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Design and Performance Analysis of Networked Predictive Control Sys-

tems Based on Input-Output Difference Equation Model

Zhong-Hua Pang*, Guo-Ping Liu, Donghua Zhou, and Dehui Sun

Abstract: This paper is concerned with the design and performance analysis of networked control systems, where

random network-induced delay, packet disorder, and packet dropout in the feedback and forward channels are

considered simultaneously and further treated as the round-trip time (RTT) delay. To actively compensate for

the RTT delay, a networked predictive control scheme is designed based on the input-output difference equation

model. For time-varying reference signals, the resulting closed-loop system can achieve the same output tracking

performance and closed-loop stability as the corresponding local control system. Specifically, for the step reference

input, it can provide a zero steady-state output tracking error. The controller design problem is solved by using

the augmented state-space model as well as the static output feedback strategy. In addition, the stability of the

closed-loop system is also discussed for the plant subject to bounded disturbances and modelling errors. Finally,

simulation and experimental results are given to demonstrate the effectiveness of the proposed method.

Keywords: Networked control systems (NCSs), input-output model, predictive control, round-trip time delay, sta-

bility analysis, performance analysis.

1. INTRODUCTION

In recent years, networked control systems (NCSs) have

been finding more and more applications in various field-

s such as process control, vehicle industry, teleoperation,

transportation systems, and power grids, owing to their ap-

pealing features such as low installation and maintenance

costs, high reliability, increased system flexibility, and de-

creased wiring. However, the utilization of communica-

tion network in control systems inevitably brings some

communication constraints such as network-induced de-

lay, packet disorder, and packet dropout, which may dete-

riorate the system performance or even destabilize the sys-

tem. To overcome the adverse effect of these communica-

tion constraints, various approaches have been developed

[1–5], among which a representative one is networked (or

network-based) predictive control (NPC).

The existing NPC methods [6–20], to mention a few,

can be divided into two classes. One is the NPC meth-

ods based on the state space model [6–13], where state

feedback strategies or output feedback strategies are used

in the controller design. The other is the NPC methods

based on input-output difference equation model, in which

model predictive control (MPC) algorithms or PID algo-

rithms are used in the controller design [14–20]. Although

the effectiveness of the aforementioned NPC methods has

been confirmed by simulation or/and experimental results,

they still have two drawbacks that 1) most of closed-loop

stability conditions are only sufficient, and 2) the perfor-

mance analysis for the closed-loop system is not clearly

presented, which motivate the present study.

In this paper, the design and performance analysis of
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NCSs is investigated based on the input-output difference

equation model. The network-induced delay, packet disor-

der, and packet dropout in the feedback and forward chan-

nels are considered, and further treated as the random but

bounded round-trip time (RTT) delay. To actively com-

pensate for the RTT delay, a model-based networked pre-

dictive control (MBNPC) scheme is designed. The main

contributions of this paper include: 1) a static output feed-

back integral control law is proposed to construct control

predictions based on the input-output difference equation

model, 2) the performance and stability analysis is pre-

sented, and 3) the controller design method is introduced

based on the corresponding augmented state-space model.

Finally, both simulation and experimental results are pro-

vided to show the effectiveness of the proposed method.

Notation: Throughout the paper, ∆ is the difference op-

erator defined by ∆x(k) = x(k)− x(k− 1), and He(M) =
M+MT denotes the Hermitian part of a square matrix M.

2. PROBLEM FORMULATION

Consider a plant described by the following input-

output difference equation model:

a(z−1)y(k) = b(z−1)u(k−1), (1)

where y(k) ∈ R and u(k) ∈ R are the output and input,

respectively; and a(z−1) and b(z−1) are the polynomials

with the orders of na and nb, respectively, as follows:

a(z−1) = 1+a1z−1 + · · ·+ana z−na ,

b(z−1) = b0 +b1z−1 + · · ·+bnb
z−nb .

Our purpose is to design a controller such that the system

output y(k) tracks a time-varying reference input r(k). De-

fine the output tracking error as

e(k) = r(k)− y(k). (2)

For the local control (LC) of system (1), a controller is

designed as

u(k) = K1y(k)+K2

k

∑
i=0

e(i), (3)

where K1 and K2 are the parameters to be determined. The

control law in (3) is static output feedback control plus an

integral control, which is thus named as static output feed-

back integral control (SOFIC). Its incremental form is

∆u(k) = K1∆y(k)+K2e(k). (4)

For the networked control of system (1), the ran-

dom network-induced delay, packet disorder, and packet

dropout in the feedback (sensor-to-controller) and forward

(controller-to-actuator) channels are considered simulta-

neously. The goal of this paper is to design a networked

control scheme based on the SOFIC strategy in (4) such

that the resulting closed-loop NCS is stable.

