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Abstract

The output consensus problem of linear discrete-time multi-agent system-
s (DTMASs) with heterogeneous dynamics and a communication delay is
investigated in this paper. In order to remove the negative effects of the
communication delay, the networked predictive control scheme is introduced
to compensate for the network delay actively. A novel distributed protocol is
proposed with the predictions of agents’ outputs at current time, instead of
available outdated data. For DTMASs with heterogeneous agents and a con-
stant communication delay, the necessary and sufficient conditions of output
consensus are obtained while agents’ states are not measurable. Simulation
result is further presented to demonstrate the effectiveness of the theoretical
results.

Keywords: output consensus, multi-agent systems, networked predictive
control, discrete-time systems

1. Introduction

In recent years, the coordination control of multi-agent systems (MASs) is
a hot topic and has received spreading attention from various fields of science,
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including control engineering, mathematics, physics, robots and artificial in-
telligence. As a basic and important problem, the consensus of multi-agent
systems has been investigated extensively [1–3].

With the development of network technology, more and more networks
(e.g., the Internet and the Ethernet) have been applied to distributed con-
trol systems (See Figure 1). Although the networks make it convenient to
control large distributed systems, there are many control issues that occur in
conventional control systems, such as network delay and data dropout[4, 5].
However, time delay can degrade the performance of control systems and
even destabilize the system. Hence, a few research works on consensus prob-
lems of MASs with communication time delays have emerged recently[6, 7].
The idea of tackling communication delays is mainly categorized into pas-
sive acceptance approach and active compensation approach. The passive
acceptance approach means that delayed information is used directly. In the
active compensation approach, the prediction intelligence of each individual
is considered.

Agent 1

Agent 4

Agent 2

Agent 5

Agent 3

Agent N

Figure 1: Networked multi-agent systems of N agents.

When each agent lies in a closed convex constraint set, a novel approach
is proposed to tackle the consensus of MASs with unbalanced graphs and
bounded communication delays in [8]. The consensusability problem of
continuous-time MASs with time-varying communication delay was discussed
in [9], and a consensus protocol was designed based on the low gain solution
of a parametric algebraic Riccati equation. In [10], consensus problem for
MASs with second-order dynamics under delayed and intermittent commu-
nication was studied, by using Lyapunov approach and graph theory. Under
the condition that the union graph is strongly connected and balanced, the
consensus problem of discrete-time second-order MASs with bounded time-
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varying delays and time-varying topology was studied in [11]. Inspired by
numerous results on the predictive intelligence of natural bio-groups, [12] and
[13] proposed centralized and decentralized model predictive control protocols
for linear dynamic networks without leaders, which show that the predictive
protocols can accelerate consensus speeds and reduce sampling frequencies.
Also the work in [14] considered the input saturation constraints case and
proposed a decentralized predictive mechanism and predictive pinning con-
trol to achieve the consensus and improve consensus performance. Besides,
the consensus problem for MASs with communication delays is considered
by using the predictive control approach in [15–18]. For continuous-time
first-order and second-order multi-agent systems with an uniform constant
communication delay, a weighted average prediction was introduced into the
existing consensus protocol to simultaneously improve the maximum toler-
ant delay and consensus convergence speed in [15] and [16]. For DTMASs
with general linear dynamical nodes and a common constant network delay,
a distributed protocol was proposed to compensate for communication delay
actively, based on the networked predictive control scheme (NPCS) in [17],
and necessary and sufficient conditions of the consensus have been obtained.
And on this basis, the problem of consensus for DTMASs with non-uniform
linear dynamical nodes and a common constant network delay has been dis-
cussed in [18]. By using the NPCS and dynamic output feedback, sufficient
conditions of the consensus have been provided under mild assumptions in
[18]. Therefore, it is a promising topic how to improve the performance of
MASs by fully utilizing the prediction intelligence of each individual.

In this paper, the output consensus problem of linear DTMASs with
heterogeneous dynamics and a communication delay is considered, where the
dynamics systems are non-identical for different agents. By exploiting the
NPCS proposed by [19, 20], agents’ outputs at current time are predicted. A
novel distributed protocol is derived based on predictions of outputs, instead
of available outdated information, which can compensate for communication
delay actively. For DTMASs with heterogeneous dynamics and a constant
communication delay, the necessary and sufficient conditions are obtained to
ensure agents’ outputs to reach a common value. The proposed consensus
conditions are independent of the network delay and only dominated by
agents’ dynamics and communication topology.

