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Abstract

Piezoelectric ultrasonic transducers have the ability to act both as a receiver and a

transmitter of ultrasound. Standard designs have a regular structure and therefore

operate effectively over narrow bandwidths due to their single length scale. Nat-

urally occurring transducers benefit from a wide range of length scales giving rise

to increased bandwidths. It is therefore of interest to investigate structures which

incorporate a range of length scales, such as fractals. This paper applies an adap-

tation of the Green function renormalization method to analyse the propagation of

an ultrasonic wave in a series of pre-fractal structures. The structure being investi-

gated here is the Sierpinski carpet. Novel expressions for the non-dimensionalized

electrical impedance and the transmission and reception sensitivities as a function of

the operating frequency are presented. Comparisons of metrics between three new

designs alongside the standard design (Euclidean structure) and the previously in-

vestigated Sierpinski gasket device are performed. The results indicate a significant
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improvement in the reception sensitivity of the device, and improved bandwidth in

both the receiving and transmitting responses.

1 INTRODUCTION

Transducers are devices which enable the conversion of electrical energy into mechanical

energy and vice-versa. Ultrasonic transducers are used for the generation and detection

of ultrasonic waves. The uses of such devices vary extensively and they are routine-

ly used in applications including communication, medical diagnosis and non-destructive

testing [1, 2]. There are two main types of ultrasonic transducers that are used in generat-

ing and detecting ultrasonic waves; these are electrostatic and piezoelectric transducers.

Electrostatic devices employ an oscillating membrane connected to a backplate which

can incorporate resonating conduits and/or cavities [3–7]. Electrostatic devices general-

ly have higher sensitivities and bandwidth however, they suffer from requiring a higher

operating voltage then piezoelectric devices [8]. This paper focuses on the modelling of

novel piezoelectric ultrasonic transducers.

Piezoelectric transducers have a piezoelectric material sandwiched between a backing

layer and front matching layer. The conversion of energy in these transducers is made

possible by the piezoelectric ceramic. During reception mode, the ceramic expands

and contracts through the application of a mechanical stress causing the creation of

an electrical current; Fig. 1 (a). In transmission mode, the continuous expansion and

contraction of the material when an electric current is applied results in the production

of mechanical vibrations; see Fig. 1 (b).

Piezoelectric Material 

electrodes

Applied pressure

(a) The piezoelectric element pro-
duces a voltage when subject to
pressure at its plates.

Piezoelectric Material 

Applied voltage

electrodes

(b) The piezoelectric element generates vibra-
tions when applied with a voltage.

Figure 1: Schematic of transducer in (a) reception mode, and (b) transmission mode
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The geometry of traditional ultrasonic transducers is regular and is generally manufac-

tured from a piezoelectric crystal which is diced and filled with a polymer; see Fig. 2.

Such designs have one dominant length scale and consequently only perform efficiently

over a small range of frequencies. In contrast the transducers found in natural systems

have complexity in their shapes, with resonators over a range of length scales [9–11]. As

a result, they are far more efficient in transmitting and receiving ultrasonic waves over

a range of frequencies than man-made devices. Thus, it is of great interest to construct

devices which are inspired by those found in nature. This may be achieved through the

development of more intricate designs.

Figure 2: 1-3 Ceramic-polymer composite transducer design.

Fractals can be characterized as complex objects which exhibit similarity at any

magnification in addition to covering a range of length scales. The implementation

of fractal-like structures into the design of new ultrasonic transducers can assist the

construction of devices that can operate efficiently over a large range of frequencies. This

paper is therefore concerned with the design and mathematical modelling of a range of

novel piezoelectric ultrasonic transducers that incorporate pre-fractal structures.

Research on fractal inspired transducers has commenced [9, 12–14]. In particular

the plane wave expansion (PWE) model was employed to study the performances of a

Sierpinski carpet type and Cantor set transducers [12]. Furthermore, analytical results

for a Sierpinski gasket-inspired transducer were obtained in [9] using the Green function

renormalization method. The Sierpinski gasket transducer was further investigated using

a finite element approach [14] and a prototype for a specified fractal generation was

manufactured [13]. In these papers the results agreed with the initial assumption that the

introduction of multiple length scales into the design of ultrasonic transducers improves

effective operation over a larger range of frequencies with resonating behaviour.

In this paper the Green function renormalization method is employed to analyse the
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propagation of an ultrasonic wave within an infinitely ramified structure. Three models

based on the design of the Sierpinski carpet pre-fractal are investigated to determine the

most appropriate device for ultrasonic applications. We find a significant improvement

for the reception sensitivity of the device, and improved bandwidth in both the receiving

and transmitting responses.

Section 2 outlines the construction of the Sierpinski carpet pre-fractal along with

the derivation of its lattice counterpart. In Sec. 3, the Green function renormalization

method is utilized to obtain the relevant relations for each transducer model. Boundary

conditions are obtained to aid the derivation of the expressions for the important output

parameters, electrical impedance and transmission and reception sensitivities in Sec. 4.

In Sec. 5, the results for the individual Sierpinski carpet transducer models are compared

with the standard Euclidean transducer and the Sierpinski triangle transducer. The

findings are summarized and future research is discussed in Sec. 6.

2 FORMULATION OF THE MODEL

The fractal used here to imitate the complex geometry found in natural ultrasonic

transducers is the Sierpinski carpet. The structure of this fractal begins with a square,

which is then copied and scaled into nine congruent sub-squares with the centre square

eliminated. The following generation is then achieved by replacing the initial square

with this newly formed shape. Subsequent generations are then found by repeatedly

applying this procedure to give the Sierpinski carpet [15–17], see Fig. 3. In actuality

the structures formed from the iterative process are pre-fractals as the fractal is only

formed after an infinite number of iterations [18]. For the purpose of manufacturing such

designs, it is only the pre-fractals that are of interest.

