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Abstract

With an aging population that continues to grow, de-
mentia is a major global health concern. It is a syndrome
in which there is a deterioration in memory, thinking, be-
havior and the ability to perform activities of daily living.
Depression and aggressive behavior are the most upsetting
and challenging symptoms of dementia. Automatic recog-
nition of these behaviors would not only be useful to alert
Sfamily members and caregivers, but also helpful in plan-
ning and managing daily activities of people with dementia
(PwD). In this work, we propose a vision-based approach
that unifies transfer learning and deep convolutional neural
network (CNN) for the effective recognition of behavioral
symptoms. We also compare the performance of state-of-
the-art CNN features with the hand-crafted HOG-feature,
as well as their combination using a basic linear SVM. The
proposed method is evaluated on a newly created dataset,
which is based on the dementia storyline in ITVs Emmerdale
episodes. The Alzheimer’s Society has described it as a “re-
alistic portrayal”" of the condition to raise awareness of the
issues surrounding dementia.

1. Introduction

According to the Alzheimer’s Society, around 46.8M
people are living with dementia and the numbers will rise
to 115.4M in 2050. One in three PwD shows aggressive
behavior [2], which is very stressful and upsetting for the
person with dementia and their carers. Depression is also
common at all stages of dementia. It occurs in about 20—
40% of PwD [1]. Identifying depression in PwD can be
difficult. To date, there is no single test or questionnaire
to detect the depression due to the complexities and multi-
faceted nature of the condition.

The common approach to monitor and manage the
above-mentioned behavioral symptoms is via direct obser-
vation by caregivers, family members and health care pro-
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fessionals. However, this is labor-intensive, subjective, time
consuming, costly and could increase the workload of care-
givers and health care professionals [10]. Recently, ambient
technologies have been explored extensively in a variety of
settings, such as “smart homes” and hospitals, for health
monitoring. These technologies could be adapted into the
early detection of behavioral symptoms that would aid care-
givers and guide the headway of tailored interventions [39].

Most of the above-mentioned technologies often use on-
body bio-sensing devices (e.g. actigraphs, accelerometers,
biomarkers and biopatches) for measuring signals linking
behavioral symptoms [5, 19, 7, 36]. However, it is sug-
gested that PwD requires monitoring systems that are “un-
obtrusive, and preferably collected in a transparent way
without patient intervention due to their cognitive impair-
ment” [28]. Therefore, more recently researchers have ex-
plored monitoring systems involving unobtrusive methods
that includes video surveillance using cameras and Kinect
sensors [14, 21, 7]. Monitoring and recognition of aggres-
sion and depression using such systems is still very much
in its infancy. This could be due to the challenge faced by
the researchers to develop standard algorithms that can ad-
equately and concisely recognize behavioral symptoms.

In this paper, we propose a novel method for recognizing
behavioral symptoms involving aggression and depression.
The proposed approach benefits from the power of transfer
learning (TL) by using appearance features as deep CNN
features, which are extracted from various state-of-the-art
deep models (e.g. VGG16 [32], Inception-V3 [35] and In-
ception ResNet-V2 [34]). We also explore the various level
of abstraction by exploring different extraction points in a
given CNN model (e.g. VGG16 [32]). This work includes
the following novel contributions:

e To our knowledge, we are the first to report vision-
based recognition of behavioral symptoms (aggres-
sive, depressive, happy and neutral) in PwD.

e We demonstrate the effectiveness of TL using different
state-of-the-art deep CNN models for recognizing be-
havioral symptoms in PwD. We evaluate various com-
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binations of deep CNN features using SVM.

e We introduce a novel image dataset to advance video-
based surveillance research for behavior recognition.
It is from the well-known ITV’s Emmerdale episodes
involving dementia storyline.