The paper is organized as follows. Section 2 briefly reviews some pre-
liminaries of graph theory and formulates the problem to be investigated.
For DTMASs with a constant communication delay, the protocol design and
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consensus analysis are presented in Section 3. To illustrate the proposed
theoretical results, a numerical example is provided in Section 4. Finally,
Section 5 makes concluding remarks.

2. Preliminaries and Problem Statement

Some basic concepts and properties in graph theory are briefly introduced,
which are very important and helpful in the analysis of multi-agent systems.
Let G = (V , E ,A) be a weighted digraph of order N , where the set of nodes
V = {1, 2, · · · , N}, set of edges E ⊆ V × V , and a nonnegative weighted
adjacency matrix A = [aij] ∈ M

N
(R). An edge from i to j is denoted by

eij = (i, j) and the adjacency element aji associated with the edge eij is
positive, i.e., eij ∈ E ⇔ aji > 0. The set of neighbors of the node i is
denoted by Ni = {j ∈ V : (j, i) ∈ E}. A directed path is a sequence of
edges in a digraph of the form (i1, i2), (i2, i3), · · · , (if−1, if ), where j =
1, · · · , f ∈ Z

+, ij ∈ V and (ij, ik) ∈ E . If there exists a directed path from
node i to node j, then node j is said to be reachable from node i. The set
of all reachable nodes to node i is denoted by N∗

i . The Laplacian matrix
L = [lij] ∈ M

N
(R) of the weighted digraph G is defined as L = D − A,

where D = diag(din(1), din(2), · · · , din(N)) and din(i) =
∑N

j=1, j 6=i aij, i =
1, 2, · · · , N. Obviously, all the row-sums of L are zero, which implies that L
has always a zero eigenvalue corresponding the right eigenvector 1N . For a
comprehensive restatement of the graph theory, the reader is referred to [21].

Let R and C be the real and complex number filed, respectively. Mm,n(F)
denotes the set of all m-by-n matrices over a field F, and Mn,n(F) is abbrevi-
ated to Mn(F). The set of nonnegative integers is denoted by Z

+. A vector
valued function vec(·) of a matrix is defined as vec(A) = [ AT

1 · · · AT
n ]T ∈

Mmn,1(F), where Ak is the k-th column of A, k = 1, 2, · · · , n. A matrix
V ∈ Mn(C) is said to be Schur if σ(V ) ⊆ U0, where σ(V ) represents
the spectrum of matrix V, and U0 denotes an open circle of radius 1 cen-
tered at 0. The Kronecker product of A = [aij] ∈ Mm,n(F) and B =
[bij] ∈ Mp,q(F) is denoted by A ⊗ B and is defined to be the block ma-

trix A⊗ B =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB






∈ Mmp,np(F). 0 represents zero matrix

with an appropriate dimension. 1N denotes a N -dimension column vector
with all entries equal to one. diag(·) represents a block-diagonal matrix.
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Consider a multi-agent system composed of heterogeneous N agents,
where dynamics of agent i are described by a linear discrete-time system:

xi(t+ 1) = Aixi(t) + Biui(t),
yi(t) = Cixi(t), t ∈ Z

+,

xi(t) = ϕxi(t), −2τ ≤ t ≤ 0,
ui(t) = ϕui(t), −2τ ≤ t ≤ 0,
yi(t) = ϕyi(t), −2τ ≤ t ≤ 0,

i = 1, 2, · · · , N,

(1)

where xi ∈ Mni,1(R), ui ∈ Mmi,1(R) and yi ∈ Ml,1(R) are the state, control
input and measured output of agent i, respectively; Ai, Bi, Ci are constant
matrices. τ is a transmission delay of the network, which implies that agents
are compelled to receive data with τ -step lag. And ϕxi(·), ϕui(·) and ϕyi(·)
represent the initial state, initial control input and initial output, respective-
ly.

