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Abstract This paper studies the output synchronization problem for a class of networked non-linear

multi-agent systems with switching topology and time-varying delays under the leader-follower settings.

To synchronize the outputs, a leader is introduced whose connectivity to the followers varies with time,

and a novel data-driven consensus protocol is proposed, where the reference input is designed to be

the time-varying average of the agents’ outputs. Both cases when the reference input is known to the

leader and the case otherwise are considered. The protocol does not use explicit or implicit information

of its mathematical model. Sufficient conditions are derived to guarantee the closed-loop stability and

consensus convergence. Numerical simulations are conducted to demonstrate the effectiveness of the

proposed method.

Keywords Non-linear system, data-driven, output synchronization, switching topology, time-varying

delay, networked multi-agent system.

1 Introduction

Networked multi-agent systems (NMASs), as a significant part of networked control systems,

have been finding wide applications in various control systems in recent years [1, 9, 10, 13, 15,

16, 18]. Consensus problem, or synchronization problem, is a key problem in networked multi-

agent systems. Roughly speaking, consensus problem attempts to give rules that synchronize

the states/outputs of the agents to a common behaviour. There are extensive results concerning

consensus problem in the literature, and the most important issues that impact consensus

problem include: delay and the switching of network topology. There also exists much research

considering the two issues. To name a few, [13] claimed that it requires the graph to be

(jointly) connected (with spanning tree rather than strongly connected) to synchronize the

states of the agents, [18] extended Ren’s results and proposed that such requirement is still
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needed to synchronize networked multi-agent systems with time-varying delay. Later literature

mainly considered the dynamics like second-order integrator [8], high-order integrator [14], LTI

dynamics [12]. To sum up, consensus achieving requires the connectivity of all agents.

Despite extensive results concerning consensus problem, yet one obvious problem for these

results is that they require the dynamics of the agent to be known. These results, based on

accurate mathematical model, is often called model based control (MBC) approach. However,

it is difficult to establish the accurate mathematical model, let alone most current plants or

agents contain more or less non-linearity. In practical application, first hand principles and

system identification may contain un-modelled non-linearities or even may not be available.

Therefore, it is necessary to take non-linearity into consideration when studying consensus

problem, moreover, it is necessary to study consensus problem without accurate model. It is

also worth mentioning that traditional adaptive control approach to solve consensus problem

may not work to satisfy this kind of requirement, since, some adaptive protocols are based on

the assumptions that the parameter varies slowly or the structure is known [7]. It is well known

that neural networks (NNs) have excellent functionality for non-linear approximation. Using

this property, adaptive NN consensus control for multi-agent systems with unknown nonlinear

dynamics has been studied in [2, 19].

Like PID control, model free adaptive control (MFAC) proves an effective approach to

implement data-driven control (DDC) for discrete-time non-linear systems with unknown dy-

namics [3, 4, 6]. This approach, is independent of mathematically model since it is based on

system identification of un-known dynamics. The kind of approach, by estimation of the so-

called pseudo partial derivative of the non-linear system, constructs the I/O relationship of the

plant/agent, based on which the control law is designed. The paper solves the leader-follower

consensus problem based on MFAC approach for a class of networked non-linear multi-agent

systems with switching topology and time-varying delay. Both case when the reference input

is known and the case otherwise are considered, a novel consensus protocol is proposed, the

theoretical analysis is provided, with results illustrated by numerical examples.

The paper is organized as follows. The first section gives literature review on consensus

seeking and data-driven control. Some preliminaries of graph theory are reviewed in the second

section. Section III and IV give the problem formulation and the main results, respectively.

Numerical examples are presented in the next section. Section VII concludes the paper.

2 Preliminaries

Generically, a directed graph can be represented by G = {V, E}, where V is the node set

and E ⊆ V × V. A graph can also be represented by a 0− 1 matrix A = [aij ] in the sense that

aij = 1 ⇔ (j, i) ∈ E , and A is termed as adjacency matrix. Let P = [pij ] be non-negative matrix

can also be used to represent a graph, denoted by GP in the sense that pij > 0 ⇔ aij = 1.

A graph has a spanning tree if there exists a path from certain node (referred to as the root)

to each of the rest nodes. Let Gc be a set of graphs with Gc = {Gi = {V, Ei}|i = 1, 2, · · · , d}, the

joint graph of Gc is defined to be {V,∪d
i=1Ei}. Gi, i = 1, 2, · · · , d is said to have a joint spanning
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tree if their joint graph has a spanning tree.

