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Abstract: In the coming years, there will be more usage of the millimetre/sub-millimetre frequencies due to congestion of the lower frequen-
cies. At these frequencies, precipitation greatly affects the quality of service, by attenuating signals, hence the need for a thorough study and
understanding in order to design mitigation techniques for improved signal quality. Previous studies modelled rainfall data using mostly uni-
modal statistical distributions, which may not fit multimodality encountered in the data. This paper looks at the prediction of the number of
modes, given rain rates and wind speeds by looking at the occurrence of multimodality in rainfall data captured at Chilbolton Observatory,
southern England from 2003 to 2009. From the drop size distributions, it develops a novel model based on the Gaussian mixture model. This
enables the multimodal distributions observed by various researchers to be modelled. It provides expressions for calculating model parameters
as a function of rain rate, R (mm/h) and wind speed,W (m/s). The model parameters include number of modes Nm, standard deviation σ1–σm of
each mode along with corresponding means, μ1–μm. The study concludes that multimodality exists, and the average number of modes tends to
increase with increasing wind speeds and rain rates.
1 Introduction

Modern communication systems rely heavily on frequencies above
10 GHz as the lower bands are now congested. These also provide
for higher data rate and larger transmission bandwidths as well as
reduced interference potential and smaller equipment sizes [1]. At
these higher frequencies, precipitation, especially rain, plays a
great role as raindrops absorb and scatter radiowave energy
leading to a degradation in the quality of signals. The systems
designers need a thorough understanding of the rainfall rate and
drop size distribution (DSD) if they want to make optimal use of
available bandwidth.
The designer needs a proper estimate of the attenuation as over-

estimating leads to a waste in resources while under-estimating may
lead to system outages. To design reliable systems, the engineers
need a reliable prediction of how precipitation will affect transmit-
ted signals. Modelling of the rainfall DSD gives the designer a re-
liable prediction of the rain attenuation and allows providers to
design mitigation techniques to counter attenuation due to rain
events. Recent work suggests multimodal distributions may be
needed to accurately model the rainfall DSD. This paper examines
how the prevalence of multiple modes varies with weather para-
meters such as wind speed and rain rate, and presents a model for
the prediction of the number of modes based on the rain rate and
the wind speed.
As discussed in the next section, there seems to be evidence of

multimodality in the captured rainfall data. Ekerete et al [2]
propose using a Gaussian mixture model (GMM) with multiple
modes as a possible multimodal model. However, they do not rec-
ommend a set number of modes and this paper investigates how the
number of modes varies with wind speed and rain rate.

2 DSD modelling

2.1 Standard statistical models

The rainfall DSD, N(D) [in cubic metres per millimetres (m−3

mm−1)] is defined as the number of raindrops per unit volume per
unit diameter centred on D (in mm). N(D) dD, expressed in m−3,
is the number of such drops per unit volume having diameters in
the infinitesimal range (D–dD/2, D + dD/2) [2].
J Eng 2016
doi: 10.1049/joe.2016.0013

This is an open
Several standard classical statistical distributions have been sug-
gested as models that will best describe N(D) (the drop densities),
given that the drop diameter is a continuous, non-negative quantity.
Marshall and Palmer [3] suggested that N(D) can be represented as

N D( ) = N0 exp −LD( ), 0 , D ≤ Dmax (1)

where Dmax is the biggest measured drop diameter, and that

L = aRb (2)

where Λ (in mm−1) is a function of the rainfall rate R (mm/h). Their
data gave N0 = 8000 mm−1 m−3, in (1), and α = 4.1, β =−0.21 in
(2). They however go on to state that the relationship fails for
small rainfall drop diameters (D < 1.5 mm).

Further studies however show that these small sized drop dia-
meters do contribute to rain attenuation in the millimetre and sub-
millimetre radio wave transmissions [4]; hence, some other DSD
model is needed that accurately describes the relative count of
these small drops.

