
Distributed Temporal Link Prediction Algorithm based
on Label Propagation

Xiaolong Xu

School of Computer Science
Nanjing University of Posts and Telecommunications

Nanjing, China

Nan Hu

State Key Laboratory of Information Security
Chinese Academy of Sciences

Beijing, China

Tao Li

Jiangsu Key Laboratory of Big Data Security Intelligent Processing
Nanjing University of Posts and Telecommunications

Nanjing, China

Marcello Trovati and Georgios Kontonatsios

Department of Computer Science
Edge Hill University

Ormskirk, UK

Aniello Castiglione and Francesco Palmieri

Department of Computer Science
University of Salerno
Fisciano (SA), Italy

Abstract

Link prediction has steadily become an important research topic in the area

of complex networks. However, the current link prediction algorithms typi-

cally neglect the network evolution and tend to exhibit low accuracy and scal-

ability when applied to large-scale organisations. In this article, we propose a

novel distributed temporal link prediction algorithm based on label propagation

(DTLPLP), governed by the dynamical properties of the interactions between

nodes. In particular, nodes are associated with labels, which include details

of their sources and the corresponding similarity value. When such labels are
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propagated across neighbouring nodes, they are updated based on the weights

of the incident links, and the values from same source nodes are aggregated to

evaluate the scores of links in the predicted network. Furthermore, DTLPLP

has been designed to be distributed and parallelised, and thus is suitable for

large-scale network analysis. As part of the validation process, we have de-

signed a prototype system developed in Pregel, which is a distributed network

analysis framework. Experiments are conducted on the Enron e-mail network

and the General Relativity and Quantum Cosmology Scientific Collaboration

network. The experimental results show that when compared to the most of

link prediction algorithms, DTLPLP offers enhanced accuracy, stability and

scalability.

Keywords: Complex Networks, Network Dynamics, Link Prediction, Label

Propagation

1. Introduction

The increasing success and continuous growth of social networks has led to

more efficient and faster communication between individuals and to the rapid

diffusion of information and knowledge. These organisations can be modelled

as complex networks characterised by non-trivial topological properties, experi-5

encing connection dynamics between the composing nodes that can be seen as

neither totally regular nor totally random. For example, they may experience

assortativity or disassortativity among nodes, or exhibit a scale free behaviour

with heavy tail in the degree distribution as well as compliance to power laws,

together with noticeable clustering dynamic and the emergence of community10

structures. Great efforts have been recently devoted to the analysis of these

properties and evolution behaviours, in order to better understand how interac-

tions between nodes evolve over time. An important aspect of complex network

analysis is link prediction, which includes the assessment of potential links and

the prediction of future connections [1].15

There are many real-world applications for the link prediction technology [2].
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For example, indirect relationships between individuals in an online social net-

work system can be discovered in order to build relational knowledge. This

can be subsequently used as a “friend” recommendation mechanism to identify

the triangular relationships, and thus promoting the adhesive capacity of a so-20

cial network platform [3]. Another application includes criminal communication

networks, which are often investigated to analyse the organisational structure

of criminal groups and identify their key figures. For example, in [4], the au-

thors examine the global terrorist data (GTD) based on the social network link

analysis and demonstrate the effectiveness of the link prediction technology in25

mining terrorist relations.

Link prediction technology can also be applied to analyse the correlation be-

tween the contents of web pages, and the prediction results can be used to define

a knowledge map.

In [5] a Conditional Independent Generalised Relational Topic model (CI-gRTM)30

is introduced to predict links in multi-modal data (such as multilingual docu-

ments and images). In [6] link prediction is utilised to improve the performance

of Twitter friend recommendation system based on users’ attribute semantics.

Furthermore, link prediction is used to determine correlations between current

and future diseases that patients may suffer from [7], as well as the exploration35

of the association between knowledge maps [8]. However, current approaches do

not take into consideration the network’s temporal evolution information, and

do not efficiently scale up to large networks.

In this article, we propose a novel distributed temporal link prediction al-40

gorithm based on label propagation (DTLPLP). The main contributions of this

work can be summarised as follows:

• Evaluation of network temporal information via network compression tech-

niques to incorporate the frequency of temporal interactions between nodes

into the weights of their corresponding links. This is followed by an exten-45

sion of the label propagation algorithm to effectively improve the accuracy
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of the future link prediction. During the process of label propagation, the

similarity values of labels are updated by the link weights combined with

temporal information. These are subsequently aggregated with suitably

defined node keys which form the final link scores, based on the scale of50

the network or on other specific requirements.

