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Downlink Rate Analysis for Virtual-Cell based
Large-Scale Distributed Antenna Systems
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Abstract—Despite substantial rate gains achieved by joint
transmission from a massive amount of geographically dis-
tributed antennas, the resulting computational cost and channel
measurement overhead could be unaffordable for a large-scale
distributed antenna system (DAS). A scalable signal processing
framework is therefore highly desirable, which could be estab-
lished based on the concept of virtual cell.

In a virtual-cell based DAS, each user chooses a few neighbor-
ing base-station (BS) antennas to form its virtual cell, that is, its
own serving BS antenna set. In this paper, we focus on a downlink
DAS with a large number of users and BS antennas uniformly
distributed in a certain area, and aim to study the effect of the
virtual cell size on the average user rate. Specifically, by assuming
that maximum ratio transmission (MRT) is adopted in each user’s
virtual cell, the achievable ergodic rate of each user is derived
as an explicit function of the large-scale fading coefficients from
all the users to their virtual cells, and an upper-bound of the
average user rate is established, based on which a rule of thumb
is developed for determining the optimal virtual cell size to
maximize the average user rate. The analysis is further extended
to consider multiple users grouped together and jointly served
by their virtual cells using zero-forcing beamforming (ZFBF). In
contrast to the no-grouping case where a small virtual cell size
is preferred, it is shown that by grouping users with overlapped
virtual cells, the average user rate can be significantly improved
by increasing the virtual cell size, though at the cost of a higher
signal processing complexity.

Index Terms—Distributed antenna system (DAS), downlink
rate analysis, virtual cell, maximum ratio transmission (MRT),
zero-forcing beamforming (ZFBF).

I. INTRODUCTION

The fast growing demand for data rate has posed unprece-
dented challenges for designers of next-generation (5G) mobile
communication systems. To support a large number of mobile
users with high-data-rate applications such as online gaming
and streaming high-definition video, many new innovative
solutions have been proposed (see [1] for a comprehensive
overview). In general, there are two main ways to improve
the data rate:

1) Utilizing more bandwidth: By moving to the millimeter
wave (mmWave) spectrum, which was widely regarded
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as unsuitable for mobile communications until recently,
large amounts of new bandwidth are now becoming
available.

2) Employing more base-station (BS) antennas: The spec-
tral efficiency can be greatly improved by increasing
the spatial dimensions according to the Multiple-Input-
Multiple-Output (MIMO) theory [2], [3]. Significant
gains have been demonstrated by adopting a massive
number of either co-located BS antennas [4]–[7] (pop-
ularly known as massive MIMO) or distributed BS
antennas [8]–[14].

Among the new solutions, the distributed antenna system
(DAS) is gaining increasing momentum, and emerging as a
highly promising candidate for the 5G mobile communication
systems [15]–[19]. In a DAS, many low-power remote antenna
ports are geographically distributed over a large area and
connected to a central processor by fiber. The appealing
features of distributed antennas have attracted considerable
attention from both industry and academia, and been applied
to the cutting-edge technologies such as small cells1 and the
Cloud Radio Access Network (C-RAN) [20].

A. BS Antennas: Distributed or Co-located

Compared to antenna arrays, the use of distributed antennas
provides a much more efficient utilization of spatial resources.
Specifically, signals to/from distributed BS antennas are sub-
ject to independent and different levels of large-scale fading. In
contrast to the co-located case where the channel from the BS
antenna array to each user becomes increasingly deterministic
as the number of BS antennas grows, the channel randomness
caused by the small-scale fading can be always preserved even
with a large amount of distributed antennas. As a result, if the
channel state information (CSI) is available at the transmitter
side, the enhanced channel fluctuations can be fully utilized
to provide higher water-filling gains and multiuser diversity
gains [21].

More importantly, with distributed BS antennas, the mini-
mum access distance of each user can be greatly reduced by
increasing the density of BS antennas. As a result, different
rate scaling laws have been observed in cellular systems with
co-located BS antennas or uniformly distributed BS antennas
[22]–[24]. For instance, it was shown in [24] that by assuming
that the number of BS antennas and the number of users grow
infinitely with a fixed ratio υ, the asymptotic downlink average

1The cellular system with small cells can be regarded as a special case of
DAS if replacing each remote antenna port by a mini BS and requiring that
each mobile user only communicates to the closest mini BS.
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user rate with maximum ratio transmission (MRT) scales in the
orders of log2 υ and α

2 log2 υ for the co-located and distributed
BS antenna layouts, respectively, where α > 2 is the path-
loss factor. The rate gains achieved by distributed BS antennas
become even more prominent when an orthogonal precoding
scheme such as zero-forcing beamforming (ZFBF) is adopted.

Note that the above results are obtained by assuming a joint
transmission of all the BS antennas. In a large-scale DAS with
hundreds (or even thousands) of geographically distributed
BS antennas, the computational cost and CSI measurement
overhead of such a joint processing would be prohibitively
high. How to establish a scalable signal processing framework
for DASs is a key challenge that needs to be addressed.

B. Virtual-Cell based DAS

To reduce the system complexity, the common practice of
cellular networks is to divide a large area into a number of cells
where a BS is placed at the center of each cell and serves users
who fall into its coverage. As users are randomly located in
each cell which have distinct access distances to their serving
BS, there are always users at cell boundary areas who suffer
from lower power efficiency and higher inter-cell interference.
The performance disparity of users could even be exacerbated
if distributed BS antennas are used in cellular networks, as the
BS antennas at cell boundary areas suffer from significantly
higher inter-cell interference than those at the cell center in
the uplink [22], and become strong interfering sources to the
neighboring cell-edge users in the downlink [23]. As pointed
out in [22], the cell-edge problem has its roots in the cellular
structure where cells are formed based on the coverage of
each BS. Such a BS-centric structure, nevertheless, cannot
be justified when both users and BS antennas are scattered
around. Instead, the signal processing may be performed based
on the unit of “virtual cells” [25]–[27].

In a virtual-cell based DAS, each user chooses its own
serving BS antenna set as its virtual cell. The reason why
virtual cells are formed in a user-centric manner is two-fold:
1) With a high density of distributed BS antennas, each user
may usually find more than one BS antennas in its vicinity to
communicate with; 2) The BS antenna set serving each user
varies with the user’s location. By choosing a few surround-
ing BS antennas as each user’s virtual cell, the number of
channels that need to be measured becomes small, leading
to a much lower CSI measurement overhead compared to
cellular systems with large antenna arrays. More importantly,
by increasing the density of distributed BS antennas, both the
average number of users who share their virtual cells and the
average number of users served by each BS antenna decline
[22], indicating that the signal processing in a large-scale DAS
can be performed in a local and scalable manner.

