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Abstract

Human pose estimation through deep learning has
achieved very high accuracy over various difficult poses.
However, these are computationally expensive and are of-
ten not suitable for mobile based systems. In this paper, we
investigate the use of MobileNets, which is well-known to be
a light-weight and efficient CNN architecture for mobile and
embedded vision applications. We adapt MobileNets for
pose estimation inspired by the hourglass network. We in-
troduce a novel split stream architecture at the final two lay-
ers of the MobileNets. This approach reduces over-fitting,
resulting in improvement in accuracy and reduction in pa-
rameter size. We also show that by maintaining part of
the original network we are able to improve accuracy by
transferring the learned features from ImageNet pre-trained
MobileNets. The adapted model is evaluated on the FLIC
dataset. Our network out-performed the default MobileNets
for pose estimation, as well as achieved performance com-
parable to the state of the art results while reducing infer-
ence time significantly.

1. Introduction

Human body pose estimation or the localization of body
joints in monocular RGB images, is a very challenging
problem and is an actively researched area in computer
vision. This is mainly due to joint occlusions (partial
or full), clothing, lighting conditions, variation in body
shape, unrestricted viewing angle and complex joint inter-
dependencies. It has many potential applications includ-
ing tracking, robotics and AI, action/activity recognition,
human-computer interaction etc. Recent advances in Con-
volutional Neural Networks (CNNs) have significantly in-
fluenced the performance of pose estimation models [1, 14,
15, 28]. Many of these models are adapted from the CNN
models, which are focused on image recognition tasks (Fig.
1). Most of these models are complex and require powerful
GPUs even for prediction. In many real-world vision ap-
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Figure 1. We explore mobile based pose estimation through adap-
tation of MobileNets. Similar adaptations exist for deep models.
GNet [14] and Stacked hourglass [13] inference times are as re-
ported in the paper. Inference times for Inception v3 [23], v4 [24]
and OpenPose [1] are from our setup.

plications (e.g. robotics, autonomous vehicles), there is a
constraint on resources (e.g. power, memory) and the sys-
tem is expected to work in real-time without compromising
the accuracy. Fig. 1 shows well-known pose estimation and
classification models with their respective inference times.
For image classification tasks, many light-weight models
[18, 7, 3] have been developed for implementation on mo-
bile devices. However, adapting these models for human
pose estimation is still in its infancy.

In this paper, we investigate adaptation of MobileNets
[5] for human pose estimation. MobileNets is a fast and
efficient classification model for mobile and embedded sys-
tems. State of the art models such as Inception V3 [23] can
achieve top-1 accuracy of 84% on Stanford Dogs [9] dataset
[19] as compared to MobileNets’ 83%. But the number of
parameters in MobileNets is 1/6th of that of Inception V3.
As shown in Fig. 1, well-known pose estimation models
take more than 50 ms for single image inference while Mo-
bileNets requires only 10 ms. Thus, we intend to explore
the area of mobile based pose estimation by adapting Mo-
bileNets that have been used widely for classification tasks.
Our main contributions are:

1) We adapt MobileNets for pose estimation inspired by
the widely used stacked hourglass network [13].

2) We introduce a novel spilt architecture at the final two
layers of the MobileNets which reduces over-fitting
and increases accuracy.
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2. Related work
Focus of research on human pose estimation has shifted

