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Abstract

The area of sustainable green smart computing highlights key challenges to-

wards reducing cost and carbon dioxide emissions due to the high-energy con-

sumption of Cloud data centres. Here, we focus on the Cloud virtual machine

(VM) scheduling that is usually based on simple algorithms, e.g. VM place-

ment on nodes with low memory usage. This approach fails to consider the

actual configuration of nodes inside the server rack resulting in local overheat-

ing of Cloud data centres. To solve this, we propose a VM scheduling algorithm

based on the gravitational effect, called VMSAGE, to optimize energy efficiency

of Cloud computing systems. Inspired by the physical gravitation model, we

define the thermal repulsion and logical gravitation factors between physical

nodes and VMs. To achieve optimized VM scheduling, we propose a gravita-

tion function that refers to the calculation of the logical quality of each VM,

host and rack through the algorithm, so as to draw the attractiveness between
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them. Based on the concept of dimension reduction, VMSAGE conducts the

two-dimensional plane target selection twice to reduce the computational cost.

Additionally, VMSAGE evaluates attributes of the computer room to carry

out the VM deployment. To demonstrate the effectiveness of our solution, we

compare it with the Best Fit Heuristic (BFH) and the dynamic voltage and

frequency scaling (DVFS) algorithms. The results indicate that our algorithm

achieves 10% and 20% optimized energy consumption respectively. The exper-

imental results highlight our contribution, in where VMSAGE can significantly

reduce energy consumption rates and VM migration times.

Keywords: Virtual Machine, Scheduling Algorithm, Energy Efficiency,

Gravitation Effect, Cloud Computing
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1. Introduction

Cloud computing enables an economically promising paradigm of compu-

tation outsourcing [1]. Immense computation power and storage capacity of

computing systems enable everyday Internet users to store and process large-

scale data on a “pay as you go” model [2]. As more users move their activities

to the Cloud, the number of data centre nodes increases as well. The global

data center market is estimated to reach revenues of around 174 billion by 2023,

growing at a Compound Annual Growth Rate (CAGR) of approximately 4%

during the forecast period1.

The demand for data centres processing capacity is expected to increase by

7 to 10 times in the next 5 years [3]. However, as the scale of Cloud data cen-

tres increases, the physical servers cause high power consumption and environ-

1https://www.prnewswire.com/news-releases/data-centers-global-industry-outlook–

forecast-2018-2023—adoption-of-hyperconverged-infrastructure-to-have-a-high-impact-on-

growth-300676458.html
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ment problems. Today, the annual power consumption of global data centres is

about 3,000 tw.h, equivalent to the total power generation of 300 nuclear power

plants [4]. For example, the annual power consumption of Google’s Cloud data

centres is up to nearly 203,000,000 kw.h [4]. The inefficient utilization of re-

sources causes unnecessary waste of energy. Kurnik et al. [35] show that the

current under-utilization rates of many servers in data centres are around 90%.

The effective virtualization of resources can be used to solve the low energy

efficiency problem. In Cloud systems, nodes are virtualized in a unified and

on-demand resource pool, which improves the utilization rates of resources and

reduces the required number of computing nodes to a certain extent [6]. De As-

suncao et al. [7] suggest that during an infrastructure’s high energy consumption

period, for each 1 kw.h power used for computing, there is an additional 0.5-1

kw.h power used for cooling. A physical node with low utilization rate of re-

sources can switch to a sleeping state, or even shut down by migrating its VMs

dynamically to other data nodes, in order to attain the better energy-saving

effect. In order to effectively improve the service performance of Cloud comput-

ing systems, while at the same time also reduce the cost of service and energy

consumption, we suggest that efficient VM monitoring management, scheduling

and migration algorithms and strategies are essential.

Many research results have been proposed in this field, such as the migration

cost-aware locally optimal placement algorithm (pMaP) [8], the peak clustering-

based placement (PCP) [8], the minimum migration time cuckoo optimization

algorithm (COA-MMT) [9], the minimum migration time imperialism compet-

itive algorithm (ICAMMT) [10], etc. However, three major problem-specific

challenges make the solution a complex task:

1. The virtual machine scheduling and migration are only conducted on data,

such as CPU utilization and RAM remaining space. Due to the random

distribution of active nodes in Cloud data centres, it is difficult to imple-

ment regional precise temperature control.

2. VM scheduling and migration requirements are considered logically, while
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the actual data node deployment scenarios, the heat distribution, and the

operation mode of the temperature control system of Cloud data centre

are not. Due to the poor linkage between data nodes and the temperature

control equipment, it is difficult for these algorithms to be applied in actual

Cloud data centres.

3. Data center overheating is problematic, which makes it difficult to solve,

compromising the maintenance of the system’s stability. The local over-

heating problem of data centre affects the lifetime of computing, storing

and communication equipment. The throughput and latency in future

data centre networks must be significantly improved to sustain the in-

creased network traffic and the total power consumption inside the racks

must remain almost the same due to thermal constraints [11]. If a node’s

dataset involves heavy computing tasks with relatively poor thermal per-

formance, it might lead to abnormal behaviour (e.g. shut down due to

local overheating) [12].

In order to achieve the goals of load balance, energy efficiency, service-level

agreement (SLA) and stability, Cloud data centres need more reasonable al-

gorithms for scheduling, migration and management of VMs. Considering the

actual server deployment and the temperature control mode of real Cloud data

centres, we propose a novel VM scheduling algorithm based on the gravitational

effect (VMSAGE ).

The contribution of this work is that VMSAGE creatively utilizes the con-

cept of physical gravitational effect and defines various attributes, including

the thermal repulsion factor between the physical node and a virtual machine,

the logical gravitation and the modified gravitation, along with their calcula-

tion functions. Specifically, our approach is based on the following three novel

elements:

(a) Thermal Repulsion Factor. The thermal repulsion factor not only does

it achieve the diffusion of the VMs from overheated data nodes in order to

stabilize both the entire system and the local systems, but also prevents
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data nodes from collapsing and from further damage. This guarantees

quality of service (QoS) while keeping SLAs.

(b) Logical Gravitation. The logical gravitation aggregates VMs to spe-

cific data nodes. We shut down those data nodes when a low resource

utilization rate is observed.

