Published in :Journal of Mining Science, 2017, 53(1):25-37

Strain gradient model of zonal disintegration of rock mass
near deep level tunnels

Chengzhi Qi*", Kairui Li*? , Jiping Bai¢, Anvar Chanyshev, Peng Liu?

aBeijing Future Urban Design High-Tech Innovation Center and 2011 Energy Conservation and Emission reduction
Collaborative Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China, e-mail:
gichengzhi65@163.com

bDefense Engineering Institute, PLA University of Science and Technology, Nanjing, 210007, P R China
Faculty of Computing, Engineering & Science, University of South Wales, Pontypridd, CF37 1DL, UK
dChinakal Mining Institute, SB RAS,54 Krasny prospect, Novosibirsk, 630091,Russia;e-mail: a.i.chanyshev@gmail.com

Abstract: This paper presents one strain gradient model of zonal disintegration of rock mass near deep level tunnel. The governing
equations and boundary conditions of the model are established. Numerical methods (Quasi-Newton method and Shooting method)
are adopted to solve the obtained fourth-order equilibrium equations with higher-order boundary conditions in terms of displacement.
The stress field in elastic and plastic zones is obtained. The effects of model parameters on stresses distribution in surrounding the
tunnel rock mass are examined. The necessary conditions for the formation of zonal disintegration are elucidated.
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1. Introduction

In the 1970°s and the early1980’s it was found that zonal disintegration in the surrounding deep level
underground tunnel rock mass occurs [1] (Fig.1). In-situ observations continued to confirm the existence of this
phenomenon [2]. The feature of this phenomenon lies in the localization of fracture of rock mass in discrete zones,
which alternate with relatively weakly fractured zones in the form of the contour of the tunnels.
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Fig.1 Zonal disintegration near deep level tunnel

It has been over three decades since the discovery of zonal disintegration, but the formation mechanism of this
phenomenon is still not clear. Experimental and theoretical investigations have been systematically carried out by
Shemyakin et al [3-5]. It was thought that this phenomenon is as a result of the splitting of rock mass along the
direction of the maximum tangential compression stress when the lateral compression stresses are small [4].
When splitting occurs, “false” opening contour forms and the stresses in the rock mass will be redistributed. The
splitting process continues until the unsatisfactory condition of splitting is reached. The experiments carried out
by Kurlenja et al [6] have shown that due to non-continuity in rock mass, the deformation of rock mass does not
satisfy the deformation compatibility condition of Saint-Venant, but satisfy the condition of the smallness of the
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lateral compression. Experiments carried out by Gu et al [7] and Zhang et al [8] reproduced this phenomenon. Gu
et al [7] concluded that the realization of plane strain condition is necessary for the reproduction of zonal
disintegration.

Chanyshev [9, 10] studied zonal disintegration phenomenon using slip line field theory. He considered
arbitrary compressibility and softening of rock mass and showed that when magnitude of softening modulus
approaches to elastic bulk modulus of rock mass, one of the four developed systems of slip lines repeats the form
of the contour of tunnel. This system of slip lines represents zonal disintegration phenomenon. Guzev and
Paroshin [11] applied non-Euclidean geometry model to zonal disintegration phenomenon and obtained the
quasi-periodic solutions of non-compatibility parameter R and stresses near deep level tunnel along radial
direction. Essentially their model is elastic one with defects, no plastic deformation is involved in.

One of the important features of rock mass is its internal structure. To consider the internal structure of media
many high-order theories have been proposed which incorporate gradients of appropriate physical state variables
together with one or more intrinsic length scales in their constitutive formulations. Gradient theories may be
divided into two distinct groups [12, 13]. The first group is the strain gradient models (for example, [14-18]). The
second group includes models with gradients of internal variables, for example [19-23]. The fundamental
difference between these two groups of models is that in the first group of models strain gradients considered as
additional observable state variables are conjugate to higher-order stresses that enter the equilibrium equations,
while gradients of internal variables are conjugate to certain dissipative thermodynamic forces that can enter the
evolution equations for internal variables but do not appear in the equilibrium (momentum balance) equations.

Model with gradients of internal variable (cumulative effective plastic strain) developed by Wang, Qi et al [24]
has been applied to the zonal disintegration phenomenon. For circular tunnels the quasi-periodic solution of
effective plastic strain for ideal brittle rock mass is given. The shortcoming of models with gradients of internal
variables is that gradient terms do not enter equilibrium equations; therefore the gradient-dependent stress-strain
fields in surrounding tunnel rock mass cannot be determined in self-consistent way.

