CT

k+1

+ (I + �k+1)Ck+1E
{

xk+1xT
k+1

}
CT

k+1(I + �k+1)T + �k+1Rk+1

× �T
k+1 + M3 + MT

3
]}

KT
k+1, (17)

where

M1 = Kk+1Rk+1�
T
k+1Λk+1KT

k+1,

M3 = –Ck+1E
{

xk+1xT
k+1

}
CT

k+1(I + �k+1)T ,

M2 = –(I – Kk+1Λ̄k+1Ck+1)E
{

x̃k+1|kxT
k+1

}
CT

k+1(I + �k+1)TΛk+1KT
k+1,

Ξ̌k+1 = diag
{
λ̄k+1,1(1 – λ̄k+1,1), λ̄k+1,2(1 – λ̄k+1,2), . . . , λ̄k+1,m(1 – λ̄k+1,m)

}
.

Proof In terms of (15) and Lemma 3, it is easy to see that

Pk+1|k+1 = (I – Kk+1Λ̄k+1Ck+1)Pk+1|k(I – Kk+1Λ̄k+1Ck+1)T + Kk+1Rk+1

× KT
k+1 + M1 + MT

1 + Kk+1Λk+1(I + �k+1)Ck+1E
{

xk+1xT
k+1

}

× CT
k+1(I + �k+1)TΛk+1KT

k+1 + M2 + MT
2 + Kk+1Λk+1�k+1

× Rk+1�
T
k+1Λk+1KT

k+1 + Kk+1
{
Ξ̌k+1 ◦ [

Ck+1E
{

xk+1xT
k+1

}
CT

k+1

+ (I + �k+1)Ck+1E
{

xk+1xT
k+1

}
CT

k+1(I + �k+1)T + �k+1Rk+1

× �T
k+1 + M3 + MT

3
]}

KT
k+1 +

18∑

l=1

(
Nl + N T

l
)
,

where

N1 = –E
{

(I – Kk+1Λ̄k+1Ck+1)x̃k+1|kxT
k+1CT

k+1Λ̃k+1KT
k+1

}
,

N2 = E
{

(I – Kk+1Λ̄k+1Ck+1)x̃k+1|kxT
k+1CT

k+1(I + �k+1)TΛ̃k+1KT
k+1

}
,

N3 = –E
{

(I – Kk+1Λ̄k+1Ck+1)x̃k+1|kνT
k+1�

T
k+1Λk+1KT

k+1
}

,

N4 = E
{

(I – Kk+1Λ̄k+1Ck+1)x̃k+1|kνT
k+1�

T
k+1Λ̃k+1KT

k+1
}

,

N5 = –E
{

(I – Kk+1Λ̄k+1Ck+1)x̃k+1|kνT
k+1KT

k+1
}

,

N6 = E
{

Kk+1Λ̃k+1Ck+1xk+1xT
k+1CT

k+1(I + �k+1)TΛk+1KT
k+1

}
,

N7 = E
{

Kk+1Λ̃k+1Ck+1xk+1ν
T
k+1�

T
k+1Λk+1KT

k+1
}

,

N8 = –E
{

Kk+1Λ̃k+1Ck+1xk+1ν
T
k+1�

T
k+1Λ̃k+1KT

k+1
}

,

N9 = E
{

Kk+1Λ̃k+1Ck+1xk+1ν
T
k+1KT

k+1
}

,
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N10 = –E
{

Kk+1Λk+1(I + �k+1)Ck+1xk+1xT
k+1CT

k+1(I + �k+1)TΛ̃k+1KT
k+1

}
,

N11 = E
{

Kk+1Λk+1(I + �k+1)Ck+1xk+1ν
T
k+1�

T
k+1Λk+1KT

k+1
}

,

N12 = –E
{

Kk+1Λk+1(I + �k+1)Ck+1xk+1ν
T
k+1�

T
k+1Λ̃k+1KT

k+1
}

,

N13 = E
{

Kk+1Λk+1(I + �k+1)Ck+1xk+1ν
T
k+1KT

k+1
}

,

N14 = –E
{

Kk+1Λ̃k+1(I + �k+1)Ck+1xk+1ν
T
k+1�

T
k+1Λk+1KT

k+1
}

,

N15 = E
{

Kk+1Λ̃k+1(I + �k+1)Ck+1xk+1ν
T
k+1�

T
k+1Λ̃k+1KT

k+1
}

,

N16 = –E
{

Kk+1Λ̃k+1(I + �k+1)Ck+1xk+1ν
T
k+1KT

k+1
}

,

N17 = –E
{

Kk+1Λk+1�k+1νk+1ν
T
k+1�

T
k+1Λ̃k+1KT

k+1
}

,

N18 = –E
{

Kk+1Λ̃k+1�k+1νk+1ν
T
k+1KT

k+1
}

.

Notice that νk+1 and Λk+1 are mutually independent and the expectation of Λ̃k+1 is a zero