(c) Accord Priority to Heat Dissipation. Accord priority to heat dissi-

pation, the modified gravitation analyzes the heat distribution in Cloud

data centres and makes the virtual machines migrate to the data nodes

with good heat dissipation performance to achieve the balance of heat

distribution and avoid overheated server racks.

In Section 2, we describe previous work in the area. Section 3 describes

the scheduling algorithm, while Section 4 contains the implementation details

of VMSAGE. In Section 5, we conduct our performance evaluation and finally,

in Section 6, we conclude.

2. Related Work

This section presents the related work in the area of data centre temperature

control and VM scheduling.

The data centre as a Computer, described by Google [13] treats the data

centre as a multi-function building, capable of accommodating multiple servers

and communication equipment. Rather than having a collection of servers, these

devices are placed together as they have the same environmental and security

requirements making maintenance more efficient.

Inside a data centre, the most quantity of heat is generated by clusters of

servers, accounting for about 60% to 70% of the total heat quantity. In order

to reduce the energy consumption of a data centre, the machines with better

ability of dissipating the heat should be preferred when it comes to provide

services.

Generally, the temperature control equipment used by a data center is either

air cooling or liquid mode, with the underfloor air supply system being the most
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Figure 1: Schematic diagram of Cloud data centre based on air cooling temperature control.

The Computer Room Air Conditioner (CRAC) is a device that monitors and controls the

temperature, air distribution, and humidity in a network room or data center, while T denotes

the temperature sensor.

popular, as shown in Figure 1. The shortcomings of this temperature control

mode are the following:

1. Workloads of servers, which are temporally and spatially uneven, result-

ing in chaotic distribution of hot spots and cold spots in data center are

ignored.

2. The temperature control module works on a thermodynamic stable sys-

tem, which leads to less than 50% of effective cooling capacity.

3. The servers on the top of server racks can easily fail due to overheating [10].

The efficient migration of VMs needs both an efficient scheduling algorithm,

along with a dynamic migration copy algorithm. The typical dynamic migra-

tion copy modes of VMs include the Pre-Copy, Post-Copy and CR/RT-Motion

algorithms [14]. However, these algorithms are out of this paper’s scope and

therefore, they will not be discussed in further detail. Instead, we will focus on
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VM scheduling algorithms.

In order to reduce energy consumption, Zhao et al. [8] propose a virtual

machine scheduling algorithm based on energy minimization. According to the

energy consumption model, the algorithm calculates the utilization rate of data

nodes using a greedy method and repeatedly selects the data node with the least

growth of energy consumption, as the operation location for VMs, until all the

locations for VMs are determined. Then, the virtual machine deployment task

is completed based on the first fit decreasing algorithm. By deploying virtual

machines on a predetermined set of nodes, the algorithm can minimize the data

nodes’ energy consumption and achieve the ideal utilization rate of each data

node at the same time. Chen et al. [15] try to mitigate the impact of uncer-

tainty on the task scheduling quality for Cloud data centres. They present a

novel scheduling algorithm, which dynamically exploits the proactive and re-

active scheduling methods for scheduling real-time, aperiodic and independent

tasks. To improve the energy efficiency, they further propose strategies to scale

up and down the system’s computing resources based on the executed workloads,

resulting in improved resource utilization rates and reduced energy consumption

inside a Cloud data centre. Beloglazov et al. [16] present an analytical study

to explore single VM migration and consolidation, along with their respective

on-line deterministic algorithms. The authors provide adaptive heuristics (VM

placement optimization and power aware best fit decreasing) that analyze his-

torical data of servers with regards to resource usage for optimizing energy and

performance of VMs. The aforementioned solutions [8, 15, 16] though do not

focus on the physical structure of a data centre and also fail to consider the prob-

lems provoked by local overheating, long downtime of servers and unsatisfying

energy conservation.

Yakhchi et al. [9] propose a load balancing algorithm called COA-MMT to

reduce the energy consumption of Cloud computing infrastructures. Compared

with other classical algorithms, such as Interquartile Range-Minimum Migra-

tion Time (IQR-MMT) and Median Absolute Deviation-Minimum Migration

Time (MAD-MMT), the efficiency of a load balancing method based on Cuckoo
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Optimization Algorithm for Energy Management (COA-MMT) is significantly

improved from the aspect of VM migration, although it does not consider the

response time factor of QoS. Zhu et al. [17] present their work to improve the

ability of migrating VMs inside a data centre to help improving the capacities of

dynamic resource load balancing and fault tolerance. The migration of VMs in-

cludes the migrations of their memory state, application program and operating

system.

Fang et al. [18] aim to optimize VM placement and traffic flow routing by

presenting them as optimization problems. The authors suggest that 10− 20%

of the total power consumption is provoked by the network elements. Therefore,

they propose “VMPlanner”, which includes three approximation algorithms: (a)

VM grouping according to minimized traffic volume, (b) VM-group to server-

rack mapping (for placing VMs into rack more efficiently), and (c) power-aware

inter-VM traffic flow routing for minimizing the number of paths in the network.

They use the Greedy Bin-Packing algorithm, as presented in [19] to select the

path with the most sufficient capacity.

In [20], the authors study load placement policies for cooling and data centre

temperatures. They follow the idea of VM placement and migration according

to different electricity prices and temperatures during the time; basing their

system on the assumptions of users who provided estimates of the running times

of jobs. They use a round-robin algorithm and a cost aware static policy for

comparing their results.

Tseng et al. [21] explore the service-oriented VM placement as an optimiza-

tion problem. The authors try to solve the problem using a graph of Tree (to

minimize communication between VMs) and Forest algorithm (for balancing

traffic load between VMs). To evaluate the algorithm, they present a com-

parison against the Best Fit algorithm. They claim that the Forest algorithm

decreases the outbound communication cost by 22% and the Tree algorithm by

92%. Cardosa et al. [22] present their approach on VM placement and consoli-

dation of VMs in Cloud data centres using min-max. The authors suggest that

guided by application utilities, they could provide better resource allocation, so
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that high utility applications get most of the resources. They experiment using

synthetic and real data centre test-beds, concluding that the PowerExpandMin-

Max algorithm is the best utility for power-performance trade-offs in modern

data centres running heterogeneous applications.