Hereafter, ∆ denotes the backward difference operator defined by ∆x(k) = x(k)− x(k− 1).

3 Problem Formulation

Consider a networked non-linear multi-agent system, where there are a group of n agents

with dynamics described by (1), referred to as the followers, plus one additional agent with

label n+ 1, which is referred to as the leader and is also with dynamics (1):

yi(k + 1) = fi(yi(k), · · · , yi(k − nyi), ui(k), · · · , ui(k − nui)) (1)

where yi(k) ∈ R, ui(k) ∈ R are the output and input of agent i, respectively; fi(·) is an

unknown non-linear function; and nyi and nui are the unknown orders of the output and input,

respectively.

The objective of this paper, is to design some ui(k) such that the outputs of the agents can

be synchronized, or mathematically

lim
k→∞

|yi(k)− yj(k)| = 0, i, j (2)

The assumptions of [6] below are adopted and imposed for agent i.

Condition 3.1 The partial derivative of fi(· · · ) with respect to ui(k) is continuous.

Condition 3.2 System (1) is generalized Lipschitz, i.e., |∆yi(k+1)| ≤ φ|∆ui(k)| for any

k and ∆ui(k) 6= 0, where φ is a positive constant.

Under Assumptions 3.1 and 3.2, non-linear system (1) can be transformed into the following

PPD data model:

∆yi(k + 1) = fci(k)∆ui(k) (3)

For stability analysis the following assumption is also adopted from [6].

Condition 3.3 The PPD fci(k) satisfies fci(k) > 0 or fci(k) < 0 for all time instant k

around a certain operating point.

For assumptions above, the following remarks are made

Remark 3.4 For a completely unknown non-linear system, the verification of Assumption

3.1, 3.2 and 3.3 is a priori. From a practical perspective, Assumptions 3.1, 3.2 and 3.3 are

reasonable and acceptable and there are practical examples showing this point [4, 5].

Since the dynamics of system (1) is unknown, the data-driven control framework is first

proposed as follows

f̂ci(k) = f̂ci(k − 1) +
hi∆ui(k − 1)

mi +∆u2
i (k − 1)

(∆yi(k)

− f̂ci(k − 1)∆ui(k − 1))

(4a)
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f̂ci(k) = f̂ci(1) if |f̂ci(k)| < ei

or ∆ui(k − 1) < ei

or sign(f̂ci(k)) 6= sign(f̂ci(1))

(4b)

ui(k) = ui(k − 1) +
rif̂ci(k)

µi + f̂2
ci(k)

(ri(k + 1)− yi(k)) (4c)

where f̂ci(k) is the estimation of fci(k) with the initial value f̂ci(1), hi, ri, µi,mi are positive

weighting factors, ei is a positive constant, ri(k + 1) is the reference input to be designed later

for agent i.

Remark 3.5 Framework (4) are in purely distributed manner since each agent has in-

dependent set of constants referred to in (4), which are specified respectively to each agent.

Moreover, the protocol involves only the input and output data of the agent.

The next job is clear, to synchronize the outputs or design protocol ui(k), one need to design

the reference input ri(k + 1) for each agent.

4 Consensus Protocol

From last section, to synchronize the outputs of the agents one needs to design the reference

input for each agent. In the section, a novel protocol is proposed under the data-driven control

scheme (4), the details about the scheme can be find in [13, 18].

4.1 Leader Dynamics

In this paper, two cases are considered, the case with unknown reference input, and the case

when the leader is with a known reference input yd. It is assumed that the followers can obtains

information from the neighbouring agent including the leader, depending on the displace/range

to the other agents, i.e., the connectivity to the leader is time-varying.

For the case with unknown reference input, the reference input is designed to be the following

rn+1(t+ 1) =
1

2
yn+1(t− 1) +

1

2
yn+1(t) (5)

The first result shows that the systems of the leader in both cases are BIBO stable.

Lemma 4.1 Consider a networked multi-agent system of n agents with non-linear dy-

namics described by (1). Let Assumption 3.1, 3.2, 3.3, then agent n + 1 with reference input

(5) is stable Moreover, output and input of agnet n+ 1 is bounded.

