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This study concerns the admissible consensus problem for networked singular multi-agent systems with
communication delays and agents described by general singular systems. Only the information of outputs
is available through the network. An observer-based networked predictive control scheme (NPCS) is em-
ployed to compensate for the communication delays actively. Based on NPCS and dynamic compensator
(dynamic output feedback), a novel protocol is proposed. Based on graph, algebra and singular system
theory, the necessary and sufficient conditions are given to guarantee existence of the proposed protocol.
The conditions depend on the topologies of singular multi-agent systems and the structure properties of
each agent dynamics. Moreover, a consensus algorithm is provided to design the predictive protocol. A
numerical example demonstrates the effectiveness of compensation for networked delays.
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1. Introduction

Consensus control problems of multi-agent systems are the foundation of distributed cooperative
control theory, which have attracted much attention of researchers from control fields (Fax &
Murray, 2004; Seo et al., 2009; Wang & Yu, 2016). Consensus control problems are applied in
many problems including flocking problem, formation problem, distributed sensor networks and
congestion control in communication networks, and so on (Guo et al., 2014; Shen et al., 2010; Shi
& Shen, 2015; Tang et al., 2016; Yu et al., 2013; Zhu et al., 2013).
It is worth mentioning that singular systems have a natural representation of dynamic systems.

And singular systems describe a larger class of systems than normal linear system models(Li et al.,
2014; Xia et al., 2009). Hence, comparing with normal linear systems, singular systems have a more
comprehensive background, such as power systems (Hill & Maareels, 1990), social economic systems
(Luenberger & Arbel, 1977), circuit systems (Sastry & Desoer, 1981), and so on. In addition, since
the theory of singular systems was put forward, it has provided a extensive application background
and gradually developed into the important branch of control theory (Li & Zhang, 2012; Yang
et al., 2013; Yang & Liu, 2012). Moreover, the concept of singular multi-agent systems has been
introduced in Yang & Liu (2012). In the last two decades, many results of state space systems have
been extended to singular systems (Alma & Darouach, 2014; Yang & Liu, 2014; Yang et al., 2010).
However, rare works have been published to deal with consensus of singular multi-agent systems.
Hence this paper puts an intensive study on admissible consensus problems with networked multi-

∗Corresponding author. Email: yxr19841123@163.com

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of South Wales Research Explorer

https://core.ac.uk/display/227090287?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


May 27, 2016 International Journal of Systems Science 20160330-IJSS

agent systems composed of singular systems as the research object.
The necessary and sufficient consensus conditions with respect to a set of admissible consensus

protocols have been given for singular multi-agent systems with fixed topologies (Yang & Liu,
2012). For singular multi-agent systems with agents described by homogenous or heterogenous
singular systems, Yang & Liu (2011) has provided consensus conditions based on algebra, graph
and singular system theory. Xi et al. (2012) has solved consensus problem for linear time-invariant
singular swarm system. For singular high-order multi-agent systems with switching topologies, Xi
et al. (2014) has dealt with guaranteed-cost consensus problems. The admissible consensus problem
for heterogeneous descriptor multi-agent systems has been studied in Yang & Liu (2015). However,
it is regrettable that Yang & Liu (2012) and Xi et al. (2012, 2014); Yang & Liu (2015, 2011) do
not consider the communication delays. When agents exchange information through a wired or
wireless network, due to the limitations of network bandwidth and transmission speed, network
induced time delays will appear inevitably (Yang et al., 2014). Moreover, time delays usually affect
the performance of networked multi-agents and even lead to system instability (Wu et al., 2011).
Thus, it is essential to eliminate or reduce the negative effect of networked delays. Based on NPCS,
static output feedback and observer, Yang & Liu (2014) has proposed protocols to guarantee that
the studied singular system achieve consensus.
In this paper, the admissible consensus problem is considered for networked singular multi-

agent systems with communication delays and agents described by general singular systems. An
observer-based NPCS is employed to compensate for the communication delays effectively and
actively. Based on the dynamic compensator and NPCS, a novel protocol is proposed to solve the
admissible consensus problem for singular multi-agent systems. The provided numerical example
demonstrates the effectiveness of compensation for communication delays. It is worth mentioning
that the theoretical results obtained in Yang & Liu (2014) are one particular case of this paper,
which implies that the given conclusions in this paper are generalizations of the results obtained
in Yang & Liu (2014).
The rest of this paper is organized as follows. Some preliminaries on graph theory and singular