• Large scale complex networks can be efficiently analysed via the dis-

tributed and parallelised DTLPLP. In this context, DTLPLP is designed

according to the Bulk Synchronous Parallel (BSP) modelling framework,

which allows easy implementation of the algorithm on the current main-55

stream big data processing platforms and has good scalability.

The rest of the article is organised as follows: Section 2 discusses previous

approaches to link prediction for complex networks, and Section 3 describes the

features characterising the problem addressed in this work. Section 4 introduces

the temporal link prediction algorithm and its parallelisation, while Section60

5 focuses on the validation process. Finally, Section 6 summarises the main

contributions and proposes future research directions.

2. Related Work

Link prediction is an important research area of knowledge discovery in

complex networks (refer to [1] for a survey). In particular, Liben-Nowell et al.65

[2] have proposed one the of the earliest link prediction algorithms focusing on

an enhancement of various node similarity indexes. More specifically, Lü [1]

divides early link prediction methods into three categories: (1) link prediction

based on similarity; (2) link prediction based on maximum likelihood estimation;

(3) link prediction based on probabilistic models. Among them, models based on70

structural similarity are widely used due to their simplicity, low complexity and

high prediction performance. Zhou [9] has evaluated the performance of nine

common local-information-based similarity indexes on multiple datasets, and

has demonstrated that resource allocation (RA) and common neighbours (CN)
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achieve a relative improved performance. For specific weighted networks, CN,75

RA and Adamic-Adar (AA) are discussed in [10], where SWCN
xy is introduced,

which is defined as:

SWCN
xy =

∑
z∈Γ(x)∩Γ(y)

w(x, z)α + w(z, y)α, (1)

for

• Γ(x) ∩ Γ(y) is the set of common neighbours of the nodes x and y

• w(x, z) and w(z, y) are the weights of the link (x, z) and (z, y), respectively.80

• α is the correction factor of the weight.

In the above model, although the utilisation of weight information can im-

prove the overall performance of link prediction algorithms, the dynamics of

such networks is not considered. However, this is an important factor as the

majority of complex networks exhibit an evolving scale and complexity.85

Gao et al. [11] have analysed the topological properties of dynamic networks and

have evaluated different algorithms for pattern mining tasks. Deng et al. [12]

have discussed the limitations of static link prediction methods. In particular,

they have proposed a temporal link prediction method, which uses prediction

errors based on static link predictions from previous time windows to refine the90

prediction process. One disadvantage of this method is that it assumes that

relationships between different nodes have an equal weight, which is not always

the case. In order to integrate time information with the underling prediction

algorithm, Zhao et al. [13] have developed the Time-Difference-Labelled Path

(TDLP), which combines time information with the structural features into a95

unified setting, while proposing a temporal link prediction method based on

TDLP. This model utilises logistic regression to calculate the link score between

two nodes, based on a specific threshold. However, its precision performance

declines with increasing values of such threshold, which demonstrates that the

predicted links with higher score are unlikely to appear in the future. In or-100

der to address the limitation of the static network in representing information,
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Ibrahim and Chen [14] have proposed an algorithm to predict the link variations

in dynamic networks by integrating temporal information, community structure,

and node centrality in the network. However, the performance of their method

depends on fine-tuning a large number of parameters. Thus, over-fitting may105

occur in the process of parameter adjustment. Rapidly evolving networks pro-

duce a large amount of real-time information, which results in higher complexity

in terms of number of parameters and their inter-dependencies. Zhao et al. [15]

have designed a network sketch algorithm based on MinHash and node-biased

sampling techniques. The node similarity indexes used in this algorithm are110

based on Jaccard, CN and AA. However, they are only evaluated in stand-alone

simulation experiments based on non-real time data sets such as DBLP (Digital

Bibliography and Library Project). Thus, it remains largely unknown whether

such algorithms can be applied to data streaming processing platforms such as

Storm or Apache Spark. A temporal latent space model for link prediction in115

dynamic social networks is proposed in [16]. This model assumes that each

user lies in an unobserved latent space and interactions are more likely to occur

between similar users in such a space. In addition, the model allows each user

to gradually move position within the latent space as the network structure

evolves over time. However, its validation is based on the assumption that the120

network evolves smoothly. In fact, some events may imply significant changes.