3. MBNPC SCHEME VIA SOFIC

The MBNPC scheme via SOFIC is shown in Fig. 1,

which will be introduced in detail in the subsequent sub-

sections. For the design of the MBNPC scheme, the fol-

lowing assumptions are first made. �� ��
�� �� �	 
� � 
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Fig. 1. MBNPC scheme.

Assumption 1: The sensor and the actuator are time-

driven and synchronous, whereas the controller is event-

driven.

Assumption 2: The RTT delay τk is bounded by τ̄ , i.e.,

τk ≤ τ̄ .

Remark 1: It is worth noting that, in the context of

computer network, the RTT delay denotes the length of

time it takes for a packet to be sent plus the length of time

it takes for an acknowledgment of that packet to be re-

ceived. It is obvious that the definition of the RTT delay is

made for each packet. That is, the lost packet and the dis-

ordered packet also have their own RTT delay. The RTT

delay of the former is infinite, and the RTT delay of the lat-

ter would be larger than that of in-order packets. As a re-

sult, the RTT delay would not have an upper bound. How-

ever, in general, the lost packet and the disordered packet

are not used in NCSs for the purpose of real-time control.

Therefore, the RTT delay is redefined in this paper, which

is equal to the difference between the timestamp of the lat-

est packet available in the actuator and the current time of

the actuator at each time instant (see (13)). It is obvious

that the new definition of the RTT delay is made for each

sampling instant of the actuator, not for each packet. That

is, no matter whether a packet is received or not, the ac-

tuator always calculates a real-time RTT delay by using

the above new definition. As a consequence, the RTT de-

lay will have an upper bound as long as the network are

not broken. Furthermore, it can represent the joint effect

of the network-induced delay, packet disorder, and packet

dropout in both the feedback and forward channels.

3.1. Design of Data Buffer

At each sampling instant, the data buffer sends the fol-

lowing data with the timestamp k to the controller:

Dk =
[

Y (k)T U(k−1)T R(k)T
]T

, (5)
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where

Y (k) = [y(k) y(k−1) · · ·y(k−na)]
T ,

U(k−1) = [u(k−1) u(k−2) · · ·u(k−1−nb)]
T ,

R(k) = [r(k) r(k+1) · · ·r(k+ τ̄)]T .

3.2. Design of Control Prediction Generator

For clarity, the following operations are defined:

y(k+ i|k) = y(k+ i), if i ≤ 0, (6)

u(k+ i|k) = u(k+ i), if i < 0, (7)

where i is an integer.

When the feedback data in (5) arrive at the controller,

the control signal is calculated based on the following

SOFIC law:

u(ks|ks) = u(ks −1)+K1∆y(ks)+K2e(ks). (8)

Then, the predictions of system output and control input

up to time ks + τ̄ can be obtained by the iteration of (1)

and (8) as follows:

y(ks + i|ks) = a1(z
−1)y(ks + i|ks)+b(z−1)u(ks + i−1|ks),

(9)

u(ks + i|ks) = u(ks + i−1|ks)+K1∆y(ks + i|ks)

+K2e(ks + i|ks),
(10)

for i = 1,2, · · · , τ̄ , where a1(z
−1) = 1−a(z−1), and

∆y(ks + i|ks) = y(ks + i|ks)− y(ks + i−1|ks),

e(ks + i|ks) = r(ks + i)− y(ks + i|ks).

It is clear from (8) and (10) that the following control pre-

diction sequence is generated:

Uks
= [u(ks|ks) u(ks +1|ks) · · ·u(ks + τ̄|ks)]

T , (11)

which is lumped into one packet with the timestamp ks

and then transmitted to the actuator.

3.3. Design of Network Delay Compensator

Due to the presence of random network-induced delay,

packet disorder, and packet dropout in the feedback and

forward channels, it probably happens that one, more than

one, or no packets arrive at the actuator during one sam-

pling interval. Suppose that at time k, the latest control

prediction sequence in the actuator is Uk∗s
described by

Uk∗s
= [u(k∗s |k

∗
s ) u(k∗s +1|k∗s ) · · ·u(k

∗
s + τ̄|k∗s )]

T , (12)

which is buffered in the network delay compensator (ND-

C), where k∗s is its timestamp. At each execution instant k,

the RTT delay can be obtained as follows:

τk = k− k∗s , (13)

and to compensate for it, the NDC applies the following

control signal to the plant:

u(k) =Uk∗s
(τk) = u(k|k− τk). (14)

4. PERFORMANCE ANALYSIS AND

CONTROLLER DESIGN

4.1. Performance Analysis

Theorem 1: For time-varying reference signals r(k)
with r(k) = y0 for k < τ̄ , where y0 ∈ R is a steady-state

value of the output y(k), the MBNPC system can achieve

the same output tracking performance as the correspond-

ing local control system (LCS).