A weighted digraph described the information exchange between agents
is usually expressed as G = (V , E ,A), where V = {1, 2, · · · , N} is a nonemp-
ty set of nodes representing N agents. The directed edge eij ∈ E means
that agent j can receive the information from agent i. It is assumed that
information exchanged among all agents is achieved by the network with a
constant delay τ , and states of all agents are not available but their out-
puts can be measured. Due to the heterogeneity, the state consensus (i.e.
limt→∞ ‖xi(t) − xj(t)‖ = 0, ∀ i, j ∈ V) is generally impossible. Hence, the
output consensus of DTMAS (1) with a constant communication delay is dis-
cussed. A distributed protocol is designed and the conditions of consensus
are provided, based on the networked predictive control scheme.

3. Protocol Design and Consensus Analysis with Compensation

Scheme

In this section, it is considered that the information exchanged among all
agents is achieved by the network with a constant delay τ , where τ is a known
positive integer. Due to the network delay, it can not be achieved that each
agent receives current information from other agents at time t, yet it only
obtains their information at time t−τ . Hence, the predictive control method
is adopt to overcome actively the effect of network delay in this section.

When the states of the plant are not measurable, it is often efficient to
estimate them using an observer[22, 23]. In order to guarantee the existence
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of controllers for DTMAS (1), the following assumption can reasonably be
made:

Assumption 1. Each agent can receive information from itself and all reach-
able nodes to it, i.e., for any j ∈ {i} ∪ N∗

i , agent i can receive information
from agent j, i ∈ V .

Because agent i receives information from agent j (j ∈ {i} ∪ N∗
i ) with

time delay τ , in order to overcome the effect of the network delay, based on
the output data of agent j up to time t− τ , the state predictions of agent j
from time t− τ + 1 to t are constructed as:

x̂j(t− τ + 1|t− τ) = Ajx̂j(t− τ |t− τ − 1) + Bjuj(t− τ)
+Lj[yj(t− τ)− Cjx̂j(t− τ |t− τ − 1)],

(2a)

x̂j(t− τ + d|t− τ) = Ajx̂j(t− τ + d− 1|t− τ)
+Bjuj(t− τ + d− 1),

d = 2, 3, · · · , τ, j ∈ {i} ∪N∗
i ,

(2b)

where x̂j(t − τ + 1|t − τ) ∈ Mnj ,1(R) and uj(t − τ) ∈ Mmj ,1(R) are the
one-step ahead state prediction and the input of the observer at time t− τ ,
and matrix Lj ∈ Mnj ,l(R) can be designed using observer design approaches,
x̂j(t−τ+d|t−τ) ∈ Mnj ,1(R) is state prediction of agent j at time t−τ+d on
the basis of the information up to time t−τ , and uj(t−τ+d−1) ∈ Mmj ,1(R)
is the input at time t− τ + d− 1, d = 2, 3, · · · , τ , j ∈ {i} ∪N∗

i .
It is seen from (2) that the procedure of state predictions of agent j can

be summarized as two steps. Firstly, the observer provides an one-step ahead
state prediction using the output at time t− τ . Secondly, based on the input
information available, the state predictions of agent j from time t − τ + 2
to t are constructed. It follows from (2) that, based on the data up to time
t− τ , the output prediction of agent j at time t can be constructed as

ŷj(t|t− τ) = Cjx̂j(t|t− τ), j ∈ {i} ∪Ni.

Thus, the following protocol based on the output feedback is designed.
For agent i of DTMAS (1) with a constant network delay τ , the protocol

based on the NPCS is designed as:

ui(t) = ui(t|t− τ)

= Fiŷi(t|t− τ) +Kiζ̂i(t|t− τ),
i = 1, 2, · · · , N,

(3)
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where ζ̂i(t|t − τ) =
∑

j∈Ni
aij(ŷj(t|t − τ) − ŷi(t|t − τ)) is output prediction

difference between agent i and agent j, and Fi, Ki ∈ Mmi,l(R) are matrices
to be designed, i = 1, 2, · · · , N .

Definition 1. For DTMAS (1), protocol (3) is said to solve output consensus
problem if lim

t→∞
‖yi(t)− yj(t)‖ = 0, ∀ i, j = 1, 2, · · · , N.

