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Abstract: Piezoelectric ultrasonic transducers have the potential to operate as both a sensor and as an
actuator of ultrasonic waves. Currently, manufactured transducers operate effectively over narrow
bandwidths as a result of their regular structures which incorporate a single length scale. To increase
the operational bandwidth of these devices, consideration has been given in the literature to the
implementation of designs which contain a range of length scales. In this paper, a mathematical
model of a novel Sierpinski tetrix fractal-inspired transducer for sensor applications is presented.
To accompany the growing body of research based on fractal-inspired transducers, this paper offers
the first sensor design based on a three-dimensional fractal. The three-dimensional model reduces to
an effective one-dimensional model by allowing for a number of assumptions of the propagating
wave in the fractal lattice. The reception sensitivity of the sensor is investigated. Comparisons of
reception force response (RFR) are performed between this novel design along with a previously
investigated Sierpinski gasket-inspired device and standard Euclidean design. The results indicate
that the proposed device surpasses traditional design sensors.

Keywords: piezoelectric materials; mathematical modelling; Sierpinski tetrix fractal; ultrasonic
transducer; renormalization; finite differences

1. Introduction

Ultrasonic transducers have the ability to generate and detect ultrasonic waves. Ultrasonic
sensors, that is, ultrasonic transducers operating in reception mode, convert mechanical energy into
electrical energy through the contact of sound waves resulting in the production of an electrical
signal [1–3]. Ultrasonic sensors are used extensively in fields such as communication, medicine
and non-destructive evaluation [4,5]. The regular geometry of traditional ultrasonic sensors restricts
their effective performance to a small range of frequencies, due to their one dominant length scale.
In contrast, biological sensors found in natural systems have greater complexity in their design,
including a range of length scales [6–8]. This results in far more effective reception of ultrasonic waves
over a wider range of frequencies. Construction of devices which benefit from a range of length scales,
similar to those found in nature, is therefore of great interest.

Fractals are complex geometrical objects which exhibit structural similarity across magnification
levels in addition to being constructed from a range of length scales. To assist the construction
of devices that operate efficiently over a larger range of frequencies, it is possible to consider
the implementation of fractal-like structures into the design of new ultrasonic transducers [6,9–11].
Research into fractal-inspired transducers has included the plane wave expansion model to study the
performances of a Sierpinski carpet and Cantor set pre-fractal transducers [9]. The Green function
renormalization method was utilised to obtain analytical results for a Sierpinski gasket-inspired
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transducer [6] and was further investigated using a finite element approach [11]. A prototype of its
fourth fractal generation level was manufactured [10]. It was shown in these papers that ultrasonic
transducers with multiple length scales benefited from more resonances and improved operation over
a larger range of frequencies.

In this paper, the Green function renormalization method is utilised to analyse the potential
performance of a three-dimensional fractal-inspired ultrasound sensor. An expression for the reception
force response (RFR) is derived and plotted against the operating frequency. This profile is then
examined for the purpose of comparing against the standard (Euclidean) and another previously
investigated fractal-inspired design. The results are indicative of an improvement in the RFR
bandwidth in comparison to the Euclidean transducer and comparable to the previously investigated
Sierpinski gasket-inspired transducer.

The investigation of the Sierpinski tetrix fractal-inspired sensor begins in Section 2, where the
construction of the Sierpinski tetrix and its lattice counterpart are outlined. In Section 3, the governing
wave equation is derived from the general tensor equations. The application of the Green function
renormalization method is then utilized in Section 4 to obtain the relevant recursive relations for the
fractal-inspired sensor model. In Section 5, the boundary conditions for the model are derived together
with an expression for the RFR. In Section 6, the results for the Sierpinski tetrix fractal-inspired sensor
are compared with the standard Euclidean design and the Sierpinski gasket fractal-inspired design.
The findings are summarised and future research is discussed in Sections 7 and 8.

2. Lattice Structure of the Sierpinski Tetrix

The self-similar structure used in this paper to imitate the complex geometry found in natural
ultrasonic sensors is the Sierpinski tetrix. The Sierpinski tetrix can be classified as the three-dimensional
equivalent of the Sierpinski gasket on account of its construction [12–14]. Thus, its structure is achieved
in a similar way whereby the fractal is formed from an initial regular tetrahedron. The following
generation is obtained by replacing this initial tetrahedron with four copies of its three-dimensional
self. Subsequent generations are then found by repeatedly applying this procedure, and, after an
infinite number of iterations, the Sierpinski tetrix fractal is formed. The Sierpinski tetrix pre-fractals at
generation levels one, two and three are illustrated in Figure 1.

