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ABSTRACT
This paper describes a nonlinear deterministic controller design for a helicopter with an underslung
external load system. A robust control approach is considered for the control law development. The
system is considered as a cascade connection of an uncertain nonlinear system. The controller is
designed to ensure the stabilization of the helicopter system and the positioning of the underslung
load at hover condition. Control analysis and numerical results show that the proposed controller is
able to locate the load at the specified position or its neighbourhood.
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1. Introduction

The interest in designing a feedback controller for a heli-
copter by means of the nonlinear control strategy has
nowadays gained considerable attention from several
researchers (see, e.g. Avila-Vilchis, Brogliato, Dzul, &
Lozano, 2003; Isidori, Marconi, & Serrani, 2003). Avila-
Vilchis et al. (2003) present anonlinear control strategy for
a reduced-order model of a helicopter. Due to the com-
plexity of the helicopter model and dynamics, it is very
difficult to develop a nonlinear control strategy if a com-
plete nonlinear helicopter model is used. For instance,
Isidori et al. (2003) addressed the problem of control-
ling the motion of a helicopter described by a nonlinear
mathematical model. To simplify the nonlinearity of the
dynamics and the strong coupling effects in the model,
the unavoidability of simplification of the system model
is applied.

Research on a helicopter carrying external under-
slung loads has gained great attention in the aerospace
research community for the past few decades due to the
re-evaluation and extension of the ADS-33 and the inher-
ent stability problems associated with this system (ADS-
33-D, 1996; Bisgaard, Bendtsen, & la Cour-Harbo, 2009;
Bisgaard, Harbo, & Bendtsen, 2010; Oktay& Sultan, 2013b;
Thanapalan & Zhang, 2013). Helicopters have the abil-
ity to carry large and bulky loads externally on a sling.
This capability is important in many applications, rang-
ing from lifting heavy loads to saving life. Importantly,
when lives are under risk and rapid rescue operations are
needed this operation is vital. The stability of the heli-
copter will be disturbed by the underslung load, which

CONTACT Kary Thanapalan kary.thanapalan@southwales.ac.uk

is a huge obstacle for an accurate pick up or placement
of the loads (Thanapalan & Wong, 2010). Thus, it is nec-
essary to design a suitable controller which can ensure
the stabilization of the helicopter system and the posi-
tioningof theunderslung loadunder various complicated
situations.

A review of reported methods for flight control law
design shows that many approaches used to design the
control law have involved the application of SISO tech-
niques to each control loop individually (Manness, Grib-
ble, & Smith, 1990). The controller design methods such
as linear quadratic regular (LQR) or linear quadratic Gaus-
sian (LQG) method, commonly referred to as LQmethods
(Gribble, 1993), sliding mode control (SMC) and eigen-
structure assignment are used to evaluate a multivari-
able control law design for helicopter flight (Thanapalan,
2015). In the case of eigenstructure assignment method,
the designer attempts to find optimum pole positions
(Manness et al., 1990). Themain idea of SMC is tomaintain
the system sliding on a surface in the state space despite
the uncertainties or perturbations. This is done by means
of a discontinuous control law that switches between two
structures, when the system passes through that surface
(Edwards & Spurgeon, 1998). Many researchers use the
idea of SMC to develop flight control laws, see, for exam-
ple, Shtessel and Shkolnikov (2003). Slidingmode control
is a technique for the design of nonlinear regulators. The
first step in the two-part synthesis procedure is to specify
a desired sliding subspace. This involves using regulation
techniques such as LQR or eigenstructure assignment to
stabilize a reduced-order system. A nonlinear controller

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
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is then developed in the second step to asymptotically
drive the system towards the regulated subsystem’s so-
called sliding subspace. However, designing the sliding
subspace is very difficult job indeed, since there appears
to be little guidance on how to design a sliding subspace,
which may be limiting this design method to helicopter
control applications (Thanapalan, 2015).

The method like H∞ optimization used to design
a flight control law can be considered as a frequency
domain method, since this technique is similar to the
design of the control law based on a transfer func-
tion matrix representation of the system and it involves
frequency domain performance specifications (Luo, Liu,
Yang, & Chang, 2003). For example, in the case of design-
ing a control law for a helicopter, Yue and Postlethwaite
(1990) have described the application of H∞ optimiza-
tion techniques to the determination of feedback con-
trol laws for improving the handling qualities of a com-
bat helicopter. Quantitative feedback control technique
is a control synthesis technique which involves shaping
the loop transmission to meet bounds placed upon it
by performance specifications in terms of desired sys-
tem responses and disturbance rejection levels. A sur-
vey of the quantitative feedback control technique can
be found in Horowitz (2001). The possibility of apply-
ing quantitative feedback control technique to helicopter
flight control design is considered by several researches,
see, for example, Snell and Stout (1998). However, due to
the requirements of conservative and sequential design
for each of the multivariable subsystems, it is difficult
to obtain the best closed-loop performance under prac-
tical constraints. Moreover, manual-bound computation
and trial and error loop shaping design procedures make
it difficult to realize a stabilizing feedback control law
for a helicopter system using the quantitative feedback
control technique.

