
Visualizing the Modern Operating System: Simulation
Experiments Supporting Enhanced Learning

Besim Mustafa
Business School

Edge Hill University
Ormskirk, UK.

+44 (0)1695 657640

mustafab@edgehill.ac.uk

ABSTRACT
An important area of modern computer organization and
architecture is the operating system the internals of which is
normally inaccessible for teaching and learning purposes. This
paper describes an educational operating system simulator that is
part of an integrated set of simulators designed to support students
of computer architecture and operating systems. Examples of
classroom assignments are presented demonstrating the
simulator’s support for a wide range of practical experiments. The
pedagogical value of the simulator is assessed in terms of the
educational impact of its visualization features and its functional
capabilities for supporting students at different levels of learning.
Finally, the preliminary results of the evaluation of the simulator
that provide an indication of its value as a teaching and learning
resource are presented.

Categories and Subject Descriptors
K.3.1 [Computers Uses in Education]: Computer-assisted
instruction (CAI); K.3.2 [Computers and Information Science
Education]: Computer Science Education --- operating systems.

General Terms
Algorithms, Experimentation.

Keywords
Operating system, visualization, simulation, pedagogy.

1. INTRODUCTION
The study of operating systems forms an important and essential
part of computer science students’ education [3,4] and as a result
many degree level courses offer study modules on the internals of
operating systems at introductory and at advanced levels.

The author has been responsible for designing and delivering two
modules on computer architecture and operating systems at
undergraduate degree level for the past seven years. The

introductory computer architecture module is taught during the
first year and includes an introduction to operating systems. The
module on operating systems is taught in the second year and
includes lectures on advanced features of operating systems. In
order to support the practical lab sessions an integrated system
simulator [7] that includes a teaching compiler, a CPU simulator
and an operating system (OS) simulator has been implemented. A
unique feature resulting from this integration is the system
simulator’s ability to clearly demonstrate interdependencies and
levels of support between these three areas in ways that no other
simulator provides. The author has been able to successfully
integrate the simulators into several of his teaching modules and
they have been supporting students for the past five years.

2. PREVIOUS WORK
The traditional teaching of operating systems has been following
one or a combination of the following three main methods: a)
students modify or extend parts of an operating system [2], b)
students write code to demonstrate aspects of technology on a
commercial operating system [11,12], c) students run code
simulating parts of operating system technology [5,6,9,10]. Both
(a) and (b) often require moderate to substantial knowledge and
experience in using development environments and in writing
code in languages such as C and Java. The simulators in (c) are
often isolated individual pieces of code from various sources each
with different look and feel and aimed at different target
audiences. The author took the decision that in order to maximize
the pedagogical benefits to his students and to better support his
classes a new integrated set of simulators was justifiable. This
way not all the students would be required to possess good
systems programming skills and the simulations of different
aspects of OS and computer architecture would be seamlessly
integrated providing a common look and feel.

3. THE SYSTEM SIMULATOR
Although this paper is primarily about the operating system
simulator, it will be helpful to briefly describe the rest of the
system in order to clarify the context in which the OS simulations
have been implemented and utilized.

The system simulator integrates three important areas of computer
architecture in one educational software package: generation of
CPU instructions using a high-level language compiler and an
assembler; the CPU as the instruction processor; the operating
system as the facilitator of multiprogramming and multi-threading
of the CPU instructions.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edge Hill University Research Information Repository

https://core.ac.uk/display/227094231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3.1 THE CPU SIMULATOR
The CPU simulator simulates the hardware functionality of a
fictitious, but highly realistic, CPU based on RISC type
architecture. It incorporates a five-stage pipeline simulator and
both data and instruction cache simulators. The CPU simulator
can execute instructions either generated by the integrated
compiler from high-level source code or manually entered by the
students. Multiple CPU simulations are supported and can be used
to simulate parallel processors.

3.2 THE OS SIMULATOR
The OS simulator is designed to support two main aspects of a
computer system’s resource management: process management
and memory management. The CPU code is visible to the OS
simulator which is able to create multiple instances of the code as
separate processes. The process scheduler includes support for
scheduling policies including priority-based, pre-emptive and
round-robin scheduling with selectable time slots. Virtual
resources can be allocated and de-allocated to processes allowing
demonstration of deadlocks associated with resources and
investigation of deadlock prevention, detection and resolution
techniques. Threads are supported via special teaching language
constructs which allow parts of program code to be executed as
threads and process synchronization concepts to be explored.

