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Abstract—This paper addresses the design problem of false
data injection (FDI) attacks against the output tracking control
of networked systems, where the network-induced delays in the
feedback and forward channels are considered. The main contri-
butions of this paper are as follows: (i) To actively compensate for
the two-channel network-induced delays, a Kalman filter-based
networked predictive control scheme is designed for stochastic
linear discrete-time systems; (ii) From an attacker’s perspective,
stealthy FDI attacks are proposed for both the feedback and
forward channels so as to disrupt the stability of the resulting
closed-loop system while avoiding the detection of a Kalman
filter-based attack detector; (iii) Both numerical simulations and
practical experiments are carried out to show the effectiveness
of the proposed method.

Index Terms—False data injection attacks, networked control
systems (NCSs), network-induced delay, output tracking control,
predictive control, stability analysis.

I. INTRODUCTION

NETWORKED control systems (NCSs) are control sys-

tems in which the controller and the plant are connected

via communication networks, which have many merits such

as simple installation and maintenance, reduced weight and

power requirement, as well as high flexibility and reliabil-

ity. However, the introduction of networks into the control
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loop inevitably causes some adverse effects such as network-

induced delay and packet dropout, which may deteriorate

the system performance or even destabilize the closed-loop

system. Therefore, NCSs have become an active research topic

in the past decade [1]-[5].

Nowadays, NCSs have found numerous applications in vari-

ous fields such as process control, intelligent transportation, as

well as the measurement and control of critical infrastructures

(e.g., electricity, water, and gas distribution). In these systems,

measurement data and control commands travel through the

open and unprotected network, which are susceptible to be

corrupted by attackers [6]-[9]. For example, the typical mal-

wares such as Stuxnet and Duqu have been reported to disrupt

the control systems of critical infrastructures [10]. Such attacks

may significantly hamper the economy and environment, and

even endanger human lives. Therefore, the security of NCSs

is of paramount importance for various applications.

A. Related Work

Network attacks can be classified into two kinds: denial

of service (DoS) attacks and deception attacks [11]-[13]. The

DoS attacks aim to obstruct the transmission of data. To handle

them, some secure control schemes have been proposed in

[14]-[16]. Deception attacks are to compromise the integrity

of data, which are usually more subtle and stealthy than DoS

attacks. Typical deception attacks include data replay attacks

and false data injection (FDI) attacks. In [17] and [18], Mo

et al. analyzed the performance of the control system under

replay attacks, and provided model-based countermeasures to

improve the probability of attack detection.

The FDI attacks against the measurement data and control

commands are to a certain degree similar to sensor faults and

actuator faults, respectively. However, the faults are usually

assumed to be random and independent events with a fixed

failure rate probability. On the contrary, the FDI attacks can

be carefully designed by smart attackers so as to cause the

greatest possible damage without being detected, which thus

may result in more serious consequences. In this case, such

smart attacks would be difficult to detect by existing fault

detection techniques [19]-[21].

During the past five years, the FDI attacks have been paid

increasing attention. Mo et al. [22] proposed a simple FDI

attack model to compromise the sensors of a linear control

system. Manandhar et al. [23] showed that the FDI attack

in [22] could be detected by the proposed Euclidean-based

detector. Niu and Huie [24] analyzed the impact of the sensor
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FDI attack on the performance of the Kalman filter for linear

dynamic systems. Teixeira et al. [25] studied the cyber security

of state estimators in supervisory control and data acquisition

systems, and showed that undetectable FDI attacks could be

designed even when an attacker had limited resources. Kwon

et al. [26] gave the conditions under which the FDI attacks

on the sensors or/and actuators could fail the state estimators

while successfully bypassing the monitoring system.