Proof The proof is performed in three steps. First, we show that f̂ci(k) is bounded. This

step is similar with that of [6, Chapter 4].

Let condition of (4b) hold, then, it is clear that f̂ci(k) is bounded. Otherwise, define

f̃ci(k) = f̂ci(k)− fci(k). From the (4a) it can be given that

f̃ci(k) =

(
1−

hi∆u2
i (k − 1)

mi +∆u2
i (k − 1)

)
f̃ci(k − 1) + fci(k − 1)− fci(k) (6)
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Take absolute value of (6), one has

|f̃ci(k)| ≤ |

(
1−

hi∆u2
i (k − 1)

mi +∆u2
i (k − 1)

)
||f̃ci(k − 1)|+ |fci(k − 1)− fci(k)| (7)

Without loss of generality, based on (4b), it is obvious that

|

(
1−

hi∆u2
i (k − 1)

mi +∆u2
i (k − 1)

)
| ≤ d1 < 1 (8)

where d1 is some positive constant.

This leads to that |f̃ci(k)| is bounded since |fci(k − 1)− fci(k)| is. Subsequently, |f̂ci(k)| is

bounded.

Next, we show that the tracking error asymptotically converges to zero.

Given (4c) it can be obtained that

∆ui(k) =
rif̂ci(k)

2(µi + f̂2
ci(k))

((yi(k − 1)− yi(k)) (9)

Next, define

si(k) = ri
fci(k)f̂ci(k)

µi + f̂2
ci(k)

.

By (3),

yn+1(k + 1) = (1−
1

2
rn+1sn+1(k))yn+1(k) +

1

2
rn+1sn+1(k)yn+1(k − 1) (10)

or compactly


yn+1(k + 1)

yn+1(k)


 =


1−

1
2rn+1sn+1(k)

1
2rn+1sn+1(k)

1 0




 yn+1(k)

yn+1(k − 1)


 (11)

The resetting algorithm (4b) makes sure that si(k) ≥ 0, ∀ i. Moreover, since fci is bounded

from both above and below and the sign is unchanged, and the fact that f̂ci ≥ ei, it is clear

that there exist some constants d2, d3 with

0 < rn+1d2 ≤ si(k) ≤ rn+1d3 (12)

Note that


1−

1
2rn+1sn+1(k)

1
2rn+1sn+1(k)

1 0


 is SIA [17],


 yn+1(k)

yn+1(k − 1)


 converges to


1
1


 c, where c is some constant. This implies that yn+1(k) converges to some constant c.

Finally, by [4, 6] it can be given that un+1(k) is also bounded.

Remark 4.2 For agent n+ 1, it is not necessary that rn+1(k + 1) = 1
2yn+1(t − 1) +

1
2yn+1(t), in fact, it can be any convex combination of yn+1(k− s), s = 1, 2, · · · , N , where N is

some constant integer.
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4.2 Case with Switching Topology and Time-Varying Delay

Without loss of generality, the time-varying delay induced by network at k, is denoted by

τij(k). Next, the following assumption is imposed

Condition 4.3 There exists some upper bound τ with τij(k) ≤ τ .

Condition 4.4 There exists some positive integer B and a strictly increasing sequence of

integers tk with tk+1 − tk ≤ B, satisfying that for all k, GA(t), t = tk, tk + 1, · · · , tk+1 − 1 have

a joint spanning tree rooted at the leader.

Condition (4.4), or periodic switching connectivity condition to be specific, is similar with

the condition in [13]. It is clear that the time-varying of delays and topology switching are

correlated. For their relationship details the readers are referred to reference [18].

Represent the connectivity topology of the followers by matrix A(k) = [aij(k)].

Note that for agent i, its own output yi(k) is still available, thus (4a) and (4b) is still valid.

The key of this problem is to design the reference input ri(k + 1) such that the outputs of all

agents can be synchronized. In this paper, the tracking reference input is proposed as follows

ri(k + 1) =
1∑

j∈Ni(k)
aij(k) + bi(k) + ki

(
∑

j∈Ni(k)

aij(k)yj(k − τij(k))

+ bi(k)y0(k − τi0(k)) + kiyi(k − 1)), i < n+ 1

rn+1(k + 1) =





1
2 (yn+1(k) + yn+1(k − 1)) rn+1(∞) is unknown

rn+1 otherwise

(13)

where rn+1 is the known tracking reference input, Ni(k) is the set of agent is neighbours from

the original group of followers. bi(k) > 0 if agent n + 1’s output can be obtained by agent i,

otherwise bi(k) = 0, ki ∈ (0, 1) is weighting factor for agent’s past information.