matrix, then we know that Ni (i = 1, 2, . . . , 18) are zero terms. Consequently, the result in
(17) can be obtained easily. �

Remark 3 Generally, it could be better if a global optimal filtering method can be given.
Unfortunately, it is impossible to attain this objective due to the existence of the parame-
ter uncertainties, nonlinearity and randomly occurring quantized measurements. In view
of these obstacles, we decide to derive an upper bound of filtering error covariance and
minimize this upper bound by designing proper filtering gain matrix at each time step,
which is acceptable with certain admissible estimation accuracy.

So far, we have provided the recursions of the one-step prediction error covariance and
the filtering error covariance. Next, we are ready to obtain the desired upper bound of
filtering error covariance and choose the filter gain properly.

Theorem 3 Let γk+1,1 and εi (i = 1, 2, . . . , 6) be positive scalars. If the following two recursive
matrix equations:

Σk+1|k = (1 + ᾱkε1)AkΣk|kAT
k + Ωk + BkQkBT

k

+
(
1 + ε–1

1
)
ᾱk tr

(
MkL̄kMT

k
)
HkHT

k (18)

and

Σk+1|k+1 = (1 + ε5)(I – Kk+1Λ̄k+1Ck+1)Σk+1|k(I – Kk+1Λ̄k+1Ck+1)T

+ (1 + ε4)Kk+1Rk+1KT
k+1 +

(
1 + ε–1

5
)

tr
(
Ck+1Π̄k+1CT

k+1
)

× Kk+1Λk+1
[
(I – γk+1,1Υ Υ )–1 + γ –1

k+1,1I
]
Λk+1KT

k+1 + Kk+1

× Ψk+1KT
k+1 +

(
1 + ε–1

4
)

tr(Υ Rk+1Υ )Kk+1Λ
2
k+1KT

k+1, (19)

under the constraint γ –1
k+1,1I – Υ Υ > 0 and initial condition Σ0|0 = P0|0 > 0, have solutions

Σk+1|k > 0 and Σk+1|k+1 > 0, then Pk+1|k+1 ≤ Σk+1|k+1. Moreover, if we choose the following
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form of the filter gain matrix Kk+1:

Kk+1 = (1 + ε5)Σk+1|kCT
k+1Λ̄k+1

{
(1 + ε4)Rk+1 +

(
1 + ε–1

5
)

tr
(
Ck+1Π̄k+1

× CT
k+1

)
Λk+1

[
(I – γk+1,1Υ Υ )–1 + γ –1

k+1,1I
]
Λk+1 + (1 + ε5)Λ̄k+1Ck+1

× Σk+1|kCT
k+1Λ̄k+1 +

(
1 + ε–1

4
)

tr(Υ Rk+1Υ )Λ2
k+1 + Ψk+1

}–1, (20)

it is shown that tr(Σk+1|k+1) can be minimized, where

Ωk =
s∑

i=1

Πi tr(L̄kΓi),

Π̄k+1 = (1 + ε3)Σk+1|k +
(
1 + ε–1

3
)
x̂k+1|kx̂T

k+1|k ,

Ψk+1 = Ξ̌k+1 ◦ {(
1 + ε–1

6
)

tr
(
Ck+1Π̄k+1CT

k+1
)[

(I – γk+1,1Υ Υ )–1 + γ –1
k+1,1I

]
(21)

+ tr(Υ Rk+1Υ ) + (1 + ε6)Ck+1Π̄k+1CT
k+1

}
,

L̄k = (1 + ε2)Σk|k +
(
1 + ε–1

2
)
x̂k|kx̂T

k|k .

