
Supporting custom quality models to analyze and
compare open-source software?

Davide Di Ruscio1, Dimitrios S. Kolovos2, Ioannis Korkontzelos3, Nicholas
Matragkas2, Jurgen Vinju4, and James R. Williams2

1 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica
University of L’Aquila, Italy

davide.diruscio@univaq.it
2 Department of Computer Science
University of York, United Kingdom

{dimitris.kolovos,nicholas.matragkas,james.r.williams}@york.ac.uk
3 National Centre for Text Mining (NaCTeM)

University of Manchester, United Kingdom
ioannis.korkontzelos@manchester.ac.uk
4 Centrum Wiskunde & Informatica, The Netherlands

Jurgen.Vinju@cwi.nl

Abstract. Analysing and comparing open source software requires the adoption
of quality models that have to be evaluated in order to rank the software systems
being compared and to support the final decision about which of them has to be
adopted. Since software quality can mean different things in different scenarios,
quality models should be flexible in order to accommodate the needs of different
users. Over the years several quality models have been proposed. Even though
some of them are tool supported, they cannot be extended or customized to bet-
ter accommodate the requirements of specific business contexts. In this paper,
instead of having a fixed model, we propose a workflow and a tool chain to sup-
port the specification of custom quality models, which can guide the automated
analysis of open source software.

1 Introduction

Deciding whether an open source software (OSS) meets the required standards for adop-
tion in terms of quality, maturity, activity of development and user support is not a
straightforward process as it involves exploring various sources of information, includ-
ing the project’s source code repositories, communication channels, and bug tracking
systems. This task becomes even more challenging when one needs to discover and
compare several OSS projects that offer software of similar functionality (e.g. there are
more than 20 open source XML parsers for the Java programming language [1]), and
make an evidence-based decision on which one should be selected for the task at hand.
Moreover, even when a decision has been made for the adoption of a particular OSS
product, decision makers need to be able to monitor whether the OSS project continues
? This paper was partially supported by the EU through the Automated Measurement and Anal-

ysis of Open Source Software (OSSMETER) FP7 STREP project (318736).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edge Hill University Research Information Repository

https://core.ac.uk/display/227095486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to be healthy, actively developed and adequately supported throughout its lifecycle, in
order to identify and mitigate any risks emerging from a decline in the quality indicators
of the project in a timely manner.

The analysis and comparison of open source software requires the specification and
quantification of a number of system attributes. Such attributes are usually captured in
a quality model. Following [9], a quality model “is the set of characteristics and the re-
lationships between them, which provide the basis for specifying quality requirements,
and evaluating quality”. Such models are typically organized in a hierarchical manner
decomposing successively high-level system attributes into specific metrics at the low-
est level.

In the last three decades several quality models have been proposed. Although these
models emphasize the need to have quality checks while developing a software system,
most of them remain at the conceptual level, and they are not supported by tools and
concrete processes. Moreover, even when a tool is provided, this tool and the model are
tightly coupled making very difficult to modify or extend a model in order to adjust it
to particular scenarios.

Instead of having a fixed model, in this paper we propose a workflow and a tool
chain, which permit the definition of custom quality models that best fit a particular
business context. The proposed approach has been conceived and implemented in the
context of the EU FP7 OSSMETER project, where it is used to perform automatic
quality assessment of open source projects.

The paper is structured as follows: Section 2 motivates the research presented in
this work. Section 3 presents an overview of the proposed approach. Section 4 presents
the tools that have been developed to support the definition of the quality models and
the assessment of the specified quality attributes. Section 5 presents the OSSMETER
quality metamodel and a sample instantiation of it. Section 6 concludes the paper and
presents some perspective work.

2 Background and motivation

Although the most widely accepted software quality models (i.e., McCall’s Quality
Model [11], Boehm’s Quality Model [3], ISO 9126 [8] are well established, they do not
provide sufficient support for assessing the quality of OSS. This is due to the particular-
ities present in open source software development such as shared artefact repositories,
and online communities of developers and users. To fill this gap, researchers and prac-
titioners have developed an array of quality models, which are tailored for the quality
assessment of OSS. Such models include the OSMM [6], the OpenBRR [14], the QSOS
[12], the OMM [5], the SQO-OSS [13], the QualOSS [7], and the Squale [2] models.
Although the strengths and weaknesses of these models have been extensively discussed
in the literature, one aspect, which has been neglected is that of operationalisation, i.e.
the process through which abstract quality models are translated into actual measure-
ments. OSS quality model operationalisation can be decomposed along three axes: tool
support, automation, and reconfiguration.