Proof: Without loss of generality, suppose that the

steady-state control input u(k−1) = u0 ∈R for k ≤ 0. For

the MBNPC system, it is obtained from (9) and (10) that

Y (k+1|k∗s ) = AY (k|k∗s )+BU(k|k∗s ), (15)

U(k|k∗s ) =CU(k−1|k∗s )+DY (k|k∗s )+Er(k), (16)

where

Y (k|k∗s ) = [y(k|k∗s ) y(k−1|k∗s ) · · · y(k−na|k
∗
s )]

T ,

U(k|k∗s ) = [u(k|k∗s ) u(k−1|k∗s ) · · · u(k−nb|k
∗
s )]

T ,

A =

[

−a1 −a2 · · · −ana 0

Ina 0na×1

]

,

B =

[

b0 b1 · · · bnb

0na×(nb+1)

]

, C =

[

1 01×nb

Inb
0nb×1

]

,

D =

[

K1 −K2 −K1 01×(na−1)

0nb×(na+1)

]

, E =

[

K2

0nb×1

]

,

and k ≥ k∗s ≥ 0. Replacing U(k|k∗s ) in (15) with (16) gives

Y (k+1|k∗s )= (A+BD)Y (k|k∗s )+BCU(k−1|k∗s )+BEr(k).
(17)

Combining (16) and (17), we have

X(k+1|k∗s ) = ΛX(k|k∗s )+Γr(k), (18)

where

X(k|k∗s ) =
[

Y (k|k∗s )
T U(k−1|k∗s )

T
]T

,

Λ =

[

A+BD BC

D C

]

, Γ =

[

BE

E

]

.

It is clear from (14) and (18) that

u(k) = IuX(k+1|k∗s ), (19)

where Iu=
[

01×(na+1) 1 01×nb

]

.

Similarly for the LCS, it is obtained from (1) and (4)

that

Y (k+1) = AY (k)+BU(k), (20)

U(k) =CU(k−1)+DY (k)+Er(k), (21)

and thus, the closed-loop LCS can be described by

XL(k+1) = ΛXL(k)+Γr(k), (22)



4 Zhong-Hua Pang, Guo-Ping Liu, Donghua Zhou, and Dehui Sun

where XL(k)= [Y (k)T U(k−1)T ]T with Y (k) and U(k−1)
defined in (5), and the subscript “L" denotes the variable

corresponding to the LCS (the same below).

Then, it follows from (18) and (22) that

X(k+1|k∗s ) = Λτk+1X(k∗s |k
∗
s )+

τk

∑
j=0

Λ jΓr(k− j)

= Λτk+1X(k∗s )+
τk

∑
j=0

Λ jΓr(k− j),

(23)

XL(k+1) = Λτk+1XL(k
∗
s )+

τk

∑
j=0

Λ jΓr(k− j), (24)

where X(k∗s )=
[

Y (k∗s )
T U(k∗s −1)T

]T
.

With y(k) = y0 and u(k − 1) = u0 satisfying (1) for

k ≤ 0, as well as the initial reference signal r(k) = y0 for

k < τ̄ , it is obtained for the LCS from (4) and (1) that

uL(k−1) = u0, (25)

XL(k) = XL(0), (26)

for k = 0,1,2, · · · , τ̄ .

Then, for the MBNPC system, from (9), (10), (23),

(19), and (14), it can be calculated that

u(k∗s −1) = u0, (27)

X(k∗s ) = X(0) = XL(0), (28)

X(k∗s + i+1|k∗s ) =

{

X(0), if k∗s + i < τ̄

Λ
k∗s+i−τ̄
s , if k∗s + i ≥ τ̄,

(29)

Uk∗s
=
[

u0 u0 · · · u0 IuΛ0
s IuΛ1

s · · · IuΛ
k∗s
s

]T

, (30)

u(k∗s ) =Uk∗s−τk∗s
(τk∗s

), (31)

for k∗s = 0,1,2, · · · , τ̄ , where i ≥ 0 is an integer, and

Λi
s = Λi+1X(0)+

i

∑
j=0

Λ jΓr(τ̄ + i− j).

Then, from (26), (28), and (29), we have

X(k) = X(k|k∗s ) = XL(k), (32)

for k ≤ τ̄ .