Note that a few concepts were proposed before which share
similarities to virtual cell, but with remarkable differences. In
cellular networks with coordinated multipoint (CoMP) trans-
mission, for instance, clusters of geographically distributed
BSs are also formed to serve the cell-edge users. In most
studies, however, the clustering is performed in a BS-centric
manner with a fixed and a-priori BS coordination pattern

[28]–[32], which still leads to “cluster-edge” users [29], [32].
Dynamic BS clustering was recently proposed in [33], [34]
as a way of forming coordinated BS clusters based on users’
locations. Yet different from the idea of virtual cell, it still
follows the conventional cellular structure where each user
is associated and served solely by its closest BS, though
BSs coordinate their transmissions by choosing beamforming
vectors to null out the intra-cluster interference.

Such a BS-centric clustering is also highly inefficient for
a large-scale DAS with more BS antennas than users where
some BS antennas may become redundant as no users are
nearby. In this case, the BS antenna selection should be
performed from users’ perspective. Different optimization
frameworks were recently established for a K-user DAS with
L � K distributed BS antennas to maximize the weighted
sum rate [35] or average energy efficiency [36] by optimizing
BS antenna selection, transmission power and precoding vec-
tors. Instead of choosing BS antennas for each user to form
a virtual cell, however, a joint antenna selection is performed
for all the users.

C. Effect of Virtual Cell Size
For virtual-cell based DASs, the virtual cell size, i.e., how

many BS antennas should be included into each user’s virtual
cell, is a key system parameter. In this paper, instead of
formulating a joint optimization of virtual cell selection and
precoding vectors which, similar to the problems considered
in [35], [36], would be intractable due to its non-convex
and combinatorial nature, we consider a relatively simpler
question: for given precoding scheme, what is the optimal
virtual cell size?

Specifically, we focus on a large-scale downlink DAS where
K � 1 users and L � 1 BS antennas are uniformly
distributed in a certain area, and each user chooses V BS
antennas with the highest large-scale fading coefficients as
its virtual cell. We aim to analyze the effect of the virtual
cell size V on the average user rate performance under two
typical scenarios: 1) each user is served by its virtual cell
independently of others, and 2) multiple users are grouped
together with joint transmission from their virtual cells.

In the no-grouping case, MRT is assumed to be adopted
in each user’s virtual cell, and the corresponding achievable
ergodic rate of each user is derived as an explicit function of
the large-scale fading coefficients from all the users to their
virtual cells. As the average user rate is determined by the
joint probability density function (pdf) of the large-scale fading
coefficients that is intractable when the number of BS antennas
L and the number of users K are large, an upper-bound of
the average user rate is obtained to analyze the effect of the
virtual cell size V , based on which a rule of thumb for the
optimal virtual cell size V ∗ is further developed. It is shown
that V ∗ is solely determined by the ratio of the total number
of BS antennas L to the number of users K, which is much
smaller than L when K is large. Simulation results verify that
the rule of thumb provides a good estimation for the optimal
virtual cell size to maximize the average user rate.

Due to no cooperation among virtual cells, users suffer
from significant interference, which greatly degrades the rate
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Fig. 1. Illustration of a downlink virtual-cell based DAS. × represents a user
and Y represents a distributed BS antenna. Each user selects V BS antennas
with the highest large-scale fading coefficients to form its virtual cell.

performance in the first scenario. Therefore, we further con-
sider grouping multiple users and adopt ZFBF to eliminate the
intra-group interference. A novel user grouping algorithm is
proposed, where users whose virtual cells overlap are grouped
together. In contrast to the conventional BS-centric clustering
where users located at the cluster edge still suffer from much
degraded performance due to strong interference from BSs
in neighboring clusters, with the proposed virtual-cell based
user grouping, all the users achieve relatively uniform rate
performance with the lowest rate significantly improved. It is
further shown that different from the no-grouping case where
a small virtual cell size is preferred, in this case, the virtual
cell size V determines a tradeoff between the average user rate
and complexity: with a larger V , the average user rate can be
improved owing to a lower interference level, yet more users
need to be jointly served, leading to higher signal processing
complexity.

The remainder of this paper is organized as follows. Section
II introduces the system model. The rate analysis with MRT
adopted in each user’s virtual cell is presented in Section
III, and user grouping is further considered in Section IV.
Discussions are provided in Section V, and concluding remarks
are summarized in Section VI.

Throughout this paper, the superscript † and T denote
conjugate transpose and transpose, respectively. E[·] denotes
the expectation operator. d·e denotes the ceiling operator. ‖x‖
denotes the Euclidean norm of vector x. IK denotes a K×K
identity matrix. 11×L denotes a 1× L vector with all entries
one. 0L×1 denotes an L × 1 vector with all entries zero.
x ∼ CN (u, σ2) denotes a complex Gaussian random variable
with mean u and variance σ2. |X | denotes the cardinality of
set X .

II. SYSTEM MODEL

Consider a downlink virtual-cell based DAS with K users
and L BS antennas uniformly distributed in a circular area
with unit radius. Denote the set of users as K and the set of

base-station (BS) antennas as B, with |K| = K and |B| = L.
Assume that each user is equipped with a single antenna. As
Fig. 1 illustrates, each user selects V BS antennas with the
highest large-scale fading coefficients to form its virtual cell.
For user k ∈ K, denote its virtual cell as Vk with |Vk| = V .

Let us first assume that each user is served by its virtual
cell independently of others. This assumption will be relaxed
in Section IV, where multiple users are grouped together
and jointly served by their virtual cells. Let us focus on the
downlink performance of user k. The received signal of user
k can be written as

yk = gk,Vkxk,Vk +
∑

j∈K,j 6=k

gk,Vjxj,Vj + nk, (1)

where xk,Vk ∈ CV×1 is the transmitted signal vector from the
virtual cell Vk to user k ∈ K. nk ∼ CN (0, N0) is the additive
white Gaussian noise (AWGN) at user k. gk,Vk∈C1×V denotes
the channel gain vector from the virtual cell Vk to user k,
which can be written as

gk,Vk = γk,Vk ◦ hk,Vk , (2)

where ◦ represents the Hadamard product. hk,Vk ∈ C1×V

denotes the small-scale fading vector with entries modeled
as independent and identically distributed (i.i.d) complex
Gaussian random variables with zero mean and unit variance.
γk,Vk ∈ R1×V is the large-scale fading vector from the virtual
cell Vk to user k. Without loss of generality, we ignore the
shadowing effect and model the large-scale fading coefficient
as

γk,l = ‖rBl − rUk ‖−
α
2 , (3)

where α is the path-loss factor. rBl is the position of BS
antenna l ∈ B and rUk is the position of user k ∈ K.