2

3

1

Figure 1. Schematic representation of a Sierpinski tetrix sensor at fractal generation levels one, two
and three.

A lattice counterpart of the Sierpinski tetrix will be used to investigate the propagation of an
ultrasonic wave. The lattice represents the vibrations of the piezoelectric material of the Sierpinski
tetrix. The interaction between the electrical and mechanical behaviour of the lattice vertices is decribed
by [15] and detailed further in Section 3. These lattice structures are constructed by assigning a vertex to
the centre of the piezoelectric tetrahedron and joining these vertices by an edge. The process of forming
the graph G(n+1) is obtained by connecting together four copies of the previous graph, G(n) [6,16,17];
see Figure 2.
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n=0 n=1 n=2

Figure 2. Graphical representations of generations 0 to 2 for the sequence of Sierpinski tetrix lattices.

For the lattice structure, the nth generation graph has Nn = 4n vertices and the coordination
number for this fractal lattice is q = 4. However, this coordination number is not consistent since
the corner vertices have a coordination number q = 3. These corner vertices act as the input and
output vertices and interact with external loads. Fictitious vertices A, B, C and D are attached to the
input/output vertices to accommodate the boundary conditions and to make the coordination number
consistent, with q = 4. This is analogous to the investigation of the Sierpinski gasket [6]. The length
of the fractal lattice, that is the length of the ceramic component of the device (l), remains fixed
throughout the construction process. Thus, the edge length between adjacent vertices will decrease as
the generation level is increased. The recursive relationship of the graphs can be described in terms of
their adjacency matrix

H(n+1) = H̄(n) + V(n), (1)

where H̄(n) is a block diagonal matrix whose v blocks are equal to H(n), and V(n) is a sparse matrix that
assigns the number one to the connection of sub-graphs and zero otherwise [6,16,18]. The recursion
relationship equation is given by [16]

Ĝ(n+1) = Ḡ(n) + Ḡ(n)V(n)Ĝ(n+1), (2)

where Ĝ(n) is the Green function matrix which does not account for boundary conditions, and Ḡ(n) is a
block diagonal matrix whose v blocks equal Ĝ(n). To account for boundary conditions, the following
equation is used

G(n) = Ĝ(n) + Ĝ(n)B(n)G(n), (3)

where B(n) is a matrix containing the boundary conditions at the input and output vertices.

3. Wave Propagation in the Sierpinski Tetrix

The movement of a wave through the piezoelectric material can be described using the stress
equation of motion

ρT üi = Tij,j for i, j = 1, 2, 3, (4)

where ρT is the density of the piezoelectric material, ui is the displacement tensor and Tij is the stress
tensor. The three-dimensional constitutive equations describing the coupling between electrical and
mechanical behaviour of the lattice vertices are given by

Tij = cijklSkl − ekijEk, Di = eiklSkl + εikEk. (5)
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In these equations, cijkl denotes the stiffness tensor, Skl is the strain tensor, ekij is the piezoelectric
tensor, Ek is the electric field, Di is the displacement and εik denotes the permittivity tensor.
The relationship between the strain tensor and mechanical displacement is given by

Skl =
1
2
(ul,k + uk,l) . (6)

Additionally, a relationship between electric field and electric potential, φ, is expressed as

Ek = −φ k. (7)

The poling direction of the piezoelectric material is parallel to the direction of the x3-axis, and it
is assumed that an electric field is only applied in this direction [19,20]. This is to ensure that the
orientation of the dipoles of the piezoelectric ceramic are aligned and not left in their randomly oriented
state. If left in their original state, the piezoelectric effect is disabled. Previous experimental research
on the Sierpinski gasket [10] has shown the dependence of the transducer’s performance on the poling
direction (which can be chosen in the manufacturing process). Consequently, the assumption made
above on the poling direction and form of the electric field essentially allows for the reduction of the
three-dimensional coupling equations in Equation (5) to reduce to one dimension. Hence,

E1 = E2 = 0, E3 6= 0 and D1 = D2 = 0, D3 6= 0. (8)

Consequently, in Equation (4),

Tij,j = T3j,j = T33,3 + T32,2 + T31,1 = T3 + T4 + T5, (9)

where the components with i = j relate to longitudinal stresses and with i 6= j indicate the shear
stresses. Equation (4) can be reduced further since it is assumed that the wave travelling within the
sensor is wholly longitudinal along the x3-axis, that is, the shear waves are negligible in comparison
to that of the longitudinal waves. This assumption can be made due to the poling direction and the
direction of the applied electric field and simplifies the algebra considerably. Longitudinal waves in
the x1- and x2-directions are also neglected due to the direction of the poling and the applied electric
field. Hence,