Let
δi(t) = yi(t)− y1(t), i = 1, 2, · · · , N,

δ(t) =
[

δT2 (t) δT3 (t) · · · δT
N
(t)

]T
,

x(t) =
[

xT
1 (t) xT

2 (t) · · · xT
N
(t)

]T
,

y(t) =
[

yT1 (t) yT2 (t) · · · yT
N
(t)

]T
,

e(t) =
[

eT1 (t) eT2 (t) · · · eT
N
(t)

]T
.

From Definition 1, protocol (3) solves the output consensus problem if and
only if lim

t→∞
‖e(t)‖ = 0 and lim

t→∞
‖δ(t)‖ = 0 simultaneously hold. A lemma

needs to be presented before the main results of this paper.

Lemma 1. [24] Let A ∈ Mm,n(F), B ∈ Mp,q(F) and C ∈ Mm,q(F) be given
and let and X ∈ Mn,p(F) be unknown. The matrix equation

AXB = C

is equivalent to the system of qm equations in np unknowns given by

(BT ⊗ A)vecX = vecC.

Using the NPCS, the necessary and sufficient conditions of DTMAS (1)
achieving output consensus are proposed under protocol (3).

Theorem 1. Consider DTMAS (1) with a directed topology G = (V , E ,A)
and constant communication delay τ > 0. Protocol (3) solves the output
consensus problem if and only if the following conditions hold:

(a1) (Ai, Ci) is detectable, i = 1, 2, · · · , N .

(a2) rank(CT
i ⊗ CiBi) = rank([CT

i ⊗ CiBi vec(CiAi)]).

7



(a3) There exists Ki ∈ Mmi,l(R), i = 1, 2, · · · , N, such that −RC
D
B

D
K

D
(L2⊗

Il) is Schur, where L is the Laplacian matrix of digraph G, and

B
D

= diag(B1, B2, · · · , BN),

C
D

= diag(C1, C2, · · · , CN),

K
D

= diag(K1, K2, · · · , KN),

R =
[

−1
N−1

I
N−1

]

⊗ Il,

L2 = L[ 0 I
N−1

]T.

Proof. Because (Ai, Ci) is detectable, there exists Li ∈ Mni,l(R) such that
Ai − LiCi is Schur, i = 1, 2, · · · , N . Then, we take Li as a gain matrix
of observer (2a), i = 1, 2, · · · , N . For agent i, it follows from (2) that the
predictive state of agent j at time t is

x̂j(t|t− τ) = Aτ−1
j (Aj − LjCj)x̂j(t− τ |t− τ − 1)

+
τ
∑

s=1

Aτ−s
j Bjuj(t− τ + s− 1)

+Aτ−1
j Ljyj(t− τ), j ∈ {i} ∪N∗

i .

(4)

By the way of iteration, the state of system (1) can be expressed by

xi(t) = Aτ
i xi(t− τ) +

τ
∑

s=1

Aτ−s
i Biui(t− τ + s− 1),

i = 1, 2, · · · , N.
(5)

Combining (4) and (5) yields

x̂j(t|t− τ) = xj(t) + Aτ−1
j ej(t− τ + 1),

ŷj(t|t− τ) = yj(t) + CjA
τ−1
j ej(t− τ + 1), j ∈ {i} ∪N∗

i .
(6)

Substituting (6) into (3) derives

ui(t) = Fiyi(t) + FiCiA
τ−1
i ei(t− τ + 1)

−Ki

N
∑

j=1

lij
(

δj(t) + CjA
τ−1
j ej(t− τ + 1)

)

,

i = 1, 2, · · · , N.

So the closed-loop system of system (1) subjected to distributed control (3)
can be described as

xi(t+ 1) = Aixi(t) + BiFiyi(t) + BiFiCiA
τ−1
i ei(t− τ + 1)

−BiKi

N
∑

j=1

lijδj(t)− BiKi(li ⊗ Il)CDA
τ−1
D e(t− τ + 1),

(7)
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yi(t+ 1) = Ci(Ai + BiFiCi)xi(t)− CiBiKi(l̃i ⊗ Il)δ(t)
+CiBiFiCiA

τ−1
i ei(t− τ + 1)