Figure 3: The initial square and first four iterations of the Sierpinski carpet.
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A lattice equivalent of the Sierpinski carpet can be obtained by considering the

fractal structures as a sequence of graphs
{

G(n)
}

, where the superscript n refers to

a particular fractal generation level[9, 19, 20]. The subsequent generation level graph,

G(n+1), is then obtained by connecting together eight copies of G(n). The nth generation

graph has Nn = 23n vertices, and L is the side length of the structure which is assumed

to be fixed throughout the construction process [9]. As a result of this condition, the

edge length between adjacent vertices will reduce to zero, as the generation level is

increased [19, 21]. For the sequence of graphs the coordination number q of the lattice

refers to the vertex degree of the graph. As such q is dependent on the generation level

as it is determined by the number of sub-graphs it connects. Consequently, the number

of connection vertices will increase as the generation level is increased (Fig. 4). Thus, the

Sierpinski carpet lattice has coordination number 4 for vertices connecting three sub-

graphs, 3 for vertices connecting two sub-graphs and 2 for non-connecting vertices. As a

result, the input/ output vertices have coordination number 2, which remains constant

throughout the iteration process. Similar to the work presented in [9], fictitious vertices

A, B, C and D are attached to these vertices to accommodate the boundary conditions,

see Fig. 5.

n=2n=1 n=3n=0

Figure 4: Graphical representations of generations 0 to 3 for the sequence of Sierpinski
carpet lattices.

Each graph of the sequence can be completely described by its adjacency matrix

H(n), where the (i, j)th element gives the number of edges connecting vertex i to j

by assigning the value one to connected vertices and zero otherwise. The recursive
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relationship of the graphs is then given as [9, 22]

H(n+1) = H̄(n) + V (n), (2.1)

where H̄(n) is a block diagonal matrix which represents the connectivity properties of

the individual sub-graphs of G(n). The connection of these sub-graphs is given by V (n)

which is a sparse matrix that assigns the number one to the connection of vertices on

sub-graphs.

The one-dimensional piezoelectric constitutive equations are required to describe the

interaction between the elastic variables, stress T and strain S, to electric variables, field

E and displacement D, within the piezoelectric material. These are of the form,

T = Y S − hD, (2.2)

E = −hS +
D

ǫ
, (2.3)

where Y represents the Young’s modulus, h is the piezoelectric constant and ǫ is the

permittivity. The analysis of a propagating ultrasonic wave within the Sierpinski carpet

lattice requires the use of the discretized wave equation [9],

ρT
∂2u

∂t2
=

YT

∆x2
(A(n)u+B(n)u+ c(n)), (2.4)

where ρT and YT are the density and Young’s modulus for the piezoelectric material

respectively, u is the particle displacement, ∆x is the distance between neighbouring

vertices, A(n) is the matrix representing the discretized Laplacian and B(n) and c(n)

are a matrix and vector containing the boundary conditions at the input and output

vertices. Previously [9, 19, 22–24], it was established that a method for solving the

discretized wave equation, Eq. (2.4), is achieved by initially neglecting boundary condi-

tions. These boundary conditions are then re-introduced later in the analysis, by means

of suitable matrix transformations. Non-dimensionalizing and transforming Eq. (2.4)
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into the Laplace domain gives

(p2In −A(n) −B(n))u = c,

⇒ u = G(n)c, (2.5)

where p is the Laplace transform variable, In is an n×n identity matrix and G(n) is the

Green function matrix given by

G(n) = (p2In −A(n) −B(n))−1. (2.6)

The Green function matrix not accounting for boundary conditions is thus given by

Ĝ(n) =
(

p2In −A(n)
)−1

. (2.7)

Furthermore, the Laplacian matrix A(n), is given by A(n) = H(n) − qIn and so utilising

Eqs.(2.1) and (2.7) results with the following recursion relationship equation [20, 22, 23],

Ĝ(n+1) = Ḡ(n) + Ḡ(n)V (n)Ĝ(n+1), (2.8)

where Ḡ(n) is a block diagonal matrix whose v blocks equal Ĝ(n). Similarly, utilising

Eqs. (2.1) and (2.6), the following relationship is obtained [20, 23]

G(n) = Ĝ(n) + Ĝ(n)B(n)G(n). (2.9)

Due to the symmetries of the lattice structure, it is of interest to only obtain the pivotal

Green functions. The pivotal Green functions are the minimum number of independent

elements required to develop a recursion [20]. The next section will develop these pivotal

Green functions for each transducer model using Eq. (2.9).
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3 RENORMALIZATION ANALYSIS

This section develops the Green function renormalization to infinitely ramified Sierpinski

carpets. It is clear that the number of output vertices the transducer exhibits will have

a direct effect on its performance, and as such it is desirable to obtain individual models

which encompass these different numbers of output vertices. In transmission mode, each

model will contain a single input vertex that is connected to fictitious vertex A. At this

vertex ultrasonic waves are generated through the application of an electric field and

dependent on the model, one, two or three output vertices will be required. These output

vertices will produce the mechanical vibrations once the wave has passed through the

transducer.
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(c) Model γ

Figure 5: Sierpinski carpet lattice at generation n = 2. Fictitious vertices A, B, C
and D are introduced to accommodate the boundary conditions. Representation of (a)
Model η with fictitious vertices A and C, (b) Model δ with fictitious vertices A, B and
D, and (c) Model γ with fictitious vertices A, B, C and D.