1.1. Related work

Human action and behavior recognition has many poten-
tial applications including intelligent surveillance, assistive
technologies, robotics and human-computer interaction. It
is a fundamental and well-studied problem in computer vi-
sion with a long list of literature over the years [18, 6, 17].
Traditional approaches often depend on the hand-crafted
feature extraction and representation (e.g. HOG [8] and
SIFT [23]), hand-object interactions [37, 11], articulated
pose [29, 24] and part-based/structured models [38, 9].
Many of these approaches explore the spatial configuration
of body parts and hand-object interactions that often require
body parts and/or object detector. Recently, major advances
in CNN-based deep models [15, 25, 16] have challenged
these approaches. These CNN models are trained and eval-
uated on very large and highly diverse datasets [29, 3] of-
ten consisting human-human, human-objects and human-
animals interactions. In contrast, the targeted behavioral
symptoms are often expressed via body language (e.g. ges-
tures) and facial expression, and usually a hard problem for
a machine to differentiate various symptoms shown by the
same person. It is also known as fine-grained recognition.

Deep CNN models are comprised of multiple layers to
learn representation of images/videos with multiple levels
of abstractions through a hierarchical learning process [20].
Such models learn from very general (e.g. Gabor filters,
edges, color blobs) to task-specific features as we move
from first-layer to the last-layer [40]. Thus, these models
are explored for TL in solving visual recognition tasks [12].
In TL, a base network is trained on a base dataset. Then,
the learned features (e.g. weights) are adapted, or trans-
ferred to a second rarget network/model to be trained on
a target dataset [40]. This would work if the learned fea-
tures are task-independent, which means they are suitable
for both base and target task. More recently, it has been
shown that it is possible to obtain state-of-the-art results us-
ing TL [31, 12]. This suggests the layers of deep models do
indeed learn features that are fairly general. In this paper,
we explore strategies to strengthen this generalizability.

Automatic monitoring of the behavioral symptoms is
often based on wearable sensors [5, 19, 7, 36]. In [7],
Chikhaoui et al. have used Kinect and accelerometer to clas-
sify aggressive and agitated behavior using ensemble learn-
ing classifier. Whale et al. [36] used a smartphone app to
collect context-sensitive information to monitor behavioral
patterns that might be indicative of depressive symptoms.

In [4], Chase et al. have used patients’ movements to clas-
sify levels of motion that correlate with observed agitation.
In [27], classification of aggressive actions (e.g. hitting,
kicking, pushing and throwing) is carried out using skele-
ton joints obtained from a Kinect.

There has been very little progress in vision-based ap-
proach for unobtrusive monitoring of both aggressive and
depressive behaviors in PwD. This could be due to the sub-
jective behavior measurements, difficulty in measuring fine
changes in appearance or even the lack of a public database.
In this paper, we aim to address these issues by exploring
the power of transfer learning (TL) through a novel simplis-
tic approach and a new challenging dataset (Fig. 1) from
ITV’s special Emmerdale episodes involving dementia.

2. Proposed approach

We aim to recognize behavioral symptoms from still im-
ages by exploring the transferable CNN features. Recogniz-
ing behavior from still images is a challenging problem, is
mainly due to the absence of temporal information. Fur-
thermore, the objective is to maximize the use of TL to
minimize resources (e.g. GPU) and computational time to
train/validate the target model while still achieving com-
petitive performance. The recognition based on still im-
ages would be computationally inexpensive. Therefore, it
could be applied to real-world applications involving real-
time monitoring for immediate intervention and/or support.

2.1. Convolutional Neural Network (CNN) features

State-of-the-art deep CNN models have achieved signif-
icant improvement in image recognition problems [35, 34,

]. Given the complexity (number of parameters are in
millions) of such models, it is necessary to train and eval-
uate them on large-scale image datasets [22, 30]. To train
these models from scratch often requires multiple GPUs and
can be a computationally expensive process. The training
process could take days to weeks depending on the GPU
memory/speed and size of the dataset. Thus, we bene-
fited from the available pre-trained models on the ImageNet
dataset [30] and explore the TL to solve the targeted fine-
grained behavior recognition task. The ImageNet dataset
consists of 1.2M natural images with 1K classes that in-
cludes people. Our target dataset (sec. 3.1) is smaller than
the ImageNet and therefore more appropriate for TL.