ρT ü3 = T3. (10)

Electric charges do not flow easily within the piezoelectric ceramic as a result of it being a good
insulator. Thus, from Gauss’ law,

D3,3 = 0. (11)

Using Equations (5)–(8) and (11) together with Equation (10) yields

ρT ü3 = c33

(
1 +

e2
33

ε33c33

)
∂2u3

∂x2
3

. (12)

Equation (12) can be reduced into the one-dimensional form by setting the Young’s modulus of
the piezoelectric material, YT = c33 + e2

33/ε33, and temporarily dropping the subscript attached to the
displacement tensor. Thus,

ρT
∂2u
∂t2 = YT

∂2u
∂x2 . (13)



Sensors 2016, 16, 2170 5 of 16

The one-dimensional equation is subsequently used to derive the boundary conditions and RFR.
It is discretized and, by introducing the non-dimensionalized variable θ, can be written as

∂2u
∂θ2 = A(n)u + B(n)u + c(n), (14)

where θ =
√
(YT/ρT)t/∆x, A(n) represents the discretized Laplacian at fractal generation level n, B(n)

and c(n) are dictated by the boundary conditions at the input/output vertices, and ∆x = l/(2n − 1) is
the length of each edge of the fractal lattice. The size of the ceramic component l is fundamental in the
sensor design, since the value for l will affect the overall performance of the device.

The derivation of the effective one-dimensional model was the technique for simplifying the
analysis of wave propagation within the fractal-like lattice. Longitudinal waves can propagate in all
three forms, solid, liquid and gases, while shear waves can only propagate through solids [21–23].
This effective one-dimensional model accounts only for longitudinal waves in the x3-direction since
the shear waves and longitudinal waves in the x1- and x2-directions are considered negligible in
comparison. This form of analysis, in effect, treats elastic solids as liquids, simplifying the model while
still providing useful results on the likely performance of this sensor. Furthermore, this simplification
provides a fair comparison against the previously investigated Sierpinski gasket inspired transducer [6].
Nevertheless, reducing the system to a one-dimensional model will result in the loss of some nonlinear
information. This could be resolved in using a fully three-dimensional finite element analysis on
the wave propagation. However, while the finite element models proposed [11,24] for the Sierpinski
gasket will be more accurate, they are computationally expensive and the finite differences model
proposed previously for the same structure [10] produced similar results without the computational
overheads. Hence, a similar approach was taken here.

4. Renormalization Analysis

In previous research [6,11,25], the Green function renormalization method has been applied
to fractal structures with the aim of obtaining recursion relations to facilitate expressions for the
transducers’ operating characteristics. In this section, this approach is applied to develop the recursion
relations for the Sierpinski tetrix lattice.

It is assumed that Sierpinski tetrix fractal-inspired sensor will have a single input vertex at vertex
A and three output vertices at vertices B, C and D.
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Figure 3. Sierpinski tetrix lattice at generation n = 2. Fictitious vertices A, B, C and D are introduced
to accommodate the boundary conditions.
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Figure 3 shows the development of the second generation level fractal lattice from the connection
of four copies of the first generation lattice, i.e., the process of forming G(n+1) is made from the
connection of four copies of G(n). Due to the symmetries of the lattice structure, it is of interest only
to obtain the pivotal Green functions. The pivotal Green functions are the minimum number of
independent elements required to develop a recursion [16]. While this method can be used at any
generation level, the vertex labelling as illustrated in Figure 3, and as mentioned throughout this paper,
refers specifially to generation level n = 2. The Sierpinski tetrix has two pivotal Green functions, Ĝ(n)

1 1

and Ĝ(n)
1 6 , where, for ease of notation, these will be labelled x̂t = Ĝ(n)

1 1 and ŷt = Ĝ(n)
1 6 . The subscripts

attached refer to vertices connecting the lattice structure to the fictitious vertices A, B, C and D [6] and
the subscript t relates to the Sierpinski tetrix model. The corresponding Green functions at the next
fractal generation level, X̂t = Ĝ(n+1)

1 1 and Ŷt = Ĝ(n+1)
1 6, are found by applying Equation (2) yielding,

X̂t = x̂t + 3ŷtĜ
(n+1)
5 1 , (15)

Ŷt = ŷt

(
Ĝ(n+1)

2 1 + Ĝ(n+1)
7 1

)
. (16)

To obtain X̂t and Ŷt in terms of x̂t and ŷt solely, expressions for Ĝ(n+1)
2 1, Ĝ(n+1)

5 1 and Ĝ(n+1)
7 1 are

required; utilising Equation (2) results in

Ĝ(n+1)
2 1 = ŷt + (x̂t + 2ŷt) Ĝ(n+1)