Theorem 4.5 Consider a networked multi-agent system of n agents with non-linear dy-

namics described by (1). Let Assumption 3.1, 3.2, 3.3, 4.4 and 4.3 hold. Protocol given by (4)

and (13) asymptotically solves the output consensus problem for system (1). Moreover, output

and input of the system is bounded.

Proof The first step is to prove that f̂ci is bounded and the proof is the same with that

of Lemma 4.1.

For the second step,

Case I:

From last Lemma 4.1 it is clear that y0(∞) = c, where c is some constant. Next,
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∆ui(k) =
rif̂ci(k)

µi + f̂2
ci(k)

(
1∑

j∈Ni(k)
aij(k) + bi(k) + ki

(
∑

j∈Ni(k)

aij(k)yj(k − τij(k))

+ bi(k)yn+1(k − τi(n+1)(k)) + kiyi(k − 1))− yi(k))

=
rif̂ci(k)

µi + f̂2
ci(k)

(

n+1∑

i=1

mij(k)yj(k − τij(k))− yi(k)), i < n+ 1

∆ui(k) =
rif̂ci(k)

2µi + 2f̂2
ci(k)

(yi(k − 1)− yi(k)), i = n+ 1

(14)

where

mij(k) =





aij(k)∑
j∈Ni(k) aij(k)+bi(k)+ki

j < n+ 1, j 6= i

ki∑
j∈Ni(k) aij(k)+bi(k)+ki

j = i

bj(k)∑
j∈Ni(k) aij(k)+bi(k)+ki

j = n+ 1

then by (4c),

∆yi(k + 1) = ris̃i(k)
n+1∑

j=1

pij(k)(yj(k − τij(k))− yi(k)), (15)

where τii(k) = 1, s̃i(k) = si(k) if i < n+ 1, s̃i(k) = si(k)/2 if i = n+ 1.

Next, define P (k) = [pij(k)] =
[
MT (k) mT (k)

]T
, m(k) =

[
0 0 · · · 0 1

]
∈ R

n+1.

Note that P (k) is stochastic with positive diagonals. Furthermore, GP (k) has a joint spanning

tree. In order to facilitate our analysis, we introduce some notations. Define

Λ(P (k)) = {B = [bij ]|bij = pij(k) or bij = 0}.

Let Pi(k) ∈ Λ(P (k)), i = 0, 1, · · · , τ such that

diag(P (k)) +
τ∑

j=0

Pj(k) = P (k)

Define

S(k) = diag{s̃1(k), s̃2(k), · · · , s̃n+1(k)},

R =diag{r1, r2, · · · , rn+1},

let Q(k) = RS(k).

Now let

y(k) =
[
y1(k) y2(k) · · · yn+1(k)

]T

Y (k) =
[
yT (k) yT (k − 1) · · · yT (k − τ).

]T (16)
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Based on (15),

Y (k + 1) = Ω(k)Y (k), (17)

where

Ω(k) =




In+1 −Q(k)

+Q(k)P0(k)

diag(Q(k)P (k))

+Q(k)P1(k)
· · · Q(k)Pτ−1(k) Q(k)Pτ (k)

In+1 0 · · · 0 0

0 In+1 · · · 0 0
...

...
. . .

...
...

0 0 · · · In+1 0




It is easy to show Ω(k) has all row sums equal to one. As is shown in the last proof, si(k)

is bounded from both below and above by some positive constant, thus it is clear that there

exists some sufficiently small ri such that Ω(k) is non-negative. It is clear that Ω(k) can also

be non-negative if ri is small enough. Based on Theorem 2 of [18], one has y(k) asymptotically

reaches consensus if P (k) has a periodically joint spanning tree. Since the overall system has a

periodically joint spanning tree rooted at the leader, consensus can be reached.

Finally, we show that ui(k) is bounded. As Lemma 4.1 shows, the output of the leader

asymptotically converges to some constant, since consensus can be reached, by [4, Chapter 4],

one can conclude that the reference input is bounded.