Moreover, we assume that full channel state information
(CSI) is perfectly known at both the transmitter side and the
receiver side. With linear precoding, the transmitted signal
from the virtual cell Vk to user k can be written as

xk,Vk = wk,Vk · sk, (4)

for any k ∈ K, where sk ∼ CN (0, P̄ ) is the information-
bearing signal and wk,Vk is the precoding vector with
‖wk,Vk‖ = 1. The total transmission power for each user is
assumed to be fixed at P̄ .

The second term on the right-hand side of (1), i.e, uk =∑
j∈K,j 6=k gk,Vjxj,Vj , is the interference received at user k.

With a large number of users and BS antennas, uk can be
modeled as a complex Gaussian random variable with zero
mean and variance Ik, which can be easily obtained from (4)
as

Ik =
∑

j∈K,j 6=k

E
[
gk,Vjwj,Vjw

†
j,Vjg

†
k,Vj

]
P̄

=
∑

j∈K,j 6=k

∑
l∈Vj

aj,l · γ2
k,l · P̄ , (5)

where
aj,l = Ehj,Vj

[
|wj,l|2

]
, (6)

with
∑
l∈Vj aj,l = 1 for any j ∈ K.
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In this paper, we normalize the total system bandwidth
into unity and focus on the spectral efficiency. The achievable
ergodic rate of user k ∈ K can be then written as

Rk = EH

[
log2

(
1 +

P̄gk,Vkwk,Vkw
†
k,Vkg

†
k,Vk

N0 + Ik

)]
, (7)

where the expectation is taken over the small-scale fading
matrix H = [hT1,V1 ,h

T
2,V2 , · · · ,h

T
K,VK ]

T . Let

µk =
P̄‖γk,Vk‖2

N0 + Ik
(8)

denote the average received signal-to-interference-plus-noise
ratio (SINR) of user k. By substituting (8) into (7), the
achievable ergodic rate Rk can be further written as

Rk = EH

[
log2

(
1 + µkg̃k,Vkwk,Vkw

†
k,Vk g̃

†
k,Vk

)]
, (9)

where
g̃k,Vk = βk,Vk ◦ hk,Vk (10)

denotes the normalized channel gain vector from the virtual
cell Vk to user k, and βk,Vk is the normalized large-scale
fading vector with entries

βk,l =
γk,l
‖γk,Vk‖

, (11)

l ∈ Vk. Obviously, we have
∑
l∈Vk β

2
k,l = 1 for any k ∈ K.

It can be clearly seen from (9) that the rate performance is
closely dependent on the precoding scheme adopted by each
user’s virtual cell. In the next section, we will take the example
of MRT to demonstrate the effect of virtual cell size V on the
rate performance.

III. RATE PERFORMANCE WITHOUT USER GROUPING

In the single-user case, it is well known that MRT is optimal
for achieving the system capacity [37]. In this section, we
assume that each user is served by its virtual cell using MRT.
For any user k ∈ K, the precoding vector is given by

wk,Vk =
g†k,Vk
‖gk,Vk‖

. (12)

In the following, we will first derive the achievable ergodic rate
of each user as an explicit function of the large-scale fading
coefficients.

A. Achievable Ergodic Rate Rk with MRT

By substituting (12) into (9), the achievable ergodic rate of
user k with MRT can be obtained as

Rk = Ehk,Vk

[
log2

(
1 + µk‖g̃k,Vk‖2

)]
, (13)

where the average received SINR µk can be obtained by
combining (5), (8) and (12) as

µk =
‖γk,Vk‖2

N0

P̄
+
∑
j∈K,j 6=k

∑
l∈Vj Υ

(
γj,l; {γj,i}i6=l,i∈Vj

)
· γ2
k,l

,

(14)
with Υ (x; b1, b2, · · · , bV−1) given in (15) at the bottom of this
page. Appendix A presents the detailed derivation of (14).

As the normalized channel gain ‖g̃k,Vk‖2 is a hypoexponen-
tial random variable with the corresponding probability density
function (pdf) given by

f‖g̃k,Vk‖2(x) =
∑
l∈Vk

β−2
k,l exp

{
−β−2

k,l x
} ∏
q∈Vk,q 6=l

β−2
k,q

β−2
k,q−β

−2
k,l

,

(16)
by combining (11) and (13-16), the achievable ergodic rate of
user k can be finally obtained as (17), which is shown at the
bottom of this page, where E1 {x} =

∫∞
x
t−1e−tdt.

It is clear from (17) that the achievable ergodic rate of user
k is a function of the large-scale fading coefficients of all
the users, i.e, {γj,l}j∈K,l∈B. Fig. 2 presents the simulation
results of the achievable ergodic rate Rk of a randomly
selected user k given 3 random realizations of the large-scale
fading coefficients2 {γj,l}j∈K,l∈B with the total number of BS
antennas L = 100 and 1000, and the total number of users
K = 50. It can be clearly observed from Fig. 2 that (17)
is accurate and the rate performance of user k is sensitive to
the large-scale fading coefficients {γj,l}j∈K,l∈B. Moreover, by
comparing Fig. 2a and Fig. 2b, we can see that on average,
the achievable ergodic rate can be significantly improved by
increasing the total number of BS antennas L. Yet the effect of
the virtual cell size V on the achievable ergodic rate depends
on the specific realization of the large-scale fading coefficients
{γj,l}j∈K,l∈B.

2More specifically, for each realization, we generate the positions of K
users and L BS antennas which are supposed to be uniformly distributed
in a circular area with unit radius, and then calculate the large-scale fading
coefficients based on (3).

Υ (x; b1, b2, · · · , bV−1) =

 1 if V = 1,∑V−1
m=1

x−2b−2
m (log x−2−log b−2

m −1)+b−4
m

(x−2−b−2
m )

2

∏V−1
t=1,t6=m

b−2
t

b−2
t −b

−2
m

otherwise. (15)

Rk =
∑
l∈Vk

exp


N0

P̄
+
∑
j∈K,j 6=k

∑
m∈Vj Υ

(
γj,m; {γj,i}i 6=m,i∈Vj

)
· γ2
k,m

γ2
k,l

 ·
E1


N0

P̄
+
∑
j∈K,j 6=k

∑
m∈Vj Υ

(
γj,m; {γj,i}i6=m,i∈Vj

)
· γ2
k,m

γ2
k,l

 ∏
q∈Vk,q 6=l

γ−2
k,q

γ−2
k,q−γ

−2
k,l

log2 e.

(17)
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Fig. 2. Achievable ergodic rate Rk of a randomly selected user k versus virtual cell size V under 3 realizations of the large-scale fading coefficients
{γj,l}j∈K,l∈B . α = 4. P̄ /N0 = 10dB. K = 50. (a) L = 100. (b) L = 1000.