system theory, and the problem formulation are described in Section 2. In Section 3, NPCS is
employed to compensate for the communication delays actively. Admissible consensus analysis is
discussed for the studied system with communication delays in Section 4. Moreover, the proposed
consensus protocol is designed based on NPCS and the dynamic compensator. In Section 5, a
numerical example will be given to verify the feasibility of the theoretical results. Conclusion
remarks are stated in Section 6.
Throughout the paper, R, C and Rm×n represent the real plane, the complex plane and a set

of all real matrices of dimension m × n, respectively. Let σ(A) be the set of all eigenvalues of
the square matrix A. For the given vector x, ∥x∥ represents the Euclidean norm of x. A matrix
H ∈ Rn×n is said to be Schur stable if σ(H) ⊆ D(0, 1), where D(0, 1) expresses the interior of an
identity circle whose center is the origin.

2. Preliminaries and problem formulation

2.1 Preliminaries

In general, information exchanges among agents are achieved through a wired or wireless network
for (singular) multi-agent systems. The networked communication topology of multi-agent systems
can be modeled by directed or undirected graphs (Skelon et al., 1998). Let G = (V, E ,A) be a
directed digraph with a set of nodes V = {1, 2, · · · , N} denoting the agents, a set of directed
edges E ⊆ V × V and a nonnegative weighted adjacency matrix A = [aij ] ∈ RN×N . In G, a
directed edge from i to j is denoted as an ordered pair (i, j) ∈ E , where the vertex j is called
the child vertex and the vertex i is called the parent vertex. The set of the i-th agent’s neighbors
is denoted by Ni = {j ∈ V|(j, i) ∈ E}. The weighted adjacency matrix A = [aij ] ∈ RN×N with
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nonnegative elements, where aii = 0, aij > 0 ⇔ j ∈ Ni, otherwise aij = 0. The Laplacian matrix
LG = [lij ] ∈ RN×N of the digraph G is defined as

lij =


−aij , i ̸= j,
N∑

k=1,k ̸=i

aik, i = j.
(1)

Lemma 1: (Ren & Beard, 2005) The Laplacian matrix LG of a directed graph G has at least one
zero eigenvalue and all non-zero eigenvalues are in the open right-half plane. Furthermore, LG has
exactly one zero eigenvalue if and only if G has a directed spanning tree.

Before moving on, the following definitions and lemmas are introduced.

Definition 1: (Yang et al., 2004) Let E,A ∈ Rn×n.

(i) The pair (E,A) is said to be regular if det(sE −A) ̸≡ 0 for some s ∈ C;
(ii) The pair (E,A) is said to be causal if (E,A) is regular and degdet(sE − A) = rankE for

∀s ∈ C, where det(·) and deg(·) represent determinant of a matrix and degree of a polynomial,
respectively;

(iii) Singular discrete-time system

Ex(k + 1) = Ax(k)

is said to be regular and causal, if the pair (E,A) is regular and causal.

Definition 2: (Yang et al., 2004) Singular discrete-time system

Ex(k + 1) = Ax(k) +Bu(k), (2a)

y(k) = Cx(k), (2b)

is said to be Y -controllable, if there exists a state feedback

u(k) = Fx(k) + v(k)

such that the closed-loop system

Ex(k + 1) = (A+BF )x(k) +Bv(k) (3)

is causal, where v(k) is a new input.

Definition 3: (Yang et al., 2004) System (2) is said to be Y -observable, if at arbitrary time k,
x(k) is uniquely determined by the initial condition and {u(i), y(i), i = 0, 1, · · · , k}.

Lemma 2: (Yang et al., 2004) System (2) is Y -controllable if and only if

rank

[
E 0 0
A E B

]
= rank(E) + n;
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System (2) is Y -observable if and only if

rank

E A
0 E
0 C

 = rank(E) + n.

Lemma 3: (Yang et al., 2004) For system (2), there exists an output feedback

u(k) = Fy(k) + v(k)

such that the closed-loop system (3) is causal if and only if system (2) is Y -controllable and Y -
observable.