As can be seen from the above, the studies on stealthy

FDI attacks are only in their embryonic stage. Furthermore, in

the aforementioned works [22]-[26], there exist some common

drawbacks: (i) All of them are not concerned with the network-

induced constraints although they are inevitable in practical

NCSs. (ii) In [22]-[25], only the FDI attacks on the mea-

surement data are considered, and in [26], although the FDI

attacks on both sensors and actuators are considered, only the

case of open-loop control is investigated. (iii) The theoretical

results in [22]-[26] are just tested by numerical simulation.

The foregoing three facts motivate the present study.

B. Contributions and Outline

The goal of this paper is to design the FDI attacks on the

measurement data in the feedback channel and the control

commads in the forward channel so as to destroy the output

tracking performance of NCSs without being detected. The

network-induced delays in the feedback and forward channels

are considered, and the predictive control scheme in [27] is

extended to solve the networked output tracking problem for

a stochastic linear system. It is assumed that the NCS is

equipped with a Kalman filter-based attack detector in the

controller. Then, we propose stealthy FDI attack models for

the two channels of the NCS to destabilize the closed-loop

system while successfully bypassing the attack detector.

Compared with the existing works on the FDI attacks [22]-

[26], the main advantages of this paper include the following

three aspects: (i) The two-channel network-induced delays are

considered, and then to compensate for them, a Kalman filter-

based networked predictive output tracking control (NPOTC)

scheme is designed; (ii) For the resulting closed-loop NCSs,

the stealthy FDI attacks are proposed for both the feedback

and forward channels, and thus the results derived in this paper

are more general than those in [22]-[26]; (iii) Beyond the

simulation verification, a Internet-based servo motor system is

constructed to show the effectiveness of the proposed method.

This paper is organized as follows. In Section II, a Kalman

filter-based NPOTC scheme is proposed. Two-channel FDI

attacks and their effect on the resulting NPOTC system are

introduced in Section III. In Section IV, two-channel stealthy

FDI attack models are designed and the main results for

them are presented. Simulation and experimental results for

different attack scenarios are presented in Section V and VI,

respectively. Section VII concludes this paper.

Notation: The notations used here are fairly standard. ∆x(k)
is defined as ∆x(k) = x(k)−x(k−1). x(k+i|k) refers to the

ith-step-ahead predictive value of x(k) based on the data up to

time k. E(·) denotes the mathematical expectation operation.
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Fig. 1. NPOTC systems.

II. KALMAN FILTER-BASED NPOTC SYSTEMS

An NPOTC system is designed, as depicted in Fig. 1,

which consists of five parts: a physical plant, a data buffer

in the sensor, a communication network, a control prediction

generator in the controller, and a network delay compensator

in the actuator. Each part will be described in the following

subsections. It is assumed that the sensor and actuator are time-

driven and synchronous, while the controller is event-driven.

A. Physical Plant

Suppose that the physical plant in Fig. 1 is described by the

following linear system:

x(k + 1) = Ax(k) +Bu(k) + ω(k)
y(k) = Cx(k) + υ(k)

(1)

where x(k) ∈ R
n is the system state, u(k) ∈ R

m is the control

input, y(k) ∈ R
q is the measurement output, ω(k) ∈ R

n is the

system noise, and υ(k) ∈ R
q is the measurement noise. A, B,

and C are system matrices with appropriate dimensions. ω(k)
and υ(k) are the uncorrelated Gaussian white noises with

ω(k) ∼ N (0, Q) and υ(k) ∼ N (0, R)

where Q and R are the covariance matrices. It is assumed that

(A,C) is observable, (A,B) is controllable, and the matrix
[

A− In B

C 0q×m

]

has full row rank.

The incremental form of (1) is

∆x(k + 1) = A∆x(k) +B∆u(k) + ∆ω(k)
∆y(k) = C∆x(k) + ∆υ(k).

