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Abstract

Numerical models of fluid flows calculate the resolved flow at a given grid resolution.
The smallest wave resolved by the numerical scheme is deemed the effective resolution.
Advection schemes are an important part of the numerical models used for computational
fluid dynamics. For example, in atmospheric dynamical cores they control the transport of
tracers. For linear schemes solving the advection equation, the effective resolution can be
calculated analytically using dispersion analysis. Here, a numerical test is developed that
can calculate the effective resolution of any scheme (linear or non-linear) for the advection
equation.

The tests are focused on the use of non-linear limiters for advection schemes. It is found
that the effective resolution of such non-linear schemes is very dependent on the number of
time steps. Initially, schemes with limiters introduce large errors. Therefore, their effective
resolution is poor over a small number of time steps. As the number of time steps increases
the error of non-linear schemes grows at a smaller rate than that of the linear schemes
which improves their effective resolution considerably. The tests highlight that a scheme
that produces large errors over one time step might not produce a large accumulated error
over a number of time steps. The results show that, in terms of effective-resolution, there is
little benefit in using higher than third-order numerical accuracy with traditional limiters.
The use of weighted essentially non-oscillatory (WENO) schemes, or relaxed and quasi-
monotonic limiters, which allow smooth extrema, can eliminate this reduction in effective
resolution and enable higher than third-order accuracy.
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1. Introduction1

Advection schemes perform an important role in the numerical models used for compu-2

tational fluid dynamics. The advection equation describes passive transport, although many3

advection schemes can be used to solve conservation laws, such as the density or vorticity4

equations. They are a key component of a dynamical core, which solves the fluid dynamic5

equations in weather and climate general circulation models (GCMs). The advection equa-6

tion is used to transport the many tracer species used in weather and climate studies and is7

strongly linked to the chemistry module and some subgrid-scale physical parameterizations8

[11, 22].9

It is well known that the smallest resolved waves of a numerical scheme for the advection10

equation are often significantly larger than the grid spacing [34]. For weather and climate11

models this means that many atmospheric features, that are of the order of the grid scale,12

are not resolved by the model. Determining the smallest resolved wave of an atmospheric13

model, which we define as the effective resolution, provides insight into which scales are14

believable [12]. This can be used to determine the grid spacing required to properly represent15

atmospheric features. Knowledge of the effective resolution of a numerical scheme also16

informs the coupling of a dynamical core to subgrid scale physical parameterizations, which17

provide a forcing mechanism at the grid scale. Increasing the effective resolution of a model18

by using higher-order numerical methods might prove beneficial in terms of cost rather than19

just increasing the grid resolution (similar to the idea of equivalent resolution [36]).20

Part I of our series of papers [8] used dispersion relation analysis to calculate the effective21

resolution of a number of schemes for the linear advection equation. Dispersion relation and22

von Neumann analysis are tools that have been used to analyze many numerical methods23

[14, 20, 21, 24, 35]. If a scheme’s dispersion properties match those of the governing equation24

at a given wave number, and within a given error tolerance, then that wave number is25

classified as resolved [8, 32].26

One drawback of the dispersion analysis is that it can only be applied to linear schemes.27

For the advection equation there are many different types of numerical schemes (see, for28

example, [23, 25, 13]). Many advection schemes contain non-linear components, such as29

limiters or filling algorithms, and as such the effective resolution of these schemes cannot30

be assessed by dispersion analysis. Here, we present a numerical test that can be used by31

both linear and non-linear advection schemes to calculate their effective resolution. The32

numerical test analyses the method over a number of time steps, which will have an impact33

on the non-linear schemes, as numerical schemes that perform poorly over a single time step34

might not produce a large accumulated error over a number of time steps. We use this35

method to investigate the effect that non-linear components, such as limiters, have on the36

effective resolution of advection schemes.37

The analysis and numerical testing in our paper focuses on the linear advection equation,38

allowing easy comparison with the dispersion analysis performed by [8]. The advection39

equation is reviewed in Section 2, along with a recap of the analysis of [8]. In Section 3 we40

develop idealized numerical tests to allow the calculation of the effective resolution of any41

advection scheme. Section 4 shows the results from the numerical testing of limited schemes,42
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while Section 5 provides the summary and conclusions.43

2. The Advection Equation and Dispersion Analysis44

The one-dimensional advection equation is given as45

∂q

∂t
+ u

∂q

∂x
= 0, (1)

where q(x, t) is a tracer mixing ratio, u is the velocity (in this paper we choose u constant,46

with u = 1), x is the spatial direction and t is time. Note that all quantities are dimensionless47

in this paper. The solution to the constant velocity advection equation is known, and is48

given as49

qT (x, t) = q0(x− ut), (2)

where q0 is the initial tracer and the subscript T indicates the true solution.50

