
Semantic Coupling Between Classes:
Corpora or Identifiers?

Nemitari Ajienka
Brunel University London
Kingston Lane, Uxbridge

Middlesex, UB8 3PH
(nemitari.ajienka,andrea.capiluppi)@brunel.ac.uk

Andrea Capiluppi
Brunel University London
Kingston Lane, Uxbridge

Middlesex, UB8 3PH

ABSTRACT
Context: Conceptual coupling is a measure of how loosely
or closely related two software artifacts are, by considering
the semantic information embedded in the comments and
identifiers. This type of coupling is typically evaluated us-
ing the semantic information from source code into a words
corpus. The extraction of words corpora can be lengthy,
especially when systems are large and many classes are in-
volved.

Goal: This study investigates whether using only the
class identifiers (e.g., the class names) can be used to evalu-
ate the conceptual coupling between classes, as opposed to
the words corpora of the entire classes.

Method: In this study, we analyze two Java systems
and extract the conceptual coupling between pairs of classes,
using (i) a corpus-based approach; and (ii) two identifier-
based tools.

Results: Our results show that measuring the seman-
tic similarity between classes using (only) their identifiers is
similar to using the class corpora. Additionally, using the
identifiers is more efficient in terms of precision, recall, and
computation time.

Conclusions: Using only class identifiers to measure their
semantic similarity can save time on program comprehension
tasks for large software projects; the findings of this paper
support this hypothesis, for the systems that were used in
the evaluation and can also be used to guide researchers
developing future generations of tools supporting program
comprehension.

Keywords
Semantic coupling; Semantic similarity; Corpora; Corpus;
Vector Space Model (VSM); Latent Semantic Indexing (LSI);
Object-oriented software (OO); Open-source software (OSS)

1. INTRODUCTION
In general, humans seamlessly process synonyms and other

word relations. For example, a developer skimming for code

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEM ’16, September 08-09, 2016, Ciudad Real, Spain
c© 2016 ACM. ISBN 978-1-4503-4427-2/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2961111.2962622

related to ”removing an item from a shopping cart” under-
stands that the method deleteCartItem(Item) is relevant,
even though it uses the synonym ’delete’ instead of ’remove’.

The large size and complexity of today’s software systems
necessitates the development of automatic tools to effec-
tively and efficiently help in program comprehension tasks [18].
Such tools use similarity measures on software artifacts (source
code, documentation, maintenance requests, version control
logs, etc.) to facilitate the comprehension of object-oriented
(OO) coupling [15]; inform change impact analysis [4]; and
focus refactoring, for example by detecting antonym meth-
ods, i.e. those methods performing opposite functionality
within the same class [18].

Semantic similarity between classes has been mostly achieved
by reducing classes to corpora: Information Retrieval (IR)
techniques such as Latent Semantic Indexing (LSI) and the
Vector space model (VSM) approach are the better known
ones [4, 9, 15, 19]. The basic idea is that two classes are re-
lated when similar terms are present in their comments and
identifiers. This approach was introduced by Poshyvanyk
and Marcus [15] in a study in which they computed the con-
ceptual similarity between OO software classes written in
C++.

Differently from corpora-based techniques, short terms
and sentences have been used to detect the semantic sim-
ilarity between classes (e.g., Path, Information Content and
Gloss Based Techniques [18]). These tools are all based on
WordNet [11], a lexical database of English word and sense
relations. However, since these techniques compute similar-
ity scores based on a probability distribution from English
text, their performance deteriorates on a specialized domain,
such as software [18].

The objective of this paper is to evaluate these two fam-
ilies of approaches, and to establish whether the concep-
tual coupling between classes using the classnames of Java
files, produces comparable results to using the corpora of the
classes content (i.e., the class own source code). If a sim-
ilarity was to be observed, practitioners could focus their
efforts on establishing a conceptual similarity between class
names, rather than extracting the corpora of classes, a step
that requires more time to complete than just considering
the class name.

