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Biogeomorphological processes in an arid transgressive dunefield as indicators of human 1 

impact by urbanization  2 

 3 

Abstract 4 

Urban and tourist developments can have long-lasting impacts on coastal environments and 5 

fundamentally alter the evolution of coastal dune systems.  This is the case of the Maspalomas 6 

dunefield (Gran Canaria, Canary Islands), hosting one of the largest tourist resorts in Spain. The 7 

resort was built on top of a sedimentary terrace at 25 meters above sea level (El Inglés) in the 8 

1960s, and has subsequently affected local winds and therefore aeolian sediment transport 9 

patterns. Buildings on the terrace deflect the winds to the south of the dunefield, where the rate 10 

of sediment transport accelerated. A shadow zone appeared to the lee side of the resort with a 11 

consequent decrease in wind speed and aeolian sediment transport and an increase in vegetation 12 

cover. In this paper, first we characterize the environmental changes around El Inglés terrace in 13 

recent decades, and describe the changes in the shadow zone through an analysis of the 14 

evolution of sedimentary volumes and vegetation characteristics (density, spatial patterns, and 15 

plants communities). A series of historical aerial photographs, recent orthophotos and digital 16 

elevation models obtained by digital photogrammetry and LiDAR, as well as fieldwork were 17 

used to characterize plant communities and spatial-temporal changes in erosive landforms. 18 

Results show changes in the pattern and migration rates of dunes located at the southern edge of 19 

the urbanization, as well as the formation of blowouts and large deflation areas, where the 20 

vegetation increases in density and number of plant communities. We discuss eco-21 

anthropogenic factors that have produced these environmental changes. 22 

 23 

Keywords: arid coastal dunes system, aeolian shadow zones, biogeomorphological evolution, 24 

blowout, environmental changes, urban-tourist buildings 25 

 26 

 27 

 28 

*Revised manuscript with no changes marked (double-spaced and continuously LINE and PAGE numbered)
Click here to view linked References

http://ees.elsevier.com/stoten/viewRCResults.aspx?pdf=1&docID=85153&rev=2&fileID=1917807&msid={B165B31C-F1D7-460C-9803-ED7B505D2854}


2 
 

1. INTRODUCTION  29 

 30 

The coast has a great diversity of environments and resources, making it a particularly attractive 31 

area for human settlements, both as a place of residence and as an ideal location for multiple 32 

recreational and economic activities (Cendrero et al., 2005). The last few decades have seen an 33 

accelerated littoralisation process (accelerated rate of human occupation at the coast) (Cerdá, 34 

2002), with a significant increase in human pressure, which alters natural processes due to 35 

human developments, therefore increasing the vulnerability of coastal environments, especially 36 

sandy coasts (Brown and McLachlan, 2002; Martinez et al., 2006). This process has accelerated 37 

on some arid coastlines, especially those with beach-dune systems, with good climate 38 

conditions during the winter driving the development of both tourist and residential urbanization 39 

(Hernández-Calvento et al., 2014). The poor, or incorrect location of buildings and 40 

infrastructure can generate serious impacts, partial to total destruction of coastal dunes and their 41 

vegetation, including building on top of the dunes and interfering with natural beach-dune 42 

dynamics (Cooper and McKenna, 2009; Nordstrom, 2004). This has significant implications for 43 

both society and management of dunefields, decreasing the ecosystem services and the ability of 44 

beach-dune systems to act as a natural coastal defense against storms (Everard et al., 2010; 45 

Liquete et al., 2013). It also creates a paradox, where the impacts of anthropogenic activities are 46 

directed towards natural resources that are in turn the base of these anthropogenic activities 47 

(Cooper and Mckenna, 2008; Cabrera-Vega et al., 2013). 48 

Much research has focused on human impacts on beaches and coastal dunes (Bauer, 2009; 49 

Jackson and Nordstrom, 2011; Curr et al., 2000; Martinez et al., 2013 a, b) especially in 50 

temperate zones. However, studies on the direct impacts of urbanization on coastal dune fields 51 

landwards from the foredune are scarce (Jackson and Nordstrom, 2011; Hernández-Calvento et 52 

al., 2014; Smith et al., 2017). Buildings located near or inside dune fields act as rigid and 53 

impermeable structures that intrude and modify the Internal Boundary Layer (IBL) and alter 54 

aeolian sediment dynamics (Nordstrom and Mcluskey, 1984; Gundlach and Siah, 1987; 55 

Nordstrom and Jackson, 1998; Tsoar and Blumberg, 2002; Wiedemann and Pickart, 2004).  56 
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 57 

Recent research on this topic demonstrated the effects of buildings on modifying the airflow 58 

regime and aeolian sediment transport patterns reducing the wind speed by 50% in some places 59 

at the dune system of Maspalomas, Gran Canaria, Spain (Hernández-Calvento et al., 2014; 60 

Smith et al., 2017), an excellent example of the conflict between urban-tourist development and 61 

conservation (García-Romero et al., 2016). At this location, three different geomorphological 62 

areas can be identified based on regional disturbances of the wind patterns: an area of air flow 63 

acceleration to the south of a terrace upon which much of the tourist infrastructure has been 64 

developed; and two ‘shadow’ areas in the lee-side of the urbanized area, characterized by 65 

airflow deceleration, with different degrees of sedimentary stabilization and vegetation growth. 66 

All these areas have been described by Hernández-Calvento et al. (2014) and Hernández-67 

Cordero et al. (2017). It has also been shown that these environmental changes have not been 68 

produced by a regional climate change: according to Smith et al. (2017), the mobility index 69 

(Lancaster 1988) has been maintained since the 1960’s with a value greater than 200, indicating 70 

a fully active mobile dunefield or aeolian processes. 71 

While airflow patterns in shadow zones within a dunefield have been described in general 72 

(Hernandez-Calvento et al., 2014; Smith et al., 2017), little is known about the evolution and 73 

temporal dynamics of these aeolian zones, which are determined by a combination of several 74 

variables including feedbacks between topographic change, vegetation growth and aeolian 75 

processes. Previous research including the combination of geomorphology and biota has aided 76 

in the understanding of such dune systems (Stallins, 2006; Corenblit et al., 2011) and can 77 

improve our knowledge of, for example, the operation of barrier-island dunes (Stalllins, 2001; 78 

2002; Stallins and Parker, 2003). Vegetation type and density becomes in these cases a good 79 

indicator of environmental changes (Moreno-Casasola, 1986; Hesp, 1988; Arens, 1996; 80 

Lancaster and Bass, 1998; Martinez et al., 2001; Hernández Calvento, 2006; Miot da Silva et 81 

al., 2008; Hernández-Cordero et al., 2017). Similarly, comprehensive analyses of the combined 82 

evolution of vegetation cover and density, plant communities and topographic changes within 83 
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the shadow zone can provide valuable information on how these previously active areas adapt to 84 

new environmental conditions as a result of building and developing infrastructure.  85 

This paper analyses the evolution of a shadow zone within an arid transgressive dune field 86 

where sediment supply was cut off following the construction of a large resort. First, we 87 

quantify volumetric changes and vegetation patterns using a set of orthophotos, historical aerial 88 

photographs and digital elevation models (DEMs) since the 1960s. Second, we then focus on 89 

the relationship between these parameters, as well as the impact of urbanization on the overall 90 

biogeomorphological evolution of this area.   91 

 92 

2. STUDY AREA 93 

 94 

The arid transgressive dunefield of Maspalomas (360.9 ha.), is located on the fan-delta of the 95 

Fataga ravine at the south of Gran Canaria, in Canary Islands (Figure 1). Sediment input to the 96 

dune system comes primarily from its eastern beach (El Inglés), where the foredune is located. 97 

Above threshold, effective winds  are >5.1m/s according to Pérez-Chacón et al., (2007) and  the 98 

aeolian sediment transport is predominantly ENE-WSW (Máyer et al., 2012), with the sand 99 

eventually returning to the sea at the southern end section of the dune system (Maspalomas 100 

beach; Figure 1). One of its most foremost geomorphological features is the existence of a high 101 

Pleistocene wedge-shaped terrace on its north-eastern boundary. Building of one of the largest 102 

tourist resorts in Spain started in the 1960’s on this terrace (Domínguez-Mujica et al., 2011), 103 

with the consequent alteration of local winds and aeolian sediment transport patterns, and the 104 

generation of the shadow zone studied here (Hernández-Calvento et al., 2014; Smith et al., 105 

2017). A few erosive landforms have been detected in this area at a similar distance from the 106 

resort (García-Romero et al., 2017). A trough blowout according to the classification of Hesp 107 

(2002) has also been identified within these landforms (Mir-Gual et al., 2015). However, the 108 

origin and evolution of these landforms have not been studied in detail. 109 
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 110 

Figure 1. Location of Maspalomas` dunefield. Areas with different aeolian sedimentary activity 111 

(Hernández-Cordero et al, 2015a) are indicated on the map (A: active area, B: semi-stabilized 112 

area, and C: stabilized area). Study site 1 for examining environmental changes around El Inglés 113 

terrace at a regional scale is indicated in blue. Study site 2 for examining the aeolian shadow 114 

zone at a local scale is indicated in red. The erosive landforms (in black) and soil mini-transects 115 