2.2 Problem formulation

Consider a networked singular multi-agent system composed of N agents indexed by 1, 2, · · · , N,
respectively. The dynamics of the i-th agent are described by a singular discrete-time system:

Exi(k + 1) = Axi(k) +Bui(k), (4a)

yi(k) = Cxi(k), (4b)

where xi(k) is the state, ui(k) is the control input, yi(k) is the measured output, E,A ∈ Rn×n,
B ∈ Rn×q, C ∈ Rm×n and rankE = r ≤ n. The communication topology is described by a directed
digraph G = (V, E ,A). Assume that the communication delay d is a known and constant positive
integer.

Remark 1: In the above singular multi-agent system, if matrix E is nonsingular, this singular
multi-agent system becomes a normal linear multi-agent system. Therefore, from taking account
of the wide rang of elements of matrix E, it is obtained that singular multi-agent systems is a
generalization of normal linear multi-agent systems.

Remark 2: Usually, when information exchanges among agents through the shared network, the
communication delays change in a certain range, that it is 0 ≤ d(t) ≤ dM , where dM is the
admissible upper bound of delays. If d(t) ≤ dM , set d = dM which implies that at some time,
data obtained from the shared network does not immediately used, but is forced to wait for the
delay time reaching d. By this way, the time-varying delay problem into the constant delay one.
Hence it is reasonable to assume that the communication delay d is a known and constant positive
integer. Although this method has a certain conservative, directly dealing with the time-varying
delay problem is sometimes very difficult. This method can be as an effective method to solving
time-varying delay problem indirectly.

Adopt the following protocol:

ui(k) = Fyi(k) + vi(k), i ∈ V, (5)

where F ∈ Rn×q and vi(k) will be designed as follows.

Definition 4: For networked singular multi-agent system (4), protocol ui(k), i ∈ V is said to
solve the admissible consensus problem (or networked singular multi-agent system (4) achieves
admissible consensus via protocol ui(k)) if the closed-loop system via ui(k) is causal, and the
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following condition holds:

lim
k→∞

∥xj(k)− xi(k)∥ = 0, ∀i, j ∈ V. (6)

The aim of this paper is to solve the following consensus problem.

Problem 1: For networked singular multi-agent system (4) with the directed topology G =
(V, E ,A) and the communication delay d, design protocol (5) to solve the admissible consensus
problem, where vi(k) can be dependrd on values of the output yi up to time step k − d.

3. Compensation for communication delays

If there exists F ∈ Rn×q in protocol (5) such that the closed-loop system

Exi(k + 1) = (A+BFC)xi(k) +Bvi(k) (7)

is causal, then there exist two nonsingular matrices P and Q such that

PEQ =

[
Ir 0
0 0

]
, P (A+BFC)Q =

[
A11 A12

A21 A22

]
,

PB =

[
B1

B2

]
, CQ =

[
C1 C2

]
, (8)

Q−1xi(k) =
[
xTi1(k) x

T
i2(k)

]T
,

where A11 ∈ Rr×r, A12 ∈ Rr×(n−r), A21 ∈ R(n−r)×r and A22 ∈ R(n−r)×(n−r) such that det(A22) ̸= 0
which implies system (7) is causal (Yang et al., 2004). Then the restricted equivalent form of the
system (7) is obtained:

xi1(k + 1) = A11xi1(k) +A12xi2(k) +B1vi(k), (9a)

0 = A21xi1(k) +A22xi2(k) +B2vi(k), (9b)

yi1(k) = C1xi1(k), yi2(k) = C2xi2(k),

yi(k) = yi1(k) + yi2(k),
(9c)

Hence (6) holds if and only if

lim
k→∞

∥xj1(k)− xi1(k)∥ = 0 (10)

and

lim
k→∞

∥xj2(k)− xi2(k)∥ = 0 (11)

hold, simultaneously.
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It can be obtained from (9b) that

xi2(k) = −A−1
22 [A21xi1(k) +B2vi(k)]. (12)

Substituting (12) into (9a) derives

xi1(k + 1) = Âxi1(k) + B̂vi(k), (13a)

yi1(k) = C1xi1(k), (13b)

where

Â = A11 −A12A
−1
22 A21, B̂ = B1 −A12A

−1
22 B2. (14)