from classical approaches [17, 30] to deep neural networks
since the introduction of AlexNet for pose estimation [26].
Human pose estimation is a regression problem and stacked
hourglass network [13] has become the basis of many pose
estimation models [14, 29, 8]. The stacked hourglass net-
work goes from high resolution to low and back to high and
hence the name hourglass. It also has skip connections that
connect the down sampling layers to the up sampling layers.
The high output resolution makes it suitable for heatmap re-
gression. Models based on the stacked hourglass network
have included hand crafted features to guide their network
better [14, 29]. Cao et al. [1] have designed their own
network using Part Affinity Fields (PAFs). Pose estimation
problem has also been addressed as a body part classifica-
tion and joint localization problem. The deepcut model [16]
uses a partitioning and labelling formulation generated with
CNN based part detectors. Use of R-CNN based classifi-
cation to achieve joint localization has also been explored
in [4]. More recently, researchers have explored adapta-
tion of standard CNN based classification architectures for
pose estimation. In [28], ResNet-50 is used for progres-
sively regressing the joint coordinates. Papandreou et al.
[15] use ResNet architecture with faster R-CNN and regress
heatmaps in a novel way of non-maxima suppression. Com-
bination of concepts from pose estimation and classification
has also been used together. Ning et al. [14] combine mod-
ules from Inception-ResNet [24] within stacked hourglass
network along with hand crafted features such as HOG and
Hough features for multi-person pose estimation.

Training aforementioned deep networks are expensive in
terms of resources (e.g. GPUs) and computational com-
plexities. Transfer learning from pre-trained networks is a
way to overcome the aforementioned drawback to some ex-
tent. Yosinski et al. [31] explains that generalized features
from first few layers of a pre-trained network are transfer-
able. The consensus is that layers towards the end learn
composite features specific to a given task that the model is
trained for, whereas the layers towards the beginning tend to
learn more general features such as edges, corners etc. The
trend in image classification is to use ImageNet pre-trained
networks and apply transfer learning on the target datasets.
This makes training fast and computationally less demand-
ing. In [16], ImageNet pre-trained network is used to fine-
tune the pose estimation model. Well-known model such
as openpose [1] uses pre-trained VGG-16 [21] model for
feature extraction. The VGG-16 has 133 to 144 million pa-
rameters. This adds to the computational cost of inference.
Therefore, inference using such networks are not suitable
for mobile based pose estimation. To reduce the training
time, the proposed model takes advantage of the transfer
learning by initializing the MobileNets weights from the re-

spective pre-trained model trained on the ImageNet.
Exploring deep learning models for mobile based sys-

tems is an active area of research. The trend is to max-
imize speed by compromising accuracy. One such model,
SqeezeNet [7] matches AlexNet’s [11] performance with 50
times less parameters. It reduces the number of parameters
by replacing 3x3 filters with 1x1 filters. It also maintains
large activation maps by down sampling late in the network.
This increases the size of maps and hence accuracy, but the
model requires fewer filters and, thus, it is smaller in size.
DenseNet [6], shows that if every layer is connected to ev-
ery successive layer in a feed forward manner, the network
achieves similar accuracy with less parameters. To achieve
similar accuracy to that of ResNet-152 it requires less than
half of the parameters. Xception [3] uses depth-wise sep-
arable convolutions for constructing a lighter model. Mo-
bileNets uses depth-wise and point-wise separable convo-
lutions for designing an architecture with only 4.3 million
parameters. Our research focuses on adapting mobile based
classification model for pose estimation and it takes advan-
tage of transfer learning for quick training with less data.

3. Proposed approach

To achieve our objectives, three mobile based clas-
sification models DenseNets [6], MobileNets [5] and
SqueezeNets [7] are considered. With 0.50 alpha and
160 × 160 input resolution, MobileNets has 1.32 million
parameters against SqueezeNet’s 1.25. MobileNets scores
60.2% while SqueezeNets is 57.5% on ImageNet dataset.
The best performing MobileNets variation with alpha 1
and input resolution 224 × 224 gives 70% accuracy. In
this variation MobileNets has 4.2 million parameters. Mo-
bileNets was preferred over SqueezeNet due to higher ac-
curacy. In our setup, DenseNets 121 takes 63.8 ms while
MobileNets takes around 12 ms for the inference of a single
image. DenseNets can be scaled from less than 1 to 20 mil-
lion parameters. For our experiment, we choose a size of
DenseNets equivalent to that of MobileNets. A few differ-
ent DenseNet block size combinations such as 6, 12, 12, 8
with 4.3 million parameters and 6, 12, 12, 16 with 5.7 mil-
lion parameters were tested. Block size of 6, 12, 24, 16 was
also tested with ImageNet initialized weights. Our prelim-
inary experiments showed that DenseNet did not converge
as well as MobileNets.