All of the aforementioned OSS quality model are supported by some kind of tooling
apart from OSMM and OpenBRR. The types of tooling range from form-based web

Quality Model Tool support Automation Reconfiguration
OSMM - - -
OpenBRR - - -
QSOS 3 - -
OpenBQR 3 - -
OMM 3 - -
SQO-OSS 3 3 -
QualOSS 3 partial -
Squale 3 3 -

Table 1. Summary of quality models for OSS.

applications (e.g. OpenBQR) to distributed platforms (e.g. SQO-OSS). Tool support is
a very important aspect of quality assessment since it reduces the time and effort for
applying such methods.

The second aspect of quality model operationalisation is related to the level of au-
tomation. Automating the collection of measurements can be of paramount importance
for scenarios where the quality of software projects has to be monitored in a constant
basis. In such scenarios, human interference can be tedious and time-consuming. On
the other hand, automation comes at a cost. There are measurements of specific qual-
ity attributes that cannot be automated such as functionality. When automatic is the
most important concern, then such measurements are ignored. Only three of the qual-
ity models mentioned above address the concern of automation. As shown in Table 1,
SQO-OSS and Squale are fully automated in terms of metric collection. On the other
hand QualOSS is partially automated, since it supports only the automatic collection of
data, but it does not provide support for defining and executing metrics on those data.

The last concern, which is related to the operationalisation of quality models is
reconfigurability and extensibility. Quality can mean different things to different people.
For example in the context of OSS, an experienced user can approach a software project
with the intention of contributing to the code base, while a not so experienced user
can approach a project with the intention of using the software product. These two
users can have different quality concerns. The first might be interested in source code,
which is well-designed, extensible, and maintainable, while the second one is more
interested in how quickly bugs are fixed, and how helpful the community of the project
is. Therefore since software quality depends on the context it is used in, quality models
should be flexible in order to accommodate different users and contexts. One issue is
how tools supporting a quality model can adjust to changes to the quality model, in order
to support different needs. As shown in Table 1, none of the considered OSS-specific
quality models support reconfiguration.

3 The OSSMETER approach to OSS evaluation

To address the limitations of current quality model in terms of operationalisation, the
OSSMETER project proposes a different approach. Instead of having a fixed model
which is embedded in a supporting tool, OSSMETER proposes a workflow and a tool
chain, which can support different quality models on demand depending on the context.
The OSSMETER project is an EU FP7 project, which extends the scope and effective-
ness of existing OSS analysis and measurement tools. OSSMETER proposes a novel

architecture for such tools as well as it makes contributions in the following areas: i)
language-specific and language-agnostic methods for source code analysis, ii) text min-
ing analysis for communication channels and bug tracking systems, and iii) modelling
of OSS. OSSMETER tools gather and combine information from various sources in
order to provide a comprehensive picture of the quality indicators of OSS projects, and
thus facilitate better evidence based decision making and monitoring. In addition, OS-
SMETER provides a consistent way to capture and measure quality indicators across
projects by using rigorous metamodelling approaches.

The main outcome of OSSMETER is a toolset5, which consists of two main com-
ponents, i.e., a platform and the web application. The former mines OSS repositories,
orchestrates and automatically executes quality metrics, and finally stores the measure-
ments. The OSSMETER web application provides different visualisations and dash-
boards in order to support decision making. Moreover, the platform provides a REST
API, which can be used by external applications to interact with the platform. In this
way the OSSMETER platform can serve simultaneously multiple clients, which could
possibly belong to different organisations or stakeholders. These stakeholders can po-
tentially be interested in different aspects of quality and therefore the platform has to
accommodate this requirement. Therefore in OSSMETER support for alternative qual-
ity models takes place at the client level.

The OSSMETER platform proposes a default quality model, which can be used as
soon as the client is installed. The quality model can be fully customisable by users
without the need of bespoke tooling. In the following section, we will present in more
detail the OSSMETER default quality model and how it has been specified.

4 OSSMETER Workflow

To support automatic and reconfigurable quality model operationalisation, a toolchain
has been developed. The proposed tool-chain supports the workflow illustrated in Figure
1.