Since information exchanges with the communication delay d, at time k, the i-th agent only
receives information from the j-th agent that was released at time k − d, j ∈ Ni. In order to
compensate for the networked communication delay actively and effectively, NPCS proposed in
Liu et al. (2007) is employed to solve the studied consensus problem. Based on the output data
from the j-th agent up to time k−d, construct state and output predictions of the j-th agent from
time k − d to time k as follows:

x̂j1(k − d+ 1|k − d) =Âx̂j1(k − d) + B̂vj(k − d) + L[yj1(k − d)− C1x̂j1(k − d)] (15a)

ŷj1(k − d+ 1|k − d) = C1x̂j1(k − d+ 1|k − d) (15b)

x̂j1(k − d+ 2|k − d) =Âx̂j1(k − d+ 1|k − d) + B̂vj(k − d+ 1), (16a)

ŷj1(k − d+ 2|k − d) = C1x̂j1(k − d+ 2|k − d) (16b)

...

x̂j1(k|k − d) = Âx̂j1(k − 1|k − d) + B̂vj(k − 1) (17a)

ŷj1(k|k − d) = C1x̂j1(k|k − d) (17b)

where x̂i1(k) and vi(k) are the state and control input of the predictor (15), respectively. x̂j1(k −
d+s|k−d) and ŷj1(k−d+s|k−d), s = 1, 2, · · · , d, are the state and output predictions of the j-th
agent from time k−d to time k, respectively. L ∈ is a Rr×m matrix which will be suitably designed.
According to observer design approaches (Yang et al., 2004), design L ∈ Rr×m to guarantee that
lim
k→∞

∥x̂i1(k)−xi1(k)∥ = 0, i ∈ V. Obviously, using the above method is required to construct input

predictions vj(k−d+ s|k−d) of the j-th agent to replace with vj(k−d+ s), s = 1, 2, · · · , d. Thus,
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for NMAS (13) with the communication delay d, the protocol for the i-th agent based on NPCS
and the dynamic compensators is adopted as

zi(k + 1) = Āzi(k) + B̄(

N∑
j=1

aij [ŷj1(k|k − d)− ŷi1(k|k − d)]), (18a)

vi(k) = C̄zi(k) + D̄(

N∑
j=1

aij [ŷj1(k|k − d)− ŷi1(k|k − d)]), (18b)

where zi(k) ∈ Rnc is the state of the dynamic compensator, Ā ∈ Rnc×nc , B̄ ∈ Rnc×m, C̄ ∈ Rq×nc

and D̄ ∈ Rq×m are constant matrices which will be designed.
The predictive processes is explained in detail as follows. At time k, the j-th agent can only obtain

data {uj(k−d), yj(k−d), zj(k−d)} from the j-th agent. Based on {uj(k−d), yj(k−d), zj(k−d)},
using the following steps to construct input predictions of the j-th agent and states of dynamic
compensator (18) from time k − d+ 1 to time k − 1:

Step 1: Based on data {vj(k−d), yj1(k−d)}, one obtains x̂j1(k−d+1|k−d) and ŷj1(k−d+1|k−d)
from (15);

Step 2: Using data {zj(k − d), yj1(k − d)} and (18a), one obtains zj(k − d+ 1);
Step 3: Based on data {zj(k− d+1), yj1(k− d+1|k− d)}, one obtains vj(k− d+1|k− d) from

(18b);
Step 4: Based on data {xj1(k−d+1|k−d), vj(k−d+1|k−d)}, one obtains x̂j1(k−d+2|k−d)

and ŷj1(k − d+ 2|k − d) from (16);
Step 5: Repeat the above steps, it can be obtained:

{vj(k − d+ 2|k − d), zj(k − d+ 2)}

{vj(k − d+ 3|k − d), zj(k − d+ 3)}
...

{vj(k − 1|k − d), zj(k − 1)}

Remark 3: Comparing the dynamic compensator with the state feedback, the former one would
make more sense in consensus protocols. Due to constraints on measurement or economic costs in
practice, it is sometimes hard to measure information of all states directly (Yang & Liu, 2011).
However, only the relative information of all outputs is available. When nc = 0, protocol (18) is
simplified into a static output feedback in Yang & Liu (2014):

vi(k) = D̄(

N∑
j=1

aij [ŷj1(k|k − d)− ŷi1(k|k − d)]). (19)

Since the static output feedback can not fully reach the function of the state feedback, protocol (18)
can overcome this limitation when nc > 0. Moreover, protocol (18) can also increase design degrees
of freedom, which can guarantee that the obtained closed-loop system has better performance.
Hence it is easy to see that protocol (19) is one particular case of protocol (18).