We consider one small data storage for Java (UrSQL1,
some 1K lines of source code) and a larger Java media server
(Ps3MediaServer2, 40K lines of source code), to test our ap-
proach. One corpora-based approach (VSM) is adapted and

1https://code.google.com/archive/p/ursql/
2https://code.google.com/archive/p/ps3mediaserver/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edge Hill University Research Information Repository

https://core.ac.uk/display/227092488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

streamlined through scripts; and two sentence-based tools
(N-Gram distance and Disco) are tested as the identifier-
based techniques. The conceptual coupling is evaluated be-
tween each pair of classes in the latest available revision of
the two projects. We test the following null hypothesis (H0):
The semantic similarity between the identifiers of software
classes is not a reflection of the semantic similarity between
their corpora.

This paper is organized as follows: in Section 2 we discuss
the related studies and outline the methodology in Section 3.
Section 4 sets out and discusses the results. In Section 5
we outline the threats to the validity of this study and the
measures taken to address them. Finally, in Section 6 we
conclude and briefly discuss future opportunities in this area.

2. RELATED WORK
In this section, we report the related work regarding the

use of semantic similarity metrics between software artifacts
to infer their semantic coupling. We also report the related
studies that have compared such tools and techniques.

Comparative Studies.
Software maintenance has been split into three main cate-

gories in the literature and these are: adding of new features,
correction of software faults and refactoring to accommodate
future changes [12]. In a study by Mockus and Votta [12]
to classify maintenance efforts into one of these categories
based on the textual description of changes, they do not
use the synonym capability of WordNet because the rela-
tionships between concepts used in software maintenance
might differ from the relationships found in natural lan-
guage. They remove non-alphanumeric symbols, convert all
words to lowercase and only use WordNet to generate the
stem of words to reduce the number of keywords e.g. map-
ping fixed and fixing to a single term fix.

Sridhara et al. [18] suggest that applying English-based
semantic similarity techniques to software without any cus-
tomization could be detrimental to the performance of the
tools. This is a similar reason for which [12] did not rely
on WordNet for the synonyms of software terms present in
source-code (e.g., dump Ø export).

In a comparative study by Kumar et al. [8], the authors
provide an insight into Information Retrieval (IR) techniques
using the classical vector space model (VSM), its variant
LSI and mathematical lattice based Formal Concept Analy-
sis (FCA). Their results show that the retrieval performance
of these techniques is similar.

Semantic Similarity between Software Artifacts.
Poshyvanyk and Marcus [15] defined a coupling metric for

classes based on textual information extracted from source
code identifiers and comments. Their conceptual coupling
metric, CoCC (which stands for Conceptual Coupling of
Classes), captures a new dimension of coupling not addressed
by structural or dynamic measures. More recently, Ujhazi
et al. [19] extended the CoCC, defining the new CCBO
metric (Conceptual Coupling between Object Classes).

Fluri et al. use a set-based similarity metric to explore
how comments and code evolve over time [1]. Kuhn et al. [7]
proposed the use of IR techniques to exploit linguistic infor-
mation found in source code, such as identifier (i.e., class
or method) names and comments. Revelle et al. [17] define

new feature coupling metrics based on structural and textual
source code information.

Kagdi et al. [4] in their study on integrating conceptual
and logical coupling metrics for change impact analysis iden-
tified that the measurement of the conceptual metrics is bet-
ter at the class level of granularity than at the method level.
This is because the documents are reduced in terms (and
frequency). In other words, a corpus for a class is typically
much ”bigger” than a corpus for a method [4]. This informs
our choice of conducting this study at the class level of gran-
ularity. In most of these studies, they extract the semantic
similarity between software classes using the LSI or VSM
approach.

3. METHODOLOGY
This paper investigates the effectiveness of computing the

semantic similarity between classes using (i) their corpora
and (ii) only their identifiers. In this section we describe
the steps taken to evaluate the two sets of results, and how
the statistical comparison was achieved. We describe the
methodology with examples, in order to help the replicabil-
ity of this study: an overview of the steps performed in this
study is visible in Figure1.

