



# Spiders communities as bio-indicators in Irish plantation forests

Anne Oxbrough, Tom Gittings, Paul Giller, John O'Halloran

Bioforest Project, Dept Zoology, Ecology and Plant Science, University College Cork



Meta mengei

### Why identify indicators in plantations?

Sustainable forest management

- Managing for biodiversity
- Structural indicators
  - Environmental correlates with target taxanomic group
  - Potential in sustainable forest management
  - Implemented by non-specialists

### Why use spiders as an indicator group?

- Abundant
- Positively influenced by vegetation structure
  - Prey
  - Web attachment
  - Hiding places for active hunters
  - Protecton from predators
  - Suitable microclimates
- Found in all layers of vegetation
- Occupy a strategic position food webs
- Taxonomically well known

### Aims of study

#### Spider communities:

- Change over forest cycle
- Differ between Sitka spruce and ash
- Identify indicators of spider biodiversity

### Study sites

- 32 sites across ireland
- Sitka spruce and ash
  - Conifer and broadleaf
  - Widely planted
- Sites allocated into groups by structural features
  - Mean distance between trees
  - DBH
  - Tree height
  - Tree cover

### Pitfall traps



### Sampling regime

- Five pitfalls per plot
- Five plots per site
  - Plots at least 50m apart
- 2-3 weeks in the ground
- Three changes during the season

### Habitat measures

- Cover abundance of plant structure
- Cover of deadwood

- Soil samples
  - Organic content
- Litter depth and cover

### Results

18730 individuals collected in 139 species

- Species classified by habitat preference:
  - 15 forest habitat specialists
  - 19 open habitat specialists

# Mean species richness of spiders across the forest cycle. Bars indicate SE



## Species richness of habitat specialists. Bars indicate SE



### Species assemblages

- Cluster analysis indicated 5 groups:
  - 1) Young mix (n=20)
  - 2) Young ash (n=34)
  - 3) Mature ash (n=16)
  - 4) Closed canopy spruce (n=29)
  - 5) Open-spruce (n=44) (n = no. of plots)
- Ordination revealed similar groups as cluster analysis

#### NMS ordination of plots



Cluster groups

- ★ Young mix
- Young ash
- × Mature ash
- ★ Closed-canopy spruce
- ★ Open spruce

Axis 1  $(r^2 = 0.61)$ 

Axis 2

 $(r^2 = 0.20)$ 

## Axes 1 scores from NMS ordinations of both species and habitat data



Species NMS Axis 1  $r^2$  value = 0.61 Habitat NMS Axis 1  $r^2$  value = 0.65

# Correlation of total species richness and environmental variables

| Cluster group               | Environmental variable | Pearson<br>(r) |
|-----------------------------|------------------------|----------------|
| Young mix<br>(n=20)         | Organic content        | 0.57**         |
|                             | Lower field layer      | 0.45*          |
| Young ash<br>(n=34)         | Soil cover             | -0.33*         |
|                             | Lower field layer      | 0.40*          |
|                             | Deadwood cover         | -0.50***       |
| Closed-canopy spruce (n=29) | Soil cover             | -0.47*         |
| Open spruce (n=44)          | Lower field layer      | 0.26*          |

<sup>\*</sup>p = <0.05; \*\*p = <0.01; \*\*\* p = <0.005

## Correlation of open specialist species richness and environmental variables

| Cluster group                     | Environmental variable | Pearson<br>(r) |
|-----------------------------------|------------------------|----------------|
| Young ash<br>(n=34)               | Deadwood cover         | -0.47***       |
|                                   | Soil cover             | -0.47***       |
| Closed-canopy<br>spruce<br>(n=29) | Canopy cover           | -0.31*         |
| Open spruce<br>(n=44)             | Ground vegetation      | -0.32*         |