Other later researchers modelled rainfall data using the lognormal
distribution [5–8]. The lognormal distribution for the number of
drops in a given volume is given in the general form

N D( ) = NT����
2p

√
sg(D− u)

exp −
ln D− u( ) − mg

( )2
2s2

g

⎡
⎢⎣

⎤
⎥⎦ (3)

where θ is the offset value and generally taken to be zero, and σg, μg
are the geometric standard deviation and geometric mean,
respectively.

Ulbrich and Atlas [9] showed that a gamma distribution yielded
better rainfall rate computations when combined with radar data.
They used a gamma distribution described in the form given as

N D( ) = NTD
m exp −LD( ), 0 ≤ D ≤ Dmax (4)

with Λ, µ and NT as the slope, shape and scaling parameters,
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respectively, and these allow for the characterisation of a wide range
of rainfall scenarios. The exponential distribution is a special case
of the gamma distribution with µ = 0. Ulbrich and Atlas [9] do
not actually claim the DSD is a gamma distribution, but simply
that a gamma distribution yields more accurate rainfall rate computa-
tions. They accept that other distributions might serve equally well.

It should be noted that these three standard models for DSDs are
all unimodal. Whilst these standard unimodal distributions dis-
cussed may give accurate rainfall predictions derived from the
DSD, studies show that these distributions do not give satisfactory
(with 95% confidence) fits for the data [2]. There rises the need for a
distribution that will cater for not just the unimodal data, but also for
the multimodal data encountered in the data analysis.

2.3 Multimodality in the DSD

Multimodality has been observed in the DSD by previous workers
[10–12]. Sauvageot and Koffi [11] attribute the presence of multi-
modality in DSDs to the overlapping of different rain shafts result-
ing from cloud volumes at different heights, and they also show that
the number of peaks, Nm, of a DSD depends on the rain rate varia-
tions, and not on the mean rain rate, but this was for rain withDi > 2
mm, where large Nm are inversely related to values of the slope par-
ameter, λ and with large values of the intercept, N0 of the exponen-
tial distribution. Steiner and Waldvogel [10] also studied
multimodal behaviours in DSDs and reported that these modes
existed for different drop size diameters in convective rain
regimes. Radhakrishna and Narayana Rao’s [12] study indicated
that the appearance of multimodal distributions in the DSDs are de-
pendent on the height, and varies with different rain systems, with
multimodal distributions frequently encountered in convective rain
systems. They classified the rain systems as convection, stratiform
and transition. This paper however classes rain regimes as light,
moderate, heavy and very heavy.

McFarquhar [13] says that multimodal peaks are observed in
computed models, but not systematically in physical data. Åsen
and Gibbins[14] argue about the existence of multimodal peaks
in observed rainfall, and say that the presence of multimodal
peaks may be due to an error in the calibration of the bins.
McFarquhar and List [15] recompute the bin boundaries based
on the recalibration of the RD-69 disdrometer done at the
Laboratory of Atmospheric Physics at the Eidgenössische
Technische Hochschule (ETH) in Zurich, Switzerland [14].
However, Ekerete et al [16] showed that even with the ETH calibra-
tion there was still the presence of multimodality, and not just a con-
sequence of the instrumental artefacts as it compared the
Distromet® (manufacturers of the disdrometer) calibration with
the ETH’s recalibration. This paper, however relies on the ETH
recalibration of the bins boundaries.

Steiner and Waldvogel [10] define a frequency as a mode if ‘…
the concentration of raindrops per unit volume and unit diameter
interval of a given interval was significantly larger than the concen-
trations of the two neighbouring diameter intervals’. Sauvageot and
Koffi [11] and Radhakrishna and Narayana Rao [12] similarly treat
N(Di) as a mode if N(Di−1) < N(Di) > N(Di+1), where N(Di) is the
density of drops with diameter Di, and Di are the diameters mea-
sured by the disdrometer.

This definition, while valid overlooks the issue of sampling from
a distribution. A random sample drawn from a distribution may be
multimodal even though the underlying distribution is unimodal.
This is just a consequence of the ‘noisy’ nature of the sample.
We can reduce this effect by merging neighbouring bins.