(in green) in the shadow zone are also shown. 116 

 117 

3. METHODOLOGY 118 

 119 

Analyses were conducted at two spatial scales and at two study sites. First, a regional scale is 120 

used to evaluate if the aeolian shadow zone could be related to disturbances of the sedimentary 121 

dynamics induced by the presence of the urban-touristic buildings, or related to a regional 122 
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climate change (Study site 1). Second, a local scale is used to analyze the biogeomorphological 123 

processes in the aeolian shadow zone (Study site 2). 124 

The cartographic documents (aerial photographs, orthophotos and DEMs) which were used in 125 

this study are listed in Table 1. 126 

 127 

Table 1.  Cartographic documents utilized in this study.  128 

Type (source) Year 
Spatial resolution 

(m) 
Use 

Historial aerial 
photographs (1, 2, 3)  

1961 (1:5,000) 0.25 

Vegetation 1977 (1:6,500) 0.9 

1981 (1:4,000) 0.15 

Orthophotos (2, 3, 4) 
1987, 2003, 2009, 2012, 2015, 
2017(only in the study site 2) 

0.15 – 0.25 

Topography 
DEMs (5) 05/1987, 11/2003 4 

DEMs (6) 
10/2006, 03/2009, 03/2011, 
03/2015, 03/2017(only in the 
study site 2) 

1 

(1) SDI Gran Canaria; (2) SDI Canarias-Grafcan S.A.; (3) Grupo de Geografía Física y Medio 
Ambiente (IOCAG, ULPGC); (4) Instituto Geográfico Nacional (IGN); (5) Photogrammetric 
restitution; (6) LiDAR (2006, 2009, 2011, 2015) and real photogrammetric restitution (2017) 
from a drone flight (file.las). 

 

 

 129 

3.1. Regional scale 130 

 131 

Precipitation data from the 1950s were analyzed to investigate potential changes to the amount 132 

of rainfall received by vegetation at the study sites. These could affect the growth rates of 133 

vegetation and hence alter the sedimentary dynamics at the study sites, additional to the impact 134 

of urbanization. Smith et al. (2017) observed no changes to the mobility index (Lancaster, 1988) 135 

in Maspalomas since the 1960’s using data from a weather station 25 km northeast of 136 

Maspalomas. We have refined previous analyses and used data recorded by a meteorological 137 

station of the Agencia Estatal de Meteorología (Meteorology Statal Agency, AEMET) 138 

Maspalomas-Faro (Figure 1), approx. 2 km southwest of the study sites, and including some of 139 
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the oldest meteorological datasets on the island (since 1952). Monthly rainfall was analyzed to 140 

identify potential seasonal changes. The time series were 85% complete, so some of the missing 141 

data was extrapolated from two weather stations at 4 and 11 km from the study site using 142 

regression analyses with R
2
 of 0.94 and 0.84 respectively. 143 

 144 

Changes to the sedimentary dynamics 145 

Changes to the sedimentary dynamics of study site 1 were analyzed in two steps: first by 146 

calculating changes in the direction of the dune brinks (i.e. the top edge of the dune slipface), 147 

and, second, by calculating changes in the volume of sediments. The first step was carried out 148 

by mapping dune brinks (vector lines), through visual analysis with GIS support, on the 1961 149 

and 1977 aerial mosaics and on the 1987, 2003, 2009 and 2015 orthophotographs (Figure 3, 150 

white lines). The direction of each dune brink (each line) was calculated using GIS tools. First, 151 

the dune brink lines were converted to points, second, using the central point as the reference 152 

and through near-location tools to calculate the direction of the others points corresponding to 153 

each dune brink line, the mean direction was calculated to determine the main movement of the 154 

dunes. Finally, to show spatially this movement an inverse distance weighting interpolation was 155 

carried out, using a local sample (4 points sample), and obtaining a minimum error (4.41 156 

degrees).  The movement is represented by arrows every 100 meters (Figure 3, red arrows). In 157 

addition, the height of the dunes is calculated through topographic profiles on the 1987, 2003, 158 

2009, 2011 and 2015 LiDAR derived DEMs noted in table 1. Erosion and accumulation 159 

volumes were also calculated between 2006 and 2015 from the DoDs using the methodology 160 

(Geomorphic Change Detection software) developed by Weathon et al. (2010a; 2010b). DoD 161 

error (%) of the erosion: 7.79 and the accumulation: 7.82 from LiDAR data (Figure 3, A). 162 

 163 

3.2. Local scale 164 

 165 

For the local scale, the study is focused on study site 2, which covers 27.76 ha inside the aeolian 166 

shadow zone (Figure 1, study site 2). The medium-term evolution of this zone is characterized 167 
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based on three variables: spatial patterns of plant communities, vegetation density, and 168 

sedimentary volumetric changes. Additionally, the shape and volume of the erosive landforms is 169 

also studied. Processing and analyses were conducted using a GIS.  170 

 171 

Vegetation 172 

Vegetation density was calculated following the procedure developed by García-Romero et al. 173 

(2018), using black and white and color historical aerial photographs and digital orthophotos 174 

(table 1). The green band is the region of the visible spectrum that best captures vegetation 175 

characteristics (Chuvieco, 2010) in the absence of a near infrared band (NIR). Hence, this can 176 

be used to equate the behavior of digital levels with black and white historical aerial 177 

photographs, and differentiate bush vegetation (low digital levels) from bare sand (high digital 178 

levels). Bush plants, present in the zone, are perennial, and the method applied only detects bush 179 

plants; hence there are no phenological problems associated to seasonality (García-Romero et 180 

al., 2018). The digital vegetation density model was resampled to 1 m pixel resolutions so they 181 

can be compared due to historical aerial photographs and orthophotos having different spatial 182 

resolution, and pixels were subsequently classified into the following four categories: (1) low 183 

densities, with vegetation covering between 0 and 10.65% of the area (including sand sheets and 184 

isolated shrubs); (2) low-moderate densities, with vegetation covering 10.65-22.35%; (3) 185 

moderate-high densities, with vegetation covering 22.35-49.26%; and (4) high densities, 186 

including areas with a vegetation cover of 49.26-84.25% (García-Romero et al., 2018). 187 

Changes in plant communities were characterized through elaboration of vegetation maps of the 188 

years 1961, 2003 and 2017, using GIS and imagery (table 1). The plant communities’ maps for 189 

the years 1961 and 2003 were obtained from Hernández-Cordero et al. (2017). The vegetation 190 

mapping of 2017 was developed through visual interpretation of digital orthophotos (using 191 

variables such as color, size, density, texture and spatial pattern) and supported by field work. 192 

 193 

Topography 194 
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Sediment volume changes were characterised using digital elevation models (DEMs). Two 195 

DEMs were derived from digital photogrammetry (1987 and 2003), another four from LiDAR 196 

(2006, 2009, 2011 and 2015) and the last one from real photogrammetric restitution on 197 

photography captured by an unmanned aerial vehicle, UAV (only in the shadow zone) (Table 198 

1). The latter included field control from a total station Leica TS06-laser (March, 25
th
 2017). 199 

Occlusion-based methodology (Chang et al., 2008) was applied to produce a digital elevation 200 

model (DEM) and a digital surface model (DSM).  201 

DEMs of difference (DoD) were calculated from 1987 and 2003 DEMs (4 m pixel), and from 202 

2006 and 2017 DEMs (1 m pixel). Although the dates of the DEMs do not coincide, it was 203 

considered preferable to work with all information sources available and with the highest 204 

precision in order to analyze the trends occurring in the past few decades. The DEMs and DoDs, 205 

have been cleaned, corrected and calculated through Geomorphic Change Detection (GCD) 206 

software, including the calculation between raw and threshold error (Wheaton et al., 2010a; 207 

Wheaton et al., 2010b). DoD error (%): Accumulation (15.49) Erosion (18.32) from 208 

photogrammetric restitution (Figure 5, C). DoD error (%): Accumulation (7.06) Erosion (8.80) 209 

from file .las data (Figure 5, D). 210 

 211 

Erosive landforms characterization 212 

Erosive landforms were digitized using historical and current orthophotos and DEMs. These 213 

were delimited by visual criteria through photo interpretation and using slope change analyses. 214 

 215 

Relationships between variables  216 

Geoprocessing tools in GIS (overlay) were used to investigate spatial trends and relationships 217 

between variables. For the characterization of the relationship between vegetation and 218 

topography, an algorithm implemented in GRASS software, that produces a covariate-219 

correlation matrix between raster data, was used. This analysis was carried out for the period 220 

between 1987 and 2017 because DEMs were only available from this period. The areas 221 



10 
 

occupied by the vegetation cover each year were related to their corresponding DEM classified 222 

by similar altitude intervals (m.a.s.l.). 223 

 224 

4. Results 225 

4.1. Regional scale 226 

 227 

Rainfall in the Maspalomas dune system 228 

Figure 2 shows the monthly mean rainfall from 1952 to 2017. Rainfall is concentrated in winter 229 

and autumn months (November- February). Little rain occurs in spring (0.4-5.9 mm), and in 230 

summer the rainfall is close to zero. The total monthly rainfall in the year before the vegetation 231 

density calculation is also shown in figure 2. Temporal patterns are similar to the ones for 232 

monthly mean rainfall using the entire data set (1952-2017), with rainfall concentrated in winter 233 

and autumn. The years 1960 and 1976 were dry with no rainy months. 1980 was also a dry year 234 

although in January rainfall reached 39.1 mm. 1986 was also a dry year with rain only in March 235 

and September (4 mm). In 2002, December was the highest rainfall (78.3 mm) registered in a 236 

month, but the rest of the year the rainfall was not significant. 2008 was also a dry year, with 237 