In [23], the authors present a VM placement framework for minimizing the

energy consumption and maximizing the profits. They treat these as constraint

satisfaction problems and propose a utility function that expresses the SLA sat-

isfaction. From the system’s perspective, the authors provide a VM placement

formulation in order to maximize the number of the machines that must be

turned off. The experimental analysis is based on the Xen hypervisor and the

results indicate that different parameters can affect the operational costs and

can be used to balance the QoS.

In [24], the authors present a resource allocation problem that aims to min-

imize the total energy cost of a Cloud system in a probabilistic way. Their

algorithm places virtual machines (VMs) to servers using dynamic program-

ming and convex optimization. The algorithm is evaluated using simulations

and the results show that the proposed VM placement minimizes the power

cost. Goudarzi et al. [25] try to solve the Cloud energy-efficient VM place-

ment by creating multiple copies of VMs and by placing them into PMs using

local search. The experimental analysis shows a 20%-improvement in energy

consumption compared with selected heuristics.

In [26], the authors provide a framework, which allows the allocation of VMs

in a data centre in such a way to achieve energy awareness. The authors further

decouple constraints from algorithms by implementing 16 frequently used SLA

parameters in the form of constraints. The experimental analysis shows an

18%-improvement in savings of both energy and CO2 emissions. EnaCloud [27]

is an energy aware heuristic algorithm for VM placement in a dynamic way,

also considering energy efficiency. The authors present an experimental case for

the Xen VMM, claiming that their solution saves energy in Cloud platforms by

comparing their approach with FirstFit and BestFit. Finally, they separate their

workloads into different types, such as web/database server, compute-intensive
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and common applications.

Regarding VM migration time, Baruchi et al. [28] define the work cycle of

a VM, and VM migration after a work cycle, to effectively reduce the network

traffic and migration time. In [29], the authors present their study on how to

migrate virtual machines to appropriate servers, in order to reduce the number

of VM migrations. Their study focuses on 3 issues which are important to the

efficiency of VM migration, namely how to allocate VMs, how to migrate VMs

from heavily loaded servers, and how to select the right VMs to migrate.

Horvath et al. [33] explore the benefits of dynamic voltage scaling (DVS) for

power management in server farms. The authors present a rigorous optimization

methodology and an algorithm for minimizing the total energy expenditure.

They design a distributed power management prototype for coordinating DVS

settings in such a way to minimize the global energy consumption. Mofolo et

al. [34] propose a Best Fit Heuristic (BFH) algorithm, along with a Best Fit

Decreasing (BFD) algorithm that improves the speed of host selection and VM

reallocation. The BFH algorithm can be used to achieve maintenance of physical

servers and can lead to efficient consolidation of VMs.

Our study on the existing literature indicates that the existing approaches

implement deployment and migration of virtual machines based on CPU utiliza-

tion and remaining memory (RAM) of data nodes, without really integrating

other resources in the global scope of Cloud data centres. The discreteness of

active nodes makes it difficult to implement precise temperature control. Fur-

thermore, these approaches do not consider the node deployment, the heat dis-

tribution, and the relation between computing devices and temperature control

devices. In our work, we propose a new strategy of virtual machine manage-

ment by combining the physical concepts with the actual situation of Cloud

data centres.
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3. VM Scheduling Algorithm based on the Gravitational Effect

We begin this section by introducing the necessary definitions for our algo-

rithm’s operation and then, we present our VM scheduling algorithm based on

the gravitational effect. Our algorithm aims at providing the following:

1. Temperature balance: We use orderly aggregation of VMs to avoid

local overheating caused by excessive computing tasks or poor heat dis-

persion performance of nodes.

2. Energy consumption reduction: Certain computing nodes and the

corresponding cooling devices can be shut down through the aggregation of

VMs to save as much energy as possible without affecting the performance

of VMs.

3. Operation stability: The bumpiness, defined as the phenomenon where

a VM needs to migrate again or migrate back to the server from which it

just migrated away, can be prevented, so that QoS can be ensured.

Parameter Definition

ft All the racks in the data centre are numbered.

The t-th rack is defined as ft.

sti All the servers in the data centre are numbered.

The i-th server on the t-th rack is defined as sti.

νij All the VMs in the data centre are numbered.

The j-th VM on the i-th server is defined as νij .

rm All the routers in the data centre are numbered.

The m-th router is defined as rm.

hn All the switches in the data centre are numbered.

The n-th switch is defined as hn.

ti The temperature of the i-th server is defined as ti.

Table 1: Related Basic Parameters of VMSAGE.
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The main idea of the gravitation model is based on the work of [30], which

includes a function to describe spatial interaction. We extend this model since

the current theoretical basis of this gravitation model leads to limitations in its

practical applications. In this work, we suggest that by transforming the gravi-

tation model from an empirical to a theoretical one, we can apply the concept of

gravitation to a variety of logical objects. In order to achieve the aforementioned

goals, we propose VMSAGE, the VM scheduling algorithm based on the gravita-

tional effect for Cloud computing infrastructures. Our configuration parameters

are i) the thermal repulsion factor (for the upper limit of temperature) and ii)

the logical quality and distance (parts of the gravitation calculation). Table 1

presents the definition of the parameters involved in VMSAGE. We proceed by

providing the necessary VMSAGE definitions.

Definition 1: Logical quality. Logical quality M(x) represents the amount

of resources an object x occupies inside the data centre. For example, the logical

quality of VM νij is defined as M(νij), the logical quality of server sti is defined

as M(sti), and the logical quality of server rack fi is defined as M(fi):

M(νij) =
∑
l∈J

kl × Ul(νij), J ∈ {CPU,RAM,DISK, I/O, ...} (1)

M(sti) =
∑
l∈J

kl −
∑
∀νij

M(νij)− α× T (ti), J ∈ {CPU,RAM,DISK, I/O, ...} (2)

M(ft) =
∑
∀sti

M(sti) (3)

Equation (1) calculates the sum of the resources occupied by νij , where kl

is the empirical coefficient and Ul is the resource sharing factor of νij related to

sti. In general, if a particular service of a server is intensive, the corresponding

empirical coefficient is big. In Equation (1), the numerical values of resource

utilization are in different units and can be unified to obtain a uniform evaluation

function to get the logical quality of a virtual machine.