This paper however employs a more robust method to determine
the number of modes in a multimodal distribution by identifying
each individual mode from the troughs surrounding it. N(Di) is
defined as a trough, when

N Di−1

( )
. N (Di) , N (Di+1) , N (Di+2) (5)
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This ensures a steady rise to determine the beginning of the next
cluster.

To establish that the reported multimodality in DSD is not merely
an artefact of the impact disdrometer employed at Chilbolton,
England, this paper also examined 1587 1 min DSDs recorded at
Graz, Austria (47.1° N, 15.6° E) using a two-dimensional (2D)
video disdrometer over the period 22–25th May 2015. This
dataset was treated the same way as the Chilbolton dataset. Even
when five contiguous bins were merged, the result showed that
440 (i.e. more than a quarter) of these DSDs were multimodal. A
sample DSD from this dataset with a GMM fit is shown in Fig. 1.

3 Data and procedure used in this paper

3.1 Data collection

This paper utilised data captured by the RD-69 Joss–Waldgovel
impact disdrometer located at the Chilbolton Observatory in south-
ern England (51.1°N, 1.4°W) between April 2003 and December
2009. The disdrometer works by converting the vertical momentum
of an impacting raindrop into an electrical pulse, and estimating the
diameter of the raindrop from the amplitude of the pulse. The disd-
rometer has a surface area of 50 cm2 and measures raindrop dia-
meters from 0.3 to 5.1 mm in 127 gradations, or bins, sampling
at 10 s intervals. The lower limits of the 127 size classes are distrib-
uted exponentially over the range of drop diameters and the accur-
acy rate of the readings is ±5% of measured drop diameter [17]. The
127th bin measures drops with diameters above a certain size, rather
than within a small interval so is not used in this paper.

The volume drops distribution was estimated as [18, 19]

Nm Di, t
( ) = ni(t)

A · Dt · vi · DDi

(6)

where at a discrete time instant t, Di is the central drop diameter of
the ith channel, ni(t) is the total drop count in that channel, A is the
exposed area of the disdrometer’s sensor, Δt is the time interval,
ΔDi is the width of the bin and vi is the terminal fall velocities of
the raindrops [a function of the raindrop’s diameter, Di (in mm)],
given as [20–22]

vi = 9.65− 10.3 exp −0.6Di

( )
(7a)

We however note that different workers [18, 19, 23] have used the
equation

vi = 3.78 D0.67
i (7b)

Both equations are derived from the measurements of Gunn and
Kinzer [24]. This paper uses (7a).

The largest recorded drop diameter for the period under consid-
eration was 4.79 mm, while the mean temperature was 9.7°C
(proving it was not frozen). Our study shows that using (7b) as
the reference, there is an 8.46% difference between both equations
for the drop size range (0.3–4.79 mm) measured in this dataset. The
difference is biggest with small drops with diameters below 0.6 mm
and with large drops with diameters above 4.1 mm. Since most of
our analysed data fall within the range of 0.6 and 4.0 mm, we
may conclude that there is not much difference between the two
equations for our dataset.

3.2 Possible errors

There are a number of possible sources of error in the JWD disd-
rometer measurement [25]. The effect of wind on an impact disd-
rometer is an issue, and this may affect both volume size and
number concentration [25, 26]. The horizontal component of the
wind is not a problem as it does not directly affect fall velocity,
but the vertical turbulence also increases with wind speed. The
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Fig. 1. Multimodal DSD from a 2D video disdrometer at Graz, Austria
up- and down-draughts caused by turbulence will affect the actual
fall speed of the particle, so the assumption that it is falling at ter-
minal velocity is invalid. To some extent, the velocity differences
will work to both increase and decrease the measured momentum,
and hence the assigned size bin of the drops, but some errors are
likely to remain. The effect will be worst for small drops which
already have a small terminal velocity.
The authors considered the effect of large and small drops falling

simultaneously on the disdrometer and the breaking of large drops
into smaller drops by re-splashing after the first impact had been
recorded, thereby increasing the count of smaller drops. Recall
that the disdrometer converts the momentum of the drops to a pre-
determined voltage rating to determine the diameter of the drops.
The smaller drop may be masked by the larger drop, depending
on the time delay. The effect is likely to be negligible except at
very high rain rates. The smaller secondary drops are also unlikely
to be included in this analysis as they are not falling at terminal vel-
ocity and so would be assigned to a smaller bin than their true size.
Table 1 Summary of results for average number of modes at different rain rates a