3.3 THE TEACHING COMPILER
A teaching compiler is developed for a basic but complete high-
level teaching language in order to support the CPU and the OS
simulations. This language incorporates standard language control
structures, constructs and system calls which are used to
demonstrate a modern computer system’s key architectural
features. The compiler can generate assembly-level code as well
as binary byte-code as output and includes a code optimizer.

4. TEACHING - LEARNING STRATEGY
Each one-hour lecture is supported by a two-hour practical
tutorial session. The students work in groups of two or three. The
simulator software is provided on a removable disk drive and runs
under Windows operating system. The groups follow instructions
on the exercise sheets and are directed to interact with different
stages of simulations. The work completed during the practical
sessions forms the student’s tutorial portfolio which is assessed at
the completion of the module.

4.1 EXAMPLES OF USAGE
In order to better demonstrate the pedagogical capabilities of the
OS simulator, this section is devoted to describing a number of
practical assignments that the students have been asked to
undertake during the practical tutorial sessions.

Assignment 1: Process scheduling, task switching, PCB data

Using the built-in compiler’s editor the students write a simple
tight loop as in Figure 1. They then compile it and load the code
in the CPU simulator’s memory. Using the OS simulator the
students manually create several instances of this code as
processes. They select a scheduling mechanism from the list and
activate the OS simulator’s scheduler and make a note of its
behavior from their observations. They repeat this for each of the
available mechanisms. They are then directed to create new
processes with different lifetimes assigned to them. They repeat
the above but in each case the same processes are queued in a
different order. They make a note of the average waiting times

from the information contained in the OS simulator’s event log.
Next, pre-emptive and priority scheduling are observed by giving
priorities to processes. This is facilitated by simulator’s ability to
suspend itself when a new process is scheduled to run.

Next, task switching is investigated. The students select round-
robin scheduling and create two processes. When one of the
processes times out and another is scheduled the OS simulator
suspends itself. The students access the PCB of the timed –out
process and make a note of the PC value and the saved values of
the CPU and the SR registers. When next time round this process
is scheduled to run the students get the opportunity to observe the
new value of the CPU simulator’s PC register, its SR and register
file values. They can then repeat this for the other process.

Figure 1. Simple loop source code.

Assignment 2: Paging, page table, address translation

The CPU simulator has a maximum free primary memory space
equivalent to ten 256 byte pages. When a new process is manually
created it can be assigned memory of up to maximum ten pages.
The pages of those processes that cannot fit in the primary
memory are notionally stored in a secondary memory. The
students manually create processes with varying page sizes and
make sure that some processes’ memory pages are swapped out.
This way when processes are scheduled to run their memory
pages are swapped in at the expense of some other processes’
pages. This way relocation via paging is invoked and observed by
the students. This will in turn force the data in a process’s page
table to change. The students can access the contents of each
process’s page table and its memory pages. As the data in a
process’s virtual memory is updated the address translation
ensures that the correct memory location is accessed in the
primary memory. As pages are swapped in, the page fault count is
also incremented. The students have the option of manually
invalidating a page table entry thus forcing a page fault when the
memory data is next updated. All these activities are visually
observable as they occur. The students are asked to comment on
the virtual memory activities they observe and are invited to work
out the physical addresses from the virtual addresses using a
process’s page table. They can then verify this by running the
simulator.

Assignment 3: Investigating threads

The OS simulator is able to create and schedule threads. The
demonstration of this requires the in-built compiler generating the
correct system call via soft interrupt code by using special
language constructs, the CPU simulator executing it and the OS
simulator servicing the soft interrupt. In fact, it is precisely this
feature of the integrated simulator that makes it unique and unlike
other OS simulators. The student enters or is given the source

code, shown in Figure 2, to compile and load in the CPU
simulator’s memory.

The students create two instances of the same code as processes.
They then activate the scheduler and observe the creation of the
threads. The OS simulator provides a process tree view from
which the student can observe the parent/child hierarchy as they
are formed. Next, they can confirm from the messages displayed
on the simulated console that the threads have access to parent’s
global memory space. The question of what happens to children
when parent dies is explored by selecting an option which either
kills the children or orphans them when their parents exit.
Orphaned children become directly attached to their grandparents
or to the root process and this is clearly observable in the tree
view.