Step 1: Data Extraction.
The subjects of this study are pairs of object-oriented soft-

ware classes written in Java. Due to space constraints, in
this study we only analyze classes collected from two ran-
domly selected software systems of different sizes.

Table 1 shows some basic demographics about these projects:
UrSQL is a small project, with 4 classes, and 6 class pairs.
Given that the semantic similarity measure is symmetric,
i.e., the similarity between class pairs A Ø B and B Ø A
is always the same, from the 4 classes A, B, C and D we
only obtain the following 6 possible combinations of class
pairs: (AB, AC, AD, BC, BD, CD). On the other hand,
Ps3MediaServer is a larger project, with 189 classes and
around 40 KLOCs, resulting in 17K pairs of classes for which
the conceptual coupling was evaluated.

The same Table reports also on the time taken to extract
the two sets of results, one from the corpora-based technique
and the other set using two identifier-based tools. The ∆ is
also evaluated for the two systems, as the comparison of the
identifier-based tools versus the corpora-based technique.

Step 2a: Corpora-based technique (VSM).
In this paragraph, we outline the steps which we stream-

lined to extract and analyze the semantic information em-
bedded in the comments and identifiers of a software class
as a whole [16]. The underlying mechanism used to extract
and analyze the semantic information from the source code
is the Vector Space Model (VSM) technique. The three main
steps of VSM are as follows:

1. Building the corpus: The Java source code of the
software system is converted into a text corpus where
each line contains elements of the implementations of
a class. The corpus in this case (”dictionary” of terms
derived from comments, identifiers in source code) is
built based on the class level of granularity [4] such
that after the source code is parsed – each line in the
extracted corpus will include class identifiers, method
names and comments for each class. Mappings be-

Figure 1: Summary of the methodology

Table 1: Characteristics of the software systems used in the empirical study

Project Classes Class Pairs LOC (with
comments)

Time to Analyze
Corpora (mins)

Time to Analyze
Identifiers (mins)

∆ mins

UrSQL 4 6 1,194 0.006 0.05 ă 1%
Ps3MediaServer 189 17,766 39,816 6 0.05 119%

tween classes, and their indexes in the system corpus
are generated in this step. Pre-processing of the sys-
tem corpus is performed to eliminate common key-
words, stop words, split and to stem identifiers [9].
After this, each line corresponding to each class in the
corpus are saved in separate text (.txt) files/documents.

Figure 2: UrSQLEntry.java Source Code Snippet

As an example, for the lines of code shown in Figure 2
(the UrSQLEntry.java class from the UrSQL project),
we derive the following corpus using the tool: {ur sql
entri string kei string valu string kei string valu ur sql
entiti entiti ur sql entri ur sql entri string queri string
split queri split ur sql control kei valu separ kei split
valu split kei kei valu valu}.

2. Indexing the corpus: Using the documents gener-
ated in the previous step, the tool creates a term-by-
document matrix, which captures the distribution of
terms in classes and transforms each document into a
vector, in three steps:
(1) the frequency of each term in every document is
calculated, to measure the number of times a term oc-
curs in a document and this is normalized. Suppose
for a document relating to the UrSQLEntry.java class
in Figure 2, there are overall 50 terms and the term
”sql” occurs 25 times, its term frequency will be 25/50
= 0.5.
(2) The inverse document frequency (IDF) is calcu-
lated for each term. This is done to minimize the im-
pact of words with very high frequencies, as well as
weigh up the effect of less occurring terms with the
help of a logarithmic function.
(3) For each term we compute the product of its nor-
malized term frequency with its IDF on each document
(TF*IDF); from which we derive a vector for each doc-
ument.3 The cosine is used as a measure of semantic
similarity between two documents.
These three steps are explained in more detail in [3].
Just as cosine values range from ´1 to 1, so do tex-
tual similarities. The closer a value is to one, the more
similar the texts of the classes are. These values are
used to infer how pairs of classes are closely related
(semantically coupling).

