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Abstract 

Little is known about the performance of unreinforced interlocking block masonry walls made using 

CINVA-Ram blocks subjected to static compression loads. In a laboratory study, Pozzolanic cement 

(C), hydrated lime (L) and rice husk ash (RHA) were used to stabilize laterite soil with sandy clay 

loam texture. The stabilized blocks were used to make three types of walls. The results indicated that 

block compressive strength, water absorption and durability (1-minute abrasion test) were within the 

recommended levels at the optimum stabilizer percentages. The wall failure modes were characterised 

by either diagonal cracking of individual blocks or spalling of block debris. The performance of 

interlocking block walls in load capacity can be divided into three parts: (1) slow closure of gaps, (2) 

rapid load uptake, and (3) wall failure. This paper has established that interlocking wall compressive 

strength can be increased while the vertical deflection reduced at the optimum stabiliser content. 

Keywords: Durability, interlocking block wall, static loading, bricks 

1. Introduction 

The construction industry has over the years experienced introduction of different earth construction 

techniques geared towards improving the quality of earth construction. The interlocking stabilized soil 

block (ISSB) technology encourages sustainable construction. These blocks are manufactured by 

compressing stabilized soil in a mould with a manual or hydraulic press, and subsequent curing. The 

amount of stabilizer content mainly depends on soil characteristics and the desired strength. The 

interlocking mechanism enhances block stability and horizontal and vertical alignment of the 

constructed wall. The loads applied on an interlocking masonry wall are transmitted from one block 

directly to another and not through an intermediary mortar layer [1]. The absence of mortar in the bed 

and head joints of interlocking masonry wall may, however contribute to geometric imperfection. This 
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may lead to a different structural behaviour from that of conventional masonry wall when loaded 

under vertical (in-plane) or under horizontal (out-of-plane) loads. 

Locally available laterite soils may not be suitable for block making due to weak or low bearing 

capacity. Therefore, different materials having cementitious properties and those that are pozzolanic 

in nature are added in order to stabilize the soils. In this study, pozzolanic cement, hydrated lime and 

rice husk ash (RHA) were used in laterite soil stabilization. Cement reacts with water in soil mixture 

to form an insoluble cementation colloidal gel. A study [2] on stabilization of laterite soil reported a 

28-day block compressive strength of 2.5N/mm
2
 with a cement content of 5%. Attempts to 

independently utilize lime in making stabilized earth blocks have been made out by several 

researchers [3,4]. An ultimate 28-day unconfined compressive strength of 2.4N/mm
2
 for laterite soil 

with 4% RHA added to cement content of 8% has been recorded by [5]. 

Masonry walls are mostly utilised in supporting compressive and horizontal loads [6]. Therefore, the 

structural performance of the wall to these loading conditions is of critical concern. A study by [7] on 

limit analysis of shear wall under lateral loads found that masonry walls may fail by separation, 

sliding and crushing of the block interfaces. 

In various studies, the performance of interlocking block masonry walls under compression loading 

and horizontal loading has been done. Full scale wall panels were tested [1] under axial compression, 

lateral tension and flexural bending loads and concluded that the compressive strength of the wall was 

directly proportional to the strength of the masonry units. The test also found that the wall panel under 

lateral loads tended to lift at the base and rotated about the middle section of the wall before failure of 

the wall. Increase of eccentricity from the centre has been found [8] to reduce the strength of 

interlocking masonry wall. A test by [9] on interlocking walls grouted and reinforced with steel bars 

found that a larger height-to-width aspect ratio causes strength reduction in a wall, however it tended 

to increase ductility of the system. They also found that the lateral load resistance of a flexure wall 

will be reduced due to presence of a window at its centre. A study on the effect of soil stabilization on 

the failure pattern of interlocking soil block walls [10] established that under compression loading, 
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un-stabilized soil block walls developed random vertical cracks while blocks stabilized with 2% 

municipal solid waste ash had cracks that propagated diagonally at an angle of 45 degree from the 

point of application. It was in [10] conclusion that the elimination of mortar in interlocking block 

walls made the failure not to depend on the weak bonds but on the characteristics of individual blocks. 