Proof To prove this theorem, we resort to the mathematical induction method. By con-
sidering (16) and Lemma 1, we can deduce that

ᾱkAkE
{

x̃k|kxT
k
}
�AT

k + ᾱk�AkE
{

xkx̃T
x|k

}
AT

k

≤ ᾱkε1AkPk|kAT
k + ᾱkε

–1
1 �AkE

{
xkxT

k
}
�AT

k , (22)

where ε1 is a positive scalar. So, we can get

Pk+1|k ≤ (1 + ᾱkε1)AkPk|kAT
k +

s∑

i=1

Πi tr
(
E

{
xkxT

k
}
Γi

)
+

(
1 + ε–1

1
)
ᾱk�Ak

×E
{

xkxT
k
}
�Ak

T + BkQkBT
k . (23)

Next, we get

E
{

xkxT
k
} ≤ E

{
(1 + ε2)x̃k|kx̃T

k|k +
(
1 + ε–1

2
)
x̂k|kx̂T

k|k
}

= (1 + ε2)Pk|k +
(
1 + ε–1

2
)
x̂k|kx̂T

k|k := Lk , (24)

where ε2 is a positive scalar. Noticing the norm-bounded parameter uncertainties defined
in (3), the following term can be tackled:

�AkE
{

xkxT
k
}
�AT

k ≤ tr
(
MkLkMT

k
)
HkHT

k . (25)

Finally, it follows from (23)–(25) that

Pk+1|k ≤ (1 + ᾱkε1)AkPk|kAT
k +

s∑

i=1

Πi tr(LkΓi) +
(
1 + ε–1

1
)
ᾱk tr

(
MkLkMT

k
)

× HkHT
k + BkQkBT

k . (26)
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Secondly, it is easy to see that

E
{

xk+1xT
k+1

} ≤ (1 + ε3)Pk+1|k +
(
1 + ε–1

3
)
x̂k+1|kx̂T

k+1|k := Πk+1, (27)

where ε3 > 0 is a scalar. Next, we tackle the uncertain terms in (17). According to Lemma 1
and (27), we can arrive at

M1 + MT
1 ≤ ε4Kk+1Rk+1KT

k+1 + ε–1
4 Kk+1Λk+1�k+1Rk+1�

T
k+1Λk+1KT

k+1,

M2 + MT
2 ≤ ε5(I – Kk+1Λ̄k+1Ck+1)Pk+1|k(I – Kk+1Λ̄k+1Ck+1)T + ε–1

5

× Kk+1Λk+1(I + �k+1)Ck+1Πk+1CT
k+1(I + �k+1)TΛk+1KT

k+1, (28)

M3 + MT
3 ≤ ε6Ck+1Πk+1CT

k+1 + ε–1
6 (I + �k+1)Ck+1Πk+1CT

k+1

× (I + �k+1)T ,

where εi > 0 (i = 4, 5, 6) are scalars. Based on (28), one has

Pk+1|k+1 ≤ (1 + ε5)(I – Kk+1Λ̄k+1Ck+1)Pk+1|k(I – Kk+1Λ̄k+1Ck+1)T

+ (1 + ε4)Kk+1Rk+1KT
k+1 +

(
1 + ε–1

5
)
Kk+1Λk+1(I + �k+1)Ck+1

× Πk+1CT
k+1(I + �k+1)TΛk+1KT

k+1 +
(
1 + ε–1

4
)
Kk+1Λk+1�k+1

× Rk+1�
T
k+1Λk+1KT

k+1 + Kk+1
{
Ξ̌k+1 ◦ [

(1 + ε6)Ck+1Πk+1CT
k+1

+
(
1 + ε–1

6
)
(I + �k+1)Ck+1Πk+1CT

k+1(I + �k+1)T

+ �k+1Rk+1�
T
k+1

]}
KT

k+1. (29)

