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Abstract— In this paper, an adaptive control allocation al-
gorithm is proposed for nonlinear autonomous vehicles. Pa-
rameter uncertainty of effectors is considered in the design
of allocation algorithm. By designing a nonlinear parameter
estimator, it needs not to measure the control moments, i.e.,
forces and torques. Sensors and corresponding supporting
devices to measure and transit the control moments are not
needed, thus the overall cost of the control system is reduced,
and the hardware system is simplified in implementation.
Stability of the overall system is analyzed utilizing the Lyapunov
method and sufficient conditions are derived. Digital simulation
based on a spacecraft simulator is implemented. The results of
the simulation validate the effectiveness of the control scheme.

I. INTRODUCTION
For over-actuated systems, which have more actuators then

the Degree of freedom, how to distribute the required control
moment to the redundant actuators leads to the control
allocation problem. Preliminaries and available solutions for
this problem can be found in [6].

The control allocation for plants with nonlinear effec-
tors is investigated in [8] [9], which employs a nonlinear
programming method developed from sequential quadratic
programming method. Optimal control allocation is adopted
incorporating load information feedback to reduce structural
load for aircrafts in [1] and [4]. Adaptive control allocation
algorithm when the actuators are in failure are designed in
[3] and [2] in conjunction with fault detection algorithms.

According to surveys, the control allocation for effectors
with static parameters has been well studied, but little atten-
tion has been paid to control allocation problem for effectors
with uncertain parameters. The uncertainty/variation of the
parameters may cause bias even instability of the system. An
inner-loop controller can mitigate the negative effects when
the control moment, i.e. forces and torques, are measurable.
But the measurement of control moments needs auxiliary
sensors and devices, thus increases the complexity and cost
of the system. Therefore the control moments may not
be available in control allocation design in practice. As a
result, advanced control allocation algorithm is in need to
guarantee the stability of the system and improve the control
performance.
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In this paper, a novel control allocation scheme is pro-
posed, where a nonlinear estimator is designed. The proposed
control allocation algorithm is tested by digital simulation of
a spacecraft simulator. The results of the digital simulation
validate the effectiveness of the control allocation algorithm.

The main contributions of this paper include : an adaptive
control allocation algorithm is designed, which mitigates
the negative impacts brought in by parameter uncertain-
ty/variation of the effectors without measurement of the
control moment. Furthermore it guarantees that the solution
asymptotically converges to the optimal trajectory.

II. PROBLEM FORMULATION

The nonlinear autonomous vehicles considered in this
paper take the form of

ẋ = f(x, t) +G(θ)u (1)

where x ∈ Rn is the state of the nonlinear plant, f : Rn ×
[0,∞)→ Rn is a Lipschitz nonlinear function, and f(0, t) =
0, G(θ) ∈ Rn×m is a function of the unknown parameter
vector θ of the actuators, θ ∈ Θ = {v|v ∈ Rm} with Θ
the set of parameter vectors, u ∈ Rm is control input of the
actuator, the second term in right-hand side of (1) represents
the control moment τ , that is

τ = G(θ)u (2)

.
m > n makes (1) an over-actuated system according to

the definition.
Since f(x) is a general nonlinear function, many vehicles

can be expressed in the form of (1), such as spacecrafts,
marine crafts, and etc. To simplify the theoretical analysis of
the parameter uncertainty, a linear algebraic model is chosen
to model the effectors. This is true when the nonlinearity of
the vehicles can be neglected.
θ is the parameter vector of the actuators. In practice the

actuator can be influenced by many factors, such as the drift
of the electrical characteristics of the driving circuits, the
aging of the mechanical components and etc, so the number
of the unknown parameter θ may not be equal to the number
of the actuators. However these factors can be reflected by θ,
which has a explicit physical meaning: the force generated in
a infinitely small time element ∆t. The total force generated
over a time interval [0, τ ] can be expressed as

∫ τ
0
θdt.