Wind types Wind speeds Light rain
R < 2 mm/h

calm W < 1 m/s 1.424
light air 1 < =W<2 1.461
light breeze 2 < =W<3 1.438
gentle breeze 3 < =W<5 1.431
moderate breeze 5 < =W<8 1.426
fresh breeze 8 < =W<11 1.543
strong breeze 11 < =W<14 1.741
near gale 14 < =W<17 1.940
gale 17 < =W<21 2.109
severe gale 21 < =W<24 1.667

all wind speeds 1.469
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‘Dead time’, the time it takes for the disdrometer to reset itself
after the impact of a drop, may also be considered a problem
with the disdrometer. The dead time is longer for larger drops.
This effect will be more significant at higher rain rates. It would
tend to produce a nearly constant error across the DSD, and there-
fore should not affect its multimodality.
3.3 Procedure

This paper aggregated six 10 s samples into a 1 min sample to
achieve a larger sample size. This implicitly assumes that the under-
lying distribution is approximately stationary over a 1 min time-
scale. This is the approach taken by previous workers [18, 19, 27].

Furthermore, three adjoining bins were merged to smooth the
data. Merging too many bins will result in the loss of the data’s
resolution. It should be noted that Radhakrishna and Narayana
Rao [12] worked with a 5 min distribution interval, rather than
our 3-bin merge within 1 min distribution intervals.
nd wind speeds

Moderate Heavy/very heavy All rain rates
2 < =R < 10 R > =10 mm/h

1.932 2.226 1.521
1.997 2.256 1.554
1.889 2.457 1.522
1.792 2.344 1.498
1.789 2.166 1.497
1.986 2.369 1.636
2.184 2.739 1.839
2.485 3.091 2.084
2.553 3.500 2.283
2.333 4.000 2.286
1.882 2.327 1.549
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Given the unreliability of small diameter drops [2, 28], even with
more sophisticated instruments than the impact disdrometer [28], all
bins with drop diameters <0.6 mm were eliminated from the data
under consideration.

For each of the 1 min samples, the drop concentrations were
derived using (6) with the terminal drop speed as in (7a). On the
basis of the definition of a mode given in (5), the number of
modes in each 1 min distribution was determined, with the
maximum number of modes capped at four.

The paper determined the average number of modes amongst the
different wind type and rain rates. The rain types were classed as
light (with rain rates from the threshold 0.1 to 2.0 mm/h), moderate
(2 to 10 mm/h) and the merge of heavy and very heavy rain due to
very little data in the latter (rain rates above 10 mm/h). The wind
speeds were classified from calm (<1 m/s) to severe gale (21–24
m/s) as shown in Table 1. The average of the number of modes
in each delineated group was derived.

A correlation of the average rain rate and the average of the
number of modes in each rain type for all wind speeds were com-
puted, with a multiple linear regression derived to determine the re-
lationship between the number of modes and the rain rates and wind
speeds.

A multiple linear regression was then fitted between the vari-
ables, where each range of rainfall rates was represented by its
average value.

For each 1 min DSD, the number of modes determined was taken
as the observed number of modes, whereas the number of modes
given by (9) was taken as the predicted number of modes. Each
of the 1 min DSDs was fitted with a GMMwith the number of clus-
ters determined by the predicted and observed number of modes.

The probability density function for a GMM is of the form [2]

p(D) =
∑k
i=1

wi ·
1

D
exp − ln(D)− mi

( )2
2s2

i

[ ]
(8)

where μi and σi are the mean and standard deviation of the ith mode,
respectively, and the weights wi have the property

∑k
i=1 wi = 1.