(2)

Define the output tracking error

e(k) = r(k)− y(k) (3)

where r(k) ∈ R
q is the reference input. It is obtained from

(2) and (3) that

e(k + 1) =e(k)− CA∆x(k)− CB∆u(k) + ∆r(k + 1)

− C∆ω(k)−∆υ(k + 1).
(4)

From (2) and (4), we obtain the following augmented system:

xe(k + 1) = Aexe(k) +Be∆u(k) + Ee∆r(k + 1)
+We∆ω(k) + Ve∆υ(k + 1)

∆y(k) = Cexe(k) + ∆υ(k)
(5)
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where

xe(k) =

[

∆x(k)
e(k)

]

∈ R
n̄, Ae =

[

A 0n×q

−CA Iq

]

,

Be =

[

B

−CB

]

, Ee =

[

0n×q

Iq

]

, We =

[

In
−C

]

,

Ve =

[

0n×q

−Iq

]

, Ce =
[

C 0q×q

]

, n̄ = n+ q.

Thus, the output tracking problem of system (1) can be solved

by the feedback control of the augmented state xe(k).

B. Data Buffer

In general, the full state of the plant is not directly mea-

surable. To obtain the estimation of the state x(k) in the

controller, at each sampling instant k, the following data

Dk =
[

y(k)T u(k − 1)T R(k)T
]T

(6)

are transmitted to the controller together with the timestamp

k, where R(k)=[r(k)T r(k + 1)T · · · r(k + τ̄)T ]T .

C. Communication Network

The Ethernet-like network is considered in this paper. The

packets travel through the network from the sensor to the

controller and then from the controller to the actuator. As a

result, network-induced delays are inevitable during the packet

transmission, which are generally random with unknown dis-

tribution. In this paper, it is assumed that the round-trip time

(RTT) delay τk is bounded by τ̄ .

D. Control Prediction Generator

To obtain the state estimation x̂(kc), the following Kalman

filter is usually used [18]:






























Pkc|kc−1 = APkc−1A
T +Q

Kkc
= Pkc|kc−1C

T (CPkc|kc−1C
T +R)−1

Pkc
= (I −Kkc

C)Pkc|kc−1

x̂(kc|kc − 1) = Ax̂(kc − 1) +Bu(kc − 1)

x̂(kc) = x̂(kc|kc − 1) +Kkc

(

y(kc)− Cx̂(kc|kc − 1)
)

(7)

with the initial conditions

x̂(0) = E
(

x(0)
)

, P0 = E

(

(

x(0)− x̂(0)
)(

x(0)− x̂(0)
)T

)

where kc ≤ k is the timestamp of the following feedback data

available in the controller:

Dkc
=

[

y(kc)
T u(kc − 1)T R(kc)

T
]T

. (8)

Although the filter gain Kkc
in (7) is time-varying, it usually

converges in a few steps [18]. Hence, K can be defined as

K , PCT (CPCT +R)−1 (9)

where P , limkc→∞ Pkc|kc−1, and thus the Kalman filter in

(7) is reduced to the following estimator with a fixed gain:
{

x̂(kc|kc − 1) = Ax̂(kc − 1) +Bu(kc − 1)

x̂(kc) = x̂(kc|kc − 1) +K
(

y(kc)− Cx̂(kc|kc − 1)
)

.

(10)
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Fig. 2. NPOTC systems under two-channel FDI attacks.

The following state feedback control law is designed:

∆û(kc|kc) = −Lx̂e(kc) (11)

where x̂e(kc) = [∆x̂(kc)
T e(kc)

T ]T , and L ∈ R
m×n̄ is the

gain matrix. Then the predicted augmented states and control

increments from kc + 1 to kc + τ̄ are obtained as follows:

x̂e(kc + i|kc) =Aex̂e(kc + i− 1|kc) +Be∆û(kc + i− 1|kc)

+ Ee∆r(kc + i)
(12)

∆û(kc + i|kc) = −Lx̂e(kc + i|kc) (13)

for i = 1, 2, · · · , τ̄ , where x̂e(kc + i|kc) = [∆x̂(kc +
i|kc)

T e(kc + i|kc)
T ]T , and x̂e(kc|kc) = x̂e(kc). Thus, we

obtain the following i-step control predictions:

û(kc + i|kc) = û(kc + i− 1|kc) + ∆û(kc + i|kc) (14)

for i = 0, 1, 2, · · · , τ̄ , where û(kc−1|kc) = u(kc−1). Clearly,

Equation (14) yields the control prediction sequence

Ukc
= [û(kc|kc)

T û(kc + 1|kc)
T · · · û(kc + τ̄ |kc)

T ]T (15)

which is sent to the actuator together with the timestamp kc.