At time k ≥ τ̄ , due to the upper bound τ̄ of the RT-

T delay, at least one control prediction sequence (12) is

available in the actuator. As a result, with the initial state

in (32) and the same reference singals, it can be obtained

from (23) and (24) that

X(k+1|k∗s ) = XL(k+1), (33)

for k ≥ τ̄ . Furthermore, by using the similar procedure in

(27)-(31), we obtain

X(k+1) = X(k+1|k∗s ), (34)

for k ≥ τ̄ . Thus, from (32)-(34), we have

X(k+1) = XL(k+1), (35)

for all k ≥ 0. That is, the outputs and inputs of the MBN-

PC system are always equal to those of the corresponding

LCS. The proof is completed. �

The stability condition of the MBNPC system is given

by the following corollary:

Corollary 1: The MBNPC system is stable if and only

if the eigenvalues of the matrix Λ are within the unit circle.

Proof: From (22) and (35), it is obtained that the MB-

NPC system is equivalent to the following form:

X(k+1) = ΛX(k)+Γr(k). (36)

Clearly, the MBNPC system is stable if and only if the

eigenvalues of the matrix Λ are within the unit circle. �

Remark 2: It is worth noting that, compared with

the stability conditions in [6–20] that are only sufficien-

t, Corollary 1 gives a necessary and sufficient condition

for the stability of the MBNPC system. Furthermore, the

condition is not related to random RTT delays, which is

significant for the design of MBNPC systems.

Next, we will analyze the output tracking performance

of the MBNPC system for the step reference input.

Theorem 2: If the eigenvalues of matrix Λ are with-

in the unit circle and K2 ∑
nb
j=0 b j 6= 0, the MBNPC system

can achieve a zero steady-state output tracking error for

the following step reference input:

r(k) =

{

y0, k < τ̄,

r̄, k ≥ τ̄,
(37)

where r̄ ∈ R is a constant.

Proof: It is obtained from (28), (34), and (37) that

X(k) = Λk−τ̄ X(τ̄)+
k−τ̄−1

∑
j=0

Λ jΓr(k−1− j)

= Λk−τ̄ X(0)+
k−τ̄−1

∑
j=0

Λ jΓr̄,

(38)

for k > τ̄ . With y(k) = IyX(k), Iy =
[

1 01×(na+nb+1)

]

, the

steady-state output is obtained from (38) as

y∞ = lim
k→∞

IyΛk−τ̄ X(0)+ lim
k→∞

Iy

k−τ̄−1

∑
j=0

Λ jΓr̄

= 0+ Iy(I −Λ)−1Γr̄ = r̄,

(39)

since the eigenvalues of the matrix Λ are within the unit

circle. The proof of the equation Iy(I−Λ)−1Γr̄ = r̄ in (39)

is presented in the Appendix A. Therefore, it can be seen

from (39) that the MBNPC system achieves a zero steady-

state output tracking error for the step reference signal in

(37). The proof is completed. �
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Remark 3: It should be pointed out that, in the previ-

ous literature on NPC methods [6–20], the performance

analysis was generally not involved. To evaluate the per-

formance of NPC methods, only some tentative judgments

were usually given by numerical or/and experimental re-

sults, for instance, “satisfactory", “desired", and “good",

as well as “similar" and “almost the same" (compared with

the LCS), and “superior" and “improved" (compared with

the NCS without compensation). However, in this paper,

it is theoretically established in Theorem 1 that the MB-

NPC system can achieve the same output tracking perfor-

mance as the corresponding LCS. Specifically for the step

reference input, it is derived that the MBNPC system can

achieve a zero steady-state output tracking error.

4.2. Controller Design

Since the stability of the MBNPC system is not relat-

ed to the RTT delay, the design of the SOFIC parameters,

K1 and K2, can follow the design procedure of the LCS.

As an example, System (1) can be written in the following

state-space form:

x(k+1) = Ãx(k)+ B̃u(k),

y(k) = C̃x(k),
(40)

where x(k) ∈ R
na is the system state, and Ã, B̃, and C̃ are

matrices with appropriate dimensions. System (1) can be

further written into an incremental form:

∆x(k+1) = Ã∆x(k)+ B̃∆u(k),

∆y(k) = C̃∆x(k).
(41)

From (2) and (41), it learns that

e(k+1) = e(k)−C̃Ã∆x(k)−C̃B̃∆u(k)+∆r(k+1). (42)

Then, from (41) and (42), we obtain the following aug-

mented system:

xe(k+1) = Aexe(k)+Be∆u(k)+Ee∆r(k+1),

ye(k) =Cexe(k),
(43)

where

xe(k) =

[

∆x(k)
e(k)

]

∈ R
na+1, ye(k) =

[

∆y(k)
e(k)

]

∈ R
2,

Ae =

[

Ã 0na×1

−C̃Ã 1

]

, Be =

[

B̃

−C̃B̃

]

,

Ee =

[

0na×1

1

]

, Ce =

[

C̃ 0

01×na 1

]

.