For example, suppose that there is a virtual machine, called ν11, located

on server s01, which is CPU-intensive. In this setup, we consider CPU, RAM,
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and I/O. The current occupancy of the ν11 server regarding CPU, RAM and

I/O is 10%, 5%, and 7% respectively. The empirical coefficient for CPU is set

relatively high because of our assumption that s01 is a CPU-intensive server.

Therefore, J ∈ {CPU,RAM, I/O}, and k1 = 6, k2 = 2, and k3 = 2. The logical

quality of ν11 can be calculated as M(ν11) = 6×0.1+2×0.05+2×0.07 = 0.84.

Equation (2) calculates the logical quality of server sti, where α denotes

the correction coefficient, while T (ti) denotes the thermal repulsion coefficient

used to reflect the temperate state of the server. The equation calculates the

logical quality of a server by adjusting its spare resources with T (ti) and thus,

it represents a server’s subsequent attraction to VMs. Finally, Equation (3)

calculates the sum of idle resources on rack ft, that is, the logical quality of ft.

In a real data centre, T (ti) is calculated based on the following formula,

T (ti) = ti + β(ti)

where ti can be calculated by the prediction calculation function obtained by

evaluating the performance of this server model, while β(ti) is used in order

to correct deviations. Both α and β(ti) are correction coefficients that can

be adjusted with real-time monitoring of the cloud data centre. They can be

determined based on different parameters, such as the air cooling mode and the

position of the server inside its rack.

In order to establish the link between power consumption and the tempera-

ture of the CPU, we used Matlab to implement the required experiment. The

results shown in Figure 2 indicate that a) as the load of the CPU changes (from

the non-load state to the medium-load state), the power consumption grows sig-

nificantly and that b) as the medium-load state changes to the full-load state,

the growth of its power consumption is slowing down. Based on the gray pre-

diction method to fit the data, the temperature prediction function suitable for

this specific data centre can be designed as:

ti = 28× e0.0014M(sti)

In this case, the data centre uses the air cooling mode, which means that the
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Figure 2: Link of the power consumption and the temperature of the CPU.

higher position of the server rack, the poorer performance of the heat dissipation.

For each layer that is higher in the rack, the temperature will rise by 2.7oC to

3.4oC. In this case, the predictive value of T (ti) is equal to,

T (ti) = 28× e0.0014M(sti) + 3× l

where l is the layer counting from bottom to top. The upper limit thresholds

of the utilization rates of resources and the temperature that the server can

bear should be set in such a way to ensure that the selected server is available

for creating VMs local or accepting VMs migrated from other servers. If the

resource utilization rate of the server is too low, VMs should be migrated, so

that the server can enter a dormant state to save power. The servers of a data

centre are classified into four types, as shown in Table 2.

Since resource utilization and temperature are related to the logical quality,

such thresholds can be delimited by the logical quality M(si) in a uniform
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Type Definition

A VMs running on the server should be migrated, and then the server

can hibernate.

B The server can accept more VMs to achieve the high utilization rate

of its resources.

C VMs running on the server do not need to be rescheduled.

D The temperature or the workload of the server is too high, or its

workload is too heavy and some VMs running on the server need to

be migrated out the soonest possible.

Table 2: Server Classification.

manner. The server classification rule is defined as follows:

if M(sti) ≤ γ1, sti ∈ A

if γ1 < M(sti) ≤ γ2, sti ∈ B

if γ2 < M(sti) ≤ γ3, sti ∈ C

if γ3 < M(sti), sti ∈ D

where γ1, γ2, and γ3 are threshold values.

Definition 2: Logical distance. Logical distance refers to the data trans-

mission cost between two servers in a data centre. We define L(x, νjk) as the

cost of data transmission when a VM νjk migrates from server j to server x,

which represents the logical distance and can be calculated using the following

formula,

L(x, νjk) =

y1−1∑
0

B(νjk)

BF (hy)
+

y2−1∑
0

B(νjk)

BF (ry)
+ 1

where k1 and k2 are both empirical coefficients, B(νjk) is the network resource

occupied by VM νjk, BF (hy) is the idle bandwidth of switch hy, BF (ry) is the

idle bandwidth of router ry, y1 is the number of switches VM νjk passes by, and

finally, y2 is the number of routers VM νjk passes by.
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Definition 3: Logical gravitation. Logical gravitation
−→
F refers to a mutual

attraction between any two objects. The value of
−→
F is directly proportional to

the product of their logical quantities and inversely proportional to the square

of their logical distance.

The gravitational effect is used here to reflect the ability of aggregating and

attracting VMs. An appropriate gravitation model of the data centre must be

established. In accordance to [30], we design the following logical gravitation

model,

−→
F = G

Mm

rb

where M and m represent the two objects, while G and b are the constant

coefficients. The logical gravitation model can be derived as:
−→
F (ft, νjk) = G

M(ft)M(νjk)
L(ft,νjk)b

−→
F (sti, νjk) = G

M(sti)M(νjk)
L(sti,νjk)b

Under the control of the logical gravitation, VMs will rapidly aggregate to

some data nodes in the data centre. Then, there will be some data nodes which

are idle and can hibernate, so that the corresponding temperature control system

can also be quickly adjusted. As a result, the data centre can save energy on both

computing and temperature control. The resultant force on virtual machine νjk

from x server racks is equal to:

−→
F f (νjk) =

x−1∑
i=0

−→
F (ft, νjk)

The resultant force on virtual machine νjk from y + 1 servers is equal to:

−→
F s(νjk) =

y∑
i=0

−→
F (sti, νjk) (4)

Definition 4: Modified gravitation. Modified gravitation refers to the force

that attracts VMs toward the direction of a rack with better cooling performance

in the data centre due to the temperature effect. The modified gravitation on
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νjk is defined as follows,

−→
G(νjk) = g ×M(νjk) (5)

where g is the correction factor.