E. Network Delay Compensator

In the actuator, the network delay compensator is designed

to store the latest control prediction sequence and then use

it to control the plant. Without loss of generality, the latest

control prediction sequence at time k is expressed as

Uka
= [û(ka|ka)

T û(ka + 1|ka)
T · · · û(ka + τ̄ |ka)

T ]T (16)

where ka ≤ kc is the timestamp of Uka
. Its RTT delay is

τk = k − ka. (17)

To compensate for the RTT delay, the following control signal

is chosen to control the plant at time k:

u(k) = û(ka + τk|ka) = û(k|k − τk). (18)

III. FDI ATTACKS AGAINST NPOTC SYSTEMS

It is assumed that the attacker is able to (i) read the data

transmitted through the feedback and forward channels and

modify them arbitrarily, and (ii) know the system parameters,

i.e., A, B, C, Q, and R. The objective of this paper is to design

stealthy FDI attacks on the feedback data and the control data

(see Fig. 2), i.e., Dkc
in (8) and Uka

in (16), such that the
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resulting NPOTC system becomes unstable while the two-

channel FDI attacks fail to be detected.

As shown in Fig. 2, under FDI attacks, the feedback data

arriving at the controller are assumed to be modified as

Da
kc

=
[

ya(kc)
T u(kc − 1)T R(kc)

T
]T

(19)

with

ya(kc) = y(kc) + α(kc) (20)

where ya(kc) is the attacked output, and α(kc) is the feedback

channel attack. Similarly, the control data arriving at the

actuator are falsified by the attacker as

Uaa
ka

= [ûa(ka|ka)
T ûa(ka + 1|ka)

T · · · ûa(ka + τ̄ |ka)
T ]T

(21)

with

ûa(ka + i|ka) = û(ka + i|ka) + β(ka + i) (22)

for i = 0, 1, 2, · · · , τ̄ , where ûa(ka + i|ka) is the attacked

control prediction, and β(ka+i) is the forward channel attack.

Remark 1: It is noted that the FDI attacks in (20) and

(22) are respectively related to the timestamps of the packets

transmitted through the feedback and forward channels, i.e., kc
and ka. In the NPOTC system, the packet transmitted through

networks is with a timestamp. As a consequence, although the

measurement data and control data are randomly delayed in

their transmission due to the presence of random network-

induced delays, with the help of the timestamps, the FDI

attacks in (20) and (22) can still be easily designed.

To detect these FDI attacks, a general strategy is to deploy

a detector in the controller, as shown in Fig. 2. Here, an attack

detector is designed using the Kalman filter in (10) as well as

the feedback data Da
kc

in (19). Due to the presence of FDI

attacks, the Kalman filter in (10) becomes
{

x̂a(kc|kc − 1) = Ax̂a(kc − 1) +Bu(kc − 1)

x̂a(kc) = x̂a(kc|kc − 1) +K
(

ya(kc)− Cx̂a(kc|kc − 1)
)

(23)

where x̂a(kc) is the state estimation under attacks. Then, the

residual za(kc) is defined as

za(kc) = ya(kc)− ŷa(kc)

= ya(kc)− C
(

Ax̂a(kc − 1) +Bu(kc − 1)
) (24)

where ŷa(kc) is the output estimation under attacks. If some

rough FDI attacks are performed in the feedback and forward

channels, they usually leads to a large value of ‖za(kc)‖,

which thus induces the detector to trigger an alarm.

