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Abstract. This paper presents a new approach for detecting the underlying fiber 

directions in a voxel. The main idea is to use the principal direction (centroid of 

orientation class) of an orientation population instead of the classical maximal 

direction of diffusion orientation density function (ODF) for fiber orientation. 

Firstly, diffusion orientations from the ODF of raw data have been classified in 

accordance with the expected fiber populations. The centroids of diffusion 

orientations are then determined using the spherical k-means method so as to 

estimate fiber orientations. The proposed method is based on the reconstruction 

of diffusion ODF using spherical harmonic (SH) decomposition and the 

characterization of diffusion anisotropy in a voxel. It can approximate fiber 

orientations accurately and avoid the spurious detection of fiber orientation 

which is often observed with traditional methods. By using a variety of 

synthetic, phantom and real datasets, the experimental results demonstrate the 

effectiveness of the proposed method. 
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1 Introduction 

In fiber orientation studies, high angular resolution diffusion imaging (HARDI) [1] 

has been recently proposed as an advance on Diffusion Tensor Imaging (DTI), to 

address concerns related to the presence of complex local geometries such as fiber 

crossings and intermixing of tracts. The main issue is that DTI assumes a single fiber 

direction in each voxel and fails to model complex microstructures. Various analytical 

methods for HARDI have been developed to capture fiber angular information and 

resolve non-trivial fiber configurations [1-2], particularly the diffusion orientation 

distribution function (ODF) reconstruction [3-5]. Tuch [5] proposed Q-ball imaging 

(QBI) for reconstructing the diffusion ODF of the underlying fiber populations by 

radially integrating the signal on the sphere using the Funk-Radon transform. 

Furthermore, the spherical harmonic decomposition has been successfully employed 

to obtain a robust ODF approximation at each voxel of the HARDI data [2, 6]. The 

local fiber orientation can then be inferred by computing the maxima of the diffusion 

ODF, because the correspondence between the peaks of the diffusion ODF and the 

principal directions of the underlying fibers has been established experimentally [4, 
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7]. Several methods exist to obtain the maxima of the ODF and estimate the fiber 

orientation, such as Powell’s method [3], Newton-Raphson method [4] and high-order 

Cartesian tensor representation [8]. However, the estimation accuracy of fiber 

orientation is not only limited by parameter setting in the reconstruction algorithms, 

but the local maxima of the diffusion ODF [8, 9]. None of the representatives of the 

ODF function can currently present the true distribution of the fiber orientations and 

there is still ongoing research to investigate this problem [10]. In addition, the 

mapping between these quantities may be very complex so that it is difficult to find 

the fiber orientation if one solely depends on the maximal strategy. Thus, the 

estimates from the maxima of the diffusion ODF are likely to deviate from true fiber 

orientations. From a biological perspective, each single fiber bundle should coincide 

with an ODF peak of finite width, but these peaks could interfere in the joint ODF 

such as the crossing fiber case and thus the maxima of the resultant distribution would 

no longer correspond to the modes of the real peaks [11]. In QBI, such deviated 

direction estimation for an ODF function has been clearly addressed in [4, 9].  

In fact, much of the information stored in diffusion ODF is neglected if we only 

use the maxima of diffusion ODF as fiber orientation estimations. Ideally one should 

make appropriate use of diffusion ODFs obtained by multiple fiber reconstructions for 

detecting the ‘true’ fiber orientations rather than simply taking the maximal direction. 

As an alternative to estimate dominant fiber orientations, spherical clustering should 

be useful to extract fiber orientation by exploiting global orientation information in 

diffusion ODF. In this paper we address these issues and the proposed method can be 

described as follows. The diffusion ODF of HARDI data is obtained firstly by 

applying the Q-ball imaging algorithm, which is a SH decomposition and a truncated 

SH series corresponding to the number of fiber populations (k) in a voxel [6, 14]. 

Then, we use the sampling orientations for calculating the ODF values on a sphere 

and set an approximate threshold for discarding the outliers. Thereafter, a set of 

orientations is presented that consists of distinct orientation clusters enclosing fiber 

orientations, and finally the spherical k-means method is applied to classify the 

orientation set into k classes and calculate the centroid of each class corresponding to 

each fiber. The rest of the paper is organized as follows. In Section 2, the proposed 

method and its implementation are discussed. The experimental results are presented 

in Section 3. Finally we conclude the paper and describe future work in Section 4.  