December being the rainiest month (15.3 mm). 2011 was the rainiest year, with a total of 132.7 238 

mm year, with November the rainiest month (57.7 mm), followed by December (42.9 mm). 239 

Finally, 2014 and 2016 were dry years with November having the highest rainfall recorded, 240 

with 30.2 and 22.4 mm respectively. In general, they are dry years, with rainfall concentrated in 241 

one month, except 2011, with two rainy months. 242 
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 243 

Figure 2. Monthly mean rainfall between 1952 and 2017 (blue columns). Total monthly rainfall 244 

in the years prior to vegetation density calculation (lines). 245 

 246 

Changes in the sedimentary dynamics 247 

Figure 3 shows results for the directions of dune movement indicated by dune brink orientations 248 

and their volumes calculated within study site 1. In 1961 the main dune directions were ENE-249 

WSW, with only a few dune brinks facing E-W. This year dune brinks were detected practically 250 

throughout the entire area, and continuous, linked barchanoid dunes displayed along-brink 251 

lengths of up to 640 m. Where continuous dune brinks were not observed, Hernández-Cordero 252 

et al. (2018) mapped cliff-top dunes formed by nebkha dunes (not barchanoid dunes) which 253 

were removed to gain agricultural land (Hernández-Calvento. 2006). In 1977, when construction 254 

had occurred on a large part of the terrace, the number of dunes and dune brinks was reduced, 255 

and the maximum brink length is around 360 m. Dune continuity was therefore beginning to 256 

break up. As for the direction of dune movement, three sectors can be observed: i) the dune 257 

brinks to the east and south of the terrace face to the ENE-WSW direction, although some of 258 

them are oriented to the E-W, especially those closest to the terrace; ii) the second sector is 259 

formed by the dunes closer to the southern edge of the terrace. Their dune brinks are clearly 260 

oriented to the W-NW; iii) finally, the dune brinks in the current shadow zone of the terrace 261 

display both orientations, E-W and ENE-WSW. Similar aspects can be identified in 1987, 262 
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although there is more infrastructure present on the terrace, and the eastern and western sides 263 

have been completely occupied by urban development (Figure 3, A). Also on the southern edge 264 

of the terrace, the dunes show some changes: the last dune brink facing E-W is located 30 m to 265 

the south in relation to the last brink in 1977 (Figure 3, A), and the number of dunes moving 266 

westward has reduced slightly. In 2003 the terrace is fully covered with built structures (Figure 267 

3, A), and the orientations of the dune brinks maintain the same pattern as in 1987. In addition, 268 

the last dune brink facing W-NW is now about 105 meters south of the last dune brink in 1987. 269 

Also the number of dunes in the aeolian shadow zone (in the west) have reduced. The same 270 

tendency can be seen in the images of 2009 and 2015. 271 

 272 

Topographic changes around El Inglés terrace  273 

From the DoD between 2006 and 2015 DEMs, three different zones can be observed (Figure 3, 274 

A): i) to the east and south of the terrace, accumulation processes predominate over erosion; ii) 275 

the erosion predominates in practically the entire shadow zone; iii) erosion predominates on the 276 

southern edge of the terrace, as shown in the profile between 1987 and 2015 (Figure 3, B). 277 

Elevation differences range from 1 m in some areas and up to 3.5 m height at 150 m from the 278 

profile in the NW-SE direction. The circles on the profiles show where the last dune brinks in 279 

the zone where the dunes turn to the W-NW were/are located. The location of the circles 280 

indicate a migration to the southern edge of the terrace (125 m). The lower height of these dunes 281 

also indicates a reduction in the transport of sediments toward the shadow zone since 2003 282 

(Figure 3, 2003). 283 
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Figure 3. Changes in the orientation of the dune brinks and in the dune heights in relation with 285 

the building development on El Inglés terrace. C (left, A) Disappearance of the dune brinks in 286 

the shadow zone and displacement to the south of the last dune brinks close to the south edge of 287 

the terrace, while increasing the built surface on El Inglés terrace. C (right, B) Changes in the 288 

direction of the dune brinks (red point in the figure 3, A) close to the southern edge of the 289 

terrace overthe years before, and during which construction occurred on the El Inglés terrace. 290 

 291 

4.2. Local scale 292 

 293 

Vegetation density in the aeolian shadow zone 294 

Figure 4 shows an increase in vegetation density from 1961 to 2017. 1961 was characterized by 295 

lower vegetation densities (0-10.65) and isolated plants, with some aggregate units to the south 296 

of the study area. Vegetation density was highest in 2017 where the category 1 (lower 297 

vegetation density) decreased -53.58%, while the categories 2, 3 and 4 increased 368.62%, 298 

574.51% and 1513.64% respectively, with the species Tamarix canariensis and Launaea 299 

arborescens dominating the area (Figure 4, C). 300 
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 301 

Figure 4. Evolution of the vegetation density in study site 2. The three erosive landforms first 302 

detected in 2003 are shown in red. B: Changes in the vegetation density per categories and 303 

variation of the sedimentary volume in the study site. C. Evolution of plant communities and 304 

vegetation density in the study site. 305 
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Vegetation growth was mainly concentrated in the southern and central areas of the study site 306 

between 1961 and 1977. In 1981, isolated plants started to grow to the east, close to the resort. 307 

Moderate-high and high vegetation densities increased to the north of the study area, close to 308 

the golf course bordering the plot, from 2003-2009, with the remaining of the study period 309 

characterized by a general increase in vegetation densities everywhere within the study site 310 

(Figure 4, A). 311 

 312 

Plant communities and bare sand in the aeolian shadow zone 313 

Vegetation spread widely at the study site from 1961 to 2017 (Figure 4, A) which lost up to 314 

92.28% of the original bare and mobile sand in 56 years (at a rate of 1.6% bare sand loss per 315 

year) (Table 2). Only two plant communities were identified in 1961: Launaea arborescens 316 

(xerophilous low shrub), principally located in dry slacks in stabilized and mobile dunes, and 317 

Tamarix canariensis (hygrophilous low tree), a typical plant community of wet slacks in 318 

mobile, semi-stabilized and stabilized dunes. In 2003, six additional plant communities were 319 

identified: Cyperus capitatus-Ononis tournefortii (psammophilous perennial rhizomatous forb; 320 

psammophilous annual forb), belonging to stabilized dunes; Mesembryanthemum crystallinum 321 

(nitrophilous annual forb); Aizoon canariense (nitrophilous annual forb); Volutaria canariensis 322 

(annual forb); Cenchrus ciliaris (perennial grass) and Schizogyne glaberrima (xerophilous low 323 

shrub), belonging to ruderal areas. All plant communities expanded spatially from 2003 to 2017, 324 

especially the Cyperus capitatus-Ononis tournefortii community.  325 

Table 2. Changes of the plant communities since 1961 in the aeolian shadow zone. 326 

Plant community 
Surface area 1961 Surface area 2003 Surface area 2017 Variation (1961-2017 

m2 % m2 % m2 % m2 % 

A. canariense 0.00 0.00 987.26 0.36 960.64 0.35 960.64 100 

C. ciliaris 0.00 0.00 262.03 0.09 287.66 0.10 287.66 100 

C. capitatus-O. 

tournefortii 
0.00 

0.00 
190505.87 

68.60 
173370.23 

62.43 173370.23 
100 

L. arborescens 5420.39 1.95 23685.71 8.53 42893.46 15.45 37473.07 691 

M. crystallinum 0.00 0.00 544.31 0.20 510.42 0.18 510.42 100 

S. glaberrima 0.00 0.00 904.46 0.33 873.41 0.31 873.41 100 
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T. canariensis 7795.71 2.81 27299.48 9.83 38126.84 13.73 30331.13 389 

V. canariensis 0.00 0.00 224.98 0.08 261.00 0.09 261.00 100 

Bare sand 264474.01 95.24 33276.02 11.98 20406.43 7.35 -244067.58 -92 

 327 

Relationships between vegetation density and plant communities in the aeolian shadow zone  328 