In the previous studies, masonry walls have been tested with the vertical and horizontal loads being 

applied independently or with induced eccentricity on loading. A masonry wall in practice however, is 

subjected to vertical and horizontal loads simultaneously. The wall response to such loading is 

expected to be different. The aim of this paper therefore, is to evaluate the effect of pozzolanic 

cement, hydrated lime and RHA on the performance of unreinforced laterite soil block walls made 

using CINVA-Ram interlocking blocks subjected to vertical (in-plane) and horizontal (out-of-plane) 

compression loads simultaneously. The parameters measured included block compressive strength, 

masonry wall ultimate load capacity, vertical load displacement, stress-strain relationship and the 

failure mechanism. 

2. Materials and methods 

2.1. Test materials 

The laterite soil used in this study was collected from Kiambu County, an area at the geographical 

coordinates of 1.1748°S and 36.8034°E. The laterite soil is commonly used for making stabilized 

blocks. The soil was obtained at a depth of 1 m below the earth surface in order to avoid the inclusion 

of humus materials. It consisted of about 25% fine gravel and 75% sand. The soil, classified according 

to the unified soil classification system as having a texture of sandy loam. The laterite soil plasticity 

index (12.1%) lies in the range (5 – 15%) proposed by [11] for soils which can be effectively 

stabilized using pozzolanic cement (Table 1). In this study, Portland pozzolanic cement 32.5N was 

used. The cement was sourced from a hardware in Kiambu County. 

Lime has been found effective in stabilizing plastic clayey soils, ranging from clays to silty clays with 

plasticity indices greater than 10 leading to long term strength gain as reported by several researchers 

[12,13]. Commercial hydrated lime, Rhino lime, produced by Athi River Mining Company was used 
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in this study. The lime had 94% calcium hydroxide, 72% calcium oxide, and other elements like 

magnesium oxide and silica. 

RHA has been found by [14] to freely react with extra lime present in cement thus encouraging 

pozzolanic reactions. The rice husk ash therefore was used in this study to replace commercial 

hydrated lime. The ash was sourced from un-controlled burning source at Mwea rice irrigation 

scheme, Kenya. The RHA was sieved through 150μm sieve before using as a stabilizer. 

Table 1: Atterberg limits properties of laterite soil 

 Type of test 

Specimen Liquid 

limit (%) 

Plastic limit 

(%) 

Plasticity 

index (%) 

Linear shrinkage 

(%) 

Laterite soil 29.0 16.9 12.1 7.5 

Laterite soil + 6%C 39.1 31.3 7.8 5.5 

Latetite soil + 6%C3%L 37.2 Non plastic - 5.8 

2.2. Material preparation and testing 

The stabilizers (pozzolanic cement, hydrated lime and RHA) were replaced in percentage of dry 

weight of the soil. The interlocking blocks were moulded using CINVA-Ram press machine, 

producing units of dimensions 220 mm (length) x 220 mm (width) x 120 mm (height). The optimum 

stabilizer dosages were determined by testing the moulded blocks on curing for 7, 14 and 28 days. 

The physico-mechanical and durability properties of individual block units were established in 

accordance to [15]. The blocks that provided the highest compressive strength and had the best 

durability were used for construction of experimental walls. 

The water uptake ability of the blocks was also determined in accordance with [15]. Two blocks that 

were cured for 28 days were randomly selected, weighed and submerged in a water bath for up to 24 

hours. The blocks were then removed from water and re-weighed. 
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The abrasion test was carried out by use of a horizontal belt sander model HYS-900 having a 

frequency of 60 rpm. The sander utilised a sand paper belt of type GXK50-P60 with a width of 

180mm. The blocks were subjected against the belt for a duration of one minute before determining 

their final weight. 

Three types of wall panels, Laterite soil wall 1(LSW1), Laterite soil wall 2 (LSW2), and Laterite soil 

wall 3 (LSW3) of size 900 mm (length) x 1200 mm (height) were prepared in accordance to [16]. The 

length to thickness (l/t) and height to thickness (h/t) ratios were 4.09 and 5.45 respectively for all wall 

panels. The blocks were stacked utilising the interlocking system provided by the blocks. A grooved 

steel plate was placed at the top course of the wall to cover the projection and uniformly distribute the 

load. Horizontal loading was applied against a load cell placed on a steel plate (Figure 1). The vertical 

compressive strength was tested perpendicular to the bed joints without the effects of eccentricity. The 

wall vertical displacement was determined at mid length while lateral displacement was determined at 

three points equally spaced at 325 mm using linear variable displacement transducers (LVDT). The 

testing procedure was divided into two phases; first the vertical load was applied up to about 75% of 

the ultimate compressive load before the horizontal load was introduced. This was to represent pre-

existing vertical compression in masonry walls before they are subjected to horizontal loading. The 

loads were then applied simultaneously until failure of the wall. 
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Figure 1: Experimental test set up for the wall 