The effective resolution describes the smallest wave (largest wave number) that is fully51

resolved by a numerical scheme. To calculate the effective resolution using dispersion analysis52

we follow [8]. For the one-dimensional advection equation with constant velocity the true53

amplitude factor, |Γ|, and dispersion relation are given as54

|Γ| = 1, ω = uk, (3)

where k is the spatial wave number, and ω is the frequency. To calculate the effective55

resolution, the scheme’s amplitude factor (|ΓN |) and dispersion relation (ωN) are compared56

with the true amplitude factor and dispersion relation for all wave numbers. The amplitude57

factor and dispersion relation are calculated by substituting the wavelike solution58

qnj = q̂ exp (i(kxj − ωtn)) (4)

into the discretization. Here n and j are the temporal and spatial indices, i is the imaginary59

unit and q̂ is the amplitude. The amplitude factor is calculated as |Γ| = | exp (−iω∆t)|, for60

a time step ∆t. Wave number k is defined as fully resolved if61

||Γ| − |ΓN ||

|Γ|
≤ ǫ,

|ω −Re(ωN)|

|ω|
≤ ǫ, (5)

for all wave numbers ≤ k at some error threshold ǫ. Following [8, 32], we use ǫ = 0.01, i.e.62

a scheme must be within 99% of the true amplitude factor and dispersion relation. We are63

interested in the effective resolution of a scheme as it transports a quantity over the distance64

of one grid box, ∆x. To do this the amplitude factor is taken to the power m, where m = 1/c65

for Courant number c = u∆t/∆x (i.e. m is the number of time steps required to transport66

a quantity one full grid box).67
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3. Numerically Determining Effective Resolution68

To determine the effective resolution of non-linear schemes, numerical testing and an69

analysis of error norms are required. For consistency with [8], even though the numerical70

testing advects the tracer over a number of grid boxes, the numerically calculated effective71

resolution tells us the smallest wave that a numerical scheme can fully resolve over the72

distance ∆x. As with [8] we only consider a uniform grid of equal spacing. Our method73

involves splitting the numerical error into diffusive and dispersive parts. We then specify an74

error tolerance to class a wave number as resolved or unresolved. We class wave number k75

as being resolved if both the diffusive and dispersive errors are less than the error tolerance76

for all wave numbers less than k.77

To create initial conditions of wave number k on the domain 0 ≤ x ≤ 1 we use the cosine78

function79

q0 = 1 + cos (2πkx) . (6)

This function has a minimum value of zero, so it is useable with schemes that have a80

positivity filter. The solution, after time t, is given as in equation (2).81

Following [27] the normalized mean square error for tracer solution qC compared with82

true solution qT on a grid with M equally spaced points can be separated into diffusive83

(DIFF) and dispersive (DISP) parts. First the normalized mean square error is calculated84

as85

E =

∑

(qT − qC)
2/M

∑

(qT )2/M
, (7)

and then the diffusive and dispersive parts are given by86

EDIFF =
[σ(qT )− σ(qC)]

2 + (q̄T − q̄C)
2

∑

(qT )2/M
, (8)

where σ is the standard deviation and the overbar signifies the spatial mean, and87

EDISP = E −EDIFF . (9)

We specify the tolerance, (ǫDIFF , ǫDISP ), and define wave number k as being unresolved by88

a given numerical scheme if89

EDIFF > ǫDIFF or EDISP > ǫDISP . (10)

The test is repeated for all positive integers k ≤ M/2 until a wave number is classed as90

unresolved.91
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3.1. Threshold Values92

This method is designed to numerically calculate the effective resolution of an advection93

scheme. We require that the results are reproducible independent of the grid resolution. For94

example, if a scheme resolves wave number 4 on a grid with 128 grid points, the scheme95

must also resolve wave number 8 on a grid with 256 grid points (as they represent the 32∆x96

wave on the different grids). Also, we require that our method produces the same results97

for linear schemes regardless of the number of time steps used, i.e. the results for linear98

schemes are not dependent on the number of grid boxes the quantity is advected over during99

a simulation. This means that even if we use our scheme to advect q over two grid boxes, the100

test method will produce the same results as if we had advected q over one box. We specify101

G as the number of grid cells that the tracer will be advected across during the simulation102