Noting �k+1 = Fk+1Υ (Fk+1FT
k+1 ≤ I), together with Lemma 2 and the property of trace,

we have

(I + �k+1)Ck+1Πk+1CT
k+1(I + �k+1)T

≤ tr
(
Ck+1Πk+1CT

k+1
)[

(I – γk+1,1Υ Υ )–1 + γ –1
k+1,1I

]
, (30)

�k+1Rk+1�
T
k+1 ≤ tr(Υ Rk+1Υ )I, (31)

where γk+1,1 is a positive scalar. Taking (30)–(31) into account, we arrive at

Pk+1|k+1 ≤ (1 + ε5)(I – Kk+1Λ̄k+1Ck+1)Pk+1|k(I – Kk+1Λ̄k+1Ck+1)T

+ (1 + ε4)Kk+1Rk+1KT
k+1 +

(
1 + ε–1

5
)

tr
(
Ck+1Πk+1CT

k+1
)
Kk+1

× Λk+1
[
(I – γk+1,1Υ Υ )–1 + γ –1

k+1,1I
]
Λk+1KT

k+1 + Kk+1
{
Ξ̌k+1

◦ {(
1 + ε–1

6
)

tr
(
Ck+1Πk+1CT

k+1
)[

(I – γk+1,1Υ Υ )–1 + γ –1
k+1,1I

]

+ tr(Υ Rk+1Υ )I + (1 + ε6)Ck+1Πk+1CT
k+1

}}
KT

k+1 +
(
1 + ε–1

4
)

× tr(Υ Rk+1Υ )Kk+1Λ
2
k+1KT

k+1. (32)

Then it follows from (18), (19), (26) and (32) that Pk+1|k+1 ≤ Σk+1|k+1.
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Finally, we aim to minimize the trace of the upper bound Σk+1|k+1 and determine the
corresponding filter gain. Firstly, calculating the partial derivative of the trace of (19) with
respect to Kk+1 leads to

∂ tr(Σk+1|k+1)
∂Kk+1

= –2(1 + ε5)(I – Kk+1Λ̄k+1Ck+1)Σk+1|kCT
k+1Λ̄k+1 + 2(1 + ε4)Kk+1Rk+1

+ 2
(
1 + ε–1

5
)

tr
(
Ck+1Π̄k+1CT

k+1
)
Kk+1Λk+1

[
(I – γk+1,1Υ Υ )–1 + γ –1

k+1,1I
]

× Λk+1 + 2
(
1 + ε–1

4
)

tr(Υ Rk+1Υ )Kk+1Λ
2
k+1 + 2Kk+1Ψk+1, (33)

where Π̄k+1 and Ψk+1 are defined in (21). Let the derivative in (33) be zero, we can obtain
the following optimal filter gain Kk+1:

Kk+1 = (1 + ε5)Σk+1|kCT
k+1Λ̄k+1

{
(1 + ε4)Rk+1 +

(
1 + ε–1

5
)

tr
(
Ck+1Π̄k+1

× CT
k+1

)
Λk+1

[
(I – γk+1,1Υ Υ )–1 + γ –1

k+1,1I
]
Λk+1 + (1 + ε5)Λ̄k+1Ck+1

× Σk+1|kCT
k+1Λ̄k+1 +

(
1 + ε–1

4
)

tr(Υ Rk+1Υ )Λ2
k+1 + Ψk+1

}–1, (34)

which is the same as in (20). Therefore, the proof is complete. �

Remark 4 As shown in Theorem 3, the obtained upper bound of filtering error covari-
ance can be minimized by the filter gain Kk+1 in (34) at each sampling instant. It is worth
pointing out that the value of γk+1,1 can be chosen firstly according to the constraint con-
dition γ –1

k+1,1I – Υ Υ > 0. Then we can adjust the value of γk+1,1 to improve the solvability
of the new filtering scheme under certain estimation accuracy requirement. Besides, the
randomly occurring uncertainties, quantized measurements as well as the stochastic non-
linearity are all examined, and the corresponding information is reflected in main results.
In particular, the scalar ᾱk and the matrices Hk , Mk correspond to the randomly occur-
ring uncertainties, the matrices Πi and Γi reflect the variance information of the stochastic
nonlinearity f (xk , ξk) in (1), and the scalar λ̄k,i as well as matrix Υ refer to the randomly
occurring quantized measurements addressed in the paper. Moreover, it is worthwhile to
note that the newly proposed robust variance-constrained filtering scheme has the recur-
sive feature, which is suitable for online applications particularly in the networked envi-
ronments.