In this paper, we consider the matrix G(θ) without all-zero
rows, which means each degree of freedom is controllable.
However the control allocation algorithm designed is not
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Fig. 1. Structure of adaptive control allocation

limited to this case. When the matrix G(θ) includes all-
zero rows, by performing state transformation ξ = Tx, the
resulted control effectiveness matrix can be written as:

Gr(θ) =

[
O

Ga(θ)

]
(3)

where Ga is the control effectiveness matrix corresponding to
the actuated states, O = [oij = 0] is a matrix corresponding
to the un-actuated states. In this case, when assumption 3 is
satisfied, replacing the matrix G(θ) with Ga(θ), the control
allocation algorithm proposed is still applicable.

Following assumptions are necessary for the adaptive
control allocation algorithm presented in this paper:

Assumption I The parameters of effectors varies ”slowly”
in contrast with the control action of adaptive control allo-
cation algorithm, that is θ̇ ≈ 0.

Assumption II The control effectiveness matrix can be
decomposed to be G(θ) = GsΛ(θ), where Λ(θ) =
diag (θ1 θ2 ... θm) is a diagonal matrix. Gs =
{gij |gij = ±1} is a constant matrix determined by the
geometrical layout of the actuators.

Assumption II puts a restriction on the control effective-
ness matrix G. In practice, this condition holds for vehicles
with fixed actuators due to the definition of the effectiveness
matrix (see the example in [10]), the testbed used in the
simulation satisfies this condition.

It can be inferred from assumption 2 that τ = GsΛ(θ)u =
GsΛ(u)θ.

Assumption III There exists a high-level controller such
that the nonlinear vehicle (1) is globally stable. The output
of the high-level controller is achievable for the reference
control allocation algorithm, that is there exists u ∈ U such
that G(θ)u = τc.

Assumption IV The states of the controlled plant are
measurable.

III. ADAPTIVE CONTROL ALLOCATION ALGORITHM
DESIGN

The diagram of the adaptive control allocation algorithm
is as illustrated in figure (1).

In figure (1), the motion controller is a high-level con-
troller that stabilizes the nonlinear system (1). Its output τc
is the control moment that is distributed to actuators. When
the parameters of effectors are known and time-invariant, the
reference control moment τc can be achieved instantly and
precisely if it is feasible. Therefore the nonlinear vehicles

(1) is stable accounting for assumption 3. But when the
parameters of the effectors drift, the practical control input
τ deviates from the given command τc thus causes bias of
x.

The basic idea of the proposed scheme is to design a non-
linear estimator described by (4), which outputs the estimated
value of the parameters as the input of the allocator. The
allocator distributed the recommended control moments τc
to actuators based on the estimated parameters θ̂.

˙̂x = f(x, t) +G(θ̂)u−Kx(x− x̂)

= f(x, t) +H(u)θ̂ −Kx(x− x̂)
(4)

where Kx > 0 is a real number, x̂ is the estimation of the
state of the controlled plant, H(u) = GsΛ(u). Assumption
II is used in 4.

The allocator in Figure 1 aims to solve the following
optimization problem:

minJ = ‖Qsr‖+ ‖Wur‖ (5)

subject to {
τc −G(θd)ur = sr

ur ∈ U

This problem has been well studied and many solutions
are available (see [6]).

In what follows, an adaptive updating law of the estimated
parameters θ̂ is designed such that x̂ converges to the actual
value of the state vector x, i.e. lim

t→∞
x̂(t) = x. The adaptive

updating law of θ̂ is designed as:

˙̂
θ = HT (u)x̃ (6)

where x̃ = x− x̂ is the error vector.
The overall system with adaptive control allocation algo-

rithm can be concluded as

ẋ = f(x, t) +H(u)θ (7)
˙̂x = f(x, t) +H(u)θ̂ −Kxx̃ (8)
˙̂
θ = HT (u)x̃ (9)

The theorem below gives conclusion on the stability of the
estimator.