−CiBiKi(li ⊗ Il)CDA
τ−1
D e(t− τ + 1)

i = 1, 2, · · · , N,

(8)

where l̃i = li[ 0 I
N−1

]T, and li is the i-th row of Laplacian matrix L.
From Lemma 1 and

rank(CT
i ⊗ CiBi) = rank([CT

i ⊗ CiBi vec(CiAi)]),

there exists Fi ∈ Mmi,l(R), such that

Ci(Ai +BiFiCi) = 0, i = 1, 2, · · · , N. (9)

So (8) is reduced to

yi(t+ 1) = CiBiFiCiA
τ−1
i ei(t− τ + 1)− CiBiKi(l̃i ⊗ Il)δ(t)

−CiBiKi(li ⊗ Il)CDA
τ−1
D e(t− τ + 1)

i = 1, 2, · · · , N.

(10)

Then the following compact form can be consulted:

y(t+ 1) = −CDBDKD(L2 ⊗ Il)δ(t)
+CDBD(FD −KD(L ⊗ Il))CDA

τ−1
D e(t− τ + 1),

where F
D
= diag(F1, F2, · · · , FN),

The error system can be represented as

δ(t+ 1) = Ry(t+ 1)
= Ω1δ(t) + Ω2e(t− τ + 1),

where
R =

[

−1
N−1

I
N−1

]

⊗ Il,

Ω1 = −RCDBDKD(L2 ⊗ Il),
Ω2 = RCDBD(FD −KD(L ⊗ Il))CDA

τ−1
D .

From (2a),
ei(t+ 1) = (Ai − LiCi)ei(t), i = 1, 2, · · · , N. (11)

Therefore, the error system can be described as
[

δ(t+ 1)
e(t− τ + 2)

]

=

[

Ω1 Ω2

0 Ω3

] [

δ(t)
e(t− τ + 1)

]

,
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where Ω3 = AD − LDCD and L
D
= diag(L1, L2, · · · , LN).

From Definition 1, protocol (3) solves the output consensus problem if
and only if Ω1 and Ai − LiCi are Schur, i = 1, 2, · · · , N . The proof is
completed.

When agents exchange information with a constant network delay, The-
orem 1 indicates that, under protocol (3) based on the NPCS, the output
consensus of DTMAS (1) is independent of the network delay and only dom-
inated by agents’ dynamics and communication topology.

Theorem 2. Consider DTMAS (1) with a directed topology G = (V , E ,A)
and constant communication delay τ > 0. Protocol (3) solves the output
consensus problem if and only if

rank(CT
i ⊗Bi) = rank([CT

i ⊗ Bi vec(Ai)]),

and (a1) and (a3) in Theorem 1 hold.

Proof. From Lemma 1 and

rank(CT
i ⊗ Bi) = rank([CT

i ⊗ Bi vec(Ai)]),

there exists Fi ∈ Mmi,l(R), such that

Ai +BiFiCi = 0, i = 1, 2, · · · , N.

So (8) remains to be reduced to (10). Similar to derivations in Theorem 1,
protocol (3) can solve the output consensus problem. The rest of proof is
omitted.

4. Simulation

In this section, a numerical example is presented to illustrate the effec-
tiveness of the proposed theoretical results.

Example 1. Consider DTMAS (1) with three agents indexed by 1, 2 and 3,
respectively. The dynamics of agent i (i = 1, 2, 3) are described by (1), where

A1 =





0.6 1 2
0 0.5 0
0 0 0.5



 , B1 =





1 3
−1 6
5 0



 , C1 =
[

0 −1 2
]

; (12)
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A2 =





0.4 0 0
1 0.5 1
0 0 0.4



 , B2 =





4 1
0 0.5
1 1



 , C2 =
[

1 0 −2
]

; (13)

A3 =





0.6 0 0
0 0.6 0
1 2 0.8



 , B3 =





1 3
4 2
1 1



 , C3 =
[

1 −2 0
]

. (14)

The interconnection among the three agents is described by G in Fig. 2 with
the adjacent matrix

A =





0 0 1
2 0 0
0 3 0



 ,

and Laplacian matrix

L =





1 0 −1
−2 2 0
0 −3 3



 .

It is assumed that the communication delay τ is equal to 3.

1

G

3

2

3

2

1

Figure 2: Fixed topology.