Logical gravitation is used to reflect the current server load capacity, while

the modified gravitation is used to reflect the future server load capacity. Ob-

viously, a server with good heat dissipation performance can prevent downtime

and carry more tasks. According to the definitions of logical quality and logical

gravitation, other concepts such as logical acceleration and logical speed can

also be defined. For example, if a virtual machine is attracted by several server

racks, it will automatically move to that sever rack with the biggest logical force

(that defines the acceleration of VM migration). Since
−→
F s(νjk) and M(νjk) are

both known, the acceleration of νjk migration, denoted by a(νjk), is calculated

using the following formula:

−→a (νjk) =

−→
F s(νjk)

M(νjk)
(6)

In the physical world, under the same acceleration, the higher initial velocity

the object has, the sooner it will reach the destination. Here, we use the initial

speed of VM migration to reflect the priority of VM migration, so that the

system can decide the migration order of VMs.

The ν0(νjk) term is used to represent the initial speed associated with the

migration related to νjk, where a reference value of initial velocity ν0 and a

constant β are given. A type D server hosts VMs that have high initial speeds,

because they are in urgent need to migrate to other available servers. These

VMs are sorted (in descending order) according to the amount of resources they

occupy; VMs with low utilization of resources have low initial speeds. After

the migration of VMs, the server’s type will change to C. The minimum initial

speed of the VM is defined as ν0, and the initial speed of each VM is increased

by β successively.

Servers of type A, require hibernation. All servers of type A are sorted

in accordance with their current energy consumption in an ascending order.
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The initial speeds of all VMs running on the server with the minimum energy

consumption are defined as ν0 − β, and the initial speeds of VMs running on

other servers are reduced by β successively. In different systems, values of ν0

and β will be different.

Speed of VM migration. As the system’s logic clock p goes on, the migration

speed of νjk (denoted as V (νjk)) is defined as:

V (νjk) = ν0(νjk) + α(νjk)× p

Distance of VM migration. According to Equations (4), (5), and (6), the

migration distance of νjk, denoted as X(νjk), is defined as:

X(νjk) = α(νjk)× p+
1

2
α(νjk)× p2

The gravitation algorithm of VMSAGE needs to calculate the distance be-

tween a VM and its target rack and then, determine the VM migration decision.

The rack selection workflow of the gravitation algorithm proceeds as follows:

Step1: Get the server lists of type D and type A. Then, calculate the

logical quality of each server rack.

Step2: Assign the initial speeds of all the VMs running on all servers of

type D and type A. The initial state of a data centre is shown in Figure 3a.

Step3: Calculate the logical gravitation of each server rack to the VM

that must be migrated. The direction of gravitation is pointing to the

target rack. As shown in Figure 3b, F1 is the logical gravitation from rack

1 to the VM, F2 is the logical gravitation from rack 2 to the VM, and

finally, F3 is the logical gravitation from rack 3.

Step 4: Calculate the logical distance of each VM moving. If the logical

distance is equal to the distance from this VM to its target rack, the VM

will be migrated, as shown in Figure 3b.

Step5: If the VM has not been fully migrated yet, go back to Step 4.

Otherwise, the algorithm ends, as shown in Figure 3c.
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(a)

(b)

(c)

Figure 3: The rack selection diagram of the gravitation algorithm.

After the target rack has been selected, we determine the modified grav-

itation that is used to adjust the migration direction, so that a server with

good heat dissipation performance is chosen. The modified gravitation on νjk

is defined as follows:

−→
F ′s(νjk) =

y∑
i=0

−→
F ′(sti + νjk) +

−→
G(νjk)

In accordance with Equation (6), the target server which
−→
F ′s(νjk) points to

can be determined. Figure 4a shows a side view of a server rack, where m× n

squares represent m × n servers. Figure 4b shows the force from a rack to a

VM. Its values are calculated at the origin (0, 0), i.e., the middle of the frame.
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Figure 4: Diagram of force on a virtual machine.

Figure 4c and Figure 4d show the selection of the target server based on the

resultant force; the black box represents the selected server.

4. Implementation of VMSAGE

VMSAGE is initialized inside a rack by configuring the logical quality in

descending order.
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In a typical Cloud data centre, turning on and shutting down VMs will cause

a discrete distribution of VMs and thus, after a while, it will be difficult to

implement precise temperature control. Therefore, we suggest to migrate VMs

to realize the appropriate aggregation of VMs. In order to ensure the stability

and QoS of the system, VMs need to be spread in a diffusing way from the

nodes whose temperature or resource consumption is close to the upper limit.

The ideal result of VMs migration should include a quick migration involving the

minimum number of VMs with the minimum cost, resulting in the temperature

or the load of the node to return back to an acceptable status. The goal of

VMSAGE is to make sure that the maximum number of servers in the system

enter the set of type C servers and also, to shut down the servers with low

utilization.

The performance monitoring of servers should be conducted once after a time

period t. Once the temperature is too high, or the utilization rate is too high

or low, we must send the “migrate” signal to the corresponding machine. Once

the number of “migrate” signals received by the monitoring unit exceeds the

threshold value, we start the operation of VMSAGE. Then, VMs are gradually

aggregated orderly and VMSAGE will terminate when one of the following

conditions is true:

• All servers are of type C.

• All servers are of type B.

• All servers are of type A or C.

• All servers are of type B or C.

• All servers are of type D.

In order to further improve its performance and reduce the computational

overhead, VMSAGE carries out the two-dimensional target selection, as follows:

VMSAGE Step 1: Update the status of servers regularly. Once the de-

mands are met for the algorithm to start, go to Step 2, otherwise maintain

the present situation.
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VMSAGE Step 2: If a VM running on a type D server has no real task

to execute, it will be written to the hard disk, then proceed with Step 3.

Otherwise, the procedure jumps directly to Step 3.

VMSAGE Step 3: Select the VM to be migrated at present and the

corresponding target rack.

VMSAGE Step 4: Select the target server and start the migration

procedure. The workflow will not end unless the migration procedure is

complete.