Case II:

This case can viewed as a special case of the first case. Introduce a virtual leader labelled

by n+ 2, whose dynamics is described as follows

yn+2(k + 1) =
1

2
yn+2(k) +

1

2
un+2(k) (18)

It can be verified that the dynamics of this virtual leader satisfies Assumption 3.2, 3.1, 3.3.

Assume that ∆yn+2(1) = 0, yn+2(1) = rn+1, yn+2(2) = rn+1,∆un+2(1) = 0. Using framework

(4) to track rn+1, it is easy to obtain that un+2(k) = rn+1 for all k. Thus yn+2(k) = rn+1 for

all k.

To this point, the consensus problem in this case can be viewed as all n + 1 agents try to

synchronize with the virtual agent n+2. Using the result of Case I one can get that consensus

can be obtained.

Remark 4.6 The protocol in this paper is proposed based on MFAC approach. The main

difference between MFAC based consensus protocol and the model-based adaptive consensus

protocol are: 1) Traditional adaptive consensus protocol is proposed for a time-invariant or

slowly time-varying system with a known system structure and system orders, whereas MFAC

is proposed for unknown non-linear systems; 2) The traditional protocol design depends on the

mathematical model, whereas the MFAC design depends merely on the I/O data.
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5 Numerical simulations

The non-linear plant in [11] is considered in our example, with little parameter variation.

We consider a group of 4 agents with dynamics given as follows

xi(k) = 1.5ui(k)− 1.5ui(k)
2 + 0.5ui(k)

3

yi(k + 1) = 0.6yi(k)− 0.1yi(k − 1) + 1.2xi(k)− 0.1xi(k − 1)
(19)

where agent 1 is set to be the leader.

The topology switching is given as follows

A(t) =





A1 mod (t, 3) ∈ [0, 1.2)

A2 mod (t, 3) ∈ [1.2, 2.4)

A3 mod (t, 3) ∈ [2.4, 3),

(20)

where

A1 =




0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1



, A2 =




1 0 0 0

0 1 0 0

0 0 0.5 0.5

0 0.5 0 0.5



, A3 =




1 0 0 0

0 1 0 0

0 0 0.5 0.5

0 0 0.5 0.5




It is clear that the topology, though switches, has a periodically joint spanning tree. In the

following, two numerical examples are given to demonstrate the effectiveness of the proposed

protocols, respectively. Both examples are with a step-size h = 0.02.

5.1 The Case without reference input

In this example, the network delay is time-varying, with a upper bound τ = 2. The com-

munication delay between agents is randomly chosen. The initial outputs of each agent are

randomly chosen from [−5, 2.5). Using the proposed protocol is synchronized the outputs of

this system, the trajectory is given by Fig 1.

As is show by the Fig. 1, the outputs are the agents are synchronized, and the stability of

the system is also guaranteed.

5.2 The Case with reference input

In this example, the network delay is time-varying, with a upper bound τ = 2. The commu-

nication delay between agents is randomly chosen. The initial values of each agent are randomly

chosen from [−5, 2.5), the reference input is set to be rn+1 = 2. Using the proposed protocol is

synchronized the outputs of this system, the trajectory is given by Fig 2.
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Figure 1: Output trajectory without reference input
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�
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Figure 2: output trajectory with reference input

From Fig. 2 it is clear that the outputs of the agents are stable, the consensus of the system

is also reached. Also note that neither multi-agent system in the two examples is stable with

respect to the origin.
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6 Conclusion

Consensus problem is fundamental problem for distributed control and optimization. In

this paper, we have presented novel consensus protocol under the leader-follower setting based

on data-driven control for a class of networked non-linear networked multi-agent system, where

periodic topology and time-varying network delay exist simultaneously. The protocol has been

used to synchronize the outputs of the agents, proved to be effective both theoretically and

numerically. Contributions of this paper includes: 1) Leader-follower consensus problem for

networked multi-agent system with switching topology, time-varying delay and a kind of non-

linearity has been considered, and then novel consensus protocols based on data-driven net-

worked control scheme have been designed. 2) The proposed protocols are in purely distributed

manner, which is easy to implement in practice. 3) Consensus can be guaranteed along with

system stability by the proposed consensus protocol.

Future research efforts will be devoted to extending the proposed method to more general

non-linear multi-agent systems and also some other network-induced constraints such as data

quantization, time-varying sampling.
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