2 The Proposed Method 

2.1 Reconstruction of diffusion ODF 

Recently, several analytical solution schemes have been proposed to implement the 

QBI algorithm with a SH basis [3-6], which addresses the HARDI signal as a SH 

series of order L. As the ODF is a real valued antipodally symmetric function, a 

modified SH basis of even order is designed to do the SH expansion. Based on the 

Funk-Hecke theorem and the Laplace-Beltrami regularisation, the desired regularised 

ODF can be reconstructed in the gradient direction (   ) as in [6]: 
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where    is the SH coefficient,            
  

                              , 

   is the order associated with the j
th

 element of the SH basis, and R=(L+1)(L+2)/2. Yj 

is the j
th

 element in the modified basis Y. 

    In eq. (1), the robustness of the ODF needs to be ensured by choosing a proper 

order L of the SH expansion. The diffusivity in a voxel is usually determined from the 

order L of the SH expansion (isotropic: L=0, anisotropic Gaussian (single fiber), L=2, 

non-Gaussian (two fibers) L=4) [2]. In fact, the choice of the SH order and the 

number of fiber populations can be obtained by applying the method in [12]. 

2.2 Spherical k-means algorithm 

Suppose we have n unit orientation vectors {x1, x2,…, xn} in R
d
. For these orientations, 

the inner product for any two orientations x and y can naturally be a similarity 

measure: 
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where θ denotes the angle of two orientations. For partitioning these orientations 

{x1,x2,…,xn} into k disjoint classes            such that 
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for each fixed      , the centroid of the orientations contained in the class    is 
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where    is the number of orientations in   . The centroid is normalised as follows: 
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    Thus, this normalised centroid can be used as the closest orientation to all the 

orientations in the class    using the cosine similarity in eq. (2). For measuring the 

quality of a given partitioning        
 , the following objective function is used: 
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    By applying this objective function, the optimal solution of partitioning {x1, x2, …, 

xn} into k disjoint classes   
    

      
  can be described as the following problem: 
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    However, the above problem is NP-complete and the optimal solution cannot be 

obtained analytically. Dhillon [13] presented an approximation algorithm for this 

problem, namely the spherical k-means algorithm, can be summarised as follows: 

(1) Give an initial partitioning of the orientations, namely    
   
    
 . Let 

    
   
    
  denote the centroids associated with the given partitioning. Set the 

index of iteration t=0. 

(2) Compute the new partitioning    
     

    
  based on the previous centroids 
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(3) Compute the new centroids: 
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 is the centroid of class    
     

. 

(4) If       
     

 
   

 

       
   
    
     , the iteration stops. Otherwise,    

     , and go to step 2. 

2.3 Proposed method for calculating the underlying fiber orientation 

Based on the QBI techniques in [5-6] and the method in [12], fiber populations are 

firstly detected in a voxel. Then the spherical k-means method is employed to obtain 

the centroid of the orientation class to represent the underlying fiber orientation. The 

implementation procedure is described as follows: 

(1) The ODF is reconstructed using the SH decomposition based on QBI.  

(2) The number of fiber populations, kc, is obtained by applying the method 

proposed in [12]. In this step, the order L of the truncated SH decomposition 

is obtained by minimising the information entropy of the initial SH 

decomposition. 

(3) The distributed dataset S of the ODF’s values in various orientations is 

produced, by which a high angular resolution orientation scheme such as 755 

orientations is employed. 

(4) A threshold T is used for filtering the dataset S and alleviating the affects of 

noise. Thus, a new set of discrete ODF values, Su, is obtained and a set of 

orientations, O, is obtained according to the set Su. 

(5) O is classified into kc classes by applying the spherical k-means and the 

centriods are calculated. 

    In addition, to better improve the performance, we choose the threshold larger than 

0.7 and keep the number of class member is at least 20. 