Model reference techniques are those synthesis
procedures which can be used to design feedforward
controllers. For instance, an integral inverse model fol-
lowing technique and controllers using the nonlinear
system inverses can be considered as model reference
techniques. In the case of the integral inverse model fol-
lowing technique a regulator is designed to minimize
the error transients between the responses of the sys-
tem being controlled and a model which describes the
dynamics. The controller using nonlinear system inverses
is essentially a procedure for the inversion of the sys-
tem such that each input is linked with an output (Lane
& Stengel, 1988). State estimator techniques such as
Kalman filter and state observer and loop transfer tech-
niques can be classified as output feedback methods.
State estimator techniques provide a means of generat-
ing estimated state variables for feedback from available

measurements. However, the use of this method has a
drawback that the use of estimated state feedback can
create problems for the designer in that the resulting
control laws are not, in most cases, robust to uncertain-
ties or variations in the plant (Bryson, 1985). The use of
intelligent control methods for helicopter control system
design such as fuzzy control andNeural Network (NN) has
also been addressed by several researchers, for example,
see, Kadmiry and Driankov (2001).

Form the review of popular helicopter control meth-
ods, it is clear that considerable attention has been paid
to the design of a controller to obtain a satisfactory heli-
copter handling quality (Thanapalan, 2015). The control
problem has been tackled using different approaches
ranging from linear quadratic control (Gribble, 1993),
eigenstructure assignment (Garrard, Low, & Prouty, 1989;
Manness et al., 1990), classical SISO techniques (Garrard
et al., 1989), constrained controller design (Oktay, 2012;
Oktay & Sultan, 2013a) and slidingmode control (Shtessel
& Shkolnikov, 2003). Apart from themethods emphasized
above, many other techniques are reported for complex
modern control system design ranging from quantitative
feedback theory and the singular perturbation method
(Thompson, Pruyn, & Shukla, 1999).

In general there are two main approaches for control
of uncertain dynamical systems, that is, deterministic and
stochastic control. If the uncertainty in the systemmodel
is assumed to have statistical characterization and the
desired behaviour of the system is described in a statis-
tical sense a stochastic approach is feasible; otherwise, if
structural properties and bounding conditions relating to
the uncertainties are known, a deterministic approach is
appropriate (Thanapalan, 2015). Deterministic feedback
control of uncertain dynamical systems proposes the use
of determined linear or nonlinear feedback control func-
tions, which operate effectively over a specified magni-
tude range of system parameter variations and distur-
bances, without any online identification of the system
parameters. Benefit of such an approach is that no sta-
tistical information of the system variations is required
to yield the desired dynamical behaviour and, hence, the
controller may have a simple structure for implemen-
tation in practical systems. However, the deterministic
control design methodology requires the system state
vector to be available for measurements, and the bound-
ing knowledge of uncertainties to be known, which may
put restrictions on the applications of this method.

In this paper, a nonlinear deterministic controller is
designed for the helicopter with an underslung external
load system. The key advantage of the proposed con-
trol method is that the controller design takes the sys-
tem uncertainty into account. The designed controller
can give a guaranteed stability region for the systems
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considered. This method should have potential for solv-
ing some problems arising in helicopter control. The
paper begins by presenting a mathematical model of
the system, then describing the design of a nonlinear
controller with a numerical example to illustrate the
applicability, accuracy and effectiveness of the proposed
method.

2. Systemmodel

Considering the control of a helicopter with an under-
slung load, the dynamical models of both the helicopter
and load have some terms which are uncertain. The
uncertainties may arise from the helicopter having to
carry an unknown load or the immeasurable parameters
in the dynamical models. The uncertaintiesmay also arise
from computational errors of the dynamical effects such
as aerodynamics. Therefore for a realistic model uncer-
tainties must be taken into account during the controller
design.

A mathematical model of the helicopter has been
described in Thanapalan (2010) and an underslung load
model presented in Thanapalan and Wong (2010), which
are adopted in this work. Considering the two models, a
mathematical model for a helicopter carrying an under-
slung load can be obtained. From Thanapalan (2010)
and Thanapalan and Wong (2010), if the velocities and
accelerations of the helicopter are considered as the
inputs to the load, the combined systemmodel will have
a structure of a cascade connection of the two sub-
systems (Thanapalan & Zhang, 2013). Therefore, in this
paper, nonlinear systems with the following format are
considered.

ẋ(t) = f (x(t))+ G(x(t))ũ(t), (1)

where x(t) ∈ Rn, ũ ∈ Rm. In general mathematical mod-
els of dynamical systems are usually imprecise due to
modelling errors and exogenous disturbances. Equation
(1) can be considered as the nominal part of the sys-
tem model and the uncertainty can be modelled as an
additive perturbation to the nominal systemmodel;more
specifically, the structure of the system has the form:

ẋ(t) = f (x(t))+ G(x(t))ũ(t)+ ϑ(x(t), u(t)), (2)

where ϑ(x(t), u(t))models the uncertainty in the system.
Now, the underslung load is considered to be sus-

pended from a single suspension point that is subject to
motion and thereforemodelled as a driven spherical pen-
dulum. The equations that describe the load dynamics

are obtained by first considering motion with reference
to the longitudinal suspension angle θL in the x–z plane.
This is then repeated for the lateral case involving φL and
the y–z plane. These are then combined to obtain the
model for the motion of the load. The underslung load
system has six inputs, longitudinal, lateral and vertical
velocities together with the corresponding accelerations
of the helicopter, whilst the outputs are the longitudinal
and lateral directional suspension angles. The load is sub-
ject to an isotropic aerodynamic force (proportional to
the square of its airspeed) such as would be experienced
by a spherical shaped load. Aerodynamic interactionwith
the helicopter that may occur for example due to rotor
downwash has been ignored. Finally, the sling itself is
assumed to be rigid and contributing zero aerodynamic
force of its own. With these assumptions, the equations
governing the combined system can be derived.