3.1. MobileNets review

MobileNets are based on streamlined architecture that
uses depth-wise and pointwise separable convolutions
(DPC) [5]. Convolution operation normally filters and then
combines inputs and outputs in one step. MobileNets splits
filtering and combining into two separate steps. It shows
that this results in drastically reduced numbers of param-



Figure 2. (a) Modified MobileNets architecture. First and last layers are normal convolution and rest are depthwise and pointwise separable
convolution blocks. Pre-trained lower layers from MobileNets are depicted in yellow. Last two layers are split joint-wise. (b) Joint-wise
filter distributions for last two layers

eters making the network faster. The network uses 3x3
depth-wise separable convolutions which results in up to 9
times less computations as compared to standard convolu-
tions at a cost of fractional reduction in accuracy. Suppose
DK is square kernel size, DF is feature map size, M is the
number of input channels and N is the number of output
channels. The computational cost for standard convolution
would be [5]:

DK ·DK ·M ·N ·DF ·DF (1)

But depth-wise separable convolution computes the same
operation in two steps and the computational cost comes
down to:

DK ·DK ·M ·DF ·DF +DK ·DK ·N ·DF ·DF (2)

MobileNets lowers the resolution from 224× 224 in the
input layer to 7× 7 in the last convolution layer. The num-
ber of filters increases from 32 in the first layer to 1024 in
the penultimate layer. The last DPC layer is followed by
a global average pooling (GAP) layer whose output is re-
shaped and fed into a fully connected (FC) layer with out-
put size of 1000. The FC layer is responsible for 24.33% of
the parameters.

To adapt MobileNets for pose estimation we considered
the following factors. Resolution of 7 × 7 at the final DPC
layer makes heatmap regression difficult. Such supervision
requires higher resolution. But, higher resolution with large
number of filters (1024) can be a speed bottleneck and may
lead to over-fitting. The fully connected layer needs to be
removed as it is unsuitable for heatmap regression. We
intended to implement these changes while still retaining
part of ImageNet pre-trained MobileNets so that the model
could benefit from the transfer learning. GAP layer is not
used in pose estimation problems which helps in reducing
over-fitting. Thus, the goal is to introduce an alternate ap-
proach to prevent over-fitting.

3.2. MobileNets modifications

Inspired by the hourglass network [13], we modify the
final two DPC layers of mobileNets to increase the resolu-
tion through upsampling. If the whole model is changed to
reflect an hourglass then pre-trained weights cannot be used
and the advantage of transfer learning will be lost which
could impact the accuracy. CNNs learn generalized features
in the first few layers and class specific features towards the
end. Thus, only the final two layers are changed where up-
sampling is used to increase the filter size from 14 × 14 to
28× 28 and then to 56× 56. Increasing the resolution fur-
ther impacts the speed and, thus, the final output resolution
of the model is kept at 56 × 56. Lower size of heatmap
resolution as compared to the input (224 × 224) does not
impact on accuracy as pointed out in [13]. In the proposed
model, the final filter resolution is 56 × 56 as opposed to
7 × 7 in the original MobileNets. To reduce the impact on
speed due to increase in filter size, we reduce the number of
filters in the final two layers. These layers have 256 filters
each which is 1/4th of the 1024 filters in the original Mo-
bileNets. For heatmap regression, the last fully connected
layer is replaced by a normal convolution layer with 11 fil-
ters that correspond to heatmaps for 11 body joints. The
two changed DPC layers with the final convolutional layer
is shown in white towards the right of Fig 2a. The hour-
glass network also has side layers (skip connections) which
are used to connect features across scales. The two hori-
zontal white boxes depict the skip connections. These are
introduced at resolution 28×28 and 14×14. Each skip con-
nection goes through a DPC layer of the same dimension.