3 Experimental Results 

3.1 Application in synthetic data 

Synthetic data are generated using the multi-tensor model with 61 gradient directions 

and b=1500 s/mm
2
. In the experiments, the maxima of diffusion ODF are calculated 

by applying the gradient ascent method with a discrete strategy as introduced in [14]. 

Considering the approximation process of the conventional analytical methods [3, 4] 

being limited to the mesh size and sensitive to local maxima, the overall performance 

of this discrete strategy is better than that of analytical solution both in simplicity and 

efficiency. Thus, we will compare the proposed method with the discrete gradient 

ascent method (named as the traditional method) in the following experiments. 



 

    Figs. 1(a-e) show five voxel datasets containing a single fibre with the azimuthal 

angles    ,    ,    ,    ,     (polar angle=    for all) respectively. The dotted arrow 

is the estimated orientation and the solid arrow is the actual fibre orientation. The 

numerical results are presented in Table 1. Columns, estimation, bias_e, maximum, 

bias_m and fibre denote the estimated orientation, the estimated bias, the maximal 

orientation, the bias of maximal orientation and the fibre orientation respectively. It 

can be seen that the performance of the estimated orientations using the proposed 

method is better than that of the maximal orientations using the traditional method. 

For example, the estimated orientation, (0.937, 0.348, -0.002), for the     dataset only 

has        bias from the fibre orientation, (0.940, 0.342, 0.000), but the maximal 

orientation, (-0.928, -0.370, -0.040), is        deviating from the fibre. 

 

Fig. 1   Visualization of five datasets of single fibre with various orientations. (a) – (e) are the 

datasets with         rotation angles in which the dotted arrow is the estimated orientation 

and the solid one is the fibre. 

 

Table 1   Estimation results applying the proposed method in single fibre datasets 
 

voxel Estimation bias_e Maximum bias_m Fibre 

    0.985    0.170   -0.010 0.631 0.992  0.129 -0.004 2.623 0.985   0.174 0.00 

    0.937    0.348   -0.002 0.402 0.928  0.370 0.040 2.867 0.940   0.342 0.00 

    0.859    0.511    0.008 0.871 0.878  0.479 0.004 1.412 0.866   0.500 0.00 

    0.764    0.645    0.010 0.587 0.727  0.687 0.004 3.398 0.766   0.643 0.00 

    0.638    0.770    0.010 0.685 0.639  0.769 0.040 2.312 0.643  0.766  0.00 
 

 

Fig. 2.  Performances of the proposed method and the traditional method in the datasets with 

different SNR levels. 



 

For examining the robustness in noisy situation, we applied the proposed method to 

the generated one-fibre datasets with different noise levels. Fig. 2 illustrates the 

results using the proposed method and the traditional method respectively, which 

shows that the overall performance of the proposed method is better and more robust. 

Due to generating the noisy data randomly, the performances of the two methods are 

fluctuated over the datasets. 

   
Table 2    Estimation results applying the proposed method in crossing fibre datasets 

Voxel estimation bias_e angle_e fibre 

    
c1:  0.950  0.001 0.08 
c2:  0.979  0.197 -0.049 

0.45 
3.13 

 
11.74 

f1:  1            0         0 
f2:  0.985   0.174  0 

    
c1:  1.0      0.01    -0.002 
c2:  0.939  0.344 -0.025 

0.60 
1.43 19.61 

f1:   1           0         0 
f2:  0.940   0.342  0 

    
c1:  1.0      0.030  -0.027 
c2:  0.869  0.494  0.020 

2.31 
1.19 28.05 

f1:  1            0         0 
f2:  0.876    0.50    0 

    
c1:  0.998  0.030 -0.053 
c2:  0.774  0.632  0.040 

   3.49 
   2.45 37.88 

f1:  1            0         0 
f2:  0.766   0.643   0 

    
c1:  1.0      0.001  -0.041 
c2:  0.691  0.722  0.014 

2.36 
3.83 46.30 

f1:   1            0         0 
f2:   0.643   0.766   0 

          

 

 

Fig. 3.  Comparison of the proposed method and the traditional method by applying them in the 

datasets with crossing angles    ,    ,    ,    ,    ,    ,    ,    . Here the gradient scheme 

is 755 directions. (a) is the bias of the estimated orientation for fibre 1. (b) is the bias of the 

estimated orientation for fibre 2. 
 