Thus, the SOFIC law in (4) is equivalent to a static output

feedback (SOF) law for augmented system (43), i.e.,

∆u(k) = Kye(k), (44)

where K = [K1 K2] is the control gain. Then, the closed-

loop system with ∆r(k+1) = 0 is

xe(k+1) = (Ae +BeKCe)xe(k). (45)

Various convex sufficient conditions for designing the

SOF controller (44) have been proposed in recent years

(see [21] and references therein). Among these existing

works, LMI approaches are more popular due to the sim-

plicity and efficiency, for example, in [22, 23]. In this pa-

per, the controller design methods in [23] are used to com-

pute the gain K, which are described in the following two

cases. In addition, they are also modified to reduce the

conservatism (see Remark 4).

1) Ce with full row-rank: The output matrix Ce is of

full row-rank, which means that a non-singular matrix Tc

can be found such that CeTc = [I 0].

Theorem 3: If there exist a symmetric positive matrix

Pc, and matrices Gc, Fc, Lc with the following structure

Gc =

[

Gc11 0

Gc21 Gc22

]

,Fc =

[

λcGc11 0

Fc21 Fc22

]

,Lc =
[

Lc1 0
]

,

(46)

satisfying the following LMI
[

Pc −He(Ḡc) ∗
AeḠc +BeL̄c − F̄T

c He(AeF̄c +λcBeL̄c)−Pc

]

< 0,

(47)

where λc ∈ R, Ḡc = TcGcSc, F̄c = TcFcSc, L̄c = LcSc, and

Sc = I or Sc = T T
c . Then the SOF controller (44) with

K = Lc1G−1
c11 renders the closed-loop system (45) stable.

2) Be with full column-rank: When the input matrix Be

is of full column-rank, there exists a non-singular matrix

Tb such that TbBe = [I 0]T .

Theorem 4: If there exist a symmetric positive matrix

Pb, and matrices Gb, Fb, Lb with the following structure

Gb =

[

Gb11 Gb12

0 Gb22

]

,Fb =

[

λbGb11 Fb12

0 Fb22

]

,Lb =

[

Lb1

0

]

,

(48)

satisfying the following LMI
[

Pb −He(Ḡb) ḠbAe + L̄bCe − F̄T
b

∗ He(F̄bAe +λbL̄bCe)−Pb

]

< 0, (49)

where λb ∈R, Ḡb = SbGbTb, F̄b = SbFbTb, L̄b = SbLb, and

Sb = I or Sb = T T
b . Then the SOF controller (44) with

K = G−1
b11Lb1 makes the closed-loop system (45) stable.

Remark 4: It should be noted that matrices Sc and Sb

actually play an important role in the above LMI condi-

tions. Sc=I or T T
c and Sb=I or T T

b are set in Theorems 3

and 4, respectively, which obviously gives rise to a certain

conservatism. In order to reduce the conservatism, Sc and

Sb can be chosen as arbitrary invertible matrices. Hence,

the improved LMI conditions for designing the SOF con-

troller are generalized sufficiently to cover the cases of

Theorems 3 and 4. At the same time, the invertibility of

Sc and Sb, as well as the triangular structure of Gc and Gb,

guarantees the invertibility of Gc11 and Gb11.
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Remark 5: It is noted that, in the above derivation, the

disturbances and modelling errors are not considered, sim-

ilar to [6–12] and [15–19]. However, in practice, unknown

disturbances and modelling errors are usually inevitable.

Thus, the plant is generally described by

a(z−1)y(k) = b(z−1)u(k−1)+υ(k), (50)

where υ(k)∈R is the bounded random noise. In addition,

without loss of generality, the following model is available

for system (1) due to the presence of modelling errors:

â(z−1)y(k) = b̂(z−1)u(k−1), (51)

with

{

â(z−1) = 1+ â1z−1 + · · ·+ ânaz−na ,

b̂(z−1) = b̂0 + b̂1z−1 + · · ·+ b̂nb
z−nb .

In this case, the system output predictions are calculated

in the controller by using the following equation:

y(ks + i|ks) = â1(z
−1)y(ks + i|ks)+ b̂(z−1)u(ks + i−1|ks),

(52)

where â1(z
−1) = 1− â(z−1). The corresponding stability

analysis for the MBNPC scheme is presented as follows.