At present there is a lack of mechanical model that takes into account the plastic properties of materials and
gives the quasi-periodic oscillating solutions for stresses and strains on the basis of equilibrium equations. This
paper presents the work carried out recently by the authors on modeling zonal disintegration phenomenon. The
general governing equations of the model are derived. The stress fields are obtained with numerical methods. The
influence of model parameters on stress distribution in surrounding the tunnel rock mass is analyzed. The
importance of these parameters for the formation of zonal disintegration is elucidated.

2. Principle of virtual work
Assume that the components of displacement vector u of rock areu;, and the components of strain tensor &
of rock are &;; , then for small strain we have the following geometric relation:

gij=(ui'j+uj'i) 2 (1)
Strain tensor g; may be decomposed into elastic part gﬁ and plastic part & :
gij = Eiej + gin (2)

To apply strain gradient theory to modeling zonal disintegration and to characterize the gradient nature of the
material behavior of a continuous particle system it is assumed that there exists an internal energy potential of the
following form:

U =U(e? Ve,E?), €)
where EP :m is the cumulative effective plastic deformation; £°® is the elastic strain tensor; Ve is the
gradient of total strain tensor €; # isthe entropy.



The principle of virtual work states that, given any sub-body V, the virtual work expended on V by
materials or bodies exterior to V (i.e. the external work) be equal to the virtual work expended within V (i.e.
the internal work). External work is assumed to be done by macroscopic body force F,, macroscopic surface

traction F; :
W, = IV F, oudV + IF F,-oudl” (4)

where ¢ is variation parameter; Su denotes virtual displacement.
External work W, is balanced by internal workW;,, . The internal work is assumed to arise from elastic stress
tensor o, generalized force ©Q conjugate to plastic strain tensor giJP , generalized force B conjugate to effective

plastic strain EP, generalized force T conjugate toVe:

W, = césedV+IQ-5apdv+J'B-8EpdV+jT.aVsdv (5)
\ \ \ \
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where p; = gin/E P is the plastic strain orientation tensor, introduced by A.A. lliushin [25]
The principle of virtual work may be expressed asW,,; = Wi, , from which we obtain:

L(aJ i =Tk + Foi JoudV +J.F[FS, ~Cay =T N+ Pyowdl + o

RE
where n; is the unit normal to the surface 77 of the body, x; = [kn; —(Jjm —NjNy )0m 1(Tink ), in the
deduction of which besides Gauss's theorem, surface divergence theorem is also used [15].

Because of the arbitrariness of ou; and §5UP , the following equations are obtained from Eg. (7):

Giji ~ Tk + Foi =0 (8)
FSi —(O'ij _Tijk,k) nJ + K =0 <9)

Eq.(8) is the equilibrium equation of the medium, in which gradient term is included; Eq. (9) is the macroscopic
boundary conditions; Eq. (10) defines the yield condition and Eq.(11) is the higher-order boundary conditions. By
taking the Euclidean norm | |[of Eq. (10), then [ — ;=B , where @ represents the kinematic hardening
parameter. In the case of isotropic hardening, ©; =0, we have "aij || =B . Therefore parameter B has the physical

meaning of yield stress of material.
3. The basic equations of rock mass dear deep level circular tunnels in elastic regime

When body force is neglected, Eq.(8) has the form
Gij,j +Tijk,kj = O (12)
Within the framework of linear elasticity, the generalized Hooke’s law between oj; and &; and between

Tij and 7y =u,; are assumed [15, 16]



O-ij = /15kk5ij + Zﬂgij ;
Tijk = 12 [a1(7ippS ik +7jppOik )+ 82T ppiFjk + 21kppSij + 7 ppjOik ) (13)
+ 857 ppk Oij + AaTijic + 85 (Mg + 7 )]
where 42 and iz are Lamé’s constants; | is the internal length scale due to the introduction of strain gradients;
g; (i=1,--5) are elastic constants associated with gradient terms in a material.