3.3. Split Stream

GAP works by enforcing correspondence between con-
fidence map and classes. It inherently prevents over-fitting
[12]. GAP is not commonly used by pose estimation models



[29, 14], since in regression problems there are no classes.
This layer was thus removed. The FC layer which is respon-
sible for 24% of the parameters is prone to overfitting in the
absence of GAP and dropout. None of the standard pose es-
timation models [13, 29] use dropout for dealing with over-
fitting as randomly dropping out filters is not suitable for
regression. We introduce a novel split stream architecture
to deal with over-fitting. The last DPC layer and the final
convolution are split into 11 filter groups as shown towards
the right side of Fig. 2a. The 11 filter streams correspond
to 11 body joints. Filters within each stream are shared and
have no connection to filters from different streams. As a
result low level features in the lower layers are common but
high level features of individual joints are regressed inde-
pendently. This has two effects: 1) it reduces the number of
parameters making the network lighter, 2) it reduces over-
fitting for pose estimations problems where GAP or dropout
is not used. Our experiments show that when split architec-
ture is used the validation error follows the training error
more closely than without it. To determine the number of
filters needed for each joint, all the joints are first allocated
filters equally. Then difficult joints like elbows and wrists
are gradually allocated more filters than easier parts like the
nose. Over several experiments the optimal filter numbers
are obtained. The joint-wise filter distribution is shown in
Fig. 2b. In order to improve the detection performance of
difficult joints, we experimented by allocating more filters
to wrists and elbows but it did not increase accuracy any
further.

4. Training details
We use the FLIC [20] dataset for evaluation. It consists

of 5003 images out of which 3987 images are for training
and 1016 are for testing. 80-20 split in a small dataset in-
dicates good generalization. Images are cropped to loosely
fit the person whose annotations are available. Data aug-
mentation is applied in the form of rotation (+/- 30 degrees)
and scaling (.75-1.25). For the baseline evaluation of Mo-
bileNets for pose estimation, only top softmax layer is re-
moved and the number of classes changed to 22 (2×11 body
joints). Mean squared error (MSE) regression loss is ap-
plied for supervision. Performance of split stream architec-
ture is also evaluated with model supervised through MSE
regression. The final model is supervised with heatmap re-
gression.

Tensorflow is used for implementation. For transfer
learning supervision is carried out with the original layers
frozen with a learning rate of 0.001 for 50K iterations. The
two layers receiving skip connections are also trained. Then
the whole model is fine-tuned for 150K iterations, with the
learning rate reduced to a 10th. After the training loss
plateaus, the learning rate was further reduced by half. The
standard practice is to use stochastic gradient descent for

Figure 3. Example output from FLIC dataset. Predicted joint po-
sitions are marked in Red

optimization but Adam optimizer [10] with default param-
eters was found to converge the model much faster. While
optimizing, the model also keeps track of moving averages
of the gradients with a decay of 0.9. This helps to stabilize
the training by smoothing the changing of gradients. The
model was trained on an Nvidia Quadro M4000 which has
an effective memory of 6.7 GB, with a batch size of 16.

Model Elbows Wrists
Toshev et al. [26] 92.3 82.0

Tompson et al. [25] 93.1 89.0
Chen et al. [2] 95.3 92.4
Wei et al. [27] 97.6 95.0

Ours 97.6 95.2
Newell et al. [13] 99.0 97.0

Table 1. FLIC results PCK@0.2

MobileNets Accuracy Speed Parameters Size
Baseline 96.4 10 ms 4.3m 68 MB
Split 96.9 10 ms 3.3m 52 MB
Final 97.3 12 ms 2.3m 26 MB

Table 2. Comparison of proposed design with baseline



Figure 4. Loss (Y-axis) vs iteration in 1000s (X-axis) curve as generated by tensorboard. From left to right: MobileNets train loss;
MobilNets validation loss; proposed model train loss; proposed model validation loss.