Furthermore, and link weights are also neglected in this model.

Currently, the numbers of nodes in some social platforms, such as Facebook and

WeChat, have reached the level of hundreds of millions, which need high effi-

cient processing platforms, such as using the Hadoop ecosystem. In [17, 18] local125

similarity indices such as CN, AA and RA are computed within the MapReduce

framework. However, MapReduce only provides two primitives, namely “Map”

and “Reduce”, which are not as efficient as Pregel, a professional graph com-

puting framework [19]. In addition, due to the large number of input/output

operations required in the MapReduce framework, the computational efficiency130

is much lower when compared to other memory-based big data processing plat-

form (e.g., Apache Spark or Flink).
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Yin et al.[20] propose a scalable approach for making inference about latent

spaces of networks. A bag of triangular motifs is used as a succinct represen-

tation of networks in this approach. Based on this model, the link prediction135

method parsimonious triangular model (PTM) is competitive, however, this

method is not suitable for distributed clusters. In [21], the authors introduce a

dynamic mixed membership stochastic block model (DMMSB) to allow a linear

Gaussian trend in the model parameters. However, DMMSB does not take the

frequency of link into account. Yang et al. [22] introduce a new Nonnegative140

Matrix Factorisation (NMF) clustering method, Nonnegative Matrix Factori-

sation using graph Random walk (NMFR), which replaces the approximated

matrix with its smoothed version using random walk. However, their approach

does not scale well due to the high computation cost in each iteration. In [23],

a new approach named HottTopixx (Hott), based on linear programming, is145

introduced, which aims to compute nonnegative matrix factorisations (NMFs).

Unfortunately, such approach is designed to factorise the traditional rectangle

matrices, and scalable approaches in symmetric graph factorisation are much

less investigated than rectangle matrix factorisation such as Hott.

3. Main Definitions and Criteria150

As discussed above, the dynamical properties of a network play an important

role in predicting its topology. The temporal link prediction algorithm focuses

on the dynamics of the network at time t = 1, . . . n and it is defined as:

G = {g1, . . . , gn}, (2)

where gt represents the snapshot of the network at time t. Therefore, the

temporal link prediction can be expressed as:155

G→ gn+1, (3)

where G contains a network evolution sequence, and gn+1 is the prediction

result of the network topology at the subsequent time interval. The process of
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Figure 1: The process of the temporal link prediction.

the temporal link prediction is shown in Figure 1.

In this article, we use Precision and AUC (Area Under the receiver operating

characteristic Curve) as the evaluation metrics for link prediction. The former160

is a direct evaluation of the accuracy of an algorithm, defined as the proportion

of the correctly identified predicted links. In other words, if m is the number of

correctly identified predicted links and l is their overall number, then

Precision =
m

l
. (4)

AUC is calculated by randomly selecting one link from the test set and compar-

ing it with the randomly selected non-existent link. First, suppose there are two165

nodes, x and y, which are connected at the next time window. Then, randomly

select two other nodes x′ and y′, which are not connected during the same time

window. Calculate SWCN
xy and SWCN

x′y′ , over n iteration. Let n′ and n′′ be the

number of times such that SWCN
xy > SWCN

x′y′ and SWCN
xy = SWCN

x′y′ , respectively.

Then, AUC is defined as:170

AUC =
n′ + 0.5n′′

n
. (5)

For more details on AUC, refer to [1]. If all scores are randomly generated,

AUC = 0.5. The closer AUC is to 1, the better the prediction is.

4. Description of the Algorithm

4.1. Compression of Time-series Networks

The temporal information related to complex networks is largely defined by175

the dynamical properties of the interactions between nodes, which often reflect
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changes of the relationships between the corresponding nodes. For example, a

gradual reduction of communications between two individuals in a social net-

work might indicate that the corresponding relationship is weakening.

The first step of DTLPLP focuses on embedding the historical network snap-180

shots, {g1, . . . , gn}, into a weighted network with related temporal information.

We define τ to be the time window length, and the network snapshots during

the previous τ time intervals are considered as the training set. For two nodes x

and y, if the interaction times of the previous τ time intervals is {C1, . . . , Cτ},

then the weight of the link (x, y) is defined as:185

wx,y =

τ−1∑
i=1

(Ci+1 − Ci)δτ−i + Cτ , (6)

where δ ∈ [0, 1] is the decay factor, which represents the influence of historical

information. As a consequence, greater values of δ imply a more significant

influence of historical evolution on the prediction results. Furthermore, if the

interaction frequency (in terms of the number of messages between two nodes

over a period of time) drops significantly, then wx,y may be less than 0, and it190

may be necessary to remove the corresponding links.