Given the performance and relatively wider usages, we
consider the VGG16 [32], Inception-V3 [35] and Incep-
tion ResNet-V2 [34] state-of-the-art deep models to extract
CNN features. For a given input image, the forward pass
extracts CNN features from the last layer before the soft-
max layer of the chosen pre-trained model. We use the de-
fault image size: 224 x 224 for VGG16 and 299 x 299 for
ResNet-V2 and Inception-V3, resulting feature dimension
of 4096 (VGG16), 1536 (V2) and 2048 (V3). In order to
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Figure 1: Example images of depression behavioral symptom expressed in different ways

explore the appearance features representing different level
of abstractions, as well as their suitability on the given task,
we use three different extraction points (FC2, Block5 and
Block4 pooling layers) in the VGG16 model. Thus, the
CNN feature dimension is 4096, 25,088 and 25,088 for the
FC2 (fully-connected), Block4 (B4) and BlockS5 (B5) pool-
ing layers extraction points, respectively.

2.2. Hand-crafted feature (HOG)

In order to compare the performances of CNN features
versus hand-crafted features, we use well-known Histogram
of Oriented Gradient (HOG) feature [8]. The HOG param-
eters are set to default as in [8]. The resulting HOG feature
dimension is 29,241 for an image size of 168 x 168.

2.3. SVM-based recognition of symptoms

We use the linear SVM to recognize behavioral symp-
toms from CNN features extracted using various deep mod-
els. To achieve this, we use LIBLINEAR [13] to solve:
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Where (F;, [;) represents feature-label pair of i*" image. C
is a penalty parameter and max (1 — [;w” Fy, 0)2 is Lo —loss
function. We use one-against-all strategy. The optimal
value of C'is very important for better performance and of-
ten decided through a grid search [13], which is computa-
tionally intensive. We overcome this by using the Bayesian
optimization [33], in which the SVM learning algorithm in
Eqn. [ is modeled as a sample from a Gaussian process
(GP). The GP attempts to find the optimal value of C in
Eqn. 1 as few iterations as possible.

In order to evaluate our approach, we use the metrics
(sec. 3.2) that require probabilistic outputs from a clas-
sifier. Linear SVM [13] provides outputs as class labels.
Therefore, we use probability calibration method described
in [26], which transforms linear SVM predictions to poste-
rior probabilities by passing them through a sigmoid (also
known as Platt calibration).

We evaluate the proposed method by combining various
CNN features. We use feature-level fusion by concatenating
various features into a single feature vector, which is then
used by the SVM for classification.

2.4. Fine-tuning deep models on the target dataset

We retrain the state-of-the-art VGG16 [32], Inception-
V3 [35] and Inception ResNet-V2 [34] models on the tar-
get dementia dataset by applying TL. This is inspired by
the findings in [40], which suggests that transferred weights
perform better in comparison to random weights for both
frozen (i.e. do not change during training) and fine-tuning
on a new dataset. During fine-tuning, all layers are initial-
ized with pre-trained weights except the softmax layer (ran-
dom initialization) due to the different number of classes.
We use the default settings (e.g. pre-processing step, image
size, data augmentation) except the batch size, which is set
to 32 to fit into 8GB GPU (NVIDIA Quadro M4000). We
use stochastic gradient descent (SGD) optimizer to mini-
mize the categorical cross entropy e; = — >~ _1; log(pi,c).
where p are the predictions, [ are the true labels, ¢ denote
the training images and c represent the behavior categories.
In our experiments, we set leaning rate to 10~%, momentum
to 0.95 and decay to 0.005.

3. Experiments, evaluations and discussion

This section describes the new dataset, experimentation
details and reports the performances.

3.1. Dataset

The new dementia dataset is a collection of still frames
from the ITV soap opera Emmerdale episodes focusing
on the dementia storyline. These episodes are approved
by the Alzheimer’s Society to raise awareness of the is-
sues surrounding dementia. The dataset is created using
57 short YouTube clips and 13 episodes (each of dura-
tion ~35 minutes) featuring the dementia character (Ash-
ley Thomas). The images are categorized into 4 labels; ag-
gressive, depressive, happy and neutral. The dataset con-



sists of 65,082 images (aggressive: 13,535; depressive:
21,075; happy: 13,841 and neutral: 16,631). Most of the
images are cropped to focus on the main character Ash-
ley Thomas. The data is split into ~20% test and ~80%
train data. The split is done in such a way to ensure that
very similar frames are kept in either the training or test-
ing set. The dataset information is available at: https:
//computing.edgehill.ac.uk/~abehera/.