For networks with a large number of users, the average rate
performance per user is an important performance metric. In
our case, as the achievable ergodic rate of each user is closely
dependent on the large-scale fading coefficients {γj,l}j∈K,l∈B,
in the following, we would focus on the average achievable
ergodic rate (which is referred to as “average user rate”)
defined by

R̄ , E{γj,l}j∈K,l∈B [Rk] . (18)

We are specifically interested in the effect of the virtual cell
size V on the average user rate R̄.

B. Effect of Virtual Cell Size V on Average User Rate R̄

The achievable ergodic rate Rk of user k is derived in (17)
as an explicit function of the large-scale fading coefficients
of all the users {γj,l}j∈K,l∈B. With BS antennas uniformly
distributed within a circular area, the pdf of the large-scale
fading coefficient from a given user to a BS antenna has
been derived in [21]. Nevertheless, it is difficult to obtain the
joint pdf of all the large-scale fading coefficients {γj,l}j∈K,l∈B
especially when the number of BS antennas L and the number
of users K are large. Therefore, we resort to an upper-bound
to study the effect of the virtual cell size V on the average
user rate R̄ in the following.

1) An Upper-bound of Average User Rate R̄ub: According
to Jensen’s inequality, the achievable ergodic rate of user k
given in (13) is upper-bounded by

Rk ≤ log2 (1 + µk) . (19)

Then the average user rate R̄ defined in (18) is upper-bounded
by

R̄ ≤ E{γj,l}j∈K,l∈B [log2 (1 + µk)] . (20)

It is clear from (14) that the average received SINR µk is
determined by two parts: (a) the normalized average received
signal power

S̃k = ‖γk,Vk‖2, (21)

and (b) the normalized interference power

Ĩk =
∑

j∈K,j 6=k

∑
l∈Vj

Υ
(
γj,l; {γj,i}i 6=l,i∈Vj

)
· γ2
k,l, (22)

which is lower-bounded by

Ĩk ≥ Ĩ lbk =
∑
l∈Vj∗

Υ
(
γj∗,l; {γj∗,i}i 6=l,i∈Vj∗

)
· γ2
k,l, (23)

where j∗ denotes the closest interfering user of user k. An
upper-bound of the average user rate can be then obtained by
combining (14) and (20-23) as

R̄ ≤ R̄ub = E{γj,l}j∈K,l∈B

[
log2

(
1 +

S̃k

Ĩ lbk

)]
. (24)

Appendix B further shows that the upper-bound R̄ub can be
obtained as (25), which is shown at the bottom of the next
page, where Υ(x; b1, b2, · · · , bV−1) is given in (15).

Fig. 3 presents the upper-bound of the average user rate
R̄ub given in (25) under various values3 of the virtual cell
size V with the number of users K = 50 and the num-
ber of BS antennas L = 100 and 2500. For the sake of
illustration, the average entropy of the normalized received
signal power E{γj,l}j∈K,l∈B log2 S̃k and the average entropy
of the lower-bound of the normalized interference power
E{γj,l}j∈K,l∈B log2 Ĩ

lb
k , which are given in (48) and (49) in

Appendix B, respectively, are also plotted in Fig. 3. It can
be clearly seen from Fig. 3a that both E{γj,l}j∈K,l∈B log2 S̃k
and E{γj,l}j∈K,l∈B log2 Ĩ

lb
k increase with the virtual cell size V

and converge when V is large. Intuitively, with a large virtual
cell size V , more BS antennas are included for each user’s
signal transmission, and thus both the received signal power
and the interference power are increased on average. When V

3Note that R̄ub is derived in (25) as a 3V -fold integral. Although the
numerical calculation of multi-dimensional integration can be effectively
performed by using numerical softwares such as Matlab, the computational
complexity sharply increases with V . Therefore, we only present the results
of R̄ub for V ≤ 10.
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Fig. 3. Upper-bound of the average user rate R̄ub versus virtual cell size V . α = 4. P̄ /N0 = 10dB. K = 50. (a) L = 100. (b) L = 2500.

is large enough, however, the newly added BS antennas in each
user’s virtual cell are far away from the user with negligible
contributions under MRT. As a result, the effect of V on the
rate performance becomes marginal. As we can see from Fig.
3a, the upper-bound of the average user rate significantly varies
with the virtual cell size V only when V is small.

It can be also observed from Fig. 3 that there exists an
optimal virtual cell size V ∗ to maximize the upper-bound of
the average user rate, and V ∗ depends on the total number of
BS antennas L. Specifically, with L = 100 in Fig. 3a, R̄ub is
maximized when V = 1. When L increases to 2500, it can be
seen from Fig. 3b that the optimal virtual cell size V ∗ becomes
larger than 1. As the optimization of R̄ub, which is obtained
in (25) as a multi-fold integral, is intractable, we will develop
a rule of thumb for choosing the optimal virtual cell size V ∗

in the next subsection.

2) A Rule of Thumb for Optimal Virtual Cell Size V ∗:
To visualize the effect of the virtual cell size V on the rate
performance, let us first define the radius of a user’s virtual cell
as the distance from this user to its V th closest BS antenna.
Fig. 4 illustrates the radiuses of the virtual cells of user k and

its closest interfering user j∗.4 Intuitively, as the virtual cell
size V increases, the radius of user k’s virtual cell rk becomes
larger, indicating that more BS antennas are included into user
k’s virtual cell and thus the average received signal power
of user k increases. On the other hand, with a larger V , the
radius of user j∗’s virtual cell rj∗ would also increase, with
which more BS antennas transmit to user k’s closest interfering
user j∗, leading to higher interference for user k, as Fig. 3
shows. If V is too large, the virtual cells of user k and user
j∗ would overlap with each other, in which case user k would
suffer from strong interference from user j∗ due to the shared
BS antennas. Therefore, to reach a fine balance between the
average received signal power and interference, we propose to
choose the largest virtual cell size without causing an overlap
of user k and user j∗’s virtual cells. That is,

max V (26)
s.t. rk + rj∗ ≤ dk,j∗ , (27)

4Similar to the derivation of the upper-bound R̄ub, here we only consider
user k’s closest interfering user j∗ whose signal contributes the most to the
interference of user k.

R̄ub =
2V+1

πV
(K − 1)

(
L!

(L− V )!

