Can a Tromino be Tiled with Unit Trominoes?

C. Rebecca Thomas, Siân K. Jones and Stephanie Perkins *

Abstract

Polominoes are well-known due to their use in the game Tetris, in which shapes made from four squares called tetrominoes are arranged within a game area. Polominoes can be constructed using any number of squares. In this article trominoes, which consist of three squares in an L-shape formation, are examined. We determine whether these can be used to fill larger L-shaped formations.

1 Introduction

A tromino (also known as a triomino) is a geometric shape formed by three squares. Trominoes can be either 'I' shaped or 'L' shaped and can be rotated in any orientation. In this article only the 'L' shaped tromino is used and throughout we use the word tromino to mean an ' L ' shaped tromino. The possible orientations of the tromino are given in Figure 1.

Figure 1: A unit Tromino and its Rotations

[^0]Larger L-shapes can also be formed as shown in Figure 2 and the aim of this article is to show that such shapes can be completely filled with copies of the unit trominoes given in Figure 1. A regular L-shaped tromino can be considered to comprise three $n \times n$ squares in the arrangement given by the dotted lines in Figure 2.

Figure 2: A Tromino of Size n

The unit trominoes in Figure 1 are denoted L_{1} and the larger L-shaped tromino, in Figure 2, of size n is denoted by L_{n}. The aim of this article is to show that L_{n} for any integer n can be tiled completely with unit trominoes $\left(L_{1}\right)$.

2 Tiling L_{n} for n a multiple of 2 or 3

For the cases where n is a multiple of 2 or 3 it can be shown explicitly that a tiling exists. The smallest case L_{2} is given in Figure 3(a) using four copies of $L_{1} . L_{3}$ is given in Figure 3(b) and uses five copies of L_{1} and one L_{2} (which is itself composed of four copies of L_{1}).

Figure 3: A Tiling of L_{2} and L_{3}

In Figure $4(\mathrm{a})$ it is demonstrated that the same arrangement as L_{2} can be used to tile L_{n} when n is a multiple of $2\left(n=2 k\right.$, for k an integer) using four copies of L_{k}. Similarly in Figure $4(\mathrm{~b})$ the same arrangement as L_{3} can be used to tile L_{n} when n is a multiple of $3(n=3 k$, for k an integer $)$ using five copies of L_{k} and one copy of $L_{2 k}$.

Figure 4: A General $L_{2 k}$ and $L_{3 k}$

Therefore if there exists a tiling of a tromino L_{k}, of size k, then there exists a tiling of a tromino $L_{2 k}$, of
size $2 k$ and there exists a tiling of a tromino $L_{3 k}$ of size $3 k$.

Hence any L_{n} for $n=2^{x} 3^{y} m$ can be tiled using unit trominoes $\left(L_{1}\right)$ if L_{m} can be tiled using unit trominoes. Therefore it is sufficient to prove that L_{m} can be tiled by L_{1} when m is not a multiple of 2 or 3 .

3 Tiling of L_{n}, for $n \geq 5$

Consider L_{n} in Figure 5. First tile the squares marked x using an L_{1}. The remaining tromino consists of three $n \times n$ squares with a corner square removed, called deficient squares. To give a tiling for a tromino for L_{n}, for $n \geq 5$ and n not a multiple of 2 or 3 , it suffices to show that an $n \times n$ deficient square (for $n \geq 5$ and not a multiple of 2 or 3) can be tiled with multiple copies of L_{1}.

Figure 5: A Tromino Constructed from Deficient Squares

4 Tiling a Deficient $n \times n$ Square

Chu and Johnsonbaugh [?] show that a deficient square of dimension $n \times n$ can be tiled with unit trominoes if $n \geq 5$ and 3 does not divide n. They consider both n odd and n even, and with the removed square located anywhere within the $n \times n$ square. However only the case of n odd and the corner square removed is of interest in this article and is summarized in this section.

Chu and Johnsonbaugh [?] give an explicit tiling of a deficient 5×5 square, an example of which is given in Figure 6(a). They also give a 2×3 configuration (as shown in Figure 6(b)), which is used to show that a $2 i \times 3 j$, or $3 i \times 2 j$ board can be tiled exactly using unit trominoes (using an $i \times j$ arrangement of 2×3 resp. 3×2 configurations).

(a) A 5×5 Deficient Board Tiled Using

Trominoes

(b) A 2×3 Configuration

Figure 6: 5×5 and 2×3 Configurations

Using the 5×5 deficient square and the 2×3 and 3×2 configurations, the 7×7 deficient square can now be tiled (Figure 7(a)).

Figure 7: A 7×7 and $n \times n$ (for n odd) deficient square

A $n \times n$ deficient square for $n \geq 11$ and n odd is given in Figure $7(\mathrm{~b})$ and comprises of four shapes. This is a rearranged version of Figure 9 given in [?] using the same shapes but with a corner square removed. Consider each of these shapes in turn:

- $(n-7) \times 6$ (and hence also $6 \times(n-7))$ rectangle can be tiled using the configurations given in Figure

6(b).

- 7×7 deficient square is given in Figure $7(\mathrm{a})$.
- $(n-6) \times(n-6)$ deficient square, the first case when $(n-6) \times(n-6)=5 \times 5$ is given in Figure 6(a) and when $(n-6) \times(n-6)=7 \times 7$ is given in Figure $7(\mathrm{a})$. Therefore since an 11×11 deficient square can be created when $(n-6) \times(n-6)=5 \times 5$ and 13×13 is created using $(n-6) \times(n-6)=7 \times 7$ then by an inductive argument all remaining cases for $n=5+6 k, 7+6 k$, i.e. n odd and not a multiple of three can be generated.

5 A tiling of L_{n}

In Section 2 it was demonstrated that L_{n} can be tiled using unit trominoes $\left(L_{1}\right)$ for n a multiple of 2 or 3 . The results of Chu and Johnsonbaugh [?] demonstrate that an $n \times n$ deficient square can be tiled using unit trominoes for $n \geq 5, n$ odd and where 3 does not divide n. Since the deficient square can be chosen to be a corner square then three such squares plus one copy of L_{1} can be arranged as shown in Figure 5 to construct L_{n} where $n \geq 5, n$ odd and where 3 does not divide n. Hence it has been shown that there exists a tiling of L_{n}, for any integer n using unit trominoes.

References

[1] I. Chu and R. Johnsonbaugh, Tiling deficient boards with trominoes, Mathematics Magazine 59 (1986), no. $1,34-40$.

[^0]: *About the Authors: Sian K. Jones and Stephanie Perkins work at the University of South Wales in Pontypridd, UK. Stephanie Perkins is Head of Mathematics and Sian K. Jones is a Lecturer; both conduct research into Combinatorics with interests ranging from Sudoku grids to Information Theory. Rebecca Thomas was an undergraduate studying Mathematics and completed her final year project on Trominoes.