Fig.2 Model of cylinder
For axisymmetric problem of circular cylinder, shown in Fig.2, displacements u; don't dependon ¢ and z

coordinates, but depend only on r coordinate. Under plane strain condition only 6 components of the
conventional strains &; and strain gradients 7, [17] are non-zero: &, &y, Ny Moo+ Mrgp @ANA Ngrg
which can be expressed in terms of radial displacement u, in the following form:

ul’

& = ur,r 1&g :T'

(14)
1 1 u,
Mere = Uy oo :r_z( U —U)\rgp =Naro IF(Ur,r _E)
Eqg. (12) then gives the following equilibrium equation for the radial direction:

0 ort 1

_[O'r _i__(rrrr ~Toor —Troo )]

or or r (15)

1 or or, 1
+F[o-r — 0Oy _ﬁ"_%_?(rrrr — 279y — 27199 —Tarp )] =0

The boundary conditions of Egs.(9) and (11) on the inner ¥ =a and outer r =b radii of the cylinder take
the following form, respectively

or 1
Tr=a =—0Oy +%+?(_Trrr ~ Toor ): Pa: Rr:a =Trr = 0 (16)
0Ty 1 .
Ty =0y _7"'?(_1}" +2799 + T )=—Pps Riop =7 =0 (7)

where R,_, and R, _, are values of high order stresses on the inner  =a and outer r =Db radii of the cylinder.

Substituting Eq.(14) into Eq.(13) yields

E [(1—0)‘3’“r +oary; 2 [v6Ur

oy =——T—7"—— Cyp=7—""—— Ur
(1-2v)(1+v) or r (1-2v)(1+v) " or

+(1—U)T] (18)
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4 or2 Aror 2r2
36%, 3au, 5u,
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30%, 11léu, 7u,
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2
30 ur+78ur_11ur (19)
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Trr= C|2(5

7 o= cl*(

2
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where v s Poisson’s ratio.
4. The basic equations of rock mass dear deep level circular tunnels in plastic regime

4.1 The constitutive equations in plastic regime
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Fig.3 Envelop of Mohr’s circles of principal stresses Fig.4 Stress-strain curve with softening

For geomedia Mohr-Couloumb criterion is the most popular yield criterion, with which the shear strength 7 of
geomedia depends on the normal stress o on the slip surface. For the envelop of Mohr’s circles of principal

stresses shown in Fig.3 the Mohr-Couloumb criterion may be expressed as follows [26]
=0 -tanp+K (20)

where K is the internal cohesion, and ¢ is the friction angle. Or in principal stresses oy,03

01— Aoy =0, 2D
1+sing o _ 2Kcosg
1-sing ¢ 1-sing

Where A= represents the compressive strength.

For rock mass with softening (see Fig.4) the descending branch may be expressed as
0'1—A03:UC—|M|81' (22)
Where|M| is the softening modulus; &; is the deformation increment beyond strength limit in the direction of o; .
By introducing lateral deformation coefficient 5 = |g§ /gl’| Eq.(22) becomes
01— Aoy =0, —|M|es/B (23)
For plane strain problem after some operations the constitutive relations can be expressed in the following form
o1 =kKig + Mygg + ;05 =Kog + Mygg +1, (24)
where
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4.2 The governing equations in elastic-plastic regime

Now let’s again consider the axisymmetric plane strain problem as shown in Fig.5. The translucent circle area
is the excavated tunnel with radiusa , the supporting force applied on inner surface of the tunnel is p, : the black
part is the plastic zone with radius p ; the white ring area with inner radius pand outer radius b is the elastic
zone, on the cylindrical surface of radius b hydro-geostatic pressure p, applies. The case when b — oo

corresponds to the deep level tunnel.
+0.0

Fig.5 Circular tunnel in elastic-plastic regime

Because of the axi-symmetry of the problem, in the framework of strain gradient theory the equilibrium
equation in cylindrical coordinate system (r, 8, z ) may be simplified into the following form:

*

dr ar 7 (O-r_ae) 0 (25)

where o, and o, are generalized radial and tangential stresses respectively, which may be expressed as:

* d Trrr

Oy =0 — (— dr +— (Trrr Toor — Troo ) (26)



drge
dr

The corresponding geometrical equations are

* 1
og =09 —( +?(T6\‘0+Tr69+796r ) (27)

du, u,
& = d €9 = Mrrr = Uy
r r
(28)
1 1 u,
Toor :r_g( e e = Uy )\ 7rgg = Mero :?(Ur,r _E)
And the boundary conditions are
or 1
Ta=-0, +#+?(_Trrr_766r): PaiRa =7y =0 (29)
az-I'I'f .
Ty =0, - ar +— ( “Trr 27r0€ + Toor )=-— Po: Ry =T = 0 (30)