3.1 Model η: Single Output Vertex

The graph in Fig. 5 (a) displays model η at generation level two. As illustrated, model η

contains two boundary conditions; an input vertex placed at vertex 1 and a single output

vertex placed at vertex 37. As a result fictitious vertices A and C will be attached to

these vertices. Thus, model η requires the following pivotal elements: G
(n)
1 1 , G

(n)
1 37 and

G
(n)
37 37. These can more conveniently be expressed as xη, zη and vη, respectively, where

the subscript relates to the transducer model rather than to the vertices of the lattice.

By utilizing Eq. (2.9), the following system of equations for the pivotal Green functions
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were obtained

xη = x̂η + x̂ηb1,ηxη + ẑηb2,ηzη, (3.1)

zη = ẑη + ẑηb1,ηxη + x̂ηb2,ηzη, (3.2)

vη = x̂η + ẑηb1,ηzη + x̂ηb2,ηvη, (3.3)

where x̂η = Ĝ
(n)
1 1 and ẑη = Ĝ

(n)
1 37 correspond to the boundary matrix, B(n), being set to

zero, and b1,η = B
(n)
1 1 and b2,η = B

(n)
37 37 relate to the boundary conditions set at fictitious

vertices A and C. Thus solving these three equations solely in terms of x̂η, ẑη, b1,η and

b2,η yields

xη =
(ẑ2η − x̂2η)b2,η + x̂η

((x̂2η − ẑ2η)b1,η − x̂η)b2,η + 1− x̂ηb1,η
, (3.4)

zη =
ẑη

((x̂2η − ẑ2η)b1,η − x̂η)b2,η + 1− x̂ηb1,η
, (3.5)

vη =
(ẑ2η − x̂2η)b1,η + x̂η

((x̂2η − ẑ2η)b1,η − x̂η)b2,η + 1− x̂ηb1,η
. (3.6)

In [19], one of the conditions in order to apply this renormalization method to a family

of graphs is that the process of obtainingG(n+1) fromG(n) consists of connecting together

v copies of G(n) solely through the input/ output vertices. For the Sierpinski gasket

inspired device Eq.(2.8) was suffice in obtaining exact matrix elements for subsequent

generation levels. This was suitable since this structure is a finitely ramified fractal and

so the connection process only involved the input/ output vertices. As the Sierpinski

carpet is an infinitely ramified fractal, the connection process to form the nth generation

level graph consists of connecting v copies of G(n) at the input/ output vertices in

addition to internal vertices. An alternative approach is therefore required to apply

a similar methodology to a Sierpinski carpet inspired device. Instead the derivation

of the Green function matrices are required to obtain the essential matrix elements.

Consequently, results for higher generation levels are computationally intensive and

therefore this paper will concentrate on low generation levels.

Appendix A concisely details the process of obtaining the required Green function

elements for the first generation level of model γ of the Sierpinski carpet pre-fractal.
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3.2 Model δ: Two Symmetric Output Vertices

The second generation graph of model δ is shown in Fig. 5 (b). This model will include

three boundary conditions, an input vertex at vertex 1 and two symmetric output ver-

tices positioned at vertices 19 and 55. Due to the symmetries of this lattice, it can be

shown that G
(n)
1 19 and G

(n)
1 55 are equal. For this model it is necessary to determine the

relations for x̂δ, ŷδ, t̂δ and ŵδ, as it is assumed that vertex 37 is to be insulated from

the external loads. The need for the addition of t̂ and ŵ is due to the symmetry of this

lattice, see Fig. 5(b). In this instance Ĝ
(n)
1 1 6= Ĝ

(n)
19 19. For brevity, the system of equations

used to derive the pivotal Green functions for models δ and γ is presented in Appendix

B. Thus using analysis similar to that used for model η (and employing Eqs. (B1)- (B4))

results with

xδ =

(

1− b2,δ
(

t̂δ + ŵδ

))

x̂δ + 2b2,δ ŷ
2
δ

(

b2,δ
(

t̂δ + ŵδ

)

− 1
)

(b1,δx̂δ − 1)− 2b1,δb2,δ ŷ
2
δ

, (3.7)

yδ =
ŷδ

(

b2,δ
(

t̂δ + ŵδ

)

− 1
)

(b1,δx̂δ − 1)− 2b1,δb2,δ ŷ
2
δ

, (3.8)

wδ =
b1,δ ŷ

2
δ

(

1 + 2b2,δ
(

t̂δ − ŵδ

))

−
(

ŵδ + b2,δ t̂
2
δ − b2,δŵ

2
δ

)

(b1,δx̂δ − 1)
(

1 + b2,δ
(

t̂δ − ŵδ

)) ((

b2,δ
(

t̂δ + ŵδ

)

− 1
)

(b1,δx̂δ − 1)− 2b1,δb2,δ ŷ
2
δ

) , (3.9)

tδ =
t̂δ − b1,δ t̂δx̂δ + b1,δ ŷ

2
δ

(

1 + b2,δ
(

t̂δ − ŵδ

)) ((

b2,δ
(

t̂δ + ŵδ

)

− 1
)

(b1,δx̂δ − 1)− 2b1,δb2,δ ŷ
2
δ

) , (3.10)

where xδ, yδ, wδ and tδ correspond to the pivotal elements G
(n)
1 1 , G

(n)
1 19, G

(n)
19 19 and G

(n)
19 55

respectively.