Fig. 1. Definition and use of custom quality models

In activity 1 of this workflow users define a quality model, which is fit for their pur-
pose. To support this activity we opted for a generic and lightweight technology, namely
yEd6, instead of a highly specialised and heavy-weight modelling technology such as
the Eclipse Modelling Framework (EMF) 7. The reason for choosing a general purpose
drawing tool such as yEd for defining quality models has to do with our intention to
make the tool approachable not only to engineers familiar with modelling technologies,

5 https://github.com/ossmeter/ossmeter
6 http://www.yworks.com/en/products/yfiles/yed/
7 http://eclipse.org/modeling/emf/

https://github.com/ossmeter/ossmeter
http://www.yworks.com/en/products/yfiles/yed/
http://eclipse.org/modeling/emf/

but also to less technical-savvy users such as project and community managers. In fact,
the proposed approach and tooling is not only restricted to yEd but it works with any
GraphML-compliant tool [4]. Moreover, although we opted for flexibility and ease of
use, we still wanted to enjoy some of the perks of formal modelling, such as model val-
idation transformation. To this end we used the flexible modelling approach proposed
in [10]. Figure 2 illustrates an excerpt of the default quality model in the yEd editor.

Fig. 2. Excerpt of the default OSSMETER quality model in yEd

Once a quality model is specified in GraphML, it can be automatically transformed
into a JSON representation which can be passed around over the network and it can
be consumed by the OSSMETER clients (see activity 2 of the process in Fig. 1). To
generate the JSON representation, the user just needs to upload the GraphML file on
a dedicated webpage and then the JSON representation is generated automatically. Fi-
nally the user just needs to place the generated JSON into the config folder of the OS-
SMETER web application in order to reconfigure it accordingly (see activity 3 in Fig.
1).

5 The OSSMETER quality metamodel and the default quality
model

With the aim of collecting the characteristics that necessarily have to be considered
when defining a quality model and the ways to evaluate it, we have analysed the OSS-
specific quality models discussed in Section 2. The outcome of the analysis consists of
a number of concepts which are precisely represented in the metamodel shown in Fig.
3. In particular, the QualityAttribute metaclass represents a quality aspect that is
considered to be relevant for contributing the assessment of the quality of a considered
product. Each quality attribute has associated a number of facts that are obtained by
corresponding Factoids. A quality attribute, like code quality can be an aggregation
of other attributes, like maintainability, maturity, and testability. Each quality attribute
specifies how to aggregate the contained attributes in order to provide an overall quality
score for the considered attribute. The Factoid metaclass represents a fact about the
considered product. Such a fact is obtained by considering the values of related metrics.
In other words a factoid is an aggregation unit depending on a number of related met-
rics. Since metric aggregation and metric combination is a very active area of research,
OSSMETER does not commit to a specific approach. Thus the factoid mechanism is
proposed as a means to aggregate heterogeneous metric providers into a 1-4 star sys-
tem and a piece of text with an interpretation of the numerical value. The metaclass

Fig. 3. The OSSMETER quality metamodel

Metric provider represents the software component that implements a metric by
using the functionality provided by the OSSMETER platform. Lines of Code (LOC) is
a very simple example of metric that can be implemented with a corresponding metric
provider.

Fig. 4. Graphical representation of the default OSSMETER quality model

The quality model conforming to the metamodel shown in Fig. 3 and that is provided
as default in the OSSMETER platform is shown in Fig. 4. It is important to recall that
such a model is used to customize the front-end of the OSSMETER web application.
For each quality aspect, the factoids (and consequently the metrics providers) that are
used for the measurements are also specified. An example of the factoid view of the
web application is illustrated in Figure 5. This view shows the factoids associated to the
bug tracking system of a project.

Users can extend and refine such model by using the concepts included in the OSS-
METER metamodel and the means provided by the tools of the OSSMETER platform
outlined in the next section. The proposed default quality model consists of attributes

Fig. 5. The factoids page for a sample project

hierarchically organized that are distinguished into those related to the quality of the
product code (Section 5.1), and those related to the community built around the consid-
ered product (Section 5.2) as described in the next sections.

5.1 Product Code quality

It identifies the quality factors that influence the ability to understand software product,
change and test it, as well as it permits to assess the maturity of the considered product
by considering the way it is developed. Product code quality is assessed by considering
the following attributes:
. Maintainability: it is an important attribute that refers to how easy is the software to
understand and modify. Thus it is further decomposed into the following attributes:

– Analyzability: it refers at what extent the source code of the considered product is
properly designed and implemented. Adherence to coding style and usage of com-
ments in the code are only some examples of facts that can affect the analyzability
of the product code.