If no attacks are injected into the NPOTC system, the

residual is

z(kc) = y(kc)− ŷ(kc)

= y(kc)− C
(

Ax̂(kc − 1) +Bu(kc − 1)
)

.
(25)

Lemma 1 [18]: The residual z(kc) in (25) is Gaussian

independent identically distributed (i.i.d.) with zero mean and

covariance S = CPCT +R, i.e.,

z(kc) ∼ N (0, S). (26)

Under the FDI attacks in (20) and (22), the physical plant

is expressed as

xa(k + 1) = Axa(k) +B
(

u(k) + β(k)
)

+ ω(k)
y(k) = Cxa(k) + υ(k)

(27)

where xa(k) ∈ R
n is the system state under attacks. Equations

(11), (12), and (13) also become

∆û(kc|kc) = −Lx̂ea(kc) (28)

x̂ea(kc + i|kc) =Aex̂ea(kc + i− 1|kc)

+Be∆û(kc + i− 1|kc) + Ee∆r(kc + i)
(29)

∆û(kc + i|kc) = −Lx̂ea(kc + i|kc) (30)

for i = 1, 2, · · · , τ̄ , where x̂ea(kc + i|kc) = [∆x̂a(kc +
i|kc)

T ea(kc + i|kc)
T ]T , and x̂ea(kc|kc) = x̂ea(kc) =

[∆x̂a(kc)
T ea(kc)

T ]T with

ea(kc) = r(kc)− ya(kc). (31)

IV. MAIN RESULTS

In this section, we investigate the design of stealthy FDI

attacks in the feedback and forward channels for the NPOTC

system. The following definition is first given.

Definition 1: The NPOTC system is successfully attacked,

if the residual za(k) follows the same distribution as z(k), i.e.,

za(k) ∼ N (0, S) (32)

and for the constant reference input,

lim
k→∞

E
(

ea(k)
)

= 0 (33)

lim
k→∞

E
(

e(k)
)

= ∞. (34)

In this paper, the feedback channel attack is designed as

α(k) = −y(k) + CAx̂a(k − 1) + CBu(k − 1) + ξ(k) (35)

where ξ(k)∼N (0, S) is the Gaussian white noise. It is clear

form (24)-(26) that the feedback channel attack in (35) always

satisfies the condition in (32), i.e.,

za(k) = ξ(k) ∼ N (0, S). (36)

Next, the attacked output tracking error ea(k) in (33) is

analyzed.

Theorem 1: Under the feedback channel FDI attack in (35),

limk→∞ E
(

ea(k)
)

= 0 for the constant reference input if and

only if the eigenvalues of matrix Ae−BeL are within the unit

circle.

Proof: According to the network delay compensation

strategy in (18), it is obtained from (28) and (30) that

∆u(k) = ∆û(k|k − τk) = −Lx̂ea(k|k − τk) (37)

where

x̂ea(k|k− τk) = Aex̂ea(k− 1|k− τk)+Be∆û(k− 1|k− τk).
(38)

Under the feedback channel attack in (35), from (20) we have

ya(k) = CAx̂a(k − 1) + CBu(k − 1) + ξ(k) (39)
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and then from (23) and (31), we obtain

∆x̂a(k + 1) = A∆x̂a(k) +B∆u(k) +K∆ξ(k + 1) (40)

ea(k + 1) = ea(k)−∆ya(k + 1)

= ea(k)− CA∆x̂a(k)− CB∆u(k)−∆ξ(k + 1).
(41)

The combination of (40) and (41) yields

E
(

x̂ea(k + 1)
)

= AeE
(

x̂ea(k)
)

+Be∆u(k) (42)

where x̂ea(k) = [∆x̂a(k)
T ea(k)

T ]T . With (37), subtracting

(29) from (42) leads to the following equation:

E
(

x̂ea(k + 1)
)

− x̂ea(k + 1|k − τk)

=Ae

(

E
(

x̂ea(k)
)

− x̂ea(k|k − τk)
)

=Aτk+1
e

(

E
(

x̂ea(k − τk)
)

− x̂ea(k − τk|k − τk)
)

=0

(43)

since x̂ea(k − τk|k − τk) = x̂ea(k − τk). That is,

x̂ea(k|k − τk) = E
(

x̂ea(k)
)

. (44)

Then (37) can be rewritten as

∆u(k) = −LE
(

x̂ea(k)
)

. (45)

Thus, substituting (45) into (42) gives rise to

E
(

x̂ea(k + 1)
)

= (Ae −BeL)E
(

x̂ea(k)
)

. (46)

It is obvious from (46) that limk→∞ E
(

ea(k)
)

= 0 if and only

if the eigenvalues of Ae −BeL are within the unit circle.

Finally, we analyze the real output tracking error e(k) in

(34) for the constant reference input. Under the feedback

channel attack in (35), it is obtained from (23) that

x̂a(k + 1) = Ax̂a(k) +Bu(k) +Kξ(k + 1) (47)

Then from (27) and (47), we have

x̃a(k + 1) = xa(k + 1)− x̂a(k + 1)

= Ax̃a(k) +Bβ(k) + ω(k)−Kξ(k + 1).
(48)

In this paper, the forward channel attack is designed as

β(k + 1) = Fβ(k) (49)

where F ∈ R
m×m is the attack matrix. Combining (48) and

(49) yields

Xβ(k + 1) = ΛXβ(k) (50)

where

Xβ(k) =

[

E
(

x̃a(k)
)

β(k)

]

, Λ =

[

A B

0 F

]

.

Then from (3), (27), (31), (39), and (47), we have

E
(

e(k)
)

−E
(

ea(k)
)

= −CE
(

x̃a(k)
)

. (51)

Thus, we obtain

lim
k→∞

E
(

e(k)
)

= −C lim
k→∞

E
(

x̃a(k)
)

(52)

since limk→∞ E
(

ea(k)
)

= 0 if the matrix Ae−BeL is stable.

� � � � � � � � ��� � � �� � ��� � ��� � ��
����� �� ��� �� ���

Fig. 3. RTT delays.

Obviously, the matrix Λ in (50) is a block upper triangular

matrix. It is well known that a block upper triangular linear

system is stable if and only if each block diagonal subsystem is

stable. Thus, it can be concluded from (50) and (52) that, with

the stable matrix Ae−BeL, if A is stable and F is unstable,

or if A is unstable, we will have limk→∞ E
(

e(k)
)

= ∞.

Therefore, we can obtain the following main results:

Theorem 2: Under the feedback channel attack in (35) and

the forward channel attack in (49), the closed-loop NPOTC

system is stable and further E
(

e(∞)
)

= 0 if and only if the

matrices Ae −BeL, A, and F are stable.

Theorem 3: If the system matrix A is stable, the NPOTC

system can be attacked successfully without being detected by

injecting the feedback channel attack in (35) and the forward

channel attack in (49) with an unstable matrix F .

Theorem 4: If the system matrix A is unstable, the NPOTC

system can be attacked successfully without being detected by

injecting the feedback channel attack in (35) and any arbitrary

attack in the forward channel.

Remark 2: It is easy to observe from Theorems 3 and 4 that,

no matter whether the system matrix A is unstable or stable,

the control system can be attacked successfully without being

detected. While in [22] and [26], it is required that the matrix

A is unstable, where only the FDI attack on the sensor data

are considered. Therefore, in this paper, by performing two-

channel FDI attacks simultaneously, the derived results are

more general.

V. SIMULATION RESULTS

In this section, numerical simulations are carried out for

three cases: (i) A and F are stable; (ii) A is stable and F is

unstable; and (iii) A is unstable and F is stable. The network-

induced delays in two channels are considered, which lead to

0∼4 steps RTT delays shown in Fig. 3.