3.3 Model γ: Three Output Vertices

Model γ refers to the inclusion of four boundary conditions, see Fig. 5 (c), where an

input vertex is placed at vertex 1, two symmetric vertices are to be placed at vertices 19

and 55 and an additional output vertex is placed at vertex 37. For this model there are

seven pivotal elements; G
(n)
1 1 , G

(n)
1 19, G

(n)
1 37, G

(n)
19 19, G

(n)
37 37, G

(n)
19 37 and G

(n)
19 55, where for ease

of notation these will be labelled respectively as xγ , yγ , zγ , wγ , vγ , uγ and tγ . Following
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with the same analysis as for models η and δ results with the following seven equations,

xγ =

(

2b2,γ
(

x̂2γ − ŷ2γ
)

+ b2,γ (x̂γ − ẑγ)
(

4ŷ2γb2,γ − ẑγ (x̂γb2,γ − 1)
)

− b22,γ
(

x̂3γ − ẑ3γ
)

− xγ

)

∆1
, (3.11)

yγ =
ŷγ (1− b2,γ (x̂γ − ẑγ))

∆1
, (3.12)

zγ =
2ŷ2γb2,γ + ẑγ (1− b2,γ (x̂γ + ẑγ))

∆1
, (3.13)

wγ =









(2x̂2γ(x̂γb1,γ − 1)− 2(2ŷ2γ + ẑ2γ)b1,γ x̂γ + ŷ2γ(1 + 4ẑγb1,γ) + ẑ2γ)b2,γ

− (x̂γ(x̂2γb1,γ + x̂γ(ẑγb1,γ − 1)− (4ŷ2γ + ẑ2γ)b1,γ − ẑγ)

+ ẑγb1,γ(4ŷ2γ − ẑ2γ) + 2ŷ2γ)(x̂γ − ẑγ)b2,γ
2 − b1,γ(x̂2γ − ŷ2γ) + x̂γ









∆2
(3.14)

vγ =

(

(x̂γ − ẑγ) (x̂γ + 2ŷγ + ẑγ) (x̂γ − 2ŷγ + ẑγ) b1,γb2,γ
−
(

x̂γ (x̂γ + ẑγ) + 2ŷ2γ
)

b2,γ −
(

x̂2γ − ẑ2γ
)

b1,γ + x̂γ

)

∆1
, (3.15)

uγ =
ŷγ (b1,γ (x̂γ − ẑγ)− 1)

∆1
, (3.16)

tγ =
ẑγ − (x̂γ ẑγ − ŷ2γ)(b1,γ + b2,γ) + b1,γb2,γ(ẑγ(x̂

2
γ − ẑ2γ)− 2ŷ2γ(x̂γ − ẑγ))

∆2
, (3.17)

where

∆1 = b1,γb
2
2,γ (x̂γ − ẑγ)

(

x̂γ ẑγ − 4ŷ2γ
)

+
(

2ŷ2γb1,γ + x̂γ
)

(b1,γ + b2,γ)

+ b1,γb2,γ
(

b2,γ
(

x̂3γ − ẑ3γ
)

− (2x̂γ − ẑγ) (x̂γ + ẑγ)
)

− 1, (3.18)

∆2 = ((x̂γ − ẑγ)b2,γ − 1)(((x̂γ − ẑγ)(x̂γ + 2ŷγ + ẑγ)(x̂γ − 2ŷγ + ẑγ)

− x̂γ(x̂γ + ẑγ) + 2ŷ2γ)b
2
2,γ(((ẑγ(ẑγ − x̂γ)− 2(x̂2γ − ŷ2γ))b1,γ + 2x̂γ

+ ẑγ)b2,γ + x̂γb1,γ − 1)), (3.19)

with b1,γ = B
(n)
1 1 and b2,γ = B

(n)
19 19 = B

(n)
37 37 = B

(n)
55 55.

As the pivotal elements for each of the carpet models have been determined, expres-

sions detailing the electrical impedance and transmission and reception sensitivities for

each device can now be calculated.
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4 BOUNDARY CONDITIONS AND DERIVATION OF

TRANSDUCER OPERATING CHARACTERISTICS

The three transducer models inspired by the Sierpinski carpet have been obtained in a

similar manner to the Sierpinski gasket transducer [9]. For each model, mechanical loads

are to be placed at the output vertices and an electrical load is to be positioned at the

input vertex. For the backing material it is desirable that the attenuation parameter is

high so that vibrations at the back are prevented. For that reason it may be assumed

that there is only a wave travelling away from the piezoelectric material [9]. Expressions

for the displacement in the load and backing material are given as

ūL = AL exp

(

−pvTxL

∆xvL

)

+BL exp

(

pvTxL

∆xvL

)

, (4.1)

and

ūB = AB exp

(

−pvTxB

∆xvB

)

, (4.2)

where the subscript L and B refer to the mechanical load and backing layer respectively,

vT is the wave velocity in the piezoelectric material and AL, AB and BL are constants

that represent the forward and backward traveling waves. Applying the conditions of

continuity of displacement at the transducer boundaries (and accounting for symmetries

of the Green function matrix) and of force results in

u1 = uA = AB, (4.3)

u19 = u37 = u55 = uB = uC = uD = AL +BL, (4.4)

u1 − uA −
hQ

YT ξ
= −

ZB

ZT
pAB, (4.5)

uB − u19 −
hQ

YT ξ
=
ZL

ZT
p(−AL +BL), (4.6)

where Q is the electrical charge applied to the transducer at vertex A and passes through

in the direction of the electric field, ZB, ZL and ZT are the mechanical impedances of the

backing layer, load and transducer respectively and ξ is the ratio of the cross-sectional
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area of each edge to its length. Equations (4.3) and (4.6) are then used to determine the

elements of the boundary condition matrix B(n),

Bij =



































1

1−p
ZB
ZT

if i = j = 1

1

1−p
ZL
ZT

if i = j = 19, 37 or 55,

0 otherwise

(4.7)

and the vector c(n)

ci =



































− hQ
YT ξ

(

1

1−p
ZB
ZT

)

if i = 1

(

hQ
YT ξ

− 2pAL
ZL

ZT

)

(

1

1−p
ZL
ZT

)

if i = 19, 37 or 55.