So, using the kind of nonlinear system structure
described above, the longitudinal motion of the heli-
copter with an underslung load combined system
described by load suspension angle θL in the x–z plane
with respect to the z-axis, the pitch angle θ and pitch rate
q together with translation motion components u,w can
be written as follows:

˙̄θL(t) = f1(θ̄L(t))+ G1(θ̄L(t))[p(xH(t))+ q(θ̄L(t), xH(t))]

+ H(t, θ̄L, xH(t)), (3a)

ẋH(t) = f2(θ̄L(t), xH(t))+ G2ũ(t), (3b)

where

θ̄L(t) = [θL1 θL2 θ q̄]T, xH = [u w]T,

ũ(t) = [θ1s θ0]
T,

and

p(xH) = [u2 + κ1u w2 + κ2w]
T.

f1(θ̄L(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

θL2

−g

lx
sin θL1 + kDlx

ML
(sign(ẊL)cos3θL1

+ sign(ŻL)sin3θL1)θ
2
L2

− kθ θL2
q̄

(X21θ + X22q̄)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G1(θ̄L(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

kDsign(ẊL) cos θL1
MLlx

kDsign(ŻL) sin θL1
MLlx

0 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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100 K. THANAPALAN

q(θ̄L(t), xH(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
cos θL1

lx
u̇ + sin θL1

lx
ẇ

−2kD
ML

(sign(ẊL)cos2θL1u

+sign(ŻL)sin2θL1w)θL2

−κ1kDsign(ẊL) cos θL1u
MLlx

−κ2kDsign(ẊL) cos θL1w
MLlx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H(t, θ̄L(t), xH(t)) =

⎡
⎢⎢⎣

0
0

(a11u + a12w)
X23u + X24w

⎤
⎥⎥⎦ ,

f2(θ̄L(t), xH(t)) =
[
(X31θ + X32q̄ + X33u + X34w)
(X41θ + X42q̄ + X43u + X44w)

]
,

G2 =
[
Xθ1s Xθ0
Zθ1s Zθ0

]
.

It is assumed that the longitudinal motion is primar-
ily controlled by longitudinal cyclic commands (θ1s) and
main rotor collective θ0.

Similarly, for the lateral motion the combined system
described by load suspension angle φL in the y–z plane
with respect to the z-axis, the roll angle ϕ and roll rate
p together with the translation motion components v,w
can be written as follows:

˙̄ϕL(t) = f1(ϕ̄L(t))+ G1(ϕ̄L(t))[p(xH(t))+ q(ϕ̄L(t), xH(t))]

+ H(t, ϕ̄L, xH(t)), (4a)

ẋH(t) = f2(ϕ̄L(t), xH(t))+ G2û(t), (4b)

where

˙̄ϕL(t) = [ϕ̇L1 ϕ̇L2 φ̇ ˙̄p]T, p(xH(t)) = [v2w2]T,

f1(ϕ̄L(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕL2−g

ly
sinϕL1 + kDly

ML
(sign(ẎL)cos3ϕL1

+ sin(ŻL)sin3ϕL1)ϕ
2
L2

− kϕϕL2
p̄

(−b11gφ + (Lp − b11(Yp + we)

−b12(Zp − ve))p̄)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G1(ϕ̄L(t))

=

⎡
⎢⎢⎢⎢⎣

0 0(
kDsign(ŻL) cosϕL1

MLly

) (
kDsign(ŻL) sinϕL1

MLly

)
0 0
0 0

⎤
⎥⎥⎥⎥⎦ ,

q(ϕ̄L(t), xH(t))

=

⎡
⎢⎢⎣

0
cosϕL1

ly
v̇ + sinϕL1

ly
ẇ − 2kD

ML
(sign(ẎL)cos2ϕL1v

+sign(ŻL)sin2ϕL1w)ϕL2

⎤
⎥⎥⎦ ,

H(t, ϕ̄L(t), xH(t)) =

⎡
⎢⎢⎣

0
0

(φ̇ − p̄)
(Y23v + Y24w)

⎤
⎥⎥⎦ ,

û(t) = [θ1c θ0T ]T,

f2(ϕ̄L(t), xH(t)) =
[
(Y31φ + Y32p̄ + Y33v + Y34w)

(Y42p̄ + Y43v + Y44w)

]
,

G2 =
[
Yθ1c Yθ0T
Zθ1c Zθ0T

]
.

It is assumed that the lateral motion is primarily con-
trolled by lateral cyclic commands (θ1c) and the tail rotor
collective θ0T .

It is noted that the helicopterwith the underslung load
system modelled by Equations (3) and (4) is considered
to have two main parts, that is, known and unknown
(or partly known). The known terms formed the nominal
part of the system model. The unknown or partly known
part is considered as the uncertainty to the system. The
whole system is then modelled by a nominal part with
the addition of uncertainty. In fact, the knownelements in
the subsystem (3a) and (4a) are characterized by the pre-
scribed triple (f1,G1, p) and it is desired that the nominal
part of the system is stable.

3. Controller design

The goal is to develop a control law to ensure that it can
stabilize the helicopter with the underslung load system
modelled by Equations (3) and (4), in a real environment
withuncertainties. Firstly, the condition for stability needs
to be identified, in order to design a controller; Thana-
palan (2016) presents the stability analysis conducted to
ensure the stabilization of the helicopter system and the
positioning of the underslung load at hover condition.
Stability analysis and numerical results proved that if the
desired condition for stability is met, then it is possible
to locate the load at the specified position or its neigh-
bourhood (Thanapalan, 2016). In this paper, a nonlinear
deterministic controller is designed to ensure the stability
and control of the system. The purpose of the controller is
to position the load at or as close as possible to a specified
location. A deterministic feedback control is developed
which can be continuous and discontinuous.