)2 ∫ 1

0

z
(
1− z2

)K−2
∫ 1

0

∫ yV

0

∫ yV−1

0

· · ·
∫ y2

0︸ ︷︷ ︸
V−fold

(
1− y2

V

)L−V

·
V∏
i=1

yi

∫ 1

0

∫ xV

0

∫ xV−1

0

· · ·
∫ x2

0︸ ︷︷ ︸
V−fold

(
1− x2

V

)L−V V∏
i=1

xi

∫ 2π

0

∫ 2π

0

· · ·
∫ 2π

0︸ ︷︷ ︸
V−fold

· log2

1 +

∑V
i=1 x

−α
i∑V

i=1 Υ
(
y
−α2
i ; y

−α2
1 , · · · , y−

α
2

i−1 , y
−α2
i+1 , · · · , y

−α2
V

)
· (y2

i + z2 + 2yiz cosωi)
−α2


dω1dω2 · · · dωV dx1dx2 · · · dxV dy1dy2 · · · dyV dz. (25)
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Fig. 4. Illustration of the radiuses of the virtual cells of user k and its closest
interfering user j∗. × represents a user and Y represents a distributed BS
antenna.

where dk,j∗ is the distance between user k and user j∗. As we
focus on the average user rate, we further relax the constraint
to

E{γj,l}j∈K,l∈B [rk + rj∗ ] ≤ d̄k,j∗ , (28)

where d̄k,j∗ = E{γj,l}j∈K,l∈B [dk,j∗ ].
Appendix C shows that the solution of the optimization

problem defined in (26) and (28) is given by

V ∗ =
L

4

(
K − 1

(K − 2)
3
2

(
−(K − 2)

1
2 e−(K−2) +

1

2
Γ

(
1

2
, 0

)
−1

2
Γ

(
1

2
,K − 2

)))2
for large K
≈ 0.2

L

K
, (29)

where Γ(s, x) =
∫∞
x
ts−1e−tdt. (29) indicates that the optimal

virtual cell size V ∗ is solely determined by the ratio of
the number of BS antennas L to the number of users K.
Intuitively, with an increasing number of BS antennas L, more
BS antennas should be included in user k’s virtual cell to
improve the average received signal power. In contrast, if the
number of users K increases, the virtual cell size V should
be reduced to avoid the overlap of different virtual cells. Note
that the size of each virtual cell should be an integer and no
smaller than 1. Therefore, (29) should be further refined as

V ∗ =

⌈
0.2

L

K

⌉
. (30)

3) Simulation Results: Fig. 5 presents the simulation results
of the average user rate R̄ when the ratio of the number of BS
antennas L to the number of users K is fixed at 2, 20 and 50.
For demonstration, the upper-bound of the average user rate
R̄ub given in (25) is also plotted. It can be clearly seen that
R̄ varies with the virtual cell size V in the same manner as
its upper-bound R̄ub. That is, it monotonically decreases as V
increases when the ratio L/K = 2. If L/K = 20 or 50, in
contrast, it first increases with V and then decreases. Fig. 5
also shows that to optimize the average user rate, the virtual
cell size V should be properly chosen. A rule of thumb for
the optimal virtual cell size V ∗ has been developed in (30).
According to (30), the optimal virtual cell size V ∗ needs to
be enlarged as the ratio of the number of BS antennas L to

1 10 100 1000
0

2

4
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10

12

2500

  
(b

it
/s

/H
z
)

R Eq. (25)

Simulation

* 4V  

V

* 1V  

* 10V  

L/K

L/K

L/K

Fig. 5. Average user rate R̄ versus virtual cell size V . For demonstration,
the upper-bound of the average user rate R̄ub given in (25) is also plotted.
α = 4. P̄ /N0 = 10dB. K = 50. L/K = 2, 20, 50.
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Fig. 6. Maximum average user rate and average user rate with V ∗ given in
(30) versus the ratio of the number of BS antennas L to the number of users
K. α = 4. P̄ /N0 = 10dB. K = 50.

the number of users K increases. Fig. 5 corroborates that as
L/K increases from 2 to 50, the optimal virtual cell size to
maximize the average user rate should be increased from 1 to
10.

To further demonstrate the effectiveness of the rule of thumb
for the optimal virtual cell size V ∗, Fig. 6 presents the average
user rate with V ∗ given in (30) and the maximum average user
rate which is obtained by performing an exhaustive search over
a range of V from 1 to L. As Fig. 6 shows, the average user
rate with V ∗ given in (30) is very close to the maximum
average user rate, which corroborates that the rule of thumb
derived in (30) can provide a good estimation of the optimal
virtual cell size.

Note that (30) shows that with a large number of users,
the optimal virtual cell size is much smaller than the total
number of BS antennas L, which indicates that compared
to a joint transmission from all the BS antennas, choosing a
small number of adjacent BS antennas not only greatly lowers
the complexity, but also leads to superior rate performance.
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Fig. 7. Illustration of BS clustering. The BSs are divided into 4 clusters with
10 BSs in each cluster. × represents a user and ◦ represents a BS. The cell
edge is plotted in dotted lines and the cluster edge is plotted in solid lines.
L = 40. K = 20.

Moreover, we can see from (30) that selecting the closest BS
antenna, i.e., V = 1, is optimal only when the ratio L/K is
small. For the future 5G mobile communication system which
is expected to deploy a high density of BS antennas, multiple
BS antennas would need to be selected to form each user’s
virtual cell.

IV. RATE PERFORMANCE WITH USER GROUPING

In Section III, we have analyzed the average user rate when
no cooperation is adopted among different users’ virtual cells.
In that case, each user suffers from considerable interference,
which greatly degrades the rate performance. In this section,
we further consider grouping multiple users together with
coordinated transmission from their virtual cells.

A. Virtual-Cell based User Grouping

As we mentioned in Section I, for cellular systems with
CoMP transmission, multiple BSs are normally clustered so as
to improve the rate performance of cell-edge users. As we can
see from Fig. 7, in this case, users located at the cluster edge
still suffer from much degraded performance due to strong
interference from BSs in neighboring clusters. The edge effect
indeed originates from the BS-centric structure. As different
users could be geographically close to different sets of BSs,
clustering BSs would always lead to a few “unlucky” ones
whose closest BSs do not belong to the same cluster and thus
cannot coordinate their transmissions. To ensure that every
user is served by its best BS set, the grouping should be user-
centric, and the information of users’ virtual cells should be
fully utilized for user grouping.

More specifically, in a virtual-cell based DAS, since each
user forms its virtual cell by selecting V closest BS antennas,
users who are close around tend to choose the same, or
partially the same, BS antenna set as their virtual cells, and
cause strong interference to each other if no coordination is
performed among their virtual cells. Therefore, we propose the

Algorithm 1 Virtual-Cell based User Grouping
1: Initialization: Each user k ∈ K selects its V closest BS

antennas to form its virtual cell Vk. m = 0.
2: while K 6= ∅ do
3: ∀ any user k ∈ K, set the user group Km = {k} and

the BS antenna set Bm = Vk. Delete user k from K.
4: while Bm ∩ (∪j∈KVj) 6= ∅ do
5: for j ∈ K do
6: if Vj ∩ Bm 6= ∅ then
7: Km = Km∪{j} and Bm = Bm∪Vj . Delete

user j from K.
8: end if
9: end for

10: end while
11: m = m+ 1.
12: end while

following virtual-cell based user grouping algorithm: For any
users k, j ∈ K, if their virtual cells overlap with each other,
i.e., Vk ∩ Vj 6= ∅, then group them together and merge their
virtual cells. Repeat this step until the whole user set is divided
into disjoint subsets. The detailed description is presented in
Algorithm 1.