0 otherwise

(4.8)

The derivations in Eqs. (4.7) and (4.8) will be used to determine the expressions for the

electrical impedance and transmission and reception sensitivities for the three devices.

An expression for the non-dimensionalized electrical impedance is given by

ẐE,i =
ZT

pC0YT ξZ0

(

1 +
h2C0(αi + βi)

YT ξ
−

2hC0pαiALZL

QZT

)

for i = η, δ, γ (4.9)

where C0 is the capacitance and

αη =
zη − vη

1− pZL

ZT

, βη =
zη − xη

1− pZB

ZT

, (4.10)

αδ =
2yδ − wδ − tδ

1− pZL

ZT

, βδ =
yδ − xδ

1− pZB

ZT

, (4.11)

αγ =
2yγ + zγ − wγ − uγ − tγ

1− pZL

ZT

and βγ =
yγ − xγ

1− pZB

ZT

. (4.12)

Now that the electrical impedances for each of the transducer models have been cal-

culated, these analytical expressions are used to derive the necessary transmission and

reception sensitivities for each device. In transmission mode, the conversion of electri-

cal signal to mechanical vibration is achieved from the application of a voltage [25–27].
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When the transducer is transmitting there is no force incident at the front face of the

transducer, and so there is no forward traveling wave in the load, i.e. AL = 0 [9]. Thus,

the non-dimensionalized transmission sensitivity is given by

ψi =
F

V hC0
=

aZTK
(n)
i

YT ξC0(ZE,i + b)
for i = η, δ, γ, (4.13)

where

K(n)
η =

(

1

1− pZL

ZT

)(

1 +
vη

1− pZL

ZT

−
zη

1− pZB

ZT

)

, (4.14)

K
(n)
δ =

(

1

1− pZL

ZT

)(

1 +
wδ + tδ

1− pZL

ZT

−
yδ

1− pZB

ZT

)

, (4.15)

and

K(n)
γ =

(

1

1− pZL

ZT

)(

1 +
wγ + uγ + tγ

1− pZL

ZT

−
yγ

1− pZB

ZT

)

. (4.16)

In reception mode, the piezoelectric material converts mechanical energy into electrical

energy through the contact of sound waves resulting in the production of an electrical

signal [25–27]. The front face of the transducer will be subjected to external forces

when in receiving mode, hence AL 6= 0. The expression for amplitude of the forward

propagating wave is given by AL = − FvL
pYLξvT

. Hence, the non-dimensionalized reception

sensitivity is

φi =
V hC0

F
=

2h2C0αi

YT ξ
(

1− aZT

pC0YT ξ(ZE,i+b)

(

1 + h2C0(αi+βi)
YT ξ

)) for i = η, δ, γ. (4.17)

With the relevant operating transducer characteristics now derived, computer simulation

models can be utilized in order to determine the possible benefits of a transducer based

on the design of the Sierpinski carpet. The electrical impedance, transmission and

reception sensitivities for each of the models are presented in the following section.
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5 COMPARISON AND EFFECTIVENESS OF STANDARD

AND PRE-FRACTAL TRANSDUCERS

To minimise time and costs involved in manufacturing new ultrasonic transducers, math-

ematical computer models are employed to test the performances of hypothetical designs.

These models can give an insight as to what benefit, if any, can be achieved from alter-

ing current designs or can suggest the most effective configuration of new designs. In

regards to a Sierpinski carpet-like transducer it is only realistically viable to consider the

lower generation levels when it comes to potential manufacture. Incrementing the frac-

tal generation level increases the complexity of the transducer model, and it is for this

reason that constructing higher generation levels would currently prove to be infeasible.

The work presented in this paper allows for comparison of the three Sierpinski carpet

models with the Sierpinski triangle, each at generation level three, and the currently

used Euclidean transducer.

Symbol Magnitude Dimensions

Elastic constant c33 11.74× 1010 Nm−2

Piezoelectric stress coefficient e33 23.3 Cm−2

Dielectric constant ǫ33 1.47× 103 -

Density ρT 7.5× 103 kgm−3

Parallel electrical load ZP 103 Ω

Series electrical load Z0 50 Ω

Table 1: Transducer material parameters [28].

Each of the transducers, fractal and Euclidean, are modelled on a PZT-5H ceram-

ic [28]. The material parameters used to derive the expressions for the transducers

operating characteristics corresponding are shown in Table 1. Figure 6 shows the com-

parison for the electrical impedance between the three Sierpinski carpet models (ẐE,η,

ẐE,δ, ẐE,γ), the Sierpinski gasket (ẐE,G) and Euclidean (ẐE,E) transducers. Electrical

impedance profiles are important as they allow us to determine the potential efficiency of

the theoretical transducer. The features of interest from these plots are the occurrence

of the electrical and mechanical resonant frequencies. The electrical resonant frequen-

cy fe and the mechanical resonant frequency fm are determined by locating the first

minimum and first maximum in the plot respectively [14, 29]. In Fig. 6 all devices show
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Figure 6: Non-dimensionalised electrical impedances ẐE (dB) versus frequency f (Hz) for
the three theoretical Sierpinski carpet transducers and the Sierpinski gasket transducer
at fractal generation level n = 3 and the Euclidean transducer.

qualitatively similar results and adhere to similar patterns with the carpet devices res-

onating at higher electrical impedances. This most likely relates to the size of the length

scales at this fractal generation level. In this instance, the length scales within the car-

pet’s internal structure would be considerably smaller than the ones present within the

gasket and standard devices. This would consequently result in higher values for the

electrical impedance. The electrical and mechanical resonant frequencies together with

the corresponding electrical impedances for each device are given in Table 2.

fe ZE fm ZE

EuclideanE 1.901 -6.172 2.181 4.291

Sierpinski GasketG 1.677 1.059 1.863 4.251

Carpet Model η 1.355 8.827 1.476 9.823

Carpet Model δ 2.302 6.969 2.463 7.506

Carpet Model γ 1.374 9.072 1.470 9.445

Table 2: Device electrical and mechanical resonant frequencies at fractal generation level
n = 3.