3The document vectors have been implemented in the form
of arrays in the tool

3. Compute semantic similarities: the Vector Space
Model (VSM) information retrieval technique is used
to retrieve information for class-to-class similarity in
semantic space based on the corpora extracted from
all classes. The last two steps involving the computa-
tion of the similarities have been implemented using
MATLAB in most of the semantic coupling studies 4.

Step 2b: Identifiers-based tools.
The steps taken to compute the semantic similarity be-

tween pairs of class identifiers are as follows:

1. CamelCase Conversion: For each identifier, we de-
veloped a shell script to transform them from Camel-
Case to Snake Case, and split them into shorter sen-
tences. for example, the ’UrSQLEntry’ class in the
UrSQL project is parsed to derive ’Ur S Q L Entry’.

2. Semantic Similarities – N-Gram Technique: We
compute the pair-wise sentence similarities using a Java
implementation of the N-Gram distance algorithm 5

introduced by Kondrak [6]. This technique is based
on the edit distance and shared sub-strings of length n
between sentences and it has been widely used in the
literature on text analysis [5]. An example is the se-
mantic similarity between the identifiers ’Ur S Q L
Controller’ and ’Ur S Q L Entry’ which returns a
value of 0.6 for shared sub-strings between 0 and 4.We
have used n-grams of size 4 in this study as information
retrieval research [5,10] has shown that n=4 increases
precision for words or terms in several languages in-
cluding English, French, German, Italian and Swedish.
In addition, long lengths of n increase lexicon size, will
not represent short words well and processing n-grams
sizes larger than 10 is slow [5].

3. Semantic Similarities – DISCO Tool: We use
the DISCO publicly available sentence similarity Java
tool,6 that measures the semantic similarity between
sentences according to the synonyms of their words.
DISCO is an enhancement of the Vector-Space analy-
sis found within the Classifier4j7 which has been used
in IR research. The tool is based on a dictionary of
the EOWL list of words8, while the synonyms for each
word are calculated using the DISCO’s semantics9 to
get groups of the most similar words in the dictionary.
For example, shy Ø timid, quiet, introverted, lonely,
cautious, awkward, clumsy, soft-spoken and gentle. An
example of using the tool to compute the semantic sim-
ilarity between two class identifiers ’Ur S Q L Con-
troller’ and ’Ur S Q L Entry’ returns a value of 0.89
with a computation time of 0.003 minutes.

4MATLAB is a high-level technical computing language and
interactive environment for algorithm development, data
analysis and visualization
http://uk.mathworks.com/products/matlab/
5Source code available at https://github.com/tdebatty/
java-string-similarity\#n-gram
6Available at https://sourceforge.net/projects/semantics/
?source=directory
7http://classifier4j.sourceforge.net/
8http://dreamsteep.com/projects/the-english-open-word-
list.html
9http://www.linguatools.de/disco/disco en.html

Step 3: Statistical Test for Correlation.
In this step, we performed a Chi-square statistical test to

discover if the similarity measures from one class identifier-
based technique (say, the N-Gram) produces similar results
to the corpus-based technique (VSM).

For each project, we populated a 2X2 contingency table,
composed of row (i.e., groups) and column (i.e., outcomes)
variables. The first contingency table visible in Table 2 is a
generic 2x2 contingency Table, with the corpus-based out-
comes (VSM) as the outcomes variable, and the identifier-
based outcomes (N-Gram and Disco) as the groups variable.
For the statistical test, we used three semantic similarity
thresholds t = 0.25, 0.50 and 0.75. These thresholds have
been used in various controlled experiments [20].