3.2. Evaluation metrics

We use the standard metric of accuracy (ACC) and av-
erage precision (AP). ACC gives the percentage of cor-
rect predictions and assigns equal cost to false positives
and false negatives. Whereas, AP summarizes precision-
recall curve. We also compute log loss logLoss =
—% Zf\il Zizl Yi.clog(pi,c), where p; . is the prediction
probability of class ¢ given i test image and y; .. is actual
probability (0 or 1). N is the total number of test images.
The log loss quantifies the accuracy of a classifier by penal-
izing the confident false classifications. An ideal classifier
would have zero log loss. We also consider the top-2 ACC.

3.3. Discussion

The performance of individual CNN features using lin-
ear SVM is shown in Table 1. It is evident that the CNN
features perform better than the HOG [&] hand-crafted fea-
ture. CNN feature extracted from the BS gives better per-
formance than the FC2 and B4 of VGG16 [32]. This shows
more than one extraction point should be considered while
using CNN features extracted via TL. The top-2 (ACC-2)
accuracy using Inception-V3 is better than the rest. By look-
ing at the log loss (smaller is better), there is not much dif-
ference in classifier’s confidence in making decision. The
classifiers using VGG16 B5, Inception-V3 and Inception
ResNet-V2 features have better confidence in making de-
cisions than the rest (Table 1).

Table 2 shows performance by combining (feature-level
fusion) two or three different types of CNN features. Given
the individual performance (Table 1) and sizes, B4 and
HOG features are not considered for fusion. A general ob-
servation is that the overall performance improves with var-
ious combinations. However, none of these performance is
better than the VGG16 BS (Table 1) alone. For example,
when BS5 is combined with other features, the accuracy is
better than the individual accuracy except BS (50.8%). A
similar trend is also observed in combining three features.
The performance of classifier-level fusion involving three
different CNN models is presented in Table 3. The overall
performance is lower than the feature-level fusion (Table 2).

The performance of the state-of-the-art models fine-
tuned on the target dataset is presented in Table 4. The
models are trained for 50 epochs using the TL approach

Features \ ACC \ ACC-2 \ AP \ Log loss
Inception-V3 41.9 73.8 | 42.8 1.23
Inception ResNet-V2 | 49.7 67.6 | 46.5 1.23
VGG16 B4 41.9 69.3 | 439 1.26
VGGI16 BS 50.8 71.1 | 51.6 1.23
VGG16 FC2 45.0 63.7 | 429 1.26
HOG 31.5 612 | 29.6 1.35

Table 1: Performance of various CNN and hand-crafted
HOG features in percentage (except log loss) using SVM.

Features | ACC | ACC-2 | AP | Logloss
V3 +V2 49.9 69.0 46.7 1.24
V3 +B5 50.4 71.6 49.0 1.25
V3 + FC2 44.9 69.7 48.8 1.25
V2 +B5 50.7 71.8 49.9 1.25
V2 +FC2 46.2 70.0 48.0 1.26
B5 + FC2 50.3 72.1 49.3 1.25

V3+V2+BS5 50.2 719 | 489 1.26
V3 +FC2+B5 | 50.5 72.2 | 489 1.25
V2+V3+FC2 | 469 70.3 | 51.0 1.24
V2+B5+FC2 | 504 719 | 489 1.26

Table 2: Performance of feature-level fusion (concate-
nation) in percentage using SVM with various combina-
tion. B5 — VGGI16 [32] Block5 pooling layer, B4 —
VGG16 [32] Block4 pooling layer, FC2 — VGG16 [32]
FC2 layer, Vo — Inception ResNet-V2 [34] and V3 —
Inception-V3 [35].

as described in section 2.4. It is clear that the perfor-
mance of Inception-V3 (ACC: 49.6%) model is better than
the rest. An interesting observation is that CNN feature
from VGG16 BS5 outperformed these deep models. This
shows CNN features with appropriate level of abstraction,
when combined with basic classifier such as linear SVM
could give better performance than the re-training/fine-
tuning these models on a target dataset. Re-training/fine-
tuning often requires GPUs and optimization of various
hyper-parameters. Thus, it can be time consuming and a
computationally expensive process.