Let

θ̄L → h(θ̄L),

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
h 

W
al

es
] 

at
 0

8:
06

 1
7 

N
ov

em
be

r 
20

17
 



SYSTEMS SCIENCE & CONTROL ENGINEERING: AN OPEN ACCESS JOURNAL 101

where

h(θ̄L) = [h1(θ̄L), h2(θ̄L)]T be defined by

hi(θ̄L) = −(1 − α1 − β1)
−1γ1(Lgiv1)(θ̄L), (i = 1, 2), (5)

where γ1is a positive design parameter.
Suppose p(xH(t)) = h(θ̄L(t)) (where xH(t) = (p−1 ◦

h)(θ̄L)) is consideredas a feedback control for the first sub-
system (3a) and using the Lyapunov function for the first
subsystem v1 as

v1(θ̄L) = 1
2
[ς1θ2L1 + ς2θ

2
L2 + (ς3θ − ς4q̄)

2 + ς5q̄
2], (6)

where ςi (i = 1, 2, 3, 4, 5) are design parameters to be
determined. Then

v̇1(θ̄L) = 〈∇v1(θ̄L), f1(θ̄L)+ G1(θ̄L(t))[p(xH(t))

+ q(θ̄L(t), xH(t))] + H(t, θ̄L, xH(t))〉
= (Lf1v1)(θ̄L)+ 〈∇v1(θ̄L),G1(θ̄L(t))[p(xH(t))

+ q(θ̄L(t), xH(t))] + H(t, θ̄L, xH(t))〉
by defining

�1(θ̄L) = kθς2θ
2
L2 + [ς3ς4 − (ς24 + ς5)X21]q̄2

+ ς3ς4X21θ
2.

and

�2(θ̄L) = [ς3ς4 − (ς24 + ς5)X21]q̄2 + ς3ς4X21θ
2,

the following lemma can be derived.

Lemma 1: Defining a Lyapunov function (6) and choos-
ing the design parameters to satisfy ς1 = (2g/lxπ)ς2,
[ς3ς4 − (ς24 + ς5)X21] > 0, and [ς23 − ς3ς4X22 + (ς24 +
ς5)X21] ≥ 0, then within the region specified by

−[ς3ς4 − (ς24 + ς5)X21]q̄2 < ς3ς4X21θ
2

(1) v1(0) = 0 and v1(θ̄L) > 0, ∀θ̄L �= 0
(2) v1(θ̄L) → ∞ as ‖θ̄L‖ → ∞
(3) (Lf1v1)(θ̄L) ≤ −�1(θ̄L), ∀θ̄L around the hover condi-

tion or (Lf1v1)(θ̄L) ≤ −�2(θ̄L), ∀θ̄L If the hinge friction
is big enough to satisfy the following:

kθ >
kDlx
ML

|max(θL2)(sign(ẊL)cos
3θL1

+ sign(ŻL)sin3θL1)|. (7)

Both functions�1 and�2 are non-negative.
Recalling the control term p(xH(t)) in the first subsys-

tem of Equation (3a), it can be seen that [(Dp)(xH)]−1

exists for all xH(t).

Lemma 2: The uncertainties are bounded and satisfy

‖q(θ̄L, xH)‖ ≤ kθ
lx

|θL2 | + α1‖p(xH)‖ + α2(t) (8)

and

‖H(t, θ̄L, xH)‖ ≤ 

θ
−1
(θ̄L)β1

2∑
i=1

(|(Lgiv1)(θ̄L)|)|pi(xH)| (9)

with α1,β1 ≥ 0 and α1 + β1 < 1, for α1 = (kD/ML)(2 +
(κ/lx)) and β1 = (MLlx/kDς2)‖Ā‖. then

v̇1(θ̄L) = 〈(∇v1)(θ̄L), θ̇L〉

=
〈
(∇v1)(θ̄L), f1(θ̄L)+

2∑
i=1

gi(θ̄L)(hi(θ̄L)

+ qi(p
−1 ◦ h)(θ̄L))+ H(t, θ̄L, (p−1 ◦ h))

〉
≤ −�̄(θ̄L)− (γ1 − μ1)|(Lg2v1)(θ̄L)|2

+ α2(t)|(Lg2v1)(θ̄L)|
≤ −�̄(θ̄L)−

[√
γ1 − μ1|(Lg2v1)(θ̄L)|

− α2(t)

2
√
γ1 − μ1

]2 + α22(t)

4(γ1 − μ1)
,

where �̄ represents either �1 or �2. That is, the solu-
tions for the first subsystem will tend to a compact set if
p(xH(t)) = h(θ̄L(t)). Therefore, the next step of the con-
troller design is to find a control law which will drive
the second subsystem state variables to lead p(xH(t)) →
h(θ̄L(t)) while t increases. To measure how close p(xH(t))
and h(θ̄L(t)), a new state variable vector is defined by

e(t) := ((p ◦ xH)− (h ◦ θL))(t). (10)

So we have

ė(t) = (Dp)(xH)ẋH(t)− (Dh)(θ̄L)θ̇L(t)

with the initial condition

e(0) = e0 := p(x0H)− h(θ0L ).