The relationships between vegetation density and plant communities were analyzed to identify 329 

which communities expanded the most and were more competitive (Figure 4, C). In 1961, only 330 

two shrub plant communities were detected (Tamarix canariensis and Launaea arborescens) 331 

scattered all over the study plot (Hernández-Cordero et al., 2017), but forming some groups to 332 

the south of it. Bare sand occupied a large part of the low densities range (0-10.65) as one 333 

would expect. In 2003, the bare sand had practically disappeared, occupying just around 15% of 334 

the lower density range. Tamarix canariensis is the community that occupied the most area in 335 

the intermediate densities, followed by Launaea arborescens. This last community represents 336 

the highest density range, followed by Tamarix canariensis. That year (2003), a new shrub 337 

community was detected, the Schizogyne glaberrima community, represented also in the highest 338 

density range. These trends are similar in 2017, but with some differences: bare sand has 339 

decreased; the Tamarix canariensis community has decreased in the highest densities range, 340 

while the Launaea arborescens community has increased in this range, so both communities 341 

have a similar percent cover. Finally, in contrast with 2003, the Schizogyne glaberrima 342 

community has lost cover in the highest density range. 343 

 344 

Volumetric changes in the aeolian shadow zone 345 

Study site 2 shows a negative sediment budget between 1987 and 2017 (Figure 4, B). The 346 

largest erosion rate was registered between 2003 and 2006. Sediment losses of up to 279,445.68 347 

m
3
 (8.19% of its volume above 0 m.a.s.l.) between 1987 and 2003. Erosion was larger from 348 

2006 to 2017, with a deficit of 429,791.27 m
3
 (18.76% of the total sand volume in the study site 349 

2; García-Romero et al., 2017). Some sediment accumulation areas are observed locally in 350 

zones with topographic lows or dense vegetation, or both. A substantial amount of these 351 
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accumulation areas are located to the southwest of erosional ones (Figure 5 C, D). Since 352 

regional predominant winds in this area are ENE-WSW, these particular spatial patterns indicate 353 

active aeolian processes in this shadow zone, with wind erosion, sediment transport, and surface 354 

growth as a result of sand accumulation towards the W and in the direction of the predominant 355 

winds. 356 

In the erosive zones there is a sector (to the west and southwest of the study site 2) with 357 

significant erosion (Figure 5 C, D). In this sector there have been losses of around 5 and 6 358 

meters depth and these coincide with the erosive landforms that will be explained in the next 359 

section.  360 

 361 
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Figure 5. A. DEM in 1987 (resolution: 4 m); B. DEM in 2017 (resolution: 1 m); C. Net 362 

topographic changes for the period of 1987 to 2003 (resolution: 4 m); D. Net topographic 363 

changes between 2006 and 2017 (resolution: 1 m); E. Relationship between the vegetation cover 364 

(%) and elevations in in study site 2. The < 4m altitude zone shows a greater percentage 365 

vegetation cover compared to the zone above 26m in 1987. In 2017, the highest elevations do 366 

not reach 26 m.a.s.l., and for this reason there are no vegetation data. 367 

 368 

 369 

Relationships between vegetation and topography in the aeolian shadow zone 370 

The vegetation cover has increased from 1961 to 2017. As shown in figure 5, E, there is a 371 

relationship between the topography of study site 2 and the increase in the vegetation cover 372 

from 1987 (first DEM available) to 2017 (last DEM obtained from drone flight). The graph 373 

shows that the tendency of vegetation in 1987 was to occupy the lowest elevations, while its 374 

presence in relatively high elevations is not significant. However, from 2003 to 2017, vegetation 375 

has not only increased its cover at lower elevations by 30%, but also it has done so in the rest of 376 

study site 2. Currently, this trend has changed and vegetation also colonizes higher elevations, 377 

although between 4 and 7 m.a.s.l. the increase in the vegetation cover has been insignificant.  378 

 379 

Erosive landform evolution 380 

Since 2003 three erosional landforms were detected at a similar distance from the urbanization 381 

area, with an ENE-WSW direction (Figure 1 and 4; erosive landforms 1, 2 and 3). These 382 

landforms experienced an increase in surface area and a decrease in volume between 1987 and 383 

2017 (Figure 6). They have different morphologies: landform 2 is a trough blowout with a 384 

relatively stable shape over time. Landforms 1 and 3 are characterized by aeolian deflation 385 

surfaces characterised by exhumation of plant roots, but little development yet of actual 386 

blowouts. The sediment eroded from these landforms was deposited around the shrub vegetation 387 

that has grown downwind of them. 388 
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Figure 6. Surface area (in red) and height evolution of the erosional surfaces and landforms 390 

between 1987 and 2017 (illustrated in the photographs). Topographic profiles (right hand 391 

column) showing differences in elevation from 2006 (dark green) to 2017 (red). 1-3. Erosive 392 

landforms in 2006 and 2017. 1. Erosive landform 1 has increased in aeolian deflation area while 393 

accumulation landforms, such as a barchan dune, have disappeared or stabilized (pictures 1 and 394 

2 are not at the same scale because there is more visible erosional area in 2017). 2. Trough 395 

blowout with two depositional lobes. 3. Erosional landform 3 has increased the deflation area 396 

while accumulation landforms, such as shadow dunes, have disappeared. In landforms 1 and 3 397 

the scale is different between 2006 and 2017 (lower in 2017) because the deflation areas have 398 

increased by the second date. 399 

3D views of the erosional surfaces in 2006 and 2017 can be observed in figure 6, 1-3. Erosional 400 

surface 1 shows considerable spatial change and it has increased in deflation area, while the 401 

principal downwind accumulation landform, present as a barchan dune in 2006 (Figure 6-1, 402 

right and bottom) has been stabilized in 2017 due to plant colonization, especially by 403 

herbaceous plants. The volumetric deficit measured in the area is 924.23 m
3
 (-24.11%). Blowout 404 

No. 2 (Figure 6-2) has maintained a similar surface area over time but has eroded by 557.35 m
3
 405 

(-20.19%). Two depositional lobes are associated with this blowout. The erosional deflation 406 

surface 3 has increased while adjacent accumulation landforms, such as the shadow dunes 407 

(Figure 6-3) have disappeared or stabilized. The sedimentary volume has decreased by 73.46 m
3
 408 

(-33.42%). 409 

 410 

5. Discussion 411 

5.1. Changes to environmental conditions in the Maspalomas dune system 412 

 413 

In line with previous climate studies (Smith et al., 2017), there were no significant changes in 414 

precipitation levels or patterns from the 1950’s in the study area. Figure 2 shows that 1960, 415 
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1976, 1980, 1986, 2008, 2014 and 2016 were dry years but these were linked to increasing 416 

trends in vegetation density. In 2002 and 2011 there was high rainfall but this was mainly 417 

concentrated in one or two months (November and December), with close to zero rainfall from 418 

April to September as is characteristic of arid climates (Köppen, 1990).  419 

In contrast, the development of the urban-tourist infrastructure has been significant as shown in 420 

Figure 3, and appears to have been a primary control on the sedimentary dynamics of the dune 421 

field. First, the buildings occupied a section of the old bypass dune system on the top of the 422 

terrace (Hernández-Calvento et al., 2014, García-Romero et al., 2016, Hernández-Cordero et al., 423 

2018). Second, dune directions and movement trends changed around the terrace following 424 

development with dune migration directions being steered by the infrastructure as it developed. 425 

The geomorphology of the dunes in the shadow zone have changed also, with the number of 426 

free and mobile dunes decreasing at site 2 simultaneously with an increase in the number of 427 

buildings on El Inglés terrace (Figure 3, C:A). This decrease can be explained by the changes 428 

which occurred on the southern edge of the terrace. In this area, the dunes moved to the SW 429 

before the terrace was built. The construction of new buildings in the 1970’s created a barrier to 430 

dune movement, with dunes being deflected around the edge of the terrace and adopting new 431 

migration directions towards the W-NW as indicated by dune crest and brinkline orientations in 432 

Figure 3. New constructions at the southern edge of the terrace in 1989 had a marked impact on 433 

decreasing the number of actively moving dunes (Figure 3, C: B). In the last 13 years, the trend 434 

of the dune brinks is not to turn towards the W-NW but instead take a W-WSW direction. This 435 

new turn is accompanied by the movement of the dune brinks towards the southern edge of the 436 

terrace (Figure 3, C: B), and causing the movement of these active landforms away from the 437 

terrace, and a decrease in the sediment inputs to the current shadow zone. These changes are 438 

related with changes in the direction of the wind flow, as Smith et al. (2017) explain. Since the 439 

original dune migration path across the terrace has been eliminated by development, and the 440 

further infrastructure changes have produced a marked shadow zone, dunes can no longer 441 

migrate into the shadow zone region. In consequence, vegetation growth has occurred 442 

stabilising the region. The existence of some wind corridors between the buildings on the 443 
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terrace induces limited sand transport in the shadow zone, but overall there is a net reduction in 444 

the volume of sand being transported through this portion of the dunefield. In summary, the 445 

construction of buildings at Maspalomas has generated an erosive (negative budget) zone in an 446 

area that was previously active and had pronounced dune mobility and dynamic aeolian activity. 447 

 448 

5.2. Spatio-temporal trends in vegetation cover in the aeolian shadow zone and their 449 

relationship with the topography 450 

 451 

The results show that the vegetation density has increased between 1961 and 2017.This is 452 

common in places where the wind regime has been altered by buildings (Nordstrom and 453 

McCluskey, 1985; Nordstrom, 1994), leading to a stabilized dune area (Hernández-Calvento et 454 

al., 2014; Hernández-Cordero et al., 2015a). This is unlike other studies, for example, in Israel, 455 

where plant colonization was promoted by agricultural and pastoral activity, producing a 456 

negative rate in dune advance (Tsoar and Blumberg, 2002), and in China, where the vegetation 457 

cover has increased due to the decadal changes in wind strength, interannual fluctuations in 458 

precipitation, and large ecological restoration projects implemented in recent decades (Xu et al., 459 