Definition 5: For NMAS (13) with G = (V, E ,A) and the communication delay d, protocol (18)
is said to solve the consensus problem (or NMAS (13) achieves consensus via protocol (18)), if the
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following conditions hold:

lim
k→∞

∥xj1(k)− xi1(k)∥ = 0, lim
k→∞

∥zi(k)∥ = 0, lim
k→∞

∥ei(k)∥ = 0, ∀i, j ∈ V,

where ei(k) = x̂i1(k)− xi1(k).

Remark 4: When protocol (18) solves consensus problem of NMAS (13), one has

lim
k→∞

∥zi(k)∥ = 0, lim
k→∞

∥δi(k)∥ = 0, lim
k→∞

∥ei(k)∥ = 0, i ∈ V,

where δi(k) = x11(k)− xi1(k), i ∈ V \ {1}, According to (18b), one has

lim
k→∞

vi(k) = 0, i ∈ V. (20)

Using (12), one obtains

xi2(k)− x12(k) = −A−1
22 A21δi(k)−A−1

22 B2[vi(k)− v1(k)].

Combining lim
k→∞

∥δi(k)∥ = 0 with (20) yields

lim
k→∞

∥xj2(k)− xi2(k)∥ = 0, ∀i, j ∈ V.

Based on the previous preparation, solving Problem 1 has been converted to solving the following
Problem.

Problem 2: Design a matrix F and protocol (18) to guarantee that the closed-loop system (7) is
causal and NMAS (13) achieves consensus via protocol (18), simultaneously.

4. Analysis of admissible consensus for networked singular multi-agent systems

Theorem 1: For networked singular multi-agent system (4) with G = (V, E ,A) and the commu-
nication delay d, protocol (5) solves the admissible consensus problem if and only if the following
conditions hold:

(i) Each agent of system (4) is Y -controllable and Y -observable;
(ii) There exist matrices F , Ā, B̄, C̄, D̄ and L such that

∆ =

[
∆11 S[IN ⊗ (B̂C̄)]

L̄ ⊗ (B̄C1) IN ⊗ Ā

]

and Â−LC1 are Schur stable, where ⊗ is the Kronecker product of matrices, ∆11 = IN−1⊗Â−

(L22 − 1N−1L12)⊗ (B̂D̄C1), L̄ = LG
[
0 IN−1

]T
, 1N−1 = [1 1 · · · 1]T ∈ RN−1,

[
l11 L12

L21 L22

]
=

LG , Â and C1 are defined by (8) and (14), respectively.

Proof. According to Lemma 3, there exists an output feedback (5) such that the closed-loop system
(7) is causal if and only if each agent of system (4) is Y -controllable and Y -observable. It will be
shown that NMAS (13) achieves consensus via protocol (18) if and only if condition (ii) holds as
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follows. Denote

x(k) = [xT11(k) x
T
21(k) · · · xTN1(k) ]

T ,

z(k) = [zT1 (k) z
T
2 (k) · · · zTN (k) ]T ,

e(k) = [eT1 (k) e
T
2 (k) · · · eTN (k) ]T ,

δ(k) = [ δT2 (k) δ
T
3 (k) · · · δTN (k) ]T .

It is easy to see that x(k) and δ(k) such that

δ(k) = Sx(k), (21)

where S = [1N−1 −IN−1 ]⊗ In.
It can be concluded from Definition 5 that protocol (18) solves the consensus problem for system

(13) if and only if lim
k→∞

∥δ(k)∥ = 0, lim
k→∞

∥z(k)∥ = 0 and lim
k→∞

∥e(k)∥ = 0 hold.