It is assumed that the constitutive relations for the higher-order stresses remain the same in elastic and plastic
regimes. Following Zhao et al. [27] we take the values of a; as following:a, =—C, a, = 7C/4, a;, =—C,
a,=3c, a; =—C, where C denotes a single gradient- dependent elastic parameter. Then constitutive
equations may be written as follows:
du, /1+2y /1

in elastic regime: o,=4 dr =(A+2u ) r —u, (31)
in plastic regime: o, = kluTr+ m ddUrr jop = kzuT“+ m, dur (32)

And the higher-order stresses have the following form
romr, (Eau 3au, lu, .. %_d(saz LTou 11y U 33)

4 02 4ror 227 262 2ror 4 2
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In elastic zone in terms of radial displacement U, the equilibrium equation is obtained by substituting
Egs.(26) —(28) , (31) and (33) into Eq.(25)

4 3 2
dh, 114 u3r_{ 612+/1+22y}d uz,{_mgu }du { 514_z+22ﬂu 0 (34)
dr® 5r dr 20r 5cl dr scl?r 20 | dr [ 200" 5cl?r

The elastic zone has the inner radius r = p and outer radius r =b respectively. At the outer surface r =b
the boundary conditions are

d3u, 6d°, [ 49 du, A 19
={-5c12—r—cl?2= 2 +(A+2u) |—+(Z-—cl®)u, + =0
{ dr3 r dr [4|’ ( ,U):} dI’ (r 2 3 ) r pb}r=b

2
R, = dgr+i%—%ur =0
dre rdr 4r .

(35)

The boundary r = pis the boundary between elastic and plastic zones, the medium at this boundary must

satisfy equilibrium equation (25) and the following yield condition

- AJ: =0, (36)

Substituting Eq.(36) into Eq.(25) yields



do, +(1—A)c7: _Oc

37
dr r r 37)
Therefore at boundary r = p the boundary conditions take the following form
. " do, (1-A)o, o
oy— Ao, =0o; _drr +—( r) r =TC (38)
Or in terms of radial displacement U,
3 2
o2l sa 3y, ZTA_B dur{ﬁ—A(mm_ls_%A}dur{mzﬂ—AhﬂﬁiA} 1o
47 dr® C 4r o Ar7 g cl? 4% 4r?Jdr rel? 4rd 43
_5d4u, L 20(A-1)-27 d3u, +[27(A—1)+65+/1+2y}d2ur +[38(1—A)—107 NS A)(/1+2y)+ﬂldur (39)
dr 4r dr® 4r? cl? Jdr? 4r® r dr
+[31(A;ﬁ)+93+z(1—/2x)—1}ur o,
r r

In plastic zone in terms of radial displacement U, the equilibrium equation is obtained by substituting

Egs.(26)—(28) , (32) and (33) into Eq.(25)

d4ur_11dSur_{ 61 +mz}d2ur+{_k2+m2—ml+51}dur{ 51 K } Men g (40)
dr*  5rdr® [20r* 5cl?] dr? 5¢1°r 20r* | dr [ 20r* 5cl?r? 5crl?

The plastic zone has the inner radius I = a and outer radiusr = p, respectively. At the inner surface r =a

the boundary conditions are

3 2
T, = 5c|2d—u3’—clzid—uzr—{s—gzcl2 +m2}di+(—ﬁ+2—53cl2 U, -n,—p,r =0
dr 2r dr 4r dr ro2r _
(41)

d?u, 4du, 13
R, =|5——l+-—L_ ="y =0
a { dr®? rdr 4r? rl_a

At the boundary r = p between elastic and plastic zones the boundary conditions are Eq.(39).

The obtained governing equations with higher-order boundary conditions are very complex for closed-form
analytical solutions; hence the numerical algorithms are used to solve these equations.