Fig. 8 presents the grouping results by applying the pro-
posed virtual-cell based user grouping algorithm to the topol-
ogy given in Fig. 7. It can be clearly seen that in contrast
to Fig. 7 where the cluster-edge users suffer from strong
interference from adjacent BSs, every user is always served
by at least V closest BS antennas. By doing so, all the users
achieve relatively uniform rate performance with the lowest
rate significantly improved compared to the BS clustering case,
as we will demonstrate in the following subsection.

B. Achievable Ergodic Rate Rk with ZFBF
Let us first extend the system model proposed in Section II

to incorporate user grouping. Denote Km as the user group that
user k belongs to, and Bm as the corresponding BS antenna set
serving the users in Km, i.e., Bm = ∪j∈KmVj . The received
signal of user k can be then written as

yk =gk,Bmxk,Bm +
∑

j∈Km,j 6=k

gk,Bmxj,Bm

+
∑

j∈Kt,t6=m

gk,Btxj,Bt + nk. (31)

In contrast to (1), the second item of (31) denotes the intra-
group interference, which can be effectively suppressed by
coordinating transmissions of the virtual cells of users in
the same group. In this section, we assume that ZFBF [38]
is adopted in each user group to eliminate the intra-group
interference. For each user group Km, let GKm ∈ C|Km|×|Bm|
denote the channel gain matrix from user group Km to its
serving BS antenna set Bm. FKm denotes the pseudo-inverse
of GKm , i.e, FKm = G†Km(GKmG

†
Km)−1. The precoding

vector wk,Bm for any user k ∈ Km can be then written as

wk,Bm =

{
fk,Km
‖fk,Km‖

if |Bm| ≥ |Km|,
0|Bm|×1 otherwise,

(32)
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(a) (b)

Fig. 8. Illustration of user grouping results with different values of virtual cell size under the same topology as Fig. 7. × represents a user and ◦ represents
a distributed BS antenna. Different user groups are separated by solid lines. L = 40. K = 20. (a) V = 2. (b) V = 3.

where fk,Km is the column vector of FKm corresponding to
user k. Note that in (32), wk,Bm 6= 0 only if |Bm| ≥ |Km|
because ZFBF requires that the number of transmit antennas
is no smaller than the number of receive antennas. The
achievable ergodic rate of user k ∈ Km is then given by

Rk = EHKm

[
log2

(
1 +

P̄gk,Bmwk,Bmw
†
k,Bmg

†
k,Bm

N0 + Ik

)]
,

(33)
where HKm ∈ C|Km|×|Bm| denotes the small-scale fad-
ing matrix from user group Km to its serving BS antenna
set Bm, and the interference power Ik is given by Ik =∑
j∈Kt,t6=m E

[
gk,Btwj,Btw

†
j,Btg

†
k,Bt

]
P̄ .

Fig. 9 illustrates the achievable ergodic rate of each user
under the topology given in Fig. 8. For the sake of comparison,
the achievable ergodic rate of each user with the BS clustering
shown in Fig. 7 is also presented.5 It can be clearly seen
that the cluster-edge users in the BS clustering case achieve
significantly lower rates than others. In contrast, with the
virtual-cell based user grouping, the rate difference is greatly
reduced, indicating that the rate performance of each user
becomes much less sensitive to its position. It can be also
observed from Fig. 9 that by increasing the virtual cell size
V , not only is the lowest rate improved, but also the user rate
on average. In the next subsection, we will further study the
effect of virtual cell size V on the average user rate.

C. Effect of Virtual Cell Size V on Average User Rate R̄

Similar to Section III, as the achievable ergodic rate of
each user is closely dependent on their large-scale fading
coefficients, we focus on the average user rate which is defined
in (18). Fig. 10 shows the average user rate with the proposed
virtual-cell based user grouping. For the sake of comparison,
the rate performance without user grouping is also presented.

5In this case, ZFBF is adopted in each BS cluster for joint transmission.

10
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Virtual-cell based User Grouping (V=3)

Fig. 9. Achievable ergodic rate of each user Rk with virtual-cell based user
grouping. The x-axis denotes the index of a user. α = 4. P̄ /N0 = 10dB.
K = 20. L = 40.

It can be clearly seen from Fig. 10 that in contrast to the no-
grouping case where the highest average user rate is achieved
when the virtual cell size V is small, here the average user
rate can be significantly improved with an increase in V .

Intuitively, by including more BS antennas into each user’s
virtual cell, more users would have overlapped virtual cells and
be grouped together according to the virtual-cell based user
grouping algorithm. With more users jointly served by using
ZFBF to eliminate the intra-group interference, each of them
achieves a higher rate thanks to a lower interference level.
When the virtual cell size V is large enough, nevertheless,
all the users are grouped together, and the rate thus becomes
saturated, as shown in Fig. 10. We can then conclude that here
the virtual cell size V determines a rate-complexity tradeoff:
with a larger V , the average user rate is improved at the cost
of a higher signal processing complexity as more users need
to be jointly served.
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Fig. 10. Average user rate R̄ with virtual-cell based user grouping versus
virtual cell size V . α = 4. P̄ /N0 = 10dB. K = 50. L/K = 2, 20.

V. DISCUSSIONS

A. Heterogeneous Virtual Cell Sizes

So far we have assumed that each user chooses an identical
number of BS antennas to form its virtual cell. In this paper,
we aim to analyze the effect of virtual cell size on the rate
performance. Therefore, a homogeneous scenario where all
the users have the same virtual cell size is considered in the
preceding analysis.

In general, each user may have a different amount of BS an-
tennas in its virtual cell. To see whether the conclusion remains
the same in the heterogeneous scenario, let us assume that each
user selects the BS antennas which fall into its circular vicinity
with radius r to form its own virtual cell. In this case, the
virtual cell size Vk = |Vk| of each user k becomes random and
its average value V̄ = Ek∈K[Vk] is determined by the vicinity
radius r and the number of BS antennas L. Fig. 11 presents the
average user rate versus the average virtual cell size V̄ in both
no-grouping and grouping cases. By comparing Fig. 11 with
Fig. 10, we can clearly see that the effect of average virtual cell
size V̄ on the average user rate in the heterogeneous scenario is
identical to that in the homogeneous scenario, which indicates
that the preceding analysis may shed important light on the
heterogeneous scenario as well.