5. Evaluation
Evaluation is done using standard Percentage of Correct

Keypoints (PCK) metric [27] where correct detection falls
within 20% of torso size from the ground truth. For com-
parison we report wrists and elbow detection rate. These are
the most difficult joints and is widely used for the perfor-
mance comparison on FLIC dataset. Table 1 compares our
results with other models and shows competitive results al-
though our model is optimized for both speed and accuracy
rather than only accuracy. State of the art result achieved
by the stacked hourglass network [13] takes 75 ms for a for-
ward pass on a 12GB Nvidia Titan. Ours takes 12 ms for
a forward pass on 8GB Nvidia Quadro. However, the real
advantage of using MobileNets based model is that it is op-
timized for mobile vision applications.

Figure 5. Comparison of elbow and wrist accuracy with baseline
across PCK thresholds

Table 2 compares the baseline performance with the split
architecture and our final model, which is our novel design
that combines the split architecture and the hourglass net-
work. The baseline model is transfer learned from Ima-
geNet pre-trained MobileNets and performed accuracy of
96.4% on the FLIC dataset. If trained from randomly initial-
ized weights the performance is much lower ( 87%). With
the application of the split stream architecture but still re-

gressing with MSE the gain in accuracy is 0.5%. The final
accuracy gain with split architecture and hourglass-inspired
design is 0.9%. The number of parameters and parameter
size of the proposed model is approximately half of Mo-
bileNets. The marginal drop in speed is mainly due to the
heatmap regression. Fig 5 shows proposed method preform-
ing much better than the baseline at lower PCK thresholds.

MobileNets Train error Val error Accuracy
Baseline 1.57e-4 1.67e-3 96.4

GAP removed 2.4e-05 1.04e-3 95.9
Split 1.52e-4 7.929e-4 96.9

Table 3. Modified MobileNets comparison

6. Discussion

The main novelty lies in the proposed split stream archi-
tecture. The network is split into separate groups of filters
that do not share weights with other filter groups. This im-
plies that the filter groups at the final two layers take com-
mon low level representations of the whole image as input
but learn each joint independently of other joints. Table 2
shows that this brings down the number of parameters and
parameter size by approximately half which is a big advan-
tage for mobile based applications. Reducing over-fitting is
another advantage of this split stream design. It is a well-
known fact that larger networks are prone to over-fitting.
This, ultimately led to the formation of inception modules
[22], which uses reduced connections. Fig. 4 compares the
train and validation error of MobileNets and the proposed
design. Even though the final training loss is the same for
both cases, the validation loss for the proposed model is
less than half of the original MobileNets. MobileNets uses
global average pooling for preventing over-fitting. When
GAP layer is removed, the validation error does not change
much but the training error drops by a factor of 6 along with
0.5% reduction in accuracy as shown in the second row of
the Table 3. This is a typical sign of over-fitting. When we
split the last two layers into separate filter groups for each
joint then both accuracy and validation error improves and



the model performs better than the baseline. This shows that
the split stream design helps in reducing over-fitting. It is
interesting to note that accuracy of each joint is only loosely
tied to number of filters allocated.

7. Conclusions
We demonstrate the adaptation of well-known fast and

efficient MobileNets for human pose estimation through
transfer learning. The network is adapted for heatmap
regression inspired by the stacked hourglass network.
A novel split architecture is introduced which helps in
reducing over-fitting. Our modified MobileNets performs
close to state of the art results while being considerably
faster. It out performs the baseline considerably across
PCK thresholds. We believe this will help advance the field
of mobile and embedded vision applications focusing on
human pose estimation.
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