– Changeability: it refers to the effort required to change the product e.g., to address
unforeseen requirements. The size of code, the used programming languages, the
amount of cloned code, or even characteristics like coupling and cohesion are ex-
amples of facts that can affect the changeability property of a given product.

. Maturity: it refers to the possibility of having software failures. The amount of error
prone or even inefficient code can reduce the overall maturity of the considered product.
. Testability: software systems are evolving entities and as a such a sign of quality is
also the effort needed to test the system when for some reason it has been changed. The
availability of unit tests is an example of fact that can affect the testability factor of a
given product.

5.2 Community quality

Considering characteristics of the the community strongly influences the overall product
quality, especially when they observed over an extended period of time. Moreover, the
ability of a OSS community to remain active over time is obviously very important
for product survival, and thus very relevant when considering sustainability, i.e., the
capability of a product to sustain its self. In the following, we present factors that are
related to the quality of product communities.

Development team quality There is a strong correlation between characteristics of a
development team and the quality of a software product. The decision of adopting an
open source product takes into consideration for sure if the project will be maintained
in the long-run. In this respect the following quality attributes are considered:
. Stability: it refers to the availability of a stable number of developers working on the
project. The number of commits over time per developer, is an example of measure that
can contribute to understand if the team working on a product is growing or shrinking.
. Professionalism: it refers to the experience of the developers working on the product.
This can be measured by considering their activity e.g., the number of commits per
developer, or the number of commits per day, etc.
. Commitment: if a project is developed and maintained by a representative number of
developers with a high level of commitment to the project is of course a good sign. The
commitment of a developer can be assessed by analysing his/her activity e.g., if there a
commits done over the weekend, or if the amount of code committed by the developer
is increasing.

Communication channel quality Further than the development team, the community
of a project consists also of people interacting with the bug tracking systems and the
newsgroups of the product. In this respect, the following quality attributes have been
considered:
. Bug Tracking System Quality: it refers to quality aspects that can be assessed by
considering information retrieved from the bug tracking systems of a product. By con-
sidering such systems it is possible to assess the following quality attributes:

– Sustainability: the responsiveness to bug reports and to feature requests is an im-
portant measure that permits to assess if there is a strong community maintaining
the product and its development over time.

– Maintenance capacity: it refers to what extent potential users might take advantage
of the information available from bug tracking systems and thus being supported
during the adoption of the product. The number of available bug tracking systems
and the number of comments therein are only some of the facts related to the main-
tenance capacity of a product.

– Maturity: this attribute permits to assess if a considered bug tracking system is
mature with respect to the ways bugs are replied (e.g., properly or inadequately),
the number of bugs closed, fixed, and even duplicated.

– Polarity: sentimental and emotional polarities are important indicators about the
overall consideration of the users that are adopting the considered product. For
instance, if the average sentimental and emotional polarities in all bug tracking
systems associated with the project are negative then it is possible to conclude that
people that are using the project and are trying to ask for support are somehow
unhappy and consequently the overall quality of the product is affected.

. Newsgroup Quality: it refers to quality aspects that can be assessed by considering
information retrieved from the newsgroups of a product. The quality attributes related
to this aspect are the same of those defined for bug tracking systems, i.e., sustainability,
maintenance capacity, maturity and polarity.

5.3 Measuring quality attributes by means of factoids

As said above, the quality attributes defined in the OSSMETER quality model are mea-
sured by means of a set of factoids. A sample of them are shown in Table 2, and Table 3.
The second column of the tables shows sample (template) strings that the correspond-
ing factoids emit when executed. It is important to recall that each project, which is
monitored by the OSSMETER platform by means of the proposed quality model has
a 1-4 stars score related. Currently, such a score is obtained by simply calculating the
arithmetic mean of all the factoid scores. This solution is not intended to be optimal and
aims at giving just an indicator about the project quality. Of course, such a behaviour
can be changed by extending the platform and/or refining the quality model.

Table 2: Measuring the Source Code Analysability quality attribute

Factoids Example of output strings

percentageCommentedOutCode The percentage of commented out code over all mea-
sured languages is totalPercentage. The percentages per
language are commaSeparatedTable.

commentPercentage The percentage of lines containing comments over all
measured languages is totalPercentage.

understandabilityFactoid Currently, there is hardly any understandable code in
this project and this situation is stable in the last six
months.
Currently, hard to understand code practices are widely
spread throughout the project, but the situation has been
improving over the last six months.