(i.e. the tracer is therefore transported a distance G∆x).103

First we consider the diffusive errors. The profile104

qdf = 1 + (1− ǫ) cos (2πkx) , (11)

will have the same phase as the initial condition q0 (6) for a given k, but the amplitude of qdf105

will only be (1− ǫ) of q0. We can calculate ǫDIFF analytically by considering the continuous106

case, i.e. the summations in the error calculation (7) become integrals over the domain, and107

using qT = q0 and qC = qdf . For qdf we have EDISP = 0 ⇒ EDIFF = E, therefore we just108

need the normalized mean square error (7). The denominator becomes109

∫ 1

0

(q0)
2dx =

∫ 1

0

(1 + cos (2πkx))2 dx =
3

2
. (12)

The numerator of the normalized mean square error is110

∫ 1

0

(q0 − qdf )
2dx =

∫ 1

0

[1 + cos (2πkx)− 1− (1− ǫ) cos (2πkx)]2 dx,

=

[(

x

2
+

sin 4πkx

8πk

)

ǫ2
]1

0

=
ǫ2

2
. (13)

Combining the numerator with the denominator we get that the threshold value is111

ǫDIFF =
ǫ2

3
. (14)

For consistency with [8] we set ǫ = 0.01, which means that qdf has a 1% diffusive error. This112

gives our threshold ǫDIFF = 1/30000 for G = 1. Numerically calculating EDIFF using (8)113

for qdf confirms this value for any wave number k.114

Next we consider the dispersive error. If we transport a quantity over the distance ∆x,115

then we consider a wave to be completely out of phase if it has not moved. Therefore the116

profile117
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qds = 1 + cos (2πk(x− ǫ∆x)) , (15)

will have the same amplitude as q0, but the phase will only be (1 − ǫ) of q0. We calculate118

ǫDISP using the continuous case with qt = q0 and qC = qds, and the denominator from (12).119

For qds we have EDIFF = 0 ⇒ EDISP = E. The numerator of (7) becomes120

∫ 1

0

(q0 − qds)
2dx =

∫ 1

0

[1 + cos (2πkx)− 1− cos (2πk(x− ǫ∆x))]2 dx,

=

∫ 1

0

cos2 (2πkx) + cos2 (2πk(x− ǫ∆x)) dx

− 2

∫ 1

0

cos (2πkx) cos (2πk(x− ǫ∆x)) dx,

= 1− 2

∫ 1

0

cos (2πkx) cos (2πk(x− ǫ∆x)) dx,

= 1−

∫ 1

0

cos (2πkx) + cos (2πk(2x− ǫ∆x)) dx,

= 1−

∫ 1

0

cos (2πkǫ∆x) + cos (2πk(2x− ǫ∆x)) dx,

= 1− cos (2πkǫ∆x) . (16)

Using the first two terms of the Taylor series expansion of the cosine term, the numerator121

can be approximated as122

1−

(

1−
(2πkǫ∆x)2

2

)

=
(2πkǫ∆x)2

2
. (17)

Combining with the denominator, the dispersive threshold is123

ǫDISP =
(2πkǫ∆x)2

3
. (18)

This means that the dispersive threshold is dependent on the wave number k. Setting124

ǫ = 0.01, i.e. qds has a 1% dispersive error, and rewriting the wave number in terms of N∆x125

gives ǫDISP ≈ 0.00132/N2 for G = 1. Numerically calculating EDISP using (9) confirms the126

dispersive threshold.127

The next point to consider is the case of G 6= 1. For a given Courant number c, the128

number of time steps to run the simulation, G/c, must be an integer. Therefore G = 1129

would not be admissible for c = 0.6 for example, and another value, e.g. G = 0.6 or G = 6,130

must be used. (Note that while G/c must be an integer, G doesn’t have to be an integer).131

As the error measures, equations (7)-(9), are based on the mean square error, the error132

for linear schemes will grow proportional to the number of time steps squared. This is the133

case for the foward-in-time schemes (see section 4.1) at large scales e.g. a wavelength of134
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N = 32∆x. However, as the scales decrease and tend to 2∆x, the errors lose the time step135

squared dependence for simulations over a large number of time steps. This is because the136

schemes reach their maximum error over fewer steps (for example, a predominantly diffusive137

scheme will diffuse the tracer to q = 1 at all grid points, and therefore the error is unable138

to grow). Numerical testing (not shown) indicates that the linear schemes’ errors maintain139

the time step squared dependence for the large scales for more than 100 time steps.140

A final point for the diffusive errors is that for G = 2, the error measure is not equivalent141

to ǫ = 0.02, i.e. a 2% error. A scheme that is unresolved will damp the wave by 1% over142

one grid box, and therefore will damp the wave by 1% of a 1% damped wave over two grid143

boxes (and so on for more grid boxes). This is due to the diffusion being applied iteratively.144