3. Results and discussion 

3.1 Effect of stabilizers on interlocking block properties 

3.1.1.  Compressive strength of stabilized blocks 

Based on the test results, there was a consistent gain in compressive strength with curing days on 

adding pozzolanic cement, hydrated lime and RHA to laterite soil (Figure 2). The correlation 

coefficients obtained for percentage of cement stabilization only and the gain of strength of the blocks 

were 0.940, 0.952 and 0.891 on 7, 14 and 28 days respectively. A fairly strong correlation was 

established on 7 and 14 days with the lowest coefficient on 28-day. This indicates that pozzolanic 

cements’ contribution to block compressive strength is higher on early days of curing and reduces 

with progression of days. These results were in agreement with the findings of [17]. It was observed 

that blocks stabilized with 6% cement only were 67% stronger than those stabilized with 4.8% cement 

on day 7 (Figure 2a). It has also been established [18] that with the presence of Portland cement in 

soil, calcium ions are easily provided that aid in improving the soil engineering properties. Therefore, 

the increase in compressive strength with cement dosage can be explained by the fact that the higher 



7 
 

cement content greatly enhanced the hydration process due to high amounts of calcium ions 

introduced. 

A highest 28-day compressive strength of 4.03MPa was reached on adding 3% of hydrated lime in 

presence of 6% pozzolanic cement. The addition of 3%lime caused a 42% increase on 28-day 

compressive strength as compared to a 33% increase in absence of lime. For blocks produced with 

hydrated lime quantities lower than 3% they had relatively low compressive strength. It is reported by 

[19] that when lime is added to clay soil it is first absorbed by the clay mineral until lime affinity for 

the soil is achieved. This amount of lime, [19] argues that is between 1% and 3% by weight of the 

soil. Therefore, lower dosages of lime may not be sufficient to increase the pH of the soil matrix to 

release silica and make it available for producing cementitious gel needed to stabilise the soil. This 

could probably be the reason for marginally lower compressive strength of blocks stabilized with 1% 

and 2% lime blended with 6% cement (Figure 2b). 

 

(a) Laterite soil + cement    (b) Laterite soil + cement + lime 
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(c) Laterite sol + cement + RHA 

Figure 2: Compressive strength of laterite soil stabilized blocks 

Figure 2(c) shows that the addition of 1% RHA to a given 6% of cement, led to the highest 28-day 

compressive strength (2.93MPa). It was also observed that, in most cases, there is a decrease in 

compressive strength with increase in RHA. However, in comparison to the effect of adding 1% lime 

to 6% cement, the lime-cement blocks had a 28-day compressive strength 20% higher than adding 1% 

RHA. It can be inferred from the results that cement-lime-laterite soil mixture leads to blocks of 

higher compressive strength as compared to cement-RHA-laterite soil. The reason can be attributed to 

the insufficient availability of free lime for pozzolanic reaction in the cement-RHA-laterite mixture. 

Also, the presence of excess RHA cannot be easily mobilized for pozzolanic reaction which 

consequently occupies space within the soil thus reducing the strength. This was consistent with the 

findings of [20]. 

3.1.2.  Water absorption by blocks  

Generally, the total water absorption for laterite soil blocks indicated that increase of cement dosage 

led to reduction of water absorption (Figure 3a). Increasing pozzolanic cement content from 4.8% to 

6% in laterite soil resulted in 9% reduction in water absorption by the blocks (Figure 3a).  These 

results were expected because cement binds the laterite particles together thereby reducing the sizes of 

the pores through which water could flow into the blocks. 
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The increase in hydrated lime content in presence of 6% cement led to decrease in water absorption 

(Figure 3b). It has been found [21] that when hydrated lime is used in soil modification, the calcium 

ions from the hydrated lime migrate to the surface of the clay particles and displace water and other 

ions. This has an effect of drying the soil through flocculation of the particles. The results show that 

adding 2% lime in presence of 6% cement has a positive effect in increasing the water absorption 

resistance of the blocks. 