<sup>\*</sup>p = <0.05; \*\*p = <0.01; \*\*\* p = <0.005

### Correlation of forest specialist species richness and environmental variables

| Cluster group               | Environmental variable | Pearson<br>(r) |
|-----------------------------|------------------------|----------------|
|                             | Twig cover             | 0.34*          |
| Young ash                   | Ground vegetation      | 0.36*          |
| (n=34)                      | Leaf litter cover      | 0.54***        |
|                             | Soil cover             | 0.45**         |
| Mature ash (n=16)           | Lower field layer      | -0.58*         |
| Closed-canopy spruce (n=29) | Upper field layer      | -0.27*         |
|                             | Twig cover             | 0.46***        |
| Open spruce (n=44)          | Ground vegetation      | 0.45***        |
|                             | Upper field layer      | -0.48***       |

<sup>\*</sup> p = <0.05; \*\* p = <0.01; \*\*\* p = <0.005

### **Discussion**

### Changes over the forest cycle

- Decrease in overall S in both ash and spruce
- Decrease in open species
- Increase in forest species

### Early stages

- Pre-thicket has highest S
- Also highest S of open specialists
- Highest cover of lower field layer vegetation
  - More web attachment points
  - Hiding places for active predators
  - Prey availability

Pre-canopy closure,
Sitka spruce



### Effects of canopy closure

- Decrease in lower field layer vegetation
  - Reduced light
- Increase in forest associated variables
  - Litter layers
  - Dead wood
- Effects on spiders:
  - Overall S and open species richness is reduced
  - Forest species benefit from litter layers

# Closed-canopy Sitka spruce



### Reopening of the canopy

- Mechanisms of reopening
  - Thinning
  - Wind throw event
  - Disease
- Outcomes of reopening
  - Early on:
    - Typical forest ground vegetation
  - After successive thins:
    - Increase in lower field layer
    - Open species recolonise
  - Thinning allows coexistence of both forest and open specialists
- Open spruce cluster group

Re-opening canopy
Sitka spruce



Mature plantation
Sitka spruce



### Differences between ash and spruce

- Prethicket ash and spruce do not form such a distinct group from each other as mature sites
  - Minimal effect of trees
  - Preplanting habitat type
  - Soil differences

### Mature ash distinct

#### Litter cover

- Ash and spruce equally high litter cover
- BUT varying litter depths:
  - ↓ Ash
  - ↑ Spruce
- Litter dwelling forest species

#### Field layer cover:

- Both spruce and ash have high field layer cover
- Spruce: grass, ferns, brambles
- Ash: Ivy dominated
- Less structurally diverse

# Structural indicators of Spider biodiversity

- Lower field layer cover:
  - Important determinant of total spider species richness
  - Diversification of habitat structure
  - Evident in more open sites with high species richness

- Canopy cover and upper field layer:
  - Negative effect on lower field layer vegetation
  - Allows colonisation of forest ground vegetation
  - Benefits forest specialists

#### Forest associated variables

- Such as:
  - Needle litter
  - Leaf litter
  - Deadwood
  - Litter depth
- Overall negative effect on total and open species richness
- Positive affect on forest specialists

### **Conclusions**

- Sitka spruce and ash have different spider assemblages which change over the forest cycle:
  - Canopy closure has profound effects on spider communities
  - Species richness in spiders is strongly influenced by vegetation structure
  - Sites with a more open canopy contain a more complex vegetation structure

- Forest species must not be overlooked:
  - Open and forest species show opposite trends over the forest cycle
  - Paucity of natural woodlands in Ireland
  - Plantations could potentially be an important habitat for these species
  - Balance between factors affecting open and forest species in management
- Real data and structural indicators



### <u>Acknowledgements</u>



- Myles Nolan, Bob Johnston and Peter Merrett for help with identification of difficult specimens
- Maire Buckley and Noreen Burke for help in the field
- Thanks to Ed Nieuwenhuys for use of spider photographs (www.xs4all.nl/~ednieuw/)
- Bioforest project for funding the research (//bioforest.ucc.ie/)
- Thanks to COFORD for providing funding to attend the BES meeting