4.2. Link Prediction Based on Label Propagation

By considering the snapshots of the network within a specific time window,

its dynamical properties can be effectively investigated. Subsequently, node la-

bels are initialised, which are propagated to adjacent nodes. As opposed to195

traditional label propagation algorithms, DTLPLP enables the label attributes

to be extended. In fact, in addition to the unique identifier ID of each node,

each label also has an associate similarity value. In particular, during the prop-

agation process the labels are propagated to their adjacent nodes, and they are

updated based on the weights of the incident links, whilst their similarity values200

are aggregated by ID, and the link scores between nodes are generated. The

detailed workflow of DTLPLP is as follows:

Step 1: Initialisation of labels. Each node is initialised as (ID, 1).
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Step 2: First iteration. All labels are propagated to their neighbouring nodes.

During the process, the value of each label is updated via205

v = v · w, (7)

where v is the similarity value, and w is the weight of the correspond-

ing link. After the first iteration, the new set of labels will replace the

initialised ones.

Step 3: Second iteration. The issues concerning self-similarity and backtrack-

ing of labels should be prevented. In other words, the case when the label210

propagated from node A to node B in the first iteration is propagated

back to A in the second iteration must be avoided. This is achieved via

the following steps:

1. Define an empty set L for each link in the network.

2. Determine whether the key of each label in the source node is equal215

to the ID of destination node. If so, the label will not be propagated

via this link. Otherwise, add this label to L.

3. Update the similarity values for all labels in L. Recall that the

weights of the links (x, y) and (y, z) are wx,y, and wy,z, respectively.

The similarity contribution of z to x and y is defined as:220

SCz→(x,y) = (wx,y · wy,z)α, (8)

where α is the weight influence factor, and the higher its value is, the

greater the weight influence will be.

4. Finally, merge L with the label set of the destination node.

Step 4: similarity aggregation. For each node, the similarity values of the

labels are aggregated by ID, and the link scores between nodes are sub-225

sequently generated.

The contribution of the similarity of one-hop and two-hop neighbour nodes is

fully considered by DTLPLP. The contribution of the similarity value of a one-

hop neighbour is used as the weight of the link between these adjacent nodes.
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The similarity contribution value of the two-hop neighbour is calculated with230

(8).

4.3. Distribution and Parallelisation

As opposed to the matrix calculation approach adopted by most existing

algorithms, the iterative process of DTLPLP is natively distributed and can be

parallelised based on the Bulk Synchronous Parallel (BSP) model. Firstly, the235

network structure is decomposed into a set of triplets, which are connected

through the existing links according to a one-to-one correspondence. Each

triplet contains a source node, a destination node and the link between them.

The network structure can be subsequently distributed/stored on multiple com-

puting nodes and the calculations spread across the local triples in each node.240

The distributed parallelisation of the algorithm is achieved by dividing the la-

bel propagation process for the whole network into the sum of the calculation

processes of each triplet, according to the “divide and conquer” paradigm. In

our network decomposition method, only one copy is stored for each link. Given

that multiple links in different computing nodes share the same node, some of245

them may have both the original and multiple copies, after each iteration. Thus,

synchronisation between the different nodes is necessary to ensure the accuracy

of the next iteration calculation.

The iterative process of label propagation is carried out by computing the250

triplets. Each iteration is divided into three steps: node calculation, label prop-

agation and information synchronisation. More specifically, the node calculation

is responsible for grouping received labels into an array at each node, and label

propagation transfers labels with similarity information to its neighbours. Fi-

nally, during the information synchronisation step, for all the copies associated255

with the same node communicating with their original node, their own set of

labels are merged with the original node, whose set of labels are synchronised

across all its copies. After the information synchronisation step is completed,

the next iteration round is initiated.

11



260

More specifically, the proposed temporal link prediction algorithm is dis-

tributed and parallelised according to the following steps:

1. The input includes: time window length, prediction time, weight correc-

tion factor and the set of links with temporal information.

