
ar
X

iv
:1

50
2.

03
34

1v
2 

 [
m

at
h.

G
R

] 
 2

0 
O

ct
 2

01
5

ON A CONJECTURE OF DEGOS

NICK GILL

Abstract. In this note we prove a conjecture of Degos concerning groups generated
by companion matrices in GLn(q).

Let F be a field, and let f ∈ F[X] be a polynomial of degree n, i.e.

f(X) = anX
n + an−1Xn−1 + · · ·+ a1X + a0

where a0, . . . , an ∈ F. Recall that the companion matrix of f is the n× n matrix

Cf :=



















0 · · · · · · · · · 0 −a0
1 0 0 −a1
0 1 0 0 −a2
...

. . .
. . .

. . .
...

...
...

. . . 1 0 −an−2

0 · · · · · · 0 1 −an−1



















.

The matrix Cf has the property that its minimal polynomial and its characteristic
polynomial are both equal to f . Conversely, if g ∈ GLn(F) has minimal polynomial
and characteristic polynomial both equal to some polynomial f , then g is conjugate in
GLn(F) to Cf .

Recall in addition that if F has order q and f ∈ F[X] has degree n, then f is called
primitive if it is the minimal polynomial of a primitive element x ∈ F. In [Deg13],
J.-Y. Degos makes the following conjecture.

Conjecture 1. Let F be a field of order p a prime, let g = Xn − 1 and let f ∈ F[X]
be a primitive polynomial of degree n. Then 〈Cf , Cg〉 = GLn(p).

We will prove a stronger version of this conjecture. Specifically, we prove the fol-
lowing.

Theorem 1. Let F be a finite field of order q and let f, g ∈ F[X] be distinct polynomials
of degree n such that f is primitive, and the constant term of g is non-zero. Then
〈Cf , Cg〉 = GLn(q).

For the rest of this paper F is a finite field of order q.

1. Field-extension subgroups

Let K = F(α) be an algebraic extension of F of degree d. Let W = K
a, and observe

that W is both an a-dimensional vector space over K and an ad-dimensional space over
F.
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2 NICK GILL

A K/F-semilinear automorphism of W , φ, is an invertible map φ : W → W for
which there exists σ ∈ Gal(K/F) such that, for all v1, v2 ∈ W and k1, k2 ∈ K,

φ(k1v1 + k2v2) = kσ1φ(v1) + kσ2φ(v2).

We define a group

ΓLK/F(W ) = {φ : W → W | φ is a K/F-semilinear automorphism of W}.

The group ΓLK/F(W ) can be written as a product GLa(K).F where F is a cyclic group
of degree d generated by the automorphism

W → W, (w1, . . . , wd) 7→ (wq
1, . . . , w

q
d).

We will refer to elements of F as field-automorphisms of W .
Now, for B = {v1, . . . , vad} an ordered F-basis of W and φ ∈ ΓLK/F(W ), we define

the following matrix

(φ)B =
[

φ(v1) φ(v2) · · · φ(vad)
]

.

It is a well-known fact that the map

ΦB : ΓLK/F(W ) → GLad(q), φ 7→ (φ)B

is a well-defined injective group homomorphism, the image of which is a group E known
as a field-extension subgroup of degree d in GLad(q). Indeed, more is true: if we define

θ : W → F
ad, w 7→ [w]B,

and consider ΦB to be a map ΓLK/F(W ) → E, then the pair (Φ, θ) is a permutation
group isomorphism. (Here, and throughout this note, we consider groups acting on
the left.)

Note that the group ΓLK/F(W ) contains a unique normal subgroup N isomorphic
to GLa(K). Then H = ΦB(N) is a subgroup of GLad(q) isomorphic to GLa(K) and,
writing G = GLad(q), one can check that NG(H) = E, the associated field-extension
subgroup. (To see this, note, firstly, that E 6 NG(H) 6 NG(Z(H)); now [KL90,
Proposition 4.3.3 (ii)] asserts that NG(Z(H))) = E and we are done.)

2. Singer cycles

Recall that a Singer subgroup of the group GLn(q) is a cyclic subgroup of order
qn − 1. In this section we prove the following lemma.

Lemma 2. Let g ∈ GLn(q) and let f be its minimal polynomial. Then 〈g〉 is a Singer
subgroup if and only if f is primitive of degree n.

What is more, if S = 〈g〉 is a Singer subgroup, then 〈g〉 is conjugate to 〈Cf 〉, and
S = ΦB(GL1(K)), where K is a degree n extension of F, and B is an ordered F-basis
of K.

Proof. Suppose that S = 〈g〉 is a Singer subgroup. Then g contains an eigenvalue α
that lies in K, a degree n extension of F, and no smaller field. What is more, since g
has order qn − 1, so does α and so the minimal polynomial of g is primitive of degree
n as required.
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Suppose, on the other hand, that f is primitive of degree n. Then the eigenvalues

of g are α,αq , . . . , αqn−1

; in particular they are all distinct. Elementary linear algebra
implies that g is conjugate to Cf , the companion matrix of f . It is enough, then, to
prove that 〈Cf 〉 is a Singer cycle.