Next, one possible way is presented to obtain the observer gain matrices
Li in (2a) and controller gain matrices Fi and Ki in (3), i = 1, 2, 3. It is
obvious that (Ai, Ci) is detectable, i = 1, 2, 3. Hence, for an arbitrary matrix
Qi > 0, discrete-time algebraic Riccati equation

AiPiA
T
i − Pi − AiPiC

T
i (I + CiPiC

T
i )

−1CiPiA
T
i +Qi = 0 (15)

has an unique solution Pi > 0 satisfying that Ai − LiCi is Schur, where
Li = AiPiC

T
i (I + CiPiC

T
i )

−1, i = 1, 2, 3. By choosing Q1 = Q2 = Q3 = 2I3
and using Matlab, solutions of Riccati equation (15) and gain matrices are
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obtained as:

P1 =





28.4235 2.9915 1.6361
2.9915 2.5424 0.2484
1.6361 0.2484 2.1698



 ,

P2 =





2.3106 1.4137 0.1407
1.4137 11.2883 0.7439
0.1407 0.7439 2.0995



 ,

P3 =





2.9131 0.4237 5.7007
0.4237 2.2775 3.0217
5.7007 3.0217 85.5894



 ,

and

L1 =





0.5616
−0.0911
0.1822



 , L2 =





0.0728
−0.1854
−0.1456



 , L3 =





0.1094
−0.2188
−0.5712



 .

On the other hand, rank(CT
i ⊗ CiBi) = rank([CT

i ⊗ CiBi vec(CiAi)]). So
there exist matrices

F1 =

[

0.1943
0.4395

]

, F2 =

[

−1.3600
−2.3200

]

, F3 =

[

−0.0360
0.8520

]

satisfying Ci(Ai +BiFiCi) = 0, i = 1, 2, 3. Then, feedback gain matrices can
be obtained by

K1 =

[

162.5188
297.9512

]

, K2 =

[

162.5188
325.0376

]

, K3 =

[

−0.0774
0.5415

]

.

It is easy to verify that −RC
D
B

D
K

D
(L2 ⊗ Il) is Schur. Hence, protocol (3)

solves the consensus problem by Theorem 1.
When τ = 3, initial conditions of DTMAS (1) is chosen as

ϕx1(0) =





1
3
−2



 , ϕx2(0) =





−3
−6
1



 , ϕx3(0) =





4
−2
2



 ,

ϕxi(t) = 0 and ϕyi(t) = 0, −6 ≤ t ≤ −1, i = 1, 2, 3. The output trajectories
of three agents and estimate error trajectories are shown in Fig. 3 and Fig.
4–Fig. 6, respectively.
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Figure 3: The output trajectories yi(t) (τ = 3).
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Figure 4: The error trajectories e1(t) (τ = 3).
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Figure 5: The error trajectories e2(t) (τ = 3).
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Figure 6: The error trajectories e3(t) (τ = 3).
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5. Conclusions

The output consensus problem of DTMASs with heterogeneous dynam-
ical agents and a communication delay has been discussed in this paper,
where agents are described by linear discrete-time time-invariant systems. It
is assumed that states of all agents are not available but their outputs can be
measured. Under the fixed and direct topology, the disturbed control proto-
col for every agent is designed to compensate for the network delay actively,
based on the networked predictive control scheme. The delay-independent
necessary and sufficient conditions have been obtained to ensure that the
outputs of all agents reach an agreement. A numerical example has demon-
strated the effectiveness of the obtained theoretical results.

References

[1] T. Li, J. F. Zhang, Mean square average consensus under measurement
noises and fixed topologies: necessary and sufficient conditions, Auto-
matica 45 (8) (2009) 1929–1936.

[2] H. Su, G. Chen, X. Wang, Adaptive second-order consensus of networked
mobile agents with nonlinear dynamics, Automatica 47 (2) (2010) 368–
375.

[3] Y. Z. Feng, J. W. Lu, S. Y. Xu, Y. Zou, Couple-group consensus for
multi-agent networks of agents with discrete-time second-order dynam-
ics, J. Frankl. Inst. 350 (10) (2013) 3277–3292.

[4] Z. H. Mao, B. Jiang, P. Shi, Observer-based fault-tolerant control for a
class of networked control systems with transfer delays, J. Frankl. Inst.
348 (4) (2011) 763–776.