Summarizing the result in Theorem 3, the robust variance-constrained filtering (RVCF)
algorithm can be provided as follows:

Algorithm RVCF
Step 1: Set k = 0 and select the initial values.
Step 2: Compute the one-step prediction x̂k+1|k based on (10).
Step 3: Calculate the value of Σk+1|k by (18).
Step 4: Solve the estimator gain matrix Kk+1 by (20).
Step 5: Compute the filtering update equation x̂k+1|k+1 by (11).
Step 6: Obtain Σk+1|k+1 by (19).
Step 7: Set k = k + 1, and go to Step 2.



Jia and Hu Advances in Difference Equations         (2019) 2019:53 Page 12 of 21

4 Boundedness analysis
In this section, the desired boundedness analysis concerning the filtering error is con-
ducted. Before proceeding, the concept of exponential boundedness of stochastic process
is firstly given.

Definition 1 ([38]) If there exist real numbers ρ > 0, ν > 0, and 0 < ϑ < 1 such that

E
{‖ζk‖2} ≤ ρ‖ζ0‖2ϑk + ν, (35)

holds for every k ≥ 0, then the stochastic process ζk is said to be exponentially mean-
square bounded.

In order to conduct the boundedness analysis about the filtering error, we need the fol-
lowing assumption.

Assumption 1 For every 1 ≤ i ≤ m and k ≥ 0, there exist positive numbers a, c, c, h, m,
l1, l2 f , b1, b1, ω, ω, ν , λ, λ such that

‖Ak‖ ≤ a, ‖Hk‖ ≤ h, ‖Mk‖ ≤ m, c ≤ ‖Ck‖ ≤ c, λ ≤ λ̄k,i ≤ λ,

tr(L̄k) ≤ l1, tr(Ωk) ≤ f , tr(Π̄k+1) ≤ l2, b1I ≤ BkBT
k ≤ b1I,

ωI ≤ Qk ≤ ωI, Rk ≤ νI.

Furthermore, the inequality

a
(

1 +
c2

c2

)
< 1 (36)

holds.

Theorem 4 Consider the time-varying systems (1)–(2) and the filter (10)–(11). Under the
Assumption 1, the filtering error x̃k|k is exponentially mean-square bounded.

Proof Substituting (14) into (15) leads to

x̃k+1|k+1 = Ǎk+1x̃k|k + rk+1 + zk+1, (37)

where

Ǎk+1 = Ξk+1Ak ,

Ξk+1 = I – Kk+1Λ̄k+1Ck+1,

rk+1 = ᾱkΞk+1�Akxk – Kk+1Λk+1(I + �k+1)Ck+1xk+1,

zk+1 = α̃kΞk+1�Akxk + Ξk+1f (xk , ξk) + Ξk+1Bkωk – Kk+1Λ̃k+1Ck+1xk+1

– Kk+1νk+1 + Kk+1Λ̃k+1(I + �k+1)Ck+1xk+1 – Kk+1Λk+1�k+1

× νk+1 + Kk+1Λ̃k+1�k+1νk+1.
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Based on (20) and Assumption 1, it is not difficult to obtain

‖Kk+1‖ <
∥∥(1 + ε5)Σk+1|kCT

k+1Λ̄k+1
[
(1 + ε5)Λ̄k+1Ck+1Σk+1|kCT

k+1Λ̄k+1
]–1∥∥

≤ c
c2λ

:= k

and

‖Ξk+1‖ <
∥∥I – (1 + ε5)Σk+1|kCT

k+1Λ̄k+1
[
(1 + ε5)Λ̄k+1Ck+1Σk+1|kCT

k+1

× Λ̄k+1
]–1

Λ̄k+1Ck+1
∥∥ ≤ 1 +

c2

c2 := ς1.

Then we have

‖Ǎk+1‖ = ‖Ξk+1Ak‖ ≤ ‖Ξk+1‖‖Ak‖ ≤ ς1a := a1.