Therefore we consider Gp = 100×(1−0.99G) instead of just G when calculating the diffusive145

error threshold.146

From this analysis we find that the threshold values for the diffusive and dispersive errors147

are148

ǫDIFF = 0.00003̇G2
p, ǫDISP =

0.00132

N2
G2, (19)

respectively (note that the dot signifies a recurring decimal, and ǫDISP is the approximate149

rounded value of (18)). Once a scheme’s diffusive or dispersive error exceeds this threshold150

for wave number k, we say that wave number k is unresolved corresponding to ǫ = 0.01151

for the analytic case. This method works well, see section 3.2, but there are a few caveats.152

Firstly, the accuracy of the method increases as the number of grid points increases, i.e. using153

M = 256 will more accurately determine which waves are resolved than using M = 128.154

This is because there are more wave numbers available to test using the grid with more155

points. Secondly, the accuracy of the test decreases as the number of grid boxes to advect156

across increases, i.e. using G = 1 will produce more accurate results than G >> 1. Over a157

long simulation (very large G) a scheme’s diffusive error may completely smooth the tracer158

to q = 1, thus the diffusive and dispersive errors will not grow over more time steps. Section159

3.2 shows that using 100 time steps still produces accurate results.160

Finally, we must consider the error of non-linear schemes. For linear schemes the error161

generally maintains the number of time steps squared dependence, as the linear scheme is162

applying the same error repeatedly, but this is not true for non-linear schemes. For the case163

of ǫ = 0.01 we require that the diffusive error must be within 99% of the true value over164

one grid box, and this corresponds to being within 90.44% of the true value over a distance165

of ten grid boxes. However, it is possible for a non-linear scheme to be outside 99% over166

one grid box, but be within 90.44% over ten grid boxes; i.e. the wave number would be167

classed as unresolved by the scheme over one grid box but resolved over ten grid boxes. A168

similar argument can be made for dispersion errors. Using G = c will show how the scheme169

performs over the first time step, which may be significantly different to how the scheme170

behaves over several steps. Therefore non-linear schemes need to be tested for a variety of171

G to show the effective resolution due to the behavior of the scheme over different length172

simulations.173

7



3.2. Comparison to Analytical Method174

To show the validity of our numerical test, we compare the numerical effective resolution175

with the analytical effective resolution calculated in [8] for a number of schemes. The176

effective resolution takes into account both the diffusive and dispersive properties of the177

scheme. For the analytical effective resolution, wave number k is classed as resolved if the178

scheme’s amplitude factor and dispersion relation at that wave number are both below a179

given threshold, as in equation (5). For the numerical effective resolution, wave number k is180

classed as resolved if the scheme’s diffusive and the dispersive errors are both less than their181

respective thresholds, given in equation (19), for the initial profile of that wave number.182

We make use of the forward-in-time schemes of order 1− 6 (also known as Lax-Wendroff or183

ADER schemes [15, 30, 31]) and the Piecewise Parabolic Method (PPM, [2]) with fourth-184

and sixth-order edge reconstruction and no limiters. These schemes are described in more185

detail in Section 4.1. We also show results for the fourth-order Runge-Kutta [4] with both186

second- and fourth-order spatial derivatives.187

Figure 1 shows the effective resolution, in terms of N∆x, calculated using both the ana-188

lytical method of [8] and the new numerical methodology, for linear schemes. The numerical189

effective resolution, calculated using a grid with 1024 points, is measured over 1 time step190

(i.e. G = c), and over 100 time steps (G = 100c). Courant numbers at intervals of 0.1191

ranging from 0.1 to 1.0 are used. For each of the schemes, our numerical methodology is192

a very good approximation of the analytical method for calculating the effective resolution193

(the center and right hand plots of Figure 1 are very similar to the left plots). The largest194

difference between the numerical and analytic effective resolutions is less than 2∆x. The195

results also show that while the 100 time step simulation is still a good approximation to196

the analytical values, it is less accurate than the 1 time step simulation, as illustrated by197

the fourth-order forward-in-time scheme at c = 0.7.198

4. Numerical Testing of Advection Schemes199

We use our method to calculate the effective resolution of non-linear schemes applied to200

the linear advection equation. All the schemes used in this paper are discussed in Section201

4.1, and the results of the testing are in Section 4.2.202

4.1. List of Numerical Schemes203

The Lax-Wendroff/forward-in-time/ADER schemes [15, 30, 31] are different methods204

that produce the same discretization for the constant velocity linear advection equation.205

