Learning programming: Enhancing quality through Problem-based Learning.

Chris Beaumont

Senior Lecturer

Department of Information Systems, Edge Hill College of Higher Education

beaumonc@edgehill.ac.uk
[image: image1.jpg]The Happy Jumper

i

Claire Fox

Lecturer

Department of Information Systems, Edge Hill College of Higher Education

Foxc@edgehill.ac.uk
Abstract

The teaching of introductory programming to an increasingly diverse student population is problematic. This paper provides initial description and reflection from an Action research Project that is designed to improve the learning of programming through Problem-based Learning (PBL). The introduction of PBL provides a student-centred active-learning model, closely aligned to learning outcomes and assessment. This team-based approach mirrors industrial practice. PBL may also take account of the “radical novelty of programming” (Dijkstra) because learning is controlled by the student, starting from their existing conceptual framework. The paper explains the rationale for using PBL as a strategy for the learning of introductory programming. It also outlines a model for implementation and provides an initial analysis of the success of the approach, together with plans for the next Action Research cycle.

Keywords

PBL, Problem-based Learning, Computing, Curriculum.

1. The Difficulties of Learning to Program

The students that are now entering Computing and Information Systems degree courses are becoming an increasingly diverse group. [9]. Within an Information Systems programme, many students no longer view programming as central to the course and a substantial number of today’s first year undergraduate students find learning to program difficult.

Tony Jenkins [8] analyses a number of factors that could contribute to the difficulty of programming. These are briefly reviewed in this section.

1.1 Multiple skills

Programming is a complex activity, which involves multiple skills including problem solving, use of IT and a hierarchy of knowledge and abilities.

Problem Solving is not trivial and requires component skills including creativity; decision-making; identification of the central issues; recognition of relationships, familiar situations and patterns; development of an algorithm and the translation of the algorithm into executable code.

Students also learn additional IT skills for example editing, compiling, use of debugging tools, saving, loading, combining files and dealing with the IDE interface.

Detailed knowledge of the language syntax is required, and the obscure error messages that compilers often generate are difficult for beginners. Extreme accuracy is necessary. While this knowledge is at the lower end of Bloom’s taxonomy [4], it does not mean that programming is a low-level skill. In order to write programs, students need to analyse problem statements, synthesise solutions and evaluate whether they meet the specification. These are the higher levels of Bloom’s taxonomy and constitute a knowledge and skills hierarchy.

1.2 Educational Novelty and Pace

Constructivists argue that learning involves the creation of meaning by students as they interact with their learning environment, relating new knowledge to existing knowledge and integrating it into their conceptual framework. Programming has little to relate it easily to the familiar; it is largely abstract and thus difficult to relate to existing knowledge. Dijkstra refers to this as “radical novelty” [5]

The Object-Oriented approach claims to have a naturalness that would help learners relate more easily to the concepts, and hence learn it faster. However, research by Sholtz et al [13], suggests that this claim is unfounded, and that procedural programming is easier to learn.

Programming is a subject that builds continuously. If a student fails to grasp a particular concept, then it can become increasingly difficult to catch up and the pace of the teaching is often driven by the curriculum, not the learning of the student.

The majority of students neither showed motivation or much competency after completing our traditional lecture / demonstration / lab module. We see PBL as a possible approach to help students deal with the conceptual complexity and educational novelty outlined above. We justify this claim in section 3, after outlining PBL.

2. Problem- Based Learning (PBL)

Although there are a number of different models of PBL, they commonly share the following characteristics:

· Learning starts with a problem, question, or scenario to be investigated.[10] (Fig 1) The problem is typically related to the real world (and its consequent complexity), being ill defined. This promotes investigation on a number of lines and does not have one ‘correct answer’. The key point in PBL is that the problem / trigger is introduced before the students know how to solve it. Thus, solving the problem drives the learning.

· Students work in small, self-directed teams with a facilitator (coach). The facilitator may be dedicated to one team, or may rove between a number of teams. Student teams identify ‘learning issues’, research these individually and meet to share their results / teach each other. Finally the team collectively applies its pooled knowledge to solve or manage the problem. This process can last from one session to an entire semester, and can be reiterative. Reflection is explicitly incorporated.