Finally, the role of the “wait” statement is explored. The students
observe the effect of the displayed messages and conclude that the
parent process will be suspended when the wait statement is
executed until all its child processes terminate. The spawning of
the threads and the “wait” construct are implemented via a
software interrupt instruction (SWI) that specifies the requested
OS action. The students can observe this mechanism from the
generated assembly code and can follow its progress in the CPU
simulator. This is yet another example of the cooperating
interfaces clearly illustrated by the simulator.

Assignment 4: Investigating synchronization, critical regions

The built-in teaching language includes constructs that facilitate
implementation of thread synchronization as well as critical
regions of blocks of code. The thread synchronization is
implemented by OS and the special CPU hardware instruction
that can atomically test and set a flag. The critical regions are
implemented by the OS via the soft interrupt instruction (SWI)
that is handled by the OS. In both cases the OS suspends the
thread that tries to access the protected region until this region is
released by the holding thread.

The students enter source code that uses the “synchronise”
keyword to protect two subroutines invoked as threads. This code
is then compiled and loaded in CPU simulator’s memory. Both
subroutines access a global variable, initialize it and increment it
in loops. When loops are exited, the value of the variable is
displayed in the simulated console.

Figure 3 shows the code used for this investigation. Running this
code should display two values of g as 12 and 20 as expected. The
students then edit the code and remove the two “synchronise”
keywords and run the code again. They now need to explain why
the new values observed are different than before and why in this
case the task switching frequency (configurable) affects the
results.

Next, the students further edit the two subroutines and implement
the critical regions of code in both. Figure 4 shows the changes
(only one of the subroutines is shown). The two keywords “enter”
and “leave” are used to protect the enclosed block of code. Both
keywords instruct the compiler to generate the soft interrupt
instruction used to enter the OS handlers. As it is the OS that
schedules the threads, this method guarantees protection since
once the interrupt is served the OS has already flagged the region
before the next thread is allowed to continue. The students
observe that the results of the modified run yield the correct
values for the global variable g.

Assignment 5: Investigating deadlocks

The OS simulator can simulate process deadlocks when the right
conditions for deadlocking are configured. This enables the
students to investigate the conditions necessary for deadlocks and
the methods used to detect and resolve deadlocks. The simulator
uses two methods: one method requires the use of special
constructs in the source code; the other is the manual method.
Here the manual method is described. Figure 5 shows the
deadlock simulator’s interface.

Figure 2. Source code for thread creation.

Figure 3. Source code for synchronized threads.

Figure 4. Source code for critical region protection.

The deadlock simulator interface presents six different resources
available to all the processes. Each resource has only a single
instance so once allocated to one process it cannot be allocated to
another process at the same time. However it can be requested by
one or more processes at the same time. The resources are
allocated manually. Each resource is colour-coded reflecting its
status. A drop-down list of all processes requesting an allocated
resource is displayed. An allocated resource can be manually
released. It is also possible to configure various deadlock
prevention methods, deadlock recovery methods and detection
frequencies. All these are available to enable the students to
explore and illustrate the different aspects of deadlocks.

Prior to the students using the deadlock simulator they are given a
description of several processes and the resources
allocated/requested by each process. They are then asked to
produce the resource allocation graph and determine if a deadlock
cycle exists. If not, then they are asked to work out what needs
doing to create a deadlock. Then they are asked to use the
deadlock simulator to verify their solutions. The OS simulator
clearly highlights any deadlocked processes and these are
suspended until the deadlock is resolved. Next the students are
asked to apply a method, e.g. terminating a deadlocked process or
pre-empting the release of a resource, in order to resolve the
deadlock. They are then asked to configure each one of the three
prevention methods in order to assess and demonstrate their
relative effectiveness.

Assignment 6: Investigating IO interrupts

The integrated simulator includes a console simulator. The
students are asked to enter and compile a source code that can
detect a console input event using two methods: vectored interrupt
and polled interrupt. The vectored interrupt method requires a
special language construct “intr 1” in order to identify a console
IO interrupt handler (i.e. interrupt 1). When this code is loaded its
starting address is entered in the interrupt vector location 1
corresponding to console IO interrupt vector location. Figure 6
shows a sample source using this method. The students observe
that the address of the console input interrupt routine is contained
in the list of interrupt vectors shown in a separate window. They
can then experiment by manually altering this address and
observing its effects.

The code in Figure 6 includes a tight loop in the main body of the
program. On pressing a key the CPU executes the interrupt code
IntHandler which displays the key value. The program terminates
if the return key is entered. The students are then asked to modify
this code so that the polled interrupt method is used to do the
same. They do this by modifying the while loop which
continuously monitors the pressing of a key.