Let α be a primitive element of degree n over F and a root of f ; let K = F(α),
an extension of F of degree n. We construct a field-extension subgroup G of de-
gree n in GLn(q) as the image of the map ΦB : ΓLK/F(K) → GLn(q) where B =

{α,α2, . . . , αn−1}.
By constructionH is isomorphic to ΓLK/F(K) and, in particular, contains a subgroup

isomorphic to GL1(K) ∼= K
∗. This subgroup is cyclic of order qn − 1 and is generated

by the invertible linear transformation

Lα : K → K, x 7→ α · x.

Now our construction guarantees that ΦB(Lα) = Cf and we conclude, as required, that
Cf generates a cyclic subgroup of GLn(q) of order q

n − 1. In fact we have shown that
〈Cf 〉 = ΦB(GL1(K)) and the final statement follows. �

3. Two companion matrices

Lemma 3. Let H be a field-extension subgroup of degree a in GLad(q). A non-trivial
element of H fixes at most (qa)d−1 elements of V = (F)ad.

Proof. We observed in §1 that the action of H on V is isomorphic to the action of
ΓLK/F(W ) on W = K

a where K is a degree d extension of F. Thus we set φ to be a
non-trivial element of ΓLK/F(W ).

If φ lies in GLa(K) and is non-trivial, then basic linear algebra implies that the
fixed-point set is a proper K-subspace of W and so fixes at most (qa)d−1 elements of
W .

Suppose that φ does not lie in GLa(K). Thus we can write φ = hσ where h is linear
and σ is a non-trivial field automorphism of W that fixes (F)a.

Thus if v ∈ K
a and vφ = v we obtain immediately that vh = vσ

−1

. Now if c is a

scalar that is not fixed by σ, then we obtain immediately that (cv)h 6= (cv)σ
−1

. Since v
and c were arbitary we conclude immediately that g fixes at most (qb)d elements where
b is some proper-divisor of a. The result follows. �

Corollary 4. If Cf and Cg are companion matrices of distinct monic polynomials
f, g ∈ F[x] of degree n, then 〈Cf , Cg〉 does not lie in a field-extension subgroup of
GLn(q).

Proof. We consider the action of GLn(q) on V = F
n. Observe that the images of the

first n − 1 elementary basis vectors are the same for both Cf and Cg. In particular,

then, the matrix C−1
f Cg fixes the F-span of these n − 1 vectors and so fixes at least

qn−1 vectors. The previous lemma implies that, since Cf 6= Cg, we can conclude that
〈Cf , Cg〉 is not a subgroup of a field-extension subgroup of GLn(q). �
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4. A result about subgroups

To complete the proof of Theorem 1 we will need the result below, Theorem 6. In
an earlier draft of this article, we attributed this result to Kantor [Kan80]. We are
grateful to Peter Mueller who pointed out that Kantor’s result relies on another paper
– [CK79] – which has subsequently been found to contain a number of errors.

In fact it is clear that the errors in [CK79] are not fatal and that, with a little
adjustment, the result still holds [Cam]. However, since no proof exists in the literature,
we will sketch one below. Our approach uses a theorem of Hering [Her85], a proof of
which can be found in [Lie87, Appendix 1]. The disadvantage of our proof is that it
relies on the Classification of Finite Simple Groups (CFSG), which Kantor’s original
approach did not.

Lemma 5. Suppose that S is a Singer cycle in GLn(q). Then, for each integer d
dividing n, there is a unique field-extension subgroup ΦB(ΓLK/F(W )) (where K is a
field extension of F of degree d) that contains S.

Proof. LetH be a subgroup of GLn(q) that contains S and suppose thatH ∼= GLn/d(q
d)

for some divisor d of n. Now S is a Singer cycle in H and so S = ΦC(GL1(L)) where
L is a degree n/d extension of Fqd .

Write Z for the unique subgroup of S of order qd − 1. Direct calculation confirms
that Z coincides with the center of H. Thus H 6 CGLn(q)(Z). But Z is precisely the
Fqd-scalar maps on L, and so (as we saw earlier, using [KL90, Proposition 4.3.3(ii)])
NGLn(q)(Z) is a field-extension subgroup ΦB(ΓLK/F(L)) where K is a field extension of
F of degree d. But now H must be the unique normal subgroup of this field-extension
subgroup that is isomorphic to GLn/d(q

d) and we are done. �

In the proof above we refer to two ordered F-bases of L, namely B and C. It is an
easy exercise to see that we can take B to be equal to C.

Theorem 6. Let L be a proper subgroup of G = GLn(q) that contains a Singer cycle.
Then L contains a normal subgroup H isomorphic to GLa(q

c) with n = ac and c > 1.
What is more H is equal to ΦB(GLa(K)) for K some field extension of F of degree c,
and B some ordered F-basis of Ka.