The general idea is to use the Taylor series expansion206

qn+1
j = qnj +∆tqt +

∆t2

2!
qtt +

∆t3

3!
qttt + ... (20)

where the derivatives are calculated at time step n and spatial point j. The temporal207

derivatives are then written in terms of spatial derivatives, for example qt = −uqx and208

qtt = u2qxx etc, and substituted back into (20). These derivatives are calculated using the209

required order-of-accuracy; this produces a scheme that has the same temporal and spatial210
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Figure 1: Comparing the analytical effective resolution (left) with the numerically calculated effective resolu-
tion (center and right) for the forward-in-time schemes of order 1-6 (top) and the fourth-order Runge-Kutta
with second and fourth-order spatial derivatives (RK4 (2nd) and RK4 (4th) respectively), and unlimited
PPM with fourth- and sixth-order edge reconstruction (PPM (4th) and PPM (6th) respectively) (bottom).
The plots show the smallest resolved wave in terms of N∆x against Courant number c. The number of time
steps (TS) is 1 (center) and 100 (right), leading to G = c (center) and G = 100c (right).

order-of-accuracy. These schemes can easily be discretized in flux form. We make use of211

order 1−6; the first-order version is just the first-order upwind scheme and the second-order212

version corresponds to the Lax-Wendroff scheme. The ADER method is a finite-volume213

method that makes use of the flux form of the equation and usually utilizes a limiter. A214

similar expansion to (20) is used in the flux calculation. For constant velocity advection215

and without the use of limiters the ADER schemes are equivalent to the Lax-Wendroff and216

higher-order schemes. For the purposes of this paper we refer to these schemes collectively217

as ‘forward-in-time’ schemes of order 1− 6.218

To investigate non-linear schemes we make use of schemes with limiters. Limiters are219

used to ensure monotonicity and to prevent spurious oscillations occurring in the solution.220

We consider the van Leer (VL) limiter [33] which can be applied to the second-order Lax-221

Wendroff scheme. The flux limiter φ is a function of successive gradients [26], and is used in222

conjunction with a high-order flux FH (in this case the second-order Lax-Wendroff) and a223
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low-order monotonic flux (in this case the first-order upwind scheme). The flux is calculated224

as225

Fj+ 1

2

= FL
j+ 1

2

+ φj+ 1

2

(

FH
j+ 1

2

− FL
j+ 1

2

)

. (21)

We also consider the Flux-Corrected-Transport (FCT) method of [1]. FCT starts with226

the first-order upwind scheme and determines how much of an anti-diffusive flux can be227

added to still produce a monotonic solution. The FCT algorithm can be used with any228

order scheme to produce the anti-diffusive flux, therefore we have used it with the second-229

to-fifth order forward-in-time schemes. The universal limiter [17, 16], denoted FL, is a flux230

limiter that can be applied to any high-order flux. Again we apply it to the second-to-fifth231

order forward-in-time schemes. The universal limiter can be relaxed to allow small over-232

and under-shoots and therefore higher-order accuracy for smooth data. This procedure is233

explained in the Appendix, and the relaxed limiter is denoted RL.234

The final schemes we test are non-oscillatory schemes based on the Piecewise Parabolic235

Method (PPM, [2]) and Weighted Essentially Non-Oscillatory schemes (WENO, [19]). PPM236

is a finite-volume method that reconstructs a grid cell edge. This edge value is limited to237

make the reconstruction piecewise and discontinuous. A parabolic subgrid distribution is238

then calculated using the limited edge reconstruction. We make use of both the limited239

and unlimited versions of PPM (the unlimited versions are shown in Figure 1). Due to the240

parabolic subgrid distribution, unlimited PPM is third-order accurate provided the edge241

reconstruction is at least third-order. We use two versions; the fourth-order edge recon-242

struction, which is more typical for PPM, and a sixth-order version given by [3]. WENO243

schemes are weighted versions of Essentially Non-Oscillatory schemes (ENO, [6]), and use a244

combination of ENO reconstructions (instead of just the smoothest). They are essentially245

non-oscillatory, which permits high-order accuracy but does not guaranteed the solution to246

be monotonic (similar to the relaxed limiter described above). We use the fourth-order [19]247

and fifth-order versions [7]. A list of all the numerical schemes, including the abbreviation,248

whether the scheme has a limiter, and the primary reference(s) is found in Table 1.249

4.2. Results250

The simulations are run for a length of 1, 25, 50 and 100 time steps (i.e. G is 1c, 25c, 50c251

and 100c) to show the effect of the non-linear schemes over time. The grid is composed of252

1024 equally spaced grid points between 0 ≤ x ≤ 1. Note that although the accuracy of the253

method decreases with an increased number of time steps, up to 100 time steps was shown254

to be satisfactory in Figure 1. We calculate the effective resolution at Courant numbers at255

intervals of 0.05 that range from 0.05 to 1.0.256

To investigate the effect of limiters on effective resolution, we compare a number of257

second-order schemes. Figure 2 shows the comparison between the van Leer, FCT and258

the universal limiter (FL) applied to the second-order forward-in-time (i.e. Lax-Wendroff)259

scheme. The second-order unlimited forward-in-time scheme (Lax-Wendroff) is also shown260