Table 3: Measuring the BTS Sustainability quality attribute

Factoids Example of output strings

org.ossmeter.factoid
.bugs.channelusage

The project is associated with X bug tracking systems. In the
last year, they have (received high — received much — re-
ceived some — not received much) attention. A new bugs, B
new comments and C new patches have been posted, in total.
D new bugs, E new comments and F new patches have been
posted to bug tracking system G.
In the last month, H new bugs, I new comments and J new
patches have been posted to the bug trackers of the project.
K new bugs, L new comments and M new patches have been
posted to bug tracking system N.)

6 Conclusions and Future Work

Analysing and comparing open source projects is a difficult task that involves the adop-
tion of proper quality models defining the attributes to be considered and evaluated.
Over the last three decades several quality models have been proposed, and even though

they are well established, they do not provide sufficient support for refinements and cus-
tomizations in order to better address specific user needs. In this paper we proposed a
tool supported approach, which permits to define custom quality models, and to auto-
matically execute the corresponding quality assessment. The generation script, as well
as the JSON and GraphML representations of the default quality model can be found
online at https://github.com/ossmeter/oss2015. Moreover, the OSSME-
TER platform is publicly available online at https://github.com/ossmeter/
ossmeter. In the future, we want to improve the proposed approach in two ways.
First we want to provide customisation support at the user level and not at the client
level. Moreover, although we have evaluated the technical feasibility of the proposed
approached in the context of OSSMETER, we are in the process of evaluating other
aspects such as usability. The result of this evaluation process will be reported in the
future.

References

1. Open source XML parsers in Java. http://java-source.net/open-source/xml-parsers.
2. Alexandre Bergel, Simon Denier, Stéphane Ducasse, Jannik Laval, Fabrice Bellingard,

Philippe Vaillergues, and Françoise Balmasand Karine Mordal-Manet. Squale – software
quality enhancement. In Proceedings of the 13th European Conference on Software Mainte-
nance and Reengineering (CSMR 2009), European Projects Track, March 2009.

3. B. Boehm, J. Brown, J. Kaspar, and M. Lipow. Characteristics of Software Quality. North
Holland, 1978.

4. Ulrik Brandes, Markus Eiglsperger, Jürgen Lerner, and Christian Pich. Graph markup lan-
guage (GraphML). Bibliothek der Universität Konstanz, 2010.

5. Vieri Del Bianco, Luigi Lavazza, Sandro Morasca, and Davide Taibi. Quality of open source
software: The qualipso trustworthiness model. In Open Source Ecosystems: Diverse Com-
munities Interacting, pages 199–212. Springer, 2009.

6. F.W. Duijnhouwer and C. Widdows. Open source maturity model. Capgemini Expert Letter,
2003.

7. IESE. D4.2 - Metrics and Indicators of the Standard QualOSS Assessment Method, July
2009.

8. ISO. ISO/IEC 9126-1:2001, Software engineering – Product quality – Part 1: Quality model.
Technical report, International Organization for Standardization, 2001.

9. ISO/IEC. ISO/IEC 9126. Software engineering – Product quality. ISO/IEC, 2001.
10. Dimitrios S Kolovos, Nicholas Drivalos Matragkas, Horacio Hoyos Rodrı́guez, and

Richard F Paige. Programmatic muddle management. In XM@ MoDELS, pages 2–10, 2013.
11. J McCall. Factors in Software Quality: Preliminary Handbook on Software Quality for an

Acquisiton Manager, volume 1-3. General Electric, November 1977.
12. Atos Origin. Method for qualification and selection of open source software (qsos), version

1.6. Disponible en Internet:¡ http://www. qsos. org/download/qsos-1.6-en. pdf, 2006.
13. Ioannis Samoladas, Georgios Gousios, Diomidis Spinellis, and Ioannis Stamelos. The sqo-

oss quality model: measurement based open source software evaluation. In Open source
development, communities and quality, pages 237–248. Springer, 2008.

14. Anthony I Wasserman, Murugan Pal, and Christopher Chan. The business readiness rating:
a framework for evaluating open source. EFOSS-Evaluation Framework for Open Source
Software, 2006.

https://github.com/ossmeter/oss2015
https://github.com/ossmeter/ossmeter
https://github.com/ossmeter/ossmeter

	Supporting custom quality models to analyze and compare open-source software