5 1 , (17)

Ĝ(n+1)
5 1 = x̂tĜ

(n+1)
2 1 + 2ŷtĜ

(n+1)
7 1 , (18)

Ĝ(n+1)
7 1 = ŷtĜ

(n+1)
2 1 + (x̂t + ŷt) Ĝ(n+1)

7 1 . (19)

Solving Equations (15)–(19) for the corresponding Green functions gives

X̂t = x̂t −
3ŷ2

t
(
x̂2

t − x̂t + x̂tŷt − 2ŷ2
t
)

(1− x̂t − 2ŷt)
(
1− x̂2

t + ŷt − x̂tŷt + 2ŷ2
t
) , (20)

Ŷt =
ŷ2

t (1− x̂t + ŷ)
(1− x̂t − 2ŷt) (1 + ŷt − (x̂t − ŷt) (x̂t + 2ŷt))

. (21)

To account for boundary conditions, Equation (3) is utilised, resulting in

xt = x̂t + x̂tb1xt + 3ŷtb2yt, (22)

yt = ŷt + ŷtb1xt + x̂tb2yt + 2ŷtb2yt, (23)

zt = x̂t + ŷtb1yt + x̂tb2zt + 2ŷtb2wt, (24)

wt = ŷt + ŷtb1yt + x̂tb2wt + ŷtb2wt + ŷtb2yz. (25)

Solving these equations simultaneously results in

xt =
x̂t − b2(x̂t − ŷt)(x̂t + 3ŷt)

∆t
, (26)

yt =
ŷt

∆t
, (27)

zt =
(1− x̂tb1)(1− b2(x̂t − ŷt))− ∆t(1− 3b2(x̂t − ŷt))

3b2(1− b2(x̂t − ŷt))∆t
, (28)
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wt =
(1− b1(x̂t − ŷt))ŷt

1− (b2(x̂t − ŷt))∆t
, (29)

where b1 = B(n)
1 1 , b2 = B(n)

6 6 = B(n)
11 11 = B(n)

16 16, xt = G(n)
1 1 , yt = G(n)

1 6 , zt = G(n)
6 6 , wt = G(n)

6 16 and
∆t = (x̂tb1 − 1)(x̂tb2 − 1) + 2b2(x̂tb1 − 1)ŷt − 3ŷ2

t b1b2.
The pivotal elements calculated in this section can now be utilised to derive the relevant operating

sensor characteristic. This is presented in the following section.

5. Derivation of the Reception Force Response (RFR)

The model for the Sierpinski tetrix inspired sensor will have mechanical loads at the output
vertices and an electrical load at the input vertex. The configuration of the proposed device follows a
similar arrangement as the Sierpinski gasket fractal-inspired transducer [6]. The sensor generates an
electric charge when its front face is subjected to external loads, that is, when the output vertices B,
C and D (which correspond to vertex nodes 6, 11 and 16) receive an external load. Expressions for the
displacement in the load and backing material are given as

ūL = AL exp
(
−pvTxL

∆xvL

)
and ūB = AB exp

(
−pvTxB

∆xvB

)
, (30)

where the subscripts L and B refer to the mechanical load and backing layer, respectively, vT is the wave
velocity in the piezoelectric material, AL and AB are constants that represent the forward traveling
waves and p is the Laplace transform variable. These expressions for the displacement in the load and
backing material were found by obtaining solutions to the governing wave equations. At the sensor
boundaries, conditions of continuity of displacement and force are applied. Accounting for symmetries
in the Green function matrix and by applying the conditions of continuity of displacement, provides

u1 = uA = AB, (31)

u6 = u11 = u16 = uB = uC = uD = AL, (32)

where the numbered subscripts attached to the displacement u refer to the mechanical displacements
at the specified vertices, and the subscripted letters are the mechanical displacements at the fictitious
vertices. Furthermore, the force on each vertex is given by F = ArT [6], where Ar is the cross-sectional
area and T is the one-dimensional stress variable. Thus, continuity of force results in

u1 − uA −
hQ
YTξ

= −ZB
ZT

pAB, (33)

uB − u6 −
hQ
YTξ

= −ZL
ZT

pAL, (34)

where h = e33/ε33 is the piezoelectric constant, Q is the electrical charge, ZB, ZL and ZT are the
mechanical impedances of the backing layer, load and sensor, respectively, and ξ is the ratio of the
cross-sectional area of each edge to its length. The elements of the boundary condition matrix B(n) and
the vector c(n), introduced in Equation (14), are found by utilising Equations (31)–(34) as in a similar
manner to [6]. Thus, these are given by

Bij =


1

1−p ZB
ZT

if i = j = 1

1
1−p ZL

ZT

if i = j = 6, 11 or 16

0 otherwise

(35)
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and

ci =



− hQ
YTξ

(
1

1−p ZB
ZT

)
if i = 1

(
hQ
YTξ − 2pAL

ZL
ZT

)(
1

1−p ZL
ZT

)
if i = 6, 11 or 16

0 otherwise

(36)

Equations (35) and (36) will be used to determine the expression for the RFR for the Sierpinski
tetrix inspired sensor.