Substituting the original systemequations, we can obtain

ė(t) = �(t, θ̄L, e(t))ė(t)

= (Dp)(p̃)(f2(θ̄L, p̃)+ G2F(t, θ̄L, p̃))

− (Dh)(θ̄L)(f1(θ̄L)+ G1(θ̄L)(e(t)+ h(θ̄L)

+ q(θ̄L(t), p̃))(+H(t, θ̄L, p̃)),

where p̃ = p−1 ◦ (e(t)+ h(θ̄L)).
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102 K. THANAPALAN

Then the system with the newly defined state variable
of (θ̄L, e) can be modelled by

[ ˙̄θL
ė

]
=
⎡
⎣f1(θ̄L)+ G1(θ̄L)(e + h(θ̄L)

+q(θ̄L, p̃))+ H(t, θ̃L, p̃)
�(t, θ̄L, e)

⎤
⎦

= �(t, θ̄L, e). (11)

Choose A2,Q2 such that σ(A2) ⊂ C− and Q2 is a symmet-
ric positive-definite matrix, i.e. Q2 > 0. Let P2 > 0 denote
the unique symmetric solution of the Lyapunov equation

P2A2 + AT2P2 + Q2 = 0. (12)

The continuous state feedback control F(t, θ̄L, xH) is
designed to have the following structure:

(t, θ̄L, xH) �→ F(t, θ̄L, xH)

= G−1
2 (uf (θ̄L, xH)+ ugain(t, θ̄L, xH)), (13)

where

uf (θ̄L, xH) := −f2(θ̄L, xH)+ [(Dp)(xH)]−1(A2(p(xH)

− h(θ̄L))+ (Dh)(θ̄L)(f1(θ̄L)+ G1(θ̄L)p(xH)))

and

ugain(t, θ̄L, xH) := −ρC(t, θ̄L, xH)�(ρC(t, θ̄L, xH)
× [(Dp)(xH)]TP2(p(xH)− h(θ̄L))).

In uN, ρC is defined as any continuous function satisfying
the following inequality:

ρC(t, θ̄L, xH)

≥
2∑

i=1

(μ1|(Lgiv1)(θ̄L)| + α1|pi(xH)| + α2(t))

× ‖[(Dp)(xH)]−1(Dh)(θ̄L)gi‖
+ max(‖[(Dp)(xH)]−1(Dh)(θ̄L)‖‖H(θ̄L, xH)‖) (14)

and

Z → �(Z) =:

⎧⎨
⎩

‖Z‖−1Z if ‖Z‖ > η,

Z/η otherwise,
(15)

where η is a positive design parameter to be determined.
The feedback control in Equation (13) can be considered
to have two parts. The first part is a nonlinear feedback
which is to stabilize the known part of the system and
the second part is a variable gain which is to address the
uncertainty in the system.

For system (11), a Lyapunov function is chosen as

ṽ

([
θ̄L

e

])
= v1(θ̄L)+ ξv2(e), (16)

where ξ > 0 is a design parameter to be specified and
v2(e) =: (1/2)

〈
e, P2e

〉
. Then for ‖ρC(t, θ̄L, xH)[(Dp)(xH)]T

P2(p(xH)− h(θ̄L))‖ < η, we have

ṽ =
〈
∇v1(θ̄L), ˙̄θL

〉
+ ξ 〈∇v2(e), ė〉

≤ −�̄(θ̄L)− (1 + α1 + β1)

2∑
i=1

(
1
2
|(Lgiv1)(θ̄L)| − |ei|

)2

−
[
μ1(γ1 − 1)− 1

4
(1 + α1 + β1)

] 2∑
i=1

(
|(Lgiv1)(θ̄L)|

− 2α2
4μ1(γ1 − 1)− (1 + α1 + β1)

|ei|
)2

−
[
1
2
ξσmin(Q2)− 1

4
(1 + α1 + β1)

]
‖e‖2

+ 2ξη + α22

[4μ1(γ1 − 1)− (1 + α1 + β1)]
,

for ‖ρC(t, θ̄L, xH)[(Dp)(xH)]TP2(p(xH)− h(θ̄L))‖ ≥ η, we
have

ṽ ≤ −�̄(θ̄L)− (1 + α1 + β1)

2∑
i=1

(
1
2
|(Lgiv1)(θ̄L)| − |ei|

)2

− [μ1(γ1 − 1)− 1
4
(1 + α1 + β1)]

2∑
i=1

(
|(Lgiv1)(θ̄L)|

− 2α2
4μ1(γ1 − 1)− (1 + α1 + β1)

|ei|
)2

−
[
1
2
ξσmin(Q2)− 1

4
(1 + α1 + β1)

]
‖e‖2

+ α22

[4μ1(γ1 − 1)− (1 + α1 + β1)]
.

For both cases, the following is true:

ṽ ≤ −�̄(θ̄L)− (1 + α1 + β1)

2∑
i=1

(
1
2
|(Lgiv1)(θ̄L)| − |ei|

)2

− [μ1(γ1 − 1)− 1
4
(1 + α1 + β1)]

2∑
i=1

(
|(Lgiv1)(θ̄L)|

− 2α2
4μ1(γ1 − 1)− (1 + α1 + β1)

|ei|
)2

−
[
1
2
ξσmin(Q2)− 1

4
(1 + α1 + β1)

]
‖e‖2

+ 2ξη + α22

[4μ1(γ1 − 1)− (1 + α1 + β1)]
.
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Therefore

˙̃v ≤ −
〈[
�̄1/2(θ̄L)

‖e(t)‖
]
, T1

[
�̄1/2(θ̄L)

‖e(t)‖
]〉

+ α22

[4μ1(γ1 − 1)− (1 + α1 + β1)]
+ 2ηξ , (17)

where

T1 :=
[
1 0
0

( 1
2ξσmin(Q2)− 1

4 (1 + α1 + β1)
)] .

Choosing 4μ1(γ1 − 1) > (1 + α1 + β1), γ1 > 1ξ ≥ ((1 +
α1 + β1)/2σmin(Q2)) ensures that σmin(T1) = 1 and guar-
antees that

˙̃v
([
θ̄L(t)
e(t)

])
≤ 0 a.e., ∀

[
θ̄L(t)
e(t)

]
∈ R

4\ /

λ(kη),

where

/

λ(kη) :=
{[
θ̄L(t)
e(t)

]4
:

∥∥∥∥
[
�̄1/2(θ̄L)

e(t)

]∥∥∥∥
≤ kη ; kη := α22

[4μ1(γ1 − 1)− (1 + α1 + β1)]
+2ηξ

}
.