According to Lemma 1 and Assumption 1, the following inequality holds:

E
{

rT
k+1rk+1

} ≤ E
{

(1 + σ1)ᾱ2
k xT

k �AT
k ΞT

k+1Ξk+1�Akxk +
(
1 + σ –1

1
)
xT

k+1CT
k+1

× (I + �k+1)TΛk+1KT
k+1Kk+1Λk+1(I + �k+1)Ck+1xk+1

}

≤ (1 + σ1)ᾱ2
kς

2
1h2m2l1 +

(
1 + σ –1

1
)
(1 – λ)2(1 + δ)2c2k2l2

:= r2,

where σ1 is a positive scalar and δ = max{δ1, δ2, . . . , δm}. Similarly, we can show

E
{

zT
k+1zk+1

} ≤ E
{
α̃2

k xT
k �AT

k ΞT
k+1Ξk+1�Akxk + f T (xk , ξk)ΞT

k+1Ξk+1

× f (xk , ξk) + ωT
k BT

k ΞT
k+1Ξk+1Bkωk + (1 + σ2)xT

k+1CT
k+1Λ̃k+1

× KT
k+1Kk+1Λ̃k+1Ck+1xk+1 + (1 + σ3)νT

k+1KT
k+1Kk+1νk+1

+
(
1 + σ –1

3
)
νT

k+1�
T
k+1Λk+1KT

k+1Kk+1Λk+1�k+1νk+1

+
(
1 + σ –1

2
)
xT

k+1CT
k+1(I + �k+1)TΛ̃k+1KT

k+1Kk+1Λ̃k+1

× (I + �k+1)Ck+1xk+1 + νT
k+1�

T
k+1Λ̃k+1KT

k+1Kk+1Λ̃k+1

× �k+1νk+1
}

≤ (
ᾱk – ᾱ2

k
)
h2

ς2
1m2l1 + ς2

1f + ς2
1lb1ω + (1 + σ2)k2

λ̂2c2l2

+ (1 + σ3)k2mν +
(
1 + σ –1

3
)
k2(1 – λ)2δ2mν +

(
1 + σ –1

2
)

× (1 + δ)2k2
λ̂2c2l2 + mk2

λ̂2δ2ν

:= z2,

where σ2 as well as σ3 are positive scalars and λ̂ = max{1 – λ,λ}.
Next, we consider the following iterative matrix equation with respect to Θk :

Θk+1 = Ǎk+1ΘkǍT
k+1 + BkQkBT

k , (38)
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with the initial condition Θ0 = B0Q0BT
0 . It is not difficult to find that

‖Θk+1‖ ≤ ‖Θk‖‖Ǎk+1‖2 +
∥∥BkQkBT

k
∥∥ ≤ a2

1‖Θk‖ + ωb1.

By iteration, we obtain

‖Θk‖ ≤ a2k
1 ‖Θ0‖ + ωb1

k–1∑

i=0

a2i
1 .

From (36), we have 0 < a1 < 1 and then we arrive at

‖Θk‖ ≤ ‖Θ0‖ + ωb1

∞∑

i=0

a2i
1 = ‖Θ0‖ +

b1ω

1 – a2
1

. (39)

Due to the positive definite property of Θk , it is obvious that

Θk+1 ≥ BkQkBT
k ≥ b1ωI. (40)

In view of (39) and (40), it follows that there exist θ > 0 and θ > 0 satisfying θ I ≤ Θk ≤ θ I
for every k ≥ 0.

According to (38) and the matrix inversion lemma, we have

ǍT
k+1Θ

–1
k+1Ǎk+1 – Θ–1

k

= ǍT
k+1

(
Ǎk+1ΘkǍT

k+1 + BkQkBT
k
)–1Ǎk+1 – Θ–1

k

=
(
Θk + Ǎ–1

k+1BkQkBT
k Ǎ–T

k+1
)–1 – Θ–1

k

= –Θ–1
k Ǎ–1

k+1
[(

BkQkBT
k
)–1 + Ǎ–T

k+1Θ
–1
k Ǎ–1

k+1
]–1Ǎ–T

k+1Θ
–1
k

= –
[
ǍT

k+1
(
BkQkBT

k
)–1Ǎk+1Θk + I

]–1
Θ–1

k

≤ –
[

a2
1θ

b1ω
+ 1

]–1

Θ–1
k .