2. Based on the time window length τ and the prediction time T , links within265

the time interval [T − τ, T ) are identified

3. The number of interactions between nodes, and temporal weight of links

are calculated via (4);

4. The temporal-information of a network is defined from a set of links with

temporal-weight and a label is subsequently generated, which includes the270

node ID and the initial similarity value at each node.

5. The temporal information of the network in a distributed environment is

iteratively computed.

6. The similarity value of labels in each node is aggregated and links are

assessed. Each iteration in this step follows the BSP model and is at the275

core of DTLPLP.

7. Finally, the output of the algorithm is the link score between nodes.

Each iteration can be divided into three actions: node calculation, sending mes-

sages (or labels) and information synchronisation. More specifically,

• The node calculation terminates after two iterations, and during the first280

one, an empty label set is sent to all nodes as the starting parameter for

the first calculation action.

• The first two actions are designed to be performed on a single triplet,

which are the basic computation units in the parallelised DTLPLP, whose

pseudo-code are described in Algorithms 1 and 2, respectively.285

• The synchronisation action is automatically completed by the network

storage system.
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Figure 2: An example of weighted network with temporal information on links. Suppose that

we have already known the weight fitted by temporal information between nodes.

Consider the network shown in Figure 2 as an example, where α = 0.2 and

the procedure of label propagation is shown in Table 1.

Figure 3 shows the topological structure of the network after two iterations290

with the top 6 link scores as the predicted links.

5. Evaluation

5.1. Experimental Platform

As discussed above, we have implemented the proposed link prediction al-

gorithm using the Pregel interface provided by the Spark GraphX, which is de-295

signed from the Bulk Synchronous Parallel (BSP) model introduced by Google

[19] . In particular, the input is a directed network, and each node has a unique

node identifier, which contains a modifiable attribute. The directed links are

defined via their source and destination nodes, which also have modifiable user-

defined attributes. A typical calculation procedure in Pregel consists of the300

following steps: firstly, it reads the input network, which is initialised. A se-

ries of steps is subsequently executed until the end of the complete computation,
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Table 1: Iterations of the process of the example depicted in Figure 2.

Initialisation First Second Aggregate

Iteration Iteration Messages

Node 1 {(1, 1)} {(2, 2), {(1, 2), (3, 4), {(2, 2), (4, 3)

(4, 3)} (3, 1.52), (5, 1.64), (2, 1.52),

(5, 1.25)} (5, 2.89)}

Node 2 {(2, 1)} {(1, 2), {(1, 2), (3, 4), {(1, 2), (3, 4)

(3, 4) (5, 6), (4, 1.43), (5, 6), (4, 2.86)}

(5, 6)} (4, 1.43)}

Node 3 {(3, 1)} {(2, 4)}, {(2, 4), {(2, 4), (1, 1.52),

(1, 1.52), (5, 1.89)} (5, 1.89)}

Node 4 {(4, 1)} {(1, 3), {(1, 3), (5, 1), {(1, 3), (5, 1),

{(5, 1)} (2, 1.43), (2, 1.43)} (2, 1.86)}

Node 5 {(5, 1)} {(2, 6), {(2, 6), (4, 1), {(2, 6), (4, 1),

(4, 1)} (1, 1.25), (1, 1.64), (1, 2.89),

(3, 1.89)} (3, 1.89)}

which are separated by some global synchronisation, and generating the relevant

results before its termination. In GraphX which is one of the most important

component of Spark, an open source implementation of Pregel is provided. As305

opposed to the standard Pregel, in GraphX messages are aggregated before be-

ing sent to the same node. Each super step of the GraphX Pregel performs

three actions:

Message sending: each node sends its own attribute to their neighbour nodes

according to the defined rules. These rules include transmission direction310

(transmission along the outgoing side, transmission along the incoming

side or bidirectional transmission), and transmission conditions (the at-

tribute meets the conditions are sent or not sent).

Message aggregation: as discussed above, GraphX Pregel aggregates the mes-

sages sent to the same node, which is subsequently sent to the destination315
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Figure 3: Link prediction result.

nodes.

Node calculation: after a node receives the aggregated message from its neigh-

bours, its attribute is updated based on the received aggregation.

As the network storage of GraphX is based on a node segmentation approach, in

a distributed environment each node may have one original and multiple copies.320

After each super step, a synchronisation across all the original and copies is

required to ensure that the information is consistent. This step is handled by

Spark.