Proof. It is convenient, first, to deal with the case when n = 2. If L lies inside the
normalizer of a non-split torus, then L contains a normal subgroup H ∼= GL1(q

2), as
required. Furthermore, order considerations imply that L is a subgroup of neither the
normalizer of a split torus, nor a Borel subgroup of GL2(q).

The remaining subgroups of GL2(q) can be deduced from a classical theorem of
[Dic58]. In particular, L ∩ SL2(q) is isomorphic to either A4, S4, A5 or a double cover
of one of these. In particular the maximal order of an element of L ∩ SL2(q) is 10.
Since L ∩ SL2(q) must contain an element of order q + 1, we conclude that q 6 9.
Now computation in the remaining groups (using, for example, [GAP15]) rules out the
remaining possibilities.

Assume, then that n > 3, and we refer to Hering’s Theorem, as presented in [Lie87,
Appendix 1]. This result lists those subgroups of GLℓ(p) (for ℓ ∈ Z

+) that act transi-
tively on the set of non-zero vectors of (Fp)

ℓ. Since G embeds naturally (inside a field
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extension subgroup) in GLℓ(p) for ℓ = n logp q and, since a Singer cycle acts transi-

tively (via this embedding) on the set of non-zero vectors in (Fp)
ℓ, this list contains all

the possible groups L. In what follows we fix a field-extension embedding

ΦD : G →֒ GLℓ(p)

for ℓ = n logp q, and D an ordered Fp-basis of (F)
n. We obtain an associated action on

the vector space V = (Fp)
ℓ, and apply the theorem.

According to Hering’s Theorem, the group L lies in one of three class (A), (B) and
(C). Given that ℓ > n > 3, the classes (B) and (C) reduce to the following possibilities:

(1) L = A6, A7 or SL2(13); G = GL4(2),GL6(3) or GL3(9).
(2) L has a normal subgroup R ∼= D8 ◦Q8, L/R 6 S5 and G = GL4(3).

In the first case, we note that all elements of L have order less than or equal to 14,
and this case is immediately excluded. Similarly, in the second case, all elements of L
have order less than or equal to 48, and this case is immediately excluded.

We are left with groups in Liebeck’s class A. These come in four families; we examine
them one at a time. For family (1), L is a subgroup of the normalizer of a Singer cycle.
The result follows immediately in this case. For the remaining families, L has a normal
subgroup N isomorphic to SLa(q0), Spa(q0) or G2(q0) with q0 = pd and ℓ = ad.

By examining the proof in [Lie87], we find that, in all cases, L lies in a field-
extension subgroup ΦC(ΓLK0/Fp

(W )) of GLℓ(p), for K0 some field extension of Fp of

degree d ∈ Z
+ and C some ordered Fp-basis of W = (K0)

a. What is more q0 = qd and
N 6 ΦC(GLa(K0)).

In the symplectic case, this means that the action of N on (K0)
a yields the natural

module for Spa(K0) (see, for instance, [KL90, Proposition 5.4.13]. Now one can check
that an irreducible cyclic subgroup of Spa(q0) in the natural module has size dividing

q
a/2
0 + 1 (see, for instance, [Ber00]). Now Schur’s Lemma implies that an irreducible

cyclic subgroup of L has order dividing (q
a/2
0 + 1)2(q0 − 1) logp(q0). Since this must be

at least qa0 − 1, one immediately obtains that a/2 = 1 and, since Sp2(K0) ∼= SL2(K0)
we are in one of the remaining cases.

If G = G2(q0), then the proof in [Lie87] implies that, in fact, N is a subgroup of a
symplectic group Sp6(q0) that acts on (K0)

6 via its natural module. Thus this situation
can be excluded via the calculation of the previous paragraph.

We are left with the case where

N ∼= SLa(q0)⊳ L 6 ΦC(ΓLK0/Fp
(W )) 6 GLℓ(p).

Direct computation inside ΓLK0/Fp
(W ) confirms that, since L contains a cyclic group

of order pℓ − 1, L must contain M = ΦC(GL(W )) ∼= GLa(q0) as a normal subgroup.
Observe, then, that the Singer cycle S lies in two field extension subgroups of

GLd(p), namely NGLd(p)(G) and NGLd(p)(M). Notice, though, that by Lemma 2,
S = ΦB(GL1(L)) for some ordered Fp-basis B of L, a degree n extension of Fp. Clearly
the groups ΦB(ΓLF/Fp

(L)) and ΦB(ΓLK0/Fp
(L)) are also field extension subgroups that

contain S.
Now Lemma 5 implies that M = ΦB(GLa(K0)) and G = ΦB(GLn(F)). The second

occurrence of the monomorphism ΦB here is simply a restriction of the first; it is an
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easy exercise to check that, in this situation, M is a field-extension subgroup of G as
required. �

5. Proving Theorem 1

Observe that if f and g are as in Theorem 1, then they both have non-zero constant
term and hence are invertible and so lie in GLn(q). Now Lemma 2, Corollary 4 and
Theorem 6 imply that 〈Cf , Cg〉 does not lie in a proper subgroup of GLn(q). In other
words 〈Cf , Cg〉 = GLn(q), as required.
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