Problem-based Learning claims to produce independent learners who are motivated, engaged in deep learning, work as a team, develop effective strategies, skills and knowledge for life-long learning and professional work. John Biggs [3] also cites PBL as a good example of aligned teaching.

PBL has been identified as a suitable approach for teaching computing [6] and develops many employability skills [2].

So how effective is PBL? Surveys quoted by Biggs [3] conclude that:

· Both Staff and students rate PBL higher in their evaluations and enjoy it more than traditional teaching.

· PBL students use higher level strategies for understanding and self-directed study.

· PBL students do worse on examinations of basic science declarative knowledge. However, recent research by Judy Kay and her colleagues at the University of Sydney indicate that students taught programming using PBL perform as well in examinations as those taught traditionally. [1]
3. The Learning & Teaching model: Addressing the Difficulties in learning to program using PBL
At this point we describe the implementation of our PBL model, and discuss how this approach addresses the difficulties in learning to program, thereby enhancing the quality of student learning.

The BSc Information Systems first year programme at Edge Hill has 4 x 30 credit modules (each lasting an academic year). Foundations of Software Development is one of these 30-credit modules which aims to develop basic competency at procedural programming, awareness of object-oriented concepts and the software development lifecycle.

The new PBL approach was introduced to this module in 2002-3. The course enrols approximately 80 students each year and is divided into four classes. Each class of 20 students has contact time of four hours per week: a two-hour PBL Tutorial and a two-hour lab (in the same day). Tutors divided students into teams of 5/6 and students work in those teams for all activities. One tutor was in charge of each class and was assisted by two Learning Team Coaches (LTC). An LTC is a paid volunteer final year student who has attended training sessions and has previous experience of PBL. LTCs were also supported by weekly half-hour meetings with tutors to discuss issues arising and approaches to solving them.

During the initial three weeks of semester 1, the tutor was present for the full duration of the Lab and PBL Tutorial sessions. This gradually reduces until the tutor was present for half the tutorial / lab time.

We decided to introduce PBL in the first semester of year 1, since students are very open to change at this point. We have found that students who experience PBL for the first time in year 2 are resistant to change from the Lecture / Lab/ Tutorial university teaching model to which they have become accustomed.

The module is structured around five PBL cases. There were two formative cases and three summative cases. In the formative cases students became familiar with the PBL process and assessment methods. Each case was designed to require new programming structures, algorithms and Visual Basic controls.

3.1 Problem solving

In PBL an explicit problem-solving method is taught, (with many similarities to Polya’s model [12]) - we do not expect students to pick it up by example. Small problem-solving activities were introduced to help students separate out and practice problem-solving techniques from the other areas of learning programming. Don Woods books provide examples of such activities [14; 15].

Alongside the technical problem-solving exercises, team-building principles were taught and reinforced. Self and peer assessment was built into all PBL cases and students included them in their Personal Development Plan (PDP), together with reflection. An end of year examination consisted of Multiple-choice questions, students practised similar questions throughout the year with formative WebCT Quizzes.

After the fourth PBL case, students self assessed their confidence at achieving detailed learning outcomes, and discussed these with their tutor or LTC. They then produced an individual plan of work for the following 3 weeks. This feature was designed primarily to help the weaker students.

3.2 Use of IT

Many of the difficulties of learning to use IT effectively in programming can be ameliorated by selection of relatively friendly IDEs. We have found students adapt very rapidly to the GUI in Microsoft‘s Visual Basic. They are able to transfer Windows skills easily, and much of the IDE is intuitive. The difficulty has always been in the coding, but VB enables students to feel as though they are making significant progress rapidly, and we have been surprised at the ingenuity shown by students in designing interfaces. HCI principles and issues can be integrated easily from the start of the course.

PBL promotes teamwork and co-operation, and has been helpful as many students have become more willing to ask and help each other with any IT difficulties.

WebCT has been used extensively to facilitate communication, some PBL teams have part time students and many students do not live on campus. Private team bulletin boards, and team web sites (WebCT calls them Student Presentations) were used for posting queries, sharing documents and code.