A. Case 1: A and F are Stable

Consider a stable system with matrices

A =





0.2071 0.3705 0.0439
0.6072 0.5751 0.0272
0.6299 0.4514 0.3127



, B =





0.1730 0.2523
0.9797 0.8757
0.2714 0.7373



,

C =

[

0.1365 0.8939 0.2987
0.0118 0.1991 0.6614

]

. (53)
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(a) Residual za(k)
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(b) Attacked output response
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(c) Real output response

Fig. 4. Simulation results of Case 1.

With Q= 0.0001 and R= 0.01, by using the Kalman filter in

(7), we obtain the filter gain

K =





0.0241 0.0171
0.0495 0.0323
0.0514 0.0434



 . (54)

By using the assignment of the closed-loop poles [0.6 ±
0.3j 0.2 0.1], the controller gain L is designed to be

L =

[

0.0244 −0.7056 −0.4480 −0.0840 1.5769
0.7696 1.1064 0.4683 −0.2284 −1.3080

]

.

(55)

The feedback channel attack in (35) as well as the forward

channel attack in (49) with β(50) = [10 10]T and the stable

matrix

F =

[

0.0579 0.8132
0.3529 0.0099

]

(56)

are injected into the NPOTC system at time k = 50. The

simulation result is shown in Fig. 4. It can be seen that the

attacked output ya(k) track well the reference signal r(k), and

the real output y(k) also ultimately converges to r(k) with

the diminishment of the forward channel attack β(k), which

� � � � � � � � �� � ��� �� �� �� �
�� �� � �¡¢��¡�£ �� ��� ¤ � � � �¤ � � � �¥ � � � � �¥ � � � � �

(a) Attacked output response

� � � � � � � � �� � � ��� � � �� � ��� � ��� � � ¦ � � §
�� �� � �¡¢��¡�£ �� ��� ¤ � � � �¤ � � � �¥ � � � �¥ � � � �

(b) Real output response

Fig. 5. Simulation results of Case 2.

coincides with the result of Theorem 2. Furthermore, the two-

channel attacks cannot be detected by using the residual za(k)
in Fig. 4(a).

B. Case 2: A is Stable and F is Unstable

Consider the same stable system as Case 1 with the same

K and L. The feedback channel attack in (35) as well as the

forward channel attack in (49) with β(50) = [10 10]T and the

unstable matrix

F =

[

0.9501 0.6068
0.2311 0.4860

]

(57)

are injected into the NPOTC system at time k = 50. The

simulation result is shown in Fig. 5. It can be seen that the

attacked output ya(k) still track well the reference signal r(k),
but the real output y(k) ultimately diverges from r(k), which

coincides with the result of Theorem 3.

C. Case 3: A is Unstable and F is Stable

Consider an unstable system with matrix

A =





0.2312 0.6724 0.5630
0.4161 0.9383 0.1189
0.2988 0.3431 0.1690



 (58)

and matrices B and C in (53). Using the same design

procedure as Case 1, the matrices K and L are obtained as

K =





0.2740 0.1274
0.3267 0.1502
0.1627 0.0813



 (59)

L =

[

0.0506 0.8601 0.3087 −0.5182 2.0070
0.4128 0.0181 −0.2153 0.1520 −1.5753

]

.

(60)
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(b) Real output response

Fig. 6. Simulation results of Case 3.© ª « ¬ ­ ª ¬ « ® © ¯ ° ± ²
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Fig. 7. Internet-based servo motor system.

The feedback channel attack in (35) as well as the forward

channel attack in (49) with β(50) = [10 10]T and the stable

matrix in (56) are injected into the NPOTC system at time

k = 50. The simulation result is shown in Fig. 6. It can be

seen that the attacked output ya(k) still track well the reference

signal r(k). Although the injected forward channel attack β(k)
is convergent, the closed-loop system still becomes unstable,

which coincides with the result of Theorem 4.