B. Effect of Shadowing

In the large-scale fading channel model, we have ignored
the shadowing effect and only considered the access distance
in (3). To see whether the effect of virtual cell size on the
average user rate remains unchanged when the lognormal
shadowing is incorporated, let us now model the large-scale
fading coefficient γk,l from BS antenna l to user k as

γk,l =

√
‖rBl − rUk ‖−α · 10

ck,l
10 , (34)

where ck,l is a normal random variable with zero mean and
standard deviation σsh, i.e., ck,l ∼ N (0, σ2

sh). In the ideal case
of no shadowing, i.e., σsh = 0, (34) reduces to (3), where the
large-scale fading is solely determined by the access distance.
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Fig. 11. Average user rate R̄ versus average virtual cell size V̄ in the
heterogeneous scenario. α = 4. P̄ /N0 = 10dB. K = 50. L/K = 2, 20.

In practice, the standard deviation σsh may vary from 5dB to
12dB [39].

Fig. 12 illustrates the average user rate under different
shadowing conditions, i.e., with σsh = 6dB, 8dB, 10dB, 12dB.
For the sake of comparison, the average user rate without
shadowing effect, i.e., with σsh = 0, is also presented. We
can clearly see from Fig. 12 that the virtual cell size V has
the same effect on the average user rate under various values of
σsh. Specifically, with MRT adopted in the no-grouping case,
the average user rate decreases as V grows. In contrast, for the
virtual-cell based user grouping case with ZFBF, the average
user rate can be significantly improved with an increase in V .
Fig. 12 corroborates that the rate variation with the virtual cell
size is mainly determined by the precoding schemes.

VI. CONCLUSION

In this paper, the effect of virtual cell size on the average
user rate of a large-scale downlink DAS is studied under
different precoding schemes. The analysis shows that if MRT
is adopted in each user’s virtual cell, a small virtual cell size
should be chosen so as to avoid sharing BS antennas for dif-
ferent users which would otherwise cause strong interference.
On the other hand, if users are grouped with joint ZFBF
transmission from their virtual cells to eliminate the intra-
group interference, the average user rate could be significantly
improved by increasing the virtual cell size. A novel virtual-
cell based user grouping algorithm is proposed, with which
the rate difference among users is greatly reduced compared
to the conventional BS-centric clustering.

Note that despite the simplicity in concept, the group size,
i.e., the number of users in each group, with the proposed
virtual-cell based user grouping algorithm could be highly
unbalanced if users’ spatial distribution is nonuniform. For
practical scenarios where users tend to congregate at some
hot spots, it is important to further develop user grouping
algorithms under certain complexity constraints such as the
maximum group size. Moreover, in the analysis, each user is
assumed to select an identical number of closest BS antennas
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Fig. 12. Average user rate R̄ with shadowing effect versus virtual cell size V . α = 4. P̄ /N0 = 10dB. K = 50. L = 100. (a) Without user grouping. (b)
With virtual-cell based user grouping.

to form its virtual cell, which, though easy to implement in
practice, may not be the optimal way for rate maximization.
A global optimal antenna selection for all the users, on the
other hand, would lead to prohibitively high computational
complexity for a large-scale DAS. How to decompose the
original combinatorial problem based on the concept of virtual
cell is an interesting and challenging issue, which deserves
much attention in the future study.

APPENDIX A
DERIVATION OF (14)

By substituting (5) into (8), the average received SINR µk
can be written as

µk =
‖γk,Vk‖2

N0

P̄
+
∑
j∈K,j 6=k

∑
l∈Vj aj,l · γ

2
k,l

. (35)

If the virtual cell size V = 1, it is clear from (6) and (12)
that aj,l = 1. If V > 1, by following a similar derivation to
Appendix A in [24], aj,l can be obtained as

aj,l =
∑

m∈Vj ,m6=l

β−2
j,l β

−2
j,m

(
log β−2

j,l − log β−2
j,m − 1

)
+ β−4

j,m(
β−2
j,l − β

−2
j,m

)2

·
∏

t∈Vj ,t6=m,t6=l

β−2
j,t

β−2
j,t − β

−2
j,m

, (36)

which can be further written as

aj,l =
∑

m∈Vj ,m 6=l

γ−2
j,l γ

−2
j,m

(
log γ−2

j,l − log γ−2
j,m − 1

)
+ γ−4

j,m(
γ−2
j,l − γ

−2
j,m

)2

·
∏

t∈Vj ,t6=m,t6=l

γ−2
j,t

γ−2
j,t − γ

−2
j,m

, (37)

according to (11). (14) can be then obtained by combining
(35) and (37).

APPENDIX B
DERIVATION OF (25)

According to (24), the upper-bound of the average user rate
R̄ub is determined by the normalized average received signal
power S̃k = ‖γk,Vk‖2 and the lower-bound of the normalized
interference power Ĩ lbk =

∑
l∈Vj∗ Υ

(
γj∗,l; {γj∗,i}i6=l,i∈Vj∗

)
·

γ2
k,l. Let

d
k,l

(1)
k

≤ d
k,l

(2)
k

≤ · · · ≤ d
k,l

(L)
k

(38)

denote the order statistics obtained by arranging the access
distances dk,1, dk,2, · · · , dk,L of user k to L BS antennas,
where l(i)k denotes the ith closest BS antenna of user k. Then
the normalized average received signal power S̃k and the
lower-bound of the normalized interference power Ĩ lbk can be
written as

S̃k =

V∑
i=1

d−α
k,l

(i)
k

, (39)

and

Ĩ lbk =

V∑
i=1

Υ

(
d
−α2
j∗,l

(i)
j∗

; d
−α2
j∗,l

(1)

j∗
, · · · , d−

α
2

j∗,l
(i−1)

j∗
, d
−α2
j∗,l

(i+1)

j∗
,

· · · , d−
α
2

j∗,l
(V )

j∗

)
· d−α
k,l

(i)

j∗
, (40)

respectively, according to (3), where Υ (x; b1, b2, · · · , bV−1)
is given in (15) and d

k,l
(i)

j∗
is the distance from user k to the

ith closest BS antenna of user j∗. Let dk,j∗ denote the distance
from user k to user j∗. It can be easily obtained from Fig. 13
that

d
k,l

(i)

j∗
=
√
d2
k,j∗ + d2

j∗,l
(i)

j∗
+ 2dk,j∗dj∗,l(i)

j∗
cosϕi. (41)

Let fdk,j∗ (z) and fϕi(ωi) denote the pdfs of dk,j∗ and
ϕi, respectively, and fd

k,l
(1)
k

,d
k,l

(2)
k

,··· ,d
k,l

(V )
k

(x1, x2, · · · , xV )

denotes the joint pdf of
{
d
k,l

(i)
k

}
i=1,··· ,V

. By combining (24)

and (39-41), the upper-bound of the average user rate R̄ub
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can be then written as (42). Similarly, we have (43) and (44).
(42-44) are shown at the bottom of this page.