Let the reference signal r(k) = 0, and similar to the

derivation of (18), it is obtained from (52) and (10) that

X(k+1|k− τk) = Λ̂X(k|k− τk) = Λ̂τk+1X(k− τk), (53)

where

Λ̂ =

[

Â+ B̂D B̂C

D C

]

, B̂ =

[

b̂0 b̂1 · · · b̂nb

0na×(nb+1)

]

,

Â =

[

−â1 −â2 · · · −âna 0

Ina 0na×1

]

.

From (19) and (53), we have

u(k) = IuX(k+1|k− τk) = Fτk
X(k− τk), (54)

where Fτk
= IuΛ̂τk+1 = [ fτk,1 fτk,2 · · · fτk,n̄] with n̄ = na +

nb +2. Then, Equations (50) and (54) can be rewritten as

Ȳ (k+1) = ĀȲ (k)+ B̄Ū(k)+ Ēυ(k+1), (55)

Ū(k) = C̄τk
Ū(k−1)+ D̄τk

Ȳ (k), (56)

where

Ȳ (k) = [y(k) y(k−1) · · · y(k− τ̄ −na)]
T ,

Ū(k) = [u(k) u(k−1) · · · u(k− τ̄ −nb)]
T ,

Ā =

[

−a1 −a2 · · · −ana 01×(τ̄+1)

Ina+τ̄ 0(na+τ̄)×1

]

,

B̄ =

[

b0 b1 · · · bnb
01×τ̄

0(na+τ̄)×(nb+τ̄+1)

]

, Ē =

[

1

0(na+τ̄)×1

]

,

C̄τk
=

[

01×τk
fτk,na+2 · · · fτk,n̄ 01×(τ̄−τk)

Inb+τ̄ 0(nb+τ̄)×1

]

,

D̄τk
=

[

01×τk
fτk,1 · · · fτk,na+1 01×(τ̄−τk)

0(nb+τ̄)×(na+1+τ̄)

]

.

Combining (55) and (56) yields the following closed-loop

system:

X̄(k+1) = Λ̄(τk)X̄(k)+ Γ̄υ(k+1), (57)

where

X̄(k) = [Ȳ (k)T Ū(k−1)T ]T ,

Λ̄(τk) =

[

Ā+ B̄D̄τk
B̄C̄τk

D̄τk
C̄τk

]

, Γ̄ =

[

Ē

0(nb+1+τ̄)×1

]

.

It is clear from (57) that the stability of the MBNPC sys-

tem is not related to the bounded noise υ(k). Furthermore,

the following stability condition can be obtained.

Theorem 5: For system (50) with the model in (51),

the closed-loop MBNPC system (57) is stable if there ex-

ist τ +1 positive definite matrices P(τk) satisfying

Λ̄T (τk)P(τk+1)Λ̄(τk)−P(τk)< 0. (58)

Proof: The proof can refer to [18], and thus is omitted

here. �

5. SIMULATION RESULTS

To illustrate the effectiveness of the proposed MBNPC

method, a servo motor system (SMS) shown in Fig. 5 is

considered. For the sampling period 0.04s, its model is

b(z−1)

a(z−1)
=

3.5629z−1 +2.7739z−2 +1.0121z−3

1−1.2998z−1 +0.4341z−2 −0.1343z−3
,

(59)

which can be written in the form of (40) with

Ã =





1.2998 −0.4341 0.1343

1 0 0

0 1 0



, B̃ =





1

0

0



 ,

C̃ =
[

3.5629 2.7739 1.0121
]

.

Theorems 3 and 4 can be used to calculate the gain K.

Note that different methods may give different solvability.

The solvability results for system (59) are listed in Table

1. Then using Theorem 3 with λc = 0.1221 and the fol-

lowing invertible matrix

Sc =









−0.1890 −0.5038 −0.3549 1.9114

−0.6509 −0.7878 0.8059 −2.2413

0.7085 −0.1315 1.4301 −0.2528

0.5223 1.1787 0.6622 0.6948









,

the gain K is calculated to be

K =
[

−0.0519 0.0138
]

, (60)
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which gives a stable closed-loop system with the closed-

loop poles {0.6144±0.4221i, 0.5856, 0.2513}.

Table 1. Solvability of different methods in Theorems 3

and 4
Theorem Method Solvability

3

Sc = I Yes

Sc = T T
c Yes

Sc = IM1 Yes

4

Sb = I Yes

Sb = T T
b No

Sb = IM1 Yes
1 IM denotes a given invertible matrix,

as stated in Remark 4.