2018). Results of this study indicate that medium to high density vegetation does not first 460 

appear close to buildings, but rather to the south and in the central areas of the study site further 461 

away from urbanization. This trend could be related to the topography, because these areas are 462 

located in the lower elevation and deflation zones (Figure 5, E) where one would expect more 463 

shallow sub-surface moisture. Additionally, findings by Hernández-Cordero (2012) across 464 

transects in figure 1 and Table 3 suggest a strong correlation between vegetation species and 465 

water table heights leading to differences in soil characteristics potentially involved in this 466 

process. Tamarix canariensis and Launaea arborescens communities and Launaea arborescens 467 

and Schizogyne glaberrima communities predominated in areas with a higher water table. Both 468 

communities first colonized slack and deflation areas with higher water tables than adjacent 469 

areas with lower water tables, and soil and stratigraphic type then determined community type. 470 

Slacks or deflation and interdune zones are fundamental sites for plant colonization in mobile 471 
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dune fields such as Maspalomas (Hernández-Cordero et al., 2015b) and elsewhere in 472 

transgressive dunefields (Hesp et al., 2011; Hesp, 2013). However, since the 1970's and more 473 

clearly during the 1980s, dense vegetation began to colonize other areas closer to buildings. As 474 

shown in figure 5 E, plants first occupied lower elevations followed by higher elevations. Some 475 

of this could be related to aeolian deflation and dune erosion because these result in the local 476 

groundwater table being relatively closer to the surface hence increasing moisture availability to 477 

plants. A reduction in the process of plant burial has also likely favored plant colonization, since 478 

high rates of dune migration and arid climates are the main constraints of vegetation growth in 479 

mobile dunes at Maspalomas (Hernández-Cordero et al., 2015b; Hernández-Cordero et al., 480 

2017). Additionally, human activities such as garden irrigation and/or the presence of adjacent 481 

golf courses could also have favored vegetation growth similar to other sites in Argentina and 482 

Germany (Grunewald, 2006; Grunewald and Schubert, 2007; Faggi and Dadon, 2010, 2011). 483 

 484 
Table 3. Soil characteristics in the south of study site 2 (Adapted from Hernández-Cordero, 485 

2012). 486 

Transect (with 2 

extractions of 

125 cm depth) 

Plant communities Soil layers composition 

1 
- Launaea arborescens 

- Schizogyne glaberrima 

- 0-5 cm (dry sand)  

- 5-7 cm and 5-36 cm (wet sand) 

- >7 cm (wet alluvial deposit) and >36 

(wet sand with rocks) 

2 
- Tamarix canariensis 

- Launaea arborescens 

- 0-8 and 0-10 cm (dry sand)  

- 8-84 cm and 10-85 cm (wet sand) 

- > 84 cm (wet alluvial deposit with 

rocks) and >85 cm (water) 

 487 

Before the tourist development (post- 1970) mobile dunes were present and migrating 488 

downwind of El Inglés high terrace. At the beginning of the study only two plant communities 489 

where found, formed by one bush species and one tree species. As described above, the 490 

construction of new buildings in the 1970s blocked aeolian transport and slowed down dune 491 

migration leeward of the terrace, with vegetation burial being now produced only by local re-492 

mobilization of sand deposits. A total of eight plant communities have colonized study site 2 493 

since then with marked growth during the 1970’s and 1980’s. The community that has 494 
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experienced the greatest expansion has been the Cyperus capitatus-Ononis tournefortii 495 

community, herbaceous species very common in the dune systems of the Canary Islands (Del 496 

Arco Aguilar et al., 2010). Hernández-Cordero et al. (2017) suggested that this plant community 497 

benefits and expands the most in stabilized and semi-stabilized dunes of Maspalomas, being a 498 

clear indicator of the stabilization of the dune system. This is contrary to what happens in 499 

stabilization areas in other climatic regions, such as Israel, where stabilization is produced by 500 

shrub species (Levin et al., 2008). Cyperus capitatus is thus a pioneer species in the 501 

colonization of semi-stabilized dunes in the Canaries (Hernández-Cordero, 2012; Hernández-502 

Cordero et al., 2015a). This species is the only psammophilous perennial rhizomatous species in 503 

study site 2, what likely favors its colonization ability. In dune systems, water and nutrient 504 

resources are usually very limited, so the clonal growth of these species, mainly through the 505 

production of rhizomes, contributes more to the colonization of plants than the reproduction of 506 

seeds (Dong and Alaten, 1999). So the responsiveness of clonal growth, due to the scarcity of 507 

resources, may allow the rapid occupation of new habitats by plants (Cook 1985; De Kroon and 508 

Van Groenendael 1990; Hutchings and De Kroon 1994). Launaea arborescens is the second 509 

plant community that has increased its cover in the study site 2, as it has in the rest of the 510 

Maspalomas dune system, according to Hernández-Cordero et al. (2017). This growth has taken 511 

place especially in the new stabilized dunes, but also in ruderal areas due its ecological plasticity 512 

(Hernández-Cordero et al., 2017). The Tamarix canariensis community has also shown an 513 

increase in cover and again is strongly related to the deflation which has occurred in the study 514 

area The rest of the plant communities began appearing after 2003 and their increase in cover, 515 

although not significant, is observed mainly near, or downwind of the infrastructure/developed 516 

area further indicating the impact that development has had on plant growth. 517 

The evident plant colonization shows a decrease in the low vegetation density range (0-10.65), 518 

which corresponds to bare sand and isolated individuals of plants. However, among the shrub 519 

communities that have been detected, and could be related to vegetation density (due to the 520 

limitations of the procedure for calculating this last variable) the Launaea arborescens and 521 



26 
 

Tamarix canariensis communities have been remarkable in colonizing the dune system and 522 

establishing intermediate and high density covers. Each community replaced the other 523 

community, especially the Tamarix canariensis community by the Launaea arborescens 524 

community, as also detected by Hernández-Cordero et al. (2017), even in the stabilized areas. In 525 

the case addressed in this study, the substitution of Tamarix canariensis by Launaea 526 

arborescens is around 40%, while the substitutions of Launaea arborescens by Tamarix 527 

canariensis is 25% of the cases until 2003 (Hernández-Cordero et al., 2017). In recent years the 528 

changes in both communities show a similar percentage change. 529 

So far, a relationship between an increase in the vegetation cover and elevation has been 530 

observed. This relationship is likley conditioned by the height of the local groundwater table, 531 

but also possibly by areas experiencing lower wind speeds. This latter variable should be added 532 

into future research to establish what role it truly plays. But potentially, feedback is observed 533 

between plant colonization and sedimentary stabilization / erosion as the constructed area has 534 

increased. A greater construction of the hotel area triggered a reduction of the local wind speed, 535 

and a decrease in aeolian sediment transport, favoring the vegetation encroachment and 536 

therefore the dunefield stabilization. These feedbacks produce on the one hand the alteration of 537 

the natural environmental conditions, and on the other hand, introduce new unknowns related to 538 

the biodiversity and geodiversity of the landscape. To better understand these feedbacks an 539 

approach examining the adaptation of diversity indices such as those proposed by Shannon 540 

(1948), Shannon and Weaver (1949) or Ferrer-Valero et al. (2017) in the transgressive 541 

dunesfield of Maspalomas might be useful. 542 

 543 

5.3. Topographic changes and erosional landforms in the aeolian shadow zone 544 

 545 

Net erosion dominated over net accretion in site 2 as a direct consequence of the decrease in 546 

wind speed by more than 50%, as well as the blocking/restriction of sediment input by wind 547 
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because of construction on top of El Inglés terrace (Hernández-Calvento et al., 2014). Erosion is 548 

common in dune systems where some type of human impact has occurred, regardless of the 549 

issue studied (e.g. Tsoar and Blumberg, 2002; Wiedemann and Pickart, 2004; Hilton et al., 550 

2006; El Banna and Frihy, 2009; Kiss et al., 2009; Bochev-van der Burgh et al., 2011; Jackson 551 

and Nordstrom, 2011). In this study area, erosion in site 2 is a direct consequence of the 552 

presence of buildings and infrastructure. In this case, a well-delimited area where erosion is 553 

significant can be detected, corresponding with the location of the erosive landforms detected 554 

since 2003 (Figures 4, A and 6) and the re-mobilization of sand deposits. Accretion was also 555 

measured in site 2 and was locally related with the presence of vegetation, in line with previous 556 

studies (Hesp, 1991; 2013). Finally, there are other areas where the sediment has been fixed, a 557 

process that should be considered normal, because this is an aeolian shadow area. The observed 558 

erosional landforms have been subject to some mobility and change, despite relatively lower 559 

winds in this section of the dune field. This is potentially indicative of some localized wind 560 

acceleration or wind ´hot-spots´ (García-Romero et al., 2017) leading to sediment erosion in an 561 

area that is otherwise subject to low wind flows and limited sediment transport (Hernández-562 