The receiving and transmitting characteristics for each device were evaluated by

determining the three metrics, maximum amplitude (gain g), 3-dB bandwidth (BW )

and the gain bandwidth product (GBP ). This is simply the product of the maximum
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amplitude and bandwidth. High amplitude is a desirable attribute since this relates

to the production of energy; the higher the amplitude the greater the generation of

energy. The 3-dB bandwidth of the device is often used as the cut-off frequency since

this gives the range of frequencies over which the transducer operates efficiently. The

gain bandwidth product was used as the principle figure of merit to establish the optimal

device. One important feature of this metric is that it can serve as estimation for the

maximum bandwidth at the maximum amplitude.

Figure 7: Non-dimensionalised transmission sensitivities ψ (dB) versus frequency f (Hz)
for the three theoretical Sierpinski carpet transducers and the Sierpinski gasket trans-
ducer at fractal generation level n = 3 and the Euclidean transducer.

Comparison of transmission sensitives are shown in Fig. 7. From these results it

is evident that the transmission sensitivity for the Euclidean device has the highest

amplitude and is greater by 12.628 dB than model γ of the carpet device, which offers

the lowest. Consequently, this has resulted in a reduced bandwidth of 0.187MHz for

the Euclidean device leading to a percentage bandwidth of 9%, while the carpet model

γ has a percentage bandwidth of 22%. Carpet models η and δ follow very closely with

a percentage bandwidth each of 20%, which compares to just 13% for the Sierpinski

gasket device. The results obtained for the three carpet models, represent a substantial

improvement on device performance over both the currently used Euclidean transducer

and the Sierpinski gasket prototype. There are however, concerns over the values of the

17



principle figure of merit, as they are much lower than the value for the Euclidean device.

This is most likely a result of the low amplitudes since the gain bandwidth product is

calculated using GBP = g×BW , where the calculation is performed using the value of

the amplitude before its conversion into decibels. Table 3 presents the metrics describing

the transmission characteristics for each transducer.

Metrics
Gain 3-dB Bandwidth Gain Bandwidth
(g) dB (BW ) MHz Product (GBP )

EuclideanE -0.371 0.187 0.172

Sierpinski GasketG -6.399 0.221 0.051

Carpet Model η -11.387 0.735 0.053

Carpet Model δ -11.534 0.461 0.032

Carpet Model γ -12.999 0.837 0.042

Table 3: The transmission response of the Euclidean and fractal transducers at genera-
tion level n = 3.

The figures of merit for each transducer in receiving mode were calculated and the

results are presented in Table 4. Comparison between the fractal and Euclidean trans-

ducers, illustrated in Fig. 8 shows a good match with more resonances in the carpet

devices. This is to be expected as the carpet devices feature more complexity in their

structure, resulting in a wider range of length scales. In terms of device bandwidth, all

carpet models outperform the Euclidean and gasket transducers. In particular models

δ and γ more than double the operational bandwidth of the gasket and Euclidean de-

vices, indicating that these models are more efficient at operating over a larger range of

frequencies when acting as a receiver of ultrasound. Furthermore, there is a significant

improvement in regards to the principal figure of merit in all three carpet models. This

presents an increase of at least 38% compared to the Euclidean device and an increase of

at least 82% compared to the gasket device. The results suggest strongly that it would

be worthwhile for a prototype based on the Sierpinski carpet to be built, to determine

whether experimental results corroborate these theoretical results.

Figure 9 illustrates the transmission response gain bandwidth product as a function

of frequency for the three carpet models. By observing the behaviour of each device it

is clear that the greatest gain bandwidth product is present in model η at a frequency

of 3.737MHz, which corresponds to the model’s peak amplitude; see Table 3. Evidence
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Metrics
Gain 3-dB Bandwidth Gain Bandwidth
(g) dB (BW ) MHz Product (GBP )

Euclidean 3.270 0.259 0.549

Sierpinski Gasket 2.751 0.221 0.417

Carpet Model η 4.629 0.261 0.757

Carpet Model δ 1.615 0.533 0.774

Carpet Model γ 1.674 0.539 0.792

Table 4: The receiving response of the Euclidean and fractal transducers at generation
level n = 3.

Figure 8: Non-dimensionalised reception sensitivities φ (dB) versus frequency f (Hz) for
the three theoretical Sierpinski carpet transducers and the Sierpinski gasket transducer
at fractal generation level n = 3 and the Euclidean transducer.

would suggest through the data analysed that model γ provides the greatest value for

the gain bandwidth product in reception mode at its peak amplitude frequency and

that the value of this metric decreases at higher frequencies. This trend is also reflected

in models η and δ, in that the greatest gain bandwidth product value occurs at lower

frequencies which correspond to the maximum amplitudes. These results are illustrated

in Fig. 10.
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Figure 9: The gain bandwidth product for transmission sensitivity ψ for the three
Sierpinski carpet models versus frequency f (Hz) at fractal generation level n = 3.

Figure 10: The gain bandwidth product for reception sensitivity φ for the three Sier-
pinski carpet models versus frequency f (Hz) at fractal generation level n = 3.

6 CONCLUSIONS AND DISCUSSION

The analysis presented in this paper extends earlier research of implementing fractal

geometry into ultrasonic transducer design [9, 12–14, 30, 31]. A renormalization adap-
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tation was used to investigate the potential performance of a fractal like transducer.