5.1. NCS without Compensation

When RTT delays are randomly chosen to be 4∼7 step-

s, the output response of the NCS without network delay

compensation is shown in Fig. 2, from which it can be

seen that the closed-loop NCS without compensation be-

comes unstable.

: ; < : < ;= < ; := < : := ; ::; :< : :< ; :> : :
? @ A B C D EF GH GIGJKGLJMN OP QOPRS T U V W V X V Y Z V[ \ ] ^ \ ]

Fig. 2. Performance of NCS without compensation (sim-

ulation case).

5.2. MBNPC System

With the same 4∼7 RTT delays, the simulation result

of the MBNPC method is given in Fig. 3, which in-

dicates that the closed-loop system is stable. Moreover,

the performance of the MBNPC system (red solid line) is

the same as that of the LCS (black dotted line) with zero

steady-state output tracking errors, which coincides with

the results of performance analysis in Section 4.1.

: ; < : < ;= _ := ` := a := > ::> :a :` :_ :
? @ A B C D EF GH GIGJKGLJMN OP QOPRS T U V W V X V Y Z V[ \ ] ^ \ ] b c d e f[ \ ] ^ \ ] b g e f

Fig. 3. Performance of MBNPC system (simulation case).

Then, the capability of the MBNPC method in handling

measurement noise and modelling errors is tested. Sup-

pose that, the following model polynomials are available

for the SMS in (59):

{

â(z−1) = 1+0.9a1z−1 +0.8a2z−2 +1.1a3z−3,

b̂(z−1) = 0.7b(z−1).
(61)

With the controller gain in (60), the positive definite ma-

trices P(τk) for τk=4,5,6,7 can be obtained by solving

the LMIs in (58), of which the dimension is 21 and thus

their values are omitted here. Hence, it is clear from

Theorem 5 that, with the model mismatch between (59)

and (61), the closed-loop MBNPC system is stable. Fur-

thermore, a zero-mean Gaussian white noise ξ (k) with

variance 6.0 is added to the output of the SMS, where

ξ (k) = υ(k)/a(z−1). The simulation result is shown in

Fig. 4, which indicates that, with the model in (61) and the

measurement noise ξ (k), the closed-loop MBNPC system

is still stable.

: ; < : < ;= < : := _ := ` := a := > ::> :a :` :_ :< : :
? @ A B C D EF GH GIGJKGLJMN OP QOPRS T U V W V X V Y Z V[ \ ] ^ \ ]

Fig. 4. Performance of MBNPC system with measure-

ment noise and modelling errors (simulation case).h i j k l i k j m h n o p q
r k l s t u t j t l op q v w xw v xm y n o y z { i |

Fig. 5. Internet-based SMS.

6. EXPERIMENTAL RESULTS

6.1. Internet-Based SMS

To further test the MBNPC method in practice, an

Internet-based SMS is built, as shown in Fig. 5. It consists

of an SMS, a networked implementation board (NIB), and

a networked controller board (NCB). The SMS is located

in the University of South Wales, Pontypridd, UK, whose
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input and output are the control voltage (−10V ∼ 10V)

and the angle position (−120o ∼ 120o), respectively. The

NIB is directly connected to the SMS through wires. The

NCB is placed in the Tsinghua University, Beijing, Chi-

na, which is connected with the NIB through the Internet.

With the sampling period 0.04s, the RTT delays of the In-

ternet vary from 4 to 7 steps, as shown in Fig. 6.

: ` : : < > : : < _ : : > a : : } : : : } ` : :a;̀~ ? @ A B C D EF��M G� L�R �P GQT
Fig. 6. RTT delays between NCB (China) and NIB (UK).

6.2. Practical Experiments

Although the SMS in Fig. 5 is actually nonlinear in

nature, a simple linear model in (59) is used here. The

SOFIC gain K is chosen to be the same as that in the simu-

lation, as shown in (60). The output responses of the NCS

without compensation and MBNPC system are shown in

Figs. 7 and 8, respectively. It can be seen that, with the

random RTT delays shown in Fig. 6, the NCS without

compensation becomes unstable, and the MBNPC system

is stable with a good performance (thick red line). In addi-

tion, for comparison, the NPC method in [18] is applied to

the SMS, and the experimental result is also shown in Fig.

8 (thin black line). It can be seen that the NPC method in

[18] produces large overshoots at each step change of the

reference input due to large control actions.

It should be noted that, due to the mismatch between the

model in (59) and the SMS, the MBNPC method yields a

certain steady-state output tracking error, as shown in Fig.