We have also experimented with CNN features extracted
from the above-mentioned fine-tuned models. In this sce-

SVM Kernel \ ACC \ ACC-2 \ AP \ Log loss ‘

Linear 43.0 63.9 46.4 3.55
RBF 45.9 70.0 45.1 9.24

Table 3: Performance of classifier-level fusion in which the
outputs from individual SVM trained on VGG16, ResNet-
V2 and Inception-V3 features are fed into another SVM
with linear and RBF kernel.
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[ Features | ACC [ ACC-2 | AP [ Logloss | [ Features | ACC [ ACC-2 | AP [ Logloss
Inception-V3 49.6 73.1 54.6 1.22 V3+V2 51.0 75.1 55.7 1.37
Inception ResNet-V2 | 45.1 67.8 | 45.0 1.24 V3 +BS5 52.9 729 | 529 1.16
VGGI16 45.6 69.3 50.3 4.79 V3 + FC2 48.4 69.4 50.8 2.01

V2 +B5 53.0 73.1 52.6 1.16

Table 4: Performance of CNN models in percentage (except V2 + FC2 48.0 69.3 504 201

log loss) fine-tuned (transfer learning) on the target dataset. B5 + FC2 529 72.9 527 1.23

’ Features \ ACC \ ACC-2 \ AP \ Log loss ‘
Inception-V3 50.4 749 | 544 1.39
Inception ResNet-V2 | 37.4 69.2 | 434 1.43
VGG16 B4 45.6 704 | 46.6 1.23
VGG16 BS 524 73.0 | 524 1.16
VGG16 FC2 48.2 694 | 50.2 2.01

Table 5: SVM performance in percentage (except log loss)
using various CNN features extracted from the respective
models, which are fine-tuned on the target dataset.

nario, instead of pre-trained models, we use the respective
fine-tuned models to extract CNN features. The perfor-
mance is presented in Table 5. The performance is better
than the fine-tuned models in Table 4 and CNN features
from pre-trained models in Table 1 with the exception of
Inception ResNet-V2. The VGG16 B5 performed best in
comparison to the rest. In comparison to the performance
in Table 1, the most improved (ACC: 8.5%) model is the
Inception-V3. The other notable observation is that using
feature-level fusion the performance is improved while us-
ing the fine-tuned models (Table 6 vs Table 5) in compari-
son to the pre-trained models (Table 2 vs Table 1).

The confusion matrices for various experiments are
shown in Fig. 2. The performance is very good given the
challenging dataset, which consists of fine changes in ap-
pearance representing different behavioral symptoms. For
example, the symptom happy is often noticed via facial ex-
pression. It is difficult for machine to recognize since the
visible area representing the face is often small and heavily
depends on the head orientation (i.e. frontal vs profile view).
This could be linked to the low performance of happy and
neutral symptoms (Fig. 2). The high accuracy of aggressive
and depressive behaviors could be linked to the visible scale
range i.e. when the character is expressing such symptoms,
the camera is often zoomed to the upper-body. Moreover,
these expressions are often accompanied with other body-
languages like hand gestures and hand-over-face (Fig. 1).

4. Conclusions

We have presented the challenges in video-based unob-
trusive monitoring of the behavioral symptoms in PwD. In
order to recognize such symptoms in video frames, we pro-
posed a novel method that explored the power of transfer
learning. The proposed approach is simple and used a data-

V3+V2+BS5 54.7 73.1 52.6 1.16
V3+FC2+B5 | 53.8 72.8 52.5 1.17
V2+V3+FC2 | 479 69.3 50.1 2.00
V2+B5+FC2 | 542 73.3 | 52.6 1.16

Table 6: SVM performance in percentage (except log loss)
by fusing various CNN features extracted from the respec-
tive models, which are fine-tuned on the target dataset.

driven approach that applied different level of abstractions
using the state-of-the-art deep CNN models. We have in-
troduced a new dataset from ITV’s Emmerdale episodes in-
volving the dementia storyline, which is described as a “re-
alistic portrayal” of the condition by the Alzheimer’s Soci-
ety'. We believe this will help advance the field of video
surveillance focusing on behavioral symptoms in PwD.
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