Let η0 = [ a2
1θ

b1ω
+ 1]–1 and Vk(x̃k|k) = x̃T

k|kΘ
–1
k x̃k|k . Then it is not difficult to see that η0 ∈ (0, 1),

and there exists β > 0 satisfying η = (1 – η0)(1 + β) < 1. Thus, it follows from (12) and (37)
that

E
{

Vk+1(x̃k+1|k+1)|xk|k
}

– (1 + β)Vk(x̃k|k)

= E
{

x̃T
k+1|k+1Θ

–1
k+1x̃k+1|k+1|x̃k|k

}
– (1 + β)Vk(x̃k|k)

= E
{

(Ǎk+1x̃k|k + rk+1 + zk+1)TΘ–1
k+1(Ǎk+1xk|k + rk+1 + zk+1)|x̃k|k

}

– (1 + β)Vk(x̃k|k)

≤ E
{

(1 + β)x̃T
k|kǍT

k+1Θ
–1
k+1Ǎk+1x̃k|k – (1 + β)x̃T

k|kΘ
–1
k x̃k|k|x̃k|k

}

+
(
1 + β–1)

E
{

rT
k+1Θ

–1
k+1rk+1|x̃k|k

}
+ E

{
zT

k+1Θ
–1
k+1zk+1|x̃k|k

}

= (1 + β)E
{

x̃T
k|k

[
ǍT

k+1Θ
–1
k+1Ǎk+1 – Θ–1

k
]
x̃k|k|x̃k|k

}
+ E

{
zT

k+1Θ
–1
k+1zk+1|x̃k|k

}
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+
(
1 + β–1)

E
{

rT
k+1Θ

–1
k+1rk+1|x̃k|k

}

≤ –η0(1 + β)Vk(x̃k|k) + τ ,

where τ = (1+β–1)r2+z2

θ
. Accordingly, we know that

E
{

Vk+1(x̃k+1|k+1)|x̃k|k
} ≤ ηVk(x̃k|k) + τ .

By iteration and 1
θ

I ≤ Θ–1
k ≤ 1

θ
I , the following inequality holds:

E
{‖x̃k|k‖2} ≤ θ

θ
‖x̃0|0‖2ηk + τθ

∞∑

i=0

ηi =
θ

θ
‖x̃0|0‖2ηk +

τθ

1 – η
,

under 0 < η < 1. Then it follows from Definition 1 that the stochastic process x̃k|k is expo-
nentially mean-square bounded. �

Remark 5 By utilizing the stochastic analysis technique, a new sufficient condition under
certain assumption has been given in Theorem 4 to testify the exponentially mean-square
boundedness of the filtering error, which provides a helpful method to evaluate the per-
formance of the proposed optimal variance-constrained filtering scheme.

Remark 6 Note that some effective filtering methods have been presented in [39, 40] for
networked systems with energy bounded noises, where the envelope-constrained H∞ fil-
tering and distributed event-triggered set-membership filtering schemes have been given.
Compared with the results in [39, 40], we have developed a new RVCF algorithm with
performance evaluation under variance-constrained index for addressed uncertain time-
varying nonlinear systems subject to randomly occurring quantized measurements and
stochastic noises with known statistical properties. In particular, it should be noted that
the advantages of the proposed filtering lie in its local optimality in the minimum vari-
ance sense and the online implementations. Moreover, it could be possible to extend the
proposed method to handle the mean-square consensus problem for time-varying multi-
agent systems as in [41], which could be expected in a near future.

5 An illustrative example
In this section, we use numerical simulations to demonstrate the usefulness of the pro-
posed variance-constrained filtering algorithm.

The system parameters in (1)–(2) are given by

Ak =

[
0.6 – 0.6 cos(k) –0.35

0.5 – sin(k) cos(k) 0.65 + 0.4 cos(k)

]

, Bk =

[
0.1

0.1 – 1.5 sin(k)

]

,

F = sin(5k), Hk =
[
0.01 0.02

]T
,

Mk =
[

0.03 0.01
]

, Ck =
[
0.9 0.85

]
.