The RFR is defined as the ratio of the output voltage to the force at the front face of the sensor.
The expression for amplitude of the forward propagating wave is given by

AL = − FvL
pYLξvT

, (37)

where F is the force applied to the front face of the transducer (i.e., to ficticious nodes B, C and D) and YL
is the Young’s modulus of the load. Again, since the pre-fractal sensor device is positioned in a similar
arrangement to the Sierpinski gasket fractal-inspired transducer [6], it follows that the expression for
the non-dimensionalized RFR is calculated in a similar way. Hence, the non-dimensionalized RFR is

ψt =
VhC0

F
=

2h2C0αt

YTξ
(

1− aZT
pC0YTξ(ZE,t+b)

(
1 + h2C0(αt+βt)

YTξ

)) , (38)

where C0 is the capacitance, ZE,t is the electrical impedance, a = Zp/(Z0 + Zp), b = Z0Zp/(Z0 + Zp),
with Z0 and Zp corresponding to the series and parallel electrical loads respectively, as seen in
Figure 4, and

αt =
3yt − wt − zt

1− p ZL
ZT

and βt =
yt − xt

1− p ZB
ZT

. (39)

Output
Voltage

Applied
Pressure

Electrode

Electrode

Z

Z0

p

Figure 4. Possible arrangement of the sensor with series Z0 and parallel Zp electrical loads.

With the relevant operating characteristic now derived, we can now determine the possible
benefits of a sensor based on the design of the Sierpinski tetrix.

6. Results

Current manufacturing limitations do not allow for the construction of a piezoelectric Sierpinski
tetrix at high generation levels at the dimensions required for an operational frequency in the
sub-megahertz range. This is a result of the increasing complexity in the design as the generation level
is increased (of course, the scale of the prototype could be increased, in order to attain higher generation
levels, but the corresponding operating frequency range would be significantly reduced). Therefore,
in this section, a mathematical computer model is employed to test the performance of a Sierpinski
tetrix fractal-inspired sensor at generation levels one to five. This is to account for manufacturing
restrictions that would be present in higher fractal generation level devices. Furthermore, a comparison
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of the RFR between the Sierpinski tetrix and gasket devices, at fractal generation level five, and the
currently used Euclidean device is presented. The three devices have been modelled on a lead zirconate
titanate (PZT-5H) ceramic with the material parameters shown in Table 1. The Sierpinski gasket was
used for comparison due to it belonging to the same family of fractal lattices. Specifically, the Sierpinski
gasket belongs to the S(3) lattice family and the Sierpinski tetrix is part of the S(4) family [16,26];
where the 3 and 4 indicate the coordination number of the fractal lattices.

Table 1. Sensor material parameters for a PZT-5H ceramic [15].

Symbol Magnitude Dimensions

Elastic constant c33 11.74× 1010 N·m−2

Piezoelectric stress coefficient e33 23.3 C·m−2

Permittivity tensor element ε33 1.47× 103 -
Density ρT 7.5× 103 kg·m−3

Parallel electrical load Zp 103 Ω
Series electrical load Z0 50 Ω

Fractal length l 1 mm

The RFR for the Sierpinski tetrix pre-fractal sensors was evaluated by determining the maximum
amplitude (a), bandwidth (bw) and the gain bandwidth product (gbp), which is the product of the
maximum amplitude and bandwidth. The sensor detects ultrasonic energy and then converts it
into an electrical signal. The higher the amplitude of the ultrasonic wave, the greater the voltage
signal [27]. The bandwidth of the device is often used as the cut-off frequency since this gives the
range of frequencies over which the sensor operates efficiently. Previous research has assessed the
effectiveness of a transducer by determining its gain bandwidth product [28,29]. This figure of merit is
beneficial as it can provide an estimate for the range of frequencies around a particular centre frequency
that attains a particular amplitude [30].

6.1. Sensor Performance at Varying Fractal Generation Levels

The RFR profiles for the proposed device based on the initial five fractal generations of the
Sierpinski tetrix pre-fractals are shown in Figure 5. It is evident from this plot that an increase in the
fractal generation level from one to five results in higher maximum amplitudes. Furthermore, it can be
seen that fractal generation levels three, four and five produce RFR profiles with more resonances than
their generation levels one and two counterparts. In fact, by increasing the fractal generation level
beyond level five, we find that the RFR profiles show evidence of more resonances, but this is offset
with a reduced maximum amplitude.