In practice, for the simplification of the workflow, VMSAGE must be further

improved. For a server of type D, the number of VMs that must be migrated

away is calculated. Next, the server’s type will change to C, which can be used

to define a new type of server, called A′; type A′ server will be treated in the

same way as type A server. We set a priority list to replace the assignment of

the initial speed. During each iteration, the calculation of speed will result in

computational overhead. Since the initial speed and the gravitation are estab-

lished for an iteration, the priority list can be used to sort the virtual machines

without calculating the speed for multiple times.

The iteration process for optimized rack selection is the following:

Iter Step 1: Get the list of servers of type D and type A. Calculate the

logical quality of each rack and get all servers of type A′ in type D. The

specific procedure for separating servers of type A′ in type D proceeds as

follows:

(a) Sort all VMs in a type D server in descending order and write the

corresponding number to a queue denoted by L.

(b) Current total resources of type D servers minus queue L column

header serial number is corresponding to the virtual machine occu-

pancy resources, calculate the type D server, and decide whether

change to type C server; then, queue L column header serial number

to write queue M .
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(c) If the type D server is predicted to fall to type C, stop the calcula-

tions. The VMs that correspond to the numbers in queue M compose

the type D servers, from which type A′ servers are separated.

(d) If the type D server is not predicted to fall to type C, go back to

Step 1b.

Iter Step 2: Sort all VMs on servers of type A′ and type A in descending

order, based on their logical quality; VMs on servers of type A′ have higher

priority than VMs on servers of type A.

Iter Step 3: Calculate the gravitation of each rack. The rack with the

maximum gravitation is the target rack.

Iter Step 4: First, conduct parallel computing of servers of type A′, and

traverse all the servers in the queue, in order to determine the target rack

of the first virtual machine in each servers queue. Then, conduct serial

computing of servers of type A.

Iter Step 5: If VMs have not been fully migrated yet, go back to Step

4. Otherwise, end the algorithm.

The iterative procedure for selecting a server proceeds as follows:

Iter Step 1: Calculate the gravitation of servers of type B in the rack.

Iter Step 2: Calculate the modified gravitation and the direction of the

resultant force.

Iter Step 3: In direction of joint force, the nearest server of type B is

the target server. If there are more than one servers which satisfy the

conditions, then select the server closest to the ground.

The monitoring operation mechanism with VMSAGE for the entire data

centre is shown in Figure 5.

The computational cost of VMSAGE depends on the time complexity of the

modified gravitation, which is O(n2). The logical qualities of servers should be
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Figure 5: The monitoring operation mechanism of VMSAGE.

updated in real time and also be sorted. In this way, the correction of gravitation

does not need to conduct traverse calculation, but only needs to seek the best

solution from top to bottom. The idea is to use space to save time, and if the

force table is used, the time complexity of algorithm will be reduced to O(n).

5. Experiments and Performance Analysis

This section presents the experimental setup and the results of our evalua-

tion.

5.1. Environment and performance index

We present an experimental analysis based on the CloudSim simulation

framework [31]. The algorithm is evaluated and analyzed through the construc-

tion of the energy consumption performance of the data centre model. The

experiments compare our solution with the Best Fit Heuristic (BFH) and the

dynamic voltage and frequency scaling (DVFS). With regards to the configura-

tion of the data centre, we set it to the air cooling mode, in which the underlying
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server has the best cooling performance. The network topology adopts an hier-

archical structure.

The formula used in this algorithm is highly adjustable according to different

data centres. In order to integrate the CPU, RAM and other resources into

the formula, the original unit is not used for each performance measurement.

Instead, we use the percentage of the current CPU occupancy rate in the total

CPU resources multiplied by the weight coefficient. In this way, the specific

model of each part of the server does not affect the algorithm. To analyze the

energy consumption of this experiment, we use the polynomial nonlinear model

of [32]. By using the energy consumption model based on the system’s usage,

we can effectively estimate the impact of a single application on the server.

The energy consumption prediction model of a server is calculated using the

following formula (ki is the empirical coefficient, Ui is the utilization rate):

P = Pstatic +
∑
i∈J

kiUi J ∈ {CPU,RAM,DISK, I/O, ...}

Furthermore, we set α(νjk) = 0, β(ti) = 0, while ti is calculated through

prediction, not by using the actual monitoring value. The data centre uses Core

i7 3770 processors, and according to the gray prediction, the fitting function

used is equal to t1 = 28 × e0.0014M(st), while G = 1, b = 2, L(si, νjk) = 1, and

g = 10. In addition, the server uses the data measured by Dawning PHPC100

where Pstatic = 180w, J = {CPU}, kj = 1.

Finally, the algorithm coefficients used in this paper are empirically calcu-

lated and their values should vary in other data centres with different configu-

ration, in accordance with the corresponding circumstances.

5.2. Experimental Results

Our experimental analysis includes the following:

• Impact of the threshold values in VMSAGE.

• Energy consumption tracking in VMSAGE.

• Performance evaluation of VMSAGE versus DVFS and BFH.
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• Thermal distribution tracking.

5.2.1. Impact of the threshold values on the VMSAGE effects

Let us assume that the data centre has 5 racks, each rack has 5 ∗ 5 servers

running 125 ∗ 5 = 625 virtual machines, where each virtual machine is assigned

the same amount of tasks. When the task is completed, the BFH algorithm is

based on the energy consumption of 5.078 kw.h. Figure 6 shows Formula (5)

when γ1 is in the range from 0.2 to 0.4, γ2 is from 0.4 to 0.6, and γ3 is from 0.8

to 0.95. Due to the change in the threshold values of type A, B and C servers,

we draw the Heat Map of energy conservation by using VMSAGE compared to

BFH, in which, the numerical value of colour corresponds to the energy saved

in the current threshold condition.

Figure 6: Effect of server threshold on energy saving.
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The results indicate that when the number of servers is relatively small, the

size of γ1 has direct impact on the performance of VMSAGE. Under the same

conditions, each virtual machine must complete the task a total of 5 times, and

at this point, the energy consumption by BFH is 5.0468 kw.h. Figure 7 shows

the performance of VMSAGE under different threshold values.

Figure 7: Effect of server threshold on energy conservation with the increase of work amount.