5. The numerical results and discussions

The solution of the fourth-order ordinary differential equations with two-point boundary conditions can be
obtained by using ODE45 module in MATLAB software and numerical methods (Quasi-Newton method and
Shooting method) [28, 29]. The following parameters for numerical analysis are taken. Tunnel radius isa =4m;
the inner and outer pressure are p, =0, p, =100MPa , respectively; rock mass modulus is E = 20GPa ;
Poisson’s ratio isv =0.20 ; the friction angle is ¢ =20.81"; the uniaxial compressive strength is o, =50MPa;
the modulus ratio is ¢ =|M/E|=15; the lateral deformation coefficient is # = 3.3 ; the internal length scale is
| =0.04a ; the gradient-dependent elastic parameter isc = x . In the following subsections, when we study the
parameter sensitivity of one of the above mentioned parameters, only the examined parameter varies with
other parameters taking the above mentioned values.

Numerical calculation procedure is implemented in MATLAB software. The correctness of the algorithms
and the proposed model has been verified by the authors preliminarily. The influence of model parameters,



such asv,M , R, /o, ,c, |,p, on stress distribution in surrounding the tunnel rock mass is investigated in
this Section.

5.1 The influence of Poisson’s ratio v

The influence of the Poisson’s ratio on the mechanical behaviors of rock mass has been studied by adopting
four values:;,v=0.2, v=0.3, v=04

Figs.6 presents the stress distribution in the plastic zone at different values of Poisson’s ratio with p=10m.
The stress peak value envelopes are consistent with the stress distribution obtained by conventional theory.
Detailed analyses show that the slope and amplitude at first monotonically decrease with the increase of Poisson’s
ratio, reach their minimum ato = 0.27, and then monotonically increase with the increase of Poisson’s ratio.
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Fig.6 Stress distribution in surrounding tunnel rock mass under (a) v=0.2, (b)v =0.3 and (c)v =0.4

5.2 The influence of softening modulus M

The softening modulus M is defined by the modulus ratio £ . The stress distribution in surrounding tunnel
rock mass with different values of £ is presented in Fig.7. From Fig.7 it can be seen that when & is very small
(£ =0.1), the constitutive relation is close to the ideal elasto-plastic model, the stress distribution in surrounding
tunnel rock mass is very smooth and monotonic, and the quasi-periodic oscillating feature is very weak. With the
increase of £, not only the oscillation and periodicity of the stress distribution become more and more remarkable,
but the peak-to-trough amplitude and the absolute peak stress magnitude gradually increases, the slope of the
curve becomes steeper. The obtained results indicate that softening property of rock is a controlling factor for the
appearance of quasi-periodic oscillating feature of stress distribution in deep level rock mass beyond elastic limit.
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Fig.7 Stress distribution in surrounding tunnel rock mass under (a) £=0.1, (b) £=05 and (c) £=15

5.2. The influence of internal length scale | and the gradient-dependent elastic parameter C



Take p =10 m, and keep values of other parameters unchanged, the stress distribution in surrounding tunnel
rock mass can be obtained under 1/a=0.021, 0.04, 0.055, respectively. The results are presented from Figs.8. It
is clear that with the increase of |/a, the number of peaks and troughs decrease rapidly, the peak-to-trough
amplitudes increases. Therefore internal length scale | is an important factor affecting the phenomenon of
zonal disintegration.

To investigate the effect of gradient-dependent elastic parameter ¢, relevant parameters are taken: the
internal length scalel =0.04a, the boundary between elastic and plastic zones at p =10 m, and four values of C
for computation: ¢ =0.55., ¢, 2, . The numerical results are presented from Figs.9. It is evident that with
the increase of C oscillating frequency of stress distribution decreases. Whenc =24, only three peaks and
troughs occur, and the distance between two adjacent peaks increases. The influence of C is similar to that
ofl, so it is necessary to study their combined effect.
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Fig.8 Stress distribution in surrounding tunnel rock mass under (a)| = 0.021a,(b)| = 0.04a and (c)| = 0.055a
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Fig.9 Stress distribution in surrounding tunnel rock mass under ¢=0.55uC= g c=2u
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Fig.10 Stress distribution in surrounding tunnel rock mass for fixed ¢l? =0.0016a - U
Fig.10 represents the numerical results of stress distribution in surrounding tunnel rock mass obtained by
taking three sets of values of C and| with fixed value of c1? = 0.0016a- 4 . It is of particular interest in seeing
from Fig.10 that the stress distributions in surrounding tunnel rock mass for three sets of values of C and |
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coincide completely. It can then be concluded that the combination of the two parameters cl? is essential.
Regardless of the values of Candl, if the value of cl? is fixed the periodicity property of the stress
distribution in surrounding deep tunnel rock mass remains the same. The smaller the value of cl? is, the
higher the oscillating frequency of the stress distribution in surrounding deep tunnel rock mass is.