The RFR profiles for the proposed device at generation levels one, five and fifteen are shown in
Figure 6. As is evident from this plot, the initial fractal generation level has far fewer resonances in
comparison to other two devices. This indicates that the device at this generation level has only a
single length scale and hence the presence of a single resonance.

The higher the fractal generation level, the greater the presence of resonances, and this is attributed
to increased complexity in the pre-fractal design; to be precise, there is a greater range of length scales.
However, moving beyond a certain fractal generation level results in a compromise between increased
resonances and maximum amplitude. This can be observed when comparing generation level five to
fifteen. As the generation level is increased, the size of the length scales decreases, and we find that,
for very small length scales, the performance of the sensor at higher frequencies is improved. This is
expected since the designs of higher generation levels span a greater range of length scales.
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Figure 5. Non-dimensionalized reception force response (RFR) ψ (dB) versus frequency f (Hz) for the
Sierpinski tetrix fractal-inspired sensor at fractal generation levels one to five.

Figure 6. Non-dimensionalized RFR ψ (dB) versus frequency f (Hz) for the Sierpinski tetrix
fractal-inspired sensor at fractal generation levels one, five and fifteen.

The bandwidth for fractal generation levels one to five is calculated using the same amplitude.
That is, the peak amplitude is taken at the resonant frequency of fractal generation level two, since
this generation level had the lowest maximum amplitude. In this respect, the bandwidth is likely to
increase with the fractal generation. To corroborate this assumption, the three metrics, for each fractal
generation level, have been calculated and are tabulated in Table 2.
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Table 2. Figures of merit for the Sierpinski tetrix pre-fractal sensors at generation levels one to five,
where the bandwidth is calculated using the amplitude at the resonant frequency for fractal generation
level one.

Generation (n) Amplitude (a) dB Bandwidth (bw) MHz Gain Bandwidth Product (gbp) MHz

1 −0.448 0.415 0.375
2 −0.597 0.386 0.336
3 1.296 0.941 1.269
4 3.825 1.765 4.259
5 5.967 1.521 6.010

Additional resonances in the RFR profiles are desired as they increase the operational bandwidth
of the device. Single length scale devices can only operate at a single frequency, whilst designs with a
range of length scales have the potential to operate over a wide range of frequencies. Thus, to raise the
entire RFR output, a device that presents multiple resonances is preferred. The desirable resonant
behaviour of the sensor is clearly achieved by increasing the fractal generation level. Furthermore,
these resonances occur at lower frequencies. The added advantage of higher fractal generation level
devices is the effect it has on the RFR bandwidth. In certain instances, increasing the fractal generation
level improves the operational bandwidth at the resonant frequency significantly. For example, due to
the additional resonances of the fifth generation level design, the RFR outperforms the first generation
device at almost every possible frequency. Additionally, the value of the gain bandwidth product is
much more encouraging, as there is a noticeable increase in this figure of merit as the fractal generation
level is increased. In some instances, this figure of merit increased more than three-fold over the
previous fractal generation level. The gain bandwidth product was calculated using gbp = a× bw,
where the raw value for the maximum amplitude (a) for each fractal generation level was used before
its conversion into decibels.

6.2. Comparison between Standard and Pre-Fractal Devices

Comparisons of RFR are illustrated in Figure 7 for the standard and pre-fractal devices. While the
sensor designs vary in their construction, for a worthwhile comparison, care has been taken with regard
to the construction variables to ensure that the designs have their first resonance around the same
frequency. We note that, as expected due to the range of length scales present, the pre-fractal designs
demonstrate more resonances than the Euclidean transducer and hence are effective over a wider
frequency range. The profiles of the pre-fractal devices are qualitatively similar with the Sierpinski
tetrix inspired-device displaying lower amplitudes than the Sierpinski gasket inspired-device at all
frequencies. The lower amplitudes present in the tetrix device could suggest that there is a loss in
signal as a result of the additional path the ultrasonic wave has to travel. The amplitude of the wave
diminishes the further it travels through the lattice structure and thus results in greater attenuation.
However, the tetrix device does resonate at lower frequencies than the gasket device and therefore
may allow for greater penetration depth.