As we observe, the performance of the VMSAGE and BFH algorithms is not

closely related to the task quantity. We proceed by selecting the two-experiment

combination of γ1, γ2, γ3 values with better performance, and conduct the

VMSAGE energy consumption tests using 100 racks, where each rack has 10 ∗

10 servers, resulting in a total of 5, 000 virtual machines. As we observe in

Table 3, combination 8 has the best performance. As a result, the subsequent

experiments use the threshold values of γ1 = 0.3, γ2 = 0.5, and γ3 = 0.95

during calculations. In the actual environment, the threshold value should be
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determined for the data centre first.

γ1 γ2 γ3 Energy

Consumption

1 0.1 0.4 0.8 38.93

2 0.1 0.5 0.8 39.09

3 0.1 0.6 0.8 39.08

4 0.2 0.4 0.8 36.65

5 0.2 0.5 0.8 36.90

6 0.2 0.6 0.95 35.56

7 0.3 0.4 0.9 34.74

8 0.3 0.5 0.95 33.94

9 0.3 0.6 0.9 35.18

10 0.4 0.5 0.9 36.19

11 0.4 0.6 0.9 36.19

Table 3: Find the threshold value with the best performance.

5.2.2. Energy consumption tracking of VMSAGE server

We simulate the VMSAGE algorithm in an 8-server setup inside our data

centre. In this process, hosts 1-4 are in the same rack, hosts 5-8 are in another

rack, while hosts 1, 2, 5, and 6 are all underlying servers. As shown in Figure 8,

since the underlying server has better cooling performance, so it can be seen

that in the end, the top-level servers become dormant after completing the task,

such as hosts 5-8.

5.2.3. Comparison among VMSAGE, DVFS, and BFH

For the next set of experiments, we set γ1 = 0.3, γ2 = 0.5, and γ3 =

0.95, while the remaining conditions remain the same, in order to compare

the energy consumption of each individual algorithm. The results shown in

Figure 9 indicate that when the scale is further expanded, DVFS has the worst

performance, while VMSAGE continuously has the best.
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Figure 8: Host energy tracking.

Figure 9: Horizontal comparison of all algorithms.

Figure 10 shows the ratio between the energy saved when using the BFH

algorithm minus the energy saved when using the VMSAGE algorithm for dif-

ferent number of servers inside the data centre. According to the results, when

the data centre is very small, consisting only of 8 servers, VMSAGE saves more

energy than BFH. Also, Figure 10 shows that the average energy consumption

of each server increases steadily, something which is true for the depicted ratio

as well. Therefore, we conclude that VMSAGE is suitable to large-scale data

centres. For the next experiment, we maintain the same experimental condi-
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tions but this time, we increase the number of tasks to be executed. The energy

consumption performance of all three algorithms is shown in Figure 11.

Figure 10: Ratio between the energy saved when using the BFH algorithm minus the energy

saved when using the VMSAGE algorithm and the current number of servers.

Figure 11: Energy consumption performance of three algorithms under different task quantity.
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We observe that there is almost no relation between energy conservation

and the number of tasks. Compared to BFH, the energy saved by VMSAGE is

shown in Figure 12. We observe that there is no significant difference, which

means that the main cause for difference in energy consumption is the number

of virtual machines. However, this observation might be explained by the fact

that the experimental environment is a virtual environment and that the tasks

bound for each virtual machine is fixed. In reality, when every virtual machine is

not allocated with the same number of tasks, we can convert this situation into

various VMs that will share these tasks, which actually changes the problem

into increasing the number of virtual machines. In this way, the state of the

system will resemble the one used in our experiment and in this case, VMSAGE

is still dominant.

Figure 12: Energy conservation of VMSAGE saving compared to BFH.

For the 10 ∗ 10 ∗ 10 data centre configuration, we launch 4, 000, 5, 000, 7, 000

and 8, 000 VMs respectively. The comparison of the three algorithms regarding

their energy consumption is shown in Figure 13. We observe that the three al-

gorithms are not sensitive to the number of VMs and thus, during the expansion

of the data centre, the performance of the algorithms will remain stable.

Under the same conditions, the required server number might change. In
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Figure 13: Energy consumption of three algorithms with different number of virtual machines.

order to complete the same amount of tasks, the number of virtual machines

which need to be migrated when using the VMSAGE and BFH algorithms

respectively is shown in Figure 14. The results indicate that the number of

virtual machines that BFH requires is larger than those required by VMSAGE

in the same situation. Therefore, when the data centre is larger, the number

of VMs that must be migrated when the VMSAGE algorithm is used is less
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compared to BFH’s. That is to say, the greater the scale of the data centre, the

better the performance of VMSAGE.

Figure 14: The ratio between the number of migrated virtual machines with BFH algorithm

and the number of virtual machines with VMSAGE.

To continue with, it is difficult to accurately simulate the data of heat distri-

bution, but the data can be estimated. A virtual machine is counted as a heat

point to generate a top view graph of the computer rooms heat distribution. As

shown in Figure 15a, because of the initial placement of the virtual machines,

the room temperature experienced an uneven distribution. After a period of

time, the room’s temperature became gradually warmer, and finally, entered a

temperature distribution scattered state, as shown in Figure 15b. At the same

time, we make use of BFH and VMSAGE to migrate virtual machines. The heat

map of the room’s temperature distribution after a single treatment is shown

in Figures 15c and 15d respectively. The migration strategy of BFH causes

several temperature concentration points, while the temperature distribution of

VMSAGE is even; some servers are even closed.
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(a) (b)

(c) (d)

Figure 15: A heat map of the computer room’s heat distribution.
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5.2.4. Performance analysis

The experimental analysis shows that by using a proper VM migration

scheduling algorithm, we can enhance the performance of the entire data centre

and effectively save energy. The VMSAGE algorithm has significant optimiza-

tion effects in improving the utilization rate of resources and reducing energy

consumption and is also a feasible way to make decisions in real data centre

environments. Also, the larger scale of the data centre, the better results will

be achieved by the VMSAGE algorithm. This experiment uses the data centre

with air cooling mode, so in theory, the closer to the bottom, the better cooling

performance it has. However, during the construction of the actual data centre,

the location with the best cooling effect may vary. Therefore, we suggest modi-

fying the formula of energy consumption to adapt for data centres with various

heat dissipation effects.