    We use the datasets of crossing fibres to further demonstrate the effectiveness of 

the proposed method. Five generated diffusion datasets have different crossing angles 

of two fibres from     to    , which Hess [14] pointed out that the traditional 

methods is incapable of resolving the cases of crossing fibers appropriately when the 

crossing angle is less than    . The results using the proposed method are presented 

in Table 2. The columns, estimation, bias_e, angle_e and fibre denote the estimated 

orientations, the estimated biases, the crossing angle of two estimated orientations and 

the ground truth respectively. Table 2 shows that the estimates of fibre orientations 

are accurate although its overall performance is inferior to that of one fibre cases in 

Table 1. Generally, we can estimate the crossing angle quite well when we consider 

the absolute bias, |estimation – fibre angle|, such as      ,       for the    ,     



 

datasets respectively. The relative bias, |estimation – fibre angle|/fibre angle, seems to 

be unsatisfactory for some datasets, for example it is 17.4% for the     case. However, 

the estimation bias will be significant if we use the maximal orientations as the 

estimated fibre orientations. For example, in the dataset with     crossing angle, the 

maximal orientations are m1=(0.932, 0.355, -0.080) and m2=(0.999, 0, 0.034), the 

absolute biases are       and        respectively and the estimated crossing angle is 

only       . In contrast, the estimated orientations using the proposed method are 

c1=(0.998, 0.030, -0.053) and c2=(0.774, 0.632, 0.040), the absolute bias are       

and       respectively, and the estimated crossing angle is       . Fig. 3 illustrates 

the estimated accuracies (absolute bias) by applying these two methods in a series of 

datasets with crossing angles    ,    ,    ,    ,    ,    ,    ,    . Fig. 3(a) and Fig. 

3(b) show the results for the first fibre and the second fibre respectively. For the cases 

of less than    , the estimation using the traditional method deviates from fibre 

orientation significantly and often leads to large bias, which corresponds to the angle 

assumption discussed in [14]. It can be seen that the proposed method performs much 

better and the overall bias is at a low level.  On the other hand, in the cases of more 

than    , the performance of the traditional method is improved significantly and is 

slightly better than that of the proposed method. 

3.2 Application in phantom data 
Phantom data has ground truth which can help examine the proposed method. The 

fibercup phantom dataset [15] was acquired using 64 diffusion gradients and one 

baseline, which has 3 slices, each slice with a resolution of 3*3*3mm
3
, NEX=2 and b-

value=1500smm
-2

. Fig. 4(a) shows the ground truth of the dataset and Fig. 4(b) 

presents the voxel classification result using the method proposed in [12] (Dark gray: 

isotropic, light gray: Gaussian, white: non-Gaussian). The proposed method is applied 

in this dataset, which the threshold is 0.9 for Gaussain case and 0.75 for non-Gaussian 

case.  Fig. 4(c) visualizes the result of the obtained fiber orientations in that the color 

scheme indicating orientation is the same as in DTI (red: left-right, green: 

anteroposterior, blue: superior-inferior) and the background (gray level) of each grid 

corresponds to the generalized fractional anisotropy (GFA) value in each voxel. In 

contrast to the ground truth, the overall fiber orientations can be well estimated by the 

proposed method. Fig. 4(d) shows two enlarged ROIs highlighted in Fig. 4(c). One 

ROI is at the corner of the fiber U-shape that the enlarged image shows the orientation 

tendency. Another one shows the ROI with two parallel fibers that the acquired 

orientations can preserve the fiber orientation well. Note that the color indicates 

partially anteroposterior direction because the second slice is selected for calculation 

and the fiber orientation can lead to the third slice due to the acquired signals. 