(solid black line). Initially the limiters introduce large diffusion and dispersion errors, as261

they damp the peaks of the waves. Therefore, over one time step the limited schemes262
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Figure 2: Numerically calculated effective resolution, in terms of N∆x, against Courant number c, for the
second-order forward-in-time (2nd), van Leer (VL), flux-corrected transport (FCT 2nd) and the universal
flux-limited (FL 2nd) schemes. The results are shown for different length simulations; 1 time step (top left),
25 time steps (top right), 50 time steps (bottom left), and 100 time steps (bottom right).

perform poorly when compared with the unlimited scheme. The effective resolution of the263

limited schemes (VL, FCT and FL) are approximately two times worse than the unlimited264

second-order scheme over one time step. As the simulation progresses the limited schemes’265

errors increase at a different rate to the unlimited scheme. As the number of time steps266

increases, the effective resolution of the limited schemes improves, and after 25 steps the267

limited schemes start to outperform the unlimited scheme.268

The effective resolution when using limiters with a higher-order scheme is shown in Figure269

3. The universal limiter is applied to the second-, third-, fourth- and fifth-order forward-in-270

time schemes. As with Figure 2, over one time step the limiter introduces large errors and271

the effective resolution for each of the schemes is significantly worse than the corresponding272

unlimited scheme (shown in Figure 1). Again, as the number of time steps increases the273

effective resolution of the limited schemes improves. In general, the limited second-order274
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Figure 3: Numerically calculated effective resolution, in terms of N∆x, against Courant number c, for the
universal limiter used with the second (FL 2nd), third (FL 3rd), fourth (FL 4th) and fifth-order (FL 5th)
forward-in-time schemes. The results are shown for different length simulations; 1 time step (top left), 25
time steps (top right), 50 time steps (bottom left), and 100 time steps (bottom right). For 1 time step (top
left) the third-, fourth- and fifth-order schemes produce an almost identical effective resolution, hence the
plot lines lie on top of each other.

scheme resolves less than the limited third-, fourth- and fifth-order schemes, and less than275

the second-order unlimited scheme. The effective resolution of the third-, fourth- and fifth-276

order limited schemes are very similar. This is because the universal limiter damps the peaks277

of smooth waves and is unable to achieve better than third-order accuracy (regardless of the278

order of the unlimited scheme). Note that using the FCT algorithm with the second, third,279

fourth and fifth-order forward-in-time schemes produces very similar results to those shown280

for the universal limiter in Figure 3 (not shown).281

Figure 4 shows the effective resolution of the relaxed quasi-monotonic limiter applied to282

the second-, third-, fourth- and fifth-order forward-in-time schemes. As with the universal283

limiter, there is an initial error that affects the effective resolution at the first time step,284

but this is significantly smaller for the relaxed limiter than for the universal limiter. In285
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Figure 4: Numerically calculated effective resolution, in terms of N∆x, against Courant number c, for the
relaxed-limiter used with the second (RL 2nd), third (RL 3rd), fourth (RL 4th) and fifth-order (RL 5th)
forward-in-time schemes. The results are shown for different length simulations; 1 time step (top left), 25
time steps (top right), 50 time steps (bottom left), and 100 time steps (bottom right).

subsequent time steps the relaxed limiter allows the scheme to behave similarly to the286

underlying unlimited scheme, and for 25, 50 and 100 time steps the relaxed limiter produces287

an almost identical effective resolution to the corresponding order unlimited forward-in-time288

scheme.289

The final schemes we consider in this section are the PPM and WENO schemes, and their290

effective resolutions are shown in Figure 5. The unlimited versions of PPM, shown in Figure291

1, are not affected by the number of time steps, and the sixth-order edge reconstruction292

outperforms the fourth-order edge reconstruction. Applying the limiter produces similar293

results to using the universal limiter (shown in Figure 3); initially there are large errors,294

but the effective resolution improves as the number of time steps increases. Note that using295

the limiter produces very similar results for both the fourth-order and sixth-order edge296

reconstructions. The effective resolution for the limiter applied to PPM is worse than using297
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Figure 5: Numerically calculated effective resolution, in terms of N∆x, against Courant number c, for PPM
with fourth-order edge reconstruction and limiter (PPM 4th LIM), PPM with sixth-order edge reconstruction
and limiter (PPM 6th LIM), fourth-order WENO (WENO 4th) and fifth-order WENO (WENO 5th). The
results are shown for different length simulations; 1 time step (top left), 25 time steps (top right), 50
time steps (bottom left), and 100 time steps (bottom right). Note that the limited PPM with fourth- and
sixth-order edge reconstructions produce almost identical plots.