Figure 5. The deadlock simulator window.

Figure 6. Source code for IO interrupt handler.

The next two assignments are advanced and are usually suggested
as optional assignments as a challenge to more able students.

Assignment 7: Multiple CPUs, load balancing, CPU affinity

The integrated simulator can simulate up to maximum four CPUs.
These can be tightly-coupled CPUs, loosely-coupled CPUs or a
combination of the two. The tightly-coupled CPUs have duplicate
code as they need to simulate the availability of global memory.
The students then create multiple processes and start the OS
simulator’s scheduler. They observe how different processes are
assigned to the CPUs. The graphical representation of CPU

utilization is used to indicate each CPU’s utilization level. A well
balanced system will show similar utilization levels. The students
then manually kill a CPU’s processes to observe the loss and the
subsequent re-establishment of load balancing. The CPU affinity
option can then be used to force processes to stick to the same
CPU every time they are re-scheduled. The students are asked to
discuss and comment on their observations.

Assignment 8: Dynamically-linked vs. statically-linked libraries

The integrated teaching compiler is able to create library code
using special language constructs and statically linking them with
the main program code. Optionally, the library can be
dynamically linked. The students carry out both methods of
linking library code in order to illustrate the advantages and
disadvantages of each method. The method relevant to OS is the
dynamically linked one. The students are asked to write a basic
math library code that exports its functions. The main code makes
calls to these. The students observe that multiple instances of the
calling code share the same library code that is loaded in CPU
simulator’s memory the first time a function is called and remains
in memory as long as instances of the calling program are
running. Optionally the OS simulator can be configured to unload
the library code if all calling programs terminate. All these
activities are graphically observable in different views of the
simulator once again clearly demonstrating the interplay between
different system interfaces.

5. AN ASSESSMENT OF PEDAGOGY
An educational resource is of little value if it does not address the
educational needs of the students. It is reasonably well understood
that a student’s learning experience is greatly enhanced by both
the increasing levels of engagement and the depth of learning
afforded by a teaching and learning environment. The OS
simulator is assessed and evaluated on two fronts: 1) Student
engagement and learning support, 2) Qualitative evaluation.

5.1 THE TWO KEY TAXONOMIES
The assessment relies on two yardsticks: The proposed
Engagement Taxonomy [8] which defines six categories of
learner engagement with visualization technology and the
Bloom’s Taxonomy [1] that identifies a learner’s hierarchical
depth of understanding. In order to establish the degree of
suitability of the OS simulator as an effective educational tool it is
assessed against the above two yardsticks. One way of doing this
is to map the capabilities and the functionality of the simulator
against five of the six categories of the Engagement Taxonomy
(the no-viewing category is not considered here) and also to map
the kind of learning tasks the simulator is able to support against
the levels of Bloom’s taxonomy. This assessment should provide
some degree of confidence in the tool but by itself may not be
sufficient.

Table 1 shows the mapping of the example assignments described
in the previous section onto the five categories of the Engagement
Taxonomy. Table 2 shows the mapping of the same example
assignments onto the five learning levels of Bloom’s Taxonomy.
As can be seen the assignments included in this paper demonstrate
that the OS simulator is able to fully cover all the engagement
levels of the Engagement taxonomy and at the same time offer
capabilities that can sufficiently support the different learning
levels of Bloom’s Taxonomy.

Table 1. Mapping onto the Engagement taxonomy.

Table 2. Mapping onto Bloom’s taxonomy.

5.2 THE EVALUATION METHOD
In order to establish the degree of effectiveness of the OS
simulations a preliminary evaluation using two qualitative surveys
were conducted. The surveys used 5-point Likert scale. The
evaluations were based on a relatively small sample of students
involving 37 first-year and 14 second-year honours
undergraduates studying for the computing degrees. Table 3
shows the results of the surveys. The A and B columns represent
the aggregated percentages of Strongly Agree and Agree
responses and the aggregated Strongly Disagree and Disagree
responses of the first-year students. The C and D columns
represent the same aggregated responses for the second-year
students. The responses are positive and indicate that in the
opinion of the majority of the students surveyed the simulations
were useful to and supportive of their understanding of the
operating systems technology. This survey yielded a high
Pearson’s correlation coefficient of above 0.78. Interestingly the
second-year students appear to be happier in their responses
possibly attributable to their familiarity with the software.