3.3 Application in real data 
The real dataset was acquired from a healthy volunteer on a 1.5T GE Signa Excite 

scanner, which the EP/SE sequence parameters include b=1.1477×109sm
-2

, δ=0.034s, 

Δ=0.04s, TE=0.087s, G=0.022Tm
-1

, 55 DW directions, voxel size 3×3×3mm
3
, 30 

slices with an acquisition matrix 128×128 interpolated to 256×256. The data was 

granted for use in this study by CCSBS/UAF. It is anatomically known that there 

exist various fibre tracts in the regions of the corpus callosum such as rostrum, genu, 



 

truncus, isthmus and splenium [16]. Thus, we choose the ROI (the highlighted inset in 

Fig. 5(a)) for demonstrating the performance of our method,  which is part of the genu 

 

Fig. 4.  Result for a phantom datset. (a) is the ground truth, (b) is the voxel classification result, 

(c) is the visualised result using the proposed method and (d) presents the enlarged ROIs in (c). 

 

and the subregion [43:50,120:135] in the original acquired image. Fig. 5(a) shows the 

acquired image with a gradient. Fig. 5(b) is the result map of voxel classification of 

the ROI using the method in [12] (light gray: Gaussian, one fiber; white: non-

Gaussian, two fibers). We visually present the results using the proposed method in 

Fig. 5(c), which applies the color scheme of DTI to indicate orientation. The fibre 

orientation (ODF) in each voxel is superimposed on a grayscale background 

modulated by the GFA in that voxel (black:GFA=0;white:GFA=1). It is shown that 

the fibre population in the ROI has an obvious orientation tendency that is 

consistently with the anatomical knowledge of the fibre tracts in the genu of the 

corpus callosum, in which the thinner axons connect the prefrontal cortex between the 

two halves of the brain. In addition, the splenium of the corpus callosum is situated 

dorsal to the pineal body, which consists of fascicles of myelinated fibers. In addition, 

we apply the proposed method in the ROI of the splenium (Fig. 5(d), [120:125, 

126:135] in slice 6), which the GFA range is [0.3257, 0.5236]. Fig. 5(e) is the result 



 

map of voxel classification (light gray: Gaussian, one fiber). Fig. 5(f) visualises the 

result of the ODF in this ROI and the fiber orientations are clearly consistent with the 

anatomical information of fascicles of fibers in the splenium. 
 

 

Fig. 5.  (a) slice 4 with diffusion gradient, the highlighted ROI (8*16) is part of Genu; (b) voxel 

classification results in the highlighted ROI in (a) (light gray: single fibre; white: two fibres); 

(c) visualisation of the ROI’s ODFs derived from the proposed method. (d) slice 6 (b0), the 

highlighted ROI (6*10) is part of splenium; (e) voxel classification results in the highlighted 

ROI in (d); (f) visualisation of the ROI’s ODFs. The ODF in each voxel is superimposed on a 

grayscale background modulated by the GFA in that voxel (black: GFA=0; white: GFA=1). 

4   Conclusions 

The proposed method aims to accurately estimate fiber orientations using information 

on orientation classes, so as to recover fiber orientations. There are two major 

advantages of the proposed method. First, the proposed method can make sufficient 

use of the orientation information in diffusion ODF, because there is usually a set of 

principal diffusion orientations concentrating around the fiber orientation as disclosed 

in a fibrous voxel; secondly, the proposed method can avoid the risk of solely 

depending on insufficient information for fiber orientation detection, such as local 

maxima in traditional methods; particularly, the proposed method can be applied to 

the cases with low crossing angle which the traditional methods fail to detect the 

orientations [14]. 

    However, some limitations exist in the proposed method. Firstly, this is a discrete 

numerical solution and it needs to set the threshold and use a high angular resolution 

gradient scheme. Secondly, the choice of a threshold is a key factor in the solution 

scheme because an appropriate one can alleviate the affects of noise and artefacts in 

clustering process. Considering this threshold problem, we apply an average strategy 

to improve the performance of the algorithm. However, this strategy can only obtain a 

quasi-optimal solution rather than an optimal one. Future work will use three 



 

approaches to improve this proposed method. Firstly, considering the above 

limitations, we will apply some higher angular resolution gradient schemes for 

improving the estimation accuracy. Secondly, we need to incorporate some 

anatomical information of the ROIs into the solution scheme so as to improve the 

performance. Finally, we can employ other ODF reconstruction schemes such as the 

spherical deconvolution in the solution scheme. 
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