The GMM was modelled in the log domain. For each rain regime
(i.e. light, moderate and heavy/very heavy) the average values of
μi, σi and wi were computed.
Fig. 2. Average number of modes for different rain rates and wind speeds
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4 Results and interpretations

On the basis of the data and methodology described in Section 3
above, the average number of modes was derived, and the results
are as shown in Table 1. Fig. 2 shows a graphic of the same
information.

Results show that the average number of modes for the entire data
is 1.549, and that the number of modes tends to increase with in-
creasing rain rates and wind speeds.

It is noteworthy that the result showed the lowest average as
1.424, slightly over unimodality, giving credence to the assertion
that multimodality is prevalent in the data.

The multiple linear regression showed that given the rain rate, R,
and the wind speed, W, the number of modes, Nm, can be predicted
as

Nm = 1.3096+ 0.0543 · R+ 0.0456 · W (9)

It should be pointed out that even though the computations in this
paper assumes a non-integral number of modes, the practical appli-
cations would however require that the usable number of modes be
rounded to the nearest integer. Using non-integral modes in this
paper however ensures that much information is not lost by round-
ing the number of modes to the nearest integer.

From the results as presented, a correlation was drawn between
the rain rates and the number of modes as well as the wind
speeds and the number of modes. Results show a strong correlation
(0.9) each between the average number of modes and wind speeds
as well as the rain rates.

Equation (9) shows the individual contribution of each of the
quantities to the total number of modes. Fig. 3 shows the DSD
for 26th July 2007 at 14:10 with a fit of the GMM using the
observed and predicted number of modes. This figure shows an ob-
servation of one mode, whereas two modes are predicted from (9).
The top panel shows the individual Gaussians that make up the
GMM (one for observation and two for the prediction), whereas
the bottom panel compares the GMMs for both observed and pre-
dicted number of modes.

To determine the agreement of the prediction with the observed
data, a root mean square percentage error (rmspe) was computed
between the observed number of modes and the predicted number
Commons J Eng 2016
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Fig. 3. GMM fits for the new model based on the predicted number of modes
of modes, and the result gave an rmspe of 35.4%, where the rmspe
is given as

rmspe =

��������������������������������������
1

N

∑
∀i

Mpi
− Moi

Moi

× 100

( )2
⎡
⎣

⎤
⎦

√√√√√ (10)
Table 2 Average μi, σi and wi for GMM fits for different rain rates

Rain rates: 0.10–2.00 m

Average µ

Number of modes μ1 μ2 μ3 μ4 σ1

1 0.8143 — — — 0.1688
2 0.8017 1.1503 — — 0.1222 0
3 0.7744 1.0234 1.3795 — 0.0987 0
4 0.7567 0.9632 1.2075 1.539 0.0891 0

Rain rates: 2.00–10.00 mm

Average µ

Number of modes μ1 μ2 μ3 μ4 σ1

1 0.9677 — — — 0.2787
2 0.8566 1.3087 — — 0.1593 0
3 0.8336 1.1673 1.5617 — 0.1309 0
4 0.8086 1.0863 1.4068 1.8119 0.1189 0

Rain rates: 10.00–100.00 mm/h

Average µ

Number of modes μ1 μ2 μ3 μ4 σ1

1 1.2212 — — — 0.3427
2 1.0382 1.6921 — — 0.2036 0
3 0.9765 1.4806 2.036 — 0.1817 0
4 0.9895 1.3736 1.7071 2.2871 0.1888 0
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where Mp and Mo represent predicted and observed number of
modes, respectively, and N is the sample size.

Table 2 shows the average values of μi, σi and wi in each of the
rain rate regimes. It can be seen that the spread of cluster centres (i.
e. the range from μ1 to μ4, for example) increases with rain rate.
Furthermore, the clusters are approximately equally weighted.