Students are required to maintain individual portfolios of their
tutorial exercises. The portfolios include student reflections on
their learning experiences. Below is a small sample of extracts
from student reflections on the exercises using the OS simulations
(text unedited):

“Being able to see scheduling actually working on the simulator
made it a lot easier to understand”
“The lecture confused me slightly about threads however once I
had used the simulator I understood it more”
“Today's session was interesting, it was a change actually opening
a simulator and physically loading processes into the operating
system”
“The simulator made the theory much more understandable”
“The knowledge gained from the lecture and the help from the
simulator made this session comfortable and easy to complete”

“Today's session has helped me to develop a greater
understanding of process scheduling and this was due to the
simulator”
“Today's session was particularly enjoyable as it allowed for
group work and communication as well as seeing how the process
scheduling works within an operating system by using the
simulator”
“I feel that I have learnt the idea of threads much easier by
actually seeing and understanding the ways in which they work as
well as being able to discuss these findings with group members”

Table 3. Opinion survey results. Figure 7. Survey of learning styles.

The integrated system simulator and example tutorials are freely
available from the following dedicated link: www.teach-sim.com.

7. REFERENCES
[1] Bloom, B. S., Krathwohl, D. R. 1956. Taxonomy of

Educational Objectives; the Classification of Educational
Goals, Handbook I: Cognitive Domain. Addison-Wesley.

[2] Charles L. A., Nguyen, M. 2005. A Survey of Contemporary
Instructional Operating Systems for Use in Undergraduate
Courses. JCSC 21 (1), pp. 183-190.

[3] Computing Cirricula 2001. 2001. Computing Science, Final
Report, December 15 2001. ACM and IEEE Computer
Society joint report, USA.

[4] Computing 2007. 2007. Subject Benchmark Statement. The
Quality Assurance Agency for Higher Education, UK, 2007.

[5] Garrido, J. M. and Schlesinger, R. 2008. Principles of
Modern Operating Systems. Jones and Bartlett.

[6] Maia, L.P. and Pacheco, A.C. 2003. A Simulator Supporting
Lectures on Operating Systems. 33rd ASEE/IEEE Frontiers
in education Conference, November 5-8, 2003, Boulder,CO.

 [7] Mustafa, B. 2009. YASS: A System Simulator for Operating
System and Computer Architecture Teaching and Learning.
FISER’09 Conference, Famagusta, Cyprus, Mar 22-24.

We also surveyed the participants about their learning styles. The
results are presented in Figure 7 and show that 92% of the
participants regarded themselves as visual and kinesthetic (i.e.
learning by doing) type of learners. This is consistent with the
results of the qualitative surveys and the student reflections.

[8] Naps, T.L., et. al. 2002. Exploring the Role of Visualization
and Engagement in Computer Science Education. ACM
SIGCSE Bulletin 35 (2), June 2003.

6. CONCLUSIONS [9] Robbins, S. 2001. Starving philosophers: Experimentation
with monitor synchronization. SIGCSE 2001 2/01 Charlotte,
NC, USA.

This paper presented an educational tool for supporting the
undergraduate lectures and the practical tutorial sessions in both
the introductory and the advanced operating systems teaching
modules. The full mapping of the simulator’s functionality onto
all categories of the engagement taxonomy and its support for
different learning levels suggest that the tool has the makings of
an effective educational resource. The positive opinion survey
results and student reflections add some weight to this suggestion.
However, more work needs to be done in this area in order to both
confirm and consolidate the findings of the preliminary study.
Currently, quantitative evaluations are being carried out.

[10] Robbins, S. 2005. An address translation simulator.
SIGCSE’05 February 23-27, 2005, St. Louis, Missouri,
USA.

[11] Silberschatz, A., Galvin, P.B., Gagne, G. 2010. Operating
System Concepts. 8th Edition. Wiley.

[12] Stallings, W. 2009. Operating Systems: Internals and Design
Principles. Sixth edition. Pearson Education.

	1. INTRODUCTION
	2. PREVIOUS WORK
	3. THE SYSTEM SIMULATOR
	3.1 THE CPU SIMULATOR
	3.2 THE OS SIMULATOR
	3.3 THE TEACHING COMPILER

	4. TEACHING - LEARNING STRATEGY
	4.1 EXAMPLES OF USAGE

	5. AN ASSESSMENT OF PEDAGOGY
	5.1 THE TWO KEY TAXONOMIES
	5.2 THE EVALUATION METHOD

	6. CONCLUSIONS
	7. REFERENCES