The algorithm solves the thrashing and time delay problems of VM migra-

tion. We define as “thrashing” of VMs the case where a VM which has just

been migrated is transferred back, or if there are frequent migrations between

various regions. The VM in each server is processed through the queue so the

migrated VM will move into the end of queue to eliminate the thrashing prob-

lem. Furthermore, in our algorithm, except that the new VM can be placed

at any time, other migration tasks are conducted in batch, and also the target

server must be reachable, so it is not necessary to add the delay function. The

algorithm is applicable to any data centre. The experiment proves that the al-

gorithm can achieve good results in the calculation of the correlation coefficient.

Also, because it avoids the overheating of server, it can significantly reduce the

servers downtime caused by interruption of service. Finally, the SLA evaluation

will also increase theoretically.

6. Conclusions

A Cloud computing system based on virtualization technology can enhance

the flexibility of load deployment through dynamic resource expansion. In this
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paper, we propose a new strategy of virtual machine management by combin-

ing the physical concepts with the actual situation inside Cloud data centres.

Through experimental verification and after comparing our algorithm against

two well-known approaches, we prove that under different data centre sizes, VM-

SAGE can save about 20% and 10% of energy consumption, when compared

to DVFS and BFH respectively. What is more, VMSAGE compared to BFH

can save about 20% of the number of virtual machines that must be migrated.

The experimental analysis demonstrates that the algorithm is reasonable and

feasible and that it can achieve good results regarding energy conservation.

As future work, we plan to incorporate network congestion into the design

of our algorithm. In addition, we plan to consider deployment and migration of

VMs in the global data centre.

References

[1] C. Wang, K. Ren, J. Wang, Secure optimization computation outsourcing in

cloud computing: A case study of linear programming, IEEE transactions

on computers 65 (1) (2016) 216–229.

[2] D. Yuan, X. Liu, Y. Yang, Dynamic on-the-fly minimum cost benchmarking

for storing generated scientific datasets in the cloud, IEEE Transactions on

Computers 64 (10) (2015) 2781–2795.

[3] X. Yin, Analysis of large data center air conditioning system energy

saving and research on the method, Designing Techniques of Posts

and Telecommunications (2015) 16–21, http://dx.doi.org/10.16463/j.

cnki.issn1007--3043.2015.01.004.

[4] E. Wang, Fusion architecture leading future cloud computing data cen-

ter, http://net.zdnet.com.cn/network_security_zone/2016/0518/

3077530.shtml.

[5] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,

36

http://dx.doi.org/10.16463/j.cnki.issn1007--3043.2015.01.004
http://dx.doi.org/10.16463/j.cnki.issn1007--3043.2015.01.004
http://net.zdnet.com.cn/network_security_zone/2016/0518/3077530.shtml
http://net.zdnet.com.cn/network_security_zone/2016/0518/3077530.shtml


S. Banerjee, N. McKeown, Elastictree: Saving energy in data center net-

works., in: Nsdi, Vol. 10, 2010, pp. 249–264.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauer, I. Pratt, A. Warfield, Xen and the art of virtualization 37 (5) (2003)

164–177.

[7] M. D. De Assuncao, J.-P. Gelas, L. Lefevre, A.-C. Orgerie, The green

grid5000: Instrumenting and using a grid with energy sensors, in: Remote

Instrumentation for eScience and Related Aspects, Springer, 2012, pp. 25–

42.

[8] Y. Zhao-Hui, J. Qin-Ming, Power management of virtualized cloud com-

puting platform, Chinese Journal of Computers 6 (2012) 015.

[9] M. Yakhchi, S. M. Ghafari, S. Yakhchi, M. Fazeli, A. Patooghi, Proposing a

load balancing method based on cuckoo optimization algorithm for energy

management in cloud computing infrastructures, in: Modeling, Simulation,

and Applied Optimization (ICMSAO), 2015 6th International Conference

on, IEEE, 2015, pp. 1–5.

[10] S. Yakhchi, S. Ghafari, M. Yakhchi, M. Fazeli, A. Patooghy, Ica-mmt: a

load balancing method in cloud computing environment, in: Web Applica-

tions and Networking (WSWAN), 2015 2nd World Symposium on, IEEE,

2015, pp. 1–7.

[11] C. Kachris, I. Tomkos, A survey on optical interconnects for data centers,

IEEE Communications Surveys & Tutorials 14 (4) (2012) 1021–1036.

[12] S. Lai, The design of monitoring system and analyze local hot spot in

it-rooms thermal environment, Master’s thesis, Dept. Anhui University of

Technology, Anhui, China (2014).

[13] L. A. Barroso, J. Clidaras, U. Hlzle, The Datacenter as a Computer: An

Introduction to the Design of Warehouse-Scale Machines, Second Edition,

37

http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024


2013.

URL http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024

[14] Y. X. Zou Q, Hao Z, Live migration based on the characteristics of operation

stages for virtual machine, Journal of Software (2016) 170–179.

[15] H. Chen, X. Zhu, H. Guo, J. Zhu, X. Qin, J. Wu, Towards energy-efficient

scheduling for real-time tasks under uncertain cloud computing environ-

ment, Journal of Systems and Software 99 (2015) 20–35.

[16] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and

adaptive heuristics for energy and performance efficient dynamic consol-

idation of virtual machines in cloud data centers, Concurrency and Com-

putation: Practice and Experience 24 (13) (2012) 1397–1420.

[17] G. Zhu, K. Li, Y. Liao, Toward automatically deducing key device states

for the live migration of virtual machines, in: Cloud Computing (CLOUD),

2015 IEEE 8th International Conference on, IEEE, 2015, pp. 1025–1028.

[18] W. Fang, X. Liang, S. Li, L. Chiaraviglio, N. Xiong, Vmplanner: Optimiz-

ing virtual machine placement and traffic flow routing to reduce network

power costs in cloud data centers, Computer Networks 57 (1) (2013) 179–

196.

[19] C.-M. Pintea, C. Pascan, M. Hajdu-Măcelaru, Comparing several heuris-
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