the universal limiter for a similarly ordered scheme, especially for low Courant numbers.298

These result show the large impact that the limiter has on PPM. The WENO schemes behave299

similarly to the forward-in-time schemes with the relaxed quasi-monotonic limiter. Initially300

there is an error that produces a large effective resolution over one time step, but over many301

time steps the error decreases and the effective resolution becomes that of the underlying302

scheme. Note that the underlying scheme for the WENO schemes are not equivalent to303

the fourth- and fifth-order forward-in-time schemes, hence the effective resolution does not304

approach 2∆x as the Courant number approaches unity.305
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5. Conclusions306

This paper is the second part in a series investigating the effective resolution of advection307

schemes. The effective resolution describes the smallest scale (i.e. largest wave number)308

that can be fully resolved by a numerical scheme. This can be calculated using dispersion309

analysis [8]. As this dispersion analysis can only be applied to linear schemes, we have310

created a numerical test strategy that calculates the effective resolution of any advection311

scheme, linear or non-linear. The numerical test involves advecting a tracer of wavelength312

k; if the diffusive and dispersive errors fall below a given threshold then wave number k is313

classed as fully resolved. Comparing the numerical methodology with the analytical results314

from [8] shows that the numerical test can accurately determine the effective resolution.315

This method to numerically calculate the effective resolution is applied to one-dimensional316

schemes, although it is easily extendable to test two and three-dimensional schemes.317

We use the numerical test to calculate the effective resolution of numerical schemes that318

are often used for tracer transport in dynamical cores of GCMs. Although the focus is on319

methods used in weather and climate models, the method and results apply to advection320

schemes in any area of computational fluid dynamics. We apply the test to non-linear321

schemes for the advection equation, and focus our attention on schemes with limiters. The322

results show that these schemes with non-linear limiters resolve different waves depending323

on how long the simulation is run. Initially, the limiters introduces large diffusion and324

dispersion errors, and after the first time step these schemes resolve significantly less than the325

corresponding unlimited scheme. As the simulation progresses the diffusion and dispersion326

errors grow at a slower rate for the limited schemes than the corresponding unlimited scheme.327

For the second-order schemes the addition of the limiter initially reduces the effective res-328

olution significantly, but over more time steps the effective resolution of the limited schemes329

improves until, for some Courant numbers, the limited schemes outperform the unlimited330

second-order scheme. For traditional flux limiters used with third-, fourth- and fifth-order331

schemes the effective resolution of the limited schemes is worse than that of the correspond-332

ing order unlimited schemes for short simulations. The effective resolution of the limited333

fourth- and fifth-order schemes is not a significant improvement on the limited third-order334

scheme, and for some simulations the third-order scheme actually has the best effective res-335

olution of the three. This indicates that using a third-order scheme might be optimal (in336

terms of accuracy against cost) when using these monotonic limiters. As the length of the337

simulation increases the effective resolution of the limited schemes tends towards that of338

the corresponding order unlimited schemes. Replacing the monotonic limiter with a relaxed339

quasi-monotonic limiter leads to a marked improvement on the effective resolution. The340

errors at the initial time step are much smaller than with the monotonic limiter, and after341

a short time the effective resolution of the relaxed limiter reverts to that of the underlying342

basic unlimited scheme. The results show that using a relaxed limiter produces a better343

effective resolution than using a monotonic limiter for higher than third-order schemes. The344

tests are also performed on other types of non-linear limiter, such as the Piecewise Parabolic345

Method (PPM) and Weighted Essentially Non-Oscillatory (WENO) schemes. The results346

for the traditional flux-limiters generalize to these other limiters; the initially large error347
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from the limiter decreases as the simulation length increases, and the use of non-monotonic348

limiters can produce the effective resolution of a high-order unlimited scheme.349

It is worth noting that the analysis in this paper only concerns the effective resolution of350

a numerical advection scheme, and that although the flux limiters may reduce the effective351

resolution of a scheme for a short simulation, they do have other benefits. Flux limiters352

are used to ensure monotonicity and positivity (which is essential for tracer transport in353

atmospheric models), and they improve the accuracy when modelling discontinuous or rough354

data. Also, for advection in sheared flow or for equations where there are downscale transfers355

of quantities from the grid scale to subgrid scales, the implicit diffusion from the flux limiters356

may be used as an implicit subgrid model [29, 9, 5, 10].357

Our results identify the smallest scales that can be resolved by certain advection schemes,358

and the impact of limiters on effective resolution for finite-difference and finite-volume359

schemes. These types of numerical schemes are used in all branches of computational fluid360