Let us ignore the edge effect and assume that an infinite
number of BS antennas and users are uniformly distributed in
an infinitely large plane with L BS antennas and K users in a
disk with radius 1. It can be easily obtained that the pdf and
the cumulated density function (cdf) of the access distance
from user k to BS antenna l are given by fdk,l(x) = 2x and

Fdk,l(x) = x2, respectively. We then have

fd
k,l

(1)
k

,d
k,l

(2)
k

,··· ,d
k,l

(V )
k

(x1, x2, · · · , xV ) =

L!

(L− V )!

(
1− x2

V

)L−V V∏
i=1

2xi, x1 ≤ x2 ≤ · · · ≤ xV ,

(45)

fdk,j∗ (x) = (K − 1)(1− x2)K−2 · 2x, (46)

and

fϕi(xi) =
1

2π
. (47)

(25) can be then obtained by substituting (45-47) into (42).
Moreover, by substituting (45-47) into (43) and (44), we

can obtain E{γk,l}k∈K,l∈B log2 S̃k and E{γk,l}k∈K,l∈B log2 Ĩ
lb
k ,

which are given in (48) and (49) at the top of the next page,
respectively.

APPENDIX C
DERIVATION OF (29)

Let us rewrite the optimization problem formulated in (26)
and (28) as

max V (50)
s.t. r̄k + r̄j∗ ≤ d̄k,j∗ , (51)

R̄ub =E{γj,l}j∈K,l∈B log2

[
1 +

S̃k

Ĩ lbk

]

=

∫ 1

0

fdk,j∗ (z)

∫ 1

0

∫ yV

0

· · ·
∫ y2

0︸ ︷︷ ︸
V−fold

fd
j∗,l(1)

j∗
,d
j∗,l(2)

j∗
,··· ,d

j∗,l(V )
j∗

(y1, y2, · · · , yV )

∫ 1

0

∫ xV

0

· · ·
∫ x2

0︸ ︷︷ ︸
V−fold

fd
k,l

(1)
k

,d
k,l

(2)
k

,··· ,d
k,l

(V )
k

(x1, x2, · · · , xV )

∫ 2π

0

∫ 2π

0

· · ·
∫ 2π

0︸ ︷︷ ︸
V−fold

V∏
i=1

fϕi(ωi)

log2

1 +

∑V
i=1 x

−α
i∑V

i=1 Υ
(
y
−α2
i ; y

−α2
1 , · · · , y−

α
2

i−1 , y
−α2
i+1 , · · · , y

−α2
V

)
· (z2 + y2

i + 2yiz cosωi)
−α2


dω1dω2 · · · dωV dx1dx2 · · · dxV dy1dy2 · · · dyV dz. (42)

E{γk,l}k∈K,l∈B log2 S̃k=

∫ 1

0

∫ xV

0

∫ xV−1

0

· · ·
∫ x2

0︸ ︷︷ ︸
V−fold

log2

(
V∑
i=1

x−αi

)
fd
k,l

(1)
k

,d
k,l

(2)
k

,··· ,d
k,l

(V )
k

(x1, x2, · · · , xV )dx1dx2 · · · dxV . (43)

E{γk,l}k∈K,l∈B log2 Ĩ
lb
k =

∫ 1

0

fdk,j∗ (y)

∫ 1

0

∫ xV

0

· · ·
∫ x2

0︸ ︷︷ ︸
V−fold

fd
j∗,l(1)

j∗
,d
j∗,l(2)

j∗
,··· ,d

j∗,l(V )
j∗

(x1, x2, · · · , xV )

∫ 2π

0

∫ 2π

0

· · ·
∫ 2π

0︸ ︷︷ ︸
V−fold

V∏
i=1

fϕi(ωi)

log2

(
V∑
i=1

Υ
(
x
−α2
i ;x

−α2
1 , · · · , x−

α
2

i−1, x
−α2
i+1, · · · , x

−α2
V

)
·
(
y2 + x2

i + 2xiy cosωi
)−α2)

dω1dω2 · · · dωV dx1dx2 · · · dxV dy. (44)
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E{γk,l}k∈K,l∈B log2 S̃k =
2V L!

(L− V )!

∫ 1

0

∫ xV

0

∫ xV−1

0

· · ·
∫ x2

0︸ ︷︷ ︸
V−fold

log2

(
V∑
i=1

x−αi

)(
1− x2

V

)L−V V∏
i=1

xidx1dx2 · · · dxV . (48)

E{γk,l}k∈K,l∈B log2 Ĩ
lb
k =

2(K − 1)L!

πV (L− V )!

∫ 1

0

y
(
1− y2

)K−2
∫ 1

0

∫ xV

0

∫ xV−1

0

· · ·
∫ x2

0︸ ︷︷ ︸
V−fold

(
1− x2

V

)L−V V∏
i=1

xi

∫ 2π

0

∫ 2π

0

· · ·
∫ 2π

0︸ ︷︷ ︸
V−fold

log2

(
V∑
i=1

Υ
(
x
−α2
i ;x

−α2
1 , · · · , x−

α
2

i−1, x
−α2
i+1, · · · , x

−α2
V

)
·
(
x2
i + y2 + 2xiy cosωi

)−α2)
dω1dω2 · · · dωV dx1dx2 · · · dxV dy. (49)

where r̄k = E{γj,l}j∈K,l∈B [rk] and r̄j∗ = E{γj,l}j∈K,l∈B [rj∗ ].
As L BS antennas are uniformly distributed, we have

r̄2
k = r̄2

j∗ =
V

L
. (52)

The constraint (51) can be then written as

V ≤ L

4

(
d̄k,j∗

)2
. (53)

It is clear from (50) and (53) that the optimal virtual cell size
V ∗ is

V ∗ =
L

4

(
d̄k,j∗

)2
. (54)

Note that the pdf of the distance from user k to its closest
user j∗, dk,j∗ , has been given in (46). We then have

d̄k,j∗ = 2

∫ 1

0

x2(K − 1)
(
1− x2

)K−2
dx

for large K
≈ 2

∫ 1

0

x2(K − 1)e−(K−2)x2

dx

y=(K−2)x2

=
K − 1

(K − 2)
3
2

∫ K−2

0

y
1
2 e−ydy

=
K − 1

(K − 2)
3
2

{
−(K − 2)

1
2 e−(K−2) +

1

2
Γ

(
1

2
, 0

)
−

1

2
Γ

(
1

2
,K − 2

)}
, (55)

where Γ(s, x) =
∫∞
x
ts−1e−tdt. Note that for large K, (K −

2)
1
2 e−(K−2) ≈ 0, Γ

(
1
2 ,K − 2

)
≈ 0 and (K−1)

(K−2)
3
2
≈ 1√

K
. (55)

can be then approximated as

d̄k,j∗ ≈
1

2
Γ

(
1

2
, 0

)
· 1√

K
≈ 0.89

1√
K
. (56)

Finally, (29) can be obtained by combining (54-56).
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