Calvento et al., 2014; Smith et al., 2017). Interestingly, these erosive landforms are all at a very 563 

similar distance downwind from the buildings.  564 

Future analyses at this location should incorporate detailed records of wind variables collected 565 

at a high temporal and spatial resolution in this area, to allow detailed quantification of airflow 566 

processes involved in the evolution of this erosional and/or stabilizing landscape. This would 567 

permit identifying the reasons for the existence of erosive landforms at the same distance 568 

downwind of the buildings/infrastructure. It is possible to speculate that streets between the 569 

buildings on the top of El Inglés terrace act as wind corridors that channel the airflow, locally 570 

increasing wind speed in the shadow zone. In fact, this hypothesis is reinforced by checking 571 

how these processes do not occur in areas located behind the higher-rise buildings (Mir-Gual et 572 

al., 2015). Also it is possible to speculate that the blowouts or the other erosive landfoms appear 573 

due to the topographic influence of the infrastructure (Garés and Pease, 2015). The increase in 574 
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the area of the erosive landforms and deflation zones with exhumed roots of herbaceous plants 575 

at this distance from the buildings, could be an indication that currently, and in the future, a 576 

large deflation zone will appear rather than  a stabilized zone as has been indicated up to now 577 

(Hernández-Calvento et al., 2014; Hernández-Cordero et al., 2015a). This may depend on the 578 

functioning of the shrub vegetation.  579 

 580 

6. Conclusions 581 

 582 

This work presents a study of the environmental changes on a portion of a transgressive 583 

dunefield and the biogeomorphological processes produced in an aeolian shadow zone detected 584 

and formed downwind a high terrace completely changed due to tourist infrastructure 585 

development between 1986 and 2003. Thisconstruction altered the aeolian sedimentary input to 586 

the region and created an aeolian shadow zone in the dunefield. Climate change, and 587 

particularly rainfall variations do not appear to have had any real effect in driving the changes 588 

observed. The effect of the touristic development has been to drive changes in the local wind 589 

field and hence the direction of dune movement and migration. The changes in the sedimentary 590 

dynamics have also altered dune migration directions with dunes turning more towards the W-591 

NNW than previously, and reduced the volumetric input of sediments into the Maspalomas 592 

dune system. In addition, there has been a reduction in the number and length of dune brinks 593 

and a displacement of the dune brinks to the south, well downwind of the aeolian shadow zone. 594 

For these reasons, the Maspalomas dunefield has been significantly environmentally altered due 595 

to the development of a human-induced aeolian shadow zone. If these trends continue, or 596 

change to other paths (e.g. expansion of the deflation areas), ecosystem services such as tourism 597 

and the protection against storms and possible tsunami provided by the dunes would be 598 

adversely affected. 599 
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With respect to the biogeomorphological processes within the aeolian shadow zone of the 600 

Maspalomas dunefield, the following processes and spatio-temporal changes have been 601 

observed:  602 

Vegetation trends 603 

1. The vegetation has experienced an increase in cover, density and number of plant 604 

communities.  605 

2. The most successful colonizing plant community is Cyperus capitatus-Ononis 606 

tournefortii, comprising herbaceous species. The case of Cyperus capitatus is relevant, 607 

since it is the only species detected in this area that reproduces from rhizomes. In other 608 

dune environments, due to this rhizomatous characteristic, its reproduction is 609 

conditioned by clonal growth, and seed production is unimportant.  610 

3. Other plant communities, comprising shrub and tree species, namely Tamarix 611 

canariensis and Launaea arborescens communities, also play an important role in 612 

colonization of the dunefield in the study area. 613 

Topographic changes 614 

1. There is an aeolian sedimentary deficit caused by the urban tourist buildings located on 615 

the top of the El Inglés terrace blocking the aeolian sedimentary transport pathway, and 616 

reducing overall wind energy and sediment transport in the study area. 617 

2. Although the sedimentary deficit has been detected throughout the study area, there are 618 

areas of accretion associated with deposition within vegetation, as well as other stable 619 

areas. Since 2003, when the top of the terrace had been totally covered by buildings, 620 

three erosional landforms have developed. All three of them are located at a similar 621 

distance from the new urban development area.  622 

3. These three erosional landforms correspond to a trough blowout and two deflation 623 

zones currently characterized by surfaces covered with exhumed roots.  624 
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4. The increase of the vegetation is related to the sedimentary deficit, which facilitates the 625 

growth of plant species. This process is possible since the sand cannot cover the 626 

vegetation, and deflation leads to the presence of groundwater closer to the surface.  627 

5. The groundwater table can be detected in the lowest elevations of the study area, and 628 

therefore, there is a strong relationship between plant colonization and topography.  629 

6. Plant colonization within about 400 meters of the building/infrastructure development is 630 

lower than further downwind, coinciding with the presence of erosional landforms and 631 

zones with higher water tables. 632 
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Acknowledgements 634 

This work is a contribution of projects CSO2013-43256-R and CSO2016-79673-R (National R 635 

& D & I Plan) co-financed with ERDF funds and a PhD contract of the Canary Islands Agency 636 

for Research, Innovation and Information Society and by the European Social Fund (ESF). The 637 

authors also thank Dr. Pablo Máyer Suárez for providing processed rainfall data. 638 

 639 

References 640 
 641 
Arens, S.M., 1996. Patterns of sand transport on vegetated foredune. Geomorphology 17, 339–642 
350. DOI: https://doi.org/10.1016/0169555X(96)00016-5 643 
 644 
Bauer, B.O., 2009. Contemporary research in aeolian geomorphology. Geomorphology 105, 1–645 
5. DOI: https://doi.org/10.1016/j.geomorph.2008.02.014 646 
 647 
Brown, A.C., McLachlan, A., 2002. Sandy shore ecosystems and the threats facing them: some 648 
predictions for the year 2025. Environmental Conservation 29 (1), 62–77. DOI: 649 
https://doi.org/10.1017/S037689290200005X 650 
 651 
Bochev-Van der Burgh, L.M., Wijnberg, K.M., Hulscher, S.J.M.H., 2011. Decadal-scale 652 
morphologic variability of managed coastal dunes. Coastal Engineering 58 (9), 927–936. 653 
 654 
Cabrera-Vega, LL, Cruz-Avero, N, Hernández-Calvento, L, Hernández-Cordero, AI, 655 
Fernández-Cabrera, E., 2013. Morphological changes in dunes as an indicator of anthropogenic 656 
interferences in arid dune fields. Journal of Coastal Research (SI65), 1271–1276. 657 
 658 



31 
 

Cendrero, A., Sánchez-Arcilla, A., Zazo, C., 2005. Impactos sobre las zonas costeras. In: 659 
Evaluación preliminar de los impactos en España por efecto del cambio climático. Proyecto 660 
ECCE-Informe Final. Ministerio de Medio Ambiente. 469-524. 661 

Cerdá, V., 2002. La Gestión integrada de la costa ¿La última oportunidad? Revista de obras 662 
públicas Ingeniería y Territorio 61,8-15. 663 

Chang, Y.C, Habib, A.F, Lee, D.C, Yom, J.H., 2008. Automatic classification of lidar data into 664 
ground and non-ground points. Paper presented at the ISPRS Congress Beijing 2008, Beijing, 665 
China. 666 
 667 
Chuvieco, E., 2010. Teledetección Ambiental: la observación de la Tierra desde el espacio. 668 
Ariel, Barcelona.  669 
 670 
Cook, R., 1985. Growth and development in clonal plant population. Pp. 259–296. In: Jackson, 671 
J. B. C., Buss, L.W., Cook, R. C. (eds), Population Biology and Evolution of Clonal Organisms. 672 
Yale University Press, New Haven. 673 
 674 
Cooper, J.A.G., McKenna, J., 2008. Social justice in coastal erosion management: The temporal 675 
and spatial dimensions. Geoforum 39(1), 294-306. 676 
 677 
Cooper, J.A.G., McKenna, J., 2009. Boom and bust: the influence of macroscale economics on 678 
the world's coasts. Journal of Coastal Research 25, 533-538 679 
 680 
Corenblit, D., Baas, A.C.W., Bornette, G., Darrozes, J., Delmotte, S., Francis, R.A., Gurnell, 681 
A.M., Julien, F., Naiman, R.J., Steiger, J., 2011. Feedbacks between geomorphology and biota 682 
controlling Earth surface processes and landforms: a review of foundation concepts and current 683 
understandings. Earth-Science Reviews 106, 307–331. DOI: 684 
https://doi.org/10.1016/j.earscirev.2011.03.002 685 
 686 
Crutzen, P.J., Stoermer, E.F., 2000. The “Anthropocene”. Global Change Newsletter 41, 17-18. 687 
 688 
Curr, R.H.F., Koh, A., Edwards, E., Williams, A.T., Davies, P., 2000. Assessing 689 
anthropogenic impact on Mediterranean sand dunes from aerial digital photography. Journal of 690 
Coastal Conservation 6(1), 15-22 doi:10.1007/BF02730463 691 
 692 
De Kroon, H., Van Groenendael, J., 1990. Regulation and function of clonal growth in plants: 693 
an evaluation. Pp. 177–186. In: Van Groenentael J. & de Kroon, H. (eds), Clonal growth in 694 
plants: Regulation and function. SPB Academic Publishing, The Hague. 695 
 696 
Del Arco Aguilar, M.J., González-González, R., Garzón-Machado, V., Pizarro-Hernández, B., 697 
2010. Actual and potential natural vegetation on the Canary Islands and its conservation status. 698 
Biodiversity and Conservation 19, 3089–3140 699 
 700 
Domínguez-Mujica, J., González-Pérez, J., Parreño Castellano, J.M., 2011. Tourism and human 701 
mobility in Spanish Archipelagos. Annals of Tourism Research 38, 586–606. DOI: 702 
https://doi.org/10.1016/j.annals.2010.11.016 703 
 704 
Dong, M., Alaten, B., 1999. Clonal plasticity in response to rhizome severing and 705 
heterogeneous resource supply in the rhizomatous grass Psammachloa villosa in an Inner 706 
Mongolian dune. China. Plant Ecology 141, 53–58. 707 
 708 
El Banna, M.M., Frihy, O.E., 2009. Human-induced changes in the geomorphology of the 709 
northeastern coast of the Nile delta, Egypt. Geomorphology 107(1-2), 72-78. 710 
 711 