If s is the semantic similarity between pairs, and using
a similarity threshold t (with a lower t implying a weaker
similarity), the items of the contingency table are:

‚ A: pair of classes with s ě t for both Corpora-based
and Identifier-based techniques;

‚ B: pair of classes with s ă t for one technique but ě t
for the other;

The following are the possible outcomes observed for the
threshold t – for the Identifier-based technique:

‚ C: pair of classes with s ě t for one technique but ă t
for the other;

‚ D: pair of classes with s ă t for both techniques.

Generic Contingency Table

Corpora-Based (VSM)

Identifier-Based
A B
C D

VSM vs N-Gram Comparison - UrSQL project (p=.000532)

ě 0.25 ă 0.25
ě 0.25 3 0
ă 0.25 0 3

VSM vs Disco Comparison - UrSQL project (p=.000532)

ě 0.25 ă 0.25
ě 0.25 3 0
ă 0.25 0 3

Table 2: Contingency Tables: generic (top) and popu-
lated (middle and bottom) with Identifier (either N-Gram
or Disco) vs Corpus Based (VSM) techniques

The other two tables (middle and bottom of Table 2)
report the values and results for (i) VSM as the column
variable, and N-Gram as the row variable and (ii) VSM as
the column variable, and Disco as the row variable for the
UrSQL Project, with t = 0.25.

After populating the contingency Tables, we tested for
the association between the semantic similarity measures de-
rived from the pairs of techniques (the identifier and corpus

based) using the Chi-square test. This test is used to com-
pare categorical data. It asserts the independence of the
two techniques, with a null hypothesis H0 of no associa-
tion between their outcomes. We set the p-value at 0.05 as
the threshold to reject the null hypothesis and compute the
chi-square tests for each project.

4. RESULTS AND DISCUSSION
Similarly to the test results presented in Table 2, we present

the results for the semantic similarity thresholds (t “ 0.25; t “
0.5; t “ 0.75) tested for the two projects studied in Table 3.
The first column in Table 3 contains the statistical test ID,
the second to the fifth column contain the OSS project name,
the semantic similarity techniques involved in the test, the
semantic similarity threshold used and the outcome of the
test (p-value) which we rely on for rejecting or failing to
reject the null hypothesis (if p-value ď 0.05) as shown in
Figure 1 respectively.

In the smaller project (UrSQL) we can reject the null hy-
pothesis H0, but only when the semantic similarity threshold
is set to 0.25. When the threshold is set to 0.75, there is a
division by zero error because all the outcomes are in cell
D (refer to Table 2 - generic). For the UrSQL there is not
a statistical significant evidence of association between the
corpora-based technique and the identifiers-techniques.

Considering the larger project (Ps3MediaServer) we see
a relationship between the corpora-based technique (VSM)
and the identifier based techniques (Disco and N-Gram) for
all the semantic similarity thresholds used. The p-values for
all the tests are ă 0.0001, thus we can reject the null hy-
pothesis and accept the alternative hypothesis H1 for these
tests - There is an association between the semantic similar-
ity measures of the corpora and identifier based techniques.

These preliminary results indicate that measuring the se-
mantic similarity between object-oriented (OO) software classes
based on their identifiers alone can reflect the same results as
when the whole source code corpus is extracted. This is an
important result, also considering the efficiency of both ap-
proaches (corpora and identifiers) in terms of computation.
The fifth column in Table 1 shows that time was saved when
we computed the semantic similarity between classes using
their identifiers (0.05 minutes or 3 seconds) for the bigger
project (Ps3MediaServer) compared to the corpora (6 min-
utes), however more time was taken to analyze the class
identifiers in smaller project (UrSQL). This is important for
large scale software projects with hundreds of thousands of
lines of code which could be lengthy to be analyze in terms
of time with the corpora based technique (VSM), whereas
just seconds or minutes are needed with the identifier based
techniques.

5. THREATS TO VALIDITY
The following are the threats to validity that we identified

for this study. In this section we also propose our take on
how to solve them.