5.2. Description of Datasets

The validation of the proposed method is based on the Enron e-mail [24],325

as well as the General Relativity and Quantum Cosmology Scientific Collabo-

ration networks [25]. The former contains 252,759 e-mails, including the those

occurred between the 151 Enron Corporation executives within December 1999

and September 2000. The communication networks before each month was

taken as training set, where each node represents an e-mail address linked by330

the corresponding communication divided into months, and the weight depends
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Figure 4: Effect of time window on the prediction.

on the number of exchanged emails.

The General Relativity and Quantum Cosmology Scientific Collaboration

network is based on the collaborative work among scientists in this field between335

January 1993 and April 2003. The network has 5242 nodes and 14496 links, but

they are not associated with any temporal information. In order to test the

scalability of the DTLPLP, each link is given a random weight between 1 and

10, and subsequently parallel acceleration test based on Pregel was performed.

5.3. Experimental Results340

5.3.1. The Effect of Time Window on Prediction

The first validation component focused on assessing the effect of the time

window length τ on the prediction performance of the algorithm. Specifically,

we considered a weight correction factor α = 0.6 and a temporal information

influence factor σ = 0.8. The average AUC for the first five months in the test345

is shown in Figure 4, which demonstrates that the algorithm achieves the best

prediction when the time window length is approximately 6.
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Figure 5: Effect of σ on the performance of the algorithm.

The AUC of the algorithm is 8% higher than that of the prediction result

without being updated by the temporal information. In particular, a short time

window length suggests a weaker influence of the dynamics of the network on350

the prediction performance. In contrast, a longer time window length implies

that historical information will have a negative impact on the accuracy of the

algorithm. Therefore, for the temporal information method described by (4),

the optimal time window length appears to be between 5 and 7.

5.3.2. Influence of Historical Influence Factor σ355

Recall that σ represents the influence of temporal information, whose value

has direct impact on link prediction. In the investigation of the effect of σ, we

assumed to have a time window of length 5 and α = 0.2, as depicted in Figure

5. This also shows that the use of temporal information in the algorithm can

improve the effect of the link prediction, and for σ ≈ 0.5 the prediction results360

tend to be stable. If σ ≈ 1, then the best prediction results can be potentially

obtained, but their stability is decreased. Considering the prediction effect

and the stability of the algorithm comprehensively, the appropriate value of σ

appears to be approximately 0.5.
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Figure 6: Precision and AUC of DTLPLP.

5.3.3. Influence of Weight Correction Factor α365

Based on the above experimental results, we assumed σ = 0.5 with a time

window of length 5. The top 50 values of the prediction link scores were consid-

ered when evaluating the precision of the proposed method, which account for

30% of the total links of each month. The overall precision and the AUC of the

algorithm are shown in Figures 6(a) and 6(b). It can be observed that when the370

weight correction coefficient α is close to 1, the fluctuation of prediction effect

is bigger, and the best and worst results appear in this region. When α ≈ 0,

the prediction effect of the algorithm tends to be stable. As a consequence, the

appropriate value of α is in the range between 0.2 and 0.3.

5.3.4. Comparison with Other Algorithms375

We also implemented the CN and RA algorithms which have a better per-

formance in conventional link prediction tasks. The WCN algorithm was also

tested on the Enron e-mail network, with α = 0.8, where it achieved the best pre-

diction effect. Figures 7(a) and 7(b) depict the comparison between DTLPLP,

CN, RA and WCN for α = 0.2, which demonstrate that DTLPLP has a better380

performance in terms of accuracy (precision and AUC).

Furthermore, Figure 4 suggests that integrating weight information with the
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Figure 7: Comparison of DTLPLP with other similar algorithms as discussed in Section 5.3.4.

link prediction algorithm improve its performance.

We implemented DTLPLP on other datasets, including Infectious, Facebook385

(WOSN) and HepPh [26], to carry out a comparison with BCGD [16], PTM [20],

DMMSB [21], NMFR [22] and Hott [23]. In [16], the prediction performance

of BCGDG (global BCGD) is demonstrated to be more accurate than BCGDL

(local BCGD) and BCGDI (incremental BCGD). Therefore, BCGDG is selected

for evaluation purposes.390

As depicted in Figure 9, on both datasets of Infectious and HepPh, the pre-

diction performance of DTLPLP is superior to other algorithms. However, on

the Facebook dataset (WOSN), the performance of DTLPLP is weaker than

BCGDG due to the fact that most links in the next “snapshots” refer to new

connections, which had never appeared in the past. This further suggests that395

DTLPLP is better at predicting dynamic interaction rather than existing social

relations. However, it is also clear that DTLPLP capability of predicting new

links is still superior to most current algorithms.
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Figure 8: Further comparison of DTLPLP with other advanced Algorithms.