The fractal used as inspiration for the transducer design was the Sierpinski carpet. The

non-constant coordination number of the carpet pre-fractals necessitated a more compu-

tationally demanding approach to produce the Green function recurrent relations than

was employed in previous papers. The Sierpinski carpet was examined by constructing

three individual transducer models all influenced by its design. The variations in models

corresponded to the number of the boundary conditions and for each of the models a

lattice counterpart was used to analyse the transducers operating characteristics. Al-

though all three models are relatively similar in their form, the symmetries of the lattice

for model δ resulted in the need for additional independent Green functions.

Due to the limitations of the computing power available that were used to produce

the results for the theoretical Sierpinski carpet-like transducer, only the first three frac-

tal generation levels were investigated. High performance computers could be used as

an alternative to yield the operational characteristics at higher fractal generation levels.

However for manufacturing purposes, current restrictions would limit the construction

of pre-fractal transducers beyond generation level three. In the instance of the Sierpinski

gasket transducer, a prototype based on the design of its fourth generation level was

constructed [13]. The Sierpinski gasket is of a simpler design than the Sierpinski carpet

and so the fabrication of a Sierpinski carpet prototype at the same generation level may

currently prove to be unfeasible. This paper investigated a fractal inspired transducer

using the Green function renormalization technique as a method for obtaining the trans-

ducer operating characteristics. For a comparison it would be beneficial to build another

model of a transducer based on the carpet structure using finite element analysis. Such

research is currently underway on the Sierpinski carpet pre-fractal [32] and has already

been performed for the Sierpinski gasket pre-fractal [14].

To assess the performance of each transducer the electrical impedance, and trans-

mission and reception sensitivities were plotted as a function of operating frequency.

These were then compared to a previously investigated Sierpinski gasket transducer as

well as to a standard Euclidean design transducer which is commonly used in industry.

As expected it was the carpet devices which experienced more resonance at a wider
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range of frequencies. In regards to the transmission sensitivities, an increase in the frac-

tal generation level resulted in an increase in the device’s bandwidth. This increase in

bandwidth however, has led to a reduction in the device’s amplitude. From the results

it was shown that the each carpet model outperformed both the gasket and Euclidean

transducers in terms of its bandwidth. However, the greatest amplitude and gain band-

width product were present in the Euclidean transducer. While not explicitly shown in

this paper, in reception mode an increase in fractal generation level results in an increase

in both amplitude and bandwidth. Furthermore, the carpet devices surpassed the gas-

ket and Euclidean devices in regards to bandwidth and gain bandwidth product, with

carpet model η outperforming the gasket and Euclidean transducers in all three metrics.

The principal figure of merit that was used to determine the most efficient transducer

was the gain bandwidth product. The three carpet models were then compared to one

another in regards to their transmitting and receiving capabilities, using this figure of

merit. Thus in transmission mode, it was model η which presented the best result at its

peak amplitude frequency. In reception mode, model γ had overall the highest value.

The 3-dB bandwidth indicates that model γ outperforms all devices in both transmis-

sion and reception. This suggests that model γ would be suitable in ultrasonic design

to enhance current transducer performance, especially when considering the results in

reception mode. In receiving mode as the fractal generation level increases, so does the

principle figure of merit for all the carpet models. This was to be expected since the

range of length scales increased with the fractal generation level. Similarly, the same

could be said in transmitting mode, although with a few discrepancies.

Looking ahead, it may be possible to construct a system capable of determining the

coordination number for each vertex in the sequence of lattices. This would enable the

application of the Green function renormalization in a similar manner as used for the

Sierpinski gasket, employing the recurrent relation equation (Eq. 2.8) to extract the next

generation level pivotal Green functions. Hence the need to obtain the inverse matrices

at each fractal generation level would be removed, reducing considerable computational

cost. Another area of interest would be in transducer performance optimization akin

to that done for the Sierpinski gasket pre-fractal [33]. A technique for increasing the
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values for each of the figures of merit could be achieved by sampling different material

parameters. This may assist in establishing the optimal material that could be used

for ultrasonic transducers. Furthermore, investigating the inverse problem of finding

material and design parameters which produce a desired output would also be benefi-

cial. Such inverse problems would require the consideration of the well-posedness of the

model [34–37].

This research is concerned with increasing the operational bandwidth of piezoelectric

ultrasonic transducers by incorporating pre-fractal geometries into their design. These

geometries were of interest as they span a range of length scales. More fractal inspired

transducers may be designed by implementing other fractal structures or through the

modification of these structures. Specifically modified Sierpinski carpets could realise

better operating characteristics. Research on transducer performance designed on a

modified Sierpinski gasket has already begun [31]. The purpose of adjusting such fractal

designs would be to yield wider length scaled devices.
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NOMENCLATURE

A,B,C,D Fictitious vertices

AL, AB Forward traveling waves within the load and backing layer

A(n) Discretized Laplacian matrix

BL, BB Backward traveling waves within the load and backing layer

B(n) Boundary conditions matrix

BW 3-dB bandwidth

c(n) Boundary condition vector

C0 Capacitance

D Electric displacement

E Electric field

23



f Frequency

F Force

fe, fm Electrical and mechanical resonant frequencies

g Maximum amplitude

GBP Gain bandwidth product

G(n) Green function matrix

Ĝ(n) Bare Green function matrix

h Piezoelectric constant

H(n) Adjacency matrix

H̄(n) Block diagonal matrix whose v blocks equal H(n)