It should be noted that though Table 1 shows a trend of increas-
ing number of modes with increasing rain rate, there were only 622
m/h (light rain)

Average σ Average weight

σ2 σ3 σ4 w1 w2 w3 w4

— — — 1 — — —
.1894 — — 0.506 0.494 — —
.1409 0.1701 — 0.3305 0.3661 0.3034 —
.1227 0.1513 0.1653 0.2526 0.2705 0.2472 0.2296

/h (moderate rain)

Average σ Average weight

σ2 σ3 σ4 w1 w2 w3 w4

— — — 1 — — —
.246 — — 0.4834 0.5166 — —
.1806 0.2258 — 0.324 0.3471 0.3289 —
.1649 0.1862 0.2295 0.2441 0.275 0.2579 0.223

(heavy/very heavy rain)

Average σ Average weight

σ2 σ3 σ4 w1 w2 w3 w4

— — — 1 — — —
.2629 — — 0.4458 0.5542 — —
.2135 0.2331 — 0.3182 0.3603 0.3215 —
.2096 0.1946 0.2201 0.2361 0.257 0.2607 0.2463
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Table 3 Model equations for μi, σi and wi at various number of modes

Mode μs σs Weights

1 μ1 = 0.0207 · R + 0.8420 σ1 = 0.0079 · R + 0.2027 w1 = 1
2 μ1 = 0.0127 · R + 0.8008 σ1 = 0.0040 · R + 0.1309 w1 = – 0.0031 · R + 0.5019

μ2 = 0.1651 · R + 2.1149 σ2 = 0.0030 · R + 0.2935 w2 = 1 –w1

3 μ1 = 0.0106 · R + 0.7793 σ1 = 0.0042 · R + 0.1048 w1 = – 0.0006 · R + 0.3287
μ2 = 0.0560 · R + 1.8921 σ2 = 0.0066 · R + 0.1604 w2 = – 0.0003 · R + 0.3606
μ3 = 0.1320 · R + 2.6679 σ3 = 0.0008 · R + 0.2629 w3 = 1 – (w1 +w2)

4 μ1 = 0.0126 · R + 0.7548 σ1 = 0.0052 · R + 0.0920 w1 = – 0.0014 · R + 0.2367
μ2 = 0.0415 · R + 1.7732 σ2 = 0.0044 · R + 0.1796 w2 = – 0.0009 · R + 0.2664
μ3 = 0.0781 · R + 2.2031 σ3 = 0.0029 · R + 0.2267 w3 = 0.0013 · R + 0.2495
μ4 = 0.1522 · R + 3.0179 σ4 = – 0.0007 · R + 0.2473 w4 = 1 – (w1 +w2 +w3)
four-mode DSDs at high rain rate, which represents only ∼3% of
the dataset, and may therefore be considered too small a sample
size for a reliable conclusion to be drawn.

On the basis of the results in Table 2, regression analyses were
carried out to derive linear relationships between rain rate and the
GMM model parameters μi, σi and wi. The resulting model equa-
tions are presented in Table 3.

The fundamental result here is that multimodality does occur sig-
nificantly often, particularly at higher rain rates and increases with
rain rates and wind speeds, and the number of modes can be pre-
dicted by (9). The set of equations given in Table 3 serves as a
tool in the prediction of the basic parameters of the GMM model.
5 Conclusions

This paper has looked at statistical models with a need to modelling
the rainfall DSDs for proper systems planning. In the measurement
of the DSDs, multiple modes were observed, and since standard
statistical models do not make room for these multiple modes,
this paper has suggested the GMM, with a hope of providing
better estimates for the DSDs. Here, modes are redefined, with a
trough taken as the end of a mode, a departure from the traditional
definition of a peak determining a mode.

Data used are from Chilbolton Observatory from 2003 to 2009,
and multimodality was established as present, and not just an instru-
mental artefact. Bins were merged for better results, and the effect
of the loss of resolution due to the merge minimised by the number
of bins merged.

Whilst the limitation of the measuring instrument is acknowl-
edged, the effect of wind on the disdrometer is an issue that
needs to be explored further. This paper eliminated drop diameters
of <0.6 mm, as the drop counts for these sizes may be unreliable.

The results show that the number of modes increases with both the
wind speeds and rain rates, and a strong correlation (0.9) was found
between the average number of modes and rain rates as well as
between the average number of modes and wind speeds. The work
goes on to define a model (9) determining the expected number of
modes, given the rain rate and the wind speed. On the basis of
these, the parameters μ, σ and weight of the GMM can be derived.
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