32 
 

Esteve, F., 1968. Datos para el estudio de las clases Ammophiletea, Juncetea y Salicornietea en 712 
las Canarias Orientales (Data for the study of Ammophiletea, Juncetea and Salicornietea classes 713 
in the Eastern Canary). Collectanea Botanica 7, 303–323. 714 
 715 
Everard, M., Jones, L., Watts, B., 2010. Have we neglected the societal importance of sand 716 
dunes? An ecosystem services perspective. Aquatic Conservation 20 (4), 476–487. DOI: 717 
10.1002/aqc.1114 718 
 719 
Faggi, A.M., Dadon, J., 2010. Vegetation changes associated to coastal tourist urbanizations. 720 
Multequina 19, 53–76. 721 
 722 
Faggi, A.M., Dadon, J., 2011. Temporal and spatial changes in plant dune diversity in urban 723 
resorts. Journal of Coastal Conservervation 15, 585–594. 724 
 725 
Ferrer-Valero, N., Hernández-Calvento, L., Hernández-Cordero, A.I., 2017. Human impacts 726 
quantification on the coastal landforms of Gran Canaria Island (Canary Islands). 727 
Geomorphology 286, 58-67, https://doi.org/10.1016/j.geomorph.2017.02.028 728 
 729 
García-Romero, L., Hernández-Cordero, A. I., Hernández-Calvento, L., Pérez-Chacón, E., 730 
González López-Valcarcel, B., 2018. Procedure to automate the classification and mapping of 731 
the vegetation density in arid aeolian sedimentary systems. Progress in Physical Geography 732 
42(3), 330-351. https://doi.org/10.1177/0309133318776497 733 
 734 
García-Romero, L., Hernández-Cordero, A.I., Fernández-Cabrera, E., Peña-Alonso, C., 735 
Hernández-Calvento, L., Pérez-Chacón, E., 2016. Urban-touristic impacts on the aeolian 736 
sedimentary systems of the Canary Islands: conflict between development and conservation. 737 
Island Studies Journal 11(1), 91-112. 738 
http://www.islandstudies.ca/sites/islandstudies.ca/files/ISJ-11-1-E-Garcia-Romero-et-al.pdf 739 
 740 
García-Romero, L., Hernández-Cordero, A.I., Delgado-Fernández, I., Hesp, P.A., Hernández-741 
Calvento, L., Viera-Pérez, M., 2017. Evolución reciente de geoformas erosivas inducidas por 742 
impacto urbano-turístico en el interior de un sistema de dunas transgresivo árido (Maspalomas, 743 
islas Canarias) Geo-temas 17, 263-266. 744 
 745 
Garés, P.A., Pease, P., 2015. Influence of topography on wind speed over a coastal dune and 746 
blowout system at Jockey´s Ridge, NC, USA. Earth Surface Processes and Landforms, 40(7), 747 
853-863. 748 

Grunewald, R., Schubert, H., 2007. The definition of a new plant diversity index“H´ıdune” for 749 
assessing human damage on coastal dunes—derived from theShannon index of entropy H´ı. 750 
Ecological indicator 7, 1–21. 751 
 752 
Grunewald, R., 2006. Assessment of damages from recreational activities oncoastal dunes of the 753 
Southern Baltic sea. Journal of Coastal Research 22 (5), 1145–1157. 754 
 755 
Gundlach, E.R., Siah, S.J., 1987. Cause and Elimination of the Deflation Zones Along the 756 
Atlantic City (New Jersey) Shoreline. Coastal Zone’87, 1357-69. 757 
 758 
Hernández Calvento, L., 2006. Diagnóstico sobre la evolución del sistema de dunas de 759 
Maspalomas (1960–2000). Cabildo de Gran Canaria, Las Palmas de Gran Canaria. 760 
 761 
Hernández, L., Alonso, I., Sánchez-Pérez, I., Alcántara-Carrió, J., Montesdeoca, I., 2007. 762 
Shortage of sediments in the Maspalomas dune field (Gran Canaria,Canary Islands) deduced 763 
from analysis of aerial photographs, foraminiferal content, and sediment transport trends. 764 
Journal of Coastal Research 23, 993–999. 765 



33 
 

 766 
Hernández-Calvento, L., Jackson, D.W.T., Medina, R., Hernández-Cordero, A.I., Cruz, N., 767 
Requejo, S., 2014. Downwind effects on an arid dunefield from an evolving urbanised area. 768 
Aeolian Research 15, 301-309. DOI: https://doi.org/10.1016/j.aeolia.2014.06.007 769 
 770 
Hernández-Cordero, A. I., 2012. Análisis de la vegetación como indicadora de las alteraciones 771 
ambientales inducidas por la actividad turística en la Reserva Natural Especial de las Dunas de 772 
Maspalomas [Analysis of vegetation as an indicator of environmental changes induced by 773 
tourism in the Special Nature Reserve Dunas de Maspalomas] (Unpublished doctoral 774 
dissertation). University of Las Palmas de Gran Canaria, Spain 775 
 776 
Hernández-Cordero, A.I., Pérez-Chacón Espino, E., Hernández-Calvento, L., 2015a.Vegetation, 777 
distance to the coast, and aeolian geomorphic processes and landforms in a transgressive arid 778 
coastal dune system. Physical Geography 36 (1), 60–83. 779 
 780 
Hernández-Cordero, A.I., Hernández-Calvento, L., Pérez-Chacón Espino, E., 781 
2015b.Relationship between vegetation dynamics and dune mobility in an arid transgressive 782 
coastal system Maspalomas, Canary Islands. Geomorphology 238, 160–176. 783 
 784 
Hernández-Cordero, A.I., Hernández-Calvento, L., Pérez-Chacón Espino, E., 2017. Vegetation 785 
changes as an indicator of impact from tourist development in an arid transgressive coastal dune 786 
field. Land Use Policy 64,479-491. 787 
 788 
Hesp, P.A., 1988. Surf zone, beach and foredune interactions on the Australian south east coast. 789 
Journal of Coastal Research 3, 15–25. DOI: http://www.jstor.org/stable/40928722 790 
 791 
Hesp, P.A., 1991. Ecological processes and plant adaptations on coastal dunes. Journal of Arid 792 
Environments 21, 165-191. 793 
 794 
Hesp, P.A., 2002. Foredunes and blowout: initiation, geomorphology and dynamics. 795 
Geomorphology 48, 245-268. DOI: https://doi.org/10.1016/S0169-555X(02)00184-8 796 
 797 
Hesp, P.A., Martinez, M.L., Miot da Silva, G., Rodríguez-Revelo, N., Gutierrez, E., Humanes, 798 
A., Laínez, D., Montaño, I., Palacios, V., Quesada, A., Storero, L., González Trilla, G., 799 
Trochine, C., 2011. Transgressive Dunefield Landforms and Vegetation Associations, Doña 800 
Juana, Veracruz, Mexico. Earth Surface Processes and Landforms 36 (3), 285–295. 801 

Hesp, P.A., 2013. Conceptual models of the evolution of transgressive dunefield systems. 802 
Geomorphology 199, 138–149. 803 

Hilton, M., Harvey, N., Hart, A., James, K., Arbuckle, C., 2006. The impact of exotic dune 804 
grass species on foredune development in Australia and New Zealand: a case study of 805 
Ammophila arenaria and Thinopyrum junceiforme. Australian Geographer 37 (3), 313–334. 806 
 807 
Hutchings, M.J., De Kroon, H., 1994. Foraging in plants: the role of morphological plasticity in 808 
resource acquisition. Advances in Ecological Research 25, 159–238. 809 
 810 
Jackson, M.L., Nordstrom, K.F., 2011. Aeolian sediment transport and landforms in managed 811 
coastal systems: a review. Aeolian Research 3 (2), 181-196. DOI: 812 
https://doi.org/10.1016/j.aeolia.2011.03.011 813 
 814 
Kiss, T., Sipos, G., Kovacs, F., 2009. Human impact on fixed sand dunes revealed by 815 
morphometric analysis. Earth Surface Processes and Landforms 34 (5), 700–711. 816 
 817 