Contrary to water reduction in pozzolanic cement stabilization alone, there was an increase from 8.61 

to 11.60% in water absorption on increasing RHA from 1% to 3% (Figure 3c). This phenomenon was 

found by [22] to be contributed by the weakening of the interparticle bonding that could have formed 

by the soil particles. 

The results evidenced that blocks incorporating RHA have less absorptive capacity as compared to 

those with hydrated lime of the same content in presence of 6% cement. Therefore, replacing hydrated 

lime with RHA lowers the water absorption of laterite soil blocks. As noted by [23], hydrated lime 

combines with water more than RHA despite the RHA having a finer particle size. This agrees well 

with this research since blocks stabilized with hydrated lime had higher absorption than those of RHA 

(Figure 3b). However, the maximum water absorption of 15% recommended by [15] was satisfied by 

the stabilized blocks. 
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(c) Laterite soil + cement + RHA 

Figure 3: Water absorption by stabilized laterite soil blocks 

3.1.3.  Abrasion resistance of laterite soil blocks 

The total loss of mass due to abrasion at the block surface decreased with increase in hydrated lime 

content (Figure 4a). The material erosion reduces from 0.58 to 0.27% when hydrated lime content 

increases from 0 to 4%. Thus, representing a 53% reduction of the abraded material. This indicated 

that abrasion resistance is enhanced with increase in hydrated lime content in laterite soil blocks. 

The amount of abraded material decreased with increasing RHA content up to 2% and further addition 

of RHA caused an increase in the abraded material (Figure 4b). It has been reported by [24] that 

presence of calcium ions from cement react with silica from RHA to aid in strength development. 

However, increasing the quantity of RHA decreases the strength due to lack of adequate calcium ions 

for the continuation of reaction. This explains the observed behaviour of Figure 4(b) where the blocks 

durability was reduced beyond the optimum quantity of 2%RHA. Comparatively, the durability of 

both hydrated lime and RHA stabilized blocks is generally enhanced equally up to 2% replacement 

(Figure 4). However, beyond the 2% stabilizer content, durability is better achieved with hydrated 

lime than RHA stabilization. 
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Based on the test results of the individual interlocking blocks, the properties of the blocks used in 

making the experimental walls are summarised in Table 2. 

 

(a) Laterite soil with cement and lime (b) Laterite soil with cement and RHA 

Figure 4: Abrasion resistance of stabilised Laterite soil blocks 

Table 2: Physico-mechanical and durability properties of experimental soil blocks 
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pattern 
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6%C1%RHA LSW3 Laterite 2.93 8.61 0.49 Conical failure 
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of fissures on individual blocks and finally propagation of cracks without opening up of joints. This 

could be attributed to the efficiency of the interlocking mechanism of the blocks. The horizontal load 

led to spalling of the blocks due to gradual opening of the cracks that were created by vertical loading. 

The wall then experienced gradual sway with increasing horizontal load; the bottom part of the wall 

having a lesser vertical sway due to additional self-weight of the wall (Figure 5a). 

  

(a) LSW1      (b) LSW2 

 

(c) LSW3 

Figure 5: Crack propagation and wall failure modes for stabilized laterite soil 

The failure of LSW2 was characterised by falling of block debris which spalled off due to the increase 

of horizontal loading. Cracks with wider widths mainly occurred at the middle height of the wall as 

compared to those at the top and bottom courses of the wall (Figure 5b). It was observed that 

increasing the lateral loading contributed to alignment of protruded blocks but ultimately pushed the 
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wall out of vertical plane. There was presence of side cracks on the wall once the ultimate load of 

LSW2 was reached. 

The mode of failure in LSW3 panel was by cracks that developed first mainly at the bottom layers 

(Figure 5c). The cracks occurred through individual blocks just below the block header joint. There 

was gradual opening up of crack width with increase of vertical load but the wall did not experience 

spalling of materials. It was observed in all wall types, that the layer immediately below the spreader 

beam did not crack substantially to lead to collapse even when the other layers had failed. This 

phenomenon can be attributed to the deepening effect of the steel beam to the top layer in transferring 

the load to the entire wall. 