Theorem1 The estimated state x̂ globally asymptotically
converges to the true value of x, with the estimator designed
as (4) and the updating law (6) under assumption I, II, IV ,
when Kx is positive definite and there exists Ck > 0 such
that zTKxz ≤ Ck|z|2 for any z.

Note that only the stability of θ can be guaranteed by
theorem 1, which will be shown in the following proof.
However, the stability of the whole control system can be
guaranteed as illustrated by theorem 2.

Proof: Subtracting (8) from (7) yields the dynamical
equation of x̃

˙̃x = H(u)(θ − θ̂)−Kxx̃ (10)



. Define the parameter error θ̃ := θ − θ̂, then (10) can be
rewritten as

˙̃x = H(u)θ̃ −Kxx̃

. Differentiating θ̃ renders ˙̃
θ

˙̃
θ = −HT (u)x̃

where assumption I is used. Then the error system can be
concluded as {

˙̃x = H(u)θ̃ −Kxx̃

˙̃
θ = −HT (u)x̃

(11)

.
Choose a Lyapunov function V = 1

2 x̃
T x̃ + 1

2 θ̂
T θ̂, its

derivative along the trajectory of (11) is

V̇ = x̃T ˙̃x+ θ̃T
˙̃
θ

= x̃T (−Kxx̃+H(u)θ̃)− θ̃TH(u)x̃

= x̃T (−Kxx̃+H(u)θ̃ −H(u)θ̃)

= −x̃TKxx̃

which is negative semidefinite when Kx > 0. This renders
stability of [x̃ θ̃]T . To prove the asymptotic stability of x̃,
we need to guarantee that V̈ is bounded. By differentiating
V̇ , one gets

V̈ =− (x̃TKx
˙̃x+ ˙̃xTKxx̃)

=x̃T (KxKx +KT
xKx)x̃− x̃TKxH(ur)θ̃ − θ̃THT (ur)Kxx̃

(12)
. Since u ∈ U and ur ∈ U are bounded, zTKxz ≤
Ck|z|2, V̈ is bounded combining with the boundedness of
[x̃ θ̃]. Therefore the asymptotic stability of x̃ is achieved
according to Barbara lemma. However this does not lead
to the asymptotic stability of θ̃ for rank(H(u)) < dim(θ̂).
Proof completed.

Next the stability of the whole control system will be
analyzed. The following theorem gives the result on the
stability of the overall close-loop system.

Theorem2 The overall close-loop system composed of (7),
(8) and (9) admits globally stability if assumption III holds.

Proof: Replacing θ = θ̂ + θ̃ in (7) yields

ẋ = f(x, t) +H(u)(θ̂ + θ̃) (13)

= f(x, t) +H(u)θ̂ +H(u)θ̃ (14)

. Since H(u)θ̂ = τc, the equation above can be furthermore
rewritten as

ẋ = f(x, t) + τc +H(u)θ̃

= f(x, t) + τc + ˙̃x+Kxx̃

= f(x, t) + τc + [I Kx]

[
˙̃x
x̃

]
. (15) can be viewed as a system Σ1 : ẋ1 = f(x, t) + τc
cascaded with system Σ2 : equation (11) by the gain matrix
[I Kx]. According to the well know cascade theory [8],

Fig. 2. Structure of the spacecraft simulator

if system Σ2 is globally asymptotically stable and Σ1 is
globally stable, the cascade system admits global stability.
Assumption III guarantees that Σ1 is stable, and by theorem
1, x̃ is globally asymptotically stable. The only receipt we
need is that ˙̃x is globally asymptotically stable. In fact, this
is the case when d

dt [H(u)θ̃−Kxx̃] is uniformly continuous
according Barbalat lemma [14]. proof complete.

IV. SIMULATION

In this section, the adaptive control allocation algorithm
is applied to a planar spacecraft simulator. A path following
experiment is designed to test the performance of the adap-
tive control allocation algorithm. The control objective is to
drive the spacecraft simulator to a predefined straight line
and thereafter remain there. The negative effects brought by
parameter uncertainty of the effectors are exhibited firstly
as a reference point. Then the performance of the adaptive
control allocation algorithm is illustrated.