5.3 The influence of lateral deformation coefficient

Figs.11 present the stress distribution in surrounding tunnel rock mass for four values of lateral deformation
coefficient =25, 5.0, 10.0.
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Fig.11 Stress distribution in surrounding tunnel rock mass at () g = 2.5, (b) # =5.0, (¢) 8 =10.0
The numerical results from Figs.11 show that with the increase of S the oscillating feature of stress
distribution becomes weaker and weaker, but the oscillating frequency of stress distribution curves increases.

5.4 The influence of relative loading level =P, /o,

The following parameters for numerical analysis of stress field in surrounding tunnel rock mass are taken.
Tunnel radius is a=4m; the inner pressure are p, =0; rock mass modulus is E=20GPa; rock mass’s
Poisson’s ratio isv = 0.20; the friction angle is ¢ =20.81"; the uniaxial compressive strength is o. =50MPa; the
modulus ratio is g:\M/E\:l,s; the lateral deformation coefficientis p#=3.3 ; the gradient-dependent elastic
parameter isc = g ; the internal length scale is taken as | =0.04a by data fitting to the experimental data.
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Fig.12 Stress distribution in surrounding tunnel rock mass when (a) & = 0.5, (b)5 =1.5, ()5 =2.0
When & =R, /o, =0.5 the inner surface of tunnel begins to yield as the stresses atr =a satisfy the Mohr-
Coulomb’s criterion. The stress distribution in surrounding tunnel rock mass is presented in Fig.12(a). Figs.12(b)
and (c) give the stress fields in surrounding tunnel rock mass obtained at =15 and & =2.0, respectively.
Fig.12(b) shows that when & =1.5 the boundary between elastic and plastic zones is at r =7.10 m, and there are
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two peaks and troughs. There are three peaks and troughs whena = 2.0, as shown in Fig.12(c). The numerical
results are in agreement with the experimental results [3]. Meanwhile the boundary between elastic and plastic
zones wheno =2.0 is atr =8.55m, farther than that in the case of & =1.5. Therefore it can be concluded that
the number of fractured zones will increase with the increase of the tunnel depth. When relative loading level is
about 0.5, rock mass near tunnel surface will begin to yield first. Only when & reaches a definite value, in other
words, only when the depth of tunnel reaches definite value, the phenomenon of zone disintegration may occur.

6. Discussion and summary

The main results of numerical analysis of the developed in this paper gradient model are given as follows:

(1) High initial hydro-geostatic pressure is a necessary condition for the formation of zonal disintegration.
Under high enough initial hydro-geostatic pressure, surrounding tunnel rock mass reaches plastic regime, which
develops condition for the occurrence of dissipative structures.

(2) Softening is another necessary condition for the formation of zonal disintegration. With the increase of
softening modulus, not only the oscillation and periodicity of the stress distribution become more and more
notable, but the peak-to-trough amplitude and the slope of the stress distribution envelop increase.

(3) Internal length scale | and gradient-dependent elastic parameter C have similar effect on zonal
disintegration. In general, with the increase of | and C the number of peaks and troughs decreases rapidly,
while the peak-to-trough amplitudes increases. The combination of the two parameters cl? reflects the gradient
nature of materials. If the value of cl® is fixed, no matter what values C and | are taken, the periodicity
property of the stress distribution in surrounding deep tunnel rock mass remains the same. The smaller the value
of cl? is, the higher the oscillating frequency of the stress distribution is. cl?is the third parameter controlling
the oscillation and periodicity feature of the stress distribution.

(4) With the increase of lateral deformation coefficient 4 the oscillating feature of stress distribution curves
becomes weaker and weaker, but the oscillating frequency of stress distribution curves increases. Therefore this
parameter is also a parameter affecting the quasi-periodic variation of stress distribution in deep level rock mass.

(5) Poisson’s ratio » mainly affects on the slope and the amplitude of stress peak value envelopes. The slope and
amplitude of stress distribution monotonically decrease at the beginning with the increase of o, and reach their
minimum at v = 0.27, then monotonically increase with the increase of Poisson’s ratio.
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