From the above analysis, the following theorem
results:

Theorem 1: Following Lemmas 1 and 2 with the feed-
back control defined in Equation (13), if the design parame-
ters satisfy 4μ1(γ1 − 1) > (1 + α1 + β1), γ1 > 1, and ξ ≥
((1 + α1 + β1)/2σmin(Q2)), the compact set /

λ(kη) is glob-
ally asymptotically stable for thehelicopter dynamic system.

Theorem 1 indicates that the feedback control (13)
can position the load at the specified location or to a
small region around the specified location. The size of
the region can be reduced by choosing proper design
parameters.

The procedure for the development of a control law
for the lateralmotion is similar to the longitudinalmotion.
Therefore, the stabilizing feedback control law for lateral
motion can be written with the appropriate parameter:

(t, ϕ̄L, xH) �→ F(t, ϕ̄L, xH)

= G−1
2 (uL(ϕ̄L, xH)+ uN(t, ϕ̄L, xH)), (18)

whereas

uL(ϕ̄L, xH) := −f2(ϕ̄L, xH)+ [(Dp)(xH)]−1

× (A2(p(xH)− h(ϕ̄L))+ (Dh)(ϕ̄L)(f1(ϕ̄L)

+ G1(ϕ̄L)p(xH)))

uN(t, φ̄L, xH) = −ρC(t, ϕ̄L, xH)�(ρC(t, ϕ̄L, xH)[(Dp)(xH)]T

× P2(p(xH)− h(ϕ̄L))),

where ρc is a gain functionwhich is introduced to address
the uncertainties in the system.

4. Numerical analysis

In this section, the feedback control developed in Section
3 is applied to a helicopter model in its linearized model
with an underslung load. Only the longitudinal case is
studied here. The load model adopted in this paper is
the same as the model in Thanapalan and Wong (2010),
Thanapalan and Zhang (2013) which has a weight ML =
1000lbwith a lx = 15ft sling length, kD = 75 and kθ = 2.5
and in this example, a linear model of helicopter (Garrard
et al., 1989) is adopted, which has the system parameters
as below:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u̇
v̇

ẇ
ṗ
q̇
ṙ
φ̇

θ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0199 −0.0058 −0.0058 −0.0151
−0.0452 −0.526 −0.0061 −0.026
−0.0788 −0.0747 −0.3803 0.0008
0.4557 −2.5943 −0.1787 −2.9979
0.3688 0.1931 −0.1753 0.071
1.0939 0.731 −0.0358 0.4058

0 0 0 1
0 0 0 0

0.0232 0.0006 0 −0.06652
−0.0155 0.0148 0.6648 −0.0003

−0.0048 0.042 0.0228 0.0102
−0.5943 0.4155 0 0

−0.5943 0.0013 0 0
0.4069 −0.4940 0 0
0.0005 −0.0154 0 0
0.9994 0.0343 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
v

w
p
q
r
φ

θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0456 −0.083 0.4735 −0.0016
−0.0369 0.2785 0.0086 0.3600
−3.1126 −0.0032 0.0076 0.0002
−2.4241 20.8327 1.0196 9.1903
−0.03205 0.02538 −6.3329 −0.0648
5.7889 −2.6208 2.3832 −11.0904

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
θo
θ1s
θ1c
θ0T

⎤
⎥⎥⎦ .

If only the longitudinal motion is considered, then we
have

⎡
⎢⎢⎣
θ̇

q̇
u̇
ẇ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0.9994 0 0
0 −0.5943 0.3688 −0.1753

−0.06652 0.0232 −0.0199 −0.0058
0.0102 −0.0048 −0.0788 −0.3803

⎤
⎥⎥⎦
⎡
⎢⎢⎣
θ

q
u
w

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0 0
0.02538 −0.03205
−0.083 −0.0456
−0.0032 −3.1126

⎤
⎥⎥⎦
[
θ1s
θ0

]
.

From the above system parameters, the following can be
obtained:

a11 = −0.30635 and a22 = 0.014785.
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104 K. THANAPALAN

Let

T̄ =

⎡
⎢⎢⎣
1 0 0 0
0 1 −0.30635 0.014785
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ,

then

T̄−1 =

⎡
⎢⎢⎣
1 0 0 0
0 1 0.30635 −0.014785
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

So the original systemmodel can be transformed into the
following format:

T̄−1

⎡
⎢⎢⎣
θ̇

q̇
u̇
ẇ

⎤
⎥⎥⎦ = T̄−1

⎡
⎢⎢⎣

0 0.9994
0 −0.5943

−0.06652 0.0232
0.0102 −0.0048

0 0
0.3688 −0.1753

−0.0199 −0.0058
−0.0788 −0.3803

⎤
⎥⎥⎦ T̄ T̄−1

⎡
⎢⎢⎣
θ

q
u
w

⎤
⎥⎥⎦

+ T̄−1

⎡
⎢⎢⎣

0 0
0.02538 −0.03205
−0.083 −0.0456
−0.0032 −3.1126

⎤
⎥⎥⎦
[
θ1s
θ0

]
.

That is,

⎡
⎢⎢⎣
θ̇
˙̄q
u̇
ẇ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0.9994 −0.3045119 0.014696
−0.02053 −0.58712 0.54373 −0.18013
−0.06652 0.0232 −0.02701 −0.0058
0.0102 −0.0048 −0.0788 −0.3803

⎤
⎥⎥⎦
⎡
⎢⎢⎣
θ

q̄
u
w

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0 0
0 0

−0.083 −0.0456
−0.0032 −3.1126

⎤
⎥⎥⎦
[
θ1s
θ0

]
.