By the iteration of system (13a), the state xj1(k) can also be written as

xj1(k) = Âdxj1(k − d) +

d∑
s=1

Âd−sB̂vj(k − d+ s− 1). (22)

Using (13a) and (15a), one obtains

ei(k + 1) = (Â− LC1)
d−1ei(k − d+ 1). (23)

From (15a), (16a) and (17a) by the way of iteration, one obtains

x̂j1(k|k − d) =Âd−1(Â− LC1)x̂j1(k − d) +

d∑
s=1

Âd−sB̂vj(k − d+ s− 1) + Âd−1Lyj1(k − d), j ∈ V,

(24)
Combining with (22), (23) and (24) drives

x̂j1(k|k − d) =Âd−1(Â− LC1)x̂j1(k − d) + zj(k)− Âdxj1(k − d) + Âd−1LC1zj(k − d)

=xj1(k) + Âd−1ej(k − d+ 1),

Using the definition of LG and the above equation, one has

N∑
j=1

aij [ŷj1(k|k − d)− ŷi1(k|k − d)] = C1(L̄i ⊗ In)δ(k)− C1Â
d−1(Li ⊗ In)e(k − d+ 1),

where Li =
[
li1 L̄i

]
, L̄i =

[
li2 li3 · · · liN

]
. Substituting the above equation into (18) yields the

closed-loop system which is made of system (13) and protocol (18)

xi1(k + 1) =Âxi1(k) + B̂C̄zi(k) + B̂D̄C1(L̄i ⊗ In)δ(k)− B̂D̄C1Â
d−1(Li ⊗ In)e(k − d+ 1),

zi(k + 1) =Āzi(k) + B̄C1(L̄i ⊗ In)δ(k)− B̂C1Â
d−1(Li ⊗ In)e(k − d+ 1).
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Hence,

x(k + 1) =(IN ⊗ Â)x(k) + [IN ⊗ (B̂C̄)]z(k)[LG ⊗ (B̂D̄C1Â
d−1)]e(k − d+ 1) + [L̄ ⊗ (B̂D̄C1)]δ(k),

z(k + 1) =(IN ⊗ Ā)z(k) + [L̄ ⊗ (B̄C1)]δ(k)− [LG ⊗ (B̄C1Â
d−1)]e(k − d+ 1),

where L̄ = LG
[
0 IN−1

]T
. Using (21) and

S[L̄ ⊗ (B̂D̄C1)] = −(L22 − 1N−1L12)⊗ (B̂D̄C1),

one obtains

η(k + 1) = Ση(k),

where

η(k) =
[
δT (k + 1) zT (k + 1) eT (k − d)

]T
,

Σ =

[
∆ Σ1

0 IN ⊗ (Â− LC1)

]
,

Σ1 =

[
−S[LG ⊗ (B̂D̄C1Â

d−1)]

LG ⊗ (B̄C1Â
d−1)

]
.

Based on the previous derivation, protocol (18) can solve the consensus problem of system (13)

if and only if Σ is Schur stable which implies that ∆ and Â− LC1 are Schur stable.

Corollary 1: For networked singular multi-agent system (4) with G = (V, E ,A) and the commu-
nication delay d, protocol (5) solves the admissible consensus problem if and only if the following
conditions hold:

(i)

rank

[
E 0 0
A E B

]
= rank(E) + n, (25)

rank

E A
0 E
0 C

 = rank(E) + n; (26)

(ii) There exist matrices F , Ā, B̄, C̄, D̄, L and positive definite matrices P∆ > 0, PL > 0 such
that the following matrix inequalities hold:

∆TP∆∆− P∆ < 0, (27)

(Â− LC1)
TPL(Â− LC1)− PL < 0, (28)

where ∆ is defined as in Theorem 1. Â and C1 are defined by (14) and (8), respectively.
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Proof. It can be conclude from Lemma 2 that (25) and (26) hold if and only if each agent of system
(4) is Y -controllable and Y -observable. According to the proof of Theorem 1, it suffices to show

that the condition (ii) holds if and only if ∆ and Â − LC1 are Schur stable as follows. It can be

obtained from Lyapunov stability theory that ∆ and Â−LC1 are Schur stable if and only if there
exist positive definite matrices P∆ > 0 and PL > 0 such that matrix inequalities (27) and (28)
hold, simultaneously.

Corollary 2: For networked singular multi-agent system (4) with G = (V, E ,A) and the communi-

cation delay d, if each agent of system (4) is Y -controllable and Y -observable, (Â, C1) is detectable,
and there exist D̄ and PΓ > 0 such that

ΓTPΓΓ− Γ < 0 (29)

holds, then protocol (5) can solve the admissible consensus of system (4), where

Γ = IN−1 ⊗ Â− (L22 − 1N−1L12)⊗ (B̂D̄C1),

L12, L22, 1N−1 is defined as in Theorem 1.