Construct Validity.
The Vector Space Model technique, just like LSI is an

IR technique that uses the co-occurrences of words in docu-
ments to discover hidden semantic relations between words.
Since the technique is based on co-occurrences of words, the
resulting word relations are not guaranteed to be semanti-

cally similar [18]. However this technique is widely used in
semantic coupling research. Similarly, the N-Gram method
is also based on shared sub-strings between sentences. We
have also used three semantic similarity thresholds (0.25,
0.5 and 0.75) to compare the three different similarity tech-
niques used in this study.

Internal Validity.
There were usually higher values in cell D (refer to the

generic Table in Table 2 for the larger project studied. This
might have caused bias in the chi-square test computation.
On the other hand, this means that in the larger project
analyzed, most of the classes had no semantic similarity and
both the corpora and the identifier based techniques were
able to capture this. Other OO software projects could have
majority of classes that are highly semantically related.

External Validity.
We have only used two software projects of different sizes

in terms of number of class pairs and it is possible that
conclusions drawn from this study may not generalize to all
class pairs in general. It is possible that different conclusions
could be drawn when considering a more extensive set of
class pairs. Therefore, we encourage an extension of this
study on more software projects.

6. CONCLUSION
The work presented here sits in the areas of program com-

prehension and software maintenance. This study seeks to
answer the question: “can semantic coupling between classes
be captured via class names, rather than with source code
corpora?”. We used Corpora-based and Identifier-based tech-
niques to assess whether either could provide a better view
of semantic similarity between pairs of classes.

Our contributions have shown that:
(i) identifier-based techniques (i.e., using class names) are
more efficient in terms of computation time (faster) and
(ii) the similarity measures derived from the class identifiers
and the corpus-based approaches tend to reflect each other,
so complex corpora provide relatively similar semantic in-
formation as class names.

Our findings are relative to only two systems analysed,
but we concluded that measuring the semantic similarity
between class identifiers is a more efficient approach when
trying to identify the semantic coupling between classes. In
addition, researchers who might want to carry out semantic
coupling research or replicate our work do not need to be
experts in data analysis as we have implemented a tool for
the corpus based approach 10 11.

As further work, recent studies [2, 14] have shown that it
is possible that the structural coupling and co-evolution of
OO software classes are caused by other types of relation-
ships (e.g., semantic dependencies). The need to study the
interplay between semantic dependencies and both coupling
and co-evolution has been presented in [13,14].

As future work, we plan to study the interplay between
semantic and co-change dependencies in open-source soft-
ware projects to ascertain the evolutionary consequences of

10The tool can be downloaded at:
https://github.com/najienka/SemanticSimilarityJava

11The two projects studied have also been added to the tool
repository for replication.

Table 3: Summary of Chi-Square (Contingency Table) Test Results

Test ID Project Chi-Square Test
(Technique A vs B)

Semantic Similarity
Threshold t

p-value Reject or Fail to Reject H0?

1

UrSQL

VSM Ø N-Gram
0.25

0.000532 Reject
2 VSM Ø Disco 0.000532 Reject
3 VSM Ø N-Gram

0.5
0.3711 Fail to Reject

4 VSM Ø Disco 0.121 Fail to Reject
5 VSM Ø N-Gram

0.75
NA NA

6 VSM Ø Disco NA NA

7

Ps3MediaServer

VSM Ø N-Gram
0.25

< 0.0001 Reject
8 VSM Ø Disco < 0.0001 Reject
9 VSM Ø N-Gram

0.5
< 0.0001 Reject

10 VSM Ø Disco < 0.0001 Reject
11 VSM Ø N-Gram

0.75
< 0.0001 Reject

12 VSM Ø Disco < 0.0001 Reject

semantic dependencies between classes.

7. REFERENCES
[1] B. Fluri, M. Würsch, and H. C. Gall. Do code and

comments co-evolve? on the relation between source
code and comment changes. In Reverse Engineering,
2007. WCRE 2007. 14th Working Conference on,
pages 70–79. IEEE, 2007.

[2] M. M. Geipel and F. Schweitzer. The link between
dependency and cochange: empirical evidence.
Software Engineering, IEEE Transactions on,
38(6):1432–1444, 2012.