The system transformed has the following structure:

f1(θ̄L(t)) =

⎡
⎢⎢⎢⎢⎢⎣

θL2
−2.133 sin θL1 + 1.125(sign(ẊL)cos3θL1

+sign(ŻL)sin3θL1)θ
2
L2

− 2.5θL2
q̄

−0.02053θ + −0.58712q̄

⎤
⎥⎥⎥⎥⎥⎦ ,

G1(θ̄L(t)) =

⎡
⎢⎢⎢⎢⎣

0 0
kDsign(ẊL) cos θL1

MLlx

kDsign(ẊL) sin θL1
MLlx

0 0
0 0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

0 0
0.005sign(ẊL) cos θL1 0.005sign(ŻL) sin θL1

0 0
0 0

⎤
⎥⎥⎦ ,

q(θ̄L(t), xH(t)) =

⎡
⎢⎢⎣

0
0.0667 cos θL1 u̇ + 0.0667 sin θL1ẇ

−0.15(sign(ẊL)cos2θL1u
+sign(ŻL)sin2θL1w)θL2

⎤
⎥⎥⎦ ,

H(t, θ̄L(t), xH(t)) =

⎡
⎢⎢⎣

0
0

−0.3045119u + 0.014696w
0.54373u − 0.18013w

⎤
⎥⎥⎦ ,

G2 =
[ −0.083 −0.0456
−0.0032 −3.1126

]

and

f2(θ̄L(t), xH(t))

=
[
(−0.06652θ + 0.0232q̄ − 0.02801u − 0.0058w)
(0.0102θ − 0.0048q̄ − 0.0788u − 0.3803w)

]
.

The next step is to check if the system satisfies all the con-
ditions required for application of themethod developed
in Section 3. With the given system parameters, we can
calculate the following:

α1 = kD
ML

(
2 + κ

lx

)
= 0.15.

‖Ā‖ = max(σ (ĀTĀ))

= max

(
σ

([−0.3045119 0.0149629
0.54373 −0.180135

]T

×
[−0.3045119 0.0149629

0.54373 −0.180135

]))

= max

(
σ

([
0.38837 −0.10242

−0.10242 0.03266

] ))
= 0.6447,

β1 = MLlx
kDς2

‖Ā‖ = 128.8/ς2.

If ς2 is chosen to be 200, then β1 = 128.8/ς2 = 0.644.
Hence, α1 + β1 = 0.794 < 1 is true. And also, we can
obtain μ1 = (kθML/kDς2) = 0.1667. From Section 3, the
designparameter ς1 canbe chosen as ς1 = (2g/lxπ)ς2 =
271.62.

The following is to check if Equation (7) holds with the
given parameters. For the given system parameters, we
have

kDlx
ML

|max(θL2)(sign(ẊL)cos
3θL1 + sign(ŻL)sin3θL1)|

≤ kDlx
ML

|max(θL2)|2 ≤ 2.25|max(θL2)|.

In general, one cannot imagine that the load can swing
over 45° of angle within 1 s. Therefore, it is realistic to
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assume that |max(θL2)| ≤ 1, which leads to

kDlx
ML

|max(θL2)(sign(ẊL)cos
3θL1 + sign(ŻL)sin3θL1)|

≤ 2.25|max(θL2)| < kθ ,

that is, Equation (7) holds.
If the designparameters ς3, ς4, and ς5 are chosen to be

ς3 = 1,ς4 = 0, andς5 = 1, the inequalities [ς3ς4 − (ς24 +
ς5)X21] > 0 and [ς23 − ς3ς4X22 + (ς24 + ς5)X21] ≥ 0 hold.
If γ1 is chosen to be 3.8, 4μ1(γ1 − 1) > (1 + α1 + β1) and
γ1 > 1 are true. For the purpose of simplifying analysis, it
is preferred to choose A2 = −3I, P2 = (1/3)I so Q2 = 2I.
In this case, the design parameter ξ is given a value of 0.5
and ξ ≥ ((1 + α1 + β1)/2σmin(Q2)) holds.

With all the above analyses, the suitable Lyapunov
function for the system is

ṽ

([
θ̄L

e

])
= 1

2
[271.62θ2L1 + 200θ2L2 + θ2 + q̄2]

+ 1
6

〈
e, e

〉
.

Remark 1: It is important to note that the Lyapunov
function is subject to changes with respect to the size of
the compact set of /

λ(kη).

For the chosen Lyapunov function, we have that
�1(θ̄L) = 500θ2L2 + 0.3045q̄2 and −[ς3ς4 − (ς24 + ς5)

X21]q̄2 < ς3ς4X21θ2 holds for all situations, which implies
that the solution is applicable to thewhole variable range.

Based on the above system and design parameters,

h1(θ̄L) = −(1 − α1 − β1)
−1γ1(Lg1v1)(θ̄L)

= −18.447θL2

and h2(θ̄L) = −(1 − α1 − β1)
−1γ1(Lg2v1)(θ̄L) =

−18.447θL2 as well.

With G2 =
[ −0.083 −0.0456
−0.0032 −3.1126

]
, we have G−1

2 =[−12.055 0.1766
0.0124 −0.3215

]
.