8. To improve the performance of the MBNPC method,

an online parameter estimator is designed in the controller

to make the identified model close to the real plant. The

experimental result is shown in Fig. 9 (thick red line). It

can seen that the output response is superior to that of the

MBNPC system with the fixed model in (59), and is com-

parable to that of the corresponding LCS (thin black line).

7. CONCLUSIONS

This paper has investigated the design and performance

analysis of NCSs. Based on the input-output difference

equation model, a networked predictive control scheme

via a static output feedback integral controller has been

presented to actively compensate for the network-induced

delay, packet disorder, and packet dropout in the feedback

and forward channels. The resulting closed-loop system

can guarantee the stability and also achieve the desired

output tracking performance.

Compared with the existing works on NPC methods, for

example, [6–20], the main merits of this paper are two-

fold. First, it has been proved that, for time-varying ref-

erence signals, the MBNPC system can achieve the same

output tracking performance as the corresponding LCS. E-

specially, it can guarantee a zero steady-state output track-

ing error for the step reference input. Second, a necessary

and sufficient condition has been derived for the stability

of the MBNPC system. Furthermore, the condition is not

related to the RTT delay, and thus the controller design

procedure of the MBNPC system can follow that of the

LCS. The above merits have been also confirmed by the

simulation and experimental results given in this paper.

: ; < : < ;= < > := � := ` := } ::} :` :� :< > :
? @ A B C D EF GH GIGJKGLJMN OP QOPRS T U V W V X V Y Z V[ \ ] ^ \ ]

Fig. 7. Performance of NCS without compensation (ex-

perimental case).

: ; < : < ;= � := ` := } ::} :` :� :
? @ A B C D EF GH GIGJKGLJMN OP QOPRS T U V W V X V Y Z V[ \ ] ^ \ ] b ] � � � ^ � ^ V X f[ \ ] ^ \ ] b � � � � f

Fig. 8. Performance of MBNPC system (experimental

case).

: ; < : < ;= � := ` := } ::} :` :� :
? @ A B C D EF GH GIGJKGLJMN OP QOPRS T U V W V X V Y Z V[ \ ] ^ \ ] b � � c d e f[ \ ] ^ \ ] b g e f

Fig. 9. Performance of MBNPC system with online esti-

mator (experimental case).
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APPENDIX A

1. Proof of Equation (39)

It is obtained from (18) that

Λ̄ = I −Λ =

[

Λ̄11 Λ̄12

Λ̄21 Λ̄22

]

(A,1)

where

Λ̄11 =



















λ̄1 λ̄2 a3 · · · ana 0 −b0 −b1

−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · −1 1 0

K2 −K1 K1 0 · · · 0 0 0



















∈ R
(na+2)×(na+2)

Λ̄12 =

[

−b2 −b3 · · · −bnb
0

0(na+1)×nb

]

∈ R
(na+2)×nb

Λ̄21 =

[

0 0 · · · 0 −1

0(nb−1)×(na+2)

]

∈ R
nb×(na+2)

Λ̄22 =



















1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 1 0

0 0 0 · · · −1 1



















∈ R
nb×nb

λ̄1 = 1+a1 −b0(K1 −K2), and λ̄2 = a2 +b0K1.

Then, the Schur complement of Λ̄22 is

SΛ̄22
= Λ̄11 − Λ̄12(Λ̄22)

−1Λ̄21

=



















λ̄1 λ̄2 a3 · · · ana 0 −∑
nb
j=0 b j

−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · −1 1 0

K2 −K1 K1 0 · · · 0 0 0



















.

(A,2)

Since
∣

∣Λ̄22

∣

∣ 6= 0 and

∣

∣

∣
SΛ̄22

∣

∣

∣
= K2 ∑

nb
j=0 b j 6= 0, from [24],

we have

Λ̄−1 =





S−1

Λ̄22
−S−1

Λ̄22
Λ̄12Λ̄−1

22

−Λ̄−1
22 Λ̄21S−1

Λ̄22
Λ̄−1

22 Λ̄21S−1

Λ̄22
Λ̄12Λ̄−1

22 + Λ̄−1
22





(A,3)

with S−1

Λ̄22
(1,1)=0, S−1

Λ̄22
(1,na+2)=1/K2, where S−1

Λ̄22
(i, j)

denotes the element of S−1

Λ̄22
in the ith row and jth column.

With Γ=
[

b0K2 01×na K2 01×nb

]T
in (18), it is ob-

tained from (39) and (A,3) that

y∞ = IyΛ̄−1Γr̄ = r̄. (A,4)

Thus, Equation (39) is proved.
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