It was expected that the pre-fractal Sierpinski tetrix sensor would exhibit more resonances than
the Sierpinski gasket pre-fractal device on account of its lattice structure covering more length scales.
However, the results do not validate this initial assumption, since, in Figure 7, it is observed that
the gasket device is equally as resonant. This may relate to the simplification of the tetrix model.
The reduction of the three-dimensional model to the one-dimensional mode only accounts for wave
propagation in one direction. Similarly, the model of the Sierpinski gasket device restricts attention
to wave propagation in the same direction [6]. Performing three-dimensional wave analysis on the
Sierpinski tetrix device may yield better sensor performance characteristics in comparison to the
Sierpinski gasket device. This analysis is proposed as future work in Section 8. In regards to the
maximum amplitude at generation level 5, the tetrix device has a5

t = 5.967 dB and the gasket device
has a5

g = 9.520 dB. These amplitudes suggest that the increase in coordination number from 3, for the
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gasket lattice, to 4, for the tetrix lattice, has reduced the maximum amplitude by 37%. The RFR
bandwidth for the Sierpinski tetrix device is bw5

t = 0.846 MHz, while bandwidth of the Sierpinski
gasket device is bw5

g = 2.022 MHz. Additionally, the gain bandwidth product for the tetrix device
was calculated as gbp5

t = 3.341, which is a decrease of 72% compared to the gasket device, where
gbp5

g = 11.881.

Figure 7. Non-dimensionalized RFR ψ (dB) versus frequency f (Hz) for the Sierpinski tetrix and
Sierpinski gasket fractal-inspired sensors at fractal generation five and the traditional Euclidean sensor.

Comparisons between the Sierpinski tetrix fractal-inspired sensor and Euclidean sensor are
much more encouraging. Figure 7 shows that the pre-fractal device contains more resonances than
the traditional design. This is to be expected since the Sierpinski tetrix device benefits from range
of length scales while standard designs generally only have a single length scale. The maximum
amplitude for the standard device is ae = 3.462 dB, and thus the Sierpinski tetrix device outperforms
the standard device by 72% in terms of this metric. Moreover, the RFR bandwidth surpasses standard
designs by an additional 0.583 MHz. As a result of the increased amplitudes and bandwidth exhibited
in the Sierpinski tetrix device, the gain bandwidth product is also enhanced; see Table 3. Noting
Tables 2 and 3, all fractal generation levels surpass the standard device in terms of bandwidth. Here,
in order to get a fair comparison, the bandwidths for the pre-fractal devices have all been calculated
using the 3 dB amplitude of the second generation level. The advantage of pre-fractal designs over
Euclidean designs is the presence of more resonances. It has been observed that the initial three fractal
generation levels are not as effective in at least one of the figures of merit as the standard device.
However, as the generation level is increased, so does the presence of resonances, thus increasing
the values of all figures of merit. It was found that higher fractal generation level devices exhibited
additional resonances at higher frequencies, while such resonances were absent in lower generation
levels. Thus, it may be established that devices designed on high fractal generation levels will most
closely resemble those found in nature, for which these systems are far more efficient in operating
over a wider range of frequencies, giving rise to improved bandwidths. Therefore, the improvement
in these values as the generation level is increased demonstrates that multiple resonances enhance
sensor performance. The amplitude at fractal generation level four exceeds the standard device, and
fractal generation level three shows a significant improvement in regards to the gain bandwidth
product. In particular, there is over a two fold increase at this fractal generation level over that of
the standard device. Thus, the results in comparison to a standard design suggest strongly that it
would be worthwhile for a prototype based on the Sierpinski tetrix to be built, in order to determine
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whether experimental results support these theoretical results, especially for fractal generation level
five. Three-dimensional printing of electronic sensors and additively-manufactured piezoelectric
devices are still emerging technologies [31–33]. However, the scope exists for tackling the construction
of these three-dimensional piezoelectric structures.

Table 3. Figure of merits for the Euclidean, Sierpinski gasket and tetrix pre-fractal sensors at generation
level five. The bandwidth of all devices has been calculated using the amplitude at the resonant
frequency of the Euclidean sensor.

Amplitude (a) dB Bandwidth (bw) MHz Gain Bandwidth Product (gbp) MHz

Sierpinski Tetrix 5.967 0.846 3.341
Sierpinski Gasket 9.520 2.022 11.811

Euclidean 3.462 0.263 0.584

The effect of increasing the fractal generation level resulted with an improvement in all three
metrics with the exception of generation level two. In addition, there was a decrease in regards to the
operational bandwidth and gain bandwidth product when increasing the fractal generation level from
four to five. However, there is concern over the Sierpinski tetrix device performance in comparison to
the Sierpinski gasket device at the same fractal generation level. On the other hand, the tetrix device
performs much more effectively than currently favoured designs.