The LSW1 ultimate compressive stress (0.9MPa) was 26% that of the individual interlocking blocks 

(3.46MPa). The correlation analysis between the compressive strength of LSW1 and that of the 

interlocking block was found to be 0.649 indicating a positive linear relation. The reason for a lower 

compressive strength has been found out to be contributed by the presence of a soft layer of mortar in 

the case of conventional masonry [26]. However, for interlocking masonry this can be caused by the 

blocks interface joints which leads to large displacements and structural instability. 

The first crack on LSW1 occurred at a vertical load value of 15.96kN which was 15% of the ultimate 

strength of the wall. As the vertical load was increased, the wall bulged outwards as there was 

considerable expansion of the block interface joints. The wall attained a maximum vertical load of 

106.49kN with a vertical deflection of 40mm (Figure 6a). The wall sustained a maximum horizontal 

load of 8.85kN which was 8% of the ultimate compression load. 

The LSW2 sustained a maximum vertical load of 128.61kN with a vertical deflection of 36.16mm 

(Figure 6b). The results indicated that the ultimate compressive strength of LSW2 wall was 27% that 

of individual block. A regression analysis of the ultimate strengths of the wall and individual blocks 

indicated a positive correlation coefficient of 0.689. The addition of 3% lime to laterite soil caused 

20% increment of strength capacity of the wall. This also led to a 9.6% reduction on the vertical 
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deflection at failure. These findings show that addition of lime to laterite soil makes the walls to have 

higher compressive strengths but they tend to be brittle. 

A maximum vertical compression load of 135.09kN with a vertical deflection of 39.06mm was 

achieved by LSW3. The presence of 1%RHA in laterite soil stabilized with 6% cement resulted in 

increase of ultimate compressive strength capacity of the wall from 106.49kN to 135.09kN. This also 

led to 2% reduction of vertical deflection at failure. The LSW3 sustained a horizontal load of 

19.75kN. The addition of 1%RHA to laterite soil stabilized with 6% cement resulted with walls of 

compressive capacity 7% higher than adding 3% lime. 

 

(a) LSW1 Panel     (b) LSW2 Panel 

 

(c) LSW3 Panel 

Figure 6: Load-deflection curve for experimental walls 
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The performance of interlocking soil blocks as presented in Figure 6(a), (b) and (c) can be divided 

into three parts: (1) slow closure of gaps, (2) rapid load uptake, and (3) wall failure. In the first part, 

there was rapid increase in deflection as the load was applied. This may be attributed to the closing of 

the interlocking gaps between the blocks. After the closure of the gaps the deformation evened out 

with increase of vertical load. In part two, the walls experienced a rapid increase of load capacity. The 

sharp compression capacity increase occurred at a higher compressive load in LSW3 than in both 

LSW2 and LSW1. This increase on the second part of the curves was sustained until the ultimate load 

was achieved. The cause of the second increase of load capacity can therefore be associated to the unit 

blocks bearing the load as the gaps had closed up making the load to be transferred from one-unit 

block to the other. In the third part, there was a drop of the load curve as the walls had failed. This 

occurred after the ultimate load capacity of the walls was achieved. 

4. Conclusion 

The improvement of the physico-mechanical properties of the interlocking blocks in terms of 

compressive strength, water absorption and durability is a positive aspect of the stabilizers. An 

optimum of 3% lime in laterite soil stabilized with 6% pozzolanic cement exhibited the highest 28-

day compressive strength, with a highest reduction of 24-hour water absorption obtained through 

addition 1%RHA. The walls exhibited good mechanical strength, in spite of their ultimate 

compressive strength being lower compared to that of individual blocks. In relation to the wall 

performance under loading, the load-deflection curves can be divided into three distinct parts. This 

study concludes that; 

 Compressive strength and increased resistance on abraded material of laterite soil blocks is 

optimally achieved with lime but water resistance is best achieved with RHA stabilization. 

 Lime stabilised block wall exhibited higher compressive strengths but they tend to be brittle, 

while RHA stabilized block walls accommodate higher vertical load deflection. 

 The wall failure modes were characterised by either diagonal cracking of individual blocks or 

spalling of block debris. 
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 The zero-mortar layer of interlocking block walls make them to have higher deflection when 

initially loaded before they can rapidly take up the compressive load until failure is 

experienced. 
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