Table 2: Hardware configuration of the test cluster.

Cluster Nodes Memory(GB) Number of CPU Cores

Master 10 8

Slave 1 20 8

Slave 2 20 8

Slave 3 20 8

5.3.5. Accelerated Testing in Distributed Environment of DTLPLP

This section focuses on the evaluation of the algorithm in a distributed envi-400

ronment, consisting of a computer cluster with four machines (one master node

and three slave nodes). Specific hardware configuration is shown in Table 2.

The network bandwidth between nodes is in the range between 7.2MB/s

and 8.1MB/s, with Spark 1.6.1, Hadoop is 2.4.1, and YARN as the resource

manager. A total of six executors were initiated during the execution process,405

with 5GB memory allocated for each of them.

In order to increase the degree of parallelism, 3, 18, and 30 partitions were

considered. For each different partition, the data was evaluated three times,

and Figure 9 depicts the average running time as an efficiency indicator.

In Spark, each CPU core can only calculate one partition at a time. There-410

fore, the number of cores that the resource manager assigns to Spark determines
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Figure 9: Parallel running time of DTLPLP.

the corresponding number of partitions, which was 12 due to limitations of the

hardware configuration. When the number of partitions is less than the maxi-

mum degree of parallelism, the running time of DTLPLP decreased as number

of partitions increased. However, when that limit is reached, CPU utilisation at-415

tains saturation. Furthermore, if the number of partitions is increased, running

time will slowly increase. This is due to the fact that a bigger number of par-

titions will not result in an increase of the degree of parallelism, and switching

partitions and network communication will add further computational time.

6. Conclusion420

Link prediction has been successfully applied in many contexts, and it has

been shown to have a number of applications in complex network research.

However, current link prediction algorithms do not take into consideration the

underlying network dynamics and cannot efficiently scale-up to large organisa-

tions.425

In this article, we have proposed DTLPLP, a distributed temporal link predic-

tion algorithm based on label propagation, which is particularly suitable for a
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distributed environment. More specifically, the DTLPLP algorithm is imple-

mented in a distributed network analysis framework, namely Pregel, and it can

be readily applied to large-scale, real-world network datasets. Experiments have430

been performed by using the Spark framework, demonstrating a superior per-

formance compared to similar link prediction algorithms.

Furthermore, complex networks have specific dynamical properties, which

often exhibit an unstable behaviour when external events occur. Therefore,435

efficient link prediction algorithms need to investigate information fluctuations

embedded in the network. Future work will address a full investigation of the

perturbation effect on the underlying network, whilst optimising the overall

stability of the system.
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Algorithm 1 Sending of Message

1: Input: the source node srcId with attribute srcAttr, and destination node

dstId with attribute dstAttr

2: Output: the message srcArr sent to the source node srcId and the message

dstArr sent to the destination node dstId.

3: Initialise the sets srcArr and dstArr

4: for dstElem← dstAttr do

5: if dstElem.key == dstId then

6: dstElem.key, dstElem.value ∗ attr)→ srcArr

7: else

8: if srcElem.key! = srcId then

9: dstElem.key, (dstElem.value ∗ attr)α)→ srcArr

10: end if

11: else

12: NULL→ srcArr

13: end if

14: end for

15: Filter out the null values in srcArr

16: for srcElem← srcAttr do

17: if srcElem.key == srcId then

18: srcElem.key, srcElem.value ∗ attr)→ dstArr

19: else

20: if srcElem.key! = srcId then

21: srcElem.key, (srcElem.value ∗ attr)α → dstArr

22: end if

23: else

24: NULL→ dstArr

25: end if

26: end for

27: Filter out the null values in dstArr

28: return (dstId, dstArr), (srcId, srcArr)
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Algorithm 2 Node Calculation

1: Input: id of node Id, attribute vdata of node, the received message msg

2: Output: update value of node

3: if vdata.length == 1 and vdata[0].key == Id and message.length > 0

then

4: return msg

5: else

6: return vdata+msg

7: end if
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