6.3. Convergence of the Model

The convergence of the fractal generation level for the RFR is presented in this section. This was
achieved by computing the absolute value of the difference between successive fractal generations for
up to 50 generation levels. That is,

γr =
‖ψ( f ; n)− ψ( f ; n + 1)‖2

max ψ( f ; n)
, (40)

where ψ( f ; n) is the RFR at frequency f and generation level n. Previous research [6,11] has also
applied this same technique in order to determine the point of convergence for the Sierpinski gasket
fractal-inspired transducer.

Figure 8 illustrates the points of convergence of the RFR for the Sierpinski tetrix and Sierpinski
gasket fractal-inspired sensors, and has been normalized between zero and one. We see that significant
improvements can be made on the RFR by increasing the generation level from one to five. Thereafter,
the differences between each successive generation level decreases before converging. The Sierpinski
tetrix device converges at a lower fractal generation level when compared with the gasket device.
Using a 5% tolerance level, the Sierpinski tetrix device converges by fractal generation level n = 25,
while the Sierpinski gasket device converges by fractal generation level n = 32. At the 1% tolerance
level, the convergences are n = 28 and n = 34 for the Sierpinski tetrix and gasket devices, respectively.
From a manufacturing perspective, this is positive as it shows that a device which incorporates a
pre-fractal with a high generation level is not required. The trade-off between design intricacy and
device performance is maximised at around generation level five, which is possible with the current
prototyping technology.
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Figure 8. Normalized RFR for the Sierpinski tetrix (γt) and Sierpinski gasket (γg) devices as a function
of fractal generation level n.

7. Discussion

This paper investigated the RFR of a Sierpinski tetrix fractal-inspired transducer for the use
of sensor applications. The Green function renormalization technique was utilised as a method for
obtaining the sensor operating characteristic and was modelled on a PZT-5H ceramic. The Sierpinski
tetrix fractal-like sensor was examined by constructing the lattice counterparts, a method previously
performed for the Sierpinski gasket [6,11] and Sierpinski carpet devices [25], to derive and analyse
the RFR.

As a result of current manufacturing procedures, the construction of pre-fractal sensors would
be restricted to low fractal generation levels. This is a consequence of the reduction in the size of the
length scales as the generation level is increased. In this paper, the first five fractal generation levels
have been modelled. Additionally, fractal generation level fifteen has been included to determine what
effect higher fractal generation levels have on the performance of the sensor. The point of convergence
of the sensors performance was also studied. From this analysis, it was shown that the RFR converged
by fractal generation level n = 25 with a tolerance level of 5% and converged at n = 28 with a
1% tolerance level.

Computer models are a valuable resource to predict the performance of hypothetical designs as
they help minimise the associated time and costs involved in manufacturing new ultrasonic sensors.
Additionally, they assist in determining the most effective configuration of new designs. Thus, to assess
the performance of the Sierpinski tetrix fractal-inspired sensor, a computer model was utilised to
plot the RFR as a function of the operating frequency. This was then compared to a previously
investigated Sierpinski gasket fractal-inspired transducer, in reception mode as well as the conventional
1–3 composite sensor. As expected, the tetrix device experienced more resonances at a wider range
of frequencies than the standard sensor. Furthermore, an increase in the fractal generation level led
to a more resonant device with the presence of higher frequency resonances. Thus, fractal-inspired
sensors demonstrate suitability for a various number of purposes. For the Sierpinski tetrix pre-fractal,
an increase in fractal generation level was mostly followed by an increase in the device’s RFR amplitude,
bandwidth and gain bandwidth product. For fractal generation level five, these figures of merit were
all reduced in comparison to the previously investigated Sierpinski gasket-inspired sensor. However,
in regards to device performance over traditional designs, the analysis presented in this paper indicates
a substantial increase in each of these figure of merits. These results do therefore suggest the possibility
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that a Sierpinski tetrix fractal-inspired sensor could be suitable in ultrasonic design to enhance current
transducer performance in reception mode.

8. Conclusions

This paper investigated the theoretical performance of a Sierpinski tetrix fractal-inspired sensor
by utilising the Green function renormalization method. Given the simplified nature of the model,
it could be beneficial to investigate this structure using finite element analysis akin to that done on the
Sierpinski gasket pre-fractal in [11,24]. Utilising this method would allow for the reintroduction of
longitudinal and shear propagating waves into the model. Sensor performance optimization could
also be employed with the aim of improving the values of the RFR bandwidth, amplitude and gain
bandwidth product. This could be achieved by sampling different material parameters, such as
piezoelectric constant and Young’s modulus [34]. This provides an opportunity to ascertain a range of
materials that could be used in the creation of novel fractal-inspired ultrasonic sensors.
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