For the specified system, we can derive the following:

[(Dp)(xH)]−1 =

⎡
⎢⎣

1
2u + κ1

1
2w + κ2

⎤
⎥⎦

and

A2(p(xH)− h(θ̄L)) = −3
[
u2 + κ1u + 18.447θL2
w2 + κ2w + 18.447θL2

]

With (Dh)(θ̄L) =
[
0 −18.447 0 0
0 −18.447 0 0

]
, we have

(Dh)(θ̄L)(f1(θ̄L)+ G1(θ̄L)p(xH))

=

⎡
⎢⎢⎣
39.354 sin θL1 + −20.753(sign(ẊL)cos3θL1

+sign(ŻL)sin3θL1)θ
2
L2

− 2.5θL2
39.354 sin θL1 + −20.753(sign(ẊL)cos3θL1

+sign(ŻL)sin3θL1)θ
2
L2

− 2.5θL2

⎤
⎥⎥⎦

−

⎡
⎢⎢⎣

−18.447[0.005sign(ẊL) cos θL1(u
2 + κ1u)

+0.005sign(ŻL) sin θL1(w
2 + κ2w)]

−18.447[0.005sign(ẊL) cos θL1(u
2 + κ1u)

+0.005sign(ŻL) sin θL1(w
2 + κ2w)]

⎤
⎥⎥⎦ .

Therefore, we can obtain the first part of the feedback
control by substituting all the above derived functions:

uf (θ̄L, xH)

:= −f2(θ̄L, xH)+ [(Dp)(xH)]−1(A2(p(xH)− h(θ̄L))

+ (Dh)(θ̄L)(f1(θ̄L)+ G1(θ̄L)p(xH))).

To derive the part addressing the uncertainties of the
feedback control, the gain function needs to be exam-
ined, which is described below:

2∑
i=1

(μ1|(Lgiv1)(θ̄L)| + α1|pi(xH)| + α2(t))

× ‖[(Dp)(xH)]−1(Dh)(θ̄L)gi‖
+ max(‖[(Dp)(xH)]−1(Dh)(θ̄L)‖‖H(θ̄L, xH)‖)

≤ |[0.3334θL2
+ 0.15(u2 + κ1u)+ 0.15(w2 + κ2w)]0.092

+ 340.29

√
(−0.3045u + 0.0147w)2

+(−0.54373u − 0.1803w)2

× |
√

1

(2u + κ1)
2 + 1

(2w + κ2)
2

≤ {0.03334|θL2 | + 0.015(u2 + w2)+ 64.06(|u| + |w|)}

×
∣∣∣∣ u + w + κ

(2u + κ1)(2w + κ2)

∣∣∣∣ .
So we can choose

ρC(t, θ̄L, xH) = {0.03334|θL2 | + 0.015(u2 + w2)

+ 64.06(|u| + |w|)}
∣∣∣∣ u + w + κ

(2u + κ1)(2w + κ2)

∣∣∣∣
[(Dp)(xH)]TP2(p(xH)− h(θ̄L)) can be obtained as follows:

[(Dp)(xH)]TP(p(xH)− h(θ̄L))2

= 1
3

[
(2u + κ1)[u2 + κ1u + 18.447θL2 ]
(2w + κ1)[w2 + κ1w + 18.447θL2 ]

]
.
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From all the above analyses, ugain(t, θ̄L, xH) can be
derived:

ugain(t, θ̄L, xH) = −ρC(t, θ̄L, xH)�(ρC(t, θ̄L, xH)
× [(Dp)(xH)]TP2[p(xH)− h(θ̄L)]).

Therefore, all the terms in the feedback control
are obtained and the feedback control is F(t, θ̄L, xH) =
G−1
2 [uf (θ̄L, xH)+ ugain(t, θ̄L, xH)].

5. Discussion and concluding remarks

In this paper, a generalized state feedback control is pre-
sented, which has been proved to be able to locate the
load at the specified position or its neighbourhood. Fur-
thermore, numerical analysis is presented with an illus-
tration example to show the applicability, accuracy and
effectiveness of the proposed method. The advantages
of the method are (1) the system uncertainties are taken
into account priory to the controller design which leads
to a robust feedback control; (2) the method results in a
guaranteed load positioning accuracy which depends on
the design parameters; (3) the controller can be further
simplifiedwith theanalysis to an individual helicopter sys-
tem. Themain disadvantage is that the controller requires
the full state feedbackwhichmay lead to implementation
difficulties.

Only the longitudinal case is discussed for the con-
troller design but the lateral case can be followed easily.
In the analysis, a linearized helicopter model is adopted
which has simplified the design procedure but the qual-
ity of the feedback control is limited by the accuracy of
the system model. Due to the complexity of nonlinear
helicopter model, the compromise between the control
quality and simplicity has to be made in most situations.

Notation

L,M,N overall helicopter rolling, pitching and yawing
moments

p, q, r helicopter roll, pitchandyaw rates aboutbody
reference axes

X , Y , Z overall helicopter force components
ϕ, θ ,ψ roll, pitch and yaw angles
u, v,w helicopter velocity components at centre of

gravity
θ0 main rotor collective
θ1s longitudinal cyclic commands
θ1c lateral cyclic commands
θ0T tail rotor collective
X0, Y0, Z0 location of the suspension point with respect

to earth referenced x, y and z directions

Ẋ0, Ẏ0, Ż0 the helicopter velocity in the x, y and z direc-
tions

Ẍ0, Ÿ0, Z̈0 the helicopter acceleration in the x, y and z
directions

θL load suspension angle in the x–z plane with
respect to the z-axis

ϕL load suspension angle in the y–z plane with
respect to the z-axis

ML mass of the suspended load
g acceleration due to gravity
l sling length
kD aerodynamic drag force constant

(
kD = 1

2ρ

SCD
)
ρ air density

S the load area presented to the airflow
CD drag coefficient for the load
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