In n× n identity matrix

l Transducer thickness

L Lattice side length

n Fractal generation level

Nn Total number of vertices

p Laplace transform variable

q coordination number

Q Electrical charge

S Strain

T Stress

u Particle displacement

V Voltage

vT , vL, vB Wave velocity in piezoelectric material, load and backing layer

V (n) Sparse matrix representing the connectivity of sub-graphs

Y Young’s modulus

ZB, ZL, ZT Mechanical impedance of backing layer, load and transducer

ẐE Non-dimensionalized electrical impedance

Z0 Series electrical load

η, δ, γ Sierpinski carpet models

∆x Distance between neighboring vertices
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ǫ Permittivity

ξ Ratio of the cross-sectional area and edge length

ρ Density

ψ Non-dimensionalized transmission sensitivity
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APPENDIX A

Derivation of Green Function Elements

To illustrate the recursive nature of the fractal graphs (Eq. (2.1)), the adjacency matrix

for the first generation level of the Sierpinski carpet lattice is given by

H(1) =

























0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0

























. (A1)

The Green function matrix, as described in Eq. (2.7), is then computed and the pivotal

Green functions are extracted from the inverse matrix. As an example, the application
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of Eq. (2.7) on model γ results in

Ĝ(1) =





























3 + p2 −1 0 0 0 0 0 −1

−1 2 + p2 −1 0 0 0 0 0

0 −1 3 + p2 −1 0 0 0 0

0 0 −1 2 + p2 −1 0 0 0

0 0 0 −1 3 + p2 −1 0 0

0 0 0 0 −1 2 + p2 −1 0

0 0 0 0 0 −1 3 + p2 −1

−1 0 0 0 0 0 −1 2 + p2





























−1

. (A2)

Subsequently, by computing the matrix inverse the following pivotal elements are defined

Ĝ
(1)
1 1 =

(p4 + 4p2 + 2)(p4 + 6p2 + 7)

(p4 + 5p2 + 2)(p2 + 4)(p2 + 3)(p2 + 1)
, (A3)

Ĝ
(1)
1 19 =

2

p10 + 13p8 + 61p6 + 123p4 + 98p2 + 24
, (A4)

Ĝ
(1)
1 37 =

1

p6 + 8p4 + 17p2 + 6
. (A5)

These expressions correspond to x̂γ , ŷγ and ẑγ , respectively, in Eqs. (3.11)- (3.17).

The difference between the Sierpinski gasket and Sierpinski carpet devices is that for

the Sierpinski gasket inspired transducer the Green function elements for any generation

level are obtained through the application of Eq. (2.8). Thus prohibiting the need to

calculate the Green function matrices at each generation level and so high generation

level results can easily be obtained. Since Eq. (2.8) does not provide accurate results for

the Sierpinski carpet devices, the need for the Green function matrices were required.

Consequently, only low generation level results are achieved.

APPENDIX B

Development of Green Function Equations

Model δ is concerned with the inclusion of three boundary conditions; one input vertex

and two output vertices. For this model the application of Eq. (2.9) resulted in the
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following four equations

xδ = x̂δ + x̂δb1,δxδ + 2ŷδb2,δyδ, (B1)

yδ = ŷδ + ŷδb1,δxδ + ŵδb2,δyδ + t̂δb2,δyδ, (B2)

tδ = t̂δ + ŷδb1,δyδ + ŵδb2,δtδ + t̂δb2,δwδ, (B3)

wδ = ŵδ + ŷδb1,δyδ + ŵδb2,δwδ + t̂δb2,δtδ. (B4)

Solving these simultaneously resulted in Eqs. (3.7) - (3.10).

For model γ Eqs. (3.11) - (3.17) are found by applying Eq. (2.9) and accounting for

the lattice symmetries when boundary conditions are neglected;

Ĝ
(n)
1 1 = Ĝ

(n)
19 19 = Ĝ

(n)
37 37 = Ĝ

(n)
55 55, (B5)

Ĝ
(n)
1 19 = Ĝ

(n)
1 55 = Ĝ

(n)
19 37 = Ĝ

(n)
37 55, (B6)

Ĝ
(n)
1 37 = Ĝ

(n)
19 55. (B7)

However these symmetries do not hold when boundary conditions are accounted for.

These Green function elements are associated with the internal structure of the lattice

and as a result it is possible to set these elements equal to one another, as shown

in Eqs. (B5) - (B7). The boundary conditions take into account the backing layer and

mechanical loads set at the input/ output vertices. This then results in

G
(n)
1 19 = G

(n)
1 55, (B8)

G
(n)
19 37 = G

(n)
37 55, (B9)

G
(n)
1 1 6= G

(n)
19 19 6= G

(n)
37 37, (B10)

G
(n)
1 19 6= G

(n)
1 37. (B11)
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The use of Eq. (2.9) results in seven equations,

xγ = x̂γ + x̂γb1,γxγ + 2ŷγb2,γyγ + ẑγb2,γzγ , (B12)

yγ = ŷγ + ŷγb1,γxγ + x̂γb2,γyγ + ŷγb2,γzγ + ẑγb2,γyγ , (B13)

zγ = ẑγ + ẑγb1,γxγ + 2ŷγb2,γyγ + x̂γb2,γzγ , (B14)

uγ = ŷγ + ẑγb1,γyγ + ŷγb2,γwγ + x̂γb2,γuγ + ŷγb2,γtγ , (B15)

tγ = ẑγ + ŷγb1,γyγ + x̂γb2,γtγ + ŷγb2,γuγ + ẑγb2,γwγ , (B16)

wγ = x̂γ + ŷγb1,γyγ + x̂γb2,γwγ + ŷγb2,γuγ + ẑγb2,γtγ , (B17)

vγ = x̂γ + ẑγb1,γzγ + 2ŷγb2,γuγ + x̂γb2,γvγ (B18)

which again are solved simultaneously to produce Eqs. (3.11) - (3.17).
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