Numerous resources (links, documents, quizzes, sample code & applications) were also included on the WebCT site.

3.3 Hierarchy of skills / knowledge

The PBL Cases are ill defined and typically have ambiguities and leave a number of issues for students to investigate and resolve. This provides freedom and considerable control for students, which has stimulated creativity. However there is an increase in complexity by introducing teamwork, research, planning, co-ordination, dealing with conflict and additional communication on top of the technical!

The commonly accepted way of dealing with complexity in Software Engineering is to divide and conquer by designing Modules/Objects/Classes with well-defined interfaces, loose coupling and high cohesion.

The PBL approach imposes a systematic discipline of analyzing problems, identifying learning issues, solving the smaller learning issues, integrating the solutions. It therefore teaches a method of managing complexity, which has some parallels with Software Engineering. It also clearly separates analysis from synthesis.

A weakness attributed to PBL is that students do not learn basic facts and declarative knowledge as well as those employing traditional methods. Since programming requires great accuracy and a considerable body of detailed knowledge this poses a problem, and was regarded as a high-risk area. Considerable scaffolding was therefore provided and the PBL cases were designed to progressively require students to develop knowledge of particular fundamental constructs (variables, conditions, loops, procedures, arrays, and files). Resource materials were sample code and self-paced teaching materials.

3.4 Pace of Learning and “content”

In PBL the students control the pace of learning and they determine the ‘starting point’. Don Woods points out that with PBL the content of the curriculum needs to be reduced by 20% to allow time for the PBL process. In first year students, who have to cope with enormous change in their lives, we decided to reduce subject content by 30-40%. We decided it was much better to be able to develop basic competency and confidence rather than mere awareness.

Reduction of ‘content’ also provided flexibility for tutors, who were no longer driven by having to teach a huge volume of material by the end of the academic year.

3.5 Educational Novelty

PBL can do nothing about the radical novelty of programming, however it can help students manage this through teamwork. Learning is a social process, and student teams discussed difficulties, identified and documented a way forward, explaining to each other solutions they discovered on the way. This approach also enables facilitators to identify common issues and develop resources or activities to assist.

PBL is a social constructivist approach, and aligns closely with Vygotsky’s Zone of Proximal Development (ZPD) [7]. Since students are in control, and always start from their current understanding (Zone of Current Development: ZCD) they are not dependent on the tutor, and avoid the ‘learned helplessness’ we have experienced in the past.

3.6 Other considerations for first year students

The Widening Participation agenda has resulted in a diverse student population at Edge Hill and there are additional issues for all subjects. New students are often ill prepared for university study. PBL is seen as helpful in a number of ways since it promotes the formation of friendship groups through teamwork. This is particularly important during the first few weeks of University life. PBL also naturally integrates the teaching, development and assessment of key skills that are no longer perceived as ‘another add-on’ to the curriculum.

4. Experiences

The theory can sound convincing, but does it work in practice? At this stage we present our perceptions, as a prerequisite for focussed evaluation in the next Action Research cycle.

4.1 The first Problem – formative

In the first week students were introduced to PBL and team-building exercises. The PBL case consisted of three prototype interfaces for bank account transactions, which partially worked. Students were required to find out how they worked, correct any faults, evaluate the best interface and produce an enhanced prototype. Initially each pair in the team worked on one prototype, after which the team produced their final application, delivering a presentation and report.

The presentations were delivered at 9 am on a Monday morning in week 4 of the semester. There were no requests for extensions, all students were present on time, delivered high quality presentations and applications and gave constructive feedback on others. The only weakness was in the identification and application of HCI criteria. Yet this was a formative assignment! In previous years students would only put significant work into summative assessment. All tutors were surprised at the commitment, motivation and quality of the work. Perhaps we have been underestimating students for decades!

4.2 The second Problem – Summative

The second problem followed the same pattern, and the same student teams, but required additional technical knowledge. A prototype game was provided (with programming faults and HCI issues). Fig 2 shows the interface.