VI. EXPERIMENTAL RESULTS

To further test the proposed method, an Internet-based servo

motor system test rig has been constructed, as shown in Fig.

7. It consists mainly of a servo motor system, a networked

controller, a local control board, as well as the Internet from

the Tsinghua University, Beijing, China to the University of

South Wales, Pontypridd, UK. The RTT delays of the Internet

vary randomly from 3 to 8 steps. For the details of the

experimental setup, refer to [27].

� � ¾ � � � ¿ � �� � ��� �� �¿ �¾ �
À Á Â Ã � Ä Ã Å �� �� � �¡¢��¡�£ �� ����Æ � ¤ � � �¥ � � � �

(a) Attacked output response

� � ¾ � � � ¿ � �� � � �� ¿ ��¿ �� � �
À Á Â Ã � Ä Ã Å �� �� � �¡¢��¡�£ �� ����Æ � ¤ � � �¥ � � �

(b) Real output response

Fig. 8. Experimental results of Case 1.

Our objective is to control the position of the servo motor

system. With the sampling period 0.04s, the model of the servo

motor system is identified as

A =





1.2998 −0.4341 0.1343
1 0 0
0 1 0



, B =





1
0
0



,

C =
[

3.5629 2.7739 1.0121
]

. (61)

whose input and output are the control voltage (−10V to 10V)

and the angle position (-120o∼120o), respectively. The filter

gain K and the controller gain L are chosen as

K =
[

0.1070 0.0877 0.0178
]T

(62)

L =
[

0.7125 −0.2593 0.1253 −0.0245
]

. (63)

From (61), we know that the servo motor system is open-loop

critically stable. In the following, practical experiments are

performed for two cases: (i) F is stable and (ii) F is unstable.

A. Case 1: F is Stable

The feedback channel attack in (35) as well as the forward

channel attack in (49) with the initial value β(199) = 2 and

the stable matrix F = 0.99 are injected into the NPOTC

system at time t = 7.96s. The experimental result is shown

in Fig. 8, which indicates that the attacked output ya(k) track

well the reference signal r(k), but the real position of the

servo motor deviates from the reference signal r(k). With

the disappearance of the forward channel attack β(k), the

servo motor finally stops at a certain position rather than the

reference signal r(k).
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(b) Real output response

Fig. 9. Experimental results of Case 2.

B. Case 2: F is Unstable

The feedback channel attack in (35) as well as the forward

channel attack in (49) with the initial value β(180) = 0.1 and

the unstable matrix F = 1.02 are injected into the NPOTC

system at time t = 7.20s. The experimental result is shown

in Fig. 9. It is clear that the two-channel attacks lead to the

instability of the closed-loop control system.

It should be pointed out that in Fig. 8(a) and Fig. 9(a),

when the two-channel attacks are added, slight fluctuations

occur on the attacked output ya(k), which do not appear in

the aforementioned numerical simulations. This phenomenon

results from the mismatch between the model in (61) and the

practical servo motor system.

VII. CONCLUSION

This paper has investigated the design problem of FDI at-

tacks against the output tracking control of networked systems.

To compensate for two-channel network-induced delays, a

Kalman filter-based NPOTC method has been proposed for

stochastic linear systems. Then from an attacker’s viewpoint,

the stealthy FDI attacks have been designed for the measure-

ment data in the feedback channel and the control data in the

forward channel, which can avoid being detected by a Kalman

filter-based detector. Both simulation and experimental results

have illustrated the effectiveness of the proposed method.

It is worth mentioning that, in general, the research on FDI

attacks includes three aspects: attack design, attack detection,

and secure control design. This paper mainly focuses on the

first aspect, i.e., the design of stealthy FDI attacks. The rest

two aspects are more important and interesting, which thus

deserve further investigation in our future research.
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