Proof. Since (Â, C1) is detectable, there exists a matrix L such that (Â − LC1) is Schur stable.

Choose matrices Ā, B̄, C̄ to guarantee that Ā is Schur stable, and B̂C̄ = 0 or B̄C1 = 0. According
to Lyapunov stability theory, it can be concluded from (29) that Γ is Schur stable. Thus, using
Theorem 1, it can be obtained that the admissible consensus problem of system (4) is solved by
protocol (5).

Corollary 3: For networked singular multi-agent system (4) with G = (V, E ,A) and the communi-

cation delay d, if each agent of system (4) is Y -controllable and Y -observable, (Â, C1) is detectable,

the topology G has a directed spanning tree, and there exists D̄ such that Â−λiB̂D̄C1, i ∈ V \{1},
are Schur stable, then protocol (5) can solve the admissible consensus of system (4), where
λi, i ∈ V \ {1}, are the non-zero eigenvalues of LG.

Proof. Similar to the proof processes of Theorem 1, one has eigenvalues of IN−1 ⊗ Â − (L22 −
1N−1L12)⊗(B̂D̄C1) are given by all eigenvalues of Â−λiB̂D̄C1, i ∈ V\{1}. Since Â−λiB̂D̄C1, i ∈
V \ {1}, are Schur stable, it can be concluded from the proof of Corollary 2 that the conclusion of
this corollary holds.

Remark 5: When networked singular multi-agent system (4) satisfies the preconditions in above
Theorem and corollaries, it can be obtained from that networked singular multi-agent system (4)
achieving consensus via protocol (5) based on NPCS depend not only on the topology of networked
singular multi-agent system (4) but also the structure properties of each agent dynamics. Obviously,
protocol (5) can compensate for communication delays effectively.

Based on Corollary 3, the following algorithm is provided to design predictive protocol (5) associ-
ated with F and protocol (18), which implies that Problem 1 will be solved under some reasonable
assumptions.

Algorithm 1: Input: the matrices E, A ∈ Rn×n, B ∈ Rn×q, C ∈ Rm×n, A = [aij ] ∈ RN×N and
d ∈ R;
Output: the gain matrices F, L, Ā, B̄, C̄ and D̄.

(a) Carry out the singular value decomposition of the matrix E by

E = U

[
Σ 0
0 0

]
V T

11
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and obtain the orthogonal matrices U, V ∈ Rn×n, the diagonal positive definite matrix Σ ∈
Rr×r such that

Σ = diag{σ1, σ2, · · · , σr} > 0

where σi, i = 1, 2, · · · , r are the non-zero singular values of E;
(b) Compute the matrices P and Q by

P = diag(Σ−1, In−r)U
T , Q = V

(c) Compute the matrices Â11 ∈ Rr×r, Â12 ∈ Rr×(n−r), Â21 ∈ Rr×(n−r), Â22 ∈ R(n−r)×(n−r),
B1 ∈ Rr×q, B2 ∈ R(n−r)×q, C1 ∈ Rm×r C2 ∈ Rm×(n−r) by

[
Â11 Â12

Â21 Â22

]
= PAQ,

[
B1

B2

]
= PB,

[
C1 C2

]
= CQ;

(d) Choose a matrix F ∈ Rn×q such that det(Â22 +B2FC2) ̸= 0;

(e) Compute the matrices A11, A12, A21, A22, Â and B̂ by

A11 = Â11 +B1FC1, A12 = Â12 +B1FC2,

A21 = Â21 +B2FC1, A22 = Â22 +B2FC2,

Â = A11 −A12A
−1
22 A21, B̂ = B1 −A12A

−1
22 B2;

(f) Compute Laplacian matrix LG by (1) and the non-zero eigenvalues λi of LG, i ∈ V \ {1};
(g) If (Â, C1) is detectable, solve the unique positive-definite solution to Riccati equation

ÂP ÂT − P − ÂPC1(I + C1PCT
1 )

−1C1PÂT + I = 0, (30)

and set L = ÂPC1(I + C1PCT
1 )

−1. Otherwise, go back Step (c) to choose F again;
(h) Choose matrices Ā ∈ Rnc×nc , B̄ ∈ Rnc×m and C̄ ∈ Rq×nc such that Ā is Schur stable, and

B̂C̄ = 0 or B̄C1 = 0;
(i) Choose a matrix D̄ ∈ Rq×m such that Â− λiB̂D̄C1, i ∈ V \ {1} are Schur stable. Then output

the matrices F, L, Ā, B̄, C̄ and D̄.