The animated figure had several images and had to jump the wall. This required the use of arrays (control arrays of images) and some careful thought for the logic for detecting a collision and counting a successful jump. Students had additionally to apply more formal HCI heuristics [11], coding standards and a test plan. Again student teams presented their enhanced prototypes but this time had to test each other’s. Surprisingly for the tutors, the standard of presentation, motivation and commitment were reduced, though the quality of applications was high and work was produced on time.

Subsequent PBL cases comprised a research report about object oriented technology, implementing Belbin’s team roles questionnaire (requiring files, 2-d arrays and good students used procedures). The final PBL case required students to individually code part of a multi-level game (each student took one level) and then integrate their applications.

4.3 Successes

4.3.1 Taking control and self-reliance.

The initial motivation levels were extraordinary, the work was of a very high standard and attendance was very good. Students engaged with the problems and showed considerable creativity and determination to solve them. Teams took control of the problems and owned them to solution, sometimes to the point where they ignored advice because they “wanted to do it their own way”. A different view of assessment

A perennial issue has been that students have taken a very strategic approach; only summatively assessed work demanded significant attention. The module has been presented as a series of problems, all of which were assessed, but only about half contributed to their module grade. The engagement students showed did not vary between summative and formative, but depended more on individual personal circumstances and motivation. We therefore believe we are making progress towards engaging students in deep learning rather than a pure strategic approach.

4.3.2 Learning Team Coaches

Initially each class started with one faculty member and two LTCs. The LTCs proved reliable, committed and effective at facilitating student teams. They achieved the delicate balance between being active but not directive. They were perceived very differently from the Tutor, even in the same facilitator role. A particular (unforeseen) benefit of using students as LTCs is that they are viewed as peers, and often discover important information about student attitudes, behaviours, progress and intentions that the first years are unwilling to reveal to tutors. LTCs stated they enjoyed the experience and their most commonly stated benefit was increased confidence.

However, by Christmas most LTCs were requesting a reduction in hours, as they saw this time impacting their final year studies. To combat this issue in the future and improve LTCs understanding of learning, we have validated a module so that student LTCs can gain academic credit for the experience, by combining the practice with theory underpinning Teaching and Learning.

4.4 Issues

There were a number of issues, some predictable, others a surprise.

4.4.1 Team commitment and trust

For the majority of students the teamwork training was effective, however there were some issues: Some young students did not show sufficient commitment. Some mature students were reluctant to delegate to younger students. A few students were unwilling to share their research and others would not admit to their lack of knowledge.

It is easy to blame the individuals, but on reflection their prior experience of education has been focussed on the individual. Perhaps they have a different perception of teamwork and commitment; this will be one of the foci of our research.

4.4.2 Vagueness of learning issues and plans

Each week students produced individual plans for the following week. We intended that these should identify specific learning issues, resources to solve them and approximate time. Students needed to be monitored closely to ensure they did not produce vague plans.

It was also evident that once they had selected a method of solution that they thought would work, they were unwilling to investigate alternatives.

4.4.3 To teach or not to teach?

Within this module we have not included any traditional teaching sessions or demonstrated software; students have been provided with resource booklets that explain Visual Basic, Object Orientation and provide consolidation exercises. Many students did not use these resources in a systematic way

Additional resources were provided in the form of tutorial question sheets. We felt that stand up teaching could be too directive, reducing the need to think of ways of solving the problems. We wanted students to develop self-reliance, rather than learned helplessness, or become too ‘cue-seeking’.

Students have been able to ask for ‘technical consultations’ where they can ask direct questions and obtain answers. However, they have not taken up this option, but have requested more formal teaching sessions.

Resources provided on WebCT were not used significantly. It could be that students have not perceived that these as useful or It may also be an issue of Web Site design, and is an area of research identified for the future.

One PBL case required students to use material from another module (Systems Analysis) when investigating OOSE. Many students perceived this as completely disconnected!

5. The next stage

We believe that there is sufficient evidence to support continuing this approach. However, our experiences are based on the consensus of the course team, to achieve any strong objectivity and defendable validity, we need to formalise a transparent evaluation procedure. We intend to recruit a validation group (consisting of critical friends) to assist us in this task.