The state vector is xk = [x1,k x2,k]T . The noises ωk and νk are zero-mean noises with co-
variances 0.05 and 0.075, respectively.



Jia and Hu Advances in Difference Equations         (2019) 2019:53 Page 16 of 21

Figure 1 yk without and with randomly occurring signal quantization

Figure 2 State x1,k and its estimation x̂1,k|k

The stochastic nonlinearity f (xk , ξk) is given as follows:

f (xk , ξk) =

[
0.3
0.2

]
[
0.2 sign(x1,k)x1,kξ1,k + 0.3 sign(x2,k)x2,kξ2,k

]
,

where ξi,k (i = 1, 2) are zero-mean noises with unity covariances. It is easy to check that
f (xk , ξk) satisfies (5)–(7) with

Π1 =

[
0.09 0.06
0.06 0.04

]

, Γ1 =

[
0.04 0

0 0.09

]

.
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Figure 3 State x2,k and its estimation x̂2,k|k

Figure 4 log(MSE1) and its upper bound

The parameters of the logarithmic quantizer are chosen u1
0 = 0.5 and χ (1) = 0.01. Other

parameters are given by ε1 = 0.01, ε2 = 1, ε3 = 0.1, ε4 = 0.01, ε5 = 0.01, ε6 = 1, γk+1,1 = 0.68,
ᾱk = 0.59 and Λ̄k = 0.35. From (18)–(19), we can obtain the filter gain at each sampling
step and plot the relevant simulation results in Figs. 1–5 with the initial conditions x0 =
x̂0|0 = [1.8 2.5]T and Σ0|0 = 2.5I2, where MSEi (i = 1, 2) denote the mean-square errors for
the estimations of the states xi,k (i = 1, 2).

In the simulations, Fig. 1 plots the measurement outputs with and without randomly
occurring signal quantization. In order to propose the comparison with existing method,
the states are plotted and the state estimations are also provided in Figs. 2–3 based on the
developed recursive variance-constrained filtering method and Kalman filter (KF) strat-
egy. The obtained upper bound and log(MSEi) (i = 1, 2) are described in Figs. 4–5, which
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Figure 5 log(MSE2) and its upper bound

Figure 6 log(MSE1) in different methods

confirm that the upper bound is indeed above the mean-square errors. The log(MSEi)
(i = 1, 2) caused by the robust variance-constrained filtering algorithm in this paper and
the KF strategy are shown in Figs. 6–7, in which we can see that the filtering algorithm
presented in this paper possesses smaller error than the conventional KF method.

In addition, for the purpose of illustration of the effects from the randomly occurring
quantization effects, the traces of the upper bounds are depicted in Fig. 8 under different
occurrence probabilities Λ̄k = 0.35, Λ̄k = 0.85, Λ̄k = 0.95 and Λ̄k = 1. From the simulations,
we can see that the filtering algorithm performance can be improved if less quantized
measurements are used in the filter side, i.e., more original measurements are transmitted
to the remote filter and the filtering algorithm accuracy is better.
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Figure 7 log(MSE2) in different methods

Figure 8 log(trace(Σk|k )) under different occurrence probabilities

6 Conclusions
In this paper, we have investigated the robust variance-constrained filtering problem for
networked time-varying systems subject to stochastic nonlinearity, randomly occurring
uncertainties and quantized measurements. The phenomena of the randomly occurring
uncertainties and signal quantization have been modeled by a set of mutually independent
Bernoulli random variables. A recursive variance-constrained filtering algorithm has been
proposed, where the filter gain has been designed to minimize the obtained upper bound
of the filtering error covariance. Moreover, we have given a sufficient condition to ensure
the exponential mean-square boundedness of the filtering error. Finally, we have provided
the simulations to demonstrate the validity and feasibility of the obtained filtering algo-
rithm. It should be noted that the effects induced by the stochastic nonlinearity has been
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examined in the conducted topic. When the other types of nonlinearities (e.g. continu-
ous differentiable nonlinearities or Lipschitz nonlinearities) exist in the system model, the
proposed filtering method can also be applicable as long as the Taylor expansion or ma-
trix inequality technique are utilized. Accordingly, the desirable filtering algorithm can be
given along the same lines as provided in this paper.
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