

Biodiversity indicators of ground-dwelling spiders in plantation forests and native woodlands

Anne Oxbrough, Sandra Irwin, Tom Kelly, John O'Halloran

Irish forests

- Forest cover reduced to <1% by 1900s
- Increased to 10% today
- 1% of land area native woodland
 - Oak, Ash dominated
- Remaining area is plantation forest
 - Non-native conifers (Sitka spruce)
 - 55% state owned, now being reforested
 - 45% privately owned, afforestation of agricultural land
- Target of 17% cover by 2030

- Developed to incorporate sustainable forest management in recent years
- Forest biodiversity guidelines (2000)
 - Planting of species mixtures
 - Broadleaf species
 - Areas for biodiversity enhancement
 - Retained habitats
 - Open space
- Recent planting trends
 - Increase in mixes
 - Increase in broadleaves

- What lives in Irish native woodlands?
 - Are there any specialist species?
- What species are supported in plantations?
 - Monocultures and mixes
 - Second rotation
- What management practices can enhance plantation forest biodiversity?

Deadwood in native forest

Deadwood in second rotation plantations

PLANFORBIO Research Programme

- 2. Hen Harrier
- Rhododendron control
- BIOPLAN Integrating research and management

Using spiders to detect habitat change

- Influenced by vegetation structure
 - Prey availability
 - Web attachment
 - Hiding places for active hunters
 - Stable microclimate
 - Protection from predators
- Abundant
- Taxonomically well known
- Found in all vegetation layers
- Occupy a strategic position in food webs

- 2001 and 2007
- Plantations
 - ▲ 1st rotation Ash (4)
 - ▲ 1st rotation Sitka spruce (7 sites)
 - ▲ 2nd rotation Sitka spruce (5)
- Commercially mature plantations
- Range of soil types, altitudes
- Min 6ha size, 100m wide
- Native woodlands
 - Native ash dominated (5)
 - Native oak dominated (5)
- Appeared on 1920s maps

- Pitfall traps
 - 6 pitfalls per plot
 - 2m apart
 - Between 3-5 plots per site
 - May-August
- Habitat variables
 - Stand structure
 - Vegetation structure
 - Deadwood cover
 - Litter cover and depth

– 6871 adult individuals identified in 97 Sitka spruce plantation

species

- 19 forest assoc. species
- 2 assoc. with ancient, B/L
- 24 open assoc. species

Analyses

Link diversity measures to habitat parameters

Spider assemblages among forest types

- SS 1st rotation plantation
- SS 2nd rotation plantation
- Ash plantation
- Oak Native woodland
- Ash native woodland

Assemblages and habitat variables

- SS 1st rotation plantation
- SS 2nd rotation plantation
- Ash plantation
- Oak Native woodland
- Ash native woodland

Axis 2

Correlations with axes: $r^2 > 0.2$

Richness analyses

<u>Total species richness</u> (F = $21.7_{2,89}$ p=<0.001)

Spruce plantation > Ash plantation and Native

Native > Ash plantation

Forest-associated species' richness

 $(F = 13.3_{2.89} p = < 0.001)$

Spruce plantation > Ash plantation and Native

Native woodlands: relationship with habitat variables

Total species richness

(Model deviance = 35%, df $_{3,33}$)

- Non-vascular ground veg (Z=-2.26, p<0.05)
- **Litter depth** (Z=-2.57, p<0.05)
- **Coarse woody debris** (Z=-2.18, p<0.05)

Forest associated species' richness

(Model deviance = 24%, df _{1,33})

- Non-vascular ground veg (Z=-2.11, p<0.05)

Microneta viaria (D = 53%, df $_{233}$)

- **+ Leaf litter cover** (Z= 2.44, p<0.05)
- **+Understorey cover** (Z= 2.25, p<0.05)

Agyneta ramosa (D = 41%, df $_{2,33}$)

- **+ Understorey cover** (Z= 3.01, p<0.01)
- **+ Tree distance** (Z= 1.94, p<0.05)

Spruce plantations

Total species richness

(Model deviance = 43%, df $_{3,40}$)

- **Canopy cover** (Z=-2.71, p<0.01)
- Non-vascular ground veg (Z=-1.95, p<0.05)
- +Lower field layer veg (Z=1.91, p<0.05)

Forest associated species' richness

(Model deviance = 29%, df _{1,40})

- Canopy cover (Z=-1.83, p<0.06)

<u>Lepthyphantes flavipes</u> (D = 14%, df $_{2,40}$)

- **Canopy cover** (Z=-2.18, p<0.05)
- + Needle litter cover (Z=1.82, p<0.06)

Lepthyphantes alacris D= 15%, df _{2,40})

- **Canopy cover** (Z=-1.83, p<0.06)
- Non-vascular ground veg (Z=-1.91, p<0.05)

Lepthyphantes tenebricola (D = 23%, df $_{1,40}$)

- Canopy cover (Z=-2.76, p<0.01)

Ash plantations (Pearson Correlations, n=17)

Total species richness

+ Vascular ground veg (r = 0.61, p < 0.01)

Forest-associated species' richness

- + Vascular ground veg (r = 0.65, p < 0.01)
- **+ Canopy cover** (r = 0.62, p= <0.01)
- Non-vascular ground veg (r = -0.51, p = < 0.05)

PLANFORBIO

Potential biodiversity indicators PLANFORBIO

- Across all forest types
 - Neg with non-vacular ground veg
 - Predominately moss, less structurally diverse
- Native woodlands
 - Specialists positive with leaf litter cover, understory, tree distance
 - Assemblages: structural diversity of vegetation layers
- Sitka spruce plantations
 - Neg with canopy cover
 - LFL pos with total SR = generalists
- Ash plantations
 - Specialists: positive with vascular ground veg and canopy cover

Forest management for spiders?

 Emulate structural characteristics of native woodlands

Promote vegetation layers, in particular understory and vascular ground veg

- SS not ecological 'desert' BUT,
- Generalists and open species
 - Not just through opening canopy
 - More open canopy = generalists?
- Greater structural diversity under the canopy
 - Increase mixed plantations (BL species)
 - Forest biodiversity guidelines

Conclusions

- Management to promote forest specialists
 - Total SR not necessarily native woodland specialists

How much of a forest associated fauna actually exists in

Ireland?

- Saproxylic species
- Reforestation
 - Felling etc
- Other taxonomic groups
 - Complimentarity
 - Testing indicators

- Colleagues on the PLANFORBIO Research
 Programme (http://www.ucc.ie/planforbio/)
- Coillte Teoranta and private land owners
- Spider photographs courtesy of Ed Niewenhuys: http://www.xs4all.nl/
- Funded by COFORD under the National Development Plan 2007-2013