Remark 6: According to Lemma 3, the condition which each agent of system (4) is Y -controllable
and Y -observable can guarantee the existence of F in step (d) of Algorithm 1. Moreover, it can be
concluded from (Duan, 2010, Theorem 7.9) that the set

N(Â22,B2,C2)
=

{
F |det(Â22 +B2FC2) ̸= 0

}
is a Zariski open set. Thus, solving a gain matrix from the set N(Â22,B2,C2)

can often be easily

sought by a “trial-and-test” procedure.

12
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Figure 1. The communication topology
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Figure 2. State difference trajectories of agents based on delayed states

5. A numerical example

Consider networked singular multi-agent system (4) composed of N = 3 agents, where

E =

1 0 0
0 1 0
0 0 0

 , A =

 1 1 −1
−3.5 −1.5 1
−2 0 0

 , B =

[
1 0 1
−1 1 2

]T
, C =

[
4 2 1
2 1 1

]
.

The communication delay d = 3 and the communication topology is described by a weighted

digraph G = (V, E ,A), where V = {1, 2, 3}, E = {(1, 2), (2, 3)} and A =

0 0 0
1 0 0
0 1 0

 . Figure 1 shows

its communication topology. According to the steps in Algorithm 1, the following can be obtained:

F = I2, Ā = −0.1, B̄ =
[
1 −2

]
, C̄ =

[
1
1

]
, D̄ =

[
0.9 0.8
1.9 −0.2

]
.

Case one: Time-delay information is used to control the system directly. Thus, adopt the pro-
tocol:

ui(k) = Fyi(k) + D̄

N∑
j=1

aij [yj(k − d)− yi(k)].

The simulation results are presented in Fig. 2 and Fig. 3, which indicates networked singular
multi-agent system (4) achieves admissible consensus. Meanwhile, it is easy to see that achieving

13
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Figure 3. State difference trajectories of agents based on delayed states
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Figure 4. State difference trajectories of agents based on NPCS
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Figure 5. State difference trajectories of agents based on NPCS

consensus costs 53 steps.
Case two: Based on NPCS, adopt the protocol designed in this paper:

zi(k + 1) =Āzi(k) + B̄(

N∑
j=1

aijδj(k|k − d)),

ui(k) =Fyi(k) + C̄zi(k) + D̄(

N∑
j=1

aijδj(k|k − d)),
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Figure 7. Trajectories of estimate error based on NPCS

where δj(k|k − d) = ŷj1(k|k − d) − ŷi1(k|k − d). The simulation results are presented in Fig. 4
to Fig. 7. Fig. 4 and Fig. 5 show state trajectories of networked singular multi-agent system (4),
which indicates that networked singular multi-agent system (4) achieves admissible consensus via
observer-based predictive protocol (18). Fig. 6 and Fig. 7 present state trajectories of protocol
(18) and error trajectories ei(k) tend to zero, respectively. According to Definition 1, Problem 1 is
solved by protocol (18) of system (4). Moreover, achieving consensus costs 41 steps. It is clearly
that achieving consensus based on the predictive protocol designed in this paper is faster than the
method used time-delay information.

6. Conclusion

For networked singular multi-agent systems with directed topologies and communication delays, the
admissible consensus problem via predictive protocols has been solved. Due to only the information
of outputs is available through the shared network with communication delays, an observer-based
NPCS has been employed to compensate for communication delays actively. Based on the dynamic
compensator and NPCS, a novel protocol has been proposed. The provided simulation results
have demonstrated the effectiveness of compensation for communication delays successfully. In this
paper, the obtained results only serve as a stepping stone to investigate singular multi-agent systems
with more complicated topologies. The future research will study singular multi-agent systems
with time-varying networked delays, stochastic or switching topologies, and agents described by
switching systems, hybrid systems or Markovian jump systems (Li et al., 2015a,b), and so on.
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