Our preliminary analysis suggests that we concentrate on the following aspects in the next action research cycle.

· Introduce some teaching sessions at the start and move more gradually towards PBL, rather than Big Bang approach on day 1 – moving from the known to the unknown.

· Team working. Increased induction & workshops on PBL & Team working. Research into the attitudes and perceptions of students over the period of the module.

· Planning. The incorporation of teaching & learning activities to improve planning skills. These would be supported by a tighter structure to meetings and close monitoring of plans.

· Additional scaffolding, especially at the start. More attention to developing students skills at selecting and using resources and evaluation of alternatives.

· Developing reflective skills, for example students will develop web sites to show conceptual maps of learning.

· Motivation. Qualitative research into the motivation of the students throughout the year.

6. Conclusion

Implementing PBL is a considerable challenge for educators. Instead of direct teaching, it is a second order approach – indirectly guiding students.

Our initial analysis of PBL suggests that it can be used to address some of the difficulties of learning programming, and our experience indicates that first year undergraduates can adapt and show considerable creativity, responsibility and success using this method. However, we have a number of challenges before we can claim success in all cases.

Many of these challenges are generic PBL rather than specific to programming. They may be more severe because we have chosen this approach from the first day of the first year. Nevertheless, we believe that the skills learned at this level will provide a suitable foundation for further improvement at level 2 and 3.

7. References

[1] Barg, M., J. Kay, et al. . (2000) Problem-Based Learning for Foundation Computer Science Courses. Computer Science Education 10(2): 109-128.

[2] Beaumont, C. and B. Frank (2003). Enhancing Employability through PBL. Delivering Employability.The Diversity of Approaches in Higher Education Conference, University of Central Lancashire, Preston, University of Central Lancashire.

[3] Biggs, J. . (1999)Teaching for Quality Learning at University Buckingham : SRHE & OUP.

[4] Bloom, B. S. . (1965)Taxonomy of Educational Objectives London : Longman.

[5] Dijkstra, E. W. . (1989) On the Cruelty of Really Teaching Computing Science. Comm. ACM 32: 1398-1404.

[6] Ellis, A., L. Carswell, et al. (1998). Resources, Tools, and Techniques for Problem Based Learning in Computing. ITiCSE '98,3rd Annual Conference on Integrating Technology into Computer Science Education., ACM/SIGCSE.

[7] Harland, T. . (2003) Vygotsky's Zone of Proximal Development and Problem-based Learning: Linking a theoretical concept with practice throuh action research. Teaching in Higher Education 8(2): 263-272.

[8] Jenkins, T. (2002). On the Difficulty of Learning to Program. 3rd Annual Conference of the LTSN Centre for Information & Computer Sciences, Loughborough, LTSN-ICS.

[9] Jenkins, T. and J. Davy . (2001) Diversity and Motivation in Introductory Programming. ITALICS 1(1).

[10] Macdonald, R. (2002). Applying PBL in Computing: Potential and Challenge: Keynote Address. Applying PBL in Computing: Potential and Challenge, Edge Hill, Ormskirk.

[11] Nielsen, J. (1992). Finding usability problems through heuristic evaluation. CHI'92 Conference on Human Factors in Computer Systems, New York, ACM.

[12] Polya, G. . (1957)How to solve it : Princeton University Press.

[13] Sholtz, J. . (1993) Object oriented Programming: the promise and the reality. Journal of Systems and Software(November).

[14] Woods, D. R. . (1994)Problem-based Learning: how to gain the most from PBL Waterdown, Canada : D.R.Woods.

[15] Woods, D. R. . (1996)Instructors guide for Problem-based Learning: helping your students gain the most from PBL : McMaster University.

2. Learning stage – individual work: learning, researching.

4. Reflecting – individual / Team reflection on process, knowledge, learning outcomes.

1. Understanding the Problem – Problem analysis, identification of learning issues, division of work.

3. Solving the Problem – Team meets to share learning / teach the rest of the team. Team applies knowledge learned to solve the problem

Fig 1. The PBL learning cycle.

Fig 2. The initial prototype interface