[3] Q. Guo. The similarity computing of documents based
on vsm. In Network-Based Information Systems, pages
142–148. Springer, 2008.

[4] H. Kagdi, M. Gethers, and D. Poshyvanyk. Integrating
conceptual and logical couplings for change impact
analysis in software. Empirical Software Engineering,
18(5):933–969, 2013.

[5] V. Kešelj, F. Peng, N. Cercone, and C. Thomas.
N-gram-based author profiles for authorship
attribution. In Proceedings of the conference pacific
association for computational linguistics, PACLING,
volume 3, pages 255–264, 2003.

[6] G. Kondrak. N-gram similarity and distance. In String
processing and information retrieval, pages 115–126.
Springer, 2005.

[7] A. Kuhn, S. Ducasse, and T. Gı́rba. Semantic
clustering: Identifying topics in source code.
Information and Software Technology, 49(3):230–243,
2007.

[8] C. A. Kumar, M. Radvansky, and J. Annapurna.
Analysis of a vector space model, latent semantic
indexing and formal concept analysis for information
retrieval. CYBERNETICS AND INFORMATION
TECHNOLOGIES, 12(1), 2012.

[9] A. Marcus, A. Sergeyev, V. Rajlich, J. Maletic, et al.
An information retrieval approach to concept location
in source code. In Reverse Engineering, 2004.
Proceedings. 11th Working Conference on, pages
214–223. IEEE, 2004.

[10] P. Mcnamee and J. Mayfield. Character n-gram
tokenization for european language text retrieval.
Information retrieval, 7(1-2):73–97, 2004.

[11] G. Miller and C. Fellbaum. Wordnet: An electronic
lexical database, 1998.

[12] A. Mockus and L. G. Votta. Identifying reasons for
software changes using historic databases. In Software
Maintenance, 2000. Proceedings. International
Conference on, pages 120–130. IEEE, 2000.

[13] G. A. Oliva and M. Gerosa. Experience report: How
do structural dependencies influence change
propagation? an empirical study. In Proceedings of the
26th IEEE International Symposium on Software
Reliability Engineering, 2015.

[14] G. A. Oliva and M. A. Gerosa. On the interplay
between structural and logical dependencies in
open-source software. In Software Engineering
(SBES), 2011 25th Brazilian Symposium on, pages
144–153. IEEE, 2011.

[15] D. Poshyvanyk and A. Marcus. The conceptual
coupling metrics for object-oriented systems. In
Software Maintenance, 2006. ICSM’06. 22nd IEEE
International Conference on, pages 469–478. IEEE,
2006.

[16] D. Poshyvanyk, A. Marcus, R. Ferenc, and
T. Gyimóthy. Using information retrieval based
coupling measures for impact analysis. Empirical
software engineering, 14(1):5–32, 2009.

[17] M. Revelle, M. Gethers, and D. Poshyvanyk. Using
structural and textual information to capture feature
coupling in object-oriented software. Empirical
software engineering, 16(6):773–811, 2011.

[18] G. Sridhara, E. Hill, L. Pollock, and K. Vijay-Shanker.
Identifying word relations in software: A comparative
study of semantic similarity tools. In Program
Comprehension, 2008. ICPC 2008. The 16th IEEE
International Conference on, pages 123–132. IEEE,
2008.

[19] B. Újházi, R. Ferenc, D. Poshyvanyk, and
T. Gyimóthy. New conceptual coupling and cohesion
metrics for object-oriented systems. In Source Code
Analysis and Manipulation (SCAM), 2010 10th IEEE
Working Conference on, pages 33–42. IEEE, 2010.

[20] J. Winkelman, K. D. Sethi, C. Kushida, P. Becker,
J. Koester, J. Cappola, and J. Reess. Efficacy and
safety of pramipexole in restless legs syndrome.
Neurology, 67(6):1034–1039, 2006.