[5] A. D. Liu, L. Yun, W. A. Zhang, H∞ control for network-based systems
with time-varying delay and packet disordering, J. Frankl. Inst. 348 (5)
(2011) 917–932.

[6] L. Ma, H. B. Min, S. C. Wang, Y. Liu, Consensus of nonlinear multi-
agent systems with self and communication time delays: A unified
framework, J. Frankl. Inst. 352 (3) (2015) 745–760.

15



[7] P. Lin, M. X. Dai, Y. D. Song, Consensus stability of a class of second-
order multi-agent systems with nonuniform time-delays, J. Frankl. Inst.
351 (3) (2014) 1571–1576.

[8] P. Lin, W. Ren, Constrained consensus in unbalanced networks with
communication delays, IEEE Trans. Automat. Contr. 59 (3) (2014) 775–
781.

[9] Z. H. Wang, J. J. Xu, H. S. Zhang, Consensusability of multi-agent
systems with time-varying communication delay, Syst. Control Lett. 65
(2014) 37–42.

[10] N. Huang, Z. S. Duan, Y. Zhao, Consensus of multi-agent systems via
delayed and intermittent communications, IET Control Theory Appl.
9 (1) (2015) 62–73.

[11] Y. P. Gao, J. W. Ma, M. Zuo, T. Q. Jiang, J. P. Du, Consensus of
discrete-time second-order agents with time-varying topology and time-
varying delays, J. Frankl. Inst. 349 (8) (2012) 2598–2608.

[12] H. T. Zhang, M. Z. Q. Chen, G. B. Stan, T. Zhou, J. M. Maciejows-
ki, Collective behavior coordination with predictive mechanisms, IEEE
Circ. Syst. Mag. 8 (3) (2008) 67–85.

[13] H. T. Zhang, M. Z. Q. Chen, G. B. Stan, Fast consensus via predictive
pinning control, IEEE Trans. Circuits Syst. I, Reg. Papers 58 (9) (2011)
2247–2258.

[14] G. Ferrari-Trecate, L. Galbusera, M. P. E. Marciandi, R. Scattolini,
Model predictive control schemes for consensus in multi-agent system-
s with single- and double-integrator dynamics, IEEE Trans. Automat.
Contr. 54 (11) (2009) 2560–2572.

[15] H. J. Fang, Z. H. Wu, J. Wei, Improvement for consensus performance of
multi-agent systems based on weighted average prediction, IEEE Trans.
Automat. Contr. 57 (1) (2012) 249–254.

[16] Z. H. Wu, H. J. Fang, Y. Y. She, Weighted average prediction for im-
proving consensus performance of second-order delayed multi-agent sys-
tems, IEEE Trans. Syst. Man Cybern. Part B-Cybern. 42 (5) (2012)
1501–1508.

16



[17] C. Tan, G.-P. Liu, Consensus of networked multi-agent systems with
communication delays based on the networked predictive control scheme,
Int. J. Control 85 (7) (2012) 851–867.

[18] C. Tan, G.-P. Liu, Consensus of discrete-time linear networked multi-
agent systems with communication delays, IEEE Trans. Automat. Con-
tr. 58 (11) (2014) 2962–2968.

[19] G.-P. Liu, J. Mu, D. Rees, Networked predictive control of systems with
random communication delays, in: UKACC International Conference
on Control, IEEE, Bath, UK, 2004, Paper ID-015.

[20] G.-P. Liu, Y. Q. Xia, J. Chen, D. Rees, W. S. Hu, Networked predictive
control of systems with random network delays in both forward and
feedback channels, IEEE Trans. Ind. Electron. 54 (3) (2007) 136–140.

[21] C. Godsil, G. Royle, Algebraic Graph Theory, Vol. 207 of Graduate
Texts in Mathematics, Springer-Verlag, New York, 2001.

[22] H. Nijmeijer, I. M. Y. Mareels, An observer looks at synchronization,
IEEE Trans. Circuits Syst. I, Reg. Papers 44 (10) (1997) 882–890.

[23] Y. B. Hu, J. Lam, J. L. Liang, Consensus of multi-agent systems with
Luenberger observers, J. Frankl. Inst. 350 (9) (2013) 2769–2790.

[24] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge Uni-
versity Press, New York, USA, 1994.

17