34 
 

Köppen, W.1900. Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren 818 
Beziehungen zur Pflanzenwelt. Geographische Zeitschrift 6, 593–611. 819 
 820 
Kutiel, P., Cohen, O., Shoshany, M., Shub, M., 2004. Vegetation establishment on the southern 821 
Israeli coastal sand dunes between the years 1965 and 1999. Landscape and Urban Planning 822 
67, 141–156. 823 
 824 
Lancaster, N., 1988. Development of linear dunes in southwestern Kalahari, Southern Africa. 825 
Journal of Arid Environments 14, 233-244. 826 
 827 
Lancaster, N., Baas, A.C.W., 1998. Influence of vegetation cover on sand transport by wind: 828 
field studies at Owens Lake, California. Earth Surface Processes and Landforms 23, 69–82. 829 
DOI:10.1002/(SICI)10969837(199801)23:13.0.CO;2-G 830 
 831 
Levin, N., Kidron, G.J., Ben-Dor, E., 2008. A field quantification of coastal dune perennial 832 
plants as indicators of surface stability, erosion or deposition. Sedimentology 55 (4), 751–772. 833 
DOI: 10.1111/j.1365-3091.2007.00920.x 834 
 835 
Liquete, C., Zulian, G., Delgado, I., Stips, A., Maes, J., 2013. Assessment of coastal protection 836 
as an ecosystem service in Europe. Ecological Indicators 30, 205-217. 837 
 838 

Martinez, M.L., Vazquez, G., Salvador, S.C., 2001. Spatial and temporal variability during 839 
primary succession on tropical coastal sand dunes. Journal of Vegetation Science 12, 361–372. 840 
DOI: 10.2307/3236850 841 
 842 
Martinez, M.L., Gallego-Fernandez, J.B., Garcia-Franco, J.G., Moctezuma, C., Jimenez, C.D., 843 
2006. Assessment of coastal dune vulnerability to natural and anthropogenic disturbances along 844 
the Gulf of Mexico. Environmental Conservation 33 (2), 109–117. 845 
 846 
Martinez, M.L., Gallego-Fernandez, J.B., Hesp, P.A. (Editors), 2013a. Restoration of Coastal 847 
Dunes. Springer, 347pp 848 
 849 
Martínez, M.L., Hesp, P.A. and Gallego-Fernández, J.B., 2013b. Coastal dunes: human impact 850 
and need for restoration. In: Martinez, M.L., J.B. Gallego-Fernandez and Hesp, P.A., (Eds), 851 
Restoration of Coastal Dunes. Chapter 1, 1-14. Springer. 852 

 853 
Máyer-Suárez, P., Perez-Chacon Espino, E., Cruz-Avero, N., Hernandez-Calvento, L., 2012. 854 
Características del viento en el campo de dunas de Maspalomas (Gran Canaria, Islas Canarias, 855 
España). Nimbus 29–30, 381–397. 856 
 857 
Miot da Silva, G., Hesp, P.A., Peixoto, J., Dillenburg, S.R., 2008. Foredune vegetation patterns 858 
and alongshore environmental gradients: Moçambique beach, Santa Catarina Island, Brazil. 859 
Earth Surfuce Process and landforms 33, 1557–1578. DOI: 10.1002/esp.1633 860 
 861 
Mir-Gual, M., Blanco-Chao, R., Hernández-Cordero, A.I., Pons, G.X., Costa-Casais, M., 862 
Hernández-Calvento, L., 2015. Comparación descriptiva de morfologías blowout bajo diferentes 863 
condiciones ambientales. Geo-temas 15, 205-208. 864 
 865 
Moreno-Casasola, P., 1986. Sand movement as a factor in the distribution of plant communities 866 
in a coastal dune system. Vegetatio 65, 67-76. 867 
 868 
Nordstrom, K.F., McCluskey, J.M., 1984. Considerations for control of house construction in 869 
coastal dunes. Coastal Management (12), 385-402. 870 



35 
 

 871 
Nordstrom, K.F., McCluskey, J.M., 1985. The effects of houses and sand fences on the eolian 872 
sediment budget at Fire Island, New York. Journal of Coastal Research 1 (1), 39–46. 873 
 874 
Nordstrom, K.F., Jackson, N.L., 1998. Aeolian transport of sediment on a beach during and 875 
after rainfall, Wildwood, NJ, USA. Geomorphology (22), 151-157. 876 
 877 
Nordstrom, K.F., 1994. Beaches and dunes of human-anthropized coasts. Progress in Physical 878 
Geography 18 (4), 497–516. 879 
 880 
Nordstrom, K.F., 2004. Beaches and dunes of developed coasts. Cambridge University Press. 881 
 882 
Pérez-Chacón, E., Hernández-Calvento, L., Hernández-Cordero, A., Máyer-Suárez, P., Romero-883 
Martín, L., Alonso-Bilbao, I., Mangas-Viñuela, J., Menéndez-González, I., Sánchez-Pérez, I., 884 
Ojeda-Zújar, J., Ruiz-Flaño, P., Alcántara-Carrió, J., 2007. Maspalomas: claves científicas para 885 
el análisis de su problemática ambiental. University of Las Palmas de Gran Canaria, 38 pp. 886 
 887 
Peyrat, J., Braun, M., Dolnik, C., Isermann, M., Roweck, H., 2009. Vegetation dynamics on the 888 
Leba Bar/Poland: a comparasion of the vegetation in 1932 and 2006 with special regard to 889 
endangered habitats. Journal of Coastal Conservation 13, 235–246. 890 
 891 
Piotrowska, H., 1989. Natural and anthropogenic changes in sand-dunes and their vegetation on 892 
the Southern Baltic coast. In: van der Meulen, F., Jungerius, P.D., Visser, J.H. (Eds.), 893 
Perspectives in Coastal Dune Management. SPB Academic Publishing, The Hague, pp. 33–40. 894 
 895 
Shannon, C.E., 1948. A mathematical theory of communication. Bell System Technical Journal, 896 
27, 379–423. 897 
 898 
Shannon, C.E., Weaver, W., 1949. The Mathematical Theory of Communication. University of 899 
Illinois Press, Urbana. 900 
 901 
Smith, A.B., Jackson, D.W.T., Cooper, J.A.G., Hernández-Calvento, L., 2017. Quantifying the 902 
Role of Urbanization on Airflow Perturbations and Dunefield Evolution. Earth´s Future. In 903 
press. DOI: 10.1002/2016EF000524. 904 
 905 
Stallins, J.A., 2001. Soil and vegetation patterns in barrier island dune environments. Physical 906 
Geography 22 (1), 79–98. 907 
 908 
Stallins, J.A., 2002. Dune plant species diversity and function in two barrier island 909 
biogeomorphic systems. Plant Ecology 165, 183–196. DOI: 910 
https://doi.org/10.1023/A:1022224216705 911 
 912 
Stallins, J.A., Parker AJ. 2003. The influence of complex systems interactions on barrier island 913 
dune vegetation pattern and process, Ann. Assoc. Am. Geogr. 93, 13–29, DOI:10.1111/1467-914 
8306.93102. 915 
 916 
Stallins, J.A., 2006. Geomorphology and ecology: Unifying themes for complex systems in 917 
biogeomorphology. Geomorphology 77, 207-16. DOI: 918 
https://doi.org/10.1016/j.geomorph.2006.01.005 919 
 920 
Sun, Y., Hasi, E., Liu, M., Du, H., Guan, C., Tao, B., 2016. Airflow and sediment movement 921 
within an inland blowout in Hulun Buir sandy grassland, Inner Mongolia, China. Aeolian 922 
Research 22, 13-22. 923 
 924 



36 
 

Sunding, P., 1972. The vegetation of Gran Canaria. Skr. Norske Vidensk. Akal., Oslo. I. Mate-925 
Naturv. Kl., Suplemment 29. 926 
 927 
Tsoar, H., Blumberg, D.G., 2002. Formation of parabolic dunes from barchan and transverse 928 
dunes along Israel’s Mediterranean coast. Earth Surfuce Processes and Landforms 27, 1147–929 
1161. 930 
 931 
Wheaton, J.M., Brasington, J., Darby, S.E., Sear, D.A., 2010a. Accounting for uncertainty in 932 
DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surface Processes 933 
and Landforms 35, 136–156. 934 
 935 
Wheaton, J.M., Brasington, J., Darby, S.E., Merz, J.E., Pasternack, G.B., Sear, D.A., Vericat, 936 
D., 2009b. Linking geomorphic changes to salmonid habitat at a scale relevant to fish. Rivers 937 
Research and Applications 26, 469 – 486. doi:10.1002/rra.1305. 938 
 939 
Wiedemann, A.M., Pickart, A.J., 2004. Temperate zone coastal dunes. In: Martinez, M.L., 940 
Psuty, N.P. (Eds.), Coastal dunes. Ecology and Conservation. Ecological Studies, 171. 941 
Springer, pp. 54–65. 942 
 943 
Xu, Z., Hu, R., Wang, K., Mason, J.A., Wu, S.Y., Lu, H., 2018. Recent greening (1981–2013) 944 
in the Mu Us dune field, north‐ central China, and its potential causes. Land Degradation and 945 
Development, 29, 1509–1520. https://doi.org/10.1002/ldr.2910 946 