dynamics, and our focus is those that are often used in transport schemes in atmospheric361

models. The results show that to accurately model the transport of a trace gas, the tracer362

must be at a much larger scale than the grid spacing. Although this paper is only concerned363

with advection schemes, the results are a first step towards understanding the effective364

resolution of dynamical cores of atmospheric models. Many dynamical cores use methods365

described here, for example non-linear limiters, to solve the momentum and thermodynamic366

equations (for example, [18] uses a modified version of PPM), and for small Courant numbers367

they may be unable to fully resolve features smaller than ≈ 20∆x. This means that there368

is a large gap between the scales resolved by the numerics that solve the dynamic equations369

and the grid-scale physics (and other grid-scale features such as topography).370

Appendix: Relaxed Quasi-Monotonic Limiter371

This appendix briefly describes how the monotonic universal limiter [17, 16] can be372

relaxed to create a quasi-monotonic limiter. The quasi-monotonic limiter allows higher-373

order accuracy for smooth data, although it does permit small over- and undershoots.374

As described by [28], the universal limiter starts with a flux, qL, at the left edge of a grid375

cell (in our case this is calculated by the forward-in-time schemes). The flux is limited to376

ensure that the updated q in the grid cell does not exceed given bounds, qn+1
min and qn+1

max. The377

relaxed limiter replaces the lower and upper cell value bounds with qn+1
min − δ and qn+1

max + δ,378

where δ is small. This method does not damp the peak of smooth waves, and therefore379

achieves high-order accuracy when used with a high-order scheme.380

To determine the value of δ we use the grid-scale violation detection method described381

by [37]. The flux is deemed spurious if382

(qL − qj−1) (qj − qL) < 0, (.1)

and any of the following383
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Table 1: List of one-dimensional numerical schemes used in this paper. ‘Limiter’ indicates the use of non-
linear limiters and ‘Ref’ provides the primary reference(s).

Abbr. Scheme Limiter Ref
1st 1st-Order Forward-In-Time (Upwind) no
2nd 2nd-Order Forward-In-Time (Lax-Wendroff) no [15]
3rd 3rd-Order Forward-In-Time (ADER) no [30, 31]
4th 4th-Order Forward-In-Time (ADER) no [30, 31]
5th 5th-Order Forward-In-Time (ADER) no [30, 31]
VL Van-Leer (Lax-Wendroff basic) yes [33]
FL 2nd Universal Limiter (Lax-Wendroff basic) yes [17, 16]
FL 3rd Universal Limiter (3rd-Order basic) yes [17, 16]
FL 4th Universal Limiter (4th-Order basic) yes [17, 16]
FL 5th Universal Limiter (5th-Order basic) yes [17, 16]
RL 2nd Relaxed-Universal Limiter (Lax-Wendroff basic) yes [17, 16]
RL 3rd Relaxed-Universal Limiter (3rd-Order basic) yes [17, 16]
RL 4th Relaxed-Universal Limiter (4th-Order basic) yes [17, 16]
RL 5th Relaxed-Universal Limiter (5th-Order basic) yes [17, 16]
FCT 2nd Flux-Corrected Transport (Lax-Wendroff basic) yes [1]
FCT 3rd Flux-Corrected Transport (3rd-Order basic) yes [1]
FCT 4th Flux-Corrected Transport (4th-Order basic) yes [1]
FCT 5th Flux-Corrected Transport (5th-Order basic) yes [1]
PPM 4th Piecewise Parabolic Method 4th-order edge reconstruction no [2]
PPM LIM Piecewise Parabolic Method 4th-order edge reconstruction yes [2]
PPM 6th Piecewise Parabolic Method 6th-order edge reconstruction no [2, 3]
PPM 6th LIM Piecewise Parabolic Method 6th-order edge reconstruction yes [2, 3]
WENO 4th 4th-Order WENO yes [19]
WENO 5th 5th-Order WENO yes [7]
RK4 (2nd) Runge-Kutta 4 with 2nd-order centered difference no [4]
RK4 (4th) Runge-Kutta 4 with 4th-order centered difference no [4]

17



(qj−1 − qj−2) (qj+1 − qj) ≥ 0, (qj−1 − qj−2) (qj−2 − qj−3) ≤ 0,

(qj+1 − qj) (qj+2 − qj+1) ≤ 0, (qL − qj−1) (qj−1 − qj−2) ≤ 0,

for grid index j. If the flux is spurious then it is limited using δ = 0. If the flux is not384

spurious, then δ is chosen as the difference between the maximum and minimum values of385

(qj+1, qj , qj−1). Note that the limiter can be made positive definite by using the lower bound,386

max
(

qn+1
min − δ, 0

)

.387
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