The planar spacecraft simulator is an equipment that is
used in ground experiment to simulate the manipulation of
spacecrafts operating in outer space. The hardware of the
simulator is illustrated in figure (2)

The coordinate systems used to describe the dynamics of
the spacecraft simulator are illustrated in figure (3), i.e. the
inertial frame, the path-fixed frame and the body-fixed frame.
As the predefined path is a straight line, which is stationary
with respect to the inertial frame, the body-fixed frame and
the path-fixed frame are sufficient to describe the dynamics
of the spacecraft simulator.

Based on rigid body dynamics, the model of spacecraft
simulator is derived as follows, detailed derivation can be
found in [11].

 νbx
νby
ωr

 =

 cosψr sinψr 0
−sinψr cosψr 0

0 0 1

 ẋr

ẏr

ψ̇r

 (15)



Fig. 3. Coordination systems


ν̇bx =

1

m
(mνbyω

r + τ1)

ν̇by = −νbxωr

ω̇r =
1

J
(τ2)

(16)

where (xr,yr) are the position of the spacecraft simulator
expressed in the path-fixed frame, ψr is the orientation of
the spacecraft simulator with respect to the path-fixed frame,
νbx and νby are the velocity coordinates of the spacecraft
simulator in the body-fixed frame, τ1, τ2 are control moment,
i.e. force and torque respectively, m = 17.2kg and J =
1.03kg ·m2 are the mass and the moment of inertia of the
spacecraft simulator respectively.

The model of the effectors is as[
τ1
τ2

]
= C(θ)u (17)

where C(θ) =

[
θ1 − θ2 θ3 − θ4

−Rθ1 Rθ2 Rθ3 −Rθ4

]
is the con-

trol effectiveness matrix, u ∈ R4 is the control input of
actuators, that is the duty ratio of the driving PWM (Pulse
Width Modulation) signal, u ≥ 0, R is the distance from
the point where the thruster act on the body to the vertical
symmetric axis of the spacecraft simulator.

The planar spacecraft simulator has 3 variables to control,
i.e. (xr, yr, ψr), while there are four control inputs. Like
many practical spacecrafts, the planar spacecraft simulator
is a typical over-actuated system.

The model of the simulator (15) and (16) can be expressed
in the following compact form:

χ̇ = f(χ) +Gr(θ)u (18)

where χ = [xr yr ψr νby νbx ωr]T , Gr(θ) =[
O4×4
G(θ)

]
with Gθ =

[
1/m 0

0 1/J

]
C(θ)

For C(θ) can be decomposed as

C(θ) =

[
1 − 1 1 − 1
−R R R −R

]
θ1 0 0 0
0 θ2 0 0
0 0 θ3 0
0 0 0 θ4


, assumption 2 holds true for G(θ).

Fig. 4. Geometrical illustration of the reference orientation ψr

To satisfy assumption 4, a high-level motion controller that
stabilizes the overall system is designed.

Borrowing the basic idea from [5], the control moment τ1
is designed as :

τ1 = −k1(νbx − (νbx)ref ) +m(ν̇bx)ref −mνbyωr (19)

where k1 > 0 is a positive constant, (νbx)ref is the reference
velocity along the x-axis of the body-fixed frame, which is
given by (see figure 4 for the geometric explanation):

(νbx)ref =
√

(νrx)2ref + (νry)2ref (20)

being (νrx)ref = c a predefined constant velocity, and
(νry)ref ) = −k4yr the given velocity along the y-axis
direction of the path-fixed frame.

The other control moment τ2 is designed to stabilize the
orientation loop.

τ2 = −k2(ωr − ωrref )− k3(ψr − ψrref ) + Jω̇rref (21)

where the reference orientation ψrref (see figure 4) is given
as

ψrref = tan−1(
(νry)ref

(νrx)ref
) = tan−1(

−k4yr

c
) (22)

.
Differentiating ψrref with respect to time in conjunction

with equation (15), we get the reference angular velocity
ωrref as

ωrref =
−k4(νry)2ref

(νrx)2ref + (νry)2ref
(νbxsin(ψr) + νbycos(ψ

r)) (23)

The stability analysis can be accomplished by applying the
cascade system theory. It is not the emphasis of this paper
and therefore not be given here.

Next the digital simulation are implemented to illustrate
the performance of the adaptive control allocation algorithm.
A instance where the parameters vary slowly while non-
adaptive control allocation algorithm (direct allocation al-
gorithms regardless of parameter uncertainty) is taken as
the reference point. The nominal value of parameter θi =
1.8, i = 1, 2, 3, 4 and is assumed to be constant.
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Fig. 5. The comparison of νbx and ν̂bx
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Fig. 6. The comparison of νby and ν̂by

In the digital simulation, a slowly varying vector
θ1(t)
θ2(t)
θ3(t)
θ4(t)

 =


2[1 + 0.1sin(0.1t)]

1.9[1 + 0.1sin(0.1t+ 2)]
1.7[1 + 0.1sin(0.1t+ 9)]
1.8[1 + 0.1sin(0.1t+ 10)]

 is used as the

practical parameter vector.
The given path is a straight line yrref = 0, the initial

position is
[
xr(0)
yr(0)

]
=

[
0
−10

]
, the commanded velocity

along the given path is 0.02m/s, the given orientation is
ψr = 0.

The parameters of the controller are designed as k1 =
0.2, k2 = 0.2, k3 = 0.2, k4 = 0.45. Observing the structure
of Gr(θ) in (18), it can be seen that θ̂ depends only on
νbx and ωr, so we choose x̂ = [ν̂bx ν̂by ω̂r]T , and design

Kx =

 0.9 0 0
0 0.5 0
0 0 0.7

.

Figure 5, 6 and 7 illustrate the comparison of νbx, ν
b
y, ω

r

and the corresponding estimated variables. From figure 5, 6
and 7, it can be easily seen that the error between the esti-

mated state and the actual state

 νbx − ν̂bx
νby − ν̂by
ωr − ω̂r

 tends to zero

rapidly. This validates the correctness of theorem 1. Figure
8 shows the time evolution of the estimated parameters. It
can be seen that the estimated parameters are not equal to
the corresponding true values, which verifies the conclusion
of theorem 1.

Part of intermediate variables are given to show the effec-
tiveness of the adaptive control allocation algorithm. Figure
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Fig. 7. The comparison of ωr and ω̂r
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Fig. 8. The comparison of ωr and ω̂r
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Fig. 9. The force response with the adaptive control allocation algorithm
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Fig. 10. The force response without the adaptive control allocation
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algorithm
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Fig. 14. The path following performance without adaptive control alloca-
tion algorithm

9 and 10, 11 and 12 illustrate the comparison of the force
response and torque response respectively. Both the force and
torque responses are improved drastically when the adaptive
control allocation is applied. Figure 13 and 14 compares the
path following performance. The path following performance
is improved tremendously with the adoption of the adaptive
control allocation algorithm. Figure 13 shows a static bias
exists for the path following error, this is caused by the
high-level controller, for only stability is achieved for the
whole system as proved by theorem 2. Without the adaptive
control allocation algorithm, the path following performance
deviates when the parameter varies, as shown in figure 14.

V. CONCLUSIONS
In this paper, an adaptive control allocation algorithm is

designed for nonlinear vehicles with parameter uncertainty
and variation. Theoretical analysis is given to prove the sta-
bility of the whole control system with the control allocation
algorithm. Digital simulation is implemented to validate the
effectiveness of the algorithm.

In future works, the adaptive control allocation algorithm
will be extended to nonlinear effectors with parameter un-
certainty